Science.gov

Sample records for accelerator design analysis

  1. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  2. High-performance computing in accelerating structure design and analysis

    NASA Astrophysics Data System (ADS)

    Li, Zenghai; Folwell, Nathan; Ge, Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-03-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R&D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields).

  3. High-Performance Computing in Accelerating Structure Design And Analysis

    SciTech Connect

    Li, Z.H.; Folwell, N.; Ge, Li-Xin; Guetz, A.; Ivanov, V.; Kowalski, M.; Lee, L.Q.; Ng, C.K.; Schussman, G.; Stingelin, L.; Uplenchwar, R.; Wolf, M.; Xiao, L.L.; Ko, K.; /SLAC /PSI, Villigen /Illinois U., Urbana

    2006-06-27

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R&D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long range wakefields).

  4. Designing reliability into accelerators

    NASA Astrophysics Data System (ADS)

    Hutton, A.

    1992-07-01

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed.

  5. Design and Analysis of a Micro-Optical Position Readout for Acceleration Sensing

    SciTech Connect

    Dickey, Fred M.; Holswade, Scott C.; Shagam, Richard N.

    1999-07-08

    Sandia National Laboratories is developing a MEMS-based trajectory safety subsystem, which allows enablement of critical functions only after a particular acceleration environment has been achieved. The device, known as an Environmental Sensing Device (ESD), consists of a suspended moving shuttle that translates a given distance when exposed to an appropriate acceleration environment. The shuttle contains an embedded code, consisting of grating structures, that is illuminated and optically read using a semiconductor laser and detector integrated together in a GaAs-based Photonic Integrated Circuit (PIC) flip-chip bonded to the assembly. This paper will describe the optical design and performance analysis of the embedded code features in the shuttle.

  6. Design and analysis of solder connections using accelerated approximate procedure with disturbed state concept

    NASA Astrophysics Data System (ADS)

    Whitenack, Russell

    The accelerated approximate procedure developed and used herein for analysis, design and parametric optimization in electronic packaging is based on the disturbed state concept (DSC) and the hierarchical single surface (HISS) constitutive models. Over the past many years the benefits of the DSC/HISS model, compared to those of available plasticity models, have been demonstrated and validated for a wide range of materials and solder connections. When the DSC/HISS model is implemented in a two-dimensional finite element code, it is well suited for failure analyses of lead/tin solder connections under cyclic thermal and mechanical loading that are typically occur in electronic packages. Unfortunately, an analysis of a single solder connection, for approximately 4000 or more cycles, can require much effort and computer time, which may be too long to be of practical use. The accelerated approximate procedure significantly reduces the effort and the analysis time to approximately 10 to 15 minutes on a Pentium 4, 3.2 GHz personal computer. The main emphasis of this dissertation is the use of the unified DSC model with the finite element procedure to predict the behavior of chip-substrate solder connections. The DSC code is used to validate the performance of a number of packages (144 BPGA, 313 PBGA) tested in the laboratory under thermomechanical loading. Using the accelerated approximate procedure, the effect of the variable thickness solder connection in a plane stress idealization is compared with that of the constant thickness assumption, and a three-dimensional analysis. It shows that the analysis with variable thickness (in plane stress idealization) yields improved results. The accelerated approximate procedure is then used to perform parametric design analyses of a solder connection by varying a number of important factors such as connection size, shape and misalignment. The effects of varying the DSC/HISS parameters on cycle life are also analyzed. The results of

  7. Experimental design and analysis for accelerated degradation tests with Li-ion cells.

    SciTech Connect

    Doughty, Daniel Harvey; Thomas, Edward Victor; Jungst, Rudolph George; Roth, Emanuel Peter

    2003-08-01

    This document describes a general protocol (involving both experimental and data analytic aspects) that is designed to be a roadmap for rapidly obtaining a useful assessment of the average lifetime (at some specified use conditions) that might be expected from cells of a particular design. The proposed experimental protocol involves a series of accelerated degradation experiments. Through the acquisition of degradation data over time specified by the experimental protocol, an unambiguous assessment of the effects of accelerating factors (e.g., temperature and state of charge) on various measures of the health of a cell (e.g., power fade and capacity fade) will result. In order to assess cell lifetime, it is necessary to develop a model that accurately predicts degradation over a range of the experimental factors. In general, it is difficult to specify an appropriate model form without some preliminary analysis of the data. Nevertheless, assuming that the aging phenomenon relates to a chemical reaction with simple first-order rate kinetics, a data analysis protocol is also provided to construct a useful model that relates performance degradation to the levels of the accelerating factors. This model can then be used to make an accurate assessment of the average cell lifetime. The proposed experimental and data analysis protocols are illustrated with a case study involving the effects of accelerated aging on the power output from Gen-2 cells. For this case study, inadequacies of the simple first-order kinetics model were observed. However, a more complex model allowing for the effects of two concurrent mechanisms provided an accurate representation of the experimental data.

  8. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    SciTech Connect

    Kraus, Adam; Merzari, Elia; Sofu, Tanju; Zhong, Zhaopeng; Gohar, Yousry

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-state simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.

  9. ESS Accelerator Cryoplant Process Design

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Arnold, P.; Hees, W.; Hildenbeutel, J.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility being built with extensive international collaboration in Lund, Sweden. The ESS accelerator will deliver protons with 5 MW of power to the target at 2.0 GeV, with a nominal current of 62.5 mA. The superconducting part of the accelerator is about 300 meters long and contains 43 cryomodules. The ESS accelerator cryoplant (ACCP) will provide the cooling for the cryomodules and the cryogenic distribution system that delivers the helium to the cryomodules. The ACCP will cover three cryogenic circuits: Bath cooling for the cavities at 2 K, the thermal shields at around 40 K and the power couplers thermalisation with 4.5 K forced helium cooling. The open competitive bid for the ACCP took place in 2014 with Linde Kryotechnik AG being selected as the vendor. This paper summarizes the progress in the ACCP development and engineering. Current status including final cooling requirements, preliminary process design, system configuration, machine concept and layout, main parameters and features, solution for the acceptance tests, exergy analysis and efficiency is presented.

  10. Designing reliability into accelerators

    SciTech Connect

    Hutton, A.

    1992-08-01

    For the next generation of high performance, high average luminosity colliders, the ``factories,`` reliability engineering must be introduced right at the inception of the project and maintained as a central theme throughout the project. There are several aspects which will be addressed separately: Concept; design; motivation; management techniques; and fault diagnosis.

  11. Designing reliability into accelerators

    SciTech Connect

    Hutton, A.

    1992-08-01

    For the next generation of high performance, high average luminosity colliders, the factories,'' reliability engineering must be introduced right at the inception of the project and maintained as a central theme throughout the project. There are several aspects which will be addressed separately: Concept; design; motivation; management techniques; and fault diagnosis.

  12. Improving the design and analysis of superconducting magnets for particle accelerators

    SciTech Connect

    Gupta, Ramesh Chandra

    1996-11-01

    High energy particle accelerators are now the primary means of discovering the basic building blocks of matter and understanding the forces between them. In order to minimize the cost of building these machines, superconducting magnets are used in essentially all present day high energy proton and heavy ion colliders. The cost of superconducting magnets is typically in the range of 20--30% of the total cost of building such machines. The circulating particle beam goes through these magnets a large number of times (over hundreds of millions). The luminosity performance and life time of the beam in these machines depends significantly on the field quality in these magnets. Therefore, even a small error in the magnetic field shape may create a large cumulative effect in the beam trajectory to throw the particles of the magnet aperture. The superconducting accelerator magnets must, therefore, be designed and constructed so that these errors are small. In this thesis the research and development work will be described 3which has resulted in significant improvements in the field quality of the superconducting magnets for the Relativistic Heavy Ion Collider (RHIC). The design and the field quality improvements in the prototype of the main collider dipole magnet for the Superconducting Super Collider (SSC) will also be presented. RHIC will accelerate and collide two counter rotating beams of heavy ions up to 100 GeV/u and protons up to 250 GeV. It is expected that RHIC will create a hot, dense quark-gluon plasma and the conditions which, according to the Big Bang theory, existed in the early universe.

  13. Accelerated design and quality control of impact modifiers for plastics through atomic force microscopy (AFM) analysis

    NASA Astrophysics Data System (ADS)

    Moeller, Gunter

    2011-03-01

    Standard polymer resins are often too brittle or do not meet other mechanical property requirements for typical polymer applications. To achieve desired properties it is common to disperse so called ``impact modifiers'', which are spherical latex particles with diameters of much less than one micrometer, into the pure resin. Understanding and control of the entire process from latex particle formation to subsequent dispersion into polymer resins are necessary to accelerate the development of new materials that meet specific application requirements. In this work AFM imaging and nanoindentation techniques in combination with AFM-based spectroscopic techniques were applied to assess latex formation and dispersion. The size and size distribution of the latex particles can be measured based on AFM amplitude modulation images. AFM phase images provide information about the chemical homogeneity of individual particles. Nanoindentation may be used to estimate their elastic and viscoelastic properties. Proprietary creep and nanoscale Dynamic Mechanical Analysis (DMA) tests that we have developed were used to measure these mechanical properties. The small size of dispersed latex inclusions requires local mechanical and spectroscopic analysis techniques with high lateral and spatial resolution. We applied the CRAVE AFM method, developed at NIST, to perform mechanical analysis of individual latex inclusions and compared results with those obtained using nanoscale DMA. NanoIR, developed by Anasys Inc., and principal component confocal Raman were used for spectroscopic analysis and results from both techniques compared.

  14. Analysis of transmitted optical spectrum enabling accelerated testing of multijunction concentrating photovoltaic designs

    NASA Astrophysics Data System (ADS)

    Miller, David C.; Kempe, Michael D.; Kennedy, Cheryl E.; Kurtz, Sarah R.

    2011-01-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on its scalability and expected low levelized cost of electricity. The reliability of encapsulation materials used in CPV systems, however, is not well established. For example, the present qualification test for CPV modules includes only real-time ultraviolet (UV) exposure, i.e., methods for accelerated UV testing have not yet been developed. To better define the stress inherent to CPV systems, the UV and infrared spectra transmitted through representative optical systems were evaluated. Measurements of optical components are used to assess expected optical performance and quantify damaging optical exposure. Optical properties (transmittance, refractive index, reflectance, and absorptance) of candidate materials (including PMMA, soda-lime glass, borosilicate glass, and quartz refractors), components (including Ag- and Al-enabled reflectors), and encapsulants (including EVA, ionomer, PDMS, PPMS, polyolefin, and PVB) were identified. The activation spectrum was calculated for the representative optical systems using an assumed action spectrum to compare the expected damaging dose of UV radiation delivered to the cell encapsulation. The dose and flux analysis identifies the significance of IR relative to UV exposure for CPV systems. Because UV light is typically more highly attenuated, the UV dose within the encapsulation may not greatly exceed the unconcentrated global solar condition, but the thermal load scales nearly directly with the geometric concentration. Relative to a previous analysis for crystalline silicon cell technology, the analysis here is performed for III-V multijunction technology. Novel aspects here also include additional materials (such as TPU encapsulation) and additional components (transmission through silicone on glass lenses, antireflective coatings, and the front glass used with reflective systems, as well as reflection off of the cell).

  15. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    NASA Astrophysics Data System (ADS)

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-01

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  16. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    SciTech Connect

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-07

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  17. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  18. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    SciTech Connect

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  19. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  20. COMPASS Accelerator Design Technical Overview

    SciTech Connect

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  1. Parametric approach to linear induction accelerator design

    SciTech Connect

    Bresie, D.A.; Andrews, J.A.; Ingram, S.W. . Center for Electromechanics)

    1991-01-01

    Past work on the design of linear induction accelerators has centered on the development of computer codes to analyze accelerator designs, using the current filament method. While these filament models are a very valuable tool for evaluating the performance of an induction launcher design, they provide little insight into the selection of dimensions, materials, and operation points for accelerators with interesting performance. Described in this paper is a parametric approach to defining effective accelerator designs. This method uses a computer optimization routine to iteratively seek out effective designs. The optimization routine is forced to search within a parameter space restricted to interesting and realistic parameters such as size, weight, voltage, and temperature rises. A filament model is used as the filter for the optimizer. Several linear induction accelerators have been designed using this method. The accelerators designed all used a switched capacitor power supply. While the run time of this code on The University of Texas' CRAY XMP-24 computer is moderately long, the resulting designs have good predicted performance. With realistic power supplies and materials, accelerator efficiencies in the 20 to 40% range were easily obtained. This paper describes the effect of armature diameter, length-to-diameter ratio, and weight, as well as other parameters, on the optimum accelerator design.

  2. Computing tools for accelerator design

    SciTech Connect

    Parsa, Z.

    1986-06-01

    An algorithm has been developed that calculates and obtains information about nonlinear contributions in accelerators. The comparison of the results obtained from this program ''NONLIN'' and HARMON is discussed and illustrated for the SSC-CDR clustered lattices.

  3. LEGO: A Modular Accelerator Design Code

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Irwin, J.

    1997-05-01

    An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in three dimensional space. Several symplectic integrators are used to approximate the integration of the local Hamiltonians. A differential algebra class is introduced to extract a Taylor map up to an arbitrary order. Analysis of optics is done in the same way for both the linear and non-linear cases. Currently the code is used to design and simulate the lattices of the PEP-II. It will be used for the commissioning of the machines as well.

  4. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  5. Computing tools for accelerator design calculations

    SciTech Connect

    Fischler, M.; Nash, T.

    1984-01-01

    This note is intended as a brief, summary guide for accelerator designers to the new generation of commercial and special processors that allow great increases in computing cost effectiveness. New thinking is required to take best advantage of these computing opportunities, in particular, when moving from analytical approaches to tracking simulations. In this paper, we outline the relevant considerations.

  6. The IFMIF-EVEDA accelerator beam dump design

    NASA Astrophysics Data System (ADS)

    Iglesias, D.; Arranz, F.; Arroyo, J. M.; Barrera, G.; Brañas, B.; Casal, N.; García, M.; López, D.; Martínez, J. I.; Mayoral, A.; Ogando, F.; Parro, M.; Oliver, C.; Rapisarda, D.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2011-10-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 × 10 5 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition.

  7. Some aspects of superconducting accelerator design

    SciTech Connect

    Farkas, Z.D.; St. Lorant, S.J.

    1982-11-01

    The performance of an accelerator can be characterized by the efficiency with which electrical energy, the minimumm energy needed to generate a given beam voltage. The current accelerator improvement program at SLAC aims at raising the beam voltage to 50 GV which will use 240 klystrons each capable of producing a pulse 5 ..mu..s in length at a peak power of 36 MW. The Linear Collider requires 50 MW klystrons to achieve 60 GV which will raise the concomittant power consumption to 32.3 MW. We show that with superconducting elements we can increase the rf and ac conversion efficiencies and achieve the necessary 50 GV using only 1/3 of the present power requirements, provided that we exclude CW operation. We will further demonstrate that this increase in efficiency is crucial and highly significant in the design of a proposed 1000 GV linear accelerator.

  8. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  9. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  10. Detector design studies for Turkish Accelerator Center

    NASA Astrophysics Data System (ADS)

    Aksu, Burçin; Piliçer, Ercan

    2017-02-01

    The proposed Particle Factory detector at Turkish Accelerator Center (TAC-PF) aims to search for charm physics, CP violation and mixing of D0 mesons as well as new physics effects by investigating head-on collisions of 1 GeV electron from Energy Recovery Linac (ERL) with 3.56 GeV positrons from synchrotron storage ring. In this work, we constructed the TAC-PF detector design by using a recently developed framework namely Detector Description for High Energy Physics (DD4hep). The baseline TAC-PF detector design and its qualifications were summarized, followed by a general description.

  11. Evolutionary optimization methods for accelerator design

    NASA Astrophysics Data System (ADS)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained

  12. a Geoscience Accelerator Library - Design and Applications

    NASA Astrophysics Data System (ADS)

    Hill, C.; Richardson, A.

    2010-12-01

    Accelerator technologies such as GPUs are potentially powerful tools for geophysical problems, but programming them still involves somewhat idiosyncratic software practices. In our talk, we will describe a geoscience accelerated kernels library (GeAccKL) we have been developing to allow geoscience fluid algorithms to exploit CUDA and OpenCL based platforms. The GeAccKL library is a collection of tools for building, time-stepping, finite-volume based simulators. At its heart the library consists of functions evaluating discrete forms of key equation kernels that are common to many geoscience codes. We implement kernels for equations by making use of templating and simple compiler techniques to accommodate applications that use a range of data structures and discrete stencils. From these kernel templates we can create specific instances of library code suitable for a particular application scenario. For example we can accommodate different grid staggerings for dynamical variables and different indexing and array layout conventions. The design allows kernels to be chained together so that data structures can persist in device memory between kernel calls. In this way multiple timesteps can be evaluated on a GPU accelerator with minimal device memory to host memory transfer. Parallelism across multiple GPUs is supported through either transfers within multi-threaded process shared memory or through messaging between process address spaces. This allows parallel multi-GPU execution within a single system and across GPUs in a cluster. We will illustrate our library in action in three case studies. First we look at the use of the library to accelerate one part of a time-step in an atmospheric model simulation. Secondly we will look at the use of the library to perform all the intensive computations over several time steps in a time-stepping loop for an ocean transport model. Finally we will look at accelerating the computation of upstream routing calculations in a dynamic

  13. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  14. Design and analysis of a piezoelectric material based touch screen with additional pressure and its acceleration measurement functions

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Cheng; Liu, Jia-Yi; Gao, Ren-Long; Chang, Jie; Li, Long-Tu

    2013-12-01

    Touch screens are becoming more and more prevalent in everyday environments due to their convenience and humanized operation. In this paper, a piezoelectric material based touch screen is developed and investigated. Piezoelectric ceramics arrayed under the touch panel at the edges or corners are used as tactile sensors to measure the touch positioning point similarly to conventional touch screens. However, additional touch pressure and its acceleration performance can also be obtained to obtain a higher-level human-machine interface. The piezoelectric ceramics can also be added to a traditional touch screen structure, or they can be used independently to construct a novel touch screen with a high light transmittance approach to a transparent glass. The piezoelectric ceramics were processed from PZT piezoelectric ceramic powder into a round or rectangular shape. According to the varied touch position and physical press strength of a finger, or even a gloved hand or fingernail, the piezoelectric tactile sensors will have different output voltage responses. By calculating the ratio of different piezoelectric tactile sensors’ responses and summing up all piezoelectric tactile sensors’ output voltages, the touch point position, touch pressure and touch force acceleration can be detected. A prototype of such a touch screen is manufactured and its position accuracy, touch pressure and response speed are measured in detail. The experimental results show that the prototype has many advantages such as high light transmittance, low energy cost and high durability.

  15. Design of a nonscaling fixed field alternating gradient accelerator

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Courant, E. D.; Blaskiewicz, M.

    2005-05-01

    We present a design of nonscaling fixed field alternating gradient accelerators (FFAG) minimizing the dispersion action function H. The design is considered both analytically and via computer modeling. We present the basic principles of a nonscaling FFAG lattice and discuss optimization strategies so that one can accelerate over a broad range of momentum with reasonable apertures. Acceleration schemes for muons are discussed.

  16. ILC Reference Design Report: Accelerator Executive Summary

    SciTech Connect

    Phinney, Nan; /SLAC

    2007-12-14

    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radiofrequency (SCRF) accelerating cavities. The use of the SCRF technology was recommended by the International Technology Recommendation Panel (ITRP) in August 2004 [1], and shortly thereafter endorsed by the International Committee for Future Accelerators (ICFA). In an unprecedented milestone in high-energy physics, the many institutes around the world involved in linear collider R&D united in a common effort to produce a global design for the ILC. In November 2004, the 1st International Linear Collider Workshop was held at KEK, Tsukuba, Japan. The workshop was attended by some 200 accelerator physicists from around the world, and paved the way for the 2nd ILC Workshop in August 2005, held at Snowmass, Colorado, USA, where the ILC Global Design Effort (GDE) was officially formed. The GDE membership reflects the global nature of the collaboration, with accelerator experts from all three regions (Americas, Asia and Europe). The first major goal of the GDE was to define the basic parameters and layout of the machine--the Baseline Configuration. This was achieved at the first GDE meeting held at INFN, Frascati, Italy in December 2005 with the creation of the Baseline Configuration Document (BCD). During the next 14 months, the BCD was used as the basis for the detailed design work and value estimate (as described in section 1.6) culminating in the completion of the second major milestone, the publication of the draft ILC Reference Design Report (RDR). The technical design and cost estimate for the ILC is based on two decades of world-wide Linear Collider R&D, beginning with the construction and operation of the SLAC Linear Collider (SLC). The SLC is acknowledged as a proof-of-principle machine for the linear collider concept. The ILC SCRF linac technology was pioneered by the TESLA collaboration*, culminating in

  17. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  18. Design, development, and acceleration trials of radio-frequency quadrupole

    SciTech Connect

    Rao, S. V. L. S. Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V.; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S.; Gupta, S. K.; Singh, P.

    2014-04-15

    A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 μm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (∼±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D{sup +}) beam, we tested it by accelerating both the proton (H{sup +}) and D{sup +} beams. The RFQ was operated in pulsed mode and accelerated both H{sup +} and D{sup +} beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

  19. Towards Integrated Design and Modeling of High Field Accelerator Magnets

    SciTech Connect

    Caspi, S.; Ferracin, P.

    2006-06-01

    The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.

  20. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  1. Interactive analysis environment of unified accelerator libraries

    NASA Astrophysics Data System (ADS)

    Fine, V.; Malitsky, N.; Talman, R.

    2006-04-01

    Unified Accelerator Libraries (UAL, http://www.ual.bnl.gov) software is an open accelerator simulation environment addressing a broad spectrum of accelerator tasks ranging from efficient online-oriented modeling to full-scale realistic beam dynamics studies. The paper introduces a new package integrating UAL simulation algorithms with the QT-based Graphical User Interface and the ROOT data analysis and visualization framework ( http://root.cern.ch). The primary user application is implemented as an interactive and configurable Accelerator Physics Player. Its interface to visualization components is based on the QT layer ( http://root.bnl.gov) supported by the STAR experiment.

  2. Accelerating the Design of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Laufenberg, Larry (Editor)

    2003-01-01

    One of NASA's key goals is to increase the safety and reduce the cost of space transportation. Thus, a key element of NASA's new Integrated Space Transportation Plan is to develop new propulsion, structures, and operations for future generations of reusable launch vehicles (RLVs). As part of this effort to develop the next RLV, the ClCT Program's Computing, Networking, and Information Systems (CNIS) Project is developing and demonstrating collaborative software technologies that use the collective power of the NASA Grid to accelerate spacecraft design. One of these technologies, called AeroDB, automates the execution and monitoring of computational fluid dynamics (CFD) parameter studies on the NASA Grid. About the NASA Grid The NASA Grid, or Information Power Grid,. is being developed to leverage the distributed resources of NASA's many computers. instruments, simulators, and data storage systems. The goal is to use these combined resources to sdve difficult NASA challenges, such as iimulating the entire flight of a space vehicle from ascent to descent.To realize the vision of the NASA Grid, the CNIS Project is developing the software framework and protocols for building domain-specific environments and interfaces, new Grid services based on emerging industry standards, and advanced networking and computing testbeds to support new Grid-based applications such as AeroDB.

  3. BBU design of linear induction accelerator cells for radiography application

    SciTech Connect

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.; Houck, T.L.; Molau, N.E.; Focklen, J.; Gregory, S.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  4. Hardware accelerator design for tracking in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  5. Failure Mode Effects Analysis for an Accelerator Control System

    SciTech Connect

    Hartman, Steven M

    2009-01-01

    Failure mode effects analysis (FMEA) has been used in industry for design, manufacturing and assembly process quality control. It describes a formal approach for categorizing how a process may fail and for prioritizing failures based on their severity, frequency and likelihood of detection. Experience conducting a partial FMEA of an accelerator subsystem and its related control system will be reviewed. The applicability of the FMEA process to an operational accelerator control system will be discussed.

  6. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  7. Design of a Ram Accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Ram Accelerator, a chemically propelled, impulsive mass launch system, is presented as a viable concept for directly launching acceleration-insensitive payloads into low Earth orbit. The principles of propulsion are based on those of an airbreathing supersonic ramjet. The payload vehicle acts as the ramjet centerbody and travels through a fixed launch tube that acts as the ramjet outer cowling. The launch tube is filled with premixed gaseous fuel and oxidizer mixtures that combust at the base of the vehicle and produce thrust. Two modes of in-tube propulsion involving ramjet cycles are used in sequence to accelerate the vehicle from 0.7 km/sec to 9 km/sec. Requirements for placing a 2000 kg vehicle into a 500-km circular orbit, with a minimum amount of onboard rocket propellant for orbital maneuvers, are examined. It is shown that in-tube propulsion requirements dictate a launch tube length of 5.1 km to achieve an exit velocity of 9 km/sec, with peak accelerations not to exceed 1000 g's. Aerodynamic heating due to atmospheric transit requires minimal ablative protection and the vehicle retains a large percentage of its exit velocity. An indirect orbital insertion maneuver with aerobraking and two apogee burns is examined to minimize the required onboard propellant mass. An appropriate onboard propulsion system design to perform the required orbital maneuvers with minimum mass requirements is also determined. The structural designs of both the launch tube and the payload vehicle are examined using simple structural and finite element analysis for various materials.

  8. Design of a plasma discharge circuit for particle wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Ferrario, M.; Flora, F.; Gallerano, G. P.; Ghigo, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Mezi, L.; Musumeci, P.; Serio, M.

    2014-03-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV m-1), enabling acceleration of electrons to GeV energy in few centimetres. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators; radiofrequency-based accelerators, in fact, are limited in the accelerating field (10-100 MV m-1) requiring therefore kilometric distances to reach the GeV energies, but can provide very bright electron bunches. Combining high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB [1,2]. In particular, here we focus on the ionization process; we show a simplified model to study the evolution of plasma induced by discharge, very useful to design the discharge circuit able to fully ionize the gas and bring the plasma at the needed temperature and density.

  9. Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint

    SciTech Connect

    Pesaran, A.; Heon, G. H.; Smith, K.

    2011-01-01

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  10. Computing requirements for S. S. C. accelerator design and studies

    SciTech Connect

    Dragt, A.; Talman, R.; Siemann, R.; Dell, G.F.; Leemann, B.; Leemann, C.; Nauenberg, U.; Peggs, S.; Douglas, D.

    1984-01-01

    We estimate the computational hardware resources that will be required for accelerator physics studies during the design of the Superconducting SuperCollider. It is found that both Class IV and Class VI facilities (1) will be necessary. We describe a user environment for these facilities that is desirable within the context of accelerator studies. An acquisition scenario for these facilities is presented.

  11. Shielding design for a laser-accelerated proton therapy system.

    PubMed

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  12. Shielding design for a laser-accelerated proton therapy system

    NASA Astrophysics Data System (ADS)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  13. Third order TRANSPORT with MAD (Methodical Accelerator Design) input

    SciTech Connect

    Carey, D.C.

    1988-09-20

    This paper describes computer-aided design codes for particle accelerators. Among the topics discussed are: input beam description; parameters and algebraic expressions; the physical elements; beam lines; operations; and third-order transfer matrix. (LSP)

  14. The impact of acceleration on barrel/launch package design

    SciTech Connect

    Ang, J.A. ); Hauze, G. )

    1991-01-01

    This paper discusses the impact of launch acceleration on the design of electromagnetic launcher barrels and on the design of associated launch packages. This is of particular interest because launch package size and mass directly affect the overall armament system size and mass. A common design approach is to use as the peak launch acceleration, the maximum acceleration which the projectile can be designed to withstand. While this approach will minimize barrel length, it may also yield an excessively large overall system size and mass, especially for the long, slender projectile configurations which are desired for high aero-thermal and terminal ballistics performance. An alternate design approach is described which balances the goals of reducing barrel length with reducing launch package mass. Results illustrate the benefits of this balanced design approach on overall armament system size and mass.

  15. Cybermaterials: materials by design and accelerated insertion of materials

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  16. A Components Database Design and Implementation for Accelerators and Detectors

    SciTech Connect

    Chan, A.; Meyer, S.; /SLAC

    2011-08-31

    Many accelerator and detector systems being fabricated for the PEP-II Accelerator and BABAR Detector needed configuration control and calibration measurements tracked for their components. Instead of building a database for each distinct system, a Components Database was designed and implemented that can encompass any type of component and any type of measurement. In this paper we describe this database design that is especially suited for the engineering and fabrication processes of the accelerator and detector environments where there are thousands of unique component types. We give examples of information stored in the Components Database, which includes accelerator configuration, calibration measurements, fabrication history, design specifications, inventory, etc. The World Wide Web interface is used to access the data, and templates are available for international collaborations to collect data off-line.

  17. Analysis techniques for residual acceleration data

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. Iwan D.; Snyder, Robert S.

    1990-01-01

    Various aspects of residual acceleration data are of interest to low-gravity experimenters. Maximum and mean values and various other statistics can be obtained from data as collected in the time domain. Additional information may be obtained through manipulation of the data. Fourier analysis is discussed as a means of obtaining information about dominant frequency components of a given data window. Transformation of data into different coordinate axes is useful in the analysis of experiments with different orientations and can be achieved by the use of a transformation matrix. Application of such analysis techniques to residual acceleration data provides additional information than what is provided in a time history and increases the effectiveness of post-flight analysis of low-gravity experiments.

  18. Unified formulation for linear accelerator design

    SciTech Connect

    Farkas, Z.D.

    1986-05-01

    Expressions for peak and average powers required to produce a given average gradient in an accelerator section are given. They are valid for both lossy and lossless (superconducting) sections, for both traveling wave and standing wave sections, and for pulsed or continuous wave rf input. The expressions are given in terms of structure parameters that are equally applicable to traveling wave or standing wave. These parameters delineate the effect of wall losses and energy required to build up the field. For both traveling wave and standing wave sections it is possible to make the rf pulse length short enough to make the wall losses negligible at the expense of increased peak power requirement. Therefore the expressions will include the effects of pulse compression. 6 refs., 7 figs.

  19. Preliminary design of a 10 MV ion accelerator

    SciTech Connect

    Fessenden, T.J.; Celata, C.M.; Faltens, A.; Henderson, T.; Judd, D.L.; Keefe, D.; Laslett, L.J.; Meneghetti, J.; Pixe, C.; Vanecek, D.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C/sup +/, Al/sup +/, or Al/sup + +/) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented.

  20. ACIS design compliance with principle accelerator safety interlock design requirements.

    SciTech Connect

    Knott, M.

    2005-02-23

    Prior to and during the design of the APS's Access Control Interlock System (ACIS), an effort was made to insure that the design complied with the relevant DOE and ANL requirements as well as those set forth in other recognized documents then in circulation. A paragraph-by-paragraph listing of the requirements (in some cases, recommended practices) and the corresponding ACIS design features was compiled for use by the review committees then in place. This tabulation was incorporated in the APS Safety Analysis Document (SAD) as Appendix A. With the evolutionary changes that have occurred to the APS and to the documents referenced, some of the details of these compliances have evolved as well. It has been decided to maintain the SAD as a ''living'' document, editing it in close time proximity to the evolving APS. Since Appendix A depicted the ACIS's original design compliance to an also-evolving set of documents, it was decided to remove Appendix A but to retain it as a reference document. This LS Note now contains that set of original design compliances. As the APS and the ACIS continue to evolve, the changes made will be subject to internal review and approval and will always be subject to the requirements set forth by the DOE and ANL.

  1. Likelihood analysis of the Local Group acceleration

    NASA Astrophysics Data System (ADS)

    Schmoldt, I.; Branchini, E.; Teodoro, L.; Efstathiou, G.; Frenk, C. S.; Keeble, O.; McMahon, R.; Maddox, S.; Oliver, S.; Rowan-Robinson, M.; Saunders, W.; Sutherland, W.; Tadros, H.; White, S. D. M.

    1999-04-01

    We compute the acceleration of the Local Group using 11 206 IRAS galaxies from the recently completed all-sky PSCz redshift survey. Measuring the acceleration vector in redshift space generates systematic uncertainties caused by the redshift-space distortions in the density field. We therefore assign galaxies to their real-space positions by adopting a non-parametric model for the velocity field that relies solely on the linear gravitational instability (GI) and linear biasing hypotheses. Remaining systematic contributions to the measured acceleration vector are corrected for by using PSCz mock catalogues from N-body experiments. The resulting acceleration vector points ~15 away from the CMB dipole apex, with a remarkable alignment between small- and large-scale contributions. A considerable fraction (~65 per cent) of the measured acceleration is generated within 40 h^-1 Mpc, with a non-negligible contribution from scales between 90 and 140 h^-1 Mpc, after which the acceleration amplitude seems to have converged. The local group acceleration from PSCz appears to be consistent with the one determined from the IRAS 1.2-Jy galaxy catalogue once the different contributions from shot noise have been taken into account. The results are consistent with the gravitational instability hypothesis and do not indicate any strong deviations from the linear biasing relation on large scales. A maximum-likelihood analysis of the cumulative PSCz dipole is performed within a radius of 150 h^-1 Mpc, in which we account for non-linear effects, shot noise and finite sample size. The aim is to constrain the beta=Omega^0.6/b parameter and the power spectrum of density fluctuations. We obtain beta=0.70^+0.35_-0.2 at 1sigma confidence level. The likelihood analysis is not very sensitive to the shape of the power spectrum, because of the rise in the amplitude of the dipole beyond 40 h^-1 Mpc and the increase in shot noise on large scales. There is, however, a weak indication that within the

  2. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  3. Using Corrosion Design Models to Accelerate the Transition of Alternatives

    DTIC Science & Technology

    2012-08-01

    Corrosion Design Models • All moving to incorporate light metals, composites and other aviation materials • Maturation includes effect of...Using Corrosion Design Models to Accelerate the Transition of Alternatives Craig Matzdorf Materials Engineering Division Naval Air...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Air Warfare Center, Materials Engineering Division,22347

  4. A new acceleration technique for the design of fibre gratings.

    PubMed

    Carvalho, J C C; Sousa, M J; Sales Júnior, C S; Costa, J C W A; Francês, C R L; Segatto, M E V

    2006-10-30

    In this paper we propose a novel acceleration technique for the design of fibre gratings based on Genetic Algorithm (GA). It is shown that with an appropriate reformulation of the wavelength sampling scheme it is possible to design high quality optical filters with low computational effort. Our results will show that the proposed technique can reduce significantly the GA's processing time.

  5. Accelerated Reliability Testing Utilizing Design of Experiments

    DTIC Science & Technology

    1993-12-01

    hat to Measure ............................... 23 b. Identify Stresses ................................ 24 c . Stress Levels...36 c . Test Time ................................... 48 d. Trade Off Analysis .............................. 56 3. A nalysis...79 2. Exam ple 2 . ..................................... 92 3. Exam ple 3 . .................................... 102 C . Conclusion

  6. Analysis of acceleration signals using wavelet transform.

    PubMed

    Sekine, M; Tamura, T; Akay, M; Togawa, T; Fukui, Y

    2000-06-01

    In this study, we attempted to discriminate the acceleration signal for horizontal level and stairway walking using wavelet-based fractal analysis method. The acceleration signal was measured close to the center of gravity of the body, while the subjects walked continuously in the corridor and up and down the stairs. We used the wavelet-based fractal analysis method to discriminate walking pattern. The parameter H which is related directly to the fractal dimension was estimated by the wavelet coefficient and was changed into low value during walking upstairs. By manually setting the threshold level for individual, it was possible to discriminate walking upstairs from the other walking type. However, the common feature among subjects was not shown between level walking and walking downstairs.

  7. Design of Octupole Channel for Integrable Optics Test Accelerator

    SciTech Connect

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo; Valishev, Alexander; Wesseln, Steven

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  8. A Bridge for Accelerating Materials by Design

    DOE PAGES

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; ...

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges.more » In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.« less

  9. A Bridge for Accelerating Materials by Design

    SciTech Connect

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; Kalinin, Sergei V.

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges. In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.

  10. A bridge for accelerating materials by design

    NASA Astrophysics Data System (ADS)

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas; Kalinin, Sergei V.

    2015-11-01

    Recent technical advances in the area of nanoscale imaging, spectroscopy and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum and statistical mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges. In this perspective, we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions and provide examples of scientific issues that can be addressed using a tightly integrated approach where theory and experiments are linked through big-deep data.

  11. Using Approximations to Accelerate Engineering Design Optimization

    NASA Technical Reports Server (NTRS)

    Torczon, Virginia; Trosset, Michael W.

    1998-01-01

    Optimization problems that arise in engineering design are often characterized by several features that hinder the use of standard nonlinear optimization techniques. Foremost among these features is that the functions used to define the engineering optimization problem often are computationally intensive. Within a standard nonlinear optimization algorithm, the computational expense of evaluating the functions that define the problem would necessarily be incurred for each iteration of the optimization algorithm. Faced with such prohibitive computational costs, an attractive alternative is to make use of surrogates within an optimization context since surrogates can be chosen or constructed so that they are typically much less expensive to compute. For the purposes of this paper, we will focus on the use of algebraic approximations as surrogates for the objective. In this paper we introduce the use of so-called merit functions that explicitly recognize the desirability of improving the current approximation to the objective during the course of the optimization. We define and experiment with the use of merit functions chosen to simultaneously improve both the solution to the optimization problem (the objective) and the quality of the approximation. Our goal is to further improve the effectiveness of our general approach without sacrificing any of its rigor.

  12. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  13. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  14. Design of the driver linac for the Rare Isotope Accelerator.

    SciTech Connect

    Ostroumov, P. N.; Nolen, J. A.; Shepard, K. W.; Physics

    2006-01-01

    The proposed design of the Rare Isotope Accelerator (RIA) driver linac is a cw, fully superconducting, 1.4 GV linac capable of accelerating uranium ions up to 400 MeV/u and protons to 1 GeV with 400 kW beam power. An extensive research and development effort has resolved many technical issues related to the construction of the driver linac and other systems of the RIA facility. In particular, record intensities of heavy ion beams have been demonstrated with the ECR ion source VENUS at LBNL, the driver front end systems including two-charge-state Low Energy Beam Transport (LEBT) and RFQ are being tested, and a set of SC accelerating structures to cover velocity range from 0.02c to 0.7c have been developed and prototyped. Newly developed high-performance SC cavities will provide the required voltage for the driver linac using 300 cavities designed for six different geometrical betas.

  15. Design Conception of a Solution Ion Source Based Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Ashis, Das

    2004-05-01

    Particle accelerators till date have been based on several ion source principles such as thermal ionization, stripping etc. Such methods of ion source enabling is very limited by high temperature of ionization required in cases of very heavy ions generation. Heavy ions speeding in accelerator may lead to experiments with such ions in both accelerators and colliders, that is believed capable of opening new regimes of particle accelerator studies that is very heavy very heavy collision. Literature indicate that many yet-unknown mysteries of atomic and subnuclear Physics, creation and fate of Universe, new element synthesis all lie in this regime of investigation. In this paper, I outline a simpler and less energetic manner of creating, particularly, speeding very heavy ions using a solution ion stripping source such as with liquid ammonia which has ability to dissolve many heavy metals in form of ammonia-metal ion clusters, that can be led to a specially designed accelerator chamber as detailed in the paper. It is surprising indeed why such easy road to ions source generation was not conceived by particle accelerator Physicists earlier.

  16. Acceleration of Data Analysis Applications using GPUs

    NASA Astrophysics Data System (ADS)

    Fillmore, D.; Messmer, P.; Mullowney, P.; Amyx, K.

    2008-12-01

    The vast amount of data collected by present and future scientific instruments, sensors and numerical models requires a significant increase in computing power for analysis. In many cases, processing time on a single workstation becomes impractical. While clusters of commodity processors can be utilized to accelerate some of these tasks, the relatively high software development cost, as well as acquisition and operational costs, make them less attractive for broad use. Over the past few years, another class of architectures has gained some popularity, namely heterogeneous architectures, which consist of general purpose processors connected to specialized processors. One of the most prominent examples are Graphics Processing Units (GPUs), which offer a tremendous amount of floating-point processing power due to demand for high-quality graphics in the computer game market. However, in order to harness this processing power, software developers have to develop with a detailed understanding of the underlying hardware. This burden on the developer is often hardly justifiable considering the rapid evolution of the hardware. In this talk, we will introduce GPULib, an open source library that enables scientists to accelerate their data analysis tasks using the GPUs already installed in their system from within high-level languages like IDL or MATLAB, and present examples and possible speedup from real-world data analysis applications. This work is funded through NASA Phase II SBIR Grant NNG06CA13C.

  17. Accelerator-driven subcritical facility:Conceptual design development

    NASA Astrophysics Data System (ADS)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  18. THE USE OF DISPERSION STRENGTHENED COPPER IN ACCELERATOR DESIGNS

    SciTech Connect

    R. VALDIVIEZ; D. SCHRAGE; ET AL

    2000-10-01

    Dispersion strengthened copper, known by the trade name GLIDCOP{reg_sign}, has found various applications in accelerator designs. Glidcop has material properties similar to OFE copper, such as thermal and electrical conductivity. Unlike OFE, however, Glidcop has yield and ultimate strengths equivalent to those of mild-carbon steel, making it a good structural material. This paper covers some accelerator components fabricated with Glidcop, material properties measured from room to brazing temperatures, and a furnace-brazing process that has produced good, consistent results with Glidcop.

  19. Considerations for design parameters for a dedicated medical accelerator

    SciTech Connect

    Alonso, J.R.

    1980-10-01

    There are only a very few critical parameters which determine the size, performance and cost of a heavy ion accelerator. These are the mass of the heaviest ion desired, the maximum range of this heaviest ion in tissue, and the highest intensity desired. Other parameters, such as beam emittance, beam delivery flexibility, reliability and experimental facility configurations are important, but are not primary driving factors in the design effort. The various clinical applications for a heavy ion accelerator are evaluated, detailing the most desirable beams for each application.

  20. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  1. A preliminary design of the collinear dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from 0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  2. Design and Fabrication of Racetrack Coil Accelerator Magnets

    SciTech Connect

    Chow, K.; Dietderich, D.R.; Gourlay, S.A.; Gupta, R.; Harnden, W.; Lietzke, A.; McInturff, A.D.; Millos, G.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1998-11-11

    Most accelerator magnets for applications in the field range up to 9 T utilize NbTi superconductor and a cosine theta coil design. For fields above 9 T, it is necessary to use Nb{sub 3}Sn or other strain sensitive materials, and other coil geometries that are more compatible with these materials must be considered. This paper describes their recent efforts to design a series of racetrack coil magnets that will provide experimental verification of this alternative magnet design for a dual aperture dipole magnet with the goal of reaching a field level of 15 T, will be described. The experimental program, which consists of a series of steps leading to a high field accelerator quality magnet, will be presented. Fabrication of a racetrack dipole magnet utilizing Nb{sub 3}Sn superconductor and a wind and react approach will be presented.

  3. Design of a ram accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  4. Accelerating DNA analysis applications on GPU clusters

    SciTech Connect

    Tumeo, Antonino; Villa, Oreste

    2010-06-13

    DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data which needs to be matched against exponentially growing databases known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems also include heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variabilities, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. Load balancing also plays a crucial role when considering the limited bandwidth among the nodes of these systems. In this paper we present an efficient implementation of the Aho-Corasick algorithm for high performance clusters accelerated with GPUs. We discuss how we partitioned and adapted the algorithm to fit the Tesla C1060 GPU and then present a MPI based implementation for a heterogeneous high performance cluster. We compare this implementation to MPI and MPI with pthreads based implementations for a homogeneous cluster of x86 processors, discussing the stability vs. the performance and the scaling of the solutions, taking into consideration aspects such as the bandwidth among the different nodes.

  5. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    PubMed

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage.

  6. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    SciTech Connect

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  7. Physics design of the HNB accelerator for ITER

    NASA Astrophysics Data System (ADS)

    de Esch, H. P. L.; Kashiwagi, M.; Taniguchi, M.; Inoue, T.; Serianni, G.; Agostinetti, P.; Chitarin, G.; Marconato, N.; Sartori, E.; Sonato, P.; Veltri, P.; Pilan, N.; Aprile, D.; Fonnesu, N.; Antoni, V.; Singh, M. J.; Hemsworth, R. S.; Cavenago, M.

    2015-09-01

    The physics design of the accelerator for the heating neutral beamline on ITER is now finished and this paper describes the considerations and choices which constitute the basis of this design. Equal acceleration gaps of 88 mm have been chosen to improve the voltage holding capability while keeping the beam divergence low. Kerbs (metallic plates around groups of apertures, attached to the downstream surface of the grids) are used to compensate for the beamlet-beamlet interaction and to point the beamlets in the right direction. A novel magnetic configuration is employed to compensate for the beamlet deflection caused by the electron suppression magnets in the extraction grid. A combination of long-range and short-range magnetic fields is used to reduce electron leakage between the grids and limit the transmitted electron power to below 800 kW.

  8. Design of High Gradient Accelerating Structure for CLIC

    NASA Astrophysics Data System (ADS)

    Grudiev, A.; Wuensch, W.

    2006-01-01

    A new CLIC main-linac accelerating-structure design, HDS (Hybrid Damped Structure), with improved high-gradient performance, efficiency and simplicity of fabrication is presented. The gains are achieved in part through a new cell design which includes fully-profiled rf surfaces optimized to minimize surface fields, and hybrid damping using both iris slots and radial waveguides. The slotted irises allow a simple structure fabrication in quadrants with no rf currents across joints, a reduced number of pieces per structure (only 4) and a reduced surface requiring precise machining. Further gains are achieved through a new structure optimization procedure, which simultaneously balances surface fields, power flow, short and long-range transverse wakefields and rf-to-beam efficiency. The optimization of a 30 GHz structure with a loaded accelerating gradient of 150 MV/m results in a bunch spacing of eight rf cycles and 31 % rf-to-beam efficiency.

  9. Rare Isotope Accelerator - Conceptual Design of Target Areas

    SciTech Connect

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  10. Shielding design of the linear accelerator at RAON: Accelerator tunnel and utility gallery

    NASA Astrophysics Data System (ADS)

    Kim, Suna; Kang, Bo Sun; Lee, Sangjin; Nam, Shinwoo; Chung, Yeonsei

    2015-10-01

    RAON is the first Korean heavy-ion accelerator for various rare-isotope experiments and will be constructed by the year of 2021. The building for the about 550-m-long superconducting linear accelerator at RAON has three divisions in the vertical layout: accelerator tunnel, intermediate tunnel, and utility gallery. One of the requirements for the building design is that the effective dose rate in the utility gallery should be well below the dose limit for workers. Other parts of the building underground are classified as high-radiation zones where access is strictly controlled. The radiation dose distribution in the building has been calculated by using the Monte Carlo transport code MCNPX including the radiation streaming effects through the intermediate tunnel and penetrating holes. We have applied a point beam loss model in which the continuous beam loss along the beam line is treated as an equivalent point loss with a simple target. We describe the details of the calculation and discuss the results.

  11. A polymer dataset for accelerated property prediction and design

    PubMed Central

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-01-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided. PMID:26927478

  12. A polymer dataset for accelerated property prediction and design

    SciTech Connect

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.

  13. A polymer dataset for accelerated property prediction and design.

    PubMed

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.

  14. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE PAGES

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  15. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    SciTech Connect

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; Ng, Cho -Kuen; Qi, Minghao H.; England, Robert J.

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved. Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.

  16. Feature-based Analysis of Plasma-based Particle Acceleration Data

    SciTech Connect

    Ruebel, Oliver; Geddes, Cameron G.R.; Chen, Min; Cormier-Michel, Estelle; Bethel, E. Wes

    2013-07-05

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  17. Feature-based Analysis of Plasma-based Particle Acceleration Data.

    PubMed

    Rubel, Oliver; Geddes, Cameron G R; Chen, Min; Cormier-Michel, Estelle; Bethel, E Wes

    2013-08-02

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  18. Feature-based analysis of plasma-based particle acceleration data.

    PubMed

    Rübel, Oliver; Geddes, Cameron G R; Chen, Min; Cormier-Michel, Estelle; Bethel, E Wes

    2014-02-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam, and to investigate transverse particle loss.

  19. Design of a low-cost, compact SRF accelerator for flue gas and wastewater treatment

    SciTech Connect

    Ciovati, Gianluigi

    2016-04-01

    Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222439. The proposed project consists of the design of a novel superconducting continuous-wave accelerator capable of providing a beam current of ~1 A at an energy of 1-2 MeV for the treatment of flue gases and wastewater streams. The novel approach consists on studying the feasibility of using a single-cell Nb cavity coated with a thin Nb3Sn layer of the inner surface and conductively cooled by to 4.2 K by cryocoolers inside a compact cryomodule. The proposed study will include beam transport simulations, thermal and mechanical engineering analysis of the cryomodule and a cost analysis for both the fabrications costs and the operational and maintenance costs of such accelerator. The outcome of the project will be a report summarizing the analysis and results from the design study.

  20. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses.

  1. MAPA: an interactive accelerator design code with GUI

    NASA Astrophysics Data System (ADS)

    Bruhwiler, David L.; Cary, John R.; Shasharina, Svetlana G.

    1999-06-01

    The MAPA code is an interactive accelerator modeling and design tool with an X/Motif GUI. MAPA has been developed in C++ and makes full use of object-oriented features. We present an overview of its features and describe how users can independently extend the capabilities of the entire application, including the GUI. For example, a user can define a new model for a focusing or accelerating element. If the appropriate form is followed, and the new element is "registered" with a single line in the specified file, then the GUI will fully support this user-defined element type after it has been compiled and then linked to the existing application. In particular, the GUI will bring up windows for modifying any relevant parameters of the new element type. At present, one can use the GUI for phase space tracking, finding fixed points and generating line plots for the Twiss parameters, the dispersion and the accelerator geometry. The user can define new types of simulations which the GUI will automatically support by providing a menu option to execute the simulation and subsequently rendering line plots of the resulting data.

  2. Accelerating Large Data Analysis By Exploiting Regularities

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Ellsworth, David

    2003-01-01

    We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.

  3. A multi-beamlet analysis of the MITICA accelerator

    SciTech Connect

    Fonnesu, N. Agostinetti, P.; Serianni, G.; Veltri, P.; Kisaki, M.

    2015-04-08

    The thermo-mechanical analysis and the mechanical design of the accelerator of MITICA (i.e. the full size prototype of the ITER neutral beam injector under construction at RFX [1]) are based on the calculation of the power deposition induced by particle impacts. This calculation is performed by EAMCC [2], a relativistic particle tracking code based on the Monte-Carlo method for describing collisions inside the accelerator, under prescribed electric and magnetic fields. The magnetic field maps are produced by 3D codes, while the electric field maps come from the 2D axi-symmetric code SLACCAD [3]. In order to perform a multi-beamlet analysis, which allows to take into account the beamlet-beamlet repulsion, and to consider other effects neglected under the hypothesis of axi-symmetric beam, a fully 3D version of the code is required. In this paper, a modified version of EAMCC, fully 3D, capable of modifying the mesh of the 3D maps and of dealing with uneven meshes is presented. A finer mesh is used just in the regions where a more detailed description of the fields is required, for a more realistic simulation. A comparison between the original code and the modified version is presented at first, as a validation of the modifications introduced in the latter. Subsequently, the main results of a single-beamlet analysis performed with the two versions of the code are shown and the differences between the 2D and the 3D simulations discussed. The last part is dedicated to the multi-beamlet simulation of the accelerator.

  4. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics

    PubMed Central

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-01-01

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. While this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well. PMID:26876223

  5. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics.

    PubMed

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-02-15

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are 'fingerprinted' as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. While this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.

  6. A comprehensive polymer dataset for accelerated property prediction and design

    NASA Astrophysics Data System (ADS)

    Tran, Huan; Kumar Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Oilania, Ghanshyam; Ramprasad, Rampi

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. In principle, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to rapidly predict the properties of materials not already in the dataset, thus accelerating the design of materials with preferable properties. Here, we report the development of a dataset of 1,065 polymers and related materials, which is available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. The dataset will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided. We discuss some information ``learned`` from the dataset and suggest that it may be used as the playground for further data-mining work.

  7. Machine learning strategy for accelerated design of polymer dielectrics

    DOE PAGES

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; ...

    2016-02-15

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further,more » a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.« less

  8. A polymer dataset for accelerated property prediction and design

    DOE PAGES

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; ...

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less

  9. Machine learning strategy for accelerated design of polymer dielectrics

    SciTech Connect

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-02-15

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.

  10. Gait analysis using gravitational acceleration measured by wearable sensors.

    PubMed

    Takeda, Ryo; Tadano, Shigeru; Todoh, Masahiro; Morikawa, Manabu; Nakayasu, Minoru; Yoshinari, Satoshi

    2009-02-09

    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.

  11. Hardware accelerator design for change detection in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.

  12. Design of a 30 GHz Damped Detuned Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Dehler, M.; Wilson, I.; Wuensch, W.; Jones, R. M.; Kroll, N. M.; Miller, R. H.

    1997-05-01

    Within the framework of the SLAC/CERN studies of 30 GHz linear colliders, an attempt has been made to scale the existing X-band NLC damped detuned accelerating structure to 30 GHz. A simple scaling was not chosen because of anticipated manufacturing difficulties. The new manifold-damped design has 101 cells and a minimum aperture of 3.4 mm. In order to obtain acceptably small values for both the single-bunch transverse wakefield and the long-range multibunch wakefield a relatively large non-linear variation of the iris thickness was introduced in addition to the iris diameter variation. The resulting short-range wakefield is 1270 V/pC/mm/m decreasing to less than 1after 1 ns.

  13. Conceptual design of industrial free electron laser using superconducting accelerator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  14. Design of Accelerator Online Simulator Server Using Structured Data

    SciTech Connect

    Shen, Guobao; Chu, Chungming; Wu, Juhao; Kraimer, Martin; /Argonne

    2012-07-06

    Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describes the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.

  15. Shielding design for multiple-energy linear accelerators.

    PubMed

    Barish, Robert J

    2014-05-01

    The introduction of medical linear accelerators (linacs) capable of producing three different x-ray energies has complicated the process of designing shielding for these units. The conventional approach for the previous generation of dual-energy linacs relied on the addition of some amount of supplementary shielding to that calculated for the higher-energy beam, where the amount of that supplement followed the historical "two-source" rule, also known as the "add one HVL rule," a practice derived from other two-source shielding considerations. The author describes an iterative approach that calculates shielding requirements accurately for any number of multiple beam energies assuming the workload at each energy can be specified at the outset. This method is particularly useful when considering the requirements for possible modifications to an existing vault when new equipment is to be installed as a replacement for a previous unit.

  16. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  17. Pulsed Magnet Arc Designs for Recirculating Linac Muon Accelerators

    SciTech Connect

    K.B. Beard, R.P. Johnson, S.A. Bogacz, G.M. Wang

    2009-05-01

    Recirculating linear accelerators (RLAs) using both pulsed quadrupoles and pulsed dipoles can be used to quickly accelerate muons in the 3 – 2000 GeV range. Estimates on the requirements for the pulsed quadrupoles and dipoles are presented.

  18. Designing Instruction for Speed: Qualitative Insights into Instructional Design for Accelerated Online Graduate Coursework

    ERIC Educational Resources Information Center

    Trekles, Anastasia M.; Sims, Roderick

    2013-01-01

    The purpose of this exploratory case study was to explore instructional design strategies and characteristics of online, asynchronous accelerated courses and students' choices of deep or surface learning approaches within this environment. An increasing number of university programs, particularly at the graduate level, are moving to an…

  19. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  20. Computer control of large accelerators design concepts and methods

    SciTech Connect

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references.

  1. Power supply design for the filament of the high-voltage electron accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, Lige; Yang, Lei; Yang, Jun; Huang, Jiang; Liu, Kaifeng; Zuo, Chen

    2015-12-01

    The filament is a key component for the electron emission in the high-voltage electron accelerator. In order to guarantee the stability of the beam intensity and ensure the proper functioning for the power supply in the airtight steel barrel, an efficient filament power supply under accurate control is required. The paper, based on the dual-switch forward converter and synchronous rectification technology, puts forward a prototype of power supply design for the filament of the high-voltage accelerator. The simulation is conducted with MATLAB-Simulink on the main topology and the control method. Loss analysis and thermal analysis are evaluated using the FEA method. Tests show that in this prototype, the accuracy of current control is higher than 97.5%, and the efficiency of the power supply reaches 87.8% when the output current is 40 A.

  2. Computational analysis of a pulsed inductive plasma accelerator

    NASA Astrophysics Data System (ADS)

    Corpening, Jeremy H.

    The pulsed inductive plasma accelerator allows for ionization of a cold gas propellant to plasma and acceleration of plasma with the same current pulse and without plasma contact with any part. This is beneficial since erosion is never a problem and lifetimes are limited only by the amount of carried propellant. To date, work involving the pulsed inductive plasma accelerator concept has been largely experimental with minimal computational analysis. The goal of the present research was to develop a computational tool using Maxwell's equations coupled with the Navier-Stokes fluid equations to fully analyze a pulsed inductive plasma accelerator. A plasma model was developed using the Saha equation and partition functions to calculate all required thermodynamic properties. The solution to Maxwell's equations was verified accurate and then coupled computations with propellant plasma were conducted. These coupled computations showed good order of magnitude accuracy with a simple onedimensional model however failed when the plasma began to accelerate due to the Lorentz force. The electric field, magnetic field, current density, and Lorentz force were all aligned in the proper vector directions. The computational failure occurred due to rapid, fictitious increases in the induced electric field in the vacuum created between the accelerating plasma and drive coil. Possible solutions to this problem are to decrease the time step and refine the grid density. Although complete acceleration of propellant plasma has yet to be computationally computed, this study has shown successful coupled computations with Maxwell and Navier-Stokes equations for a pulsed inductive plasma accelerator.

  3. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  4. Analysis of accelerated motion in the theory of relativity

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Conventional treatments of accelerated motion in the theory of relativity have led to certain difficulties of interpretation. Certain reversals in the apparent gravitational field of an accelerated body may be avoided by simpler analysis based on the use of restricted conformal transformations. In the conformal theory the velocity of light remains constant even for experimenters in accelerated motion. The problem considered is that of rectilinear motion with a variable velocity. The motion takes place along the x or x' axis of two coordinate systems.

  5. Accelerator mass spectrometry (AMS) in plutonium analysis.

    PubMed

    Strumińska-Parulska, Dagmara I

    The paper summarizes the results of the (240)Pu/(239)Pu atomic ratio studies in atmospheric fallout samples collected in 1986 over Gdynia (Poland) as well as three Baltic fish species collected in 1997 using the accelerator mass spectrometry. A new generation of AMS has been developed during last years and this method is an efficient and good technique to measure long-lived radioisotopes in the environment and provides the most accurate determination of the atomic ratios between (240)Pu and (239)Pu. The nuclide compositions of plutonium in filter samples correspond to their means of production. AMS measurements of atmospheric fallout collected in April showed sufficient increase of the (240)Pu/(239)Pu atomic ratio from 0.28 from March to 0.47. Also such high increase of (240)Pu/(239)Pu atomic ratio, close to reactor core (240)Pu/(239)Pu atomic ratio, was observed in September and equaled 0.47.

  6. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  7. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    SciTech Connect

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  8. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    NASA Astrophysics Data System (ADS)

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; Ristori, Leonardo

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural design of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of such unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of this new generation of single spoke cavities with values of maximum allowable working pressure that exceeds the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.

  9. Accelerator production of tritium pollution prevention design assessment

    SciTech Connect

    Reynolds, R.; Nowacki, P.; Sheetz, S.O.; Lanik, P.

    1997-09-18

    This Pollution Prevention Design Assessment (PPDA) provides data for cost-benefit analysis of the potential environmental impact of the APT, is an integral part of pollution prevention/waste minimization, and is required by DOE for any activity generating radioactive, hazardous, and mixed wastes. It will also better position the APT to meet future requirements, since it is anticipated that regulatory and other requirements will continue to become more restrictive and demanding.

  10. Design of high power radio frequency radial combiner for proton accelerator.

    PubMed

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2009-01-01

    A simplified design method has been proposed for systematic design of novel radio frequency (rf) power combiner and divider, incorporating radial slab-line structure, without using isolation resistor and external tuning mechanism. Due to low insertion loss, high power capability, and rigid mechanical configuration, this structure is advantageous for modern solid state rf power source used for feeding rf energy to superconducting accelerating structures. Analysis, based on equivalent circuit and radial transmission line approximation, provides simple design formula for calculating combiner parameters. Based on this method, novel 8-way and 16-way power combiners, with power handling capability of 4 kW, have been designed, as part of high power solid state rf amplifier development. Detailed experiments showed good performance in accordance with theory.

  11. A New Cavity Design For Medium Beta Acceleration

    SciTech Connect

    He, Feisi; Wang, Haipeng; Rimmer, Robert A.

    2014-02-01

    Heavy duty or cw, superconducting proton and heavy ion accelerators are being proposed and constructed worldwide. The total length of the machine is one of the main drivers in terms of cost. Thus hwr and spoke cavities at medium beta are usually optimized to achieve low surface field and high gradient. A novel accelerating structure at beta=0.5 evolved from spoke cavity is proposed, with lower surface fields but slightly higher heat load. It would be an interesting option for pulsed and cw accelerators with beam energy of more than 200mev/u.

  12. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    DOE PAGES

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; ...

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural de- sign of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of suchmore » unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of these new generation of single spoke cavities with values of maximum allowable working pressure that exceed the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.« less

  13. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    SciTech Connect

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; Ristori, Leonardo

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural de- sign of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of such unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of these new generation of single spoke cavities with values of maximum allowable working pressure that exceed the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.

  14. Analysis of flame acceleration in open or vented obstructed pipes

    NASA Astrophysics Data System (ADS)

    Bychkov, Vitaly; Sadek, Jad; Akkerman, V'yacheslav

    2017-01-01

    While flame propagation through obstacles is often associated with turbulence and/or shocks, Bychkov et al. [V. Bychkov et al., Phys. Rev. Lett. 101, 164501 (2008), 10.1103/PhysRevLett.101.164501] have revealed a shockless, conceptually laminar mechanism of extremely fast flame acceleration in semiopen obstructed pipes (one end of a pipe is closed; a flame is ignited at the closed end and propagates towards the open one). The acceleration is devoted to a powerful jet flow produced by delayed combustion in the spaces between the obstacles, with turbulence playing only a supplementary role in this process. In the present work, this formulation is extended to pipes with both ends open in order to describe the recent experiments and modeling by Yanez et al. [J. Yanez et al., arXiv:1208.6453] as well as the simulations by Middha and Hansen [P. Middha and O. R. Hansen, Process Safety Prog. 27, 192 (2008) 10.1002/prs.10242]. It is demonstrated that flames accelerate strongly in open or vented obstructed pipes and the acceleration mechanism is similar to that in semiopen ones (shockless and laminar), although acceleration is weaker in open pipes. Starting with an inviscid approximation, we subsequently incorporate hydraulic resistance (viscous forces) into the analysis for the sake of comparing its role to that of a jet flow driving acceleration. It is shown that hydraulic resistance is actually not required to drive flame acceleration. In contrast, this is a supplementary effect, which moderates acceleration. On the other hand, viscous forces are nevertheless an important effect because they are responsible for the initial delay occurring before the flame acceleration onset, which is observed in the experiments and simulations. Accounting for this effect provides good agreement between the experiments, modeling, and the present theory.

  15. On the design and testing of solid armatures for rail accelerator applications

    SciTech Connect

    Karthaus, W.; de Zeeuw, W.A.; Kolkert, W.J. )

    1991-01-01

    Two different armature designs, for rail accelerator applications have been studied during electromagnetic launch experiments. The designs investigated are an aluminium multi-finger monoblock and a copper fiber brush armature. The experimental set-up used and the results obtained together with an electro-thermal model that describes the armature interface behavior during the acceleration process itself are presented in this paper.

  16. Coupled microvibration analysis of a reaction wheel assembly including gyroscopic effects in its accelerance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Aglietti, Guglielmo S.; Ren, Weijia

    2013-10-01

    This article discusses the coupled microvibration analysis of a cantilever configured Reaction Wheel Assembly with soft-suspension system. A RWA-seismic mass coupled microvibration measurement system is presented and its model validated against test results. The importance of the RWA driving point accelerances in coupled microvibration analysis is thoroughly discussed. A RWA accelerance measurement system has been designed to measure the driving point accelerances in both static (flywheel not spinning) and dynamic (flywheel spinning) conditions. Analytically, RWA static accelerance is obtained by frequency response analysis of a finite element model. The traditionally ignored gyroscopic effects in the accelerances are included in the model and their effects with respect to traditional models are shown both theoretically and experimentally. Although at high angular speed, when nonlinearities in the microvibrations prevent an accurate simulation, it is shown that the predicted microvibrations match more closely with the test results when considering gyroscopic effects in RWA accelerances than those predicted using the traditional method. The presented coupled microvibration analysis method is also very efficient in practice and is applicable in an industrial environment.

  17. Instructional Design for Accelerated Macrocognitive Expertise in the Baseball Workplace.

    PubMed

    Fadde, Peter J

    2016-01-01

    The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity simulation. A key problem for instructional designers seems to be that expertise research done in laboratory and field settings doesn't get adequately translated into workplace training. Therefore, this article presents a framework for better linkage of expertise research/training across laboratory, field, and workplace settings. It also uses a case study to trace the development and implementation of a macrocognitive training program in the very challenging workplace of the baseball batters' box. This training, which was embedded for a full season in a college baseball team, targeted the perceptual-cognitive skill of pitch recognition that allows expert batters to circumvent limitations of human reaction time in order to hit a 90 mile-per-hour slider. While baseball batting has few analogous skills outside of sports, the instructional design principles of the training program developed to improve batting have wider applicability and implications. Its core operational principle, supported by information processing models but challenged by ecological models, decouples the perception-action link for targeted part-task training of the perception component, in much the same way that motor components routinely are isolated to leverage instructional efficiencies. After targeted perceptual training, perception and action were recoupled via transfer-appropriate tasks inspired by in situ research tasks. Using NCAA published statistics as performance measures, the cooperating team

  18. Instructional Design for Accelerated Macrocognitive Expertise in the Baseball Workplace

    PubMed Central

    Fadde, Peter J.

    2016-01-01

    The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity simulation. A key problem for instructional designers seems to be that expertise research done in laboratory and field settings doesn't get adequately translated into workplace training. Therefore, this article presents a framework for better linkage of expertise research/training across laboratory, field, and workplace settings. It also uses a case study to trace the development and implementation of a macrocognitive training program in the very challenging workplace of the baseball batters' box. This training, which was embedded for a full season in a college baseball team, targeted the perceptual-cognitive skill of pitch recognition that allows expert batters to circumvent limitations of human reaction time in order to hit a 90 mile-per-hour slider. While baseball batting has few analogous skills outside of sports, the instructional design principles of the training program developed to improve batting have wider applicability and implications. Its core operational principle, supported by information processing models but challenged by ecological models, decouples the perception-action link for targeted part-task training of the perception component, in much the same way that motor components routinely are isolated to leverage instructional efficiencies. After targeted perceptual training, perception and action were recoupled via transfer-appropriate tasks inspired by in situ research tasks. Using NCAA published statistics as performance measures, the cooperating team

  19. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    SciTech Connect

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  20. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    SciTech Connect

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  1. Analysis of Accelerants in Fire Debris - Data Interpretation.

    PubMed

    Bertsch, W

    1997-06-01

    Analysis of accelerants in fire debris involves the isolation of residual volatiles from the matrix and the analysis of these volatiles, usually by gas chromatography (GC). The resulting chromatograms are interpreted by comparing to a library of accelerant chromatograms obtained under similar conditions. This review first mentions ASTM's system in classifying fire accelerants into light petroleum distillates, gasoline, medium petroleum distillates, kerosene, heavy petroleum distillates, and unclassified compounds. Chromatograms with well-resolved n-alkane homolog patterns are most recognizable. Chromatograms that are inadequately resolved can be improved by columns having higher efficiency or selectivity, while those with too much interference can be improved by physical removal or reduction of these interfering compounds or selective detection. Using a mass spectrometer (MS) as the detector in GC/MS applications allows the display of common ions shared by compounds with similar structural features, thus greatly facilitating pattern recognition practices. Computer algorithms are now available for automated recognition of patterns possessed by various categories of accelerants. The state-of-the-art in forensic laboratories' analysis of accelerants in fire debris is presented as an appendix to this review. Data generated in annual proficiency tests over an 8-year period (1987-1995) revealed increased use of GC/MS instrumentation and some persisting problems, which include false positives and difficulties associated with component discrimination in the sample preparation process and recognition of partially evaporated distillates.

  2. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability.

  3. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2010-08-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  4. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2011-06-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  5. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    SciTech Connect

    Liao, Ben-Shan; Bai, Zhaojun; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  6. Ground motions and its effects in accelerator design

    SciTech Connect

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  7. Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz

    SciTech Connect

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.; Henke, H.

    1997-05-01

    A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum.

  8. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    SciTech Connect

    Blanovsky, Anatoly

    2004-12-07

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  9. E/M launcher vibration and acceleration data analysis

    SciTech Connect

    Grzesik, R.G.; Mitchell, D.E.; Sebastian, J.H. ); Chin, I.W. )

    1991-01-01

    This paper reports on acquired acceleration curves for projectiles electromagnetically launched out of the non-stiff, (epoxy fiber wrapped copper rails) 50 mm Benet barrel which were very noisy and difficult to interpret. The cause for the noise was assumed to be the induced vibration from the barrel and projectile. Standard numerical smoothing techniques were not deemed plausible candidates for mathematical analysis because using them alone would have resulted in curves which would have been superficially smoothed over, concealing possibly interesting transient responses and/or distorting valuable acceleration data. The barrel low frequency vibrations were too interwoven with the acceleration signal and could not be extracted non-intrusively, and the high frequency barrel vibrations were not apparent. The projectile vibrations turned out to be negligible being on the order of magnitude of the accelerometer's background noise.

  10. Accelerating Design of Batteries Using Computer-Aided Engineering Tools (Presentation)

    SciTech Connect

    Pesaran, A.; Kim, G. H.; Smith, K.

    2010-11-01

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  11. Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems

    SciTech Connect

    Valentine, T.E.; Rugama, Y. Munoz-Cobos, J.; Perez, R.

    2000-10-23

    The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to simulate a variety of subcritical measurements such as the pulsed neutron, Rossi-{alpha}, or noise analysis measurements.

  12. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    SciTech Connect

    2010-12-17

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  13. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema

    None

    2016-07-12

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  14. Case–Cohort Analysis with Accelerated Failure Time Model

    PubMed Central

    Kong, Lan; Cai, Jianwen

    2010-01-01

    Summary In a case–cohort design, covariates are assembled only for a subcohort that is randomly selected from the entire cohort and any additional cases outside the subcohort. This design is appealing for large cohort studies of rare disease, especially when the exposures of interest are expensive to ascertain for all the subjects. We propose statistical methods for analyzing the case–cohort data with a semiparametric accelerated failure time model that interprets the covariates effects as to accelerate or decelerate the time to failure. Asymptotic properties of the proposed estimators are developed. The finite sample properties of case–cohort estimator and its relative efficiency to full cohort estimator are assessed via simulation studies. A real example from a study of cardiovascular disease is provided to illustrate the estimating procedure. PMID:18537948

  15. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  16. Design Spectrum Analysis in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1984-01-01

    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.

  17. Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator

    SciTech Connect

    Nagaitsev, S.; Valishev, A.; Danilov, V.V.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator (IOTA) underway at Fermilab.

  18. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  19. Detecting chaos in particle accelerators through the frequency map analysis method.

    PubMed

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  20. The ASTRO-1 preliminary design review coupled load analysis

    NASA Technical Reports Server (NTRS)

    Mcghee, D. S.

    1984-01-01

    Results of the ASTRO-1 preliminary design review coupled loads analysis are presented. The M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net e.g., accelerations were recovered for two ASTRO-1 payloads in a tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.

  1. Honors biomedical instrumentation--a course model for accelerated design.

    PubMed

    Madhok, Jai; Smith, Ryan J; Thakor, Nitish V

    2009-01-01

    A model for a 16-week Biomedical Instrumentation course is outlined. The course is modeled in such a way that students learn about medical devices and instrumentation through lecture and laboratory sessions while also learning basic design principles. Course material covers a broad range of topics from fundamentals of sensors and instrumentation, guided laboratory design experiments, design projects, and eventual protection of intellectual property, regulatory considerations, and entry into the commercial market. Students eventually complete two design projects in the form of a 'Challenge' design project as well as an 'Honors' design project. Sample problems students solve during the Challenge project and examples of past Honors projects from the course are highlighted.

  2. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    SciTech Connect

    Kojima, A. Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-15

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  3. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  4. Ceramic tubesheet design analysis

    SciTech Connect

    Mallett, R.H.; Swindeman, R.W.

    1996-06-01

    A transport combustor is being commissioned at the Southern Services facility in Wilsonville, Alabama to provide a gaseous product for the assessment of hot-gas filtering systems. One of the barrier filters incorporates a ceramic tubesheet to support candle filters. The ceramic tubesheet, designed and manufactured by Industrial Filter and Pump Manufacturing Company (EF&PM), is unique and offers distinct advantages over metallic systems in terms of density, resistance to corrosion, and resistance to creep at operating temperatures above 815{degrees}C (1500{degrees}F). Nevertheless, the operational requirements of the ceramic tubesheet are severe. The tubesheet is almost 1.5 m in (55 in.) in diameter, has many penetrations, and must support the weight of the ceramic filters, coal ash accumulation, and a pressure drop (one atmosphere). Further, thermal stresses related to steady state and transient conditions will occur. To gain a better understanding of the structural performance limitations, a contract was placed with Mallett Technology, Inc. to perform a thermal and structural analysis of the tubesheet design. The design analysis specification and a preliminary design analysis were completed in the early part of 1995. The analyses indicated that modifications to the design were necessary to reduce thermal stress, and it was necessary to complete the redesign before the final thermal/mechanical analysis could be undertaken. The preliminary analysis identified the need to confirm that the physical and mechanical properties data used in the design were representative of the material in the tubesheet. Subsequently, few exploratory tests were performed at ORNL to evaluate the ceramic structural material.

  5. Design of On-chip Power Transport and Coupling Components for a Silicon Woodpile Accelerator

    SciTech Connect

    Wu, Ziran; Ng, C.; McGuinness, C.; Colby, E.; /SLAC

    2011-05-23

    Three-dimensional woodpile photonic bandgap (PBG) waveguide enables high-gradient and efficient laser driven acceleration, while various accelerator components, including laser couplers, power transmission lines, woodpile accelerating and focusing waveguides, and energy recycling resonators, can be potentially integrated on a single monolithic structure via lithographic fabrications. This paper will present designs of this on-chip accelerator based on silicon-on-insulator (SOI) waveguide. Laser power is coupled from free-space or fiber into SOI waveguide by grating structures on the silicon surface, split into multiple channels to excite individual accelerator cells, and eventually gets merged into the power recycle pathway. Design and simulation results will be presented regarding various coupling components involved in this network.

  6. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  7. Design oriented structural analysis

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1994-01-01

    Desirable characteristics and benefits of design oriented analysis methods are described and illustrated by presenting a synoptic description of the development and uses of the Equivalent Laminated Plate Solution (ELAPS) computer code. ELAPS is a design oriented structural analysis method which is intended for use in the early design of aircraft wing structures. Model preparation is minimized by using a few large plate segments to model the wing box structure. Computational efficiency is achieved by using a limited number of global displacement functions that encompass all segments over the wing planform. Coupling with other codes is facilitated since the output quantities such as deflections and stresses are calculated as continuous functions over the plate segments. Various aspects of the ELAPS development are discussed including the analytical formulation, verification of results by comparison with finite element analysis results, coupling with other codes, and calculation of sensitivity derivatives. The effectiveness of ELAPS for multidisciplinary design application is illustrated by describing its use in design studies of high speed civil transport wing structures.

  8. GTA (ground test accelerator) Phase 1: Baseline design report

    SciTech Connect

    Not Available

    1986-08-01

    The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedules and resource requirements are provided. (LEW)

  9. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  10. A Non-scaling Fixed Field Alternating Gradient Accelerator for the Final Acceleration Stage of the International Design Study of the Neutrino Factory.

    SciTech Connect

    Berg, J.S.; Aslaninejad, M.; Pasternak, J.; Witte, H.; Bliss, N. Cordwell M.; Jones, T.; Muir, A., Kelliher, D.; Machida, S.

    2011-09-04

    The International Design Study of the Neutrino Factory (IDS-NF) has recently completed its Interim Design Report (IDR), which presents our current baseline design of the neutrino factory. To increase the efficiency and reduce the cost of acceleration, the IDR design uses a linear non-scaling fixed field alternating gradient accelerator (FFAG) for its final acceleration stage. We present the current lattice design of that FFAG, including the main ring plus its injection and extraction systems. We describe parameters for the main ring magnets, kickers, and septa, as well as the power supplies for the kickers. We present a first pass at an engineering layout for the ring and its subsystems.

  11. Sensitivity Analysis of the Off-Normal Conditions of the SPIDER Accelerator

    SciTech Connect

    Veltri, P.; Agostinetti, P.; Antoni, V.; Chitarin, G.; Marconato, N.; Pilan, N.; Sartori, E.; Serianni, G.; Cavenago, M.

    2011-09-26

    In the context of the development of the 1 MV neutral beam injector for the ITER tokamak, the study on beam formation and acceleration has considerable importance. This effort includes the ion source and accelerator SPIDER (Source for Production of Ions of Deuterium Extracted from an Rf plasma) ion source, planned to be built in Padova, and designed to extract and accelerate a 355 A/m{sup 2} current of H{sup -}(or 285 A/m{sup 2} D{sup -}) up to 100 kV. Exhaustive simulations were already carried out during the accelerator optimization leading to the present design. However, as it is expected that the accelerator shall operate also in case of pre-programmed or undesired off-normal conditions, the investigation of a large set of off-normal scenarios is necessary. These analyses will also be useful for the evaluation of the real performances of the machine, and should help in interpreting experimental results, or in identifying dangerous operating conditions.The present contribution offers an overview of the results obtained during the investigation of these off-normal conditions, by means of different modeling tools and codes. The results, showed a good flexibility of the device in different operating conditions. Where the consequences of the abnormalities appeared to be problematic further analysis were addressed.

  12. Thermal-hydraulic design of the target/blanket for the accelerator production of tritium conceptual design

    SciTech Connect

    Willcutt, G.J.E. Jr.; Kapernick, R.J.

    1997-11-01

    A conceptual design was developed for the target/blanket system of an accelerator-based system to produce tritium. The target/blanket system uses clad tungsten rods for a spallation target and clad lead rods as a neutron multiplier in a blanket surrounding the target. The neutrons produce tritium in {sup 3}He, which is contained in aluminum tubes located in the decoupler and blanket regions. This paper presents the thermal-hydraulic design of the target, decoupler, and blanket developed for the conceptual design of the Accelerator Production of Tritium Project, and demonstrates there is adequate margin in the design at full power operation.

  13. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design

    PubMed Central

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-01-01

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms. PMID:27886061

  14. Inflation and Late Time Acceleration Designed by Stueckelberg Massive Photon

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Arık, Metin; Katırcı, Nihan

    2017-01-01

    We present a mini review of the Stueckelberg mechanism, which was proposed to make the abelian gauge theories massive as an alternative to Higgs mechanism, within the framework of Minkowski as well as curved spacetimes. The higher the scale the tighter the bounds on the photon mass, which might be gained via the Stueckelberg mechanism, may be signalling that even an extremely small mass of the photon which cannot be measured directly could have far reaching effects in cosmology. We present a cosmological model where Stueckelberg fields, which consist of both scalar and vector fields, are non-minimally coupled to gravity and the universe could go through a decelerating expansion phase sandwiched by two different accelerated expansion phases. We discuss also the possible anisotropic extensions of the model.

  15. Analysis of output trends from Varian 2100C/D and 600C/D accelerators.

    PubMed

    Grattan, M W D; Hounsell, A R

    2011-01-07

    Analysis of Varian linear accelerator output trends is reported. Two groups, consisting of four matched Varian 2100C/D and four matched Varian 600C/D accelerators, with different designs of monitor chamber, have been investigated and the data acquired from regular calibrated ion chamber/electrometer measurements of the output performance of the eight accelerators analysed. The trend of machine output with time, having removed the effect of adjusting the monitor chamber response, was compared on a monthly and annual basis for monitor chambers with ages ranging between 1 year and 7 years. The results indicate that the response is generally consistent within each set of accelerators with different monitor chamber designs. Those used in a Varian 600C/D machine result in a reduction in measured output over time, with an average monthly reduction of 0.35 ± 0.09% over the course of the first 4 years of use. The chambers used in a 2100C/D accelerator result in an increase in measured output over time, with an average monthly increase of 0.26 ± 0.09% over the course of the first 4 years of use. The output increase then reduces towards the end of this period of time, with the average monthly change falling to -0.03 ± 0.02% for the following 3 years. The output response trend was similar for all clinical energies used on the 2100C/D accelerators--6, 15 MV x-ray beams, and 4, 6, 9, 12, 16 and 20 MeV electron beams. By tracking these changes it has been possible to predict the response over time to allow appropriate adjustments in monitor chamber response to maintain a measured accelerator output within tolerance and give confidence in performance. It has also provided data to indicate the need for planned preventative intervention and indicate if the monitor chamber response is behaving as expected.

  16. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  17. Multiphysics Analysis of Frequency Detuning in Superconducting RF Cavities for Proton Particle Accelerators

    SciTech Connect

    Awida, M. H.; Gonin, I.; Passarelli, D.; Sukanov, A.; Khabiboulline, T.; Yakovlev, V.

    2016-01-22

    Multiphysics analyses for superconducting cavities are essential in the course of cavity design to meet stringent requirements on cavity frequency detuning. Superconducting RF cavities are the core accelerating elements in modern particle accelerators whether it is proton or electron machine, as they offer extremely high quality factors thus reducing the RF losses per cavity. However, the superior quality factor comes with the challenge of controlling the resonance frequency of the cavity within few tens of hertz bandwidth. In this paper, we investigate how the multiphysics analysis plays a major role in proactively minimizing sources of frequency detuning, specifically; microphonics and Lorentz Force Detuning (LFD) in the stage of RF design of the cavity and mechanical design of the niobium shell and the helium vessel.

  18. Origami Optimization: Role of Symmetry in Accelerating Design

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Durstock, Michael; Reich, Gregory; Joo, James; Vaia, Richard

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. Design optimization tools have recently been developed to predict optimal fold patterns with mechanics-based metrics, such as the maximal energy storage, auxetic response and actuation. Origami actuator design problems possess inherent symmetries associated with the grid, mechanical boundary conditions and the objective function, which are often exploited to reduce the design space and computational cost of optimization. However, enforcing symmetry eliminates the prediction of potentially better performing asymmetric designs, which are more likely to exist given the discrete nature of fold line optimization. To better understand this effect, actuator design problems with different combinations of rotation and reflection symmetries were optimized while varying the number of folds allowed in the final design. In each case, the optimal origami patterns transitioned between symmetric and asymmetric solutions depended on the number of folds available for the design, with fewer symmetries present with more fold lines allowed. This study investigates the interplay of symmetry and discrete vs continuous optimization in origami actuators and provides insight into how the symmetries of the reference grid regulate the performance landscape. This work was supported by the Air Force Office of Scientific Research.

  19. Analysis of Male Pheromones That Accelerate Female Reproductive Organ Development

    PubMed Central

    Flanagan, Kelly A.; Webb, William; Stowers, Lisa

    2011-01-01

    Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified. PMID:21347429

  20. Analysis of accelerants and fire debris using aroma detection technology

    SciTech Connect

    Barshick, S.A.

    1997-01-17

    The purpose of this work was to investigate the utility of electronic aroma detection technologies for the detection and identification of accelerant residues in suspected arson debris. Through the analysis of known accelerant residues, a trained neural network was developed for classifying suspected arson samples. Three unknown fire debris samples were classified using this neural network. The item corresponding to diesel fuel was correctly identified every time. For the other two items, wide variations in sample concentration and excessive water content, producing high sample humidities, were shown to influence the sensor response. Sorbent sampling prior to aroma detection was demonstrated to reduce these problems and to allow proper neural network classification of the remaining items corresponding to kerosene and gasoline.

  1. Accelerated Gibbs Sampling for Infinite Sparse Factor Analysis

    SciTech Connect

    Andrzejewski, D M

    2011-09-12

    The Indian Buffet Process (IBP) gives a probabilistic model of sparse binary matrices with an unbounded number of columns. This construct can be used, for example, to model a fixed numer of observed data points (rows) associated with an unknown number of latent features (columns). Markov Chain Monte Carlo (MCMC) methods are often used for IBP inference, and in this technical note, we provide a detailed review of the derivations of collapsed and accelerated Gibbs samplers for the linear-Gaussian infinite latent feature model. We also discuss and explain update equations for hyperparameter resampling in a 'full Bayesian' treatment and present a novel slice sampler capable of extending the accelerated Gibbs sampler to the case of infinite sparse factor analysis by allowing the use of real-valued latent features.

  2. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies. Revision 1

    SciTech Connect

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1994-03-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g{sub o}, where g{sub o} is acceleration due to gravity.

  3. Accelerated longitudinal designs: An overview of modelling, power, costs and handling missing data

    PubMed Central

    Galbraith, Sally; Bowden, Jack

    2016-01-01

    Longitudinal studies are often used to investigate age-related developmental change. Whereas a single cohort design takes a group of individuals at the same initial age and follows them over time, an accelerated longitudinal design takes multiple single cohorts, each one starting at a different age. The main advantage of an accelerated longitudinal design is its ability to span the age range of interest in a shorter period of time than would be possible with a single cohort longitudinal design. This paper considers design issues for accelerated longitudinal studies. A linear mixed effect model is considered to describe the responses over age with random effects for intercept and slope parameters. Random and fixed cohort effects are used to cope with the potential bias accelerated longitudinal designs have due to multiple cohorts. The impact of other factors such as costs and the impact of dropouts on the power of testing or the precision of estimating parameters are examined. As duration-related costs increase relative to recruitment costs the best designs shift towards shorter duration and eventually cross-sectional design being best. For designs with the same duration but differing interval between measurements, we found there was a cutoff point for measurement costs relative to recruitment costs relating to frequency of measurements. Under our model of 30% dropout there was a maximum power loss of 7%. PMID:25147228

  4. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  5. Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE

    SciTech Connect

    Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; Miller, R.; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

    2011-11-28

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  6. Scaling of induction-cell transverse impedance: effect on accelerator design

    SciTech Connect

    Ekdahl, Carl August

    2016-08-09

    The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is characterized by the transverse coupling impedance Z. This note addresses the dimensional scaling of Z, which is important when comparing new LIA designs to existing accelerators with known i BBU growth. Moreover, it is shown that the scaling of Z with the accelerating gap size relates BBU growth directly to high-voltage engineering considerations. It is proposed to firmly establish this scaling though a series of AMOS calculations.

  7. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  8. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  9. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Repar, J.

    1982-01-01

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  10. Analysis of Cultural Heritage by Accelerator Techniques and Analytical Imaging

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Toque, Jay Arre; Murayama, Yusuke

    2011-12-01

    In this paper we present the result of experimental investigation using two very important accelerator techniques: (1) synchrotron radiation XRF and XAFS; and (2) accelerator mass spectrometry and multispectral analytical imaging for the investigation of cultural heritage. We also want to introduce a complementary approach to the investigation of artworks which is noninvasive and nondestructive that can be applied in situ. Four major projects will be discussed to illustrate the potential applications of these accelerator and analytical imaging techniques: (1) investigation of Mongolian Textile (Genghis Khan and Kublai Khan Period) using XRF, AMS and electron microscopy; (2) XRF studies of pigments collected from Korean Buddhist paintings; (3) creating a database of elemental composition and spectral reflectance of more than 1000 Japanese pigments which have been used for traditional Japanese paintings; and (4) visible light-near infrared spectroscopy and multispectral imaging of degraded malachite and azurite. The XRF measurements of the Japanese and Korean pigments could be used to complement the results of pigment identification by analytical imaging through spectral reflectance reconstruction. On the other hand, analysis of the Mongolian textiles revealed that they were produced between 12th and 13th century. Elemental analysis of the samples showed that they contained traces of gold, copper, iron and titanium. Based on the age and trace elements in the samples, it was concluded that the textiles were produced during the height of power of the Mongol empire, which makes them a valuable cultural heritage. Finally, the analysis of the degraded and discolored malachite and azurite demonstrates how multispectral analytical imaging could be used to complement the results of high energy-based techniques.

  11. The Benefits of Acceleration: An Outcomes Analysis of Dual Enrollment

    ERIC Educational Resources Information Center

    Morrison, Michael C.

    2007-01-01

    This study adds to the growing body of research with a focus on (1) the characteristics of accelerated (dual enrolled) students versus their counterparts who did not participate in accelerated programs; (2) differences in academic outcomes of accelerated and non-accelerated students; and (3) differences in days to complete the associate degree for…

  12. [Analysis of human tissue samples for volatile fire accelerants].

    PubMed

    Treibs, Rudolf

    2014-01-01

    In police investigations of fires, the cause of a fire and the fire debris analysis regarding traces of fire accelerants are important aspects for forensic scientists. Established analytical procedures were recently applied to the remains of fire victims. When examining lung tissue samples, vapors inhaled from volatile ignitable liquids could be identified and differentiated from products of pyrolysis caused by the fire. In addition to the medico-legal results this evidence allowed to draw conclusions as to whether the fire victim was still alive when the fire started.

  13. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    SciTech Connect

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  14. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  15. An efficient parallel algorithm for accelerating computational protein design

    PubMed Central

    Zhou, Yichao; Xu, Wei; Donald, Bruce R.; Zeng, Jianyang

    2014-01-01

    Motivation: Structure-based computational protein design (SCPR) is an important topic in protein engineering. Under the assumption of a rigid backbone and a finite set of discrete conformations of side-chains, various methods have been proposed to address this problem. A popular method is to combine the dead-end elimination (DEE) and A* tree search algorithms, which provably finds the global minimum energy conformation (GMEC) solution. Results: In this article, we improve the efficiency of computing A* heuristic functions for protein design and propose a variant of A* algorithm in which the search process can be performed on a single GPU in a massively parallel fashion. In addition, we make some efforts to address the memory exceeding problem in A* search. As a result, our enhancements can achieve a significant speedup of the A*-based protein design algorithm by four orders of magnitude on large-scale test data through pre-computation and parallelization, while still maintaining an acceptable memory overhead. We also show that our parallel A* search algorithm could be successfully combined with iMinDEE, a state-of-the-art DEE criterion, for rotamer pruning to further improve SCPR with the consideration of continuous side-chain flexibility. Availability: Our software is available and distributed open-source under the GNU Lesser General License Version 2.1 (GNU, February 1999). The source code can be downloaded from http://www.cs.duke.edu/donaldlab/osprey.php or http://iiis.tsinghua.edu.cn/∼compbio/software.html. Contact: zengjy321@tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931991

  16. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    SciTech Connect

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-02-06

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator.

  17. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Baranov, V. T.; Makhov, S. S.; Savin, D. A.; Terekhov, V. I.

    2016-10-01

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10-20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  18. DARHT : integration of shielding design and analysis with facility design /

    SciTech Connect

    Boudrie, R. L.; Brown, T. H.; Gilmore, W. E.; Downing, J. N. , Jr.; Hack, Alan; McClure, D. A.; Nelson, C. A.; Wadlinger, E. Alan; Zumbro, M. V.

    2002-01-01

    The design of the interior portions of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility incorporated shielding and controls from the beginning of the installation of the Accelerators. The purpose of the design and analysis was to demonstrate the adequacy of shielding or to determine the need for additional shielding or controls. Two classes of events were considered: (1) routine operation defined as the annual production of 10,000 2000-ns pulses of electrons at a nominal energy of 20 MeV, some of which are converted to the x-ray imaging beam consisting of four nominal 60-ns pulses over the 2000-ns time frame, and (2) accident case defined as up to 100 2000-ns pulses of electrons accidentally impinging on some metallic surface, thereby producing x rays. Several locations for both classes of events were considered inside and outside of the accelerator hall buildings. The analysis method consisted of the definition of a source term for each case studied and the definition of a model of the shielding and equipment present between the source and the dose areas. A minimal model of the fixed existing or proposed shielding and equipment structures was used for a first approximation. If the resulting dose from the first approximation was below the design goal (1 rem/yr for routine operations, 5 rem for accident cases), then no further investigations were performed. If the result of the first approximation was above our design goals, the model was refined to include existing or proposed shielding and equipment. In some cases existing shielding and equipment were adequate to meet our goals and in some cases additional shielding was added or administrative controls were imposed to protect the workers. It is expected that the radiation shielding design, exclusion area designations, and access control features, will result in low doses to personnel at the DARHT Facility.

  19. Status of MAPA (Modular Accelerator Physics Analysis) and the Tech-X Object-Oriented Accelerator Library

    NASA Astrophysics Data System (ADS)

    Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.

    1998-04-01

    The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.

  20. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    SciTech Connect

    Castellano, T.; De Palma, L.; Laneve, D.; Strippoli, V.; Cuccovilllo, A.; Prudenzano, F.; Dimiccoli, V.; Losito, O.; Prisco, R.

    2015-07-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  1. Shielding design of a treatment room for an accelerator-based neutron source for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1995-12-31

    For several years, research has been ongoing in the Ohio State University (OSU) Nuclear Engineering Program toward the development of an accelerator-based irradiation facility (ANIF) neutron source for boron neutron capture therapy (BNCT). The ANIF, which is planned to be built in a hospital, has been conceptually designed and analyzed. After Qu, an OSU researcher, determined that the shielding design of a 6-MV X-ray treatment room was inadequate to protect personnel from an accelerator neutron source operating at 30 mA, we decided to analyze and determine the shielding requirements of a treatment room for an ANIF. We determined the amount of shielding that would be sufficient to protect facility personnel from excessive radiation exposure caused by operation of the accelerator at 30 mA.

  2. Physics issues in the design of a recirculating induction accelerator for heavy ion fusion

    SciTech Connect

    Barnard, J.J.; Newton, M.A.; Reginato, L.L.; Sharp, W.M.; Yu, S.S.

    1991-04-15

    A substantial savings in size and cost over a linear machine may be achieved in an induction accelerator in which a heavy ion beam makes many (< {approximately} 50) passes through one or more circular induction accelerators. We examine how the requirement of high beam quality and the requirement of pulse simultaneity at the target constrain the design of such an accelerator. Some of the issues that we have considered include beam interactions with residual gas, beam-beam charge exchange, emittance growth around bends, and beam instabilities. We show some of the interplay between maximization of beam quality and recirculator efficiency, and the minimization of recirculator cost, in arriving at a recirculator design. 9 refs., 1 fig.

  3. Superconducting Accelerating Cavity Pressure Sensitivity Analysis and Stiffening

    SciTech Connect

    Rodnizki, J; Ben Aliz, Y; Grin, A; Horvitz, Z; Perry, A; Weissman, L; Davis, G Kirk; Delayen, Jean R.

    2014-12-01

    The Soreq Applied Research Accelerator Facility (SARAF) design is based on a 40 MeV 5 mA light ions superconducting RF linac. Phase-I of SARAF delivers up to 2 mA CW proton beams in an energy range of 1.5 - 4.0 MeV. The maximum beam power that we have reached is 5.7 kW. Today, the main limiting factor to reach higher ion energy and beam power is related to the HWR sensitivity to the liquid helium coolant pressure fluctuations. The HWR sensitivity to helium pressure is about 60 Hz/mbar. The cavities had been designed, a decade ago, to be soft in order to enable tuning of their novel shape. However, the cavities turned out to be too soft. In this work we found that increasing the rigidity of the cavities in the vicinity of the external drift tubes may reduce the cavity sensitivity by a factor of three. A preliminary design to increase the cavity rigidity is presented.

  4. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect

    Lima, J.A.S.; Graef, L.L.; Pavón, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  5. Designing of the low energy beam lines with achromatic condition in the RAON accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O.

    2017-01-01

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the KOrea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  6. UV-accelerated test based on analysis of field-exposed PV modules

    NASA Astrophysics Data System (ADS)

    Shioda, T.

    2011-09-01

    We proposed an UV accelerated test condition for an EVA encapsulant, based on analysis of long term field exposed PV modules. We found that strong UV irradiation into EVA encapsulant test sample led to the fast decomposition of UV absorber formulated in EVA encapsulant, which has never seen in the field exposed PV modules. Thus, the integrating UV intensity of 60 W/m2 and black panel temperature of 110°C using a xenon weather-o-meter were suitable as an UV accelerated test condition. With this proposed test condition, which shows that 1 week exposure by xenon light corresponds to 1 year field exposure, we can predict discoloration rate of EVA encapsulant. In addition, we evaluated change in peel strength to glass for Mitsui's and the other commercially available EVA encapsulants during UV accelerated test with the proposed condition. There was no large change in peel strength for our EVA encapsulant during the UV accelerated test. On the other hand, we observed that the competitor's EVA encapsulant showed the large decrease of peel strength to glass at early stage, even no change in yellowness index (YI). This result indicates not only YI change but also peel strength change should be evaluated for design of reliable PV module and encapsulant.

  7. Radiation shielding analysis of a special linear accelerator for electron beam and X-ray.

    PubMed

    Kang, W G; Pyo, S H; Alkhuraiji, T S; Han, B S; Kang, C M

    2017-01-31

    The King AbdulAziz City for Science & Technology in the Kingdom of Saudi Arabia plans to build a 10 MeV, 15 kW linear accelerator (LINAC) for electron beam and X-ray. The accelerator will be supplied by EB Tech, Republic of Korea, and the design and construction of the accelerator building will be conducted in the cooperation with EB Tech. This report presents the shielding analysis of the accelerator building using the Monte Carlo N-Particle Transport Code (MCNP). In order to improve the accuracy in estimating deep radiation penetration and to reduce computation time, various variance reduction techniques, including the weight window (WW) method, the deterministic transport (DXTRAN) spheres were considered. Radiation levels were estimated at selected locations in the shielding facility running MCNP6 for particle histories up to 1.0×10+8. The final results indicated that the calculated doses at all selected detector locations met the dose requirement of 50 mSv/yr, which is the United State Nuclear Regulatory Commission (U.S. NRC) requirement.

  8. Magnetic designs and field quality of Nb{sub 3}Sn accelerator magnets

    SciTech Connect

    Vadim V. Kashikhin; Alexander V. Zlobin

    2002-01-14

    This paper presents a new approach to accelerator magnet design, based on simple and robust single-layer coils with minimum number of turns arranged horizontally or vertically in a common iron yoke. Cos-theta and block type coil geometries as well as cold and warm iron yoke designs were studied. Coils and yokes were optimized for the maximum field, minimum field harmonics, and minimum sizes.

  9. SIMS analysis of high-performance accelerator niobium

    SciTech Connect

    Maheshwari, P.; Stevie, F. A.; Myneni, Ganapati Rao; Rigsbee, J, M.; Dhakal, Pashupati; Ciovati, Gianluigi; Griffis, D. P.

    2014-11-01

    Niobium is used to fabricate superconducting radio frequency accelerator modules because of its high critical temperature, high critical magnetic field, and easy formability. Recent experiments have shown a very significant improvement in performance (over 100%) after a high-temperature bake at 1400 degrees C for 3h. SIMS analysis of this material showed the oxygen profile was significantly deeper than the native oxide with a shape that is indicative of diffusion. Positive secondary ion mass spectra showed the presence of Ti with a depth profile similar to that of O. It is suspected that Ti is associated with the performance improvement. The source of Ti contamination in the anneal furnace has been identified, and a new furnace was constructed without Ti. Initial results from the new furnace do not show the yield improvement. Further analyses should determine the relationship of Ti to cavity performance.

  10. Bayesian Analysis of Peak Ground Acceleration Attenuation Relationship

    SciTech Connect

    Mu Heqing; Yuen Kaveng

    2010-05-21

    Estimation of peak ground acceleration is one of the main issues in civil and earthquake engineering practice. The Boore-Joyner-Fumal empirical formula is well known for this purpose. In this paper we propose to use the Bayesian probabilistic model class selection approach to obtain the most suitable prediction model class for the seismic attenuation formula. The optimal model class is robust in the sense that it has balance between the data fitting capability and the sensitivity to noise. A database of strong-motion records is utilized for the analysis. It turns out that the optimal model class is simpler than the full order attenuation model suggested by Boore, Joyner and Fumal (1993).

  11. Design and operation of an inverse free-electron-laser accelerator in the microwave regime

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney Bruce

    2000-09-01

    A novel electron accelerator demonstrating the inverse free-electron-laser (IFEL) principle has been designed, built, and operated using radio-frequency power at 2.856 GHz. Such an accelerator uses a stationary, periodic magnetic field to impart transverse motion to charged particles, which are then accelerated by guided electromagnetic waves. The experiment described here demonstrates for the first time the phase dependence of IFEL acceleration. This design uses up to 15 MW of RF power propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator; an array of solenoids provides an axial guiding magnetic field undulator; pitch, which is initially 11.75 cm, is linearly increased to 12.3 cm. over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of up to 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The initial injection phase is the most important parameter, determining the rate of energy gain or loss. These simulations are compared with experimental measurements at low power in which electron beams at energies between 5 and 6 MeV gain up to 0.35 MeV with minimal energy spread, all exiting particles having been accelerated. The predicted phase sensitivity of the mechanism is verified, with beams injected into accelerating phases gaining energy cleanly while those injected into ``decelerating'' phases are shown to be degraded in quality and hardly changed in energy, demonstrating the asymmetry of a tapered-wiggler design. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling to higher power and frequency is investigated. The maximum attainable acceleration gradient for a MIFELA using 150 MW of RF power at 34 GHz is estimated to be at least 30 MV/m, and laser IFELs could conceivably reach gradients in the GeV/m range.

  12. Design of a grating for studying Smith-Purcell radiation and electron acceleration

    SciTech Connect

    Fernow, R.C.

    1989-01-01

    We describe work on the design of a diffraction grating which we intend to use for studying the production of Smith-Purcell radiation and the acceleration of electrons. We have developed computer codes based on the solution of the appropriate Maxwell's equations. A specific grating profile is given which is feasible to construct and which supports enhanced surface accelerating modes. We examine the possibility of using the Smith-Purcell effect to make a beam position monitor. 13 refs., 10 figs., 2 tabs.

  13. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) collaboration is developing sophisticated software tools to help improve and accelerate battery design and boost the performance and consumer appeal of electric-drive vehicles with the ultimate goal of diminishing petroleum consumption and polluting emissions.

  14. Focal spot motion of linear accelerators and its effect on portal image analysis.

    PubMed

    Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel

    2003-06-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned approximately 0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motionwas estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spotmotion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate.

  15. Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    SciTech Connect

    Hogan, Mark

    2016-04-22

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes

  16. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    SciTech Connect

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  17. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    Watrous, Matthew George; Adamic, Mary Louise; Olson, John Eric; Baeck, D. L.; Fox, R. V.; Hahn, P. A.; Jenson, D. D.; Lister, T. E.

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  18. Design and Fabrication of a Surface-Wave Accelerator Based on Silicon Carbide

    SciTech Connect

    Shvets, Gennady; Kalmykov, Sergey

    2004-12-07

    The principles and electromagnetic simulations of a novel accelerating structure are described. The structure is planar, consisting of two plates of silicon carbide (SiC) separated by a vacuum gap. Charged particle bunches are accelerated in the vacuum gap by the surface electromagnetic waves (phonon polaritons) localized near the vacuum/SiC interface. The structure can be powered by a carbon dioxide (CO2) laser with the wavelength {lambda}0 {approx_equal} 10.6{mu}m. The operating wavelength is dictated by the frequency-dependent dielectric permittivity {epsilon}({omega}) of SiC which is negative for the frequencies in the CO2 tunability range. The resulting accelerator can support accelerating fields well in excess of 1 GeV/m without breakdown, and provide the path to compact and inexpensive particle accelerators. The challenge of coupling radiation into a very narrow (a few microns) vacuum gap is resolved by designing a coupling grating on the top surface of a Si wafer, and attaching a thin SiC film to the bottom of the wafer. Preliminary fabrication results are reported.

  19. Design and Fabrication of a Surface-Wave Accelerator Based on Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady; Kalmykov, Sergey

    2004-12-01

    The principles and electromagnetic simulations of a novel accelerating structure are described. The structure is planar, consisting of two plates of silicon carbide (SiC) separated by a vacuum gap. Charged particle bunches are accelerated in the vacuum gap by the surface electromagnetic waves (phonon polaritons) localized near the vacuum/SiC interface. The structure can be powered by a carbon dioxide (CO2) laser with the wavelength λ0 ≈ 10.6μm. The operating wavelength is dictated by the frequency-dependent dielectric permittivity ɛ(ω) of SiC which is negative for the frequencies in the CO2 tunability range. The resulting accelerator can support accelerating fields well in excess of 1 GeV/m without breakdown, and provide the path to compact and inexpensive particle accelerators. The challenge of coupling radiation into a very narrow (a few microns) vacuum gap is resolved by designing a coupling grating on the top surface of a Si wafer, and attaching a thin SiC film to the bottom of the wafer. Preliminary fabrication results are reported.

  20. Measurement of Head Scatter Factor for Linear Accelerators using Indigenously Designed Columnar Mini Phantom

    NASA Astrophysics Data System (ADS)

    Appasamy, Murugan; Xavier, Sidonia; Kuppusamy, Thayalan; Velayudham, Ramasubramanian

    2011-01-01

    A columnar mini phantom is designed as recommended by ESTRO to measure the Head Scatter Factor (Sc) for 6 MV beam of two linear accelerators. The measurement of Sc at different orientations of the chamber, parallel and perpendicular at 1.5 cm depth predicts the deviation of 2.05% and 1.9% for Elekta and Siemens linear accelerators respectively. The measurement of Sc at 1.5 cm is higher compared to 10 cm depth for both the linear accelerators suggesting the electron contamination at 1.5 cm depth. The effect of wedges on Sc yields a significant contribution of 3.5% and 5% for Siemens and Elekta linear accelerators respectively. The collimator exchange effect reveals the opening of upper jaw increases the Sc irrespective of the linear accelerator. The result emphasizes the need of Sc measurement at 10 cm. The presence of wedge influences the Sc value and the SSD has no influence on Sc. The measured Sc values are in good agreement with the published data.

  1. Current Lead Design for the Accelerator Project for Upgrade of LHC

    SciTech Connect

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor; Kaducak, Marc; Nobrega, Fred; Peterson, Tom

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchange section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.

  2. Fast Electromagnetic Analysis of MRI Transmit RF Coils Based on Accelerated Integral Equation Methods.

    PubMed

    Villena, Jorge Fernandez; Polimeridis, Athanasios G; Eryaman, Yigitcan; Adalsteinsson, Elfar; Wald, Lawrence L; White, Jacob K; Daniel, Luca

    2016-11-01

    A fast frequency domain full-wave electromagnetic simulation method is introduced for the analysis of MRI coils loaded with the realistic human body models. The approach is based on integral equation methods decomposed into two domains: 1) the RF coil array and shield, and 2) the human body region where the load is placed. The analysis of multiple coil designs is accelerated by introducing the precomputed magnetic resonance Green functions (MRGFs), which describe how the particular body model used responds to the incident fields from external sources. These MRGFs, which are precomputed once for a given body model, can be combined with any integral equation solver and reused for the analysis of many coil designs. This approach provides a fast, yet comprehensive, analysis of coil designs, including the port S-parameters and the electromagnetic field distribution within the inhomogeneous body. The method solves the full-wave electromagnetic problem for a head array in few minutes, achieving a speed up of over 150 folds with root mean square errors in the electromagnetic field maps smaller than 0.4% when compared to the unaccelerated integral equation-based solver. This enables the characterization of a large number of RF coil designs in a reasonable time, which is a first step toward an automatic optimization of multiple parameters in the design of transmit arrays, as illustrated in this paper, but also receive arrays.

  3. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    PubMed

    Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

  4. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    M. L. Adamic; J. E. Olson; D. D. Jenson; J. G. Eisenmenger; M. G. Watrous

    2012-09-01

    This NA 22 funded research project investigated the transition of iodine isotopic analyses from thermal ionization mass spectrometry (TIMS) to an accelerator mass spectrometry (AMS) system. Previous work (Fiscal Year 2010) had demonstrated comparable data from TIMS and AMS. With AMS providing comparable data with improved background levels and vastly superior sample throughput, improvement in the sample extraction from environmental sample matrices was needed to bring sample preparation throughput closer to the operation level of the instrument. Previous research used an extraction chemistry that was not optimized for yield or refined for reduced labor to prove the principle. This research was done to find an extraction with better yield using less labor per sample to produce a sample ready for the AMS instrument. An extraction method using tetramethyl ammonium hydroxide (TMAH) was developed for removal of iodine species from high volume air filters. The TMAH with gentle heating was superior to the following three extraction methods: ammonium hydroxide aided by sonication, acidic and basic extraction aided by microwave, and ethanol mixed with sodium hydroxide. Taking the iodine from the extraction solvent to being ready for AMS analysis was accomplished by a direct precipitation, as well as, using silver wool to harvest the iodine from the TMAH. Portions of the same filters processed in FY 2010 were processed again with the improved extraction scheme followed by successful analysis by AMS at the Swiss Federal Institute of Technology. The data favorably matched the data obtained in 2010. The time required for analysis has been reduced over the aqueous extraction/AMS approach developed in FY 2010. For a hypothetical batch of 30 samples, the AMS methodology is about 10 times faster than the traditional gas phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than TIMS. This results from the

  5. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    SciTech Connect

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

  6. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  7. Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Briggs, R.J.; Davidson, R.C.; Dorf, M.; Grote, D.P.; Henestroza, E.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Sefkow, A.B.; Sharp, W.M.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2008-08-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  8. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  9. Design and Development Tools for the Systems Engineering Experience Accelerator. Volume 1

    DTIC Science & Technology

    2015-04-20

    INCOSE) 2012 International Symposium/European Conference on Systems Engineering (EUSEC), Rome , Italy, July 9-12. • Bodner, D., Wade, J., Squires, A...Editor in War Craft III. The map is named Defense of the Ancients (DotA) and has attracted millions of players using it for gaming worldwide. Since its... Rome , Italy. 7. Wade, J. P., "Design and Development Tools for the Systems Engineering Experience Accelerator," Systems Engineering Research

  10. Curriculum design to promote the critical thinking of accelerated bachelor's degree nursing students.

    PubMed

    DeSimone, Barbara B

    2006-01-01

    This project describes the curriculum design of an accelerated bachelor's degree nursing program intended to promote the critical thinking of its students. Course objectives and teaching-learning strategies are described. Rogers' unitary view of human beings supports critical thinking as a developing process that should be measured in the context of nursing practice. Pre- and post-program critical thinking test scores indicated significant growth for the 38 graduates in the first 4 consecutive classes tested.

  11. Design Study of Linear Accelerator-Based Positron Re-Emission Microscopy

    NASA Astrophysics Data System (ADS)

    Ogawa, Hiroshi; Kinomura, Atsushi; Oshima, Nagayasu; Suzuki, Ryoichi; O'Rourke, Brian E.

    In order to shorten the acquisition time of positron re-emission microscopy (PRM), a linear accelerator (LINAC)-based PRM system has been studied. The beam focusing system was designed to obtain a high brightness positron beam on the PRM sample. The beam size at the sample was calculated to be 0.8mm (FWHM), and the positron intensity within the field of view of the PRM was more than one order of magnitude higher in comparison with the previous studies.

  12. Preliminary analysis of accelerated space flight ionizing radiation testing

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  13. Particle optics and accelerator modeling software for industrial and laboratory beamline design

    NASA Astrophysics Data System (ADS)

    Gillespie, George H.; Hill, Barrey W.

    1998-04-01

    The expanding variety of accelerator applications in research and industry places increased demands upon scientists and engineers involved in developing new accelerator and beamline designs. Computer codes for particle optics simulation have always played an important role in the design process and enhanced software tools offer the promise of improved productivity for beamline designers. This paper summarizes recent work on the development of advanced graphic user interface (GUI) software components, that can be linked directly to many of the standard particle optics programs used in the accelerator community, and which are aimed at turning that promise of improved productivity into a reality. An object oriented programming (OOP) approach has been adopted and a number of GUI components have been developed that run on several different operating systems. The emphasis is on assisting users in the setup and running of the optics programs without requiring any knowledge of the format, syntax, or similar requirements of the input. The components are being linked with several popular optics programs, including TRANSPORT, TURTLE, TRACE 3-D and PARMILA, to form integrated easy-to-use applications. Several advanced applications linking the GUI components with Lie algebra and other high-order simulation codes, as well as system level and facility modeling codes, are also under development. An overview of the work completed to date is presented, and examples of the new tools running on the Windows 95 operating system are illustrated.

  14. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-07

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  15. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    J. E. Delmore

    2010-09-01

    Funding was received from NA-22 to investigate transitioning iodine isotopic analyses to an accelerator mass spectrometry (AMS) system. The present method uses gas-phase chemistry followed by thermal ionization mass spectrometry (TIMS). It was anticipated that the AMS approach could provide comparable data, with improved background levels and superior sample throughput. An aqueous extraction method was developed for removal of iodine species from high-volume air filters. Ethanol and sodium hydroxide, plus heating and ultrasonic treatment, were used to successfully extract iodine from loaded high-volume air filters. Portions of the same filters were also processed in the traditional method and analyzed by TIMS for comparison. Aliquot parts of the aqueous extracts were analyzed by AMS at the Swiss Federal Institute of Technology. Idaho National Laboratory (INL) personnel visited several AMS laboratories in the US, Spain, and Switzerland. Experience with AMS systems from several manufacturers was gained, and relationships were developed with key personnel at the laboratories. Three batches of samples were analyzed in Switzerland, and one in Spain. Results show that the INL extraction method successfully extracted enough iodine from high-volume air filters to allow AMS analysis. Comparison of the AMS and TIMS data is very encouraging; while the TIMS showed about forty percent more atoms of 129I, the 129/127 ratios tracked each other very well between the two methods. The time required for analysis is greatly reduced for the aqueous extraction/AMS approach. For a hypothetical batch of thirty samples, the AMS methodology is about five times faster than the traditional gas-phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than for TIMS. This results from the fundamental mechanisms of ionization in the AMS system and cleanup of molecular interferences. We showed that an aqueous extraction of high

  16. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    SciTech Connect

    Zhang, W; Sandberg, J; Parson, W M; Walstrom, P; Murray, M M; Cook, E; Hartouni, E

    2001-06-12

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed.

  17. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect

    Kurennoy, Sergey S.

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  18. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    SciTech Connect

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; /SLAC /TechX Corp. /Fermilab

    2008-08-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

  19. Interactive Image Analysis System Design,

    DTIC Science & Technology

    1982-12-01

    This report describes a design for an interactive image analysis system (IIAS), which implements terrain data extraction techniques. The design... analysis system. Additionally, the system is fully capable of supporting many generic types of image analysis and data processing, and is modularly...employs commercially available, state of the art minicomputers and image display devices with proven software to achieve a cost effective, reliable image

  20. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    SciTech Connect

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat, ,; R.ubel, O.; Weber, G,; Hamann, B.

    2010-05-21

    scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran et al. presented a comprehensive report on applying graph-based techniques for orbit classification. They used the KAM classifier to label points and components in single and multiple orbits. Love et al. conducted an image space analysis of coherent structures in plasma simulations. They used a number of segmentation and region-growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed particle accelerator data, targeting the system dynamics in terms of particle orbits. However, they did not address particle dynamics as a function of time or inspected the behavior of bunches of particles. Ruebel et al. addressed the visual analysis of massive laser wakefield acceleration (LWFA) simulation data using interactive procedures to query the data. Sophisticated visualization tools were provided to inspect the data manually. Ruebel et al. have integrated these tools to the visualization and analysis system VisIt, in addition to utilizing efficient data management based on HDF5, H5Part, and the index/query tool FastBit. In Ruebel et al. proposed automatic beam path analysis using a suite of methods to classify particles in simulation data and to analyze their temporal evolution. To enable researchers to accurately define particle beams, the method computes a set of measures based on the path of particles relative to the distance of the particles to a beam. To achieve good performance, this framework uses an analysis pipeline designed to quickly reduce the amount of data that needs to be considered in the actual path distance computation. As part of this process, region-growing methods are utilized to detect particle bunches at single time steps. Efficient data reduction is essential to enable automated analysis of large data sets as described in the next section, where data reduction methods are steered to the particular requirements of our clustering analysis

  1. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries

    SciTech Connect

    Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Pesaran, Ahmad A.

    2015-05-03

    This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.

  2. Aircraft Design Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The helicopter pictured is the twin-turbine S-76, produced by Sikorsky Aircraft division of United Technologies, Stratford, Connecticut. It is the first transport helicopter ever dey n e d purely as a commercial vehicle rather than an adaptation of a military design. Being built in large numbers for customers in 16 countries, the S-76 is intended for offshore oil rig support, executive transportation and general utility service. The craft carries 12 passengers plus a crew of two and has a range of more than 450 miles-yet it weighs less than 10,000 pounds. Significant weight reduction was achieved by use of composite materials, which are generally lighter but stronger than conventional aircraft materials. NASA composite technology played a part in development of the S-76. Under contract with NASA's Langley Research Center, Sikorsky Aircraft designed and flight-tested a helicopter airframe of advanced composite materials.

  3. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations

    PubMed Central

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624

  4. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations.

    PubMed

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors.

  5. Physics and engineering design of the accelerator and electron dump for SPIDER

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Serianni, G.; Sonato, P.; Veltri, P.; Zaccaria, P.

    2011-06-01

    The ITER Neutral Beam Test Facility (PRIMA) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size ion source with low voltage extraction called SPIDER and a full size neutral beam injector at full beam power called MITICA. SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H- and in a later stage D- ions) from an ITER size ion source. The main requirements of this experiment are a H-/D- extracted current density larger than 355/285 A m-2, an energy of 100 keV and a pulse duration of up to 3600 s. Several analytical and numerical codes have been used for the design optimization process, some of which are commercial codes, while some others were developed ad hoc. The codes are used to simulate the electrical fields (SLACCAD, BYPO, OPERA), the magnetic fields (OPERA, ANSYS, COMSOL, PERMAG), the beam aiming (OPERA, IRES), the pressure inside the accelerator (CONDUCT, STRIP), the stripping reactions and transmitted/dumped power (EAMCC), the operating temperature, stress and deformations (ALIGN, ANSYS) and the heat loads on the electron dump (ED) (EDAC, BACKSCAT). An integrated approach, taking into consideration at the same time physics and engineering aspects, has been adopted all along the design process. Particular care has been taken in investigating the many interactions between physics and engineering aspects of the experiment. According to the 'robust design' philosophy, a comprehensive set of sensitivity analyses was performed, in order to investigate the influence of the design choices on the most relevant operating parameters. The design of the SPIDER accelerator, here described, has been developed in order to satisfy with reasonable margin all the requirements given by ITER, from the physics and engineering points of view. In particular, a new approach to the compensation of unwanted beam deflections inside the accelerator

  6. Accelerator production of tritium plant design and supporting engineering development and demonstration work

    SciTech Connect

    Lisowski, P.W.

    1997-11-01

    Tritium is an isotope of hydrogen with a half life of 12.3 years. Because it is essential for US thermonuclear weapons to function, tritium must be periodically replenished. Since K reactor at Savannah River Site stopped operating in 1988, tritium has been recycled from dismantled nuclear weapons. This process is possible only as long as many weapons are being retired. Maintaining the stockpile at the level called for in the present Strategic Arms Reduction Treaty (START-I) will require the Department of Energy to have an operational tritium production capability in the 2005--2007 time frame. To make the required amount of tritium using an accelerator based system (APT), neutrons will be produced through high energy proton reactions with tungsten and lead. Those neutrons will be moderated and captured in {sup 3}He to make tritium. The APT plant design will use a 1,700 MeV linear accelerator operated at 100 mA. In preparation for engineering design, starting in October 1997 and subsequent construction, a program of engineering development and demonstration is underway. That work includes assembly and testing of the first 20 MeV of the low energy plant linac at 100 mA, high-energy linac accelerating structure prototyping, radiofrequency power system improvements, neutronic efficiency measurements, and materials qualifications.

  7. Neutronics analysis for an accelerator-based nuclear waste transmuter

    SciTech Connect

    Sailor, W.C.; Beard, C.A.

    1993-07-01

    The neutronic analysis for a target/blanket design that is capable of supporting the high level waste stream from 2.5 LWR`s is described. The target consists of a set of solid tungsten and lead plates, cooled by heavy water and surrounded by a lead annulus. The annular blanket, which surrounds the target, consists of a set of AcO{sub 2} slurry bearing tubes, each 3 meters long, surrounded by heavy water moderator. Heat removal from the slurry tubes is by passing the rapidly moving slurry through an external heat exchanger. There are separate regions for long-lived fission product burning. Using the Monte Carlo codes LAHET and MCNP we have optimized the design for a minimum beam current of 62.5 mA of 1.6 GeV protons.

  8. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  9. Comparative Analysis of Positive and Negative Lateral Acceleration on Isometric Fatigue.

    DTIC Science & Technology

    1982-12-01

    of Neck Muscle Fatigue Due to Lateral Acceleration by Surface EMG Analysis. MS Thesis . Wright State University, Ohio: School of Aerospace Medicine...LATERAL ACCELERATION ON MS Thesis ISOMETRIC FATIGUE IN THE FOREARM 6. PERFORMING ORG. REPORT NUMBER F 7. AUTHOR(*) 13. CONTRACT OR GRANT NUMBER(o...acceleration environment. The DES and surface electromyogram ( EMG ) techniques were used to measure any differ- ences In Isometric strength, endurance, and

  10. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications.

  11. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    SciTech Connect

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q{sub ext} and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes.

  12. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Cavenago, M.

    2011-09-26

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  13. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.

    2011-09-01

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  14. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    NASA Astrophysics Data System (ADS)

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  15. Conceptual design of a nonscaling fixed field alternating gradient accelerator for protons and carbon ions for charged particle therapy

    NASA Astrophysics Data System (ADS)

    Peach, K. J.; Aslaninejad, M.; Barlow, R. J.; Beard, C. D.; Bliss, N.; Cobb, J. H.; Easton, M. J.; Edgecock, T. R.; Fenning, R.; Gardner, I. S. K.; Hill, M. A.; Owen, H. L.; Johnstone, C. J.; Jones, B.; Jones, T.; Kelliher, D. J.; Khan, A.; Machida, S.; McIntosh, P. A.; Pattalwar, S.; Pasternak, J.; Pozimski, J.; Prior, C. R.; Rochford, J.; Rogers, C. T.; Seviour, R.; Sheehy, S. L.; Smith, S. L.; Strachan, J.; Tygier, S.; Vojnovic, B.; Wilson, P.; Witte, H.; Yokoi, T.

    2013-03-01

    The conceptual design for a nonscaling fixed field alternating gradient accelerator suitable for charged particle therapy (the use of protons and other light ions to treat some forms of cancer) is described.

  16. Motivation for proposed experimentation in the realm of accelerated E. M. systems: A preliminary design for an experiment

    NASA Technical Reports Server (NTRS)

    Post, E. J.

    1970-01-01

    An experiment, designed to determine the difference between fields-magnetic and electric-surrounding a uniformly moving charge as contrasted with the fields surrounding an accelerated charge, is presented. A thought experiment is presented to illustrate the process.

  17. Target/Blanket Design for the Accelerator Production of Tritium Plant

    SciTech Connect

    Cappiello, M. W.

    1997-12-31

    The Accelerator Production of Tritium Target/Blanket (T/B) system is comprised of the T/B assembly and the attendant heat removal systems. The T/B assembly produces tritium using a high energy proton beam, and a spallation neutron source. The supporting heat removal systems safely remove the heat deposited by the proton beam during both normal and off-normal conditions. All systems reside within the T/B building, which is located at the end of a linear accelerator. Protons are accelerated to an energy of 1700 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons interact with tungsten and lead nuclei to produce neutrons through the process of nuclear spallation. Neutron capture in {sup 3}He gas produces tritium which is removed on a continual basis in an adjacent Tritium Separation Facility (TSF). The T/B assembly is modular to allow for replacement of spent components and minimization of waste. Systems and components are designed with safety as a primary consideration to minimize risk to the workers and the public.

  18. Accurate design of ICRF antennas for RF plasma thruster acceleration units with TOPICA

    SciTech Connect

    Lancellotti, V.; Maggiora, R.; Vecchi, G.; Milanesio, D.; Meneghini, O.

    2007-09-28

    In recent years electromagnetic (RF) plasma generation and acceleration concepts for plasma-based propulsion systems have received growing interest, inasmuch as they can yield continuous thrust as well as highly controllable and wide-ranging exhaust velocities. The acceleration units mostly adopt the Ion Cyclotron Resonance Frequency (ICRF) - a proven technology in fusion experiments for transferring large RF powers into magnetized plasmas, and also used by the VASIMR propulsion system. In this work we propose and demonstrate the use of TOPICA code to design and optimize the ICRF antenna of a typical acceleration stage. To this end, TOPICA was extended to cope with magnetized cylindricaily-symmetric radially-inhomogeneous warm plasmas, which required coding a new module charged with solving Maxwell's equations within the plasma to obtain the relevant Green's function Y-tilde(m,k{sub z}) in the Fourier domain, i.e. the relation between the transverse magnetic and electric fields at the air-plasma interface. Then, calculating the antenna input impedance - and hence the loading - relies on an integral-equation formulation and subsequent finite-element weighted-residual solution scheme for the self-consistent evaluation of the current density distribution on the conducting bodies and at the air-plasma interface.

  19. Accurate design of ICRF antennas for RF plasma thruster acceleration units with TOPICA

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Maggiora, R.; Vecchi, G.; Milanesio, D.; Meneghini, O.

    2007-09-01

    In recent years electromagnetic (RF) plasma generation and acceleration concepts for plasma-based propulsion systems have received growing interest, inasmuch as they can yield continuous thrust as well as highly controllable and wide-ranging exhaust velocities. The acceleration units mostly adopt the Ion Cyclotron Resonance Frequency (ICRF)—a proven technology in fusion experiments for transferring large RF powers into magnetized plasmas, and also used by the VASIMR propulsion system. In this work we propose and demonstrate the use of TOPICA code to design and optimize the ICRF antenna of a typical acceleration stage. To this end, TOPICA was extended to cope with magnetized cylindricaily-symmetric radially-inhomogeneous warm plasmas, which required coding a new module charged with solving Maxwell's equations within the plasma to obtain the relevant Green's function Ỹ(m,kz) in the Fourier domain, i.e. the relation between the transverse magnetic and electric fields at the air-plasma interface. Then, calculating the antenna input impedance—and hence the loading—relies on an integral-equation formulation and subsequent finite-element weighted-residual solution scheme for the self-consistent evaluation of the current density distribution on the conducting bodies and at the air-plasma interface.

  20. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    SciTech Connect

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  1. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    NASA Astrophysics Data System (ADS)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  2. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Aprile, D.; Antoni, V.; Cavenago, M.; Chitarin, G.; de Esch, H. P. L.; De Lorenzi, A.; Fonnesu, N.; Gambetta, G.; Hemsworth, R. S.; Kashiwagi, M.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Sartori, E.; Serianni, G.; Singh, M.; Sonato, P.; Spada, E.; Toigo, V.; Veltri, P.; Zaccaria, P.

    2016-01-01

    The ITER Neutral Beam Test Facility (PRIMA) is presently under construction at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: an ITER-size ion source with low voltage extraction, called SPIDER, and the full prototype of the whole ITER Heating Neutral Beams (HNBs), called MITICA. The purpose of MITICA is to demonstrate that all operational parameters of the ITER HNB accelerator can be experimentally achieved, thus establishing a large step forward in the performances of neutral beam injectors in comparison with the present experimental devices. The design of the MITICA extractor and accelerator grids, here described in detail, was developed using an integrated approach, taking into consideration at the same time all the relevant physics and engineering aspects. Particular care was taken also to support and validate the design on the basis of the expertise and experimental data made available by the collaborating neutral beam laboratories of CEA, IPP, CCFE, NIFS and JAEA. Considering the operational requirements and the other physics constraints of the ITER HNBs, the whole design has been thoroughly optimized and improved. Furthermore, specific innovative concepts have been introduced.

  3. Launch vehicle systems design analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  4. Design of 10 GeV laser wakefield accelerator stages with shaped laser modes

    SciTech Connect

    Cormier-Michel, Estelle; Esarey, E.; Geddes, C.G.R.; Geddes, C.G.R.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Paul, K.

    2009-09-25

    We present particle-in-cell simulations, using the VORPAL framework, of 10 GeV laser plasma wakefield accelerator stages. Scaling of the physical parameters with the plasma density allows us to perform these simulations at reasonable cost and to design high performance stages. In particular we show that, by choosing to operate in the quasi-linear regime, we can use higher order laser modes to tailor the focusing forces. This makes it possible to increase the matched electron beam radius and hence the total charge in the bunch while preserving the low bunch emittance required for applications.

  5. Proposed new accelerator design for homeland security x-ray applications

    SciTech Connect

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  6. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    SciTech Connect

    Bernardin, J. D.; Ammerman, C. N.; Hopkins, S. M.

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL

  7. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  8. The design and testing of a dual fiber textile matrix for accelerating surface hemostasis.

    PubMed

    Fischer, Thomas H; Vournakis, John N; Manning, James E; McCurdy, Shane L; Rich, Preston B; Nichols, Timothy C; Scull, Christopher M; McCord, Marian G; Decorta, Joseph A; Johnson, Peter C; Smith, Carr J

    2009-10-01

    The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions.

  9. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  10. The Design and Testing of a Dual Fiber Textile Matrix for Accelerating Surface Hemostasis

    PubMed Central

    Fischer, Thomas H.; Vournakis, John N.; Manning, James E.; McCurdy, Shane L.; Rich, Preston B.; Nichols, Timothy C.; Scull, Christopher M.; McCord, Marian G.; Decorta, Joseph A.; Johnson, Peter C.; Smith, Carr J.

    2011-01-01

    The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions. PMID:19489008

  11. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    SciTech Connect

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 {mu}s, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at {approx} 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 {mu}s pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz.

  12. Proposed New Accelerator Design for Homeland Security X-Ray Applications

    SciTech Connect

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-08-07

    In the security and inspection market, there is a push towards highly mobile, reduced-dose active interrogation scanning and imaging systems to allow operation in urban environments. To achieve these goals, the accelerator system design needs to be smaller than existing systems. A smaller radiation exclusion zone may be accomplished through better beam collimation and an integrated, x-ray-source/detector-array assembly to allow feedback and control of an intensity-modulated x-ray source. A shaped low-Z target in the x-ray source can be used to generate a more forward peaked x-ray beam. Electron-beam steering can then be applied to direct the forward-peaked x rays toward areas in the cargo with high attenuation. This paper presents an exploratory study to identify components and upgrades that would be required to meet the desired specifications, as well as the best technical approach to design and build a prototype.

  13. Analysis of complex cardiovascular flow with three-component acceleration-encoded MRI.

    PubMed

    Barker, Alex J; Staehle, Felix; Bock, Jelena; Jung, Bernd A; Markl, Michael

    2012-01-01

    Functional information regarding cardiac performance, pressure gradients, and local flow derangement are available from blood acceleration fields. Thus, this study examines a 2D and 3D phase contrast sequence optimized to efficiently encode three-directional, time-resolved acceleration in vitro and in vivo. Stenosis phantom acceleration measurements were compared to acceleration derived from standard velocity encoded phase contrast-magnetic resonance imaging (i.e., "velocity-derived acceleration"). For in vivo analysis, three-directional 2D acceleration maps were compared to velocity-derived acceleration using regions proximal and distal to the aortic valve in six healthy volunteers at 1.5 and 3.0 T (voxel size = 1.4 × 2.1 × 8 mm, temporal resolution = 16-20 ms). In addition, a 4D acceleration sequence was evaluated for feasibility in a healthy volunteer and postrepair biscuspid aortic valve patient with an ascending aortic aneurysm. The phantom magnetic resonance acceleration measurements were more accurate (nonturbulent root mean square error = 2.2 vs. 5.1 m/s(2) for phase contrast-magnetic resonance imaging) and 10 times less noisy (nonturbulent σ = 0.9 vs. 13.6 m/s(2) for phase contrast-magnetic resonance imaging) than velocity-derived acceleration. Acceleration mapping of the left ventricular outflow tract and aortic arch exhibited signal voids colocated with complex flow events such as vortex formation and high order motion. 4D acceleration data, visualized in combination with the velocity data, may provide new insight into complex flow phenomena.

  14. Cost Based Failure Modes and Effects Analysis (FMEA) for Systems of Accelerator Magnets.

    SciTech Connect

    Spencer, Cherrill M

    2003-06-02

    The proposed Next Linear Collider (NLC) has a proposed 85% overall availability goal, the availability specifications for all its 7200 magnets and their 6167 power supplies are 97.5% each. Thus all of the electromagnets and their power supplies must be highly reliable or quickly repairable. Improved reliability or repairability comes at a higher cost. We have developed a set of analysis procedures for magnet designers to use as they decide how much effort to exert, i.e. how much money to spend, to improve the reliability of a particular style of magnet. We show these procedures being applied to a standard SLAC electromagnet design in order to make it reliable enough to meet the NLC availability specs. First, empirical data from SLAC's accelerator failure database plus design experience are used to calculate MTBF for failure modes identified through a FMEA. Availability for one particular magnet can be calculated. Next, labor and material costs to repair magnet failures are used in a Monte Carlo simulation to calculate the total cost of all failures over a 30-year lifetime. Opportunity costs are included. Engineers choose from amongst various designs by comparing lifecycle costs.

  15. Support systems design and analysis

    NASA Technical Reports Server (NTRS)

    Ferguson, R. M.

    1985-01-01

    The integration of Kennedy Space Center (KSC) ground support systems with the new launch processing system and new launch vehicle provided KSC with a unique challenge in system design and analysis for the Space Transportation System. Approximately 70 support systems are controlled and monitored by the launch processing system. Typical systems are main propulsion oxygen and hydrogen loading systems, environmental control life support system, hydraulics, etc. An End-to-End concept of documentation and analysis was chosen and applied to these systems. Unique problems were resolved in the areas of software analysis, safing under emergency conditions, sampling rates, and control loop analysis. New methods of performing End-to-End reliability analyses were implemented. The systems design approach selected and the resolution of major problem areas are discussed.

  16. Accelerating epistasis analysis in human genetics with consumer graphics hardware

    PubMed Central

    2009-01-01

    Background Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. Findings We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU

  17. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Nakamura, K.; Esarey, E.; Leemans, W. P.; Gonsalves, A. J.; Panasenko, D.; Toth, Cs.; Geddes, C. G. R.; Schroeder, C. B.; Lin, C.

    2009-01-22

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 {mu}m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 {mu}m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  18. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Lopez, David Juarez

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  19. Structural Analysis and Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Collier Research and Development Corporation received a one-of-a-kind computer code for designing exotic hypersonic aircraft called ST-SIZE in the first ever Langley Research Center software copyright license agreement. Collier transformed the NASA computer code into a commercial software package called HyperSizer, which integrates with other Finite Element Modeling and Finite Analysis private-sector structural analysis program. ST-SIZE was chiefly conceived as a means to improve and speed the structural design of a future aerospace plane for Langley Hypersonic Vehicles Office. Including the NASA computer code into HyperSizer has enabled the company to also apply the software to applications other than aerospace, including improved design and construction for offices, marine structures, cargo containers, commercial and military aircraft, rail cars, and a host of everyday consumer products.

  20. Accelerated materials design of fast oxygen ionic conductors based on first principles calculations

    NASA Astrophysics Data System (ADS)

    He, Xingfeng; Mo, Yifei

    Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.

  1. A universal postprocessing toolkit for accelerator simulation and data analysis.

    SciTech Connect

    Borland, M.

    1998-12-16

    The Self-Describing Data Sets (SDDS) toolkit comprises about 70 generally-applicable programs sharing a common data protocol. At the Advanced Photon Source (APS), SDDS performs the vast majority of operational data collection and processing, most data display functions, and many control functions. In addition, a number of accelerator simulation codes use SDDS for all post-processing and data display. This has three principle advantages: first, simulation codes need not provide customized post-processing tools, thus simplifying development and maintenance. Second, users can enhance code capabilities without changing the code itself, by adding SDDS-based pre- and post-processing. Third, multiple codes can be used together more easily, by employing SDDS for data transfer and adaptation. Given its broad applicability, the SDDS file protocol is surprisingly simple, making it quite easy for simulations to generate SDDS-compliant data. This paper discusses the philosophy behind SDDS, contrasting it with some recent trends, and outlines the capabilities of the toolkit. The paper also gives examples of using SDDS for accelerator simulation.

  2. Use of Tritium Accelerator Mass Spectrometry for Tree Ring Analysis

    PubMed Central

    LOVE, ADAM H.; HUNT, JAMES R.; ROBERTS, MARK L.; SOUTHON, JOHN R.; CHIARAPPA - ZUCCA, MARINA L.; DINGLEY, KAREN H.

    2010-01-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  3. Habitat Design Optimization and Analysis

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Hull, Patrick V.; Tinker, Michael L.

    2006-01-01

    Long-duration surface missions to the Moon and Mars will require habitats for the astronauts. The materials chosen for the habitat walls play a direct role in the protection against the harsh environments found on the surface. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Advanced optimization techniques are necessary for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat design optimization tool utilizing genetic algorithms has been developed. Genetic algorithms use a "survival of the fittest" philosophy, where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multi-objective formulation of structural analysis, heat loss, radiation protection, and meteoroid protection. This paper presents the research and development of this tool.

  4. Status of the 1 MeV Accelerator Design for ITER NBI

    SciTech Connect

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.

    2011-09-26

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D{sup -} at 1 MeV for 3600 sec. In order to realize the beam source, design and R and D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  5. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    SciTech Connect

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  6. Status of the 1 MeV Accelerator Design for ITER NBI

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  7. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    SciTech Connect

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  8. Proposed new accelerator design for homeland security x-ray applications

    DOE PAGES

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; ...

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts ofmore » x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.« less

  9. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; ...

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  10. Methodology to improve design of accelerated life tests in civil engineering projects.

    PubMed

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  11. Critical Density Target Design for Ion Acceleration on the T-Cubed Laser

    NASA Astrophysics Data System (ADS)

    Kordell, Peter; Campbell, Paul; Maksimchuk, Anatoly; Willingale, Louise; Krushelnick, Karl

    2016-10-01

    The interaction of an intense laser pulse with a critical density target can form a high Mach number electrostatic shock. Recent experiments on CO2 lasers have demonstrated that such shocks can be used to produce directional, quasi-monoenergetic proton beams. PIC simulations indicate that the our single pulse system, the T-Cubed laser (1.053 μm, 6J in 400fs), is both capable of both producing these shocks and accelerating protons to MeV energies. Shock formation and propagation with our system has challenging target peak density and density gradient requirements. We present our target design, an interferometric characterization of its density profile and preliminary experiments on T-Cubed.

  12. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  13. Methodology to Improve Design of Accelerated Life Tests in Civil Engineering Projects

    PubMed Central

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods. PMID:25111800

  14. Three-dimensional kinematic analysis of baseball pitching in acceleration phase.

    PubMed

    Wang, Y T; Ford, H T; Ford, H T; Shin, D M

    1995-02-01

    To examine the relationships of pitching performance to maximum external rotation of the shoulder and to time in the acceleration phase, 3 male baseball pitchers were tested using three-dimensional cinematography. Analysis indicated that increasing maximum external rotation of the shoulder at the very beginning of the acceleration phase would help to generate a higher pitching ball velocity since a greater linear and angular displacement could be used to accelerate the throwing forearm. Slowing the wrist action just before ball-release may be a key technique to increasing pitching velocity of the ball.

  15. Accelerated rare event sampling: Refinement and Ising model analysis

    NASA Astrophysics Data System (ADS)

    Yevick, David; Lee, Yong Hwan

    In this paper, a recently introduced accelerated sampling technique [D. Yevick, Int. J. Mod. Phys. C 27, 1650041 (2016)] for constructing transition matrices is further developed and applied to a two-dimensional 32×32 Ising spin system. By permitting backward displacements up to a certain limit for each forward step while evolving the system to first higher and then lower energies within a restricted interval that is steadily displaced toward zero temperature as the computation proceeds, accuracy can be greatly enhanced. Simultaneously, the elements obtained from numerous independent calculations are collected in a single transition matrix. The relative accuracy of this novel method is established through a comparison to a transition matrix procedure based on the Metropolis algorithm in which the temperature is appropriately varied during the calculation and the results interpreted in terms of the distribution of realizations over both energy and magnetization.

  16. Analysis of ICRF-Accelerated Ions in ASDEX Upgrade

    SciTech Connect

    Mantsinen, M. J.; Eriksson, L.-G.; Noterdaeme, J.-M.

    2007-09-28

    MHD-induced losses of fast ions with energy in the MeV range have been observed during high-power ICRF heating of hydrogen minority ions in the ASDEX Upgrade tokamak (R{sub 0}{approx_equal}1.65 m, a{approx_equal}0.5 m). ICRF heating and ICRF-driven fast ions in discharges exhibiting fast ion losses due to toroidal Alfven eigenmodes and a new core-localised MHD instability are analysed. It is found that the lost ions are ICRF-accelerated trapped protons with energy in the range of 0.3-1.6 MeV, orbit widths of 20-35 cm, and turning points at r/a>0.5 and at major radii close to the cyclotron resonance {omega} = {omega}{sub cH}(R). The presence of such protons is consistent with ICRF modelling.

  17. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  18. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    SciTech Connect

    Bohn, C.L.

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  19. The design of the electron beam dump unit of Turkish Accelerator Center (TAC)

    NASA Astrophysics Data System (ADS)

    Cite, L. H.; Yilmaz, M.

    2016-03-01

    The required simulations of the electron beam interactions for the design of electron beam dump unit for an accelerator which will operate to get two Infra-Red Free Electron Lasers (IR-FEL) covering the range of 3-250 microns is presented in this work. Simulations have been carried out to understand the interactions of a bulk of specially shaped of four different and widely used materials for the dump materials for a 77 pC, 40 MeV, 13 MHz repetition rate e-beam. In the simulation studies dump materials are chosen to absorb the 99% of the beam energy and to restrict the radio-isotope production in the bulk of the dump. A Lead shielding also designed around the dump core to prevent the leakage out of the all the emitted secondary radiations, e.g., neutrons, photons. The necessary dump material requirements, for the overall design considerations and the possible radiation originated effects on the dump unit, are discussed and presented.

  20. Magnetic and Structural Design of a 15 T $Nb_3Sn$ Accelerator Depole Model

    SciTech Connect

    Kashikhin, V. V.; Andreev, N.; Barzi, E.; Novitski, I.; Zlobin, A. V.

    2015-01-01

    Hadron Colliders (HC) are the most powerful discovery tools in modern high energy physics. A 100 TeV scale HC with a nominal operation field of at least 15 T is being considered for the post-LHC era. The choice of a 15 T nominal field requires using the Nb3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance. The experience gained during the 11-T dipole R&D campaign is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T $Nb_3Sn$ dipole and the steps towards the demonstration model.

  1. Omega3P: A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities

    SciTech Connect

    Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Ko, Kwok; /SLAC

    2009-03-04

    Omega3P is a parallel eigenmode calculation code for accelerator cavities in frequency domain analysis using finite-element methods. In this report, we will present detailed finite-element formulations and resulting eigenvalue problems for lossless cavities, cavities with lossy materials, cavities with imperfectly conducting surfaces, and cavities with waveguide coupling. We will discuss the parallel algorithms for solving those eigenvalue problems and demonstrate modeling of accelerator cavities through different examples.

  2. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  3. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    SciTech Connect

    Cao, Y.; Gohar, Y.

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  4. Hamiltonian analysis for linearly acceleration-dependent Lagrangians

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel; Gómez-Cortés, Rosario; Molgado, Alberto; Rojas, Efraín

    2016-06-01

    We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.

  5. Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes

    PubMed Central

    Burbano, Hernán A.; Green, Richard E.; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S.; Lachmann, Michael; Pääbo, Svante

    2012-01-01

    Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940

  6. Comprehensive identification and analysis of human accelerated regulatory DNA

    PubMed Central

    Gittelman, Rachel M.; Hun, Enna; Ay, Ferhat; Madeoy, Jennifer; Pennacchio, Len; Noble, William S.; Hawkins, R. David; Akey, Joshua M.

    2015-01-01

    It has long been hypothesized that changes in gene regulation have played an important role in human evolution, but regulatory DNA has been much more difficult to study compared with protein-coding regions. Recent large-scale studies have created genome-scale catalogs of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To better define regulatory DNA that has been subject to human-specific adaptive evolution, we performed comprehensive evolutionary and population genetics analyses on over 18 million DHSs discovered in 130 cell types. We identified 524 DHSs that are conserved in nonhuman primates but accelerated in the human lineage (haDHS), and estimate that 70% of substitutions in haDHSs are attributable to positive selection. Through extensive computational and experimental analyses, we demonstrate that haDHSs are often active in brain or neuronal cell types; play an important role in regulating the expression of developmentally important genes, including many transcription factors such as SOX6, POU3F2, and HOX genes; and identify striking examples of adaptive regulatory evolution that may have contributed to human-specific phenotypes. More generally, our results reveal new insights into conserved and adaptive regulatory DNA in humans and refine the set of genomic substrates that distinguish humans from their closest living primate relatives. PMID:26104583

  7. Software Performs Complex Design Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.

  8. Transvers Impedance Measurements of the Modified DARHT-2Accelerator Cell Design

    SciTech Connect

    Briggs, Dick; Waldron, Will

    2005-11-30

    The DARHT-2 accelerator cells have been redesigned to make their high voltage performance more robust. At the outset of the DARHT-2 development program about 8 years ago, an extensive campaign was mounted to minimize the transverse impedance of the original cell design. Since the initial spec on the machine was a beam current of 4 kA, the control of beam-breakup (BBU) amplification with a 2 microsecond pulse length was considered to be one the most critical issues in the design. Even after advances in detector technology allowed the beam current requirement to be lowered to 2 kA, the goal for the standard cell impedance was kept at {approx}300 ohms/meter to allow for the possibility of future beam current upgrades to 4 kA without any modifications in the cells. The results of this campaign to minimize the transverse impedance are described in detail in Reference 1. After several iterations in the design of ferrite dampers and the anode finger stock shape, the measured (peak) impedance of the original standard cell was determined to be about 280 ohms/meter. (As a reference point, the measured impedance of the DARHT-1 cell is about 880 ohms/meter). This impedance provided such a wide safety margin against BBU amplification at 2 kA that it was felt that the cell redesign could focus on voltage holding without any detailed considerations of impacts on the transverse impedance. Now that a baseline design for the DARHT-2 cell has been established and tested, however, it was felt that a measurement of its impedance would be prudent. The results of these impedance measurements are presented in this note. The objective was mainly to do a ''quick check'' to ensure that there were no surprises, and to provide an estimate of the BBU frequencies and growth rates to the experimental test program.

  9. Thermal analysis of SC quadrupoles in accelerator interaction regions

    SciTech Connect

    Novitski, Igor; Zlobin, Alexander V.; /Fermilab

    2006-09-01

    This paper presents results of a thermal analysis and operation margin calculation performed for NbTi and Nb{sub 3}Sn low-beta quadrupoles in collider interaction regions. Results of the thermal analysis for NbTi quadrupoles are compared with the relevant experimental data. An approach to quench limit measurements for Nb{sub 3}Sn quadrupoles is discussed.

  10. Regional systems of care demonstration project: Mission: Lifeline STEMI Systems Accelerator: design and methodology.

    PubMed

    Bagai, Akshay; Al-Khalidi, Hussein R; Sherwood, Matthew W; Muñoz, Daniel; Roettig, Mayme L; Jollis, James G; Granger, Christopher B

    2014-01-01

    ST-segment elevation myocardial infarction (STEMI) systems of care have been associated with significant improvement in use and timeliness of reperfusion. Consequently, national guidelines recommend that each community should develop a regional STEMI care system. However, significant barriers continue to impede widespread establishment of regional STEMI care systems in the United States. We designed the Regional Systems of Care Demonstration Project: Mission: Lifeline STEMI Systems Accelerator, a national educational outcome research study in collaboration with the American Heart Association, to comprehensively accelerate the implementation of STEMI care systems in 17 major metropolitan regions encompassing >1,500 emergency medical service agencies and 450 hospitals across the United States. The goals of the program are to identify regional gaps, barriers, and inefficiencies in STEMI care and to devise strategies to implement proven recommendations to enhance the quality and consistency of care. The study interventions, facilitated by national faculty with expertise in regional STEMI system organization in partnership with American Heart Association representatives, draw upon specific resources with proven past effectiveness in augmenting regional organization. These include bringing together leading regional health care providers and institutions to establish common commitment to STEMI care improvement, developing consensus-based standardized protocols in accordance with national professional guidelines to address local needs, and collecting and regularly reviewing regional data to identify areas for improvement. Interventions focus on each component of the reperfusion process: the emergency medical service, the emergency department, the catheterization laboratory, and inter-hospital transfer. The impact of regionalization of STEMI care on clinical outcomes will be evaluated.

  11. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  12. Shape design sensitivity analysis and optimal design of structural systems

    NASA Technical Reports Server (NTRS)

    Choi, Kyung K.

    1987-01-01

    The material derivative concept of continuum mechanics and an adjoint variable method of design sensitivity analysis are used to relate variations in structural shape to measures of structural performance. A domain method of shape design sensitivity analysis is used to best utilize the basic character of the finite element method that gives accurate information not on the boundary but in the domain. Implementation of shape design sensitivty analysis using finite element computer codes is discussed. Recent numerical results are used to demonstrate the accuracy obtainable using the method. Result of design sensitivity analysis is used to carry out design optimization of a built-up structure.

  13. Enculturating science: Community-centric design of behavior change interactions for accelerating health impact.

    PubMed

    Kumar, Vishwajeet; Kumar, Aarti; Ghosh, Amit Kumar; Samphel, Rigzin; Yadav, Ranjanaa; Yeung, Diana; Darmstadt, Gary L

    2015-08-01

    Despite significant advancements in the scientific evidence base of interventions to improve newborn survival, we have not yet been able to "bend the curve" to markedly accelerate global rates of reduction in newborn mortality. The ever-widening gap between discovery of scientific best practices and their mass adoption by families (the evidence-practice gap) is not just a matter of improving the coverage of health worker-community interactions. The design of the interactions themselves must be guided by sound behavioral science approaches such that they lead to mass adoption and impact at a large scale. The main barrier to the application of scientific approaches to behavior change is our inability to "unbox" the "black box" of family health behaviors in community settings. The authors argue that these are not black boxes, but in fact thoughtfully designed community systems that have been designed and upheld, and have evolved over many years keeping in mind a certain worldview and a common social purpose. An empathetic understanding of these community systems allows us to deconstruct the causal pathways of existing behaviors, and re-engineer them to achieve desired outcomes. One of the key reasons for the failure of interactions to translate into behavior change is our failure to recognize that the content, context, and process of interactions need to be designed keeping in mind an organized community system with a very different worldview and beliefs. In order to improve the adoption of scientific best practices by communities, we need to adapt them to their culture by leveraging existing beliefs, practices, people, context, and skills. The authors present a systems approach for community-centric design of interactions, highlighting key principles for achieving intrinsically motivated, sustained change in social norms and family health behaviors, elucidated with progressive theories from systems thinking, management sciences, cross-cultural psychology, learning

  14. MAP Stability, Design and Analysis

    NASA Technical Reports Server (NTRS)

    Ericsson -Jackson, A.J.; Andrews, S. F.; ODonnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  15. MAP stability, design, and analysis

    NASA Technical Reports Server (NTRS)

    Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  16. Analysis of Voltage Signals from Superconducting Accelerator Magnets

    SciTech Connect

    Lizarazo, J.; Caspi, S.; Ferracin, P.; Joseph, J.; Lietzke, A. F.; Sabbi, G. L.; Wang, X.

    2009-10-30

    We present two techniques used in the analysis of voltage tap data collected during recent tests of superconducting magnets developed by the Superconducting Magnet Program at Lawrence Berkeley National Laboratory. The first technique was used on a quadrupole to provide information about quench origins that could not be obtained using the time-of-flight method. The second technique illustrates the use of data from transient flux imbalances occurring during magnet ramping to diagnose changes in the current-temperature margin of a superconducting cable. In both cases, the results of this analysis contributed to make improvements on subsequent magnets.

  17. Off-normal and failure condition analysis of the MITICA negative-ion accelerator

    SciTech Connect

    Chitarin, Giuseppe Aprile, Daniele; Agostinetti, Piero; Marconato, Nicolò; Marcuzzi, Diego; Serianni, Gianluigi; Veltri, Pierluigi; Zaccaria, Pierluigi

    2016-02-15

    The negative-ion accelerator for the MITICA neutral beam injector has been designed and optimized in order to reduce the thermo-mechanical stresses in all components below limits compatible with the required fatigue life. However, deviation from the expected beam performances can be caused by “off-normal” operating conditions of the accelerator. The purpose of the present work is to identify and analyse all the “off-normal” operating conditions, which could possibly become critical in terms of thermo-mechanical stresses or of degradation of the optical performances of the beam.

  18. Off-normal and failure condition analysis of the MITICA negative-ion accelerator

    NASA Astrophysics Data System (ADS)

    Chitarin, Giuseppe; Agostinetti, Piero; Aprile, Daniele; Marconato, Nicolò; Marcuzzi, Diego; Serianni, Gianluigi; Veltri, Pierluigi; Zaccaria, Pierluigi

    2016-02-01

    The negative-ion accelerator for the MITICA neutral beam injector has been designed and optimized in order to reduce the thermo-mechanical stresses in all components below limits compatible with the required fatigue life. However, deviation from the expected beam performances can be caused by "off-normal" operating conditions of the accelerator. The purpose of the present work is to identify and analyse all the "off-normal" operating conditions, which could possibly become critical in terms of thermo-mechanical stresses or of degradation of the optical performances of the beam.

  19. Off-normal and failure condition analysis of the MITICA negative-ion accelerator.

    PubMed

    Chitarin, Giuseppe; Agostinetti, Piero; Aprile, Daniele; Marconato, Nicolò; Marcuzzi, Diego; Serianni, Gianluigi; Veltri, Pierluigi; Zaccaria, Pierluigi

    2016-02-01

    The negative-ion accelerator for the MITICA neutral beam injector has been designed and optimized in order to reduce the thermo-mechanical stresses in all components below limits compatible with the required fatigue life. However, deviation from the expected beam performances can be caused by "off-normal" operating conditions of the accelerator. The purpose of the present work is to identify and analyse all the "off-normal" operating conditions, which could possibly become critical in terms of thermo-mechanical stresses or of degradation of the optical performances of the beam.

  20. Vibration isolation analysis of clutches based on trouble shooting of vehicle accelerating noise

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Lai; Shangguan, Wen-Bin; Jing, Xingjian; Ahmed, Waizuddin

    2016-11-01

    Vehicle accelerating noise is a troublesome issue commonly existing in automobiles, leading to negative passenger experience. Considering real experimental results and practical issues, a nonlinear 3-degree of freedom (DOF) torsional model of the clutch system is developed for reducing abnormal noise during vehicle accelerating. In this model, the nonlinear characteristics of the multi-staged clutch damper and the gear backlash are carefully studied. This greatly facilitates the analysis of the vibration transmission characteristics of the clutch and helps understanding of the influence of each critical physical parameter on noise generation. To reduce the accelerating noise, an optimization method for the clutch dynamics is proposed, based on the parameter analysis results, and the effectiveness is validated both in simulations and experiments.

  1. Optical design and analysis program.

    PubMed

    Powell, I

    1978-11-01

    An optical design and analysis program structured for operation on a minicomputer has been developed at NRC (National Research Council of Canada). It has been designed to be used interactively giving the user both flexibility and ease of operation. The computer on which it runs at present is a Digital PDP11 with a memory of around 28K, and this represents a great saving in computer costs when compared with those of a large computer upon which most lens design work is carried out. This program has capabilities for optimizing a lens system, for pupil exploration, for fitting the computed wavefront aberration to a polynomial, and for evaluating the diffraction optical transfer function. Although only ten finite rays are traced in the optimization routine, the aberrations computed, together with the Seidel aberrations obtained from the paraxial ray trace, provide the user with adequate control of the aberrations over both aperture and field. A Double Gauss and a Maksutov-Cassegrain system are used as practical examples to illustrate this.

  2. Design of a cervical collar device to facilitate and accelerate implementation of first aid.

    PubMed

    Işık, Hakan; Saraçoğlu, Esra; Harmanci, Hüseyin; Güler, Inan

    2010-08-01

    Frequently there are disasters all over the world-fires, earthquakes, or even some unexpected shocking catastrophes. Hence people injured, or even died. Lifesaving actions begin with the initiation of the chain of survival. With every minute that passes without medical action being taken, the probability of being able to save the patients life decreases by ten percent. After 10 min there is normally no chance of resuscitation being successful. First aid is emergency treatment given before regular medical aid can be obtained. And it is a concept of first hands-on measures performed in a medical emergency by laypersons. The major aim of this study is to develop an easy-feasible cervical collar, for facilitating and accelerating implementation of first aid especially in case of collective injuries. The developed device is different from the cervical collars which are used to treat the neck pain. In the present study, the heartbeat is obtained by detecting pulse with the stethoscope that is a part of the developed device and fixed on the carorid artery. The obtained heartbeat signal has been processed by the electronic control circuit and the used LED has given light according to the patient's life signal. Although there are some disadvantages of the developed system, the precautions for these cases have been taken and the system has been tried to design in order to operate sensibly.

  3. Design of metallic electron beam cones for an intraoperative therapy linear accelerator.

    PubMed

    Hogstrom, K R; Boyer, A L; Shiu, A S; Ochran, T G; Kirsner, S M; Krispel, F; Rich, T

    1990-05-01

    A set of circular collimators and treatment cones from 5 to 12 cm diameter has been designed for an intraoperative accelerator (6-18 MeV) that has an optical docking system. Electron beam scattering theory has been used to minimize their weight while minimizing leakage radiation. Both acrylic and brass were evaluated as possible materials; however, because of substantial electron leakage through the lateral cone wall for acrylic, we have concluded that 2 mm thick brass walls are more desirable than acrylic walls. At 18 MeV, isodose measurements beneath the cones showed hot spots as great as 120% for both materials. The placement and dimension of an internal trimmer ring inside the brass cone was studied as a method for reducing the hot spots, and it was found this could only be accomplished at the expense of decreasing coverage of the 90% isodose surface. The effects of 1 degree cone misalignment on the dose distribution has been studied and found to generate changes of less than 5% in the dose and 3 mm in position of the 90% isodose surface. In a study of the contribution of the cone and its matching collimator assembly to x-ray room leakage, it was noted that although the treatment cone had a negligible contribution, the upper annuli of the upper collimator assembly contributed as much as 80% of the leakage at 16 MeV for the 5-cm cone.

  4. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    SciTech Connect

    Shin, Young Min; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 1020 – 1023 cm-3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a

  5. Ultra-high gradient channeling acceleration in nanostructures: Design/progress of proof-of-concept (POC) experiments

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.

    2017-03-01

    A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time

  6. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    SciTech Connect

    None, None

    2016-08-26

    The discovery of the Higgs boson, a subatomic particle whose field is responsible for endowing all other particles with mass, is one of the major discoveries of the last decade. To unlock the mysteries of the subatomic world, physicists use the worlds’ most powerful microscopes – particle accelerators. The resolving power of these microscopes is proportional to the energy of the beams they produce. Since their inception nearly 80 years ago, the energy reach of accelerators has grown exponentially due to continued breakthroughs in accelerator physics and engineering. The highest energy beams in the world are currently at the 27km circumference Large Hadron Collider (LHC) in Europe. Although it is a monument to human engineering, scientists are approaching a practical limit to the size and cost of such collider facilities. Innovation is essential for continued progress. Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC.

  7. Design of RF Feed System for Standing-Wave Accelerator Structures

    SciTech Connect

    Neilson, J.; Tantawi, S.; Dolgashev, V.; /SLAC

    2012-05-25

    We are investigating a standing wave accelerator structure that uses a rf feed to each individual cell. This approach minimizes rf power flow and electromagnetic energy absorbed by an rf breakdown. The objective of this work is a robust high-gradient (above 100 MV/m) X-band accelerator structure.

  8. An overview of the adaptive designs accelerating promising trials into treatments (ADAPT-IT) project.

    PubMed

    Meurer, William J; Lewis, Roger J; Tagle, Danilo; Fetters, Michael D; Legocki, Laurie; Berry, Scott; Connor, Jason; Durkalski, Valerie; Elm, Jordan; Zhao, Wenle; Frederiksen, Shirley; Silbergleit, Robert; Palesch, Yuko; Berry, Donald A; Barsan, William G

    2012-10-01

    Randomized clinical trials, which aim to determine the efficacy and safety of drugs and medical devices, are a complex enterprise with myriad challenges, stakeholders, and traditions. Although the primary goal is scientific discovery, clinical trials must also fulfill regulatory, clinical, and ethical requirements. Innovations in clinical trials methodology have the potential to improve the quality of knowledge gained from trials, the protection of human subjects, and the efficiency of clinical research. Adaptive clinical trial methods represent a broad category of innovations intended to address a variety of long-standing challenges faced by investigators, such as sensitivity to previous assumptions and delayed identification of ineffective treatments. The implementation of adaptive clinical trial methods, however, requires greater planning and simulation compared with a more traditional design, along with more advanced administrative infrastructure for trial execution. The value of adaptive clinical trial methods in exploratory phase (phase 2) clinical research is generally well accepted, but the potential value and challenges of applying adaptive clinical trial methods in large confirmatory phase clinical trials are relatively unexplored, particularly in the academic setting. In the Adaptive Designs Accelerating Promising Trials Into Treatments (ADAPT-IT) project, a multidisciplinary team is studying how adaptive clinical trial methods could be implemented in planning actual confirmatory phase trials in an established, National Institutes of Health-funded clinical trials network. The overarching objectives of ADAPT-IT are to identify and quantitatively characterize the adaptive clinical trial methods of greatest potential value in confirmatory phase clinical trials and to elicit and understand the enthusiasms and concerns of key stakeholders that influence their willingness to try these innovative strategies.

  9. An Overview of the Adaptive Designs Accelerating Promising Trials Into Treatments (ADAPT-IT) Project

    PubMed Central

    Meurer, William J.; Lewis, Roger J.; Tagle, Danilo; Fetters, Michael D; Legocki, Laurie; Berry, Scott; Connor, Jason; Durkalski, Valerie; Elm, Jordan; Zhao, Wenle; Frederiksen, Shirley; Silbergleit, Robert; Palesch, Yuko; Berry, Donald A.; Barsan, William G.

    2013-01-01

    Randomized clinical trials, which aim to determine the efficacy and safety of drugs and medical devices, are a complex enterprise with myriad challenges, stakeholders, and traditions. While the primary goal is scientific discovery, clinical trials must also fulfill regulatory, clinical, and ethical requirements. Innovations in clinical trials methodology have the potential to improve the quality of knowledge gained from trials, the protection of human subjects, and the efficiency of clinical research. Adaptive clinical trial (ACT) methods represent a broad category of innovations intended to address a variety of long-standing challenges faced by investigators, such as sensitivity to prior assumptions and delayed identification of ineffective treatments. The implementation of ACT methods, however, requires greater planning and simulation compared to a more traditional design, along with more advanced administrative infrastructure for trial execution. The value of ACT methods in exploratory phase (phase II) clinical research is generally well accepted, but the potential value and challenges of applying ACT methods in large confirmatory phase clinical trials is relatively unexplored, particularly in the academic setting. In the Adaptive Designs Accelerating Promising Trials Into Treatments (ADAPT-IT) project, a multidisciplinary team is studying how ACT methods could be implemented in planning actual confirmatory phase trials in an established, NIH funded clinical trials network. The overarching objectives of ADAPT-IT are to identify and quantitatively characterize the ACT methods of greatest potential value in confirmatory phase clinical trials, and to elicit and understand the enthusiasms and concerns of key stakeholders that influence their willingness to try these innovative strategies. PMID:22424650

  10. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    NASA Astrophysics Data System (ADS)

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  11. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis.

    PubMed

    Loturco, Irineu; Artioli, Guilherme Giannini; Kobal, Ronaldo; Gil, Saulo; Franchini, Emerson

    2014-07-01

    This study investigated the relationship between punching acceleration and selected strength and power variables in 19 professional karate athletes from the Brazilian National Team (9 men and 10 women; age, 23 ± 3 years; height, 1.71 ± 0.09 m; and body mass [BM], 67.34 ± 13.44 kg). Punching acceleration was assessed under 4 different conditions in a randomized order: (a) fixed distance aiming to attain maximum speed (FS), (b) fixed distance aiming to attain maximum impact (FI), (c) self-selected distance aiming to attain maximum speed, and (d) self-selected distance aiming to attain maximum impact. The selected strength and power variables were as follows: maximal dynamic strength in bench press and squat-machine, squat and countermovement jump height, mean propulsive power in bench throw and jump squat, and mean propulsive velocity in jump squat with 40% of BM. Upper- and lower-body power and maximal dynamic strength variables were positively correlated to punch acceleration in all conditions. Multiple regression analysis also revealed predictive variables: relative mean propulsive power in squat jump (W·kg-1), and maximal dynamic strength 1 repetition maximum in both bench press and squat-machine exercises. An impact-oriented instruction and a self-selected distance to start the movement seem to be crucial to reach the highest acceleration during punching execution. This investigation, while demonstrating strong correlations between punching acceleration and strength-power variables, also provides important information for coaches, especially for designing better training strategies to improve punching speed.

  12. EMG and acceleration signal analysis for quantifying the effects of medication in Parkinson's disease.

    PubMed

    Rissanen, Saara M; Kankaanpaa, Markku; Tarvainen, Mika P; Nuutinen, Juho; Airaksinen, Olavi; Karjalainen, Pasi A

    2011-01-01

    Parkinson's disease (PD) is characterized by motor disabilities that can be alleviated reasonably with appropriate medication. However, there is a lack of objective methods for quantifying the efficacy of treatment in PD. We applied here an objective method for quantifying the effects of medication in PD using EMG and acceleration measurements and analysis. In the method, four signal features were calculated from the EMG and acceleration recordings of both sides of the body: the kurtosis and recurrence rate of EMG, and the amplitude and sample entropy of acceleration. Principal component approach was used for reducing the number of variables. EMG and acceleration data measured from nine PD patients were used for analysis. The patients were measured in four different medication conditions: with medication off, and two and three and four hours after taking the medication. The results showed that in eight patients the EMG recordings changed into less spiky and the acceleration recordings into more complex after taking the medication. A reverse phenomenon in the signal characteristics was observed in seven patients 3-4 hours after taking the medication. The results indicate that the presented method is potentially useful for quantifying objectively the effects of medication on the neuromuscular function in PD.

  13. WarpIV: In Situ Visualization and Analysis of Ion Accelerator Simulations.

    PubMed

    Rubel, Oliver; Loring, Burlen; Vay, Jean-Luc; Grote, David P; Lehe, Remi; Bulanov, Stepan; Vincenti, Henri; Bethel, E Wes

    2016-01-01

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analytics to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. This supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.

  14. WarpIV: In situ visualization and analysis of ion accelerator simulations

    SciTech Connect

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; Grote, David P.; Lehe, Remi; Bulanov, Stepan; Vincenti, Henri; Bethel, E. Wes

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analytics to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.

  15. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  16. Design, realization and test of C-band accelerating structures for the SPARC_LAB linac energy upgrade

    NASA Astrophysics Data System (ADS)

    Alesini, D.; Bellaveglia, M.; Biagini, M. E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-11-01

    The energy upgrade of the SPARC_LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  17. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    PubMed Central

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  18. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.

  19. Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program

    SciTech Connect

    SCHNEIDER,LARRY X.

    2000-06-01

    The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

  20. NON-SCALING FIXED FIELD GRADIENT ACCELERATOR (FFAG) DESIGN FOR THE PROTON AND CARBON THERAPY.

    SciTech Connect

    TRBOJEVIC, D.; KEIL, E.; SESSLER, A.

    2005-06-05

    The non-scaling Fixed Field Alternating Gradient (FFAG-from now on) accelerator provides few advantages with respect to the other fixed field accelerators like CYCLOTRONS or scaling-FFAG's. One of the advantages is smaller required aperture due to small orbit offsets during acceleration. The large and heavy magnets are avoided. The beam is very well controlled in a strong focusing regime. This concept has been extensively investigated during the last eight FFAG workshops in Japan, USA, Canada, and CERN in Europe.

  1. Microparticle accelerator of unique design. [for micrometeoroid impact and cratering simulation

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.

    1978-01-01

    A microparticle accelerator has been devised for micrometeoroid impact and cratering simulation; the device produces high-velocity (0.5-15 km/sec), micrometer-sized projectiles of any cohesive material. In the source, an electrodynamic levitator, single particles are charged by ion bombardment in high vacuum. The vertical accelerator has four drift tubes, each initially at a high negative voltage. After injection of the projectile, each tube is grounded in turn at a time determined by the voltage and charge/mass ratio to give four acceleration stages with a total voltage equivalent to about 1.7 MV.

  2. Analysis of the dynamics of a nutating body. [numerical analysis of displacement, velocity, and acceleration of point on mechanical drives

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1974-01-01

    The equations for the displacement, velocity, and acceleration of a point in a nutating body are developed. These are used to derive equations for the inertial moment developed by a nutating body of arbitrary shape. Calculations made for a previously designed nutating plate transmission indicate that that device is severely speed limited because of the very high magnitude inertial moment.

  3. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at theLBNL LOASIS Facility

    SciTech Connect

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-09-01

    We present a design for a compact FEL source of ultrafast, high-peak flux, soft x-ray pulses employing a high-current, GeV-energy electron beam from the existing laser-plasma accelerator at the LBNL LOASIS laser facility. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing both to the high current ({approx} 10 kA) and reasonable charge/pulse ({approx} 0.1-0.5 nC) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially 10{sup 13}--10{sup 14} photons/pulse. We examine devices based both on SASE and high-harmonic generated input seeds to give improved coherence and reduced undulator length, presenting both analytic scalings and numerical simulation results for expected FEL performance. A successful source would result in a new class of compact laser-driven FELs in which a conventional RF accelerator is replaced by a GeV-class laser-plasma accelerator whose active acceleration region is only a few cm in length.

  4. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    DOEpatents

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  5. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    SciTech Connect

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  6. Synergistic interaction between ankle and knee during hopping revealed through induced acceleration analysis.

    PubMed

    João, Filipa; Veloso, António; Cabral, Sílvia; Moniz-Pereira, Vera; Kepple, Thomas

    2014-02-01

    The forces produced by the muscles can deliver energy to a target segment they are not attached to, by transferring this energy throughout the other segments in the chain. This is a synergistic way of functioning, which allows muscles to accelerate or decelerate segments in order to reach the target one. The purpose of this study was to characterize the contribution of each lower extremity joint to the vertical acceleration of the body's center of mass during a hopping exercise. To accomplish this, an induced acceleration analysis was performed using a model with eight segments. The results indicate that the strategies produced during a hopping exercise rely on the synergy between the knee and ankle joints, with most of the vertical acceleration being produced by the knee extensors, while the ankle plantar flexors act as stabilizers of the foot. This synergy between the ankle and the knee is perhaps a mechanism that allows the transfer of power from the knee muscles to the ground, and we believe that in this particular task the net action of the foot and ankle moments is to produce a stable foot with little overall acceleration.

  7. Numerical design and model measurements for a 1.3 GHz microtron accelerating cavity

    NASA Astrophysics Data System (ADS)

    Kleeven, W. J. G. M.; Theeuwen, M. E. H. J.; Knoben, M. H. M.; Moerdijk, A. J.; Botman, J. I. M.; van der Heide, J. A.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    As part of the free electron laser project TEUFEL, a 25 MeV racetrack microtron is under construction at the Eindhoven University. The accelerating cavity of this microtron is a standing wave on axis coupled structure. It consists of three accelerating cells and two coupling cells. Numerical field calculations for this cavity were done with the computer codes SUPERFISH, URMEL-T and MAFIA. Not only the accelerating modes but also the dangerous beam breakup modes were calculated with MAFIA. An aluminium, scale 1:1 model of the structure was made in order to measure various cavity properties. Field profiles were measured with the perturbation ball method. An equivalent LC-circuit simulation of the accelerating structure was made, which serves as a model for the interpretation of the results.

  8. Advanced Induction Accelerator Designs for Ground Based and Space Based FELs

    DTIC Science & Technology

    1994-04-30

    MeV Electron injector module 2-2 2.2 Electrical Schematic of SNOMAD-IV solid-state driver 2-4 I 2.3 SNOMAD-IV accelerator cell 2-7 2.4 Coupling...injector accelerator cell assembly. 2-20 2.9 Preliminary assembly drawing of cathode extraction optics and vacuum pumping port. 2-22 I 2.10 SNOMAD-IV...Accelerator Cell 3-10 3.7 SNOMAD-IVB Accelerator Cells 3-11 E 3.8 SNOMAD-IVB Main Body Enclosure 3-13 3.9 SNOMAD-IVB Base Plate Enclosure 3-14 I 3.10 SNOMAD

  9. Design sensitivity analysis using EAL. Part 1: Conventional design parameters

    NASA Technical Reports Server (NTRS)

    Dopker, B.; Choi, Kyung K.; Lee, J.

    1986-01-01

    A numerical implementation of design sensitivity analysis of builtup structures is presented, using the versatility and convenience of an existing finite element structural analysis code and its database management system. The finite element code used in the implemenatation presented is the Engineering Analysis Language (EAL), which is based on a hybrid method of analysis. It was shown that design sensitivity computations can be carried out using the database management system of EAL, without writing a separate program and a separate database. Conventional (sizing) design parameters such as cross-sectional area of beams or thickness of plates and plane elastic solid components are considered. Compliance, displacement, and stress functionals are considered as performance criteria. The method presented is being extended to implement shape design sensitivity analysis using a domain method and a design component method.

  10. Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.

    2003-01-01

    The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.

  11. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit

    SciTech Connect

    Forno, Massimo Dal; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-11-15

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.

  12. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  13. Verification analysis of the toroidal accelerator rotor platform wind energy conversion system: Summary report

    SciTech Connect

    Duffy, R.E.

    1988-09-01

    This report describes research undertaken at Rensselaer Polytechnic Institute for the purpose of evaluating the performance, defining the structure and system configurations, and assessing the economic merit of the Toroidal Accelerator Rotor Platform (TARP) wind energy conversion system. The TARP wind energy system is a highly versatile system-design having broad-based application potential ranging from small-kilowatt capacity units to large-megawatt utility-scale power plants. 4 refs., 27 figs., 19 tabs.

  14. Rapid analysis of scattering from periodic dielectric structures using accelerated Cartesian expansions

    SciTech Connect

    Baczewski, Andrew David; Miller, Nicholas C.; Shanker, Balasubramaniam

    2012-03-22

    Here, the analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral-equation-based methods, for which traditional iterative methods require Ο(Ν2) operations, Ν being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodic dielectric structures. The crux of our method is the accelerated Cartesian expansion algorithm, which is used to evaluate the requisite potentials in Ο(Ν) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applications.

  15. Neutronics analysis of three beam-filter assemblies for an accelerator-based BNCT facility

    SciTech Connect

    Bleuel, D.L.; Costes, S.V.; Donahue, R.J.; Ludewigt, B.A.

    1997-08-01

    Three moderator materials, AlF{sub 3}/Al, D{sub 2}O and LiF, have been analyzed for clinical usefulness using the reaction {sup 7}Li(p,n) as an accelerator driven neutron source. Proton energies between 2.1 MeV and 2.6 MeV have been investigated. Radiation transport in the reflector/moderator assembly is simulated using the MCNP program. Depth-dose distributions in a head phanton are calculated with the BNCT-RTPE patient treatment planning program from INEEL using the MCNP generated neutron and photon spectra as the subsequent source. Clinical efficacy is compared using the current BMRR protocol for all designs. Depth-dose distributions are compared for a fixed normal tissue tolerance dose of 12.5 Gy-Eq. Radiation analyses also include a complete anthropomorphic phantom. Results of organ and whole body dose components are presented for several designs. Results indicate that high quality accelerator beams may produce clinically favorable treatments to deep-seated tumors when compared to the BMRR beam. Also discussed are problems identified in comparing accelerator and reactor based designs using in-air figures of merit as well as some results of spectrum-averaged RBE`s.

  16. Thermal performance analysis and measurements of the prototype cryomodules of European XFEL accelerator - part I

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Barbanotti, S.; Eschke, J.; Jensch, K.; Klos, R.; Maschmann, W.; Petersen, B.; Sawlanski, O.

    2014-11-01

    The European X-Ray Free Electron Laser (XFEL), the research facility currently under construction in the Hamburg area, Germany, is based on a superconducting linear accelerator that brings electrons to almost the speed of light. The linear accelerator consists of 100 accelerating cryomodules (CMs) operating at the temperature of 2 K. The thermal performances of the accelerator CMs are a key element to determine the heat load budget, the required capacity and the cost of the XFEL refrigerating system and to guarantee its efficient operation. The measurement of the thermal performances of the CMs is also an important step in the qualification of the CMs during the series production. This paper describes the thermal performance analysis of the European XFEL prototype cryomodules. The analysis takes into account all the main contributors (multilayer insulation, current leads, power couplers, support posts, and cavities) to the static and dynamic heat loads at various cryogenic temperature levels. Existing empirical databases are reviewed and used to evaluate the heat transfer through the multilayer insulation and numerical simulations are developed to investigate the heat loads generated from the different CM components.

  17. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    SciTech Connect

    Z. Chen; C. Gautier; F. Hemez; N. K. Bultman

    2000-02-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  18. Automated Simulation For Analysis And Design

    NASA Technical Reports Server (NTRS)

    Cantwell, E.; Shenk, Tim; Robinson, Peter; Upadhye, R.

    1992-01-01

    Design Assistant Workstation (DAWN) software being developed to facilitate simulation of qualitative and quantitative aspects of behavior of life-support system in spacecraft, chemical-processing plant, heating and cooling system of large building, or any of variety of systems including interacting process streams and processes. Used to analyze alternative design scenarios or specific designs of such systems. Expert system will automate part of design analysis: reason independently by simulating design scenarios and return to designer with overall evaluations and recommendations.

  19. Theoretical analysis of acceleration measurements in a model of an operating wind turbine

    NASA Astrophysics Data System (ADS)

    White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.

    2010-04-01

    Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines. These unsteady loads and the resulting damage initiation and propagation are difficult to predict. Unsteady loads enter at the rotor and are transmitted to the drivetrain. The current generation of wind turbine has drivetrain-mounted vibration and bearing temperature sensors, a nacelle-mounted inertial measurement unit, and a nacelle-mounted anemometer and wind vane. Some advanced wind turbines are also equipped with strain measurements at the root of the rotor. This paper analyzes additional measurements in a rotor blade to investigate the complexity of these unsteady loads. By identifying the spatial distribution, amplitude, and frequency bandwidth of these loads, design improvements could be facilitated to reduce uncertainties in reliability predictions. In addition, dynamic load estimates could be used in the future to control high-bandwidth aerodynamic actuators distributed along the rotor blade to reduce the saturation of slower pitch actuators currently used for wind turbine blades. Local acceleration measurements are made along a rotor blade to infer operational rotor states including deflection and dynamic modal contributions. Previous work has demonstrated that acceleration measurements can be experimentally acquired on an operating wind turbine. Simulations on simplified rotor blades have also been used to demonstrate that mean blade loading can be estimated based on deflection estimates. To successfully apply accelerometers in wind turbine applications for load identification, the spectral and spatial characteristics of each excitation source must be understood so that the total acceleration measurement can be decomposed into contributions from each source. To demonstrate the decomposition of acceleration measurements in conjunction with load estimation methods, a flexible body model has been created with MSC.ADAMSThe benefit of using a simulation model as opposed

  20. Theoretical analysis of acceleration measurements in a model of an operating wind turbine.

    SciTech Connect

    Adams, Douglas E.; Rumsey, Mark Allen; White, Jonathan Randall

    2010-04-01

    Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines. These unsteady loads and the resulting damage initiation and propagation are difficult to predict. Unsteady loads enter at the rotor and are transmitted to the drivetrain. The current generation of wind turbine has drivetrain-mounted vibration and bearing temperature sensors, a nacelle-mounted inertial measurement unit, and a nacelle-mounted anemometer and wind vane. Some advanced wind turbines are also equipped with strain measurements at the root of the rotor. This paper analyzes additional measurements in a rotor blade to investigate the complexity of these unsteady loads. By identifying the spatial distribution, amplitude, and frequency bandwidth of these loads, design improvements could be facilitated to reduce uncertainties in reliability predictions. In addition, dynamic load estimates could be used in the future to control high-bandwidth aerodynamic actuators distributed along the rotor blade to reduce the saturation of slower pitch actuators currently used for wind turbine blades. Local acceleration measurements are made along a rotor blade to infer operational rotor states including deflection and dynamic modal contributions. Previous work has demonstrated that acceleration measurements can be experimentally acquired on an operating wind turbine. Simulations on simplified rotor blades have also been used to demonstrate that mean blade loading can be estimated based on deflection estimates. To successfully apply accelerometers in wind turbine applications for load identification, the spectral and spatial characteristics of each excitation source must be understood so that the total acceleration measurement can be decomposed into contributions from each source. To demonstrate the decomposition of acceleration measurements in conjunction with load estimation methods, a flexible body model has been created with MSC.ADAMS{copyright} The benefit of using a simulation model

  1. Linear accelerator design study with direct plasma injection scheme for warm dense matter

    SciTech Connect

    Kondo, K.; Kanesue, T; Okamura, M.

    2011-03-28

    Warm Dense Matter (WDM) is a challenging science field, which is related to heavy ion inertial fusion and planetary science. It is difficult to expect the behavior because the state with high density and low temperature is completely different from ideal condition. The well-defined WDM generation is required to understand it. Moderate energy ion beams ({approx} MeV/u) slightly above Bragg peak is an advantageous method for WDM because of the uniform energy deposition. Direct Plasma Injection Scheme (DPIS) with a Interdigital H-mode (IH) accelerator has a potential for the beam parameter. We show feasible parameters of the IH accelerator for WDM. WDM physics is a challenging science and is strongly related to Heavy Ion Fusion science. WDM formation by Direct Plasma Injection Scheme (DPIS) with IH accelerator, which is a compact system, is proposed. Feasible parameters for IH accelerator are shown for WDM state. These represents that DPIS with IH accelerator can access a different parameter region of WDM.

  2. Wing-Design And -Analysis Code

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Carlson, Harry W.

    1990-01-01

    WINGDES2 computer program provides wing-design algorithm based on modified linear theory taking into account effects of attainable leading-edge thrust. Features improved numerical accuracy and additional capabilities. Provides analysis as well as design capability and applicable to both subsonic and supersonic flow. Replaces earlier wing-design code designated WINGDES (see LAR-13315). Written in FORTRAN V.

  3. Design, fabrication, and operation of dished accelerator grids on a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Banks, B. A.; Byers, D. C.

    1972-01-01

    Several closely-space dished accelerator grid systems were fabricated and tested on a 30-cm diameter mercury bombardment thruster and they appear to be a solution to the stringent requirements imposed by the near-term, high-thrust, low specific impulse electric propulsion missions. The grids were simultaneously hydroformed and then simultaneously stress relieved. The ion extraction capability and discharge chamber performance were studied as the total accelerating voltage, the ratio of net-to-total voltage, grid spacing, and dish direction were varied.

  4. Design, fabrication, and operation of dished accelerator grids on a 30-cm ion thruster.

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Banks, B. A.; Byers, D. C.

    1972-01-01

    Several closely-spaced dished accelerator grid systems have been fabricated and tested on a 30-cm diameter mercury bombardment thruster and they appear to be a solution to the stringent requirements imposed by the near-term, high-thrust, low specific impulse electric propulsion missions. The grids were simultaneously hydroformed and then simultaneously stress relieved. The ion extraction capability and discharge chamber performance were studied as the total accelerating voltage, the ratio of net-to-total voltage, grid spacing, and dish direction were varied.

  5. Analysis and Design of Launch Vehicle Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  6. Proton and Helium Injection Into First Order Fermi Acceleration at Shocks: Hybrid Simulation and Analysis

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Malkov, Mikhail; Sagdeev, Roald; Liseykina, Tatjana; Hanusch, Adrian

    2016-10-01

    Elemental composition of galactic cosmic rays (CR) probably holds the key to their origin. Most likely, they are accelerated at collisionless shocks in supernova remnants, but the acceleration mechanism is not entirely understood. One complicated problem is ``injection'', a process whereby the shock selects a tiny fraction of particles to keep on crossing its front and gain more energy. Comparing the injection rates of particles with different mass to charge ratio is a powerful tool for studying this process. Recent advances in measurements of CR He/p ratio have provided particularly important new clues. We performed a series of hybrid simulations and analyzed a joint injection of protons and Helium, in conjunction with upstream waves they generate. The emphasis of this work is on the bootstrap aspects of injection manifested in particle confinement to the shock and, therefore, their continuing acceleration by the self-driven waves. The waves are initially generated by He and protons in separate spectral regions, and their interaction plays a crucial role in particle acceleration. The work is ongoing and new results will be reported along with their analysis and comparison with the latest data from the AMS-02 space-based spectrometer. Work supported Grant RFBR 16-01-00209, NASA ATP-program under Award NNX14AH36G, and by the US Department of Energy under Award No. DE-FG02-04ER54738.

  7. Wavelet Analysis of Acceleration Response of Beam Under the Moving Mass for Damage Assessment

    NASA Astrophysics Data System (ADS)

    Vaidya, Tanuja; Chatterjee, Animesh

    2016-04-01

    In the present study, acceleration response of cracked beam is analyzed by using the wavelet transform to detect the crack presence, its location and also to predict the crack severity. The equation of motion of beam under the moving mass is solved by using the fourth order Runge-Kutta method. A code is written by expanding the equation for first three vibration modes. Acceleration signal of the damaged beam under the moving mass contains the discontinuity at the crack location. This discontinuity contained in the acceleration signal is sufficiently visible but it is very small for some signals. Therefore, the acceleration signals are transformed using the wavelet analysis. A wavelet coefficient peak occurs at the location of discontinuity, so that we can identify the crack presence and its location. From the value of wavelet coefficient peak, we can also predict the crack effect with respect to the change in velocity of moving mass and change in crack depth. The main advantage of this method is that the wavelet coefficient peak is sufficiently higher even for the higher velocities and small size crack.

  8. Numerical analysis of the sensitivity of crystal growth experiments to spacecraft residual acceleration

    NASA Technical Reports Server (NTRS)

    Alexander, J. I. D.; Amiroudine, Sakir; Ouazzani, Jalil; Rosenberger, Franz

    1992-01-01

    An analysis is conducted of the sensitivity of the Bridgman-Stockbarger crystal growth method, using an idealized model for a range of operating and boundary conditions over a variety of accelerations. Attention is given to the dopant nonuniformity at the melt-crystal interface. The largest compositional nonuniformities are found to occur for disturbances whose amplitudes are greater than 10 exp 6 g, and frequencies below 0.1 Hz.

  9. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  10. Design of RF Feed System for Standing-Wave Accelerator Structures

    SciTech Connect

    Neilson, Jeffrey; Tantawi, Sami; Dolgashev, Valery

    2010-11-04

    We are investigating a standing wave structure with an rf feed to each individual cell. This approach minimizes rf power flow and electromagnetic energy absorbed by an rf breakdown. The objective of this work is a robust high-gradient (above 100 MV/m) X-band accelerator structure.

  11. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations

    PubMed Central

    Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki

    2013-01-01

    This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128

  12. Comparison Study of Electromagnet and Permanent Magnet Systems for an Accelerator Using Cost-Based Failure Modes and Effects Analysis.

    SciTech Connect

    Spencer, C

    2004-02-19

    The next generation of particle accelerators will be one-of-a-kind facilities, and to meet their luminosity goals they must have guaranteed availability over their several decade lifetimes. The Next Linear Collider (NLC) is one viable option for a 1 TeV electron-positron linear collider, it has an 85% overall availability goal. We previously showed how a traditional Failure Modes and Effects Analysis (FMEA) of a SLAC electromagnet leads to reliability-enhancing design changes. Traditional FMEA identifies failure modes with high risk but does not consider the consequences in terms of cost, which could lead to unnecessarily expensive components. We have used a new methodology, ''Life Cost-Based FMEA'', which measures risk of failure in terms of cost, in order to evaluate and compare two different technologies that might be used for the 8653 NLC magnets: electromagnets or permanent magnets. The availabilities for the two different types of magnet systems have been estimated using empirical data from SLAC's accelerator failure database plus expert opinion on permanent magnet failure modes and industry standard failure data. Labor and material costs to repair magnet failures are predicted using a Monte Carlo simulation of all possible magnet failures over a 30-year lifetime. Our goal is to maximize up-time of the NLC through magnet design improvements and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs.

  13. Initial Multidisciplinary Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Ozoroski, L. P.; Geiselhart, K. A.; Padula, S. L.; Li, W.; Olson, E. D.; Campbell, R. L.; Shields, E. W.; Berton, J. J.; Gray, J. S.; Jones, S. M.; Naiman, C. G.; Seidel, J. A.; Moore, K. T.; Naylor, B. A.; Townsend, S.

    2010-01-01

    Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.

  14. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations

  15. Toward a physics design for NDCX II, an ion accelerator for warm dense matter and HIF target physics studies

    SciTech Connect

    Friedman, A; Barnard, J J; Briggs, R J; Davidson, R C; Dorf, M; Grote, D P; Henestroza, E; Lee, E P; Leitner, M A; Logan, B G; Sefkow, A B; Sharp, W M; Waldron, W L; Welch, D R; Yu, S S

    2008-07-30

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity 'tilt' to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates an {approx} 30 nC pulse of Li{sup +} ions to {approx} 3 MeV, then compresses it to {approx} 1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  16. Shielding analysis of proton therapy accelerators: a demonstration using Monte Carlo-generated source terms and attenuation lengths.

    PubMed

    Lai, Bo-Lun; Sheu, Rong-Jiun; Lin, Uei-Tyng

    2015-05-01

    Monte Carlo simulations are generally considered the most accurate method for complex accelerator shielding analysis. Simplified models based on point-source line-of-sight approximation are often preferable in practice because they are intuitive and easy to use. A set of shielding data, including source terms and attenuation lengths for several common targets (iron, graphite, tissue, and copper) and shielding materials (concrete, iron, and lead) were generated by performing Monte Carlo simulations for 100-300 MeV protons. Possible applications and a proper use of the data set were demonstrated through a practical case study, in which shielding analysis on a typical proton treatment room was conducted. A thorough and consistent comparison between the predictions of our point-source line-of-sight model and those obtained by Monte Carlo simulations for a 360° dose distribution around the room perimeter showed that the data set can yield fairly accurate or conservative estimates for the transmitted doses, except for those near the maze exit. In addition, this study demonstrated that appropriate coupling between the generated source term and empirical formulae for radiation streaming can be used to predict a reasonable dose distribution along the maze. This case study proved the effectiveness and advantage of applying the data set to a quick shielding design and dose evaluation for proton therapy accelerators.

  17. STRUCTURAL DESIGN CRITERIA FOR TARGET/BLANKET SYSTEM COMPONENT MATERIALS FOR THE ACCELERATOR PRODUCTION OF TRITIUM PROJECT

    SciTech Connect

    W. JOHNSON; R. RYDER; P. RITTENHOUSE

    2001-01-01

    The design of target/blanket system components for the Accelerator Production of Tritium (APT) plant is dependent on the development of materials properties data specified by the designer. These data are needed to verify that component designs are adequate. The adequacy of the data will be related to safety, performance, and economic considerations, and to other requirements that may be deemed necessary by customers and regulatory bodies. The data required may already be in existence, as in the open technical literature, or may need to be generated, as is often the case for the design of new systems operating under relatively unique conditions. The designers' starting point for design data needs is generally some form of design criteria used in conjunction with a specified set of loading conditions and associated performance requirements. Most criteria are aimed at verifying the structural adequacy of the component, and often take the form of national or international standards such as the ASME Boiler and Pressure Vessel Code (ASME B and PV Code) or the French Nuclear Structural Requirements (RCC-MR). Whether or not there are specific design data needs associated with the use of these design criteria will largely depend on the uniqueness of the conditions of operation of the component. A component designed in accordance with the ASME B and PV Code, where no unusual environmental conditions exist, will utilize well-documented, statistically-evaluated developed in conjunction with the Code, and will not be likely to have any design data needs. On the other hand, a component to be designed to operate under unique APT conditions, is likely to have significant design data needs. Such a component is also likely to require special design criteria for verification of its structural adequacy, specifically accounting for changes in materials properties which may occur during exposure in the service environment. In such a situation it is common for the design criteria and

  18. Predictive Simulation and Design of Materials by Quasicontinuum and Accelerated Dynamics Methods

    SciTech Connect

    Luskin, Mitchell; James, Richard; Tadmor, Ellad

    2014-03-30

    This project developed the hyper-QC multiscale method to make possible the computation of previously inaccessible space and time scales for materials with thermally activated defects. The hyper-QC method combines the spatial coarse-graining feature of a finite temperature extension of the quasicontinuum (QC) method (aka “hot-QC”) with the accelerated dynamics feature of hyperdynamics. The hyper-QC method was developed, optimized, and tested from a rigorous mathematical foundation.

  19. Microgravity isolation system design: A modern control analysis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from the manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. These methods, although more powerful than their classical counterparts, can nonetheless go only so far in meeting the design requirements for practical systems. Once a tentative controller design is available, it must still be evaluated to determine whether or not it is fully acceptable, and to compare it with other possible design candidates. Realistically, such evaluation will be an inherent part of a necessary iterative design process. In this paper, an approach is presented for applying complex mu-analysis methods to a closed-loop vibration isolation system (experiment plus controller). An analysis framework is presented for evaluating nominal stability, nominal performance, robust stability, and robust performance of active microgravity isolation systems, with emphasis on the effective use of mu-analysis methods.

  20. Web Page Design and Network Analysis.

    ERIC Educational Resources Information Center

    Wan, Hakman A.; Chung, Chi-wai

    1998-01-01

    Examines problems in Web-site design from the perspective of network analysis. In view of the similarity between the hypertext structure of Web pages and a generic network, network analysis presents concepts and theories that provide insight for Web-site design. Describes the problem of home-page location and control of number of Web pages and…

  1. Design studies and commissioning plans for plasma acceleration research station experimental program

    SciTech Connect

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-15

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  2. Structural Analysis in a Conceptual Design Framework

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  3. Design and optimization of Compact Linear Collider main linac accelerating structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Grudiev, Alexej

    2016-11-01

    The Compact Linear Collider (CLIC) main linac uses waveguide damped structure as its baseline design. The current baseline structure design written in the CLIC Conceptual Design Report is named "CLIC-G." Recent activities on the CLIC-G design including high power tests on structure prototypes and the study of machining cost assessment had raised the need of reoptimizing the structure design to minimize the machining cost and the pulse surface temperature rise. This work presents optimization of the structure geometry, high-order-mode (HOM) damping loads and the design of a HOM-free power splitter for the input coupler. Compared to the current baseline design CLIC-G, the new structure design reduced the pulse surface temperature rise, input power and manufacturing cost and achieves better suppression to the long range transverse wakefield. Cell disks and damping loads for the new structure design are also more compact than those of the CLIC-G design.

  4. Development and analysis of a metal-fueled accelerator-driven burner

    SciTech Connect

    Lypsch, F.; Hill, R.N.

    1994-08-01

    The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To accomplish this an accelerator proton beam/tungsten neutron source model is surrounded by a subcritical blanket using metallic fuel and sodium as coolant. The consequences of typical accident transients, namely unprotected transient overpower (TOP), loss of heat sink (LOHS), and loss of flow (LOP) were calculated for the hybrid system and compared to corresponding results for a metal-fueled fast reactor. Results indicate that the subcritical system exhibits superior performance for TOP (reactivity-induced) transits; however, only in the critical system are reactivity feedbacks able to cause passive shutdown in the LOHS ad LOP events. Therefore, for a full spectrum of accident initiators considered, the overall safety behavior of accelerator-driven metal-fueled systems can neither be concluded to be worse nor to be better than advanced reactor designs which rely on passive safety features.

  5. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  6. Analysis of ballistic transport in nanoscale devices by using an accelerated finite element contact block reduction approach

    SciTech Connect

    Li, H.; Li, G.

    2014-08-28

    An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as a function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.

  7. Use of inelastic analysis in cask design

    SciTech Connect

    AMMERMAN,DOUGLAS J.; BREIVIK,NICOLE L.

    2000-05-15

    In this paper, the advantages and disadvantages of inelastic analysis are discussed. Example calculations and designs showing the implications and significance of factors affecting inelastic analysis are given. From the results described in this paper it can be seen that inelastic analysis provides an improved method for the design of casks. It can also be seen that additional code and standards work is needed to give designers guidance in the use of inelastic analysis. Development of these codes and standards is an area where there is a definite need for additional work. The authors hope that this paper will help to define the areas where that need is most acute.

  8. Spacecraft design optimization using Taguchi analysis

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1991-01-01

    The quality engineering methods of Dr. Genichi Taguchi, employing design of experiments, are important statistical tools for designing high quality systems at reduced cost. The Taguchi method was utilized to study several simultaneous parameter level variations of a lunar aerobrake structure to arrive at the lightest weight configuration. Finite element analysis was used to analyze the unique experimental aerobrake configurations selected by Taguchi method. Important design parameters affecting weight and global buckling were identified and the lowest weight design configuration was selected.

  9. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  10. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    SciTech Connect

    Yu, S.; Sessler, A.

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  11. Design Through Analysis (DTA) roadmap vision.

    SciTech Connect

    Blacker, Teddy Dean; Adams, Charles R.; Hoffman, Edward L.; White, David Roger; Sjaardema, Gregory D.

    2004-10-01

    The Design through Analysis Realization Team (DART) will provide analysts with a complete toolset that reduces the time to create, generate, analyze, and manage the data generated in a computational analysis. The toolset will be both easy to learn and easy to use. The DART Roadmap Vision provides for progressive improvements that will reduce the Design through Analysis (DTA) cycle time by 90-percent over a three-year period while improving both the quality and accountability of the analyses.

  12. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  13. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    SciTech Connect

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  14. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    PubMed

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics.

  15. Dynamic design, numerical solution and effective verification of acceleration-level obstacle-avoidance scheme for robot manipulators

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Zhang, Yunong

    2016-03-01

    For avoiding obstacles and joint physical constraints of robot manipulators, this paper proposes and investigates a novel obstacle avoidance scheme (termed the acceleration-level obstacle-avoidance scheme). The scheme is based on a new obstacle-avoidance criterion that is designed by using the gradient neural network approach for the first time. In addition, joint physical constraints such as joint-angle limits, joint-velocity limits and joint-acceleration limits are incorporated into such a scheme, which is further reformulated as a quadratic programming (QP). Two important 'bridge' theorems are established so that such a QP can be converted equivalently to a linear variational inequality and then equivalently to a piecewise-linear projection equation (PLPE). A numerical algorithm based on a PLPE is thus developed and applied for an online solution of the resultant QP. Four path-tracking tasks based on the PA10 robot in the presence of point and window-shaped obstacles demonstrate and verify the effectiveness and accuracy of the acceleration-level obstacle-avoidance scheme. Besides, the comparisons between the non-obstacle-avoidance and obstacle-avoidance results further validate the superiority of the proposed scheme.

  16. Utilization of Integrated Process Control, Data Capture, and Data Analysis in Construction of Accelerator Systems

    SciTech Connect

    Bonnie Madre; Charles Reece; Joseph Ozelis; Valerie Bookwalter

    2003-05-12

    Jefferson Lab has developed a web-based system that integrates commercial database, data analysis, document archiving and retrieval, and user interface software, into a coherent knowledge management product (Pansophy). This product provides important tools for the successful pursuit of major projects such as accelerator system development and construction, by offering elements of process and procedure control, data capture and review, and data mining and analysis. After a period of initial development, Pansophy is now being used in Jefferson Lab's SNS superconducting linac construction effort, as a means for structuring and implementing the QA program, for process control and tracking, and for cryomodule test data capture and presentation/analysis. Development of Pansophy is continuing, in particular data queries and analysis functions that are the cornerstone of its utility.

  17. Design of a High Field Stress, Velvet Cathode for the Flash X-Ray (FXR) Induction Accelerator

    SciTech Connect

    Houck, T; Brown, C; Fleming, D; Kreitzer, B; Lewis, K; Ong, M; Zentler, J

    2007-06-08

    A new cathode design has been proposed for the Flash X-Ray (FXR) induction linear accelerator with the goal of lowering the beam emittance. The original design uses a conventional Pierce geometry and applies a peak field of 134 kV/cm (no beam) to the velvet emission surface. Voltage/current measurements indicate that the velvet begins emitting near this peak field value and images of the cathode show a very non-uniform distribution of plasma light. The new design has a flat cathode/shroud profile that allows for a peak field stress of 230 kV/cm on the velvet. The emission area is reduced by about a factor of four to generate the same total current due to the greater field stress. The relatively fast acceleration of the beam, approximately 2.5 MeV in 10 cm, reduces space charge forces that tend to hollow the beam for a flat, non-Pierce geometry. The higher field stress achieved with the same rise time is expected to lead to an earlier and more uniform plasma formation over the velvet surface. Simulations and initial testing are presented.

  18. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  19. Capability Test Design and Analysis

    DTIC Science & Technology

    2009-01-13

    UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Joint Test and Evaluation Methodology (JTEM),Washington,DC,20301 8. PERFORMING...refinement process for testing in a joint environment (TIJE) 2. Review the methods and processes for an evaluation strategy refinement process 3...Environment System Design Document (SDD) JTEM Capability Test Methodology (CTM) v2.0 Event Management Plan Test Plan Joint Capability Evaluation (JCE

  20. Thermal hydraulic analysis of the annular flow helium heater design

    NASA Astrophysics Data System (ADS)

    Chen, N. C.; Sanders, J. P.

    1982-05-01

    Core support performance test (CSPT) by use of an existing facility, components flow test loop (CFTL), as part of the high temperature gas cooled reactor (HTGR) application program were conducted. A major objective of the CSPT is to study accelerated corrosion of the core graphite support structure in helium at reactor conditions. Concentration of impurities will be adjusted so that a 6 month test represents the 30 year reactor life. Thermal hydraulic and structural integrity of the graphite specimen, will be studied at high pressure of 7.24 MPa (1050 psi) and high temperature of 1000 deg C in a test vessel. To achieve the required high temperature at the test section, a heater bundle has to be specially designed and properly manufactured. Performance characteristics of the heater which were determined from an analysis based on this design are presented.

  1. Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)

    SciTech Connect

    Kempe, M.

    2014-03-01

    Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

  2. Analysis of damaging effects of laser-plasma accelerated shrapnels on protecting glass shield

    NASA Astrophysics Data System (ADS)

    Martinkova, Michaela; Kalal, Milan; Shmatov, Mikhail L.

    2013-11-01

    Analysis of the damage caused by laser plasma accelerated fragments of metal target was performed. Measured as well as calculated parameters of craters and shrapnel found in BK7 glass blastshield are presented. Method applied for the measurement of parameters of craters is described. Potential damage of optical elements by the so-called striking cores (high-velocity stable objects arising due to collapse of cones or some other target parts toward their axes) that can be generated in IFE related experiments is evaluated.

  3. Analysis of longitudinal bunching in an FEL driven two-beam accelerator

    SciTech Connect

    Lidia, S.; Gardelle, J.; Lefevre, T.; Donohue, J.T.; Gouard, P.; Rullier, J.L.; Vermare, C.

    2000-08-01

    Recent experiments have explored the use of a free-electron laser (FEL) as a buncher for a microwave two-beam accelerator, and the subsequent driving of a standing-wave rf output cavity. Here the authors present a deeper analysis of the longitudinal dynamics of the electron bunches as they are transported from the end of the FEL and through the output cavity. In particular, the authors examine the effect of the transport region and cavity aperture to filter the bunched portion of the beam.

  4. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  5. Accelerator simulation using computers

    SciTech Connect

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a multi-track'' simulation and analysis code can be used for these applications.

  6. Accelerator simulation using computers

    SciTech Connect

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ``multi-track`` simulation and analysis code can be used for these applications.

  7. Rapid analysis of scattering from periodic dielectric structures using accelerated Cartesian expansions

    DOE PAGES

    Baczewski, Andrew David; Miller, Nicholas C.; Shanker, Balasubramaniam

    2012-03-22

    Here, the analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral-equation-based methods, for which traditional iterative methods require Ο(Ν2) operations, Ν being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodic dielectricmore » structures. The crux of our method is the accelerated Cartesian expansion algorithm, which is used to evaluate the requisite potentials in Ο(Ν) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applications.« less

  8. Integrated reflector antenna design and analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.

    1993-01-01

    Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.

  9. Shielding analysis at the upper section of the accelerator-driven system.

    PubMed

    Sasa, Toshinobu; Yang, Jin An; Oigawa, Hiroyuki

    2005-01-01

    The proton beam duct of the accelerator-driven system (ADS) acts as a streaming path for spallation neutrons and photons and causes the activation of the magnets and other devices above the subcritical core. We have performed a streaming analysis at the upper section of the lead-bismuth target/cooled ADS (800 MWth). MCNPX was used to calculate the radiation dose from streamed neutrons and photons through the beam duct. For the secondary photon production calculation, cross sections for several actinides were substituted with plutonium because of the lack of gamma production cross section. From the results of this analysis, the neutron dose from the beam duct is seen to be about 20 orders higher than that of the bulk shield. The magnets and shield plug are heavily irradiated by streaming neutrons according to the DCHAIN-SP analysis.

  10. LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis.

    PubMed

    Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D

    2012-07-03

    Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations.

  11. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGES

    Stygar, W. A.; Awe, T. J.; Bennett, N L; ...

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  12. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  13. Integrated Design For Magnetically-Driven Liner Inertial Fusion of Preheated and Magnetized Fuel on the Z Accelerator

    NASA Astrophysics Data System (ADS)

    Sefkow, A. B.; Peterson, K. J.; Vesey, R. A.; Slutz, S. A.; Nakhleh, C. W.; Koning, J. M.; Marinak, M. M.

    2011-10-01

    Magnetically-driven implosions of metal liners containing magnetized and preheated fuel may enable significant ICF yields to be obtained on pulsed-power accelerators. Simulations of dense (ρ = 1-5 mg/cc), axially-magnetized (Bz = 3-30 T), and preheated (Ti = 200-500 eV) DT fuel, driven by a pulsed-power accelerator similar to the Z machine (Imax = 25-60 MA in 100-300 ns), indicate Gbar pressures and high yields (Efus = 100s kJ-10s MJ) may be feasible. Reduced heat conduction losses and alpha particle trapping can be provided by Bz flux compression, and the fuel ρ R ignition requirement is replaced by one for Bz R. Preheating the fuel prior to compression permits access to ignition temperatures without large convergence ratios or implosion velocities. Integrated simulations allow realistic designs for Z experiments (Imax = 27 MA) with fuel preheat provided by the ZBL laser (Elas = 2-6 kJ). Physics issues include laser deposition timing, evolution of thermal energy and Bz field, magneto-RT instability growth, electrode and laser entrance hole end effects, and anisotropic conductivity and fusion burn in the Bz field. Fusion yields on the order of the absorbed target energy may be possible on Z + ZBL, and high-gain designs using Imax = 60 MA are studied.

  14. Passive solar design handbook. Volume 3: Passive solar design analysis

    NASA Astrophysics Data System (ADS)

    Jones, R. W.; Bascomb, J. D.; Kosiewicz, C. E.; Lazarus, G. S.; McFarland, R. D.; Wray, W. O.

    1982-07-01

    Simple analytical methods concerning the design of passive solar heating systems are presented with an emphasis on the average annual heating energy consumption. Key terminology and methods are reviewed. The solar load ratio (SLR) is defined, and its relationship to analysis methods is reviewed. The annual calculation, or Load Collector Ratio (LCR) method, is outlined. Sensitivity data are discussed. Information is presented on balancing conservation and passive solar strategies in building design. Detailed analysis data are presented for direct gain and sunspace systems, and details of the systems are described. Key design parameters are discussed in terms of their impact on annual heating performance of the building. These are the sensitivity data. The SLR correlations for the respective system types are described. The monthly calculation, or SLR method, based on the SLR correlations, is reviewed. Performance data are given for 9 direct gain systems and 15 water wall and 42 Trombe wall systems.

  15. Flat heat pipe design, construction, and analysis

    SciTech Connect

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  16. Design And Analysis Of Linear Control Systems

    NASA Technical Reports Server (NTRS)

    Jamison, John W.

    1991-01-01

    Package of five computer programs developed to assist in design and analysis of linear control systems by use of root-locus and frequency-response methods. Package written in FORTRAN (BODE, TPEAK) and BASIC (LOCUS, KTUNE, and POLYROOT).

  17. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-01

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV N20e7+ beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0°, top of the energy gain of cosine wave, and the beam phase width was about 6° in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h =1 and h =2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h =1, while phase compressions by a factor of about 3 were confirmed for h =2.

  18. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    SciTech Connect

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-15

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV {sup 20}Ne{sup 7+} beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0 deg., top of the energy gain of cosine wave, and the beam phase width was about 6 deg. in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h=1 and h=2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h=1, while phase compressions by a factor of about 3 were confirmed for h=2.

  19. Accelerating Success: A Design Guide for Starting a New School Incubator

    ERIC Educational Resources Information Center

    Lake, Robin; Rainey, Lydia

    2004-01-01

    Incubators are organizations that aim to decrease the learning curve for new schools and increase the likelihood that promising school plans will succeed. Incubators offer communities an innovative new way to support locally-initiated school designs. This design guide is intended to help people who are interested in starting a school incubator…

  20. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  1. NDARC NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne R.

    2009-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and

  2. NDARC - NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2015-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail

  3. Optimal control concepts in design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Belegundu, Ashok D.

    1987-01-01

    A close link is established between open loop optimal control theory and optimal design by noting certain similarities in the gradient calculations. The resulting benefits include a unified approach, together with physical insights in design sensitivity analysis, and an efficient approach for simultaneous optimal control and design. Both matrix displacement and matrix force methods are considered, and results are presented for dynamic systems, structures, and elasticity problems.

  4. Airbreathing hypersonic vehicle design and analysis methods

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.

    1996-01-01

    The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.

  5. Design and Analysis Tools for Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Folk, Thomas C.

    2009-01-01

    Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.

  6. GALACSI system design and analysis

    NASA Astrophysics Data System (ADS)

    Ströbele, S.; La Penna, P.; Arsenault, R.; Conzelmann, R. D.; Delabre, B.; Duchateau, M.; Dorn, R.; Fedrigo, E.; Hubin, N.; Quentin, J.; Jolley, P.; Kiekebusch, M.; Kirchbauer, J. P.; Klein, B.; Kolb, J.; Kuntschner, H.; Le Louarn, M.; Lizon, J. L.; Madec, P.-Y.; Pettazzi, L.; Soenke, C.; Tordo, S.; Vernet, J.; Muradore, R.

    2012-07-01

    GALACSI is one of the Adaptive Optics (AO) systems part of the ESO Adaptive Optics Facility (AOF). It will use the VLT 4-Laser Guide Stars system, high speed and low noise WaveFront Sensor cameras (<1e-, 1000Hz) the Deformable Secondary Mirror (DSM) and the SPARTA Real Time Computer to sharpen images and enhance faint object detectability of the MUSE Instrument. MUSE is an Integral Field Spectrograph working at wavelengths from 465nm to 930nm. GALACSI implements 2 different AO modes; in Wide Field Mode (WFM) it will perform Ground Layer AO correction and enhance the collected energy in a 0.2" by 0.2" pixel by a factor 2 at 750nm over a Field of View (FoV) of 1' by 1'. The 4 LGSs and one tip tilt reference star (R-mag <17.5) are located outside the MUSE FoV. Key requirements are to provide this performance and a very good image stability for a 1hour long integration time. In Narrow Field Mode (NFM) Laser Tomography AO will be used to reconstruct and correct the turbulence for the center field using the 4 LGSs at 15" off axis and the Near Infra Red (NIR) light of one reference star on axis for tip tilt and focus sensing. In NFM GALACSI will provide a moderate Strehl Ratio of 5% (goal 10%) at 650nm. The NFM hosts several challenges and many subsystems will be pushed to their limits. The opto mechanical design and error budgets of GALACSI is described here.

  7. Probabilistic Finite Element Analysis & Design Optimization for Structural Designs

    NASA Astrophysics Data System (ADS)

    Deivanayagam, Arumugam

    This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that

  8. Design and implementation of a slow orbit control package at Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Zeijts, J. van; Witherspoon, S.; Watson, W.A.

    1997-06-01

    The authors describe the design and implementation of a C++ client/server based slow orbit and energy control package based on the CDEV software control bus. Several client applications are described and operational experience is given.

  9. Analysis on weathering characteristics of volcanic rocks in Dokdo, Korea based on accelerated weatehring experiments

    NASA Astrophysics Data System (ADS)

    Woo, Ik; Song, Won-Kyong; Kim, Bok-Chul; Kang, Jinseok

    2010-05-01

    Dokdo consists of small volcanic islands located in the southern part of the East Sea. Accelerated weathering tests was performed to examine the physico-mechanical characteristics of volcanic rocks in Dokdo. Rock core specimens of trachyandesite, andesitic dyke and ash tuff were prepared, and double soxhlet extractors(DSE) and peristatic pumps were used for accelerating the weathering processes. The DSE was designed to perform cyclic leaching tests for rock core specimen using distilled water at seventy degrees centigrade. The core specimens which are classified according to pre-test weathering grades placed in the lower part of the DSE, and periodically exposed to hot distilled water at every ninety minutes. On the other hand the peristatic pumps were utilized to induce leaching by distilled or brine water at normal temperature. The physico-mechanical property changes including rock surface appearance, microscopic structure and rock strength were analyzed with the results obtained from both experiments performed for 120 days. The conducted research in this study have shown that the methodologies of artificial weathering experiments have strong capability to understand the weathering characteristics of the rocks effectively.

  10. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    SciTech Connect

    D. Dotson; M. Drury; R. May; C. Reece

    1996-10-01

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuable for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.

  11. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  12. Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario

    PubMed Central

    Mishra, Bibekananda; Selvam, T. Palani; Sharma, P. K. Dash

    2017-01-01

    Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes.

  13. Design and characterization of the DC acceleration and transport system required for the FOM 1 MW free electron maser experiment

    SciTech Connect

    Caplan, M.; Urbanus, W.H.; Geer, C. van der

    1995-12-31

    A Free Electron Maser (FEM) has been constructed and is soon to be tested at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing 1 MW long pulse to CW microwave output in the range 130 GHz to 250 GHz. The design uses a DC beam system in a depressed collector configuration in order to make the overall wall plug efficiency 50%. The high voltage ({approximately} 2 MeV) power supply provides only the body interception current ({approximately} 30 mA) while the 12 amp beam current is supplied by the 100-200 keV collector supplies. Some of the design features to ensure low interception current, which is critical to long pulse (CW) operation are: (1) DC beam in-line transport and acceleration system, (2) emittance conserving solenoid focusing system, (3) halo suppression techniques at cathode edge, and (4) very low beam fill factor (<20%). A relativistic version of the Herman Optical theory developed for microwave tubes is used to determine current distribution functions everywhere along the beam from the electron gun, through the DC accelerator and transport system to the wiggler. This theory takes into account thermals far out on the gaussian tail which translates into beam current far outside the ideal beam edge. This theory is applied to the FOM beam line design to predict a series of beam envelope contours containing various percentages of total beam current up to 99.9%. Predictions of body interception current due to finite emittance (effective temperature) are presented and compared with measured experimental results.

  14. Accelerating Policy Decisions to Adopt Haemophilus influenzae Type b Vaccine: A Global, Multivariable Analysis

    PubMed Central

    Shearer, Jessica C.; Stack, Meghan L.; Richmond, Marcie R.; Bear, Allyson P.; Hajjeh, Rana A.; Bishai, David M.

    2010-01-01

    Background Adoption of new and underutilized vaccines by national immunization programs is an essential step towards reducing child mortality. Policy decisions to adopt new vaccines in high mortality countries often lag behind decisions in high-income countries. Using the case of Haemophilus influenzae type b (Hib) vaccine, this paper endeavors to explain these delays through the analysis of country-level economic, epidemiological, programmatic and policy-related factors, as well as the role of the Global Alliance for Vaccines and Immunisation (GAVI Alliance). Methods and Findings Data for 147 countries from 1990 to 2007 were analyzed in accelerated failure time models to identify factors that are associated with the time to decision to adopt Hib vaccine. In multivariable models that control for Gross National Income, region, and burden of Hib disease, the receipt of GAVI support speeded the time to decision by a factor of 0.37 (95% CI 0.18–0.76), or 63%. The presence of two or more neighboring country adopters accelerated decisions to adopt by a factor of 0.50 (95% CI 0.33–0.75). For each 1% increase in vaccine price, decisions to adopt are delayed by a factor of 1.02 (95% CI 1.00–1.04). Global recommendations and local studies were not associated with time to decision. Conclusions This study substantiates previous findings related to vaccine price and presents new evidence to suggest that GAVI eligibility is associated with accelerated decisions to adopt Hib vaccine. The influence of neighboring country decisions was also highly significant, suggesting that approaches to support the adoption of new vaccines should consider supply- and demand-side factors. Please see later in the article for the Editors' Summary PMID:20305714

  15. Structural analysis at aircraft conceptual design stage

    NASA Astrophysics Data System (ADS)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  16. Verification analysis of the Toroidal Accelerator Rotor Platform wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Duffy, Robert E.

    1988-09-01

    A unique wind energy system, the Toroidal Accelerator Rotor Platform (TARP) is studied. The TARP system places the rotors in pairs on either side of a torus-shaped platform, so that the wind is forced to flow into the rotors. As the wind is forced around the form, it picks up velocity and turns the rotors faster, generating more power. By concentrating the wind's power, the TARP system can be constructed in modules using 10 foot diameter rotor blades. Mounted on a track suspension system, the rotors are able to yaw with the wind to take advantage of breezes from any direction. The basic TARP design was tested and modified in a wind tunnel. The system was then analyzed for its integration into a farm silo and as a multistacked wind power needle. It was determined that the TARP technology would be feasible for application involving sites with high wind velocities, including some sites in New York State.

  17. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  18. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper

    SciTech Connect

    Araya, Million

    2015-08-21

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.

  19. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Oral Presentation

    SciTech Connect

    Araya, Million

    2015-08-25

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.

  20. First Results from a Principal Component Analysis of Tycho's SNR: Evidence for Cosmic Ray Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Warren, J. S.; Hughes, J. P.; Badenes, C.

    2005-12-01

    We present results from a Principal Component Analysis (PCA) of Tycho's supernova remnant (SNR). PCA is a statistical technique we implemented to characterize X-ray spectra extracted from distinct spatial regions across the entire image of the remnant. We used the PCA to determine the location of the contact discontinuity (CD) in Tycho, which marks the boundary between shocked ejecta and shocked interstellar material, and found an azimuthal-angle-averaged radius of 241". For the average radius of the outer blast wave (BW) we found 251". Taking account of projection effects, the ratio of BW:CD is 1:0.93, which is inconsistent with adiabatic hydrodynamic models of SNR evolution. The BW:CD ratio can be explained if cosmic ray acceleration of ions is occurring at the forward shock. Such a scenario is further supported by evidence from the morphology and spectral nature of the BW emission for the acceleration of cosmic ray electrons. We also present PCA results regarding the ranges in Si and Fe composition in Tycho, and a newly uncovered spectral variation in the form of a low energy excess that has not been previously noted.

  1. Waveband Analysis of Track Irregularities in High-Speed Railway from On-Board Acceleration Measurement

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seok; Choi, Sunghoon; Kim, Sang-Soo; Kim, Young Guk; Kim, Seog Won; Park, Choonsoo

    This paper is focused on waveband analysis of the lateral and vertical track irregularities from the on-board acceleration measurement of in-service high-speed trains. The track irregularities play important roles to determine dynamic stability of vehicles and ride quality of passengers, so that their amplitude and wavelength should be monitored continuously and carefully. Measuring acceleration at the axle-box or bogie of the trains has been under consideration for low-cost implementation and robust to a harsh railway environment. To estimate the track irregularities, lateral and vertical vibration caused by the wheel/track interaction is measured by the axle-box and bogie mounted accelerometers of an in-service high-speed train. A Kalman filter is used to prevent unrealistic drifts in the estimation. By applying the waveband-pass and compensation filters to the estimated displacement, it is possible to estimate the track irregularities. A distance-wavelength representation is used to identify their waveband in an intuitive way. It is verified by comparing with a commercial track geometry measurement system. From their comparison, it confirms that the representation can produce a satisfactory result.

  2. Design Tools for Accelerating Development and Usage of Multi-Core Computing Platforms

    DTIC Science & Technology

    2014-04-01

    have been captured by TDL. For example, TDP includes a transformation that converts SDF (synchronous dataflow) representations into equivalent...homogeneous SDF (HSDF) representations based on the algorithm introduced in [Lee 1987]. Such a transformation can in general expose additional...concurrency that is not represented explicitly in the original SDF graph. Compared to other design tools for representation and transformation of dataflow

  3. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    SciTech Connect

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  4. Multidisciplinary design optimization using response surface analysis

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1992-01-01

    Aerospace conceptual vehicle design is a complex process which involves multidisciplinary studies of configuration and technology options considering many parameters at many values. NASA Langley's Vehicle Analysis Branch (VAB) has detailed computerized analysis capabilities in most of the key disciplines required by advanced vehicle design. Given a configuration, the capability exists to quickly determine its performance and lifecycle cost. The next step in vehicle design is to determine the best settings of design parameters that optimize the performance characteristics. Typical approach to design optimization is experience based, trial and error variation of many parameters one at a time where possible combinations usually number in the thousands. However, this approach can either lead to a very long and expensive design process or to a premature termination of the design process due to budget and/or schedule pressures. Furthermore, one variable at a time approach can not account for the interactions that occur among parts of systems and among disciplines. As a result, vehicle design may be far from optimal. Advanced multidisciplinary design optimization (MDO) methods are needed to direct the search in an efficient and intelligent manner in order to drastically reduce the number of candidate designs to be evaluated. The payoffs in terms of enhanced performance and reduced cost are significant. A literature review yields two such advanced MDO methods used in aerospace design optimization; Taguchi methods and response surface methods. Taguchi methods provide a systematic and efficient method for design optimization for performance and cost. However, response surface method (RSM) leads to a better, more accurate exploration of the parameter space and to estimated optimum conditions with a small expenditure on experimental data. These two methods are described.

  5. Design Review of the D0 Central Calorimeter Module Assembly to Fermi National Accelerator Laboratory

    SciTech Connect

    Rosenfeld, M.; /Fermilab

    1987-11-01

    The D-Zero Central Calorimeter Module Assembly is a segmented ring structure consisting of an assemblage of trapezoidal modules. It is housed inside a vessel containing liquid argon. The modules contain specialized equipment for use in particle physics experiments. The design review of the D-Zero Central Calorimeter Module Assembly evaluated all major structural elements for adequacy for their design loads. They were evaluated in accordance with applicable specifications from Reference 1. The allowable stresses of the Specifications provide an approximate safety factor of 2.0 or more on failure and 1.67 on serviceability of the structure. This margin is typical of buildings, bridges, and other large structures executed in steel. To the extent that calculated stresses are less than the allowable stresses, the margin is proportionately greater. For additional conservatism to account for inherent uncertainties in estimating design loads, an arbitrary load factor of 1.25 was also applied. Design loads were calculated for deadwe1ghted plus thermal expansion, neglecting the effects of friction, and for deadweight only, considering postulated effects of friction. All of the major structural elements were found to be provisionally acceptable for their intended service and the predicted design loads. The provisions are as follows: (1) That the connect pins be fabricated of Inconel 718 or functional equivalent, instead of the originally specified Type 304 stainless steel; and (2) That conditions on bearing surfaces be modified to effectively reduce the potential coefficient of friction. The affected bearing interfaces include those between the CH, FH, and EM rings, and between the CH ring and its support members. The D-Zero Central Calorimeter Module Assembly is a segmented ring structure consisting of an assemblage of trapezoidal modules. It is housed inside a vessel containing liquid argon. The modules contain specialized equipment for use in particle physics experiments

  6. On the Impact of a Quadratic Acceleration Term in the Analysis of Position Time Series

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Klos, Anna; Bos, Machiel Simon; Hunegnaw, Addisu; Teferle, Felix Norman

    2016-04-01

    The analysis of Global Navigation Satellite System (GNSS) position time series generally assumes that each of the coordinate component series is described by the sum of a linear rate (velocity) and various periodic terms. The residuals, the deviations between the fitted model and the observations, are then a measure of the epoch-to-epoch scatter and have been used for the analysis of the stochastic character (noise) of the time series. Often the parameters of interest in GNSS position time series are the velocities and their associated uncertainties, which have to be determined with the highest reliability. It is clear that not all GNSS position time series follow this simple linear behaviour. Therefore, we have added an acceleration term in the form of a quadratic polynomial function to the model in order to better describe the non-linear motion in the position time series. This non-linear motion could be a response to purely geophysical processes, for example, elastic rebound of the Earth's crust due to ice mass loss in Greenland, artefacts due to deficiencies in bias mitigation models, for example, of the GNSS satellite and receiver antenna phase centres, or any combination thereof. In this study we have simulated 20 time series with different stochastic characteristics such as white, flicker or random walk noise of length of 23 years. The noise amplitude was assumed at 1 mm/y-/4. Then, we added the deterministic part consisting of a linear trend of 20 mm/y (that represents the averaged horizontal velocity) and accelerations ranging from minus 0.6 to plus 0.6 mm/y2. For all these data we estimated the noise parameters with Maximum Likelihood Estimation (MLE) using the Hector software package without taken into account the non-linear term. In this way we set the benchmark to then investigate how the noise properties and velocity uncertainty may be affected by any un-modelled, non-linear term. The velocities and their uncertainties versus the accelerations for

  7. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  8. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  9. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy.

    PubMed

    Inoue, R; Hiraga, F; Kiyanagi, Y

    2014-06-01

    An accelerator based BNCT has been desired because of its therapeutic convenience. However, optimal design of a neutron moderator system is still one of the issues. Therefore, detailed studies on materials consisting of the moderator system are necessary to obtain the optimal condition. In this study, the epithermal neutron flux and the RBE dose have been calculated as the indicators to look for optimal materials for the filter and the moderator. As a result, it was found that a combination of MgF2 moderator with Fe filter gave best performance, and the moderator system gave a dose ratio greater than 3 and an epithermal neutron flux over 1.0×10(9)cm(-2)s(-1).

  10. DESIGN AND ANALYSIS OF AN FPGA-BASED ACTIVE FEEDBACK DAMPING SYSTEM

    SciTech Connect

    Xie, Zaipeng; Schulte, Mike; Deibele, Craig Edmond

    2010-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory is a high-intensity proton-based accelerator that produces neutron beams for neutronscattering research. As the most powerful pulsed neutron source in the world, the SNS accelerator has experienced an unprecedented beam instability that has a wide bandwidth (0 to 300MHz) and fast growth time (10 to100 s). In this paper, we propose and analyze several FPGA-based designs for an active feedback damping system. This signal processing system is the first FPGA-based design for active feedback damping of wideband instabilities in high intensity accelerators. It can effectively mitigate instabilities in highintensity protons beams, reduce radiation, and boost the accelerator s luminosity performance. Unlike existing systems, which are designed using analog components, our FPGA-based active feedback damping system offers programmability while maintaining high performance. To meet the system throughput and latency requirements, our proposed designs are guided by detailed analysis of resource and performance tradeoffs. These designs are mapped onto a reconfigurable platform that includes Xilinx Virtex-II Pro FPGAs and high-speed analog-to-digital and digital-toanalog converters. Our results show that our FPGA-based active feedback damping system can provide increased flexibility and improved signal processing performance that are not feasible with existing analog systems.

  11. Preliminary Study of the Effects of Prolonged Acceleration on Spinal Dynamics of Baboons. 1. Acceleration. 2. Biomechanical Analysis

    DTIC Science & Technology

    1981-06-01

    cortical thickness, increased diameter/cortlcal thickness ratio, thinned and distorted epiphyseal plate, and thickened condylar cartilage in female rats...histomorphometric and histodynamic (tetracycline fixation) studies were conducted on calcified sections by analyzing six bone parameters (e,g,, bone volume , relative...growth cartilage alterations, a decrease in bone volume without an Increase in osteocytic activity, and (by tetracycline fluroescent analysis) a reduced

  12. NASA Multidisciplinary Design and Analysis Fellowship Program

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Mavris, D. N.; Hale, M. A.; DeLaurentis, D.

    1999-01-01

    This report summarizes the results of a multi-year training grant for the development and implementation of a Multidisciplinary Design and Analysis (MDA) Fellowship Program at Georgia Tech. The Program funded the creation of graduate MS and PhD degree programs in aerospace systems design, analysis and integration. It also provided prestigious Fellowships with associated Industry Internships for outstanding engineering students. The graduate program has become the foundation for a vigorous and productive research effort and has produced: 20 MS degrees, 7 Ph.D. degrees, and has contributed to 9 ongoing Ph.D. students. The results of the research are documented in 32 publications (23 of which are included on a companion CDROM) and 4 annual student design reports (included on a companion CDROM). The legacy of this critical funding is the Center for Aerospace Systems Analysis at Georgia Tech which is continuing the graduate program, the research, and the industry internships established by this grant.

  13. Simultaneous analysis and design. [in structural engineering

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1985-01-01

    Optimization techniques are increasingly being used for performing nonlinear structural analysis. The development of element by element (EBE) preconditioned conjugate gradient (CG) techniques is expected to extend this trend to linear analysis. Under these circumstances the structural design problem can be viewed as a nested optimization problem. There are computational benefits to treating this nested problem as a large single optimization problem. The response variables (such as displacements) and the structural parameters are all treated as design variables in a unified formulation which performs simultaneously the design and analysis. Two examples are used for demonstration. A seventy-two bar truss is optimized subject to linear stress constraints and a wing box structure is optimized subject to nonlinear collapse constraints. Both examples show substantial computational savings with the unified approach as compared to the traditional nested approach.

  14. Iterative methods for design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Yoon, B. G.

    1989-01-01

    A numerical method is presented for design sensitivity analysis, using an iterative-method reanalysis of the structure generated by a small perturbation in the design variable; a forward-difference scheme is then employed to obtain the approximate sensitivity. Algorithms are developed for displacement and stress sensitivity, as well as for eignevalues and eigenvector sensitivity, and the iterative schemes are modified so that the coefficient matrices are constant and therefore decomposed only once.

  15. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  16. Accelerated Monte Carlo Simulation for Safety Analysis of the Advanced Airspace Concept

    NASA Technical Reports Server (NTRS)

    Thipphavong, David

    2010-01-01

    Safe separation of aircraft is a primary objective of any air traffic control system. An accelerated Monte Carlo approach was developed to assess the level of safety provided by a proposed next-generation air traffic control system. It combines features of fault tree and standard Monte Carlo methods. It runs more than one order of magnitude faster than the standard Monte Carlo method while providing risk estimates that only differ by about 10%. It also preserves component-level model fidelity that is difficult to maintain using the standard fault tree method. This balance of speed and fidelity allows sensitivity analysis to be completed in days instead of weeks or months with the standard Monte Carlo method. Results indicate that risk estimates are sensitive to transponder, pilot visual avoidance, and conflict detection failure probabilities.

  17. On a thermal analysis of a second stripper for rare isotope accelerator.

    SciTech Connect

    Momozaki, Y.; Nolen, J.; Nuclear Engineering Division

    2008-08-04

    This memo summarizes simple calculations and results of the thermal analysis on the second stripper to be used in the driver linac of Rare Isotope Accelerator (RIA). Both liquid (Sodium) and solid (Titanium and Vanadium) stripper concepts were considered. These calculations were intended to provide basic information to evaluate the feasibility of liquid (thick film) and solid (rotating wheel) second strippers. Nuclear physics calculations to estimate the volumetric heat generation in the stripper material were performed by 'LISE for Excel'. In the thermal calculations, the strippers were modeled as a thin 2D plate with uniform heat generation within the beam spot. Then, temperature distributions were computed by assuming that the heat spreads conductively in the plate in radial direction without radiative heat losses to surroundings.

  18. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  19. Accelerator-Based PIXE and STIM Analysis of Candidate Solar Sail Materials

    SciTech Connect

    Hollerman, W.A.; Stanaland, T.L.; Boudreaux, P.; Elberson, L.; Fontenot, J.; Gates, E.; Greco, R.; McBride, M.; Woodward, A.; Edwards, D.

    2003-08-26

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. A totally reflective sail experiences a pressure of 9.1 {mu}Pa at a distance of 1 AU from the Sun. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions, enabling new concepts that are difficult by conventional means. One of the current challenges is to develop strong, lightweight, and radiation resistant sail materials. This paper will discuss initial results from a Particle Induced X-Ray Emission (PIXE) and Scanning Transmission Ion Microscopy (STIM) analysis of candidate solar sail materials.

  20. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  1. Aviation System Analysis Capability Executive Assistant Design

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Osman, Mohammed; Godso, David; King, Brent; Ricciardi, Michael

    1998-01-01

    In this technical document, we describe the design developed for the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC). We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models within the ASAC system, and describe the design process and the results of the ASAC EA POC system design. We also describe the evaluation process and results for applicable COTS software. The document has six chapters, a bibliography, three appendices and one attachment.

  2. Accelerator breeder nuclear fuel production: concept evaluation of a modified design for ORNL's proposed TME-ENFP

    SciTech Connect

    Johnson, J.O.; Gabriel, T.A.; Bartine, D.E.

    1985-01-01

    Recent advances in accelerator beam technology have made it possible to improve the target/blanket design of the Ternary Metal Fueled Electronuclear Fuel Producer (TMF-ENFP), an accelerator-breeder design concept proposed by Burnss et al. for subcritical breeding of the fissile isotope /sup 233/U. In the original TMF-ENFP the 300-mA, 1100-MeV proton beam was limited to a small diameter whose power density was so high that a solid metal target could not be used for producing the spallation neutrons needed to drive the breeding process. Instead the target was a central column of circulating liquid sodium, which was surrounded by an inner multiplying region of ternary fuel rods (/sup 239/Pu, /sup 232/Th, and /sup 238/U) and an outer blanket region of /sup 232/Th rods, with the entire system cooled by circulating sodium. In the modified design proposed here, the proton beam is sufficiently spread out to allow the ternary fuel to reside directly in the beam and to be preceded by a thin (nonstructural) V-Ti steel firThe spread beam mandated a change in the design configuration (from a cylindrical shape to an Erlenmeyer flask shape), which, in turn, required that the fuel rods (and blanket rods) be replaced by fuel pebbles. The fuel residence time in both systems was assumed to be 90 full power days. A series of parameter optimization calculations for the modified TMF-ENFP led to a semioptimized system in which the initial /sup 239/Pu inventory of the ternary fuel was 6% and the fuel pebble diameter was 0.5 cm. With this system the /sup 233/Pu production rate of 5.8 kg/day reported for the original TMF-ENFP was increased to 9.3 kg/day, and the thermal power production at beginning of cycle was increased from 3300 MW(t) to 5240 MW(t). 31 refs., 32 figs., 6 tabs.

  3. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  4. Network interface unit design options performance analysis

    NASA Technical Reports Server (NTRS)

    Miller, Frank W.

    1991-01-01

    An analysis is presented of three design options for the Space Station Freedom (SSF) onboard Data Management System (DMS) Network Interface Unit (NIU). The NIU provides the interface from the Fiber Distributed Data Interface (FDDI) local area network (LAN) to the DMS processing elements. The FDDI LAN provides the primary means for command and control and low and medium rate telemetry data transfers on board the SSF. The results of this analysis provide the basis for the implementation of the NIU.

  5. Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons

    NASA Astrophysics Data System (ADS)

    Salas Pereira, Ruben Mario

    2003-06-01

    In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon corrosion damage, several reported failures of individual tendons as well as a few collapses of non-typical structures. While experience in the USA has been generally good, some foreign experience has been less than satisfactory. This dissertation is part of a comprehensive research program started in 1993, which has the objectives to examine the use of post-tensioning in bridge substructures, identify durability concerns and existing technology, develop and carry out an experimental testing program, and conclude with durability design guidelines. Three experimental programs were developed: A long term macrocell corrosion test series, to investigate corrosion protection for internal tendons in precast segmental construction; a long term beam corrosion test series, to examine the effects of post-tensioning on corrosion protection as affected by crack width; and, a long term column corrosion test series, to examine corrosion protection in vertical elements. Preliminary design guidelines were developed previously in the overall study by the initial researchers, after an extensive literature review. This dissertation scope includes continuation of exposure testing of the macrocell, beam and column specimens, performing comprehensive autopsies of selected specimens and updating the durability design guidelines based on the exposure testing and autopsy results. After autopsies were performed, overall findings indicate negative durability effects due to the use of mixed reinforcement, small concrete covers, galvanized steel ducts, and industry standard or heat-shrink galvanized duct splices. The width of cracks was shown to have a direct negative effect on specimen performance. Grout voids were found to be detrimental to the

  6. Accelerating Data Acquisition, Reduction, and Analysis at the Spallation Neutron Source

    SciTech Connect

    Campbell, Stuart I; Kohl, James Arthur; Granroth, Garrett E; Miller, Ross G; Doucet, Mathieu; Stansberry, Dale V; Proffen, Thomas E; Taylor, Russell J; Dillow, David

    2014-01-01

    ORNL operates the world's brightest neutron source, the Spallation Neutron Source (SNS). Funded by the US DOE Office of Basic Energy Science, this national user facility hosts hundreds of scientists from around the world, providing a platform to enable break-through research in materials science, sustainable energy, and basic science. While the SNS provides scientists with advanced experimental instruments, the deluge of data generated from these instruments represents both a big data challenge and a big data opportunity. For example, instruments at the SNS can now generate multiple millions of neutron events per second providing unprecedented experiment fidelity but leaving the user with a dataset that cannot be processed and analyzed in a timely fashion using legacy techniques. To address this big data challenge, ORNL has developed a near real-time streaming data reduction and analysis infrastructure. The Accelerating Data Acquisition, Reduction, and Analysis (ADARA) system provides a live streaming data infrastructure based on a high-performance publish subscribe system, in situ data reduction, visualization, and analysis tools, and integration with a high-performance computing and data storage infrastructure. ADARA allows users of the SNS instruments to analyze their experiment as it is run and make changes to the experiment in real-time and visualize the results of these changes. In this paper we describe ADARA, provide a high-level architectural overview of the system, and present a set of use-cases and real-world demonstrations of the technology.

  7. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

  8. High-Intensity Proton Accelerator

    SciTech Connect

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  9. Orion Orbit Control Design and Analysis

    NASA Technical Reports Server (NTRS)

    Jackson, Mark; Gonzalez, Rodolfo; Sims, Christopher

    2007-01-01

    The analysis of candidate thruster configurations for the Crew Exploration Vehicle (CEV) is presented. Six candidate configurations were considered for the prime contractor baseline design. The analysis included analytical assessments of control authority, control precision, efficiency and robustness, as well as simulation assessments of control performance. The principles used in the analytic assessments of controllability, robustness and fuel performance are covered and results provided for the configurations assessed. Simulation analysis was conducted using a pulse width modulated, 6 DOF reaction system control law with a simplex-based thruster selection algorithm. Control laws were automatically derived from hardware configuration parameters including thruster locations, directions, magnitude and specific impulse, as well as vehicle mass properties. This parameterized controller allowed rapid assessment of multiple candidate layouts. Simulation results are presented for final phase rendezvous and docking, as well as low lunar orbit attitude hold. Finally, on-going analysis to consider alternate Service Module designs and to assess the pilot-ability of the baseline design are discussed to provide a status of orbit control design work to date.

  10. Statistical Methods in Algorithm Design and Analysis.

    ERIC Educational Resources Information Center

    Weide, Bruce W.

    The use of statistical methods in the design and analysis of discrete algorithms is explored. The introductory chapter contains a literature survey and background material on probability theory. In Chapter 2, probabilistic approximation algorithms are discussed with the goal of exposing and correcting some oversights in previous work. Chapter 3…

  11. Low speed airfoil design and analysis

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Somers, D. M.

    1979-01-01

    A low speed airfoil design and analysis program was developed which contains several unique features. In the design mode, the velocity distribution is not specified for one but many different angles of attack. Several iteration options are included which allow the trailing edge angle to be specified while other parameters are iterated. For airfoil analysis, a panel method is available which uses third-order panels having parabolic vorticity distributions. The flow condition is satisfied at the end points of the panels. Both sharp and blunt trailing edges can be analyzed. The integral boundary layer method with its laminar separation bubble analog, empirical transition criterion, and precise turbulent boundary layer equations compares very favorably with other methods, both integral and finite difference. Comparisons with experiment for several airfoils over a very wide Reynolds number range are discussed. Applications to high lift airfoil design are also demonstrated.

  12. Multifidelity Analysis and Optimization for Supersonic Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory

    2010-01-01

    Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

  13. Design analysis, robust methods, and stress classification

    SciTech Connect

    Bees, W.J.

    1993-01-01

    This special edition publication volume is comprised of papers presented at the 1993 ASME Pressure Vessels and Piping Conference, July 25--29, 1993 in Denver, Colorado. The papers were prepared for presentations in technical sessions developed under the auspices of the PVPD Committees on Computer Technology, Design and Analysis, Operations Applications and Components. The topics included are: Analysis of Pressure Vessels and Components; Expansion Joints; Robust Methods; Stress Classification; and Non-Linear Analysis. Individual papers have been processed separately for inclusion in the appropriate data bases.

  14. Accelerated materials property predictions and design using motif-based fingerprints

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi

    2015-07-01

    Data-driven approaches are particularly useful for computational materials discovery and design as they can be used for rapidly screening over a very large number of materials, thus suggesting lead candidates for further in-depth investigations. A central challenge of such approaches is to develop a numerical representation, often referred to as a fingerprint, of the materials. Inspired by recent developments in cheminformatics, we propose a class of hierarchical motif-based topological fingerprints for materials composed of elements such as C, O, H, N, F, etc., whose coordination preferences are well understood. We show that these fingerprints, when representing either molecules or crystals, may be effectively mapped onto a variety of properties using a similarity-based learning model and hence can be used to predict the relevant properties of a material, given that its fingerprint can be defined. Two simple machine-learning-based procedures are introduced to demonstrate that the learning model can be inverted to identify the desired fingerprints and then to reconstruct molecules which possess a set of targeted properties.

  15. Rift strength controls rapid plate accelerations: A global analysis of Pangea fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Williams, S.; Butterworth, N. P.; Müller, D.

    2015-12-01

    Motions of Earth's plates are thought to be driven by slab pull, basal drag, and ridge push. Here we propose that plate motions during supercontinental fragmentation are decisively controlled by the non-linear decay of a resistive force: rift strength. We use state-of-the-art global tectonic reconstructions and the new geotectonic analysis tool pyGPlates to analyze the transition from rifting to sea-floor spreading of well-studied post-Pangea rift systems (Central Atlantic, South Atlantic, Iberia/Newfoundland, Australia/Antarctica, North Atlantic, South China Sea, Gulf of California). In all cases, continental extension starts with a slow phase (< 10 mm/yr, full extension velocity) followed by a rapid acceleration over periods of a few My that introduces a fast rift phase (> 10 mm/yr). The transition from slow to fast extension takes place long before crustal break-up. In fact, we find that approximately half of the present day rifted margin area was created during the slow, and the other half during the fast phase. We reproduce the transition from slow to fast rifting using numerical forward models with force boundary conditions, such that rift velocities are not imposed but instead evolve naturally in response to changing strength of the rift. These models show that the two-phase velocity behavior during rifting and the rapid speed-up are intrinsic features of continental rupture that can be robustly inferred for different crust and mantle rheologies.It has been proposed that abrupt plate accelerations can be caused by plume-lithosphere interaction, subduction initiation, and slab detachment. However, none of these mechanisms explains our result that plate speed-up systematically precedes continental break-up. We therefore propose dynamic rift weakening as a new mechanism for rapid plate motion changes.

  16. Optimal design of a standing-wave accelerating tube with a high shunt impedance based on a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Tang, Zhenxing; Pei, Yuanji; Pang, Jian

    2015-08-01

    In this paper, we present an optimal design based on a genetic algorithm for a compact standing-wave (SW) accelerating tube with an operating frequency of 2998 MHz for industrial and medical applications. It consists of bi-periodic structures with a nose cone whose inter-cavity coupling is achieved through electric coupling rather than magnetic coupling. A mathematical model is established to optimize the arc at the cavity wall to reduce the microwave power loss and to optimize the nose cone to increase the electric field along the axis to achieve a high shunt impedance. The simulation results indicate that with the proper nose cone and arc, the shunt impedance of the cavity can be as high as 114 MΩ / m. Afterward, we present the tuning of the tube using SUPERFISH and the calculation of the beam dynamics using ASTRA and Parmela. The total length of the optimal tube is only 30.175 cm. Finally, a coupler is designed with a small-aperture coupling using CST MICROWAVE STUDIO.

  17. Lakeside: Merging Urban Design with Scientific Analysis

    SciTech Connect

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2014-10-08

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  18. Analysis of designed experiments with complex aliasing

    SciTech Connect

    Hamada, M.; Wu, C.F.J. )

    1992-07-01

    Traditionally, Plackett-Burman (PB) designs have been used in screening experiments for identifying important main effects. The PB designs whose run sizes are not a power of two have been criticized for their complex aliasing patterns, which according to conventional wisdom gives confusing results. This paper goes beyond the traditional approach by proposing the analysis strategy that entertains interactions in addition to main effects. Based on the precepts of effect sparsity and effect heredity, the proposed procedure exploits the designs' complex aliasing patterns, thereby turning their 'liability' into an advantage. Demonstration of the procedure on three real experiments shows the potential for extracting important information available in the data that has, until now, been missed. Some limitations are discussed, and extentions to overcome them are given. The proposed procedure also applies to more general mixed level designs that have become increasingly popular. 16 refs.

  19. The HSCT mission analysis of waverider designs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The grant provided partial support for an investigation of wave rider design and analysis with application to High-Speed Civil Transport (HSCT) vehicles. Proposed was the development of the necessary computational fluid dynamics (CFD) tools for the direct simulation of the waverider vehicles, the development of two new wave rider design methods that would provide computational speeds and design flexibilities never before achieved in wave rider design studies, and finally the selection of a candidate waverider-based vehicle and the evaluation of the chosen vehicle for a canonical HSCT mission scenario. This, the final report, reiterates the proposed project objectives in moderate detail, and it outlines the state of completion of each portion of the study, providing references to current and forthcoming publications that resulted from this work.

  20. Lakeside: Merging Urban Design with Scientific Analysis

    ScienceCinema

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2016-07-12

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  1. Comprehensive analysis of PEGylated liposome-associated proteins relating to the accelerated blood clearance phenomenon by combination with shotgun analysis and conventional methods.

    PubMed

    Kawanishi, Munehira; Hashimoto, Yosuke; Shimizu, Taro; Sagawa, Ikuko; Ishida, Tatsuhiro; Kiwada, Hiroshi

    2015-01-01

    PEGylated liposome, sterically stabilized by polyethylene glycol (PEG), results in reduced recognition of the liposome by the mononuclear phagocyte system. Recently, we reported regarding the accelerated blood clearance (ABC) phenomenon that PEGylated liposome is cleared very rapidly from blood circulation upon repeated injection. Anti-PEG IgM production and subsequent complement activation were crucial in causing the ABC phenomenon. However, there still remains the possibility that unknown plasma factors might affect the fate of PEGylated liposome that is subjected to the ABC phenomenon. A label-free approach to shotgun analysis is a great tool for characterizing proteins in a biological system. In this study, therefore, a shotgun analysis was employed to identify plasma protein bound on PEGylated liposome after the ABC phenomenon was induced in the mouse model. The analysis revealed that immunoglobulin and complement components (C1 and C3) are the major proteins. Subsequent analysis with enzyme-linked immunosorbent assay and Western blotting showed that the immunoglobulin was IgM and that the complement system was mainly activated via an anti-PEG IgM-mediated classical pathway. These results support our earlier assumptions-anti-PEG IgM and complement activation were the major causes of the ABC phenomenon. Our proposed analytical strategy would be expected to provide useful information for the development and design of the nanocarrier drug delivery system.

  2. Foreign exchange market data analysis reveals statistical features that predict price movement acceleration

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Ochiai, Tomoshiro

    2012-05-01

    Increasingly accessible financial data allow researchers to infer market-dynamics-based laws and to propose models that are able to reproduce them. In recent years, several stylized facts have been uncovered. Here we perform an extensive analysis of foreign exchange data that leads to the unveiling of a statistical financial law. First, our findings show that, on average, volatility increases more when the price exceeds the highest (or lowest) value, i.e., breaks the resistance line. We call this the breaking-acceleration effect. Second, our results show that the probability P(T) to break the resistance line in the past time T follows power law in both real data and theoretically simulated data. However, the probability calculated using real data is rather lower than the one obtained using a traditional Black-Scholes (BS) model. Taken together, the present analysis characterizes a different stylized fact of financial markets and shows that the market exceeds a past (historical) extreme price fewer times than expected by the BS model (the resistance effect). However, when the market does, we predict that the average volatility at that time point will be much higher. These findings indicate that any Markovian model does not faithfully capture the market dynamics.

  3. Enhanced analysis of steroids by gas chromatography/mass spectrometry using microwave-accelerated derivatization.

    PubMed

    Bowden, John A; Colosi, Dominic M; Stutts, Whitney L; Mora-Montero, Diana C; Garrett, Timothy J; Yost, Richard A

    2009-08-15

    Derivatization of steroids is typically required before analysis by gas chromatography/mass spectrometry (GC/MS); nevertheless, the derivatization process can often be time-consuming and irreproducible. Although several strategies have been employed to enhance this process, few have the potential of microwave-accelerated derivatization (MAD) to be more efficient than traditional thermal derivatization methods. MAD using a synthesis microwave system was evaluated and compared to traditional thermal derivatization methods in terms of yield, reproducibility, and overall analysis time. Parameters affecting MAD, including reaction temperature, time, and power, were systematically optimized for several silyl reagents (BSTFA with TMCS, MSTFA, and BSA) and other derivatization procedures (MOX reagent and MTBSTFA). MSTFA was found to derivatize best with the microwave, as demonstrated by the enhanced relative response factors (RRFs). BSTFA with TMCS, on the other hand, did not couple as well, but RRF values improved significantly upon addition of polar solvents. The rapid (1 min) derivatization reactions associated with MAD had comparable RRFs for all reagents with those obtained with thermal heating (>30 min). This study highlights the best methods for analyzing a comprehensive variety of steroids and also provides ideal strategies for MAD of steroids on an individual or class level.

  4. Design and Critical Appraisal of an Accelerated Integration Procedure for Atmospheric GCM/Mixed-Layer Ocean Models.

    NASA Astrophysics Data System (ADS)

    Schlesinger, Michael E.; Zhao, Zong-Cl; Vickers, Dean

    1989-07-01

    An accelerated integration procedure (AIP) is developed for the OSU atmospheric GCM/mixed-layer ocean model. In this AIP the depth of the mixed-layer ocean is reduced by an acceleration factor fe=12 from 60 m to 5 m and the length of a solar cycle is correspondingly reduced to eliminate the increase in the amplitude of the annual cycle of oceanic temperature which would otherwise occur. Furthermore, the ground bulk heat capacity, ground water field capacity and heat of fusion for sea ice and for snow on sea ice are reduced by fa to accelerate the equilibration of the ground temperature, soil water and sea ice, respectively.The AIP was used for 1 × CO2 and 2 × CO2 simulations with the OSU AGCM/mixed-layer Oman model. The AIP attained the equilibrium climates in these simulations with the computer-time equivalent of about 2.5 unaccelerated solar cycles, but after the switch from the AIP to the normal unaccelerated integration procedure (NIP), the temperatures increased to new equilibrium values. Although additional computer time was required to achieve these new equilibria, the overall 1 × CO2 and 2 × CO2 simulations with the AIP/NIP required respectively only 55% and 28% of the computer time which would have been required with the NIP alone. Thus the AIP was successful in saying a significant amount of computer time.The success of the AIP notwithstanding, an analysis was undertakes to determine the cause of the change in the equilibrium climate following the AIP/NIP switch. Diagnosis of the 1 × CO2 simulation by the OSU AGCM/mixed-layer. ocean model and tests with a latitudinally dependent energy balance model show that it is the increase in the amplitude of the annual cycle of atmospheric temperature from the AIP to the NIP which, acting through the ice-albedo/temperature feedback mechanism, causes the change in the equilibrium climate following the AIP/NIP switch.It is therefore concluded that while the AIP can save a significant amount of computer time in

  5. Challenges Facing Design and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)

    2001-01-01

    The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools

  6. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  7. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  8. Lunar base CELSS design and analysis.

    PubMed

    Sirko, R J; Smith, G C; Hamlin, L A; Tazawa, R; Uchida, T; Suzuki, S

    1994-11-01

    This paper describes the conceptual development of a hybrid biological-physical/chemical (P/C) life support system model for a lunar outpost. It presents steps that lead to loop closure and determines mass flow characteristics for an inedible biomass enzyme reactor and an activated sludge bioreactor. Computer modeling techniques were used to determine that the cellulose reactor has the design capabilities to provide significant increases in the plant harvest index. Activated sludge was found to fit design demands for a small, continuous-flow, steady-state system. Systems analysis and component sizing for these two bioreactors and information regarding supporting bioregenerative and physical/chemical components are presented.

  9. Space Station communications system design and analysis

    NASA Technical Reports Server (NTRS)

    Ratliff, J. E.

    1986-01-01

    Attention is given to the methodologies currently being used as the framework within which the NASA Space Station's communications system is to be designed and analyzed. A key aspect of the CAD/analysis system being employed is its potential growth in size and capabilities, since Space Station design requirements will continue to be defined and modified. The Space Station is expected to furnish communications between itself and astronauts on EVA, Orbital Maneuvering Vehicles, Orbital Transfer Vehicles, Space Shuttle orbiters, free-flying spacecraft, coorbiting platforms, and the Space Shuttle's own Mobile Service Center.

  10. Design sensitivity analysis of boundary element substructures

    NASA Technical Reports Server (NTRS)

    Kane, James H.; Saigal, Sunil; Gallagher, Richard H.

    1989-01-01

    The ability to reduce or condense a three-dimensional model exactly, and then iterate on this reduced size model representing the parts of the design that are allowed to change in an optimization loop is discussed. The discussion presents the results obtained from an ongoing research effort to exploit the concept of substructuring within the structural shape optimization context using a Boundary Element Analysis (BEA) formulation. The first part contains a formulation for the exact condensation of portions of the overall boundary element model designated as substructures. The use of reduced boundary element models in shape optimization requires that structural sensitivity analysis can be performed. A reduced sensitivity analysis formulation is then presented that allows for the calculation of structural response sensitivities of both the substructured (reduced) and unsubstructured parts of the model. It is shown that this approach produces significant computational economy in the design sensitivity analysis and reanalysis process by facilitating the block triangular factorization and forward reduction and backward substitution of smaller matrices. The implementatior of this formulation is discussed and timings and accuracies of representative test cases presented.

  11. Design, analysis, and presentation of crossover trials

    PubMed Central

    Mills, Edward J; Chan, An-Wen; Wu, Ping; Vail, Andy; Guyatt, Gordon H; Altman, Douglas G

    2009-01-01

    Objective Although crossover trials enjoy wide use, standards for analysis and reporting have not been established. We reviewed methodological aspects and quality of reporting in a representative sample of published crossover trials. Methods We searched MEDLINE for December 2000 and identified all randomized crossover trials. We abstracted data independently, in duplicate, on 14 design criteria, 13 analysis criteria, and 14 criteria assessing the data presentation. Results We identified 526 randomized controlled trials, of which 116 were crossover trials. Trials were drug efficacy (48%), pharmacokinetic (28%), and nonpharmacologic (30%). The median sample size was 15 (interquartile range 8–38). Most (72%) trials used 2 treatments and had 2 periods (64%). Few trials reported allocation concealment (17%) or sequence generation (7%). Only 20% of trials reported a sample size calculation and only 31% of these considered pairing of data in the calculation. Carry-over issues were addressed in 29% of trial's methods. Most trials reported and defended a washout period (70%). Almost all trials (93%) tested for treatment effects using paired data and also presented details on by-group results (95%). Only 29% presented CIs or SE so that data could be entered into a meta-analysis. Conclusion Reports of crossover trials frequently omit important methodological issues in design, analysis, and presentation. Guidelines for the conduct and reporting of crossover trials might improve the conduct and reporting of studies using this important trial design. PMID:19405975

  12. Accelerated calendar and pulse life analysis of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Jungst, Rudolph G.; Nagasubramanian, Ganesan; Case, Herbert L.; Liaw, Bor Yann; Urbina, Angel; Paez, Thomas L.; Doughty, Daniel H.

    Sandia National Laboratories has been studying calendar and pulse discharge life of prototype high-power lithium-ion cells as part of the Advanced Technology Development (ATD) Program. One of the goals of ATD is to establish validated accelerated life test protocols for lithium-ion cells in the hybrid electric vehicle application. In order to accomplish this, aging experiments have been conducted on 18650-size cells containing a chemistry representative of these high-power designs. Loss of power and capacity are accompanied by increasing interfacial impedance at the cathode. These relationships are consistent within a given state-of-charge (SOC) over the range of storage temperatures and times. Inductive models have been used to construct detailed descriptions of the relationships between power fade and aging time and to relate power fade, capacity loss and impedance rise. These models can interpolate among the different experimental conditions and can also describe the error surface when fitting life prediction models to the data.

  13. Verification analysis of the toroidal accelerator rotor platform wind energy conversion system. Summary report

    SciTech Connect

    Duffy, R.E.

    1988-09-01

    Researchers at Rensselaer Polytechnic Institute have studied a unique wind energy system, the Toroidal Accelerator Rotor Platform (TARP). The TARP system places the rotors in pairs on either side of a torus-shaped platform, so that the wind is forced to flow into the rotors. As the wind is forced around the form, it picks up velocity and turns the rotors faster, generating more power. By concentrating the wind's power, the TARP system can be constructed in modules using 10-foot-diameter rotor blades. Mounted on a track suspension system, the rotors are able to yaw with the wind to take advantage of breezes from any direction. In this project, the basic TARP design was tested and modified in a wind tunnel. The system was then analyzed for its integration into a farm silo and as a multi-stacked wind power needle. It was determined that the TARP technology would be feasible for applications involving sites with high wind velocities, including some sites in New York State.

  14. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  15. Analysis Method for Quantifying Vehicle Design Goals

    NASA Technical Reports Server (NTRS)

    Fimognari, Peter; Eskridge, Richard; Martin, Adam; Lee, Michael

    2007-01-01

    A document discusses a method for using Design Structure Matrices (DSM), coupled with high-level tools representing important life-cycle parameters, to comprehensively conceptualize a flight/ground space transportation system design by dealing with such variables as performance, up-front costs, downstream operations costs, and reliability. This approach also weighs operational approaches based on their effect on upstream design variables so that it is possible to readily, yet defensively, establish linkages between operations and these upstream variables. To avoid the large range of problems that have defeated previous methods of dealing with the complex problems of transportation design, and to cut down the inefficient use of resources, the method described in the document identifies those areas that are of sufficient promise and that provide a higher grade of analysis for those issues, as well as the linkages at issue between operations and other factors. Ultimately, the system is designed to save resources and time, and allows for the evolution of operable space transportation system technology, and design and conceptual system approach targets.

  16. Analysis of Designs of Space Laboratories

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.

    2003-01-01

    A report presents a review of the development of laboratories in outer space, starting from the pioneering Skylab and Salyut stations of the United States and the former Soviet Union and progressing through current and anticipated future developments. The report includes textual discussions of space station designs, illustrated with drawings, photographs, and tables. The approach taken in the review was not to provide a comprehensive catalog of each space laboratory and every design topic that applies to it, but, rather, to illustrate architectural precedents by providing examples that illustrate major design problems and principles to be applied in solving them. Hence, the report deemphasizes information from the most recent space-station literature and concentrates on information from original design reports that show how designs originated and evolved. The most important contribution of the review was the development of a methodology, called "units of analysis," for identifying and analyzing design issues from the perspectives of four broad domains: laboratory science, crew, modes of operations, and the system as a whole.

  17. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  18. Linear to non linear analysis for positron acceleration in plasma hollow channel wakefields

    NASA Astrophysics Data System (ADS)

    Amorim, Ligia Diana; An, Weiming; Mori, Warren B.; Vieira, Jorge

    2016-10-01

    Plasma wakefield accelerators are promising candidates for future generation compact accelerators. The standard regime of operation, non-linear or blowout regime, is reached when a particle bunch space charge or laser pulse ponderomotive force radially expels plasma electrons forming a bucket of ions that defocus positron bunches, thus preventing their acceleration. To avoid defocusing, hollow plasma channels have been considered. The corresponding wakefields have been examined in the linear and non-linear excitation regimes for electrons. It is therefore important to extend the theory for positron acceleration, particularly in the nonlinear regime where the wakefields strongly differ. In this work we explore the wakefield structure, examine the differences between the electron and positron beam cases, and explore positron acceleration in nonlinear regimes. We support our findings with multi-dimensional particle-in-cell simulations performed with OSIRIS and quasi-3D and QuickPIC.

  19. Evaluation and analysis of the residual radioactivity for the 15UD Pelletron accelerator facility

    SciTech Connect

    Sonkawade, R. G.

    2007-07-01

    For the assessment of radiological impact of the accelerators, it will be better to have the documented information on activation of metal parts of the accelerator components. It is very much essential to get reliable data on these subjects. During acceleration of light ion, the residual radioactivity in the accelerator facility was found near the Analyzing Magnet, single slit, Beam Profile Monitors (BPM), Faraday Cups (FC), bellows, beginning of switching magnet bellows, at the target and the ladder. Study with HPGE detector gives an insight of the formation of the short or long lived radionuclides. The different targets used in the light ion experiment were also monitored and proper decommissioning and decontamination steps were followed. This paper presents the data of residual radioactivity in the 15UD Pelletron accelerator infrastructure. (author)

  20. Astrobiology Sample Analysis as a Design Driver

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.

    2001-01-01

    This effort supports the Astrobiology Objective 8 the Search for LIFE ON MARS PAST AND PRESENT -(Astrobiology Program Office, 1998, p.7). The essential trade analysis is between returning very small samples to the Earth while protecting them versus in situ analysis on Mars. Developing these explicit parameters encompasses design, instrumentation, system integration, human factors and surface operations for both alternatives. This allocation of capability approach incorporates a "humans and machines in the loop" model that recognizes that every exploration system involves both humans and automated systems. The question is where in the loop they occur whether on Earth, in the Mars Base, in the rover or creeping over the Mars surface.