Science.gov

Sample records for accelerator driven nuclear

  1. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2010-01-08

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  2. Nuclear data needs for accelerator-driven transmutation systems

    SciTech Connect

    Arthur, E.D.; Wilson, W.B.; Young, P.G.

    1994-07-01

    The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

  3. Accelerator-Driven Systems for Nuclear Waste Transmutation

    NASA Astrophysics Data System (ADS)

    Bowman, Charles D.

    The renewed interest since 1990 in accelerator-driven subcritical systems for transmutation of commercial nuclear waste has evolved to focus on the issue of whether fast- or thermal-spectrum systems offer greater promise. This review addresses the issue by comparing the performance of the more completely developed thermal- and fast-spectrum designs. Substantial design information is included to allow an assessment of the viability of the systems compared. The performance criteria considered most important are (a) the rapidity of reduction of the current inventory of plutonium and minor actinide from commercial spent fuel, (b) the cost, and (c) the complexity. The liquid-fueled thermal spectrum appears to offer major advantages over the solid-fueled fast-spectrum system, making waste reduction possible with about half the capital requirement on a substantially shorter time scale and with smaller separations requirements.

  4. New options for developing of nuclear energy using an accelerator-driven reactor

    SciTech Connect

    Takahashi, Hiroshi

    1997-09-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator`s length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel.

  5. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems

    SciTech Connect

    Doolen, G.D.; Venneri, F.; Li, N.; Williamson, M.A.; Houts, M.; Lawrence, G.

    1998-06-27

    ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes an intense source-driven neutron flux for transmutation in a heterogeneous (solid fuel) core. The concept is the result of many years of development at LANL as well as other major international research centers. Once demonstrated and developed, ATW could be an essential part of a global non-proliferation strategy for countries that could build up large quantities of plutonium from their commercial reactor waste. ATW technology, initially proposed in the US, has received wide and rapidly increasing attention abroad, especially in Europe and the Far East with major programs now being planned, organized and tided. Substantial convergence presently exists on the technology choices among the programs, opening the possibility of a strong and effective international collaboration on the phased development of the ATW technology.

  6. Disposition of nuclear waste using subcritical accelerator-driven systems

    SciTech Connect

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-12-01

    Studies have shown that the repository long-term radiological risk is from the long-lived transuranics and the fission products Tc-99 and I-129, thermal loading concerns arise mainly form the short-lived fission products Sr-90 and Cs-137. In relation to the disposition of nuclear waste, ATW is expected to accomplish the following: (1) destroy over 99.9% of the actinides; (2) destroy over 99.9% of the Tc and I; (3) separate Sr and Cs (short half-life isotopes); (4) separate uranium; (5) produce electricity. In the ATW concept, spent fuel would be shipped to a ATW site where the plutonium, other transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their only pass through the facility. This approach contrasts with the present-day reprocessing practices in Europe and Japan, during which high purity plutonium is produced and used in the fabrication of fresh mixed-oxide fuel (MOX) that is shipped off-site for use in light water reactors.

  7. Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel

    SciTech Connect

    Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G.; Mann, T.

    2013-04-19

    We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

  8. Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G.; Mann, T.

    2013-04-01

    We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

  9. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    SciTech Connect

    Sooby, Elizabeth; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Pogue, Nathaniel; Sattarov, Akhdiyor; Adams, Marvin; Tsevkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael; Tripathy, Prabhat

    2013-04-19

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  10. INSTRUMENTS AND METHODS OF INVESTIGATION: An accelerator-driven system for the destruction of nuclear waste

    NASA Astrophysics Data System (ADS)

    Revol, Jean-Pierre

    2003-07-01

    Progress in particle accelerator technology makes it possible to use a proton accelerator to produce energy and to destroy nuclear waste efficiently. The energy amplifier (EA) proposed by Carlo Rubbia and his group is a subcritical fast neutron system driven by a proton accelerator. It is particularly attractive for destroying, through fission, transuranic elements produced by presently operating nuclear reactors. The EA could also efficiently and at minimal cost transform long-lived fission fragments using the concept of adiabatic resonance crossing (ARC), recently tested at CERN with the TARC experiment. The ARC concept can be extended to several other domains of application (production of radioactive isotopes for medicine and industry, neutron research applications, etc.).

  11. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems: Technology Choices and Implementation Scenarios

    SciTech Connect

    Venneri, Francesco; Williamson, Mark A.; Li Ning; Houts, Michael G.; Morley, Richard A.; Beller, Denis E.; Sailor, William; Lawrence, George

    2000-10-15

    Los Alamos National Laboratory has led the development of accelerator-driven transmutation of waste (ATW) to provide an alternative technological solution to the disposition of nuclear waste. While ATW will not eliminate the need for a high-level waste repository, it offers a new technology option for altering the nature of nuclear waste and enhancing the capability of a repository. The basic concept of ATW focuses on reducing the time horizon for the radiological risk from hundreds of thousands of years to a few hundred years and on reducing the thermal loading. As such, ATW will greatly reduce the amount of transuranic elements that will be disposed of in a high-level waste repository. The goal of the ATW nuclear subsystem is to produce three orders of magnitude reduction in the long-term radiotoxicity of the waste sent to a repository, including losses through processing. If the goal is met, the radiotoxicity of ATW-treated waste after 300 yr would be less than that of untreated waste after 100 000 yr.These objectives can be achieved through the use of high neutron fluxes produced in accelerator-driven subcritical systems. While critical fission reactors can produce high neutron fluxes to destroy actinides and select fission products, the effectiveness of the destruction is limited by the criticality requirement. Furthermore, a substantial amount of excess reactivity would have to be supplied initially and compensated for by control poisons. To overcome these intrinsic limitations, we searched for solutions in subcritical systems freed from the criticality requirement by taking advantage of the recent breakthroughs in accelerator technology and the release of liquid lead/bismuth nuclear coolant technology from Russia. The effort led to the selection of an accelerator-driven subcritical system that results in the destruction of the actinides and fission products of concern as well as permitting easy operational control through the external control of the neutron

  12. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Phongikaroon, Supathorn; Sattarov, Akhdiyor; Simpson, Michael; Sooby, Elizabeth; Tsvetkov, Pavel

    2013-04-01

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  13. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  14. Nuclear modeling for applications in medical radiation therapy and accelerator-driven technologies

    SciTech Connect

    Chadwick, M.B.

    1995-06-01

    An understanding of the interactions of neutrons and protons below a few hundred MeV with nuclei is important for a number of applications. In this paper, two new applications are discussed: radiation transport calculations of energy deposition in fast neutron and proton cancer radiotherapy to optimize the dose given to a tumor; and intermediate-energy proton accelerators which are currently being designed for a range of applications including the destruction of long-lived radioactive nuclear waste. We describe nuclear theory calculations of direct, preequilibrium, and compound nucleus reaction mechanisms important for the modeling of these systems.

  15. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  16. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  17. Accelerator driven assembly

    SciTech Connect

    Balderas, J.; Cappiello, M.; Cummings, C.E.; Davidson, R.

    1997-01-01

    This report addresses a Los Alamos National Laboratory (LANL) proposal to build a pulsed neutron source for simulating nuclear-weapons effects. A point design for the pulsed neutron facility was initiated early in FY94 after hosting a Defense Nuclear Agency (DNA) panel review and after subsequently visiting several potential clients and users. The technical and facility designs contained herein fulfill the Statement of Work (SOW) agreed upon by LANL and DNA. However, our point designs and parametric studies identify a unique, cost-effective, above-ground capability for neutron nuclear-weapons-effects studies at threat levels. This capability builds on existing capital installations and infrastructure at LANL. We believe that it is appropriate for us, together with the DNA, to return to the user community and ask for their comments and critiques. We also realize that the requirements of last year have changed significantly. Therefore, the present report is a `working document` that may be revised where feasible as we learn more about the most recent Department of Defense (DoD) and Department of Energy (DOE) needs.

  18. Neutrino physics with accelerator driven subcritical reactors

    NASA Astrophysics Data System (ADS)

    Ciuffoli, Emilio; Evslin, Jarah; Zhao, Fengyi

    2016-01-01

    Accelerator driven system (ADS) subcritical nuclear reactors are under development around the world. They will be intense sources of free, 30-55 MeV μ + decay at rest {overline{ν}}_{μ } . These ADS reactor neutrinos can provide a robust test of the LSND anomaly and a precise measurement of the leptonic CP-violating phase δ, including sign(cos(δ)). The first phase of many ADS programs includes the construction of a low energy, high intensity proton or deuteron accelerator, which can yield competitive bounds on sterile neutrinos.

  19. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R.T.; Buksa, J.; Houts, M.

    1994-09-01

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  20. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R. T.; Buksa, John; Houts, Michael

    1995-09-15

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in a subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  1. Technologies using accelerator-driven targets under development at BNL

    SciTech Connect

    Van Tuyle, G.J.

    1994-08-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications.

  2. Reduction of the Radiotoxicity of Spent Nuclear Fuel Using a Two-Tiered System Comprising Light Water Reactors and Accelerator-Driven Systems

    SciTech Connect

    H.R. Trellue

    2003-06-01

    Two main issues regarding the disposal of spent nuclear fuel from nuclear reactors in the United States in the geological repository Yucca Mountain are: (1) Yucca Mountain is not designed to hold the amount of fuel that has been and is proposed to be generated in the next few decades, and (2) the radiotoxicity (i.e., biological hazard) of the waste (particularly the actinides) does not decrease below that of natural uranium ore for hundreds of thousands of years. One solution to these problems may be to use transmutation to convert the nuclides in spent nuclear fuel to ones with shorter half-lives. Both reactor and accelerator-based systems have been examined in the past for transmutation; there are advantages and disadvantages associated with each. By using existing Light Water Reactors (LWRs) to burn a majority of the plutonium in spent nuclear fuel and Accelerator-Driven Systems (ADSs) to transmute the remainder of the actinides, the benefits of each type of system can be realized. The transmutation process then becomes more efficient and less expensive. This research searched for the best combination of LWRs with multiple recycling of plutonium and ADSs to transmute spent nuclear fuel from past and projected nuclear activities (assuming little growth of nuclear energy). The neutronic design of each system is examined in detail although thermal hydraulic performance would have to be considered before a final system is designed. The results are obtained using the Monte Carlo burnup code Monteburns, which has been successfully benchmarked for MOX fuel irradiation and compared to other codes for ADS calculations. The best combination of systems found in this research includes 41 LWRs burning mixed oxide fuel with two recycles of plutonium ({approx}40 years operation each) and 53 ADSs to transmute the remainder of the actinides from spent nuclear fuel over the course of 60 years of operation.

  3. Terahertz-driven linear electron acceleration.

    PubMed

    Nanni, Emilio A; Huang, Wenqian R; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m(-1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  4. Terahertz-driven linear electron acceleration

    SciTech Connect

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  5. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  6. Terahertz-driven linear electron acceleration

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  7. Accelerator-driven Transmutation of Waste

    NASA Astrophysics Data System (ADS)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the

  8. Terahertz-driven linear electron acceleration

    DOE PAGESBeta

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  9. Uncertainty assessment for accelerator-driven systems.

    SciTech Connect

    Finck, P. J.; Gomes, I.; Micklich, B.; Palmiotti, G.

    1999-06-10

    The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been reached in adopting for the subcritical component a fast spectrum liquid metal cooled configuration. Both a lead-bismuth eutectic, sodium and gas are being considered as a coolant; each has advantages and disadvantages. The major expected advantage is that subcriticality avoids reactivity induced transients. The potentially large subcriticality margin also should allow for the introduction of very significant quantities of waste products (minor Actinides and Fission Products) which negatively impact the safety characteristics of standard cores. In the U.S. these arguments are the basis for the development of the Accelerator Transmutation of Waste (ATW), which has significant potential in reducing nuclear waste levels. Up to now, neutronic calculations have not attached uncertainties on the values of the main nuclear integral parameters that characterize the system. Many of these parameters (e.g., degree of subcriticality) are crucial to demonstrate the validity and feasibility of this concept. In this paper we will consider uncertainties related to nuclear data only. The present knowledge of the cross sections of many isotopes that are not usually utilized in existing reactors (like Bi, Pb-207, Pb-208, and also Minor Actinides and Fission Products) suggests that uncertainties in the integral parameters will be significantly larger than for conventional reactor systems, and this raises concerns on the neutronic performance of those systems.

  10. Progress of Laser-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    2007-07-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world. Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called "dream beams on a table top", which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  11. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  12. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  13. Technology of magnetically driven accelerators

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-03-26

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability. 8 figs., 1 tab.

  14. Technology of magnetically driven accelerators

    SciTech Connect

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-10-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  15. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2005-09-19

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.

  16. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  17. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  18. The physics design of accelerator-driven transmutation systems

    SciTech Connect

    Venneri, F.

    1995-02-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power.

  19. An accelerator-driven reactor for meeting future energy demand

    SciTech Connect

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-12-31

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel.

  20. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  1. Accelerator driven sub-critical core

    DOEpatents

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  2. Accelerator-induced transients in Accelerator Driven Subcritical Reactors

    NASA Astrophysics Data System (ADS)

    Ahmad, Ali; Lindley, Benjamin A.; Parks, Geoffrey T.

    2012-12-01

    Achieving higher particles energies and beam powers have long been the main focus of research in accelerator technology. Since Accelerator Driven Subcritical Reactors (ADSRs) have become the subject of increasing interest, accelerator reliability and modes of operation have become important matters that require further research and development in order to accommodate the engineering and economic needs of ADSRs. This paper focuses on neutronic and thermo-mechanical analyses of accelerator-induced transients in an ADSR. Such transients fall into three main categories: beam interruptions (trips), pulsed-beam operation, and beam overpower. The concept of a multiple-target ADSR is shown to increase system reliability and to mitigate the negative effects of beam interruptions, such as thermal cyclic fatigue in the fuel cladding and the huge financial cost of total power loss. This work also demonstrates the effectiveness of the temperature-to-reactivity feedback mechanisms in ADSRs. A comparison of shutdown mechanisms using control rods and beam cut-off highlights the intrinsic safety features of ADSRs. It is evident that the presence of control rods is crucial in an industrial-scale ADSR. This paper also proposes a method to monitor core reactivity online using the repetitive pattern of beam current fluctuations in a pulsed-beam operation mode. Results were produced using PTS-ADS, a computer code developed specifically to study the dynamic neutronic and thermal responses to beam transients in subcritical reactor systems.

  3. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    NASA Astrophysics Data System (ADS)

    Pešić, Milan; Nešković, Nebojša

    2006-06-01

    Study of a small accelerator-driven subcritical research reactor in the Vinča Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology.

  4. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  5. Accelerator-driven molten-salt blankets: Physics issues

    SciTech Connect

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-10-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m{sup 3} per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics.

  6. Accelerator-driven assembly for plutonium transformation (ADAPT)

    SciTech Connect

    Van Tuyle, G.J.; Todosow, M.; Powell, J.; Schweitzer, D.

    1994-11-01

    A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the US and Russia. The highly fissile plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly subcritical blanket region. Major advantages include very high one-pass burnup (over 90 %), a high integrity waste form (the coated beads), and operation in a subcritical mode, thereby minimizing the vulnerability to the positive reactivity feedbacks often associated with plutonium fuel.

  7. Development of the accelerator-driven energy production concept

    SciTech Connect

    Venneri, F.; Beard, C.; Bowman, C.

    1996-10-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Accelerator Driven Transmutation Technology (ADTT) offers a means of generating nuclear energy in a clean, safe way that can be attractive to the general public. However, there are issues associated with the energy story (both at the system level and technical detail) that have to be seriously addressed before the scientific community, the public, and potential industrial sponsors can be compellingly convinced of its cost/benefit.

  8. Optimization of accelerator-driven technology for LWR waste transmutation

    SciTech Connect

    Bowman, C.D.

    1996-12-31

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan.

  9. Accelerator-driven neutron source for cargo screening

    NASA Astrophysics Data System (ADS)

    Ludewigt, B. A.; Bleuel, D. L.; Hoff, M. D.; Kwan, J. W.; Li, D.; Ratti, A.; Staples, J. W.; Virostek, S. P.; Wells, R. P.

    2007-08-01

    Advanced neutron interrogation systems for screening sea-land cargo containers for shielded special nuclear materials (SNM) require a high-yield neutron source to achieve the desired detection probability, false alarm rate, and throughput. The design of an accelerator-driven neutron source is described that utilizes the D(d,n)3He reaction to produce a forward directed beam of up to 8.5 MeV neutrons. The key components of the neutron source are a high-current radio frequency quadrupole (RFQ) accelerator and a neutron production gas target. The 5.1 m long, 200 MHz RFQ accelerates a 40 mA deuteron beam from a microwave-driven ion source coupled to an electrostatic low energy beam transport (LEBT) system to 6 MeV. At a 5% duty factor, the time-average D+ beam current on target is 1.5 mA. A thin entrance window has been designed for the deuterium gas target that can withstand the high beam power and the gas pressure. The source will be capable of delivering a flux >1 × 107 n/(cm2 s) at a distance of 2.5 m from the target and will allow full testing and demonstration of a cargo screening system based on neutron stimulated SNM signatures.

  10. The energy amplifier: A solid-phase, accelerator driven, sub critical Th/233 U breeder for nuclear energy production with minimal actinide waste

    SciTech Connect

    Rubbia, C.

    1994-12-31

    We describe a hybrid system consisting of a medium current (1-10 mA), medium energy (1 GeV) proton accelerator feeding a subcritical assembly consisting of Thorium (or another fertile element) and a moderator medium (e.g. light water). Under conditions of moderate neutron flux (10{sup 14} ncm{sup -2}), we show by a computer simulation that a stable equilibrium evolves whereby the concentration of fissile {sup 233}U which is bred from Thorium is stable at about 1.3%. The {sup 233}U produces energy by fission and is continuously regenerated in-situ without resorting to any chemical separation. It is shown that the energy produced is several times larger than the energy required to power the proton accelerator, hence the name Energy Amplifier that we have chosen for that system. We have paid particular attention to the question of toxicity and show that this system will result in very small quantities of Plutonium and higher actinide waste. We also show the composition of actinides produced makes this system particularly resistant to nuclear weapons proliferation. This safe subcritical system is based on an abundant and inexpensive resource which is natural Thorium and can be built using present day technology.

  11. Acceleration efficiency in line-driven flows

    NASA Technical Reports Server (NTRS)

    Gayley, Kenneth G.; Owocki, Stanley P.

    1994-01-01

    We reexamine the physics of flow driving by line scattering of a continuum radiation source to determine the degree to which such line scattering can heat as well as accelerate the flow. Within the framework of the Sobolev theory for line transfer, we argue that the finite thermal width of the line scattering profile can lead to a significant 'Doppler heating' via photon frequency redistribution within a Sobolev resonance layer. Quantitative computation of this heating shows, however, that it is largely canceled by a corresponding cooling by the diffuse radiation. The resulting reduction in net Doppler heating or cooling means that the overall effect is only of limited importance in the energy balance of line-driven stellar winds. Through simple scaling relations, we compare the effect to other competing heating or cooling terms, including the ion-drag frictional heating recently discussed by Springmann and Pauldrach. We also provide a physical explanation of the unexpected cooling effect, and comment that its near cancellation of the anticipated heating provides another example of the tendency for ideal Sobolev theory to apply to a higher order than expected.

  12. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  13. Requirements of a proton beam accelerator for an accelerator-driven reactor

    SciTech Connect

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-12-31

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam.

  14. Nuclear Powered Laser Driven Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    A relativistic plasma thruster that could open up the solar system to near-term human exploration is presented. It is based on recent experimental and theoretical research, which show that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. In table top-type experiments charge-neutral proton beams containing more than 1014 particles with mean energies of tens of MeV's have been produced when high intensity lasers with femtosecond (10-15 s) pulse lengths are made to strike thin solid targets. When viewed from a propulsion standpoint such systems can produce specific impulses of several million seconds albeit at modest thrusts and require nuclear power systems to drive them. Several schemes are proposed to enhance the thrust and make these systems suitable for manned interplanetary missions. In this paper we set forth the physics principles that make relativistic plasma driven by ultrafast lasers particularly attractive for propulsion applications. We introduce the “Laser Accelerated Plasma Propulsion System” LAPPS, and demonstrate its potential propulsive capability by addressing an interstellar mission to the Oort Cloud, and a planetary mission to Mars. We show that the first can be carried out in a human's lifetime and the second in a matter of months. In both instances we identify the major technological problems that must be addressed if this system is to evolve into a leading contender among the advance propulsion concepts currently under consideration.

  15. Laser driven acceleration in vacuum and gases

    SciTech Connect

    Sprangle, P.; Esarey, E.; Hafizi, B.; Hubbard, R.; Krall, J.; Ting, A.

    1997-03-01

    Several important issues pertaining to particle acceleration in vacuum and gases are discussed. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage, and electron aperture effects are presented. Limitations on the laser intensity and particle self-fields due to material breakdown are quantified. In addition, the reflection of the self-fields associated with the accelerated particles places a limit on the number of particles. Two configurations for the inverse Cherenkov accelerator (ICA) are considered, in which the electromagnetic driver is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. The acceleration gradient in the ICA is limited by tunneling and collisional ionization in the dielectric liner or gas. Ionization can lead to significant modification of the optical properties of the waveguide, altering the phase velocity and causing particle slippage, thus disrupting the acceleration process. Maximum accelerating gradients and pulse durations are presented for a 10 {mu}m and a 1 mm wavelength driver. We show that the use of an unguided Bessel (axicon) beam can enhance the energy gain compared to a higher order Gaussian beam. The enhancement factor is N{sup 1/2}, where N is the number of lobes in the Bessel beam. {copyright} {ital 1997 American Institute of Physics.}

  16. Laser driven electron acceleration in vacuum, gases and plasmas

    SciTech Connect

    Sprangle, P.; Esarey, E.; Krall, J.

    1996-04-19

    This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

  17. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  18. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  19. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  20. Miniature accelerator-driven gamma source concept.

    SciTech Connect

    Garnett, R. W.; Chan, K. D.; Wangler, Thomas P.,; Wood R. L.; Carlsten, B. E.; Kirbie, H. C.

    2003-01-01

    Recent developments in W-band (-100 GHz) traveling wave tube technology at Los Alarnos may lead to a compact high-power W-band RE source. A conceptual design of a compact 8-MeV electron linac that codd be powered by this source is presented, including electromagnetic structure calculations, proposed rnicrojbbrication and manufacturing methods, supporting calculations to estimate accelerator performance, and gumma production rates based on preliminary target geometries and expected output beam current.

  1. GeV plasma accelerators driven in waveguides

    SciTech Connect

    Hooker, S.M.; Brunetti, E.; Esarey, E.; Gallacher, J.G.; Geddes,C.G.R.; Gonsalves, A.J.; Jaroszynski, D.A.; Kamperidis, C.; Kneip, S.; Krushelnick, K.; Leemans, W.P.; Mangles, S.P.D.; Murphy, C.D.; Nagler,B.; Najmudin, Z.; Nakamura, K.; Norreys, P.A.; Panasenko, D.; Rowlands-Rees, T.P.; Schroeder, C.B.; Toth, Cs.; Trines, R.

    2007-11-01

    During the last few years laser-driven plasma acceleratorshave been shown to generate quasi-monoenergetic electron beams withenergies up to several hundred MeV. Extending the output energy oflaser-driven plasma accelerators to the GeV range requires operation atplasma densities an order of magnitude lower, i.e. 1018 cm-3, andincreasing the distance over which acceleration is maintained from a fewmillimetres to a few tens of millimetres. One approach for achieving thisis to guide the driving laser pulse in the plasma channel formed in agas-filled capillary discharge waveguide. We present transverseinterferometric measurements of the evolution of the plasma channelformed and compare these measurements with models of the capillarydischarge. We describe in detail experiments performed at LawrenceBerkeley National Laboratory and at Rutherford Appleton Laboratory inwhich plasma accelerators were driven within this type of waveguide togenerate quasimonoenergetic electron beams with energies up to 1GeV.

  2. Laser-driven Acceleration in Clustered Plasmas

    SciTech Connect

    Gao, X.; Wang, X.; Shim, B.; Downer, M. C.

    2009-01-22

    We propose a new approach to avoid dephasing limitation of laser wakefield acceleration by manipulating the group velocity of the driving pulse using clustered plasmas. We demonstrated the control of phase velocity in clustered plasmas by third harmonic generation and frequency domain interferometry experiments. The results agree with a numerical model. Based on this model, the group velocity of the driving pulse in clustered plasmas was calculated and the result shows the group velocity can approach the speed of light c in clustered plasmas.

  3. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  4. Towards GeV laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Yin, L.; Albright, B. J.; Flippo, K. A.; Gautier, D. C.; Johnson, R. P.; Letzring, S.; Shah, R. C.; Shimada, T.; Fernandez, J. C.; Henig, A.; Kiefer, D.; Liechtenstein, V.; Schreiber, J.; Habs, D.; Meyer-Ter-Vehn, J.; Rykovanov, S.; Wu, H. C.

    2008-11-01

    Applications like ion-driven fast ignition (IFI) with heavy ions or laser-based hadron therapy require efficient laser-driven ion acceleration to ˜ 0.1 -- 1 GeV. The Break-Out Afterburner (BOA) [1] regime and the Phase-Stable Acceleration (PSA) [2] regime, also reported as Radiation Pressure Acceleration (RPA) [3], promise quasi-monoenergetic beams at such energies, with ˜ 10% efficiency,. This talk summarizes our joint exploratory research program in this new and exciting area, emphasizing the realization of these mechanisms with today's lasers. The laser requirements are discussed, especially pulse contrast. The first experimental results are reported. [1] L. Yin et al., Laser & Part. Beams 24, 1-8 (2006) [2] X. Zhang et al., Phys. Plasmas 14, 123108 (2007) [3] A. P. L. Robinson et al., New J. Phys. 10, 013021 (2008)

  5. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25 }m{sup −3} and 1.6 × 10{sup 28 }m{sup −3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ∼20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 λ{sub p} to 0.6 λ{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  6. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGESBeta

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more » from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  7. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  8. A role of accelerator-driven reactor to meet future energy demands

    SciTech Connect

    Takahashi, H.; An, Y.; Yang, Y.; Zhao, Y.; Tsoupas, N.

    1998-03-01

    Fissile fuel can be produced at a high rate using an accelerator driven Pu fueled fast reactor operated at deep subcriticality; this approach avoids encountering a shortage of Pu during a high rate of growth in the production of nuclear energy. Slightly reducing the acceleration field minimizes the tripping of the beam and the radiation dose from the accelerator; hence the accelerator can be operated as a highly reliable industrial machine. The usefulness of a windowless liquid jet target, which eliminates the spreading of the beam and problems of radiation damage is emphasized, in association with the small size of the target. The requirements for a proton beam accelerator for this system are discussed.

  9. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  10. Nonlinear Laser Driven Donut Wakefields for Positron and Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Vieira, J.; Mendonça, J. T.

    2014-05-01

    We show analytically and through three-dimensional particle-in-cell simulations that nonlinear wakefields driven by Laguerre-Gaussian laser pulses can lead to hollow electron self-injection and positron acceleration. We find that higher order lasers can drive donut shaped blowout wakefields with strong positron accelerating gradients comparable to those of a spherical bubble. Corresponding positron focusing forces can be more than an order of magnitude stronger than electron focusing forces in a spherical bubble. Required laser intensities and energies to reach the nonlinear donut shaped blowout are within state-of-the-art experimental conditions.

  11. The laser driven particle accelerator project: Theory and experiment

    SciTech Connect

    Plettner, T.; Byer, R.L. Smith, T.I.; Siemann, R.H. Huang, Y.C.

    1999-07-01

    A proof of principle experiment for laser driven electron acceleration from crossed laser beams in a dielectric loaded vacuum is being carried out at Stanford University. We seek to measure a maximum energy gain of about 250 keV for a 30{endash}35 MeV electron beam in one accelerator cell. We use laser pulses of a few picoseconds of duration from a regenerative Ti:sapphire laser amplifier at a wavelength of 800 nm in a laser-electron interaction distance of {approximately}1 mm. {copyright} {ital 1999 American Institute of Physics.}

  12. Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2006-09-07

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

  13. Acceleration of SEPs in Flaring Loops and CME Driven shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe; Chen, Qingrong

    2014-06-01

    We consider two stage acceleration of the Solar Energetic Particles (SEPs). The first occurring via the stochastic acceleration mechanism at the flare site in the corona, which produces the so-called impulsive SEPs, with anomalous abundances, as well as nonthermal particles responsible for the observed radiation. The second is re-acceleration the flare accelerated particles at the CME driven shock associated with larger, longer duration events with relatively normal abundances. Turbulence plays a major role in both stages. We will show how stochastic acceleration can explain some of the salient features of the impulsive SEP observations; such as extreme enrichment of 3He (and heavy ions), and the observed broad distributions and ranges of the 3He and 4He fluences. We will then show that the above hybrid mechanism of first stochastic acceleration of ions in the reconnecting coronal magnetic structures and then their re-acceleration in the CME shock can produce the varied shapes of the 3He and 4He spectra observed in all events ranging from weak impulsive to strong gradual events.

  14. A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves

    SciTech Connect

    Chen, Pisin; Chang, Feng-Yin; Lin, Guey-Lin; Noble, Robert J.; Sydora, Richard; /Alberta U.

    2011-09-12

    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.

  15. Laser-and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chandrashekhar

    2006-10-01

    Scientists have been trying to use the tremendous electric fields in relativistic plasma waves to accelerate charged particles, and are now making substantial progress. If they succeed, future high energy accelerators will use plasma waves rather than microwave cavities as accelerating structures.Some accelerators, such as those used for radiation therapy will fit on a tabletop. Research on using plasma waves to accelerate particles began in earnest following the suggestion by John Dawson and his colleagues [1-3] that a relativistically propagating plasma wave or a wake field could be excited by using a powerful but short laser -or electron -beam as a driver pulse.Since their original suggestion the research on plasma --based accelerators has spread worldwide A series of experiments by the UCLA/USC/SLAC collaboration ,using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC), has demonstrated high-gradient acceleration of electrons and positrons using the the wake left by the SLAC beam as it passes through a lithium plasma. Electrons have been accelerated by more than 30 GeV in less than one meter. This acceleration gradient is about a thousand times larger than in conventional microwave-driven accelerators. It is a first step toward a ``plasma afterburner,'' which would be placed at the end of a kilometers-long conventional accelerator and double its beam energy in a few tens of meters. In addition to the acceleration of particle beams, these experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes the generation of intense and narrowly collimated x-ray beams, refraction of particles at a plasma interface, and the creation of intense beams of positrons. These results are leading the way to similar tabletop accelerators based on plasma wakes excited by lasers rather than electron beams. Applications for tabletop accelerators include gamma radiography, radiation therapy, and ultra

  16. Research program for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    NASA Astrophysics Data System (ADS)

    Barashenkov, V. S.; Buttsev, V. S.; Buttseva, G. L.; Dudarev, S. Ju.; Polanski, A.; Puzynin, I. V.; Sissakian, A. N.

    2000-07-01

    This paper presents the research program of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating in the Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna. Mixed-oxide (MOX) fuel (25% PuO2+75% UO2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient keff=0.945, energetic gain G=30, and accelerator beam power of 0.5 kW.

  17. Investigation of Lead Target Nuclei Used on Accelerator-Driven Systems for Tritium Production

    NASA Astrophysics Data System (ADS)

    Tel, E.; Aydin, A.

    2012-02-01

    High-current proton accelerators are being researched at Los Alamos National Laboratory and other laboratories for accelerator production of tritium, transmuting long-lived radioactive waste into shorter-lived products, converting excess plutonium, and producing energy. These technologies make use of spallation neutrons produced in ( p,xn) and ( n,xn) nuclear reactions on high-Z targets. Through ( p,xn) and ( n,xn) nuclear reactions, neutrons are produced and are moderated by heavy water. These moderated neutrons are subsequently captured on 3He to produce tritium via the ( n,p) reaction. Tritium self-sufficiency must be maintained for a commercial fusion power plant. Rubbia succeeded in a proposal of a full scale demonstration plant of the Energy Amplifier. This plant is to be known the accelerator-driven system (ADS). The ADS can be used for production of neutrons in spallation neutron source and they can act as an intense neutron source in accelerator-driven subcritical reactors, capable of incinerating nuclear waste and of producing energy. Thorium and Uranium are nuclear fuels and Lead, Bismuth, Tungsten are the target nuclei in these reactor systems. The spallation targets can be Pb, Bi, W, etc. isotopes and these target material can be liquid or solid. Naturally Lead includes the 204Pb (%1.42), 206Pb (%24.1), 207Pb (%22.1) and 208Pb (%52.3) isotopes. The design of ADS systems and also a fusion-fission hybrid reactor systems require the knowledge of a wide range of better data. In this study, by using Hartree-Fock method with an effective nucleon-nucleon Skyrme interactions rms nuclear charge radii, rms nuclear mass radii, rms nuclear proton, neutron radii and neutron skin thickness were calculated for the 204, 206, 208Pb isotopes . The calculated results have been compared with those of the compiled experimental and theoretical values of other studies.

  18. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  19. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2016-04-01

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  20. First-order particle acceleration in magnetically driven flows

    DOE PAGESBeta

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  1. First-Order Particle Acceleration in Magnetically-driven Flows

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Li, Hui

    2016-03-01

    We demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution in magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.

  2. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  3. Separations technology development to support accelerator-driven transmutation concepts

    SciTech Connect

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-10-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems.

  4. Conceptual configurations of an accelerator-driven subcritical system utilizing minor actinides

    SciTech Connect

    Cao, Y.; Gohar, Y.

    2012-07-01

    This paper purposes an Accelerator-Driven Subcritical (ADS) system which utilizes the Minor Actinides (MAs) from the US spent nuclear fuel inventory. A mobile fuel concept with micro-particles suspended in the liquid metal is adopted in the purposed system to avoid difficulties of developing and testing new MAs solid fuel forms. Three ADS configurations were developed and analyzed using the Monte Carlo fuel burnup methodology. The analyses demonstrated the capabilities of the proposed system to utilize the MAs and to dispose of the US spent nuclear fuels. (authors)

  5. Ion acceleration near CME-driven interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Dayeh, Maher; Smith, Charles; Mason, Glenn; Lee, Martin

    2012-05-01

    We have surveyed properties of the magnetic field power spectral densities and energetic ions and compared them with the shock normal angles of 74 CME-driven IP shocks observed at ACE and Wind during solar cycle 23. We searched for events that exhibited clear signatures of first-order Fermi acceleration at quasi-parallel shocks and shock-drift acceleration at quasi-perpendicular shocks as predicted by the diffusive shock acceleration theory. Our results show that events with clear signatures of either shock-drift or first-order Fermi acceleration at 1 AU are rare, with 64 of the 74 IP shocks (~87%) exhibiting mixed signatures. We classify the remaining ten events as follows. (1) Four quasi-perpendicular shocks with θBn>70° exhibit no enhancements in the magnetic field power spectrum around the proton gyro-frequency and a slight hardening or no change in the ~80-300 keV/nucleon CNO spectral index across the shocks, indicating the absence of upstream wave activity and the re-acceleration of a pre-existing suprathermal seed spectrum. (2) Six quasi-parallel or oblique IP shocks with θBn<70° exhibit significant enhancements in the power spectral densities around the proton gyro-frequency and are accompanied by unfolding (softening) of the ~80-300 keV/nucleon CNO spectral index across the shocks, indicating the acceleration and efficient trapping of <300 keV/nucleon CNO ions by the Alfvén waves that were most likely excited by the accelerated protons as they streamed away from the shocks. In this paper, we present contrasting energetic particle and magnetic field observations near 2 IP shocks at 1 AU to highlight the complex signatures associated with the two distinct types of shock acceleration mechanisms.

  6. SEP acceleration in CME driven shocks using a hybrid code

    SciTech Connect

    Gargaté, L.; Fonseca, R. A.; Silva, L. O.

    2014-09-01

    We perform hybrid simulations of a super-Alfvénic quasi-parallel shock, driven by a coronal mass ejection (CME), propagating in the outer coronal/solar wind at distances of between 3 to 6 solar radii. The hybrid treatment of the problem enables the study of the shock propagation on the ion timescale, preserving ion kinetics and allowing for a self-consistent treatment of the shock propagation and particle acceleration. The CME plasma drags the embedded magnetic field lines stretching from the sun, and propagates out into interplanetary space at a greater velocity than the in situ solar wind, driving the shock, and producing very energetic particles. Our results show that electromagnetic Alfvén waves are generated at the shock front. The waves propagate upstream of the shock and are produced by the counter-streaming ions of the solar wind plasma being reflected at the shock. A significant fraction of the particles are accelerated in two distinct phases: first, particles drift from the shock and are accelerated in the upstream region, and second, particles arriving at the shock get trapped and are accelerated at the shock front. A fraction of the particles diffused back to the shock, which is consistent with the Fermi acceleration mechanism.

  7. Current driven instabilities of an electromagnetically accelerated plasma

    NASA Technical Reports Server (NTRS)

    Chouetri, E. Y.; Kelly, A. J.; Jahn, R. G.

    1988-01-01

    A plasma instability that strongly influences the efficiency and lifetime of electromagnetic plasma accelerators was quantitatively measured. Experimental measurements of dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries are reported. The measured critical wave parameters are in excellent agreement with theoretical instability boundary predictions. The instability is current driven and affects a wide spectrum of longitudinal (electrostatic) oscillations. Current driven instabilities, which are intrinsic to the high-current-carrying magnetized plasma of the magnetoplasmadynmic (MPD) accelerator, were investigated with a kinetic theoretical model based on first principles. Analytical limits of the appropriate dispersion relation yield unstable ion acoustic waves for T(i)/T(e) much less than 1 and electron acoustic waves for T(i)/T(e) much greater than 1. The resulting set of nonlinear equations for the case of T(i)/T(e) = 1, of most interest to the MPD thruster Plasma Wave Experiment, was numerically solved to yield a multiparameter set of stability boundaries. Under certain conditions, marginally stable waves traveling almost perpendicular to the magnetic field would travel at a velocity equal to that of the electron current. Such waves were termed current waves. Unstable current waves near the upper stability boundary were observed experimentally and are in accordance with theoretical predictions. This provides unambiguous proof of the existence of such instabilites in electromagnetic plasma accelerators.

  8. Development of an accelerating-piston implosion-driven launcher

    NASA Astrophysics Data System (ADS)

    Huneault, Justin; Loiseau, Jason; Higgins, Andrew

    2013-06-01

    The ability to soft-launch projectiles at velocities exceeding 10 km/s is of interest to several scientific fields, including orbital debris impact testing and equation of state research. Current soft-launch technologies have reached a performance plateau below this operating range. The energy and power density of high explosives provides a possible avenue to reach this velocity if used to dynamically compress a light driver gas to significantly higher pressures and temperatures compared to light-gas guns. In the implosion-driven launcher (IDL), linear implosion of a pressurized tube drives a strong shock into the gas ahead of the tube pinch, thereby forming an increasingly long column of compressed gas which can be used to propel a projectile. The McGill IDL has demonstrated the ability to launch a 0.1-g projectile to 9.1 km/s. This study focuses on the implementation of a novel launch cycle wherein the explosively driven pinch is accelerated down the length of the tube in order to maintain a relatively constant projectile base pressure early in the launch cycle. The experimental development of an accelerating driver which utilizes an explosive lens to phase the detonation wave is presented. The design and experimental performance of an accelerating-piston IDL is also discussed.

  9. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  10. Transformer ratio saturation in a beam-driven wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Farmer, J. P.; Martorelli, R.; Pukhov, A.

    2015-12-01

    We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.

  11. Transformer ratio saturation in a beam-driven wakefield accelerator

    SciTech Connect

    Farmer, J. P.; Martorelli, R.; Pukhov, A.

    2015-12-15

    We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.

  12. Particle Acceleration by Cme-driven Shock Waves

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.

  13. Stochastic acceleration of ions driven by Pc1 wave packets

    SciTech Connect

    Khazanov, G. V. Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-07-15

    The stochastic motion of protons and He{sup +} ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10{sup −4} nT{sup 2}/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  14. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W. P.

    2010-11-04

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  15. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  16. Laser-driven ion acceleration from relativistically transparent nanotargets

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Pomerantz, I.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Allinger, K.; Hörlein, R.; Schreiber, J.; Habs, D.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.; Fernandez, J. C.

    2013-08-01

    Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  17. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    NASA Astrophysics Data System (ADS)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  18. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  19. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  20. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  1. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    SciTech Connect

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-05-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned.

  2. Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Moniz, Paulo Vargas

    2014-10-01

    In this paper, we introduce a noncommutative version of the Brans-Dicke (BD) theory and obtain the Hamiltonian equations of motion for a spatially flat Friedmann-Lemaître-Robertson-Walker universe filled with a perfect fluid. We focus on the case where the scalar potential as well as the ordinary matter sector are absent. Then, we investigate gravity-driven acceleration and kinetic inflation in this noncommutative BD cosmology. In contrast to the commutative case, in which the scale factor and BD scalar field are in a power-law form, in the noncommutative case the power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor depends on the noncommutative parameter as well as the momentum conjugate associated to the BD scalar field. We show that the BD scalar field and the scale factor effectively depend on the noncommutative parameter. For very small values of this parameter, we obtain an appropriate inflationary solution, which can overcome problems within BD standard cosmology in a more efficient manner. Furthermore, a graceful exit from an early acceleration epoch towards a decelerating radiation epoch is provided. For late times, due to the presence of the noncommutative parameter, we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.

  3. Dynamics of the accelerator-driven system as a variable gain amplifier

    SciTech Connect

    Woosley, M.L. Jr.; Rydin, R.A.

    1995-12-31

    Historically, subcritical accelerator-driven systems have been called electronuclear devices. Interest in these devices has been revived for numerous nuclear applications, such as boron neutron capture therapy, accelerator transmutation of waste (ATW), and accelerator-based conversion (ABC). The latter systems are being investigated at Los Alamos National Laboratory for energy production and radioactive waste transmutation. The ATW and ABC in particular are accelerator-(source)-driven subcritical fluid-fueled systems. System dynamics are affected by movement of delayed neutron precursors and poisons into and out of the active multiplying region, giving both a reactivity effect and reduced {Beta} (called {Beta}{sub eff}). A salient dynamic characteristic of the system is that the neutron population (power) is very sensitive to the level of subcritical reactivity, which can depend on poisoning, depletion, and thermal feedback over short operational time scales. Ruby has pointed out that the dynamic behavior of systems containing sources is not fully appreciated. It is our purpose here to illustrate some of the more interesting dynamic characteristics of systems like ATW or ABC.

  4. Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system

    SciTech Connect

    Williamson, M.A.

    1997-12-01

    This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

  5. Study of a multi-beam accelerator driven thorium reactor

    SciTech Connect

    Ludewig, H.; Aronson, A.

    2011-03-01

    The primary advantages that accelerator driven systems have over critical reactors are: (1) Greater flexibility regarding the composition and placement of fissile, fertile, or fission product waste within the blanket surrounding the target, and (2) Potentially enhanced safety brought about by operating at a sufficiently low value of the multiplication factor to preclude reactivity induced events. The control of the power production can be achieved by vary the accelerator beam current. Furthermore, once the beam is shut off the system shuts down. The primary difference between the operation of an accelerator driven system and a critical system is the issue of beam interruptions of the accelerator. These beam interruptions impose thermo-mechanical loads on the fuel and mechanical components not found in critical systems. Studies have been performed to estimate an acceptable number of trips, and the value is significantly less stringent than had been previously estimated. The number of acceptable beam interruptions is a function of the length of the interruption and the mission of the system. Thus, for demonstration type systems and interruption durations of 1sec < t < 5mins, and t > 5mins 2500/yr and 50/yr are deemed acceptable. However, for industrial scale power generation without energy storage type systems and interruption durations of t < 1sec., 1sec < t < 10secs., 10secs < t < 5mins, and t > 5mins, the acceptable number of interruptions are 25000, 2500, 250, and 3 respectively. However, it has also been concluded that further development is required to reduce the number of trips. It is with this in mind that the following study was undertaken. The primary focus of this study will be the merit of a multi-beam target system, which allows for multiple spallation sources within the target/blanket assembly. In this manner it is possible to ameliorate the effects of sudden accelerator beam interruption on the surrounding reactor, since the remaining beams will still

  6. ITEP subcritical neutron generator driven by charged particle accelerator

    SciTech Connect

    Shvedov, Oleg V.; Chuvilo, Ivan V.; Kulikov, Evgeny V.; Vasiliev, Valery V.; Igumnov, Mikhail M.; Kozodaev, Alexander M.; Volkov, Evgeny B.; Lopatkin, Alexander V.

    1995-09-15

    A research facility prototype including a combination of a linear accelerator, a neutron generating target, a subcritical multiplying system is discussed. Principles of the nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility's application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.

  7. Radiological Hazard of Spallation Products in Accelerator-Driven System

    SciTech Connect

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-09-15

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.

  8. Ultrafast electronic dynamics driven by nuclear motion

    NASA Astrophysics Data System (ADS)

    Vendrell, Oriol

    2016-05-01

    The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.

  9. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  10. Reliable-linac design for accelerator-driven subcritical reactor systems.

    SciTech Connect

    Wangler, Thomas P.,

    2002-01-01

    Accelerator reliability corresponding to a very low frequency of beam interrupts is an important new accelerator requirement for accelerator-driven subcritical reactor systems. In this paper we review typical accelerator-reliability requirements and discuss possible methods for meeting these goals with superconducting proton-linac technology.

  11. Development of the CRISP Package for Spallation Studies and Accelerator-Driven Systems

    SciTech Connect

    Anefalos, S.; Deppman, A.; Silva, Gilson da; Maiorino, J.R.; Santos, A. dos; Garcia, F.

    2005-09-15

    Power generation from nuclear reactors provides an almost inexhaustive power source due to the huge quantities of nuclear fuel existent in our planet, which guarantees its utilization for thousands of years. Interest has been shifted to the so-called hybrid reactors [accelerator-driven systems (ADS)] as an alternative technology for power generation and transmutation, thus requiring precise knowledge about nuclear structure and nuclear reaction characteristics. Research groups from Instituto de Fisica, Universidade de Sao Paulo and Brazilian Center for Research in Physics made a joint effort to develop a computer program, CRISP, to calculate the intranuclear cascade proprieties and the nuclear evaporation process, present in all nuclear reactions with energies above a few tens of mega-electron-volts, using Monte Carlo techniques. Some reaction channels were included in these programs, resulting in a more realistic representation of the processes involved, aiming at reactor physics studies and academic studies about hadron and meson properties in nuclear matter. Some results obtained with this code and a comparison with experimental data are presented. Although all these results are preliminary, they are very consistent with the available experimental data. Since the applicability of the CRISP package has a wide range of options, especially in ADS, some results describing the effectiveness of the code were achieved.

  12. New methods for high current fast ion beam production by laser-driven acceleration

    SciTech Connect

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B.; Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Picciotto, A.; Serra, E.; Giuffrida, L.; Mangione, A.; Rosinski, M.; Parys, P.; and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  13. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project

    NASA Astrophysics Data System (ADS)

    Bowman, Charles D.

    1995-09-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the U.S. and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  14. Nuclear reactions induced by a pyroelectric accelerator.

    PubMed

    Geuther, Jeffrey; Danon, Yaron; Saglime, Frank

    2006-02-10

    This work demonstrates the use of pyroelectric crystals to induce nuclear reactions. A system based on a pair of pyroelectric crystals is used to ionize gas and accelerate the ions to energies of up to 200 keV. The system operates above room temperature by simply heating or cooling the pyroelectric crystals. A D-D fusion reaction was achieved with this technique, and 2.5 MeV neutrons were detected. The measured neutron yield is in good agreement with the calculated yield. This work also verifies the results published by Naranjo, Gimzewski, and Putterman [Nature (London) 434, 1115 (2005)]. PMID:16486940

  15. Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration

    SciTech Connect

    Pae, K. H.; Choi, I. W.; Lee, J.

    2010-12-15

    Via three-dimensional particle-in-cell simulations, the self-mode-transition of a laser-driven electron acceleration from laser wakefield to plasma-wakefield acceleration is studied. In laser wakefield accelerator (LWFA) mode, an intense laser pulse creates a large amplitude wakefield resulting in high-energy electrons. Along with the laser pulse depletion, the electron bunch accelerated in the LWFA mode drives a plasma wakefield. Then, after the plasma wakefield accelerator mode is established, electrons are trapped and accelerated in the plasma wakefield. The mode transition process and the characteristics of the accelerated electron beam are presented.

  16. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  17. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ∼ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  18. Application of Burnable Absorbers in an Accelerator-Driven System

    SciTech Connect

    Wallenius, Jan; Tucek, Kamil; Carlsson, Johan; Gudowski, Waclaw

    2001-01-15

    The application of burnable absorbers (BAs) to minimize power peaking, reactivity loss, and capture-to-fission probabilities in an accelerator-driven waste transmutation system has been investigated. Boron-10-enriched B{sub 4}C absorber rods were introduced into a lead-bismuth-cooled core fueled with transuranic (TRU) discharges from light water reactors to achieve the smallest possible power peakings at beginning-of-life (BOL) subcriticality level of 0.97. Detailed Monte Carlo simulations show that a radial power peaking equal to 1.2 at BOL is attainable using a four-zone differentiation in BA content. Using a newly written Monte Carlo burnup code, reactivity losses were calculated to be 640 pcm per percent TRU burnup for unrecycled TRU discharges. Comparing to corresponding values in BA-free cores, BA introduction diminishes reactivity losses in TRU-fueled subcritical cores by {approx}20%. Radial power peaking after 300 days of operation at 1200-MW thermal power was <1.75 at a subcriticality level of {approx}0.92, which appears to be acceptable, with respect to limitations in cladding and fuel temperatures. In addition, the use of BAs yields significantly higher fission-to-capture probabilities in even-neutron-number nuclides. Fission-to-absorption probability ratio for {sup 241}Am equal to 0.33 was achieved in the configuration studied. Hence, production of the strong alpha-emitter {sup 242}Cm is reduced, leading to smaller fuel-swelling rates and pin pressurization. Disadvantages following BA introduction, such as increase of void worth and decrease of Doppler feedback in conjunction with small values of {beta}{sub eff}, need to be addressed by detailed studies of subcritical core dynamics.

  19. Accelerator Mass Spectrometry in Laboratory Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Nusair, O.; Bauder, W.; Gyürky, G.; Paul, M.; Collon, P.; Fülöp, Zs; Greene, J.; Kinoshita, N.; Palchan, T.; Pardo, R.; Rehm, K. E.; Scott, R.; Vondrasek, R.

    2016-01-01

    The extreme sensitivity and discrimination power of accelerator mass spectrometry (AMS) allows for the search and the detection of rare nuclides either in natural samples or produced in the laboratory. At Argonne National Laboratory, we are developing an AMS setup aimed in particular at the detection of medium and heavy nuclides, relying on the high ion energy achievable with the ATLAS superconducting linear accelerator and on gas-filled magnet isobaric separation. The setup was recently used for the detection of the 146Sm p-process nuclide and for a new determination of the 146Sm half-life (68.7 My). AMS plays an important role in the measurement of stellar nuclear reaction cross sections by the activation method, extending thus the technique to the study of production of long-lived radionuclides. Preliminary measurements of the 147Sm(γ,n)146Sm are described. A measurement of the 142Nd(α,γ)146Sm and 142Nd(α,n)145Sm reactions is in preparation. A new laser-ablation method for the feeding of the Electron Cyclotron Resonance (ECR) ion source is described.

  20. Particle trapping and beam transport issues in laser driven accelerators

    NASA Astrophysics Data System (ADS)

    Gwenael, Fubiani; Wim, Leemans; Eric, Esarey

    2000-10-01

    The LWFA and colliding pulses [1][2] sheme are capable of producing very compact electron bunches where the longitudinal size is much smaller than the transverse size. In this case, even if the electrons are relativistic, space charge force can affect the longitudinal and transverse bunch properties [3][4]. In the Self-modulated regime and the colliding pulse sheme, electrons are trapped from the background plasma and rapidly accelerated. We present theoretical studies of the generation and transport of electron bunches in LWFAs. The space charge effect induced in the bunch is modelled assuming the bunch is ellipsoid like. Beam transport in vacuum, comparison between gaussian and waterbag distribution, comparison between envelope model and PIC simulation will be discussed. This work is supported by the Director, Office of Science, Office of High Energy & Nuclear Physics, High Energy Physics Division, of the U.S Department of Energy, under Contract No. DE-AC03-76SF00098 [1]E.Esarey et al.,IEEE Trans. Plasma Sci. PS-24,252 (1996); W.P. Leemans et al, ibidem, 331. [2]D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B Schroeder et al., Phys. Rev. E59, 6037 (1999) [3]DESY M87-161 (1987); DESY M88-013 (1988) [4] R.W. Garnett and T.P Wangler, IEEE Part. Acce. Conf. (1991)

  1. Laser Driven Ion accelerators - current status and perspective

    SciTech Connect

    Zepf, M.; Robinson, A. P. L.

    2009-01-22

    The interaction of ultra-intense lasers with thin foil targets has recently emerged as a route to achieving extreme acceleration gradients and hence ultra-compact proton and ion accelerators. There are a number of distinct physical processes by which the protons/ions can be accelerated to energies in excess of 10 MeV. The recent development is discussed and a new mechanism--Radiation Pressure Acceleration is highlighted as a route to achieving efficient production of relativistic ions beams.

  2. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  3. Burn-up and neutron economy of accelerator-driven reactor

    SciTech Connect

    Takahashi, H.; Yang, W.; An, Y.; Yamazaki, Y.

    1997-07-01

    It is desirable to have only a small reactivity change in the large burn-up of a solid fuel fast reactor, so that the number of replacements or shuffling of the fuel can be reduced, and plant factor accordingly increased. Also, this reduces the number of control rods needed for the change in burn-up reactivity. In subcritical operation, power controlled by beam power is suggested, but this practice is not as economical as the use of control rods and makes more careful operation of the accelerator is required due to changes in the wake field. In subcritical operation, even a slightly subcritical one, the safety problems associated with a hard neutron spectrum can be alleviated. Neutron leakage from a flattened core, which is needed for operation of the critical fast reactor can be lessen by using the non flat core which has good neutron economy. For generating nuclear energy, it is essential to have a high neutron economy, although breeding the fuel is not welcomed in the present political climate, as is needed for transmuting long lived fission products. In contrast to the breeder, the accelerator driven reactor can separate the energy production from fuel production and processing. Thus, it is suited for non-proliferation of nuclear material by prohibiting the processing and production of fuel in the unrestricted area so this can be only done in international controlled areas which are restricted and remote.

  4. Neutron source in the MCNPX shielding calculating for electron accelerator driven facility

    SciTech Connect

    Zhong, Z.; Gohar, Y.

    2012-07-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of an experimental neutron source facility. It is an accelerator driven system (ADS) utilizing a subcritical assembly driven by electron accelerator. The facility will be utilized for performing basic and applied nuclear researches, producing medical isotopes, and training young nuclear specialists. Monte Carlo code MCNPX has been utilized as a design tool due to its capability to transport electrons, photons, and neutrons at high energies. However the facility shielding calculations with MCNPX need enormous computational resources and the small neutron yield per electron makes sampling difficulty for the Monte Carlo calculations. A method, based on generating and utilizing neutron source file, was proposed and tested. This method reduces significantly the required computer resources and improves the statistics of the calculated neutron dose outside the shield boundary. However the statistical errors introduced by generating the neutron source were not directly represented in the results, questioning the validity of this methodology, because an insufficiently sampled neutron source can cause error on the calculated neutron dose. This paper presents a procedure for the validation of the generated neutron source file. The impact of neutron source statistic on the neutron dose is examined by calculating the neutron dose as a function of the number of electron particles used for generating the neutron source files. When the value of the calculated neutron dose converges, it means the neutron source has scored sufficient records and statistic does not have apparent impact on the calculated neutron dose. In this way, the validity of neutron source and the shield analyses could be verified. (authors)

  5. Front-end and back-end electrochemistry of molten salt in accelerator-driven transmutation systems

    SciTech Connect

    Williamson, M.A.; Venneri, F.

    1995-07-01

    The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical methods (i.e., electrowinning). The same method provides the separation of the so-called noble metal fission products at the back-end of the fuel cycle. Both implementations would have important diversion safeguards. The proposed separation processes and a thermodynamic analysis of the electrochemical separation method are presented.

  6. Electron accelerator-driven photoneutron source for clinical environments

    NASA Astrophysics Data System (ADS)

    Dale, Gregory Edward

    There are several potential uses for a high-flux thermal neutron source in both industrial and clinical applications. The viable commercial implementation of these applications requires a low cost, high-flux thermal neutron generator suitable for installation in industrial and clinical environments. This dissertation describes the MCNP modeling results of a high-flux thermal neutron source driven with an electron accelerator. An electron linac, fitted with a standard x-ray converter, can produce high neutron yields in materials with low photonuclear threshold energies, such as D and 9Be. Calculations were performed using the Monte Carlo for N-Particle (MCNP) transport code. Modeling results indicate that a 10 MeV, 10 kW electron linac can produce on the order of 1012 n/s in a heavy water photoneutron target. A 40 cm radius, 60 cm long cylindrical heavy water photoneutron target has a photoneutron production rate equal to 5.7 x 1012 n/s. The thermal neutron flux in an unreflected, 40 cm radius, 60 cm long heavy water target is calculated to be 9.81 x 109 n/cm 2/s. The sensitivity of these answers to heavy water purity was investigated, specifically, the dilution of heavy water with light water. It was shown that the peak thermal neutron flux in an unreflected target was not adversely effected by dilution up to a light water weight fraction of 25%. The final design consists of a 40 cm radius, 60 cm long cylindrical photonuclear target reflected on all sides with 20 cm of polyethylene. The polyethylene reflector increases the maximum thermal neutron flux by 66%, to 1.40 x 1010 n/cm2/s using a 10 MeV, 1 mA (10 kW) electron linac. At this flux level the device is capable of producing 831 muCi/mg of 165Dy from natural dysprosium. The device is capable of producing 160 muCi/mg of 198Au at this flux. The neutron shielding required for the device consists of 5 cm of 5% borated polyethylene (BPE) on the front of the device, 4.25 cm of BPE on the side, and 8.5 cm of BPE on

  7. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  8. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  9. Optimizing laser-driven proton acceleration from overdense targets

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  10. Test of pixel detectors for laser-driven accelerated particle beams

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Granja, C.; Krejci, F.; Assmann, W.

    2011-12-01

    Laser-driven accelerated (LDA) particle beams have due to the unique acceleration process very special properties. In particular they are created in ultra-short bunches of high intensity exceeding more than 107 \\frac{particles}{cm^{2} \\cdot ns} per bunch. Characterization of these beams is very limited with conventional particle detectors. Non-electronic detectors such as imaging plates or nuclear track detectors are, therefore, conventionally used at present. Moreover, all these detectors give only offline information about the particle pulse position and intensity as they require minutes to hours to be processed, calling for a new highly sensitive online device. Here, we present tests of different pixel detectors for real time detection of LDA ion pulses. Experiments have been performed at the Munich 14MV Tandem accelerator with 8-20 MeV protons in dc and pulsed beam, the latter producing comparable flux as a LDA ion pulse. For detection tests we chose the position-sensitive quantum-counting semiconductor pixel detector Timepix which also provides per-pixel energy- or time-sensitivity. Additionally other types of commercially available pixel detectors are being evaluated such as the RadEye™1, a large area (25 x 50 mm2) CMOS image sensor. All of these devices are able to resolve individual ions with high spatial- and energy-resolution down to the level of μm and tens of keV, respectively. Various beam delivering parameters of the accelerator were thus evaluated and verified. The different readout modes of the Timepix detector which is operated with an integrated USB-based readout interface allow online visualization of single and time-integrated events. Therefore Timepix offers the greatest potential in analyzing the beam parameters.

  11. Laser-based acceleration for nuclear physics experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Tesileanu, O.; Asavei, Th.; Dancus, I.; Gales, S.; Negoita, F.; Turcu, I. C. E.; Ursescu, D.; Zamfir, N. V.

    2016-05-01

    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments.

  12. Guided post-acceleration of laser-driven ions by a miniature modular structure

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  13. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    SciTech Connect

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  14. Annular beam-driven high-gradient accelerators

    SciTech Connect

    Keinigs, R.; Jones, M.E.

    1988-01-01

    During the past several years there has been an increasing interest in using wakefield acceleration techniques as a means for achieving TeV energies with the next generation of linear colliders. The principal design goals for a wakefield accelerator that is to be sued in this context are high accelerating gradients and large transformer ratios. Fundamentally any slow wave structure can function as a wakefield accelerator, and several interesting concepts have been proposed. In this paper we consider for the slow wave structure a dielectrically loaded waveguide. The Dielectric Wakefield Accelerator is a very simple device. The geometry consists of a gapless cavity filled with a dielectric. The dielectric may fill all or just part of the cavity. Here we investigate driving the system with an intense annular beam, so the dielectric is separated from the wall by a vacuum region in which this beam is propagated. The primary advantage of driving with an annular beam is that larger currents can be achieved, and thus larger accelerating gradients can be generated. The drive beam is stabilized by a strong, axial magnetic field. The wall is coated with a dielectric liner to provide for better coupling. A small hole is drilled in the center of the dielectric to allow for the passage of a low current, witness beam.

  15. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    SciTech Connect

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-07-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  16. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  17. Inverse free electron lasers and laser wakefield acceleration driven by CO2 lasers.

    PubMed

    Kimura, W D; Andreev, N E; Babzien, M; Ben-Zvi, I; Cline, D B; Dilley, C E; Gottschalk, S C; Hooker, S M; Kusche, K P; Kuznetsov, S V; Pavlishin, I V; Pogorelsky, I V; Pogosova, A A; Steinhauer, L C; Ting, A; Yakimenko, V; Zigler, A; Zhou, F

    2006-03-15

    The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam. PMID:16483952

  18. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Anderson, S. G.; Anderson, G.; Betts, S.; Fisher, S.; Tremaine, A.; Musumeci, P.

    2016-02-01

    In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200 MV /m using a 4 TW 100 fs long 800 nm Ti :Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100 fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  19. Laser-driven multicharged heavy ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of <10 J laser energy, 36 fs pulse width, and the contrast level of ~1010 from 200 TW class Ti:sapphire J-KAREN laser system at JAEA is used in the experiment. Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  20. Pre-design of MYRRHA, A Multipurpose Accelerator Driven System for Research and Development

    NASA Astrophysics Data System (ADS)

    D'hondt, P.; Abderrahim, H. Aït; Kupschus, P.; Malambu, E.; Aoust, Th.; Benoit, Ph.; Sobolev, V.; Van Tichelen, K.; Arien, B.; Vermeersch, F.; Jongen, Y.; Ternier, S.; Vandeplassche, D.

    2003-08-01

    One of the main SCK•CEN research facility, namely BR2, is nowadays arriving at an age of 40 years just like the major materials testing reactors (MTR) in the world and in Europe (i.e. BR2 (B-Mol), HFR (EU-Petten), OSIRIS (F-Saclay), R2 (S-Studsvik)). The MYRRHA facility in planning has been conceived as potentially replacing BR2 and to be a fast spectrum facility complementary to the thermal spectrum RJH (Réacteur Jules Horowitz) facility, in planning in France. This situation would give Europe a full research capability in terms of nuclear R&D. Furthermore, the disposal of radioactive wastes resulting from industrial nuclear energy production has still to find a fully satisfactory solution, especially in terms of environmental and social acceptability. Scientists are looking for ways to drastically reduce (by a factor of 100 or more) the radio-toxicity of the High Level Waste (HLW) to be stored in a deep geological repository. This can be achieved via burning of minor actinides (MA) and to a less extent of long-lived fission products (LLFP) in Accelerator Driven Systems. The MYRRHA project contribution will be in helping to demonstrate the ADS concept at reasonable power level and the demonstration of the technological feasibility of MA and LLFP transmutation under real conditions.

  1. Biological shield design and analysis of KIPT accelerator-driven subcritical facility.

    SciTech Connect

    Zhong, Z.; Gohar, Y.; Nuclear Engineering Division

    2009-12-01

    Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology of Ukraine have been collaborating on the conceptual design development of an electron accelerator-driven subcritical facility. The facility will be utilized for performing basic and applied nuclear research, producing medical isotopes, and training young nuclear specialists. This paper presents the design and analyses of the biological shield performed for the top section of the facility. The neutron source driving the subcritical assembly is generated from the interaction of a 100-kW electron beam with a natural uranium target. The electron energy is in the range of 100 to 200 MeV, and it has a uniform spatial distribution. The shield design and the associated analyses are presented including different parametric studies. In the analyses, a significant effort was dedicated to the accurate prediction of the radiation dose outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The MCNPX Monte Carlo code was utilized for the transport calculation of electrons, photons, and neutrons. Weight window variance-reduction techniques were introduced, and the dose equivalent outside the shield can be calculated with reasonably good statistics.

  2. Pre-design of MYRRHA, A Multipurpose Accelerator Driven System for Research and Development

    SciTech Connect

    D'hondt, P.; Abderrahim, H. Aiet; Kupschus, P.; Malambu, E.; Aoust, Th.; Benoit, Ph.; Sobolev, V.; Tichelen, K. van; Arien, B.; Vermeersch, F.; Jongen, Y.; Ternier, S.; Vandeplassche, D.

    2003-08-26

    One of the main SCKCEN research facility, namely BR2, is nowadays arriving at an age of 40 years just like the major materials testing reactors (MTR) in the world and in Europe (i.e. BR2 (B-Mol), HFR (EU-Petten), OSIRIS (F-Saclay), R2 (S-Studsvik)). The MYRRHA facility in planning has been conceived as potentially replacing BR2 and to be a fast spectrum facility complementary to the thermal spectrum RJH (Reacteur Jules Horowitz) facility, in planning in France. This situation would give Europe a full research capability in terms of nuclear R and D. Furthermore, the disposal of radioactive wastes resulting from industrial nuclear energy production has still to find a fully satisfactory solution, especially in terms of environmental and social acceptability. Scientists are looking for ways to drastically reduce (by a factor of 100 or more) the radio-toxicity of the High Level Waste (HLW) to be stored in a deep geological repository. This can be achieved via burning of minor actinides (MA) and to a less extent of long-lived fission products (LLFP) in Accelerator Driven Systems. The MYRRHA project contribution will be in helping to demonstrate the ADS concept at reasonable power level and the demonstration of the technological feasibility of MA and LLFP transmutation under real conditions.

  3. Intense Pulsed Neutron Emission from a Compact Pyroelectric Driven Accelerator

    SciTech Connect

    Tang, V; Meyer, G; Falabella, S; Guethlein, G; Sampayan, S; Kerr, P; Rusnak, B; Morse, J

    2008-10-08

    Intense pulsed D-D neutron emission with rates >10{sup 10} n/s during the pulse, pulse widths of {approx}100's ns, and neutron yields >10 k per pulse are demonstrated in a compact pyroelectric accelerator. The accelerator consists of a small pyroelectric LiTaO{sub 3} crystal which provides the accelerating voltage and an independent compact spark plasma ion source. The crystal voltage versus temperature is characterized and compare well with theory. Results show neutron output per pulse that scales with voltage as V{approx}1.7. These neutron yields match a simple model of the system at low voltages but are lower than predicted at higher voltages due to charge losses not accounted for in the model. Interpretation of the data against modeling provides understanding of the accelerator and in general pyroelectric LiTaO{sub 3} crystals operated as charge limited negative high voltage targets. The findings overall serve as the proof-of-principle and basis for pyroelectric neutron generators that can be pulsed, giving peak neutron rates orders of magnitude greater than previous work, and notably increase the potential applications of pyroelectric based neutron generators.

  4. How dogs lap: open pumping driven by acceleration

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Socha, John; Vlachos, Pavlos; Jung, Sunghwan

    2015-11-01

    Dogs drink by lapping because they have incomplete cheeks and cannot suck fluids into the mouth. When lapping, a dog's tongue pulls a liquid column from a bath, which is then swallowed, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured the kinematics of lapping from nineteen dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments with an accelerating rod help to explain how dogs exploit the fluid dynamics of the generated column. The results suggest that effects of acceleration govern lapping frequency, and that dogs curl the tongue ventrally (backwards) and time their bite on the column to increase fluid intake per lap. Comparing lapping in dogs and cats reveals that though they both lap with the same frequency scaling with respect to body mass and have similar morphology, these carnivores lap in different physical regimes: a high-acceleration regime for dogs and a low-acceleration regime for cats.

  5. Constant Acceleration: Experiments with a Fan-Driven Dynamics Cart.

    ERIC Educational Resources Information Center

    Morse, Robert A.

    1993-01-01

    Describes the rebuilding of a Project Physics fan cart on a PASCO dynamics cart chassis for achieving greatly reduced frictional forces. Suggests four experiments for the rebuilt cart: (1) acceleration on a level track, (2) initial negative velocity, (3) different masses and different forces, and (4) inclines. (MVL)

  6. The ram accelerator - A chemically driven mass launcher

    NASA Technical Reports Server (NTRS)

    Kaloupis, P.; Bruckner, A. P.

    1988-01-01

    The ram accelerator, a chemically propelled mass driver, is presented as a viable new approach for directly launching acceleration-insensitive payloads into low earth orbit. The propulsion principle is similar to that of a conventional air-breathing ramjet. The cargo vehicle resembles the center-body of a ramjet and travels through a tube filled with a pre-mixed fuel and oxidizer mixture. The launch tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two drive modes of the ram accelerator propulsion system are described, which when used in sequence are capable of accelerating the vehicle to as high as 10 km/sec. The requirements are examined for placing a 2000 kg vehicle into a 500 km orbit with a minimum of on-board rocket propellant for circularization maneuvers. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. An indirect orbital insertion scenario is selected, utilizing a three step maneuver consisting of two burns and aerobraking. An on-board propulsion system using storable liquid propellants is chosen in order to minimize propellant mass requirements, and the use of a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept. A vehicle design using composite materials is proposed that will best meet the structural requirements, and a preliminary launch tube design is presented.

  7. Undulator radiation driven by laser-wakefield accelerator electron beams

    NASA Astrophysics Data System (ADS)

    Wiggins, S. M.; Anania, M. P.; Welsh, G. H.; Brunetti, E.; Cipiccia, S.; Grant, P. A.; Reboredo, D.; Manahan, G.; Grant, D. W.; Jaroszynski, D. A.

    2015-05-01

    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented.

  8. Accelerating Innovation: How Nuclear Physics Benefits Us All

    DOE R&D Accomplishments Database

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  9. Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses.

    PubMed

    Marceau, Vincent; April, Alexandre; Piché, Michel

    2012-07-01

    Exact closed-form solutions to Maxwell's equations are used to investigate the acceleration of electrons in vacuum driven by ultrashort and nonparaxial radially polarized laser pulses. We show that the threshold power above which significant acceleration takes place is greatly reduced by using a tighter focus. Moreover, electrons accelerated by tightly focused single-cycle laser pulses may reach around 80% of the theoretical energy gain limit, about twice the value previously reported with few-cycle paraxial pulses. Our results demonstrate that the direct acceleration of electrons in vacuum is well within reach of current laser technology. PMID:22743415

  10. Effect of plasma inhomogeneity on plasma wakefield acceleration driven by long bunches

    SciTech Connect

    Lotov, K. V.; Pukhov, A.; Caldwell, A.

    2013-01-15

    Effects of plasma inhomogeneity on self-modulating proton bunches and accelerated electrons were studied numerically. The main effect is the change of the wakefield wavelength which results in phase shifts and loss of accelerated particles. This effect imposes severe constraints on density uniformity in plasma wakefield accelerators driven by long particle bunches. The transverse two stream instability that transforms the long bunch into a train of micro-bunches is less sensitive to density inhomogeneity than are the accelerated particles. The bunch freely passes through increased density regions and interacts with reduced density regions.

  11. Positron acceleration in plasma bubble wakefield driven by an ultraintense laser

    NASA Astrophysics Data System (ADS)

    Hou, Ya-Juan; Wan, Feng; Sang, Hai-Bo; Xie, Bai-Song

    2016-01-01

    The dynamics of positrons accelerating in electron-positron-ion plasma bubble fields driven by an ultraintense laser is investigated. The bubble wakefield is obtained theoretically when laser pulses are propagating in the electron-positron-ion plasma. To restrict the positrons transversely, an electron beam is injected. Acceleration regions and non-acceleration ones of positrons are obtained by the numerical simulation. It is found that the ponderomotive force causes the fluctuation of the positrons momenta, which results in the trapping of them at a lower ion density. The energy gaining of the accelerated positrons is demonstrated, which is helpful for practical applications.

  12. E-Beam Driven Accelerators: Working Group Summary

    SciTech Connect

    Muggli, P.; Ng, J.S.T.; /SLAC

    2005-07-12

    The working group has identified the parameters of an afterburner based on the design of a future linear collider. The new design brings the center of mass energy of the collider from 1 to 2 TeV. The afterburner is located in the final focus section of the collider, operates at a gradient of {approx}4 GeV/m, and is only about 125 m long. Very important issues remain to be addressed, and include the physics and design of the positron side of the afterburner, as well as of the final focus system. Present plasma wakefield accelerator experiments have reached a level of maturity and of relevance to the afterburner, that make it timely to involve the high energy physics and accelerator community in the afterburner design process. The main result of this working group is the first integration of the designs of a future linear collider and an afterburner.

  13. e-Beam Driven Accelerators: Working Group Summary

    SciTech Connect

    Muggli, P.; Ng, J.S.T.

    2004-12-07

    The working group has identified the parameters of an afterburner based on the design of a future linear collider. The new design brings the center of mass energy of the collider from 1 to 2 TeV. The afterburner is located in the final focus section of the collider, operates at a gradient of {approx_equal}4 GeV/m, and is only about 125 m long. Very important issues remain to be addressed, and include the physics and design of the positron side of the afterburner, as well as of the final focus system. Present plasma wakefield accelerator experiments have reached a level of maturity and of relevance to the afterburner, that make it timely to involve the high energy physics and accelerator community in the afterburner design process. The main result of this working group is the first integration of the designs of a future linear collider and an afterburner.

  14. High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors

    SciTech Connect

    Bowman, C.D.; Venneri, F.

    1993-11-01

    The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

  15. Characteristics of laser-driven electron acceleration invacuum

    SciTech Connect

    Wang, P.X.; Ho, Y.K.; Yuan, X.Q.; Kong, Q.; Sessler, A.M.; Esarey, E.; Moshkovich, E.; Nishida, Y.; Yugami, N.; Ito, H.; Wang, J.X.; Scheid, S.

    2001-11-01

    The interaction of free electrons with intense laser beamsin vacuum is studied using a 3D test particle simulation model thatsolves the relativistic Newton-Lorentz equations of motion inanalytically specified laser fields. Recently, a group of solutions wasfound for very intense laser fields that show interesting and unusualcharacteristics. In particular, it was found that an electron can becaptured within the high-intensity laser region, rather than expelledfrom it, and the captured electron can be accelerated to GeV energieswith acceleration gradients on the order of tens of GeV/cm. Thisphenomenon is termed the capture and acceleration scenario (CAS) and isstudied in detail in this paper. The maximum net energy exchange by theCAS mechanism is found to be approximately proportional to a 2_o, in theregime where a_o>100, where a_o = eE_o/m_ewc is a dimensionlessparameter specifying the magnitude of the laser field. The acceleratedGeV electron bunch is a macro-pulse, with duration equal or less thanthat of the laser pulse, which is composed of many micro-pulses that areperiodic at the laser frequency. The energy spectrum of the CAS electronbunch is presented. The dependence of the energy exchange in the CAS onvarious parameters, e.g., a 2_o (laser intensity), w_o (laser radius atfocus), tao (laser pulse duration), b_o (the impact parameter), andtheta_i (the injection angle with respect to the laser propagationdirection), are explored in detail. A comparison with diverse theoreticalmodels is also presented, including a classical model based on phasevelocities and a quantum model based on nonlinear Comptonscattering.

  16. Advances in laser driven accelerator R&D

    SciTech Connect

    Leemans, Wim

    2004-08-23

    Current activities (last few years) at different laboratories, towards the development of a laser wakefield accelerator (LWFA) are reviewed, followed by a more in depth discussion of results obtained at the L'OASIS laboratory of LBNL. Recent results on laser guiding of relativistically intense beams in preformed plasma channels are discussed. The observation of mono-energetic beams in the 100 MeV energy range, produced by a channel guided LWFA at LBNL, is described and compared to results obtained in the unguided case at LOA, RAL and LBNL. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator has a very beneficial impact on the electron energy distribution. Progress on laser triggered injection is reviewed. Results are presented on measurements of bunch duration and emittance of the accelerated electron beams, that indicate the possibility of generating femtosecond duration electron bunches. Future challenges and plans towards the development of a 1 GeV LWFA module are discussed.

  17. Breeding nuclear fuels with accelerators: replacement for breeder reactors

    SciTech Connect

    Grand, P.; Takahashi, H.

    1984-01-01

    One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables.

  18. Stability study for matching in laser driven plasma acceleration

    NASA Astrophysics Data System (ADS)

    Rossi, A. R.; Anania, M. P.; Bacci, A.; Belleveglia, M.; Bisesto, F. G.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petrarca, M.; Pompili, R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Villa, F.

    2016-09-01

    In a recent paper [14], a scheme for inserting and extracting high brightness electron beams to/from a plasma based acceleration stage was presented and proved to be effective with an ideal bi-Gaussian beam, as could be delivered by a conventional photo-injector. In this paper, we extend that study, assessing the method stability against some jitters in the properties of the injected beam. We find that the effects of jitters in Twiss parameters are not symmetric in results; we find a promising configuration that yields better performances than the setting proposed in [14]. Moreover we show and interpret what happens when the beam charge profiles are modified.

  19. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano; De Nicola, Sergio

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  20. Nuclear effects in atmospheric and accelerator neutrino experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2010-11-24

    We have studied the nuclear medium effects in the neutrino (antineutrino) induced interactions in nuclei at intermediate energy region. We have applied this study to calculate the event rates for atmospheric and accelerator neutrino experiments. The study of the nuclear effects has been done for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  1. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    SciTech Connect

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-22

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  2. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  3. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  4. Dogs lap using acceleration-driven open pumping.

    PubMed

    Gart, Sean; Socha, John J; Vlachos, Pavlos P; Jung, Sunghwan

    2015-12-29

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog's tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  5. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  6. Discovery-driven research and bioinformatics in nuclear receptor and coregulator signaling.

    PubMed

    McKenna, Neil J

    2011-08-01

    Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact with coregulators and other transcription factors to direct tissue-specific programs of gene expression. Recent years have witnessed a rapid acceleration of the output of high-content data platforms in this field, generating discovery-driven datasets that have collectively described: the organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator sites in DNA (cistromics); the organization of nuclear receptors and coregulators into higher order complexes (proteomics); and their downstream effects on homeostasis and metabolism (metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this information into meaningful models of NR and coregulator biology, as well as in the archiving and communication of datasets to the global nuclear receptor signaling community. While holding great promise for the field, the ascendancy of discovery-driven research in this field brings with it a collective responsibility for researchers, publishers and funding agencies alike to ensure the effective archiving and management of these data. This review will discuss factors lying behind the increasing impact of discovery-driven research, examples of high-content datasets and their bioinformatic analysis, as well as a summary of currently curated web resources in this field. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease. PMID:21029773

  7. Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Paradkar, B. S.; Krishnagopal, S.

    2016-02-01

    Dynamics of electron heating in the radiation-pressure-driven acceleration through self-induced transparency (SIT) is investigated with the help of particle-in-cell simulations. The SIT is achieved through laser filamentation which is seeded by the transverse density modulations due to the Rayleigh-Taylor-like instability. We observe stronger SIT induced electron heating for the longer duration laser pulses leading to deterioration of accelerated ion beam quality (mainly energy spread). Such heating can be controlled to obtain a quasimonoenergetic beam by cascaded foils targets where a second foil behind the main accelerating foil acts as a laser reflector to suppress the SIT.

  8. Transmutation of high-level radioactive waste and production of {sup 233}U using an accelerator-driven reactor

    SciTech Connect

    Takahashi, Hiroshi; Takashita, Hirofumi; Chen, Xinyi

    1994-08-01

    Reactor safety, the disposal of high-level nuclear waste, and nonproliferation of nuclear material for military purposes are the problems of greatest concern for nuclear energy. Technologies for accelerators developed in the field of high-energy physics can contribute to solving these problems. For reactor safety, especially for that of a Na-cooled fast reactor, the use of an accelerator, even a small one, can enhance the safety using a slightly subcritical reactor. There is growing concern about how we can deal with weapons-grade Pu, and about the large amount of Pu accumulating from the operation of commercial reactors. It has been suggested that this Pu could be incinerated, using the reactor and a proton accelerator. However, because Pu is a very valuable material with future potential for generating nuclear energy, we should consider transforming it into a proliferation-resistant material that cannot be used for making bombs, rather than simply eliminating the Pu. An accelerator-driven fast reactor (700 MWt), run in a subcritical condition, and fueled with MOX can generate {sup 233}U more safely and efficiently than can a critical reactor. We evaluate the production of {sup 233}U, {sup 239}Pu, and the transmutation of the long-lived fission products of {sup 99}Tc and {sup 129}I, which are loaded with YH{sub 1.7} between the fast core and blanket, by reducing the conversion factor of Pu to {sup 233}U. And we assessed the rates of radiation damage, hydrogen production, and helium production in a target window and in the surrounding vessel.

  9. Nuclear waste incineration and accelerator aspects from the European PDS-XADS study

    NASA Astrophysics Data System (ADS)

    Mueller, Alex C.

    2005-04-01

    In the context of general environmental concerns, the issue of waste from nuclear power plants is a question of actual interest. Here fundamental research in Nuclear Science may have great potential impact on society and on the longer-term future. In contrast to certain non-scientifically voiced opininos, it is clear, from basic facts of Nuclear Science, that e.g. fast neutrons can transmute long-lived radio-toxic components of the spent fuel into short-lived species. Because of the flexibility and control needed for the transmutation of large quantities of nuclear waste with a high content of minor actinides, one could favor for a transmuter reactor a sub-critical system, where the needed additional neutrons come from an external source, i.e. a high-energy proton accelerator producing spallation neutrons. In the European context, a roadmap for this technology was developped by a technical expert group. Consecutive to this, the European project PDS-XADS has been launched, as a preliminary design study for an Accelerator-Driven System. Here we shall report the conclusions for the layout of the accelerator and the associated beam-line to the reactor. The technical options have been chosen with the reliability of the accelerator as prime design criterion.

  10. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    SciTech Connect

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-09-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current.

  11. Impulse Characteristics of Laser-driven In-Tube Accelerator (LITA)

    SciTech Connect

    Ohtani, Toshiro; Mori, Koichi; Sasoh, Akihiro

    2006-05-02

    In this study, impulse generation processes induced by a single laser pulse in the laser-driven in-tube accelerator are studied through pressure history measured at the center of the projectile base, which acts also as a parabolic mirror. The effects of the fill pressure, laser energy and length of a shroud are analyzed.

  12. Impulse Characteristics of Laser-driven In-Tube Accelerator (LITA)

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshiro; Mori, Koichi; Sasoh, Akihiro

    2006-05-01

    In this study, impulse generation processes induced by a single laser pulse in the laser-driven in-tube accelerator are studied through pressure history measured at the center of the projectile base, which acts also as a parabolic mirror. The effects of the fill pressure, laser energy and length of a shroud are analyzed.

  13. Spectral Features in Laser Driven Proton Acceleration from Cylindrical Solid-density Hydrogen Jets

    NASA Astrophysics Data System (ADS)

    Curry, Chandra; Gauthier, Maxence; Mishra, Rohini; Kim, Jongjin; Goede, Sebastian; Propp, Adrienne; Fiuza, Frederico; Glenzer, Siegfried H.; Williams, Jackson; Ruby, John; Goyon, Clement; Pak, Art E.; Kerr, Shaun; Tsui, Ying Y.; Ramakrishna, Bhuvanesh; Aurand, Bastian; Willi, Oswald; Roedel, Christian

    2015-11-01

    The generation of monoenergetic proton beams by ultrashort high-intensity laser-plasma interactions is of great interest for applications such as stopping power measurements, fast ignition laser confinement fusion, and ion beam therapy. In general, the commonly used mechanism of target normal sheath acceleration (TNSA) does not provide the required energy spread or maximum proton energy. Here we study alternative acceleration mechanisms, which have been identified in particle in cell (PIC) simulations, to overcome the limitations of TNSA. Using the Titan laser system at the Lawrence Livermore National Laboratory, we investigate proton acceleration from wire targets and a cryogenic solid-density hydrogen jet. Due to the cylindrical geometry, TNSA is suppressed allowing other accelerations mechanisms to become observable. Quasi-monoenergetic features in laser-forward direction are observed in the proton spectrum indicating radiation-pressure-driven acceleration mechanisms. Our experimental results are accompanied by supporting PIC simulations.

  14. Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code

    SciTech Connect

    Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi

    2005-05-24

    A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations since the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.

  15. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-07-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  16. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces.

    PubMed

    Dalui, Malay; Wang, W-M; Trivikram, T Madhu; Sarkar, Subhrangsu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J; Ayyub, P; Sheng, Z M; Krishnamurthy, M

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18)  W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  17. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  18. Verification Study of Buoyancy-Driven Turbulent Nuclear Combustion

    SciTech Connect

    2010-01-01

    Buoyancy-driven turbulent nuclear combustion determines the rate of nuclear burning during the deflagration phase (i.e., the ordinary nuclear flame phase) of Type Ia supernovae, and hence the amount of nuclear energy released during this phase. It therefore determines the amount the white dwarf str expands prior to initiation of a detonation wave, and so the amount of radioactive nickel and thus the peak luminosity of the explosion. However, this key physical process is not fully understood. To better understand this process, the Flash Center has conducted an extensive series of large-scale 3D simulations of buoyancy-driven turbulent nuclear combustion for three different physical situations. This movie shows the results for some of these simulations. Credits: Science: Ray Bair, Katherine Riley, Argonne National Laboratory; Anshu Dubey, Don Lamb, Dongwook Lee, University of Chicago; Robert Fisher, University of Massachusetts at Dartmouth and Dean Townsley, University of Alabama

 Visualization: Jonathan Gallagher, University of Chicago; Randy Hudson, John Norris and Michael E. Papka, Argonne National Laboratory/University of Chicago This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357. This research was supported in part by the National Science Foundation through TeraGrid resources provided by the University of Chicago and Argonne National Laboratory.

  19. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  20. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  1. Guided post-acceleration of laser-driven ions by a miniature modular structure.

    PubMed

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L S; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P L; Schroer, Anna M; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  2. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  3. Discovery-driven research and bioinformatics in nuclear receptor and coregulator signaling

    PubMed Central

    McKenna, Neil J

    2010-01-01

    Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact with coregulators and other transcription factors to direct tissue-specific programs of gene expression. Recent years have witnessed a rapid acceleration of the output of high content data platforms in this field, generating discovery-driven datasets that have collectively described: the organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator sites in DNA (cistromics); the organization of nuclear receptors and coregulators into higher order complexes (proteomics); and their downstream effects on homeostasis and metabolism (metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this information into meaningful models of NR and coregulator biology, as well as in the archiving and communication of datasets to the global nuclear receptor signaling community. While holding great promise for the field, the ascendancy of discovery-driven research in this field brings with it a collective responsibility for researchers, publishers and funding agencies alike to ensure the effective archiving and management of these data. This review will discuss factors lying behind the increasing impact of discovery-driven research, examples of high content datasets and their bioinformatic analysis, as well as a summary of currently curated web resources in this field. PMID:21029773

  4. Summary Report of Working Group 4: e-Beam Driven Accelerators

    SciTech Connect

    Yakimenko, V.; Ischebeck, R.

    2006-11-27

    The working group considered high transformer ration schemes for an afterburner based on the design of a future linear collider. The main linac produces high charge beams of 100 GeV. A multiple stage plasma based accelerator would accelerate a portion of this beam to 500 GeV. The length of each plasma stage is expected to be of the order of a few meters while the isochronous beam transport required for multiple stages would occupy about a kilometer. Discussions in the working group were centered on issues to be addressed: ion motion in the plasma channel, positron side of accelerator ... The state of present e-beam driven plasma and dielectric Wakefield accelerators is very mature and closely resembles parameters of the afterburner for ILC. The main result of this working group is a multistage afterburner scheme of an afterburner for ILC and discussion of the experimental program to address main issues.

  5. Summary Report of Working Group 4: e-Beam Driven Accelerators

    NASA Astrophysics Data System (ADS)

    Yakimenko, V.; Ischebeck, R.

    2006-11-01

    The working group considered high transformer ration schemes for an afterburner based on the design of a future linear collider. The main linac produces high charge beams of 100 GeV. A multiple stage plasma based accelerator would accelerate a portion of this beam to 500 GeV. The length of each plasma stage is expected to be of the order of a few meters while the isochronous beam transport required for multiple stages would occupy about a kilometer. Discussions in the working group were centered on issues to be addressed: ion motion in the plasma channel, positron side of accelerator … The state of present e-beam driven plasma and dielectric Wakefield accelerators is very mature and closely resembles parameters of the afterburner for ILC. The main result of this working group is a multistage afterburner scheme of an afterburner for ILC and discussion of the experimental program to address main issues.

  6. Three-dimensional Dielectric Photonic Crystal Structures for Laser-driven Acceleration

    SciTech Connect

    Cowan, Benjamin M.; /Tech-X, Boulder /SLAC

    2007-12-14

    We present the design and simulation of a three-dimensional photonic crystal waveguide for linear laser-driven acceleration in vacuum. The structure confines a synchronous speed-of-light accelerating mode in both transverse dimensions. We report the properties of this mode, including sustainable gradient and optical-to-beam efficiency. We present a novel method for confining a particle beam using optical fields as focusing elements. This technique, combined with careful structure design, is shown to have a large dynamic aperture and minimal emittance growth, even over millions of optical wavelengths.

  7. Energy Efficiency of an Intracavity Coupled, Laser-Driven Linear Accelerator Pumped by an External Laser

    SciTech Connect

    Neil Na, Y.C.; Siemann, R.H.; Byer, R.L.; /Stanford U., Phys. Dept.

    2005-06-24

    We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired.

  8. THE ENEA ADS PROJECT:. Accelerator Driven System Prototype R&D and Industrial Program

    NASA Astrophysics Data System (ADS)

    Gherardi, Giuseppe

    2001-11-01

    Hybrid reactors (Accelerator Driven Sub-critical Systems, ADS), coupling an accelerator with a target and a sub-critical reactor, could simultaneously burn minor actinides and transmute long-lived fission products, while producing a consistent amount of electrical energy. A group of Italian research and development (R&D) organizations and industries have set up a team, which is studying the design issues related to the construction of an 80 MWth Experimental Facility. The planned activities and the (tentative) time schedule of the Italian program are presented.

  9. Impulse-scaling in a laser-driven in-tube accelerator

    NASA Astrophysics Data System (ADS)

    Sasoh, A.; Urabe, N.; Kim, S. S. M.; Jeung, I.-S.

    The laser-driven in-tube accelerator (LITA) is a unique device for laser propulsion. It is characterized by the acceleration of a projectile in a tube. The thrust performance can be improved by exploiting a confinement effect. In the experiment, a 3.0-g projectile is vertically launched, and the momentum coupling coefficient is measured for various monoatomic gases. The measured coupling coefficient is almost proportional to the reciprocal of the speed of sound. The same impulse generation characteristics are obtained in simplified situations that are analyzed based on conservation relations.

  10. Vertical Launch Performance of Laser-driven In-Tube Accelerator

    NASA Astrophysics Data System (ADS)

    Urabe, Naohide; Kim, Sukyum; Sasoh, Akihiro; Jeung, In-Seuck

    2003-05-01

    We studied the vertical launch performance of the Laser-driven In-Tube Accelerator (LITA). This device is primarily characterized by accelerating a projectile in a tube. Owing to the confinement effect, the thrust performance is enhanced. The driver gas can be specified and its pressure be turned so that the impulse performance is optimized. In the experiments, a 3.0-gram projectile was vertically launched. The effects of the projectile exit condition, the laser beam incident direction and the driver gas species were experimentally studied.

  11. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  12. An innovative accelerator-driven inertial electrostatic confinement device using converging ion beams

    SciTech Connect

    Bauer, T. H.; Wigeland, R. A.

    1999-12-08

    Fundamental physics issues facing development of fusion power on a small-scale are assessed with emphasis on the idea of Inertial Electrostatic Confinement (IEC). The authors propose a new concept of accelerator-driven IEC fusion, termed Converging Beam Inertial Electrostatic Confinement (CB-IEC). CB-IEC offers a number of innovative features that make it an attractive pathway toward resolving fundamental physics issues and assessing the ultimate viability of the IEC concept for power generation.

  13. Summary report : working group 5 on 'electron beam-driven plasma and structure based acceleration concepts'.

    SciTech Connect

    Conde, M. E.; Katsouleas, T.

    2000-10-19

    The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner.

  14. Dependence of Initial Plasma Size on Laser-driven In-Tube Accelerator (LITA) Performance

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Ohtani, Toshiro; Sasoh, Akihiro; Choi, Jeong-Yeol

    2004-03-30

    At Tohoku University, experiments of Laser-driven In-Tube Accelerator (LITA) have been carried out. In order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this paper, dependency of initial plasma size on LITA performance is investigated numerically. The plasma size is estimated using shadowgraph images and the numerical results are compared with the experimental data of pressure measurement and results of previous modeling.

  15. Dependence of Initial Plasma Size on Laser-driven In-Tube Accelerator (LITA) Performance

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Ohtani, Toshiro; Sasoh, Akihiro; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-01

    At Tohoku University, experiments of Laser-driven In-Tube Accelerator (LITA) have been carried out. In order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this paper, dependency of initial plasma size on LITA performance is investigated numerically. The plasma size is estimated using shadowgraph images and the numerical results are compared with the experimental data of pressure measurement and results of previous modeling.

  16. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  17. Fabrication of nanostructured targets for improved laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Scisciò, M.; Veltri, S.; Antici, P.

    2016-07-01

    In this work, we present a novel realization of nanostructured targets suitable for improving laser-driven proton acceleration experiments, in particular with regard to the Target-Normal-Sheath Acceleration (TNSA) acceleration mechanism. The nanostructured targets, produced as films, are realized by a simpler and cheaper method than using conventional lithographic techniques. The growth process includes a two step approach for the production of the gold nanoparticle layers: 1) Laser Ablation in Solution and 2) spray-dry technique using a colloidal solution on target surfaces (Aluminum, Mylar and Multi Walled Carbon Nanotube). The obtained nanostructured films appear, at morphological and chemical analysis, uniformly nanostructured and the nanostructure distributed on the target surfaces without presence of oxides or external contaminants. The obtained targets show a broad optical absorption in all the visible region and a surface roughness that is two times greater than non-nanostructured targets, enabling a greater laser energy absorption during the laser-matter interaction experiments producing the laser-driven proton acceleration.

  18. LASER WAKEFIELD ACCELERATION DRIVEN BY ATF CO2 LASER (STELLA-LW).

    SciTech Connect

    KIMURA,W.D.; ANDREEV,N.E.; BABZIEN,M.; BEN-ZVI,I.; ET AL.

    2004-09-25

    A new experiment has begun that builds upon the successful Staged Electron Laser Acceleration (STELLA) experiment, which demonstrated high-trapping efficiency and narrow energy spread in a staged laser-driven accelerator. STELLA was based upon inverse free electron lasers (IFEL); the new experiment, called STELLA-LW, is based upon laser wakefield acceleration (LWFA). The first phase of STELLA-LW will be to demonstrate LWFA in a capillary discharge driven by the Brookhaven National Laboratory Accelerator Test Facility (ATF) terawatt CO{sub 2} laser beam. This will be the first time LWFA is conducted at 10.6-{micro}m laser wavelength. It will also be operating in an interesting pseudo-resonant regime where the laser pulse length is too long for resonant LWFA, but too short for self-modulated LWFA. Analysis has shown that in pseudo-resonant LWFA, pulse-steepening effects occur on the laser pulse that permits generation of strong wakefields. Various approaches are being explored for the capillary discharge including polypropylene and hydrogen-filled capillaries. Planned diagnostics for the experiment include coherent Thomson scattering (CTS) to detect the wakefield generation. This will be one of the first times CTS is used on a capillary discharge.

  19. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    SciTech Connect

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  20. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Robinson, K. E.; Toth, Cs.; Gruener, F.; Bakeman, M.; Nakamura, K.; Esarey, E.; Leemans, W. P.

    2009-01-22

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by a high-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source ({approx}10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (> or approx.10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10{sup 13} photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  1. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration. PMID:25860747

  2. Design of a free-electron laser driven by the LBNLlaser-plasma-accelerator

    SciTech Connect

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-09-10

    We discuss the design and current status of a compactfree-electron laser (FEL), generating ultra-fast, high-peak flux, VUVpulses driven by a high-current, GeV electron beam from the existingLawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator,whose active acceleration length is only a few cm. The proposedultra-fast source would be intrinsically temporally synchronized to thedrive laser pulse, enabling pump-probe studies in ultra-fast science withpulse lengths of tens of fs. Owing to the high current (&10 kA) ofthe laser-plasma-accelerated electron beams, saturated output fluxes arepotentially greater than 1013 photons/pulse. Devices based both on SASEand high-harmonic generated input seeds, to reduce undulator length andfluctuations, are considered.

  3. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K. E.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2008-08-04

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (~;;10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10^13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  4. Laser-driven electron beam acceleration and future application to compact light sources

    SciTech Connect

    Hafz, N.; Jeong, T. M.; Lee, S. K.; Pae, K. H.; Sung, J. H.; Choi, I. W.; Yu, T. J.; Lee, J.; Jeong, Y. U.

    2009-07-25

    Laser-driven plasma accelerators are gaining much attention by the advanced accelerator community due to the potential these accelerators hold in miniaturizing future high-energy and medium-energy machines. In the laser wakefield accelerator (LWFA), the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal plasma wave or bubble. Due to huge charge separation, electric fields created in the plasma bubble can be several orders of magnitude higher than those available in conventional microwave and RF-based accelerator facilities which are limited (up to approx100 MV/m) by material breakdown. Therefore, if an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within an extremely short distance. Here, in the LWFA we show the generation of high-quality and high-energy electron beams up to the GeV-class within a few millimeters of gas-jet plasmas irradiated by tens of terawatt ultrashort laser pulses. Thus we realize approximately four orders of magnitude acceleration gradients higher than available by conventional technology. As a practical application of the stable high-energy electron beam generation, we are planning on injecting the electron beams into a few-meters long conventional undulator in order to realize compact X-ray synchrotron (immediate) and FEL (future) light sources. Stable laser-driven electron beam and radiation devices will surely open a new era in science, medicine and technology and will benefit a larger number of users in those fields.

  5. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    NASA Astrophysics Data System (ADS)

    Feizi, H.; Ranjbar, A. H.

    2016-02-01

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ-n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies.

  6. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  7. The role of accelerators in the nuclear fuel cycle

    SciTech Connect

    Takahashi, Hiroshi.

    1990-01-01

    The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 {approximately} 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the use of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs.

  8. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  9. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  10. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Schmeltz, M.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2016-03-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  11. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE PAGESBeta

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; et al

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gainmore » results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  12. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency.

    PubMed

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J; Wilson, Robbie; Dance, Rachel J; Powell, Haydn; Maclellan, David A; McCreadie, John; Butler, Nicholas M H; Hawkes, Steve; Green, James S; Murphy, Chris D; Stockhausen, Luca C; Carroll, David C; Booth, Nicola; Scott, Graeme G; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  13. Development and analysis of a metal-fueled accelerator-driven burner

    SciTech Connect

    Lypsch, F.; Hill, R. N.

    1995-09-15

    The purpose of this paper is to compare the safety characteristics of an accelerator driven metal-fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcriticality of the system. To accomplish this, an accelerator proton beam/tungsten neutron source model is surrounded by a subcritical blanket using metallic fuel and sodium as coolant. The consequences of typical accident transients, namely unprotected transient overpower (TOP), loss of heat sink (LOHS), and loss of flow (LOF) were calculated for the hybrid system and compared to corresponding results for a metal-fueled fast reactor. Results indicate that the subcritical system exhibits superior performance for TOP (reactivity-induced) transients; however, only in the critical system are reactivity feedbacks able to cause passive shutdown in the LOHS and LOF events. Therefore, for a full spectrum of accident initiators considered, the overall safety behavior of accelerator-driven metal-fueled systems can neither be concluded to be worse nor to be better than advanced reactor designs which rely on passive safety features.

  14. Development and analysis of a metal-fueled accelerator-driven burner

    SciTech Connect

    Lypsch, F.; Hill, R.N.

    1994-08-01

    The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To accomplish this an accelerator proton beam/tungsten neutron source model is surrounded by a subcritical blanket using metallic fuel and sodium as coolant. The consequences of typical accident transients, namely unprotected transient overpower (TOP), loss of heat sink (LOHS), and loss of flow (LOP) were calculated for the hybrid system and compared to corresponding results for a metal-fueled fast reactor. Results indicate that the subcritical system exhibits superior performance for TOP (reactivity-induced) transits; however, only in the critical system are reactivity feedbacks able to cause passive shutdown in the LOHS ad LOP events. Therefore, for a full spectrum of accident initiators considered, the overall safety behavior of accelerator-driven metal-fueled systems can neither be concluded to be worse nor to be better than advanced reactor designs which rely on passive safety features.

  15. A non-hydrodynamical model for acceleration of line-driven winds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Risaliti, G.; Elvis, M.

    2010-06-01

    Context. Radiation driven winds are the likely origin of AGN outflows, and are believed to be a fundamental component of the inner structure of AGNs. Several hydrodynamical models have been developed, showing that these winds can be effectively launched from AGN accretion disks. Aims: Here we want to study the acceleration phase of line-driven winds in AGNs, in order to examine the physical conditions required for the existence of such winds for a wide variety of initial conditions. Methods: We built a simple and fast non-hydrodynamic model QWIND, where we assume that a wind is launched from the accretion disk at supersonic velocities of a few 100 km s-1, and we concentrated on the subsequent supersonic phase, when the wind is accelerated to final velocities up to 104 km s-1. Results: We show that, with a set of initial parameters in agreement with observations in AGNs, this model can produce a wind with terminal velocities on the order of 104 km s-1. There are three zones in the wind, only the middle one of which can launch a wind: in the inner zone the wind is too ionized and so experiences only the Compton radiation force, which is not effective in accelerating gas. This inner “failed wind” is important for shielding the next zone by lowering the ionization parameter there. In the middle zone the lower ionization of the gas leads to a much larger radiation force and the gas achieves escape velocity This middle zone is quite thin (about 100 gravitational radii). The outer, third zone is shielded from the UV radiation by the central wind zone, so does not achieve a high enough acceleration to reach escape velocity. We also describe a simple analytic approximation of our model, in which we neglect the effects of gravity during the acceleration phase. This analytic approach agrees with the results of the numerical code, and is a powerful way to check whether a radiation driven wind can be accelerated with a given set of initial parameters. Conclusions: Our

  16. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke; Sasoh, Akihiro

    2006-05-02

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  17. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    SciTech Connect

    Cao, Y.; Gohar, Y.

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  18. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  19. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53

    PubMed Central

    Rae, Joel; Hogan, Kate; Ejiama, Sarah; Girotti, Maria Romina; Cook, Martin; Dhomen, Nathalie; Marais, Richard

    2014-01-01

    Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear1,2. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event3. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a V600EBRAF mouse model. In mice expressing V600EBRAF in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. We show that sunscreen (UVA superior: UVB SPF50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours presented increased numbers of single nucleotide variants (SNVs) and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in ~40% of cases. TP53 is an accepted UVR target in non-melanoma skin cancer, but is not thought to play a major role in melanoma4. However, we show that mutant Trp53 accelerated V600EBRAF-driven melanomagenesis and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans5. We identify TP53/Trp53 as a UVR-target gene that cooperates with V600EBRAF to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma. PMID:24919155

  20. Comparison of Lead-Bismuth and Lead as Coolants for Accelerator Driven Systems

    SciTech Connect

    Bianchi, F.; Mattioda, F.; Meloni, P.

    2002-07-01

    In the framework of the Italian research program TRASCO (TRAsmutazione SCOrie, namely transmutation of radioactive wastes) and of the European research program PDS-XADS (Preliminary Design Study on an eXperimental Accelerator Driven System) the feasibility and operability of gas or liquid metal cooled accelerator driven system prototypes are currently under investigation. Initially the attention of the thermal-hydraulics group of ENEA research centre in Bologna has been focussed toward a lead-bismuth cooled subcritical system under natural or enhanced natural circulation according to the prototype design proposed. The interest in using lead as a coolant, which is characterized by a higher melting point, is explained by the need to increase the plant efficiency for the economic competitiveness, though the higher temperatures pose some technological problems. Moreover, the amount of activation products should result significantly lower. Of course the results obtained and the experience gained analysing the dynamical behaviour of the lead-bismuth cooled system cannot be directly transferred to lead cooled systems. This paper aims at presenting a preliminary comparison of lead-bismuth and lead in a simplified liquid metal cooled subcritical system, mainly from the thermal-hydraulics and system dynamics points of view. By means of the modified RELAP5 version, the dynamical behavior of a lead-bismuth or lead cooled system, which is intended to be a quite accurate representation of the Italian accelerator driven prototype XADS, has been studied. Although a more exhaustive comparison should take into account the necessarily different structural characteristics of lead-bismuth and lead cooled systems, the neutronic feedback on reactor power and also the slightly different neutronic properties of lead-bismuth and lead, the purely thermal-hydraulic analysis presented in this paper has shown that the dynamical behaviour of the XADS does not differ noticeable when lead is used

  1. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    SciTech Connect

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  2. Freezing, accelerating, and slowing directed currents in real time with superimposed driven lattices

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Aritra K.; Liebchen, Benno; Wulf, Thomas; Schmelcher, Peter

    2016-05-01

    We provide a generic scheme offering real-time control of directed particle transport using superimposed driven lattices. This scheme allows one to accelerate, slow, and freeze the transport on demand by switching one of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and closing of channels between transporting and nontransporting phase space structures upon switching and exploits cantori structures which generate memory effects in the population of these structures. Our results should allow for real-time control of cold thermal atomic ensembles in optical lattices but might also be useful as a design principle for targeted delivery of molecules or colloids in optical devices.

  3. Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam.

    PubMed

    Dai, Lin; Li, Jian-Xing; Zang, Wei-Ping; Tian, Jian-Guo

    2011-05-01

    Electron acceleration in vacuum driven by a tightly focused radially polarized Gaussian beam has been studied in detail. Weniger transformation method is used to eliminate the divergence of the radially polarized electromagnetic field derived from the Lax series approach. And, electron dynamics in an intense radially polarized Gaussian beam is analyzed by using the Weniger transformation field. The roles of the initial phase of the electromagnetic field and the injection angle, position and energy of electron in energy gain of electron have been studied in detail. PMID:21643185

  4. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-30

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  5. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-01

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  6. Proposed method for high-speed plasma density measurement in proton-driven plasma wakefield acceleration

    SciTech Connect

    Tarkeshian, R.; Reimann, O.; Muggli, P.

    2012-12-21

    Recently a proton-bunch-driven plasma wakefield acceleration experiment using the CERN-SPS beam was proposed. Different types of plasma cells are under study, especially laser ionization, plasma discharge, and helicon sources. One of the key parameters is the spatial uniformity of the plasma density profile along the cell that has to be within < 1% of the nominal density (6 Multiplication-Sign 10{sup 14} cm{sup -3}). Here a setup based on a photomixing concept is proposed to measure the plasma cut-off frequency and determine the plasma density.

  7. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    NASA Astrophysics Data System (ADS)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  8. Acceleration of laser-driven ion bunch from double-layer thin foils

    SciTech Connect

    Wang, X.; Liang, E.; Yu, W.; Yu, M. Y.

    2012-05-15

    Generation of monoenergetic ion bunch from a double-layer thin-foil target irradiated by an intense linearly polarized laser pulse is investigated using two-dimensional particle-in-cell simulation. The protons in the front low-density hydrogen target layer accelerated by the space-charge field of the laser-driven hot electrons can penetrate through the high-Z high-mass and high-density ion layer, resulting in an energetic proton bunch. A part of the latter is further accelerated by the space-charge field of the hot electrons in the vacuum behind the high-Z ion layer. With this scheme, quasi-monoenergetic proton bunches can be produced using presently available laser pulses of moderate contrast and duration.

  9. Influence of radiation reaction force on ultraintense laser-driven ion acceleration.

    PubMed

    Capdessus, R; McKenna, P

    2015-05-01

    The role of the radiation reaction force in ultraintense laser-driven ion acceleration is investigated. For laser intensities ∼10(23)W/cm(2), the action of this force on electrons is demonstrated in relativistic particle-in-cell simulations to significantly enhance the energy transfer to ions in relativistically transparent targets, but strongly reduce the ion energy in dense plasma targets. An expression is derived for the revised piston velocity, and hence ion energy, taking account of energy loses to synchrotron radiation generated by electrons accelerated in the laser field. Ion mass is demonstrated to be important by comparing results obtained with proton and deuteron plasma. The results can be verified in experiments with cryogenic hydrogen and deuterium targets. PMID:26066270

  10. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    SciTech Connect

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  11. Accelerator-Driven Subcritical Reactors in Japanese Universities: Experimental Study Using the Kyoto University Critical Assembly

    SciTech Connect

    Shiroya, S.; Unesaki, H.; Misawa, T.

    2001-06-17

    A series of basic experiments for an accelerator-driven sub-critical reactor (ADSR) was officially launched in financial year 2000 at the Kyoto University Critical Assembly (KUCA) as a joint-use program among Japanese universities. These experiments are closely related to the future plan of the Kyoto University Research Reactor Institute. A final goal of this plan is to establish a next-generation neutron source as a substitute for the 5-MW Kyoto University Reactor and based on the ADSR concept to promote joint research among Japanese universities. An attractive point of the ADSR system is that either pulsed or steady neutrons can be provided depending on the accelerator's operation mode.

  12. Electron self-injection in the proton-driven-plasma-wakefield acceleration

    SciTech Connect

    Hu, Zhang-Hu; Wang, You-Nian

    2013-12-15

    The self-injection process of plasma electrons in the proton-driven-plasma-wakefield acceleration scheme is investigated using a two-dimensional, electromagnetic particle-in-cell method. Plasma electrons are self-injected into the back of the first acceleration bucket during the initial bubble formation period, where the wake phase velocity is low enough to trap sufficient electrons. Most of the self-injected electrons are initially located within a distance of the skin depth c/ω{sub pe} to the beam axis. A decrease (or increase) in the beam radius (or length) leads to a significant reduction in the total charges of self-injected electron bunch. Compared to the uniform plasma, the energy spread, emittance and total charges of the self-injected bunch are reduced in the plasma channel case, due to a reduced injection of plasma electrons that initially located further away from the beam axis.

  13. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    SciTech Connect

    Wender, S.A.; Venneri, F.; Bowman, C.D.; Arthur, E.D.; Heighway, E.A.; Beard, C.A.; Bracht, R.R.; Buksa, J.J.; Chavez, W.; DeVolder, B.G.

    1994-10-01

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MW{sub t}.

  14. Development of High Gradient Laser Wakefield Accelerators Towards Nuclear Detection Applications at LBNL

    SciTech Connect

    Geddes, Cameron G. R.; Gonsalves, Anthony J.; Lin Chen; Cormier-Michel, Estelle; Matlis, Nicholas H.; Panasenko, Dmitriy; Plateau, Guillaume R.; Schroeder, Carl B.; Toth, Csaba; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Nakamura, Kei; Bakeman, Mike; Leemans, Wim P.

    2009-03-10

    Compact high-energy linacs are important to applications including monochromatic gamma sources for nuclear material security applications. Recent laser wakefield accelerator experiments at LBNL demonstrated narrow energy spread beams, now with energies of up to 1 GeV in 3 cm using a plasma channel at low density. This demonstrates the production of GeV beams from devices much smaller than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeV energies. Stable performance at 0.5 GeV was demonstrated. Experiments and simulations are in progress to control injection of particles into the wake and hence to improve beam quality and stability. Using plasma density gradients to control injection, stable beams at 1 MeV over days of operation, and with an order of magnitude lower absolute momentum spread than previously observed, have been demonstrated. New experiments are post-accelerating the beams from controlled injection experiments to increase beam quality and stability. Thomson scattering from such beams is being developed to provide collimated multi-MeV monoenergetic gamma sources for security applications from compact devices. Such sources can reduce dose to target and increase accuracy for applications including photofission and nuclear resonance fluorescence.

  15. Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL

    SciTech Connect

    Geddes, Cameron GR; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Gonsalves, Anthony J.; Lin, Chen; Cormier-Michel, Estelle; Matlis, Nicholas H.; Nakamura, Kei; Bakeman, Mike; Panasenko, Dmitriy; Plateau, Guillaume R.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2008-09-08

    Compact high-energy linacs are important to applications including monochromatic gamma sources for nuclear material security applications. Recent laser wakefield accelerator experiments at LBNL demonstrated narrow energy spread beams, now with energies of up to 1 GeV in 3 cm using a plasma channel at low density. This demonstrates the production of GeV beams from devices much smaller than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeV energies. Stable performance at 0.5 GeV was demonstrated. Experiments and simulations are in progress to control injection of particles into the wake and hence to improve beam quality and stability. Using plasma density gradients to control injection, stable beams at 1 MeV over days of operation, and with an order of magnitude lower absolute momentum spread than previously observed, have been demonstrated. New experiments are post-accelerating the beams from controlled injection experiments to increase beam quality and stability. Thomson scattering from such beams is being developed to provide collimated multi-MeV monoenergetic gamma sources for security applications from compact devices. Such sources can reduce dose to target and increase accuracy for applications including photofission and nuclear resonance fluorescence.

  16. A Fast, Electromagnetically Driven Supersonic Gas Jet Target For Laser Wakefield Acceleration

    SciTech Connect

    Krishnan, Mahadevan; Wright, Jason; Ma, Timothy

    2009-01-22

    Laser-Wakefield acceleration (LWFA) promises electron accelerators with unprecedented electric field gradients. Gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for LWFA. Present gas jets have lengths of only 2-4 mm at densities of 1-4x10{sup 19} /cm{sup 3}, sufficient for self-trapping and acceleration to energies up to {approx}150 MeV. While 3 cm capillary structures have been used to accelerate beams up to 1 GeV, gas jets require a well-collimated beam that is {>=}10 mm in length and <500 {mu}m in width, with a tunable gas density profile to optimize the LWFA process. This paper describes the design of an electromagnetically driven, fast supersonic gas valve that opens in <100 {mu}s, closes in <500 {mu}s and can operate at pressures beyond 1000 psia. The motion of the valve seat (flyer plate) is measured using a laser probe and compared with predictions of a model. The valve design is based on an optimization of many parameters: flyer plate mass and durability, driver bank speed and stored energy for high rep-rate (>10 Hz) operation, return spring non-linearity and materials selection for various components. Optimization of the valve dynamics and preliminary designs of the supersonic flow patterns are described.

  17. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  18. Status of development of actinide blanket processing flowsheets for accelerator transmutation of nuclear waste

    SciTech Connect

    Dewey, H.J.; Jarvinen, G.D.; Marsh, S.F.; Schroeder, N.C.; Smith, B.F.; Villarreal, R.; Walker, R.B.; Yarbro, S.L.; Yates, M.A.

    1993-09-01

    An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nuclear power plant is presented as an example. The emphasis here is on a possible aqueous processing flowsheet to separate the actinides and selected long-lived fission products from the remaining fission products within the transmutation system. In the proposed system the actinides circulate through the thermal neutron flux as a slurry of oxide particles in heavy water in two loops with different average residence times: one loop for neptunium and plutonium and one for americium and curium. Material from the Np/Pu loop is processed with a short cooling time (5-10 days) because of the need to keep the total actinide inventory, low for this particular ATW application. The high radiation and thermal load from the irradiated material places severe constraints on the separation processes that can be used. The oxide particles are dissolved in nitric acid and a quarternary, ammonium anion exchanger is used to extract neptunium, plutonium, technetium, and palladium. After further cooling (about 90 days), the Am, Cm and higher actinides are extracted using a TALSPEAK-type process. The proposed operations were chosen because they have been successfully tested for processing high-level radioactive fuels or wastes in gram to kilogram quantities.

  19. Nonlinear development of strong current-driven instabilities and selective acceleration of ^3He ions

    NASA Astrophysics Data System (ADS)

    Toida, Mieko; Okumura, Hayato

    2003-10-01

    In some solar flares, the abundance of high-energy ^3He ions is extremely increased. As a mechanism for these ^3He rich events, current-driven instabilities are believed to be important. Nonlinear development of the strong current-driven instabilities and associated energy transfer to ^3He ions are studied theoretically and numerically [1]. First, by means of a two-dimensional, electrostatic, particle simulation code, it is demonstrated that ^3He ions are selectively accelerated by fundamental H cyclotron waves with frequencies ω ≃ 2Ω_3He (Ω_3He is the cyclotron frequency of ^3He). Then, from the analysis of the dispersion relation of these waves, it is found that the ω ≃ 2 Ω_ 3He waves have the greatest growth rate, if Te > 10 T_H. Energies of the ^3He ions are also discussed. Theoretical expression for the maximum ^3He energy is presented, which is in good agreement with the simulation results. Based on this theory, it is shown that when the initial electron drift energy is of the order of 10 keV, many ^3He ions can be accelerated to energies of the order of MeV/n. [1] M. Toida and H. Okumura, J. Phys. Soc. Jpn. 72,1098 (2003)

  20. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  1. Gaseous core nuclear-driven engines featuring a self-shutoff mechanism to provide nuclear safety

    SciTech Connect

    Heidrich, J.; Pettibone, J.; Chow, Tze-Show; Condit, R.; Zimmerman, G.

    1991-11-01

    Nuclear driven engines are described that could be run in either pulsed or steady state modes. In the pulsed mode nuclear energy is released by fissioning of uranium or plutonium in a supercritical assembly of fuel and working gas. In a steady state mode a fuel-gas mixture is injected into a magnetic nozzle where it is compressed into a critical state and produces energy. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff or control of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled up from about 100 MW{sub e}.

  2. Nuclear Fusion Drives Present-Day Accelerated Cosmic Expansion

    SciTech Connect

    Ying, Leong

    2010-09-30

    The widely accepted model of our cosmos is that it began from a Big Bang event some 13.7 billion years ago from a single point source. From a twin universe perspective, the standard stellar model of nuclear fusion can account for the Dark Energy needed to explain the mechanism for our present-day accelerated expansion. The same theories can also be used to account for the rapid inflationary expansion at the earliest time of creation, and predict the future cosmic expansion rate.

  3. Collisionless shocks and particle acceleration in laser-driven laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2012-10-01

    Collisionless shocks are pervasive in space and astrophysical plasmas, from the Earth's bow shock to Gamma Ray Bursters; however, the microphysics underlying shock formation and particle acceleration in these distant sites is not yet fully understood. Mimicking these extreme conditions in laboratory is a grand challenge that would allow for a better understanding of the physical processes involved. Using ab initio multi-dimensional particle-in-cell simulations, shock formation and particle acceleration are investigated for realistic laboratory conditions associated with the interaction of intense lasers with high-energy-density plasmas. Weibel-instability-mediated shocks are shown to be driven by the interaction of an ultraintense laser with overcritical plasmas. In this piston regime, the laser generates a relativistic flow that is Weibel unstable. The strong Weibel magnetic fields deflect the incoming flow, compressing it, and forming a shock. The resulting shock structure is consistent with previous simulations of relativistic astrophysical shocks, demonstrating for the first time the possibility of recreating these structures in laboratory. As the laser intensity is decreased and near-critical density plasmas are used, electron heating dominates over radiation pressure and electrostatic shocks can be formed. The electric field associated with the shock front can reflect ions from the background accelerating them to high energies. It is shown that high quality 200 MeV proton beams, required for tumor therapy, can be generated by using an exponentially decaying plasma profile to control competing accelerating fields. These results pave the way for the experimental exploration of space and astrophysical relevant shocks and particle acceleration with current laser systems.

  4. A Data-Driven Analytical Model for Proton Acceleration at Remotely Observed Low Coronal Shocks

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen; Schwadron, Nathan

    2016-04-01

    We have recently studied the development of a large-scale off-limb coronal bright front (OCBF) low in the solar corona (Kozarev et al., 2015), by using remote observations from the Solar Dynamics Observatory's Advanced Imaging Assembly EUV telescopes, combined with several data-driven models. Similar to previous studies (Kozarev et al., 2011; Downs et al., 2012), we determined that the observed feature is a driven magnetohydrodynamic (MHD) wave, which steepens into a shock within the AIA field of view (FOV). In that study, we obtained high-temporal resolution estimates of parameters of the OCBF, which regulate the efficiency of acceleration of charged particles within the theoretical framework of Diffusive Shock Acceleration (DSA). These parameters include the time-dependent shock radius Rsh, speed V sh and strength r, as well as the upstream (in the shock frame) potential coronal magnetic field orientations with respect of the shock surface normal, θBN. Because of the very high cadence of the AIA telescope, we were able to obtain estimates of these quantities for every 12 seconds of the approximately 8 minutes, which the OCBF spent in the AIA field of view. Here we present a simple analytical model for the particle acceleration from low in the corona, which has been developed to incorporate the remotely observed OCBF properties described above. We showcase the model by applying it to the event studied in Kozarev et al. (2015), and show that it can produce significant increase in the particle energies during the short passage of the OCBF in the AIA field of view.

  5. Effect of resistivity gradient on laser-driven electron transport and ion acceleration

    SciTech Connect

    Zhuo, H. B.; Yang, X. H.; Ma, Y. Y.; Li, X. H.; Zhou, C. T.; Yu, M. Y.

    2013-09-15

    The effect of resistivity gradient on laser-driven electron transport and ion acceleration is investigated using collisional particle-in-cell simulation. The study is motivated by recent proton acceleration experiments [Gizzi et al., Phys. Rev. ST Accel. Beams 14, 011301 (2011)], which showed significant effect of the resistivity gradient in layered targets on the proton angular spread. This effect is reproduced in the present simulations. It is found that resistivity-gradient generation of magnetic fields and inhibition of electron transport is significantly enhanced when the feedback interaction between the magnetic field and the fast-electron current is included. Filamentation of the laser-generated hot electron jets inside the target, considered as the origin of the nonuniform proton patterns observed in the experiments, is clearly suppressed by the resistive magnetic field. As a result, the electrostatic sheath field at the target back surface acquires a relatively smooth profile, which contributes to the superior quality of the proton beams accelerated off layered targets in the experiments.

  6. A Nuclear-Powered Laser-Accelerated Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    2003-01-01

    Recent experiments at the University of Michigan and other laboratories throughout the world have demonstrated that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. The terrawatt laser at the University of Michigan has generated a beam of protons containing more than 1010 particles at a mean energy of over one Mev while the petawatt laser at the Lawrence Livermore National Laboratory has produced proton beams containing more than 1014 particles with maximum energy of 58 Mev and a mean energy of about 6 Mev. Using the latter data as a basis for a present-day LAPPS (Laser Accelerated Plasma Propulsion System) propulsion device we show that it can produce a specific impulse of several million seconds albeit at a fraction of a Newton of thrust. We show that if the thrust can be increased to a modest 25 Newtons a fly-by robotic interstellar mission to 10,000 AU can be achieved in about 26 years, while a round trip to Mars will be accomplished in about 6 months. In both instances a one MWe nuclear power system with a mass of about 5 MT will be needed to drive the laser, and the recently announced NASA's Nuclear Space Initiative should be able to address such reactors in the near future.

  7. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    PubMed

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed. PMID:26235186

  8. Conceptual design of thorium-fuelled Mitrailleuse accelerator-driven subcritical reactor using D-Be neutron source

    SciTech Connect

    Kokubo, Y.; Kamei, T.

    2012-07-01

    A distributed accelerator is a charged-particle accelerator that uses a new acceleration method based on repeated electrostatic acceleration. This method offers outstanding benefits not possible with the conventional radio-frequency acceleration method, including: (1) high acceleration efficiency, (2) large acceleration current, and (3) lower failure rate made possible by a fully solid-state acceleration field generation circuit. A 'Mitrailleuse Accelerator' is a product we have conceived to optimize this distributed accelerator technology for use with a high-strength neutron source. We have completed the conceptual design of a Mitrailleuse Accelerator and of a thorium-fuelled subcritical reactor driven by a Mitrailleuse Accelerator. This paper presents the conceptual design details and approach to implementing the subcritical reactor core. We will spend the next year or so on detailed design work, and then will start work on developing a prototype for demonstration. If there are no obstacles in setting up a development organization, we expect to finish verifying the prototype's performance by the third quarter of 2015. (authors)

  9. Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods

    PubMed Central

    Kozerke, Sebastian; Plein, Sven

    2008-01-01

    Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone. With all acceleration techniques, careful consideration of the limits and the trade-off between acceleration and occurrence of artifacts that may arise if these limits are breached is required. In parallel imaging the spatially varying noise has to be considered when measuring contrast- and signal-to-noise ratios. Also, temporal fidelity in images reconstructed with prior knowledge driven methods has to be studied carefully. PMID:18534005

  10. Accelerator-driven transmutation of high-level waste from the defense and commercial sectors

    SciTech Connect

    Bowman, C.; Arthur, E.; Beard, C.

    1996-09-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while generating useful electrical power and without producing a long-lived radioactive waste stream. We have identified and quantified the unique qualities of subcritical nuclear systems and their capabilities in bringing about the complete destruction of plutonium. Although the 1191 subcritical systems involved in our most effective designs radically depart from traditional nuclear reactor concepts, they are based on extrapolations of existing technologies. Overall, care was taken to retain the highly desired features that nuclear technology has developed over the years within a conservative design envelope. We believe that the ATW systems designed in this project will enable almost complete destruction of nuclear waste (conversion to stable species) at a faster rate and without many of the safety concerns associated with the possible reactor approaches.

  11. Design and testing of a dc ion injector suitable for accelerator-driven transmutation

    SciTech Connect

    Schneider, J.D.; Meyer, E.; Stevens, R.R. Jr.; Hansborough, L.; Sherman, J.

    1994-08-01

    For a number of years, Los Alamos have collaborated with a team of experimentalists at Chalk River Labs who were pursuing the development of the front end of a high power cw proton accelerator. With the help of internal laboratory funding and modest defense conversion funds, we have set up and operated the accelerator at Los Alamos Operational equipment includes a slightly modified Chalk River Injector Test Stand (CRITS) including a 50 keV proton injector and a 1.25 MeV radio-frequency quadrupole (RFQ) with a klystrode rf power system. Many of the challenges involved in operating an rf linear accelerator to provide neutrons for an accelerator-driven reactor are encountered at the front (low energy) end of this system. The formation of the ion beam, the control of the beam parameters, and the focusing and matching of a highly space-charge-dominated beam are major problems. To address the operating problems in this critical front end, the Accelerator Operations and Technology Division at the Los Alamos National Laboratory has designed the APDF (Accelerator Prototype Demonstration Facility). The front end of this facility is a 75 keV, high-current, ion injector which has been assembled and is now being tested. This paper discusses the design modifications required in going from the 50 keV CRITS injector to the higher current, 75 keV injector. Major innovative changes were made in the design of this injector. This design eliminates all the control electronics and most of the ion source equipment at high potential. Also, a new, high-quality, ion-extractor system has been built. A dual-solenoid lens will be used in the low energy beam transport (LEBT) line to provide the capability of matching the extracted beam to a high-current ADTT linac. This new injector is the first piece of hardware in the APDF program and will be used to develop the long-term, reliable cw beam operation required for ADIT applications.

  12. Laser energized traveling wave accelerator - a novel scheme for simultaneous focusing, energy selection and post-acceleration of laser-driven ions

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata

    2015-11-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Where intense laser driven proton beams, mainly by the so called Target Normal Sheath Acceleration mechanism, have attractive properties such as brightness, laminarity and burst duration, overcoming some of the inherent shortcomings, such as large divergence, broad spectrum and slow ion energy scaling poses significant scientific and technological challenges. High power lasers are capable of generating kiloampere current pulses with unprecedented short duration (10s of picoseconds). The large electric field from such localized charge pulses can be harnessed in a traveling wave particle accelerator arrangement. By directing the ultra-short charge pulse along a helical path surrounding a laser-accelerated ion beams, one can achieve simultaneous beam shaping and re-acceleration of a selected portion of the beam by the components of the associated electric field within the helix. In a proof-of-principle experiment on a 200 TW university-scale laser, we demonstrated post-acceleration of ~108 protons by ~5 MeV over less than a cm of propagation - i.e. an accelerating gradient ~0.5 GeV/m, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  13. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    SciTech Connect

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  14. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    SciTech Connect

    Luo, W.; Zhuo, H. B.; Yu, T. P.; Ma, Y. Y.; Song, Y. M.; Zhu, Z. C.; Yu, M. Y.

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

  15. Shielding analysis at the upper section of the accelerator-driven system.

    PubMed

    Sasa, Toshinobu; Yang, Jin An; Oigawa, Hiroyuki

    2005-01-01

    The proton beam duct of the accelerator-driven system (ADS) acts as a streaming path for spallation neutrons and photons and causes the activation of the magnets and other devices above the subcritical core. We have performed a streaming analysis at the upper section of the lead-bismuth target/cooled ADS (800 MWth). MCNPX was used to calculate the radiation dose from streamed neutrons and photons through the beam duct. For the secondary photon production calculation, cross sections for several actinides were substituted with plutonium because of the lack of gamma production cross section. From the results of this analysis, the neutron dose from the beam duct is seen to be about 20 orders higher than that of the bulk shield. The magnets and shield plug are heavily irradiated by streaming neutrons according to the DCHAIN-SP analysis. PMID:16604639

  16. Evidence of source dominance in the dynamic behavior of accelerator-driven systems

    SciTech Connect

    Rydin, R.A.; Woosley, M.L. Jr.

    1997-07-01

    In a dynamic simulation method recently developed for accelerator-driven subcritical waste transmutation systems, power levels are renormalized dynamically based on the changing reactivity of the flowing system. For such systems, the power varies directly with the source strength, and inversely with the reactivity. The prompt-jump form of the point-kinetics equations has been used to provide the dynamic renormalization factor for the spatially dependent flowing-fuel system. A unique characteristic of the source-dominated system has been discovered. In the traditional reactor system, power changes are controlled by the half-life for decay of the longest-lived delayed neutron precursors. For the source-dominated system, the delayed neutron precursors do not appreciably slow the response of the system.

  17. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A.; Litzenberg, D. W.

    2013-09-30

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 × 10{sup 21} W/cm{sup 2}), high contrast (10{sup −15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1μm) plastic foil targets resulted in maximum proton energies that were consistently 20%–100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  18. Free-electron laser multiplex driven by a superconducting linear accelerator.

    PubMed

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented. PMID:27577757

  19. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, W. L.; Qiao, B.; Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-07-01

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I0 = 3 × 1020 W/cm2 and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  20. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  1. Impulse Generation Mechanisms in a Laser-Driven In-Tube Accelerator

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Yeol; Kang, Ki-Ha; Sasoh, Akihiro; Jeung, In-Seuck; Urabe, Naohide; Kleine, Harald

    To enhance laser-propulsion thrust performance, a unique Laser-driven In-Tube Accelerator (LITA) has been developed. This paper numerically analyzes the impulse generation mechanisms in LITA. For this purpose, a LITA performance experiment was conducted in atmospheric air with a projectile installed on a ballistic pendulum to calibrate the numerical approximations. We conducted experimental flow visualization by framing shadowgraph and computational fluid dynamics solving the axi-symmetric Euler equation applied to an ideal gas. The results show that a laser-driven blast wave is generated by a spherical hot gas core where the supplied laser energy is absorbed first. The effect of confinement by the tube or shroud wall is confirmed. The impulse production is established not only from the interaction between the incident blast wave and projectile, but also from the following repetitive pressure waves. Assuming that about 30% of the input laser energy is absorbed by the working air, both the impulse and peak pressure agrees quantitatively between the experiment and numerical simulation.

  2. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  3. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  4. Definition and Application of Proton Source Efficiency in Accelerator-Driven Systems

    SciTech Connect

    Seltborg, Per; Wallenius, Jan; Tucek, Kamil; Gudowski, Waclaw

    2003-11-15

    In order to study the beam power amplification of an accelerator-driven system (ADS), a new parameter, the proton source efficiency {psi}* is introduced. {psi}* represents the average importance of the external proton source, relative to the average importance of the eigenmode production, and is closely related to the neutron source efficiency [varphi]*, which is frequently used in the ADS field. [varphi]* is commonly used in the physics of subcritical systems driven by any external source (spallation source, (d,d), (d,t), {sup 252}Cf spontaneous fissions, etc.). On the contrary, {psi}* has been defined in this paper exclusively for ADS studies where the system is driven by a spallation source. The main advantage with using {psi}* instead of [varphi]* for ADS is that the way of defining the external source is unique and that it is proportional to the core power divided by the proton beam power, independent of the neutron source distribution.Numerical simulations have been performed with the Monte Carlo code MCNPX in order to study {psi}* as a function of different design parameters. It was found that, in order to maximize {psi}* and therefore minimize the proton current needs, a target radius as small as possible should be chosen. For target radii smaller than {approx}30 cm, lead-bismuth is a better choice of coolant material than sodium, regarding the proton source efficiency, while for larger target radii the two materials are equally good. The optimal axial proton beam impact was found to be located {approx}20 cm above the core center. Varying the proton energy, {psi}*/E{sub p} was found to have a maximum for proton energies between 1200 and 1400 MeV. Increasing the americium content in the fuel decreases {psi}* considerably, in particular when the target radius is large.

  5. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    SciTech Connect

    Mirzaie, Mohammad; Hafz, Nasr A. M. Li, Song; Liu, Feng; Zhang, Jie; He, Fei; Cheng, Ya

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  6. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes. PMID:26520950

  7. Ion acceleration at CME-driven shocks near the Earth and the Sun

    SciTech Connect

    Desai, Mihir; Dayeh, Maher; Ebert, Robert; Smith, Charles; Mason, Glenn; Li, G.

    2012-11-20

    We compare the behavior of heavy ion spectra during an Energetic Storm Particle (ESP) event that exhibited clear evidence of wave excitation with that observed during an intense, large gradual Solar Energetic Particle (SEP) event in which the associated <0.2 MeV/nucleon ions are delayed >12 hr. We interpret that the ESP event is an example of the first-order Fermi acceleration process where enhancements in the magnetic field power spectral densities around local ion cyclotron frequency {nu}{sub pc} indicate the presence of Alfven waves excited by accelerated protons streaming away from the in-situ interplanetary shock. The softening or unfolding of the CNO energy spectrum below {approx}200 keV/nucleon and the systematic organization of the Fe and O spectral roll-overs with the E/q ratio during the ESP event are likely due to M/Q-dependent trapping and scattering of the heavy ions by the proton-excited waves. Based on striking similarities in the spectral behavior observed upstream of both, the ESP and the SEP event, we suggest that coupling between proton-generated Alfven waves and energetic ions is also operating at the distant CME shock during the large, gradual SEP event, thereby providing us with a new, powerful tool to remotely probe the roles of shock geometries and wave-particle interactions at near-Sun CME-driven shocks.

  8. Detector positioning for the initial subcriticality level determination in accelerator-driven systems

    SciTech Connect

    Uyttenhove, W.; Van Den Eynde, G.; Baeten, P.; Kochetkov, A.; Vittiglio, G.; Wagemans, J.; Lathouwers, D.; Kloosterman, J. L.; Van Der Hagen, T. J. H. H.; Wols, F.; Billebaud, A.; Chabod, S.; Thybault, H. E.

    2012-07-01

    Within the GUINEVERE project (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) carried out at SCK-CEN in Mol, the continuous deuteron accelerator GENEPI-3C was coupled to the VENUS-F fast simulated lead-cooled reactor. Today the FREYA project (Fast Reactor Experiments for hYbrid Applications) is ongoing to study the neutronic behavior of this Accelerator Driven System (ADS) during different phases of operation. In particular the set-up of a monitoring system for the subcriticality of an ADS is envisaged to guarantee safe operation of the installation. The methodology for subcriticality monitoring in ADS takes into account the determination of the initial subcriticality level, the monitoring of reactivity variations, and interim cross-checking. At start-up, the Pulsed Neutron Source (PNS) technique is envisaged to determine the initial subcriticality level. Thanks to its reference critical state, the PNS technique can be validated on the VENUS-F core. A detector positioning methodology for the PNS technique is set up in this paper for the subcritical VENUS-F core, based on the reduction of higher harmonics in a static evaluation of the Sjoestrand area method. A first case study is provided on the VENUS-F core. This method can be generalised in order to create general rules for detector positions and types for full-scale ADS. (authors)

  9. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Hafz, Nasr A. M.; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ˜1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  10. Small Ground-Level Enhancement of 6 January 2014: Acceleration by CME-Driven Shock?

    NASA Astrophysics Data System (ADS)

    Li, C.; Miroshnichenko, L. I.; Sdobnov, V. E.

    2016-03-01

    Available spectral data for solar energetic particles (SEPs) measured near the Earth's orbit (GOES-13) and on the terrestrial surface (polar neutron monitors) on 6 January 2014 are analyzed. A feature of this solar proton event (SPE) and weak ground-level enhancement (GLE) is that the source was located behind the limb. For the purpose of comparison, we also use the Advanced Composition Explorer (ACE) data on sub-relativistic electrons and GOES-13 measurements of a strong and extended proton event on 8 - 9 January 2014. It was found that the surface observations at energies {>} 433 MeV and GOES-13 data at {>} 30 - {>} 700 MeV may be satisfactorily reconciled by a power-law time-of-maximum (TOM) spectrum with a characteristic exponential tail (cutoff). Some methodological difficulties of spectrum determination are discussed. Assuming that the TOM spectrum near the Earth is a proxy of the spectrum of accelerated particles in the source, we critically consider the possibility of shock acceleration to relativistic energies in the solar corona. Finally, it is suggested to interpret the observational features of this GLE under the assumption that small GLEs may be produced by shocks driven by coronal mass ejections. However, the serious limitations of such an approach to the problem of the SCR spectrum prevent drawing firm conclusions in this controversial field.

  11. Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations

    SciTech Connect

    Mikaelian, K O

    2009-09-28

    We extend our earlier model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities to the more general class of hydrodynamic instabilities driven by a time-dependent acceleration g(t) . Explicit analytic solutions for linear as well as nonlinear amplitudes are obtained for several g(t)'s by solving a Schroedinger-like equation d{sup 2}{eta}/dt{sup 2} - g(t)kA{eta} = 0 where A is the Atwood number and k is the wavenumber of the perturbation amplitude {eta}(t). In our model a simple transformation k {yields} k{sub L} and A {yields} A{sub L} connects the linear to the nonlinear amplitudes: {eta}{sup nonlinear} (k,A) {approx} (1/k{sub L})ln{eta}{sup linear} (k{sub L}, A{sub L}). The model is found to be in very good agreement with direct numerical simulations. Bubble amplitudes for a variety of accelerations are seen to scale with s defined by s = {integral} {radical}g(t)dt, while spike amplitudes prefer scaling with displacement {Delta}x = {integral}[{integral}g(t)dt]dt.

  12. Wakefield-induced ionization injection in beam-driven plasma accelerators

    NASA Astrophysics Data System (ADS)

    Martinez de la Ossa, A.; Mehrling, T. J.; Schaper, L.; Streeter, M. J. V.; Osterhoff, J.

    2015-09-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches [Martinez de la Ossa et al., Phys. Rev. Lett. 111, 245003 (2013)]. The electron-beam drivers must feature high-peak currents ( Ib 0 ≳ 8.5 kA ) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ( k p σ z ˜ k p ɛ n ˜ 0.1 ). In addition, we show that the amount of injected charge can be adjusted by tuning the concentration of the dopant gas species, which allows for controlled beam loading and leads to a reduction of the total energy spread of the witness beams. Electron bunches, produced in this way, fulfil the requirements to drive blowout regime plasma wakes at a higher density and to trigger WII injection in a second stage. This suggests a promising new concept of self-similar staging of WII injection in steps with increasing plasma density, giving rise to the potential of producing electron beams with unprecedented energy and brilliance from plasma-wakefield accelerators.

  13. Increasing the Acceptance of Spent Nuclear Fuel Disposal by the Transmutation of Minor Actinides Using an Accelerator

    NASA Astrophysics Data System (ADS)

    Sheffield, Richard L.

    2010-02-01

    The main challenge in nuclear fuel cycle closure is the reduction of the potential radiotoxicity of spent LWR nuclear fuel, or the length of time in which that potential hazard exists. Partitioning and accelerator-based transmutation in combination with geological disposal can lead to an acceptable societal solution for the nuclear spent fuel management problem. Nuclear fuel seems ideally suited for recycling. Only a small fraction of the available energy in the fuel is extracted in a single pass and the problem isotopes, consisting of the transuranic elements plutonium, neptunium, americium, curium and the long-lived fission products iodine and technetium, could be burned in fast-neutron spectrum reactors or sub-critical accelerator driven transmuters. Most of the remaining wastes have half-lives of a few hundred years and can be safely stored in man-made containment structures (casks or glass). The very small amount of remaining long-lived waste could be safely stored in a small geologic repository. The problem for the next 100 years is that a sufficient number of fast reactors are unlikely to be built by industry to burn its own waste and the waste from existing and new light water reactors (LWRs). So an interim solution is required to transition to a fast reactor economy. The goals of accelerator transmutation are some or all of the following: 1) to significantly reduce the impacts due to the minor actinides on the packing density and long-term radiotoxicity in the repository design, 2) preserve/use the energy-rich component of used nuclear fuel, and 3) reduce proliferation risk. Accelerator-based transmutation could lead to a greater percentage of our power coming from greenhouse-gas emission-free nuclear power and provide a long-term strategy enabling the continuation and growth of nuclear power in the U.S. )

  14. Compact Torus Accelerator Driven Inertial Confinement Fusion Power Plant HYLIFE-CT

    SciTech Connect

    Logan, B G; Moir, R W; Tabak, M; Bieri, R L; Hammer, J H; Hartman, C W; Hoffman, M A; Leber, R L; Petzoldt, R W; Tobin, M T

    2005-03-30

    A Compact Torus Accelerator (CTA) is used to accelerate a Compact Torus (CT) to 35 MJ kinetic energy which is focused to a 20 mm diameter where its kinetic energy is converted to a shaped x-ray pulse of 30 MJ. The capsule yield with a prescribed radiation profile is calculated to be (gain 60 times 30 MJ) 1.8 GJ. Schemes for achieving this profile are described. The CT is accelerated in a length of 30 m within an annulus of 150 mm ID and 300 mm OD where the maximum magnetic field is 28 T. A 2.5 m conical taper reduces the mean diameter of the CT from 225 mm to 20 mm. The conical section is made out of solid Li{sub 2}BeF{sub 4}. The target with its frozen conical guide section is accurately placed at the end of the accelerator about once per second. The reactor called HYLIFE uses liquid jets to attenuate blast effects including shrapnel from the shattered conical guide section and radiation so that the vessel is expected to last 30 years. The calculated cost of electricity is estimated (in constant 1988 dollars) to be about 4.8 cents/kW {center_dot} h compared to the future cost of nuclear and coal of 4.3 to 5.8 cents/kW {center_dot} h. The CT driver contributes 17% to the cost of electricity. Present CT's make 2 x 10{sup 8} W/cm{sup 2}; the goal of experiments in progress is 10{sup 11} W/cm{sup 2} with further modifications to allow 10{sup 12}W/cm{sup 2}, whereas the reactor requires 10{sup 15} W/cm{sup 2} in a shaped pulse.

  15. Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout.

    PubMed

    Hidding, B; Pretzler, G; Rosenzweig, J B; Königstein, T; Schiller, D; Bruhwiler, D L

    2012-01-20

    Beam-driven plasma wakefield acceleration using low-ionization-threshold gas such as Li is combined with laser-controlled electron injection via ionization of high-ionization-threshold gas such as He. The He electrons are released with low transverse momentum in the focus of the copropagating, nonrelativistic-intensity laser pulse directly inside the accelerating or focusing phase of the Li blowout. This concept paves the way for the generation of sub-μm-size, ultralow-emittance, highly tunable electron bunches, thus enabling a flexible new class of an advanced free electron laser capable high-field accelerator. PMID:22400749

  16. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  17. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE PAGESBeta

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  18. First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    SciTech Connect

    Plettner, T.; Byer, R.L.; Smith, T.I.; Colby, E.; Cowan, B.; Sears, C.M.S.; Spencer, J.E.; Siemann, R.H.; /SLAC

    2006-02-17

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transition radiation process. experiment as the Laser Electron Accelerator Project (LEAP).

  19. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    NASA Astrophysics Data System (ADS)

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Panzner, Tobias; Rantsiou, Emmanouela; Filges, Uwe; Ehlers, Georg; Bentley, Phillip M.

    2015-08-01

    The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS), currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ), at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters) instruments at ESS.

  20. On the Neutron Kinetics and Control of Accelerator-Driven Systems

    SciTech Connect

    Cacuci, D.G.

    2004-09-15

    This work addresses fundamental aspects of the time- and space-dependent behavior of an Accelerator-Driven Subcritical Core System (ADS) and presents a paradigm ADS neutron kinetics model that is solved exactly. Thus, this paradigm model can serve for benchmarking two- and/or three-dimensional computational tools. Furthermore, this work also proposes a global optimal control theory framework for the operation and control of an ADS. This framework encompasses conceptually the time- and space-dependent behavior of the ADS coupled neutron kinetics/thermal-hydraulic balance equations and aims at the optimal control of ADS operational objectives, which would include minimization of local flux disturbances, load and source following, etc. Importantly, this new conceptual framework makes no use of a 'fictitious ADS steady state' and yields the correct and complete (i.e., including sources) adjoint equations, without leaving any room for ambiguities. Thus, this new conceptual framework provides a natural basis for developing new computational methods and corresponding verification experiments specifically tailored for the control and operation of ADS.

  1. Absolute reactivity calibration of accelerator-driven systems after RACE-T experiments

    SciTech Connect

    Jammes, C. C.; Geslot, B.

    2006-07-01

    The RACE-T experiments that were held in november 2005 in the ENEA-Casaccia research center near Rome allowed us to improve our knowledge of the experimental techniques for absolute reactivity calibration at either startup or shutdown phases of accelerator-driven systems. Various experimental techniques for assessing a subcritical level were inter-compared through three different subcritical configurations SC0, SC2 and SC3, about -0.5, -3 and -6 dollars, respectively. The area-ratio method based of the use of a pulsed neutron source appears as the most performing. When the reactivity estimate is expressed in dollar unit, the uncertainties obtained with the area-ratio method were less than 1% for any subcritical configuration. The sensitivity to measurement location was about slightly more than 1% and always less than 4%. Finally, it is noteworthy that the source jerk technique using a transient caused by the pulsed neutron source shutdown provides results in good agreement with those obtained from the area-ratio technique. (authors)

  2. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    SciTech Connect

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-04-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS`s) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS`s are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS`s and under consideration for the 1-5 MW SNS`s are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten.

  3. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.

    SciTech Connect

    Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

    2009-06-09

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the

  4. A piezo-driven micro-inclination stage for calibration of a micro-acceleration transducer: structure and control strategy

    NASA Astrophysics Data System (ADS)

    Shao, Shubao; Song, Siyang; Xu, Minglong; Xie, Shilin; Li, Liang

    2016-02-01

    In some space applications, such as space navigation and vibration control of the large space structures, micro-acceleration transducers are required and have to be calibrated accurately. Unfortunately, providing extremely small static and quasi-static stimuli (accelerations) for the calibration of the micro-acceleration transducer has been a challenging task. This paper proposes a novel piezo-driven micro-inclination stage (PMIS) that can produce both discrete and continuous tumbles in a gravity field so that extremely small static and quasi-static stimuli (accelerations) can be obtained from a tiny component of the gravity constant. The proposed PMIS, which is driven by the lead zirconate titanate (PZT) stack, employs a rhombic mechanism to provide the PZT stack with a proper preload for the purpose of outputting a bidirectional force. To produce accurate static and quasi-static stimuli, the hysteresis non-linearity inherent in PZT stack is compensated by employing the strain feedback based adaptive control where the hysteresis property is identified online using the controlled auto-regressive moving average model. Furthermore, to improve the resolution of strain feedback, the strain sensitivity is maximized through structure optimization of the rhombic mechanism. The experimental results demonstrated that the proposed PMIS can produce minimal micro-inclination of {{0.1}\\prime \\prime} (corresponding to the induced micro-acceleration of 0.5μ g ) with the frequency ranging from 0 (DC) to 2 Hz.

  5. Proof-Of-Principle Experiment for Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.; Cowan, B.; Sears, C.M.S.; Spencer, J.E.; Siemann, R.H.; /SLAC

    2006-03-01

    We recently achieved the first experimental observation of laser-driven particle acceleration of relativistic electrons from a single Gaussian near-infrared laser beam in a semi-infinite vacuum. This article presents an in-depth account of key aspects of the experiment. An analysis of the transverse and longitudinal forces acting on the electron beam is included. A comparison of the observed data to the acceleration viewed as an inverse transition radiation process is presented. This is followed by a detailed description of the components of the experiment and a discussion of future measurements.

  6. Enzymatically Driven Transport: A Kinetic Theory for Nuclear Export

    PubMed Central

    Kim, Sanghyun; Elbaum, M.

    2013-01-01

    Nuclear import and export are often considered inverse processes whereby transport receptors ferry protein cargo through the nuclear pore. In contrast to import, where the reversible binding of receptor to nuclear RanGTP leads to a balanced bidirectional exchange, termination of export by physiologically irreversible hydrolysis of the Ran-bound GTP leads to unidirectional transport. We present a concise mathematical model that predicts protein distributions and kinetic rates for receptor-mediated nuclear export, which further exhibit an unexpected pseudolinear relation one to the other. Predictions of the model are verified with permeabilized and live cell measurements. PMID:24209844

  7. Laser-driven proton and deuteron acceleration from a pure solid-density H2/D2 cryogenic jet

    NASA Astrophysics Data System (ADS)

    Kim, Jongjin; Gauthier, Maxence; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Goyon, Clement; Williams, Jackson; Kerr, Shaun; Ruby, John; Propp, Adrienne; Ramakrishna, Bhuvanesh; Pak, Art; Hazi, Andy; Glenzer, Siegfried; Roedel, Christian

    2015-11-01

    Laser-driven proton acceleration has become of tremendous interest for the fundamental science and the potential applications in tumor therapy and proton radiography. We have developed a cryogenic liquid hydrogen jet, which can deliver a self-replenishing target of pure solid-density hydrogen or deuterium. This allows for a target compatible with high-repetition-rate experiments and results in a pure hydrogen plasma, facilitating comparison with simulations. A new modification has allowed for the formation of jets with rectangular profiles, facilitating comparison with foil targets. This jet was installed at the Titan laser and driven by laser pulses of 40-60 J of 527 nm laser light in 1 ps. The resulting proton and deuteron spectra were measured in multiple directions with Thomson parabola spectrometers and RCF stacks. The spectral and angular information suggest contribution from both the TNSA and RPA acceleration mechanisms.

  8. Observations of multimode perturbation decay at non-accelerating, soft x-ray driven ablation fronts

    NASA Astrophysics Data System (ADS)

    Loomis, E. N.; Braun, D.; Batha, S. H.; Landen, O. L.

    2012-12-01

    Minimizing the growth of hydrodynamic instabilities is a fundamental design issue facing the achievement of thermonuclear ignition and burn with Inertial Confinement Fusion (ICF). The thin capsules and extreme accelerations found in ICF make it an inherently unstable system primarily to Rayleigh-Taylor (RT) occurring at the ablation front. A potential mechanism by which perturbations at the outer capsule surface can be reduced lies in the already present ablative Richtmyer-Meshkov (RM) effect, which operates during the first shock transit of the ablator. At present, the available Equation of State (EOS) models predict a wide range of behavior for the ablative RM oscillations of multimode isolated defects on plastic (CH) capsules. To resolve these differences, we conducted experiments at the OMEGA Laser Facility [T. R. Boehly et al., Optics Comm. 133 (1997)] that measured the evolution of gaussian-shaped bumps driven by soft x-ray ablation from a halfraum. Shock speeds in the CH target were measured to reach 15 μm/ns for halfraum radiation temperatures of 70 eV lasting for up to 7 ns. The evolution of gaussian-shaped bumps of different widths and heights were measured using on-axis x-ray radiography at up to 37× magnification. Bumps with initial widths of 34 and 44 μm FWHM were found to grow by 3× their initial areal density and then saturate out to 6 ns due to lateral compression of the bump characteristic of the formation of a rippled shock front propagating into the solid target. Narrower 17 μm FWHM bumps, on the other hand, grew by roughly 2× followed immediately by a decrease back to initial values of areal density out to 7 ns, which largely agrees with both LEOS 5310 and SESAME 7592 EOS predictions. The difference in observed behavior suggests that high spatial frequency modes found in narrower bumps are needed to significantly affect the ablation front profile on shorter time scales.

  9. Characterization of a Source Importance Function in an Accelerator-Driven System

    SciTech Connect

    Kim, Yonghee; Park, Won Seok; Park, Chang Kue

    2003-07-15

    An importance function of the external spallation neutrons in an accelerator-driven system (ADS) has been introduced and characterized to address the source multiplication in a subcritical blanket. For a model ADS problem with a central external source, the source importance function is evaluated with a neutron transport code system. For a homogeneous core, essential characteristics of the importance are identified from the viewpoint of spatial distributions and energy dependency, etc. The importance function is evaluated for two different beam tube diameters, and its dependency on the buffer thickness is also addressed. In order to assess the impact of the power distribution on the importance function, a heterogeneous core is considered, and its importance function is evaluated. The analyses show that the peak importance occurs in the inner fuel blanket zone, not in the central source region, and the neutron importance in a high-energy regime, above 7 to 20 MeV, is high and increases with the energy. Also, the effects of a neutron absorber on the source importance are studied, and it is found that the source importance could be drastically reduced by surrounding the source with a strong neutron absorber such as B{sub 4}C. In addition, the source importance function is compared with the conventional {lambda}-mode adjoint flux, which is used as an importance function of fission neutrons in critical reactors. The comparison reveals that the inhomogeneous source importance function could be quite similar to the homogeneous {lambda}-mode adjoint flux in both spatial and spectral distributions for a wide range of subcriticality.

  10. On the Performance of Point Kinetics for the Analysis of Accelerator-Driven Systems

    SciTech Connect

    Eriksson, M.; Cahalan, J.E.; Yang, W.S.

    2005-03-15

    The ability of point kinetics to describe dynamic processes in accelerator-driven systems (ADSs) is investigated. Full three-dimensional energy-space-time-dependent calculations, coupled with thermal and hydraulic feedback effects, are performed and used as a standard of comparison. Various transient accident sequences are studied. Calculations are performed in the range of k{sub eff} = 0.9594 to 0.9987 to provide insight into the dependence of the performance on the subcritical level. Numerical experiments are carried out on a minor-actinide-loaded and lead-bismuth-cooled ADS. It is shown that the point kinetics approximation is capable of providing highly accurate calculations in such systems. The results suggest better precision at lower k{sub eff} levels. It is found that subcritical operation provides features that are favorable from a point kinetics view of application. For example, reduced sensitivity to system reactivity perturbations effectively mitigates any spatial distortions. If a subcritical reactor is subject to a change in the strength of the external source, or a change in reactivity within the subcritical range, the neutron population will adjust to a new stationary level. Therefore, within the normal range of operation, the power predicted by the point kinetics method and the associated error in comparison with the exact solution tends to approach an essentially bounded value. It was found that the point kinetics model is likely to underestimate the power rise following a positive reactivity insertion in an ADS, which is similar to the behavior in critical systems. However, the effect is characteristically lowered in subcritical versus critical or near-critical reactor operation.

  11. Modal analysis of the energy loss for an accelerated electron beam passing through a laser-driven RF gun

    NASA Astrophysics Data System (ADS)

    Salah, W.

    2002-06-01

    The energy loss for an accelerated electron beam passing through a laser-driven RF gun has been studied. An analytical formula of the energy loss has been obtained using the time-dependent resonant modes of a cylindrical "pill-box" cavity. As an approximation, this formalism assumes a rigid beam pulse so the change of pulse shape dealing with space-charge force and wake field force is ignored.

  12. Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems

    SciTech Connect

    Valentine, T.E.; Rugama, Y. Munoz-Cobos, J.; Perez, R.

    2000-10-23

    The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to simulate a variety of subcritical measurements such as the pulsed neutron, Rossi-{alpha}, or noise analysis measurements.

  13. Solid state laser media driven by remote nuclear powered fluorescence

    SciTech Connect

    Prelas, M.A.

    1991-01-16

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  14. Solid state laser media driven by remote nuclear powered fluorescence

    DOEpatents

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  15. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect

    Kutschera, W.

    1983-01-01

    Several applications of accelerator-based mass spectroscopy are reviewed. Among these are the search for unknown species, determination of comogenic radioisotopes in natural materials and measurements of half-lifes, especially those of significance to dating. Accelerator parameters and techniques of importance for these applications are also considered.

  16. Planned High-gradient Flat-beam-driven Dielectric Wakefield Experiments at the Fermilab’s Advanced Superconducting Test Accelerator

    SciTech Connect

    Lemery, Francois; Mihalcea, Daniel; Piot, Philippe; Zhu, Jun

    2014-07-01

    In beam driven dielectric wakefield acceleration (DWA), high-gradient short-wavelength accelerating fields are generally achieved by employing dielectric-lined waveguides (DLWs)  with small aperture which constraints the beam sizes. In this paper we investigate the possibility of using a low-energy (50-MeV) flat beams to induce high-gradient wakes in a slab-symmetric DLW. We demonstrate via numerical simulations the possibility to produce axial electric field with peak amplitude close to 0.5 GV/m. Our studies are carried out using the Fermilab's Advanced Superconducting Test Accelerator (ASTA) photoinjector beamline. We finally discuss a possible experiment that could be performed in the ASTA photoinjector and eventually at higher energies.  

  17. Laser-driven acceleration of subrelativistic electrons near a nanostructured dielectric grating: From acceleration via higher spatial harmonics to necessary elements of a dielectric accelerator

    NASA Astrophysics Data System (ADS)

    McNeur, Josh; Kozak, Martin; Schönenberger, Norbert; Li, Ang; Tafel, Alexander; Hommelhoff, Peter

    2016-09-01

    The experimental setup that allows for the observation of energy gain of electrons interacting with Dielectric Laser Accelerators (DLAs) is reviewed. Moreover, recent results, including acceleration due to electron interaction with third, fourth and fifth spatial harmonics of a nanostructured grating are discussed and an extended outlook is given.

  18. Positron Acceleration by Plasma Wakefields Driven by a Hollow Electron Beam.

    PubMed

    Jain, Neeraj; Antonsen, T M; Palastro, J P

    2015-11-01

    A scheme for positron plasma wakefield acceleration using hollow or donut-shaped electron driver beams is studied. An annular-shaped, electron-free region forms around the hollow driver beam, creating a favorable region (longitudinal field is accelerating and transverse field is focusing) for positron acceleration. For Facility for Advanced Accelerator Experimental Tests (FACET)-like parameters, the hollow beam driver produces accelerating gradients on the order of 10  GV/m. The accelerating gradient increases linearly with the total charge in the driver beam. Simulations show acceleration of a 23-GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4% and very small emittance over a plasma length of 140 cm is possible. PMID:26588391

  19. Charge transport in disordered semiconducting polymers driven by nuclear tunneling

    NASA Astrophysics Data System (ADS)

    van der Kaap, N. J.; Katsouras, I.; Asadi, K.; Blom, P. W. M.; Koster, L. J. A.; de Leeuw, D. M.

    2016-04-01

    The current density-voltage (J -V ) characteristics of hole-only diodes based on poly(2-methoxy, 5-(2' ethyl-hexyloxy)-p -phenylene vinylene) (MEH-PPV) were measured at a wide temperature and field range. At high electric fields the temperature dependence of the transport vanishes, and all J -V sweeps converge to a power law. Nuclear tunneling theory predicts a power law at high fields that scales with the Kondo parameter. To model the J -V characteristics we have performed master-equation calculations to determine the dependence of charge carrier mobility on electric field, charge carrier density, temperature, and Kondo parameter, using nuclear tunneling transfer rates. We demonstrate that nuclear tunneling, unlike other semiclassical models, provides a consistent description of the charge transport for a large bias, temperature, and carrier density range.

  20. A nuclear driven metallic vapor MHD coupled with MPD thrusters

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim; Kumar, Ratan

    1991-01-01

    Nuclear energy as a source of power for space missions, represents an enabling technology for advanced and ambitious space applications. Nuclear fuel in a gaseous or liquid form has been configured as a promising and practical candidate in this regard. The present study investigates and performs a feasibility analysis of an innovative concept for space power generation and propulsion. The system embodies a conceptual nuclear reactor with an MHD generator and coupled to MPD thrusters. The reactor utilizes liquid uranium in droplet form as fuel and superheated metallic vapor as the working fluid. This ultrahigh temperature vapor core reactor brings forward varied and challenging technical issues, and it has been addressed to in this paper. A parametric study of the conceived system has been performed in a qualitative and quantitative manner. Preliminary results show enough promise for further indepth analysis of this novel system.

  1. Nuclear-driven flashlamp pumping of the atomic iodine laser

    SciTech Connect

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  2. Observations of multimode perturbation decay at non-accelerating, soft x-ray driven ablation fronts

    SciTech Connect

    Loomis, E. N.; Batha, S. H.; Braun, D.; Landen, O. L.

    2012-12-15

    Minimizing the growth of hydrodynamic instabilities is a fundamental design issue facing the achievement of thermonuclear ignition and burn with Inertial Confinement Fusion (ICF). The thin capsules and extreme accelerations found in ICF make it an inherently unstable system primarily to Rayleigh-Taylor (RT) occurring at the ablation front. A potential mechanism by which perturbations at the outer capsule surface can be reduced lies in the already present ablative Richtmyer-Meshkov (RM) effect, which operates during the first shock transit of the ablator. At present, the available Equation of State (EOS) models predict a wide range of behavior for the ablative RM oscillations of multimode isolated defects on plastic (CH) capsules. To resolve these differences, we conducted experiments at the OMEGA Laser Facility [T. R. Boehly et al., Optics Comm. 133 (1997)] that measured the evolution of gaussian-shaped bumps driven by soft x-ray ablation from a halfraum. Shock speeds in the CH target were measured to reach 15 {mu}m/ns for halfraum radiation temperatures of 70 eV lasting for up to 7 ns. The evolution of gaussian-shaped bumps of different widths and heights were measured using on-axis x-ray radiography at up to 37 Multiplication-Sign magnification. Bumps with initial widths of 34 and 44 {mu}m FWHM were found to grow by 3 Multiplication-Sign their initial areal density and then saturate out to 6 ns due to lateral compression of the bump characteristic of the formation of a rippled shock front propagating into the solid target. Narrower 17 {mu}m FWHM bumps, on the other hand, grew by roughly 2 Multiplication-Sign followed immediately by a decrease back to initial values of areal density out to 7 ns, which largely agrees with both LEOS 5310 and SESAME 7592 EOS predictions. The difference in observed behavior suggests that high spatial frequency modes found in narrower bumps are needed to significantly affect the ablation front profile on shorter time scales.

  3. Effects of TRU Distributions of Electron Accelerator-Driven Subcritical Core Systems on Transmutation

    SciTech Connect

    Yodersmith, Stephen; Yim, Man-Sung

    2007-07-01

    As part of the effort to investigate the use of an electron accelerator driven system for TRU transmutation, the effects of TRU distributions in the core on transmuter system performance was examined in this paper. The system performance examined includes the transmutation and system power efficiency and changes in power peaking. The transmutation benefits of the system were determined with the introduction of a new parameter, the Transmutation System Effectiveness Parameter (TSEP). TSEP combines the decay heat and radioactivity results into one single parameter that compares the ability of the system to reduce the radioactivity and decay heat of the loaded TRUs. The electron ADS was modeled by using MCNPX and MONTEBURNS as a fast spectrum, Na cooled reactor loosely based on the advanced liquid metal reactor (ALMR) design. NJOY was used to process the cross sections at the desired temperatures. The fuel was a TRUZr alloy contained within an HT-9 SS cladding. The subcritical reactor contained four different fuel zones with an equal number of fuel assemblies in each region, each containing one of the four TRU elements: Np, Pu, Cm, Am. Tungsten was used for the target system. The electron ADS was assumed to operate at 500 MWth over a 24 month cycle. Results showed that different distribution patterns had a very insignificant effect on the total radioactivity reduction, the total decay heat reduction, and the TRU radiotoxicity reduction. With respect to the TSEP parameter, the calculation results revealed a much stronger dependence on TRU distributions. It seemed that TSEP accurately reflected and penalized the effectiveness of the system for the fission product production. With respect to examining the k{sub eff} over the cycle, a drastic difference was observed between the cases when Pu is located in the inner most region and the rest of the patterns. The k{sub eff} for the Pu in the inner most region cases decreased at a much faster rate than did the rest therefore

  4. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  5. Two-color-laser-driven direct electron acceleration in infinite vacuum.

    PubMed

    Wong, Liang Jie; Kärtner, Franz X

    2011-03-15

    We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice of what is possible with a one-color pulsed beam of equal total energy and pulse duration. The scheme succeeds by exploiting the Gouy phase shift to cause an acceleration-favoring interference of fields only as the electron enters its effectively final accelerating cycle. Optimization conditions and power scaling characteristics are discussed. PMID:21403741

  6. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at theLBNL LOASIS Facility

    SciTech Connect

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-09-01

    We present a design for a compact FEL source of ultrafast, high-peak flux, soft x-ray pulses employing a high-current, GeV-energy electron beam from the existing laser-plasma accelerator at the LBNL LOASIS laser facility. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing both to the high current ({approx} 10 kA) and reasonable charge/pulse ({approx} 0.1-0.5 nC) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially 10{sup 13}--10{sup 14} photons/pulse. We examine devices based both on SASE and high-harmonic generated input seeds to give improved coherence and reduced undulator length, presenting both analytic scalings and numerical simulation results for expected FEL performance. A successful source would result in a new class of compact laser-driven FELs in which a conventional RF accelerator is replaced by a GeV-class laser-plasma accelerator whose active acceleration region is only a few cm in length.

  7. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-11-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  8. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-01

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction (α) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease α value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  9. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-31

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  10. SPRING DRIVEN ACTUATING MECHANISM FOR NUCLEAR REACTOR CONTROL

    DOEpatents

    Bevilacqua, F.; Uecker, D.F.; Groh, E.F.

    1962-01-23

    l962. rod in a nuclear reactor to shut it down. The control rod or an extension thereof is wound on a drum as it is withdrawn from the reactor. When an emergency occurs requiring the reactor to be shut down, the drum is released so as to be free to rotate, and the tendency of the control rod or its extension coiled on the drum to straighten itself is used for quickly returning the control rod to the reactor. (AEC)

  11. RNA transcription modulates phase transition-driven nuclear body assembly

    PubMed Central

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P.

    2015-01-01

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid–liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of “extranucleolar droplets” (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  12. RNA transcription modulates phase transition-driven nuclear body assembly.

    PubMed

    Berry, Joel; Weber, Stephanie C; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P

    2015-09-22

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid-liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of "extranucleolar droplets" (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  13. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  14. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-01

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  15. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    SciTech Connect

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-15

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  16. Turbulent Rayleigh-Taylor flow driven by time-varying accelerations

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, Praveen; Lawrie, Andrew; Muthuraman, Karthik; UNC-LMFA Collaboration

    2011-11-01

    We report on numerical simulations of turbulent Rayleigh-Taylor flow subject to variable acceleration histories. The acceleration profiles were inspired by experiments and theoretical studies, and include an impulsive acceleration, accel-decel profiles, as well as a constant drive as the baseline case. The simulations were performed using the MOBILE software, a variable-density, incompressible fluid flow code. The advection algorithm employs a 3rd-order, monotonicity-preserving upwind scheme, allowing the definition of sharp interfaces in the flow, while pressure convergence is accelerated by the use of a multi-grid scheme. The simulations are initialized with two classes of perturbations: narrow-band, short-wavelength modes and broadband with long-wavelength modes. The effect of initial amplitudes on the perturbations is investigated under the variable drive conditions. The acceleration profiles are capable of producing stages of ``demixing,'' useful in validating turbulence models of RTI.

  17. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    PubMed

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  18. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  19. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  20. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGESBeta

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; et al

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  1. Simultaneous observation of angularly separated laser-driven proton beams accelerated via two different mechanisms

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Bedacht, S.; Bagnoud, V.; Deppert, O.; Geschwind, S.; Jaeger, R.; Ortner, A.; Tebartz, A.; Zielbauer, B.; Hoffmann, D. H. H.; Roth, M.

    2015-06-01

    We present experimental data showing an angular separation of laser accelerated proton beams. Using flat plastic targets with thicknesses ranging from 200 nm to 1200 nm, a laser intensity of 6 ×1020 W cm-2 incident with an angle of 10°, we observe accelerated protons in target normal direction with cutoff energies around 30 MeV independent from the target thickness. For the best match of laser and target conditions, an additional proton signature is detected along the laser axis with a maximum energy of 65 MeV. These different beams can be attributed to two acceleration mechanisms acting simultaneously, i.e., target normal sheath acceleration and acceleration based on relativistic transparency, e.g., laser breakout afterburner, respectively.

  2. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  3. The progress in the laser-driven proton acceleration experiment JAEA with table-tip Ti:Sappire laser system

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Ogura, K.; Pirozhkov, A. S.; Tanimoto, T.; Yogo, A.; Sakaki, H.; Hori, T.; Fukuda, Y.; Kanasaki, M.; Sagisaka, A.; Tampo, M.; Kiriyama, H.; Shimomura, T.; Kondo, K.; Kawanishi, S.; Brenner, C.; Neely, D.

    2011-05-01

    This paper presents the experimental investigation of laser-driven proton acceleration using a table top Ti:Sapphire laser system interacting with the thin-foil targets during the course of medical application of the laser-driven proton beam. The proton beam with maximum energy of upto 14~MeV is generated in 60 TW mode. The number of protons at ~10 MeV is estimated to be over 105 proton/sr/MeV/shot with beam having half divergence angle of 5~degree. If 10 Hz operation is assumed 2 Gy dose is possible to irradiate during 10 min onto a ~1 mm tumor just under the skin. In contrast to the previous condition of our apparatus with which we demonstrated the DNA double-strand breaking by irradiating the laser-driven proton beam onto the human cancer cells in-vitro test, the result reported here has significant meaning in the sense that pre-clinical in-vivo test can be started by irradiating the laser-driven proton beam onto the skin of the mouse, which is unavoidable step before the real radiation therapy.

  4. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  5. Vacuum laser-driven acceleration by two slits-truncated Bessel beams

    SciTech Connect

    Li, D.; Imasaki, K.

    2005-08-29

    An approach of vacuum acceleration by two laser Bessel beams is presented in this letter. With elaborate arrangement, the two Bessel beams are truncated by a set of special annular slits to form consecutive acceleration field in the electron traveling direction. Therefore, the electron of a certain initial energy can be accelerated in the whole interaction region without experiencing deceleration even though the phase-slippage occurs. Furthermore, the Bessel beam can provide a rather long distance for the effective interaction between the electron and the laser field due to its 'diffraction-free' property, resulting in improvement of the energy exchange.

  6. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    NASA Astrophysics Data System (ADS)

    Robinson, I. M.; Simnett, G. M.

    2005-07-01

    We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003) and Li et al. (2003) which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons. Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections) Space plasma physics (Transport processes)

  7. Monte Carlo Modeling of Fast Sub-critical Assembly with MOX Fuel for Research of Accelerator-Driven Systems

    NASA Astrophysics Data System (ADS)

    Polanski, A.; Barashenkov, V.; Puzynin, I.; Rakhno, I.; Sissakian, A.

    It is considered a sub-critical assembly driven with existing 660 MeV JINR proton accelerator. The assembly consists of a central cylindrical lead target surrounded with a mixed-oxide (MOX) fuel (PuO2 + UO2) and with reflector made of beryllium. Dependence of the energetic gain on the proton energy, the neutron multiplication coefficient, and the neutron energetic spectra have been calculated. It is shown that for subcritical assembly with a mixed-oxide (MOX) BN-600 fuel (28%PuO 2 + 72%UO2) with effective density of fuel material equal to 9 g/cm 3 , the multiplication coefficient keff is equal to 0.945, the energetic gain is equal to 27, and the neutron flux density is 1012 cm˜2 s˜x for the protons with energy of 660 MeV and accelerator beam current of 1 uA.

  8. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse.

    PubMed

    Kneip, S; Nagel, S R; Martins, S F; Mangles, S P D; Bellei, C; Chekhlov, O; Clarke, R J; Delerue, N; Divall, E J; Doucas, G; Ertel, K; Fiuza, F; Fonseca, R; Foster, P; Hawkes, S J; Hooker, C J; Krushelnick, K; Mori, W B; Palmer, C A J; Phuoc, K Ta; Rajeev, P P; Schreiber, J; Streeter, M J V; Urner, D; Vieira, J; Silva, L O; Najmudin, Z

    2009-07-17

    The acceleration of electrons to approximately 0.8 GeV has been observed in a self-injecting laser wakefield accelerator driven at a plasma density of 5.5x10(18) cm(-3) by a 10 J, 55 fs, 800 nm laser pulse in the blowout regime. The laser pulse is found to be self-guided for 1 cm (>10zR), by measurement of a single filament containing >30% of the initial laser energy at this distance. Three-dimensional particle in cell simulations show that the intensity within the guided filament is amplified beyond its initial focused value to a normalized vector potential of a0>6, thus driving a highly nonlinear plasma wave. PMID:19659287

  9. Accelerator Physics: An Undergraduate Course in Experimental Nuclear Physics

    ERIC Educational Resources Information Center

    Fielder, Douglas S.

    1976-01-01

    Discusses a 2-semester-hour experimental physics course utilizing a 0.5 MeV Van de Graaff accelerator. The course requires the completion of six or seven laboratory projects including complete written reports, and theory is emphasized only to the extent needed to understand the projects. (MLH)

  10. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  11. Observation of nuclear fusion driven by a pyroelectric crystal.

    PubMed

    Naranjo, B; Gimzewski, J K; Putterman, S

    2005-04-28

    While progress in fusion research continues with magnetic and inertial confinement, alternative approaches--such as Coulomb explosions of deuterium clusters and ultrafast laser-plasma interactions--also provide insight into basic processes and technological applications. However, attempts to produce fusion in a room temperature solid-state setting, including 'cold' fusion and 'bubble' fusion, have met with deep scepticism. Here we report that gently heating a pyroelectric crystal in a deuterated atmosphere can generate fusion under desktop conditions. The electrostatic field of the crystal is used to generate and accelerate a deuteron beam (> 100 keV and >4 nA), which, upon striking a deuterated target, produces a neutron flux over 400 times the background level. The presence of neutrons from the reaction D + D --> 3He (820 keV) + n (2.45 MeV) within the target is confirmed by pulse shape analysis and proton recoil spectroscopy. As further evidence for this fusion reaction, we use a novel time-of-flight technique to demonstrate the delayed coincidence between the outgoing alpha-particle and the neutron. Although the reported fusion is not useful in the power-producing sense, we anticipate that the system will find application as a simple palm-sized neutron generator. PMID:15858570

  12. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    SciTech Connect

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten

  13. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  14. Demonstration of electron acceleration in a laser-driven dielectric microstructure.

    PubMed

    Peralta, E A; Soong, K; England, R J; Colby, E R; Wu, Z; Montazeri, B; McGuinness, C; McNeur, J; Leedle, K J; Walz, D; Sozer, E B; Cowan, B; Schwartz, B; Travish, G; Byer, R L

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250 MeV m(-1)) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563 ± 104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30 MeV m(-1), and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6 MeV m(-1) (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (10(6)-10(9) eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (10(12)

  15. Demonstration of electron acceleration in a laser-driven dielectric microstructure

    NASA Astrophysics Data System (ADS)

    Peralta, E. A.; Soong, K.; England, R. J.; Colby, E. R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K. J.; Walz, D.; Sozer, E. B.; Cowan, B.; Schwartz, B.; Travish, G.; Byer, R. L.

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250MeVm-1) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563+/-104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30MeVm-1, and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6MeVm-1 (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (106-109eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012eV) scale.

  16. Advanced scheme for high-yield laser driven nuclear reactions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-01-01

    The use of a low contrast nanosecond laser pulse with a relatively low intensity (3  ×  1016 W cm-2) allowed the enhancing of the yield of induced nuclear reactions in advanced solid targets. In particular the ‘ultraclean’ proton-boron fusion reaction, producing energetic alpha particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as a target. A combination of the specific target composition and the laser pulse temporal shape allowed the enhancing of the yield of alpha particles up to 109 per steradian. This result can be ascribed to the interaction of the long-laser pre-pulse with the target and to the optimal target geometry and composition.

  17. Accelerating Full Configuration Interaction Calculations for Nuclear Structure

    SciTech Connect

    Yang, Chao; Sternberg, Philip; Maris, Pieter; Ng, Esmond; Sosonkina, Masha; Le, Hung Viet; Vary, James; Yang, Chao

    2008-04-14

    One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI) method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain exact answers - either directly or by extrapolation. The lowest eigenvalues and correspondingeigenvectors for very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear) as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate the current capability of MFDn and report the latest performance improvement we have achieved. We will also outline our future research directions.

  18. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  19. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  20. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  1. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    NASA Astrophysics Data System (ADS)

    Gillich, Don; Shannon, Mike; Kovanen, Andrew; Anderson, Tom; Bright, Kevin; Edwards, Ronald; Danon, Yaron; Moretti, Brian; Musk, Jeffrey

    2011-06-01

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of ˜100 keV. Within the next year, cadets and faculty at USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.

  2. Heavy ion acceleration driven by the Interaction between ultraintense Laser pulse and sub-micron foils

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; McGuffey, C.; Beg, F. N.; High Energy Density Group Team

    2015-11-01

    For ion acceleration at the intensity exceeding 1021W/cm2, Radiation Pressure Acceleration (RPA) could offer advantages over Target Normal Sheath Acceleration (TNSA) and Break-Out Afterburner (BOA). In this ultra-relativistic regime, target electrons become highly relativistic and the results are sensitive to many parameters. Especially for heavy ions acceleration, the understanding of the most important parameter effects is limited due to the lack of experiments and modeling. To further understand the key parameters and determine the most suitable regimes for efficient acceleration of heavy ions, we have carried out two-dimensional Particle-in-Cell simulations with the epoch code. In the simulations, effects of preplasma and optimal targets thicknesses for different laser pulse have been studied in detail. Based on the understanding of ion RPA, we propose some new target parameters to achieve higher ion energy. This work was performed with the support of the Air Force Office of Scientific Research under grant FA9550-14-1-0282.

  3. Accelerating Innovation: How Nuclear Physics Benefits Us All

    SciTech Connect

    Not Available

    2011-01-01

    From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

  4. Accelerated Closure of the Spent Nuclear Fuel (SNF) project

    SciTech Connect

    RUTHERFORD, W.W.

    2001-02-01

    The K East and K West Basins, built in the early 1950s, have been used to store irradiated nuclear fuel from the Hanford N Reactor. This fuel, which is referred to as spent nuclear fuel (SNF), has been stored underwater since 1975 in KE Basin and since 1981 in KW Basin. There are 54,000 N Reactor fuel assemblies in 3,800 canisters in the K West Basin, and 51,000 fuel assemblies in 3,700 canisters in the K East Basin that total 2,100 metric tons of SNF.

  5. Vlasov modelling of laser-driven collisionless shock acceleration of protons

    NASA Astrophysics Data System (ADS)

    Svedung Wettervik, B.; DuBois, T. C.; Fülöp, T.

    2016-05-01

    Ion acceleration due to the interaction between a short high-intensity laser pulse and a moderately overdense plasma target is studied using Eulerian Vlasov-Maxwell simulations. The effects of variations in the plasma density profile and laser pulse parameters are investigated, and the interplay of collisionless shock and target normal sheath acceleration is analyzed. It is shown that the use of a layered-target with a combination of light and heavy ions, on the front and rear side, respectively, yields a strong quasi-static sheath-field on the rear side of the heavy-ion part of the target. This sheath-field increases the energy of the shock-accelerated ions while preserving their mono-energeticity.

  6. Observation of wakefields in a beam-driven photonic band gap accelerating structure.

    SciTech Connect

    Conde, M.; Yusof, Z.; Power, J. G.; Jing, C.; Gao, F.; Antipov, S.; Xu, P.; Zheng, S.; Chen, H.; Tang, C.; Gai, W.; High Energy Physics; Euclid Techlabs LLC; Tsinghua Univ.

    2009-12-01

    Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG) accelerating structure. Major monopole (TM{sub 01}- and TM{sub 02}-like) and dipole (TM{sub 11}- and TM{sub 12}-like) modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be {approx}10 times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to {approx} 30 MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations.

  7. Proposed Few-optical Cycle Laser-driven ParticleAccelerator Structure

    SciTech Connect

    Plettner, T.; Lu, P.; Byer, R.L.; /Stanford U., Ginzton Lab.

    2006-10-06

    We describe a transparent dielectric grating accelerator structure that is designed for ultra-short laser pulse operation. The structure is based on the principle of periodic field reversal to achieve phase synchronicity for relativistic particles, however to preserve ultra-short pulse operation it does not resonate the laser field in the vacuum channel. The geometry of the structure appears well suited for application with high average power lasers and high thermal loading. Finally, it shows potential for an unloaded gradient of 10 GeV/m with 10 fsec laser pulses and the possibility to accelerate 10{sup 6} electrons per bunch at an efficiency of 8%. The fabrication procedure and a proposed near term experiment with this accelerator structure are presented.

  8. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  9. Mixing, staging, and phasing for a proton-driven wake field accelerator

    SciTech Connect

    Gai, W.; Ruggiero, A.G.; Simpson, J.D.

    1987-01-01

    This paper expands on a few important details of the Wakeatron concept. This is a device where electrons can be accelerated by the wake field of short intense proton bunches travelling along the axis of an rf structure. Specifically, we have examined the consequences of the longitudinal dynamics of both the electron and the proton bunches. Included were ''mixing'' in the proton bunches (crucial to the overall concept) and phase shifts (electron bunches relative to proton bunches) in the acceleration process. Because of the deterioration of the proton bunches, due to the ''mixing'' process, it is required that the Wakeatron is indeed staged in a number of consecutive sections.

  10. Compton Scattering X-Ray Sources Driven by Laser Wakefield Acceleration

    SciTech Connect

    Hartemann, F V; Gibson, D J; Brown, W J; Rousse, A; Phuoc, K T; Pukhov, A

    2005-10-19

    Recent laser wakefield acceleration experiments have demonstrated the generation of femtosecond, nano-Coulomb, low emittance, nearly monokinetic relativistic electron bunches of sufficient quality to produce bright, tunable, ultrafast x-rays via Compton scattering. Design parameters for a proof-of-concept experiment are presented using a three-dimensional Compton scattering code and a laser-plasma interaction particle-in-cell code modeling the wakefield acceleration process; x-ray fluxes exceeding 10{sup 22} s{sup -1} are predicted, with a peak brightness > 10{sup 20} photons/(mm{sup 2} x mrad{sup 2} x s x 0.1% bandwidth).

  11. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect

    Ronald E. Mizia

    2011-10-01

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  12. Accelerated radioactive nuclear beams: Existing and planned facilities

    SciTech Connect

    Nitschke, J.M.

    1992-07-01

    An over-view of existing and planned radioactive nuclear beam facilities world-wide. Two types of production methods are distinguished: projectile fragmentation and the on-line isotope separator (ISOL) method. While most of the projectile fragmentation facilities are already in operation, almost all the ISOL-based facilities are in still the planning stage.

  13. Accelerator-driven destruction of long-lived radioactive waste and energy production

    SciTech Connect

    Schriber, S.O.

    1997-12-31

    Nuclear waste management involves many issues. ATW is an option that can assist a repository by enhancing its capability and thereby assist nuclear waste management. Technology advances and the recent release of liquid metal coolant information from Russia has had an enormous impact on the viability of an ATW system. It now appears economic with many repository enhancing attributes. In time, an ATW option added to present repository activities will provide the public with a nuclear fuel cycle that is acceptable from economic and environmental points of view.

  14. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length. PMID:24483670

  15. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  16. Accelerating the development of transparent graphene electrodes through basic science driven chemical functionalization.

    SciTech Connect

    Chan, Calvin; Beechem Iii, Thomas Edwin; Ohta, Taisuke; Brumbach, Michael T.; Wheeler, David Roger; Veneman, Alexander; Gearba, I. Raluca; Stevenson, Keith J.

    2013-09-01

    Chemical functionalization is required to adapt graphenes properties to many applications. However, most covalent functionalization schemes are spontaneous or defect driven and are not suitable for applications requiring directed assembly of molecules on graphene substrates. In this work, we demonstrated electrochemically driven covalent bonding of phenyl iodoniums onto epitaxial graphene. The amount of chemisorption was demonstrated by varying the duration of the electrochemical driving potential. Chemical, electronic, and defect states of phenyl-modified graphene were studied by photoemission spectroscopy, spatially resolved Raman spectroscopy, and water contact angle measurement. Covalent attachment rehybridized some of the delocalized graphene sp2 orbitals to localized sp3 states. Control over the relative spontaneity (reaction rate) of covalent graphene functionalization is an important first step to the practical realization of directed molecular assembly on graphene. More than 10 publications, conference presentations, and program highlights were produced (some invited), and follow-on funding was obtained to continue this work.

  17. Laser-driven electron acceleration in a plasma channel with an additional electric field

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Hong; Xue, Ju-Kui; Liu, Jie

    2016-05-01

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the laser pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.

  18. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Assmann, R. W.; Dorda, U.; Marchetti, B.

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  19. The safe and economical operations of a reactor driven by a small proton accelerator

    SciTech Connect

    Takahashi, Hiroshi; Takashita, Hirofumi

    1994-06-01

    An accelerator can be used to increase the safety and neutron economy of a power reactor and transmuter of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9-0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the radiation damage of the target area, and discuss the necessity of high neutron economy to transmute the long lived fission products using the fast reactor system.

  20. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  1. Ultra-power shock wave driven by a laser-accelerated electron beam

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu

    2015-06-01

    This review is presented on modern research to achieve in a laboratory experiment the new level of shock-wave pressure of a few hundred or even thousands of Mbar when a substance is exposed to a stream of laser-accelerated fast electrons. The applications associated with the use of ultra-power shock waves as the ignition driver of inertial fusion targets as well as the tool in studying the equation of a state of a matter are discussed.

  2. Accelerator driven system based on plutonium subcritical reactor and 660 MeV phasotron

    SciTech Connect

    Arkhipov, V. A.; Barashenkov, V. S.; Buttsev, V. S.; Chultem, D.; Furman, V. I.; Maltsev, A. A.; Onischenko, L. M.; Pogodajev, G. N.; Popov, Yu. P.; Puzynin, I. V.; Sissakian, A. N.; Dudarev, S. Yu.; Gudowski, W.; Janczyszyn, J.; Polanski, A.; Taczanowski, S.

    1999-11-16

    The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator, operating in the the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient keff between 0.94 and 0.95 and the energetic gain about 20.

  3. Accelerator Driven System Based on Plutonium Subcritical Reactor and 660 MeV Phasotron

    SciTech Connect

    Arkhipov, V.A.; Barashenkov, V.S.; Buttsev, V.S.; Chultem, D.; Dudarev, S.Yu.; Furman, V.I.; Gudowski, W.; Janczyszyn, J.; Maltsev, A.A.; Onischenko, L.M.; Pogodajev, G.N.; Polanski, A.; Popov, Yu.P.; Puzynin, I.V.; Sissakian, A.N.; Taczanowski, S.

    1999-12-31

    The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator. operating in the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to a multiplication coefficient, keff, between 0.94 and 0.95 and an energy gain about 20.

  4. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2. PMID:24580346

  5. Enhanced ion beam energy by relativistic transparency in laser-driven shock ion acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2015-11-01

    We investigated the effects of relativistic transparency (RT) on electrostatic shock ion acceleration. Penetrating portion of the laser pulse directly heats up the electrons to a very high temperature in backside of the target, resulting in a condition of high shock velocity. The reflected portion of the pulse can yield a fast hole boring and density compression in near-critical density plasma to satisfy the electrostatic shock condition; 1.5 acceleration which generates significantly higher ion beam energy in comparison to that in a purely opaque plasma. In multi-dimensional systems, various instabilities should be considered such as Weibel-like instability, which causes filamentation during the laser penetration. From series of comparisons of linearly polarized and circularly polarized pulses for the RT-based shock, we observed the circularly polarized pulse is usually more advantageous in reducing the instability, possibly leading to better RT-based shock acceleration. The Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (Grant number NRF- 2013R1A1A2006353).

  6. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  7. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    SciTech Connect

    Cahalan, J. E.; Ama, T.; Palmiotti, G.; Taiwo, T. A.; Yang, W. S.

    2000-03-09

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects.

  8. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  9. On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration

    SciTech Connect

    Jung, D.; Senje, L.; McCormack, O.; Dromey, B.; Zepf, M.; Yin, L.; Albright, B. J.; Letzring, S.; Gautier, D. C.; Fernandez, J. C.; Toncian, T.; Hegelich, B. M.

    2015-03-15

    We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

  10. Ion acceleration and coherent structures generated by lower hybrid shear-driven instabilities

    NASA Technical Reports Server (NTRS)

    Romero, H.; Ganguli, G.; Lee, Y. C.

    1992-01-01

    It is shown that if k = omega(S)/omega(LH) greater than 1 (omega(S) and omega(LH) are the shear and lower hybrid frequencies), a sheared electron cross-field flow excites the electron-ion-hybrid mode, causing significant perpendicular ion acceleration. The electric potential develops coherent structures (vortexlike) longer than the electron Larmor radius, rho(e). For k less than 1, a smooth transition occurs where the wavelength becomes of the order of rho(e), the lower hybrid drift instability dominates, and the formation of vortexlike structures is no longer observed. The results are relevant to laboratory, laser-produced, and space plasmas.

  11. Multi-GeV electron acceleration driven by the Texas Petawatt laser

    NASA Astrophysics Data System (ADS)

    Wang, X.; Du, D.; Yi, S. A.; D'Avignon, E.; Kalmykov, S.; Reed, S.; Henderson, W.; Dong, P.; Zgadzaj, R.; Dyer, G.; Gaul, E.; Martinez, M.; Ditmire, T.; Shvets, G.; Downer, M.

    2010-03-01

    We present the preparation for high energy (multi-GeV) electron generation in underdense plasmas interacting with 1PW, 150fs Texas Petawatt laser pulses. Electron laser wakefield acceleration experiments have demonstrated that 1GeV electron beams can be produced with multi-TW class laser systems. Scaling laws and simulations have predicted that 3-10GeV electrons can be generated with a short pulse PW laser system without any external guiding mechanism. The Texas Petawatt system has an F /40 focusing geometry, which along with laser self-guiding creates a long laser plasma interaction length while still maintaining intensity above 10^19W/cm^2. This configuration also creates an opportunity to ``visualize'' the plasma wakefield structures using the single shot frequency-domain holography (FDH) technique. This presentation includes the Texas Petawatt laser, laser wakefield experimental setup, plasma diagnostic setup and anticipated preliminary experimental results during 2010. Particle-in-cell (PIC) simulations of laser wakefield electron acceleration and the FDH diagnostic are also presented.

  12. Loss of Mig6 accelerates initiation and progression of mutant epidermal growth factor receptor-driven lung adenocarcinoma

    PubMed Central

    Maity, Tapan K.; Venugopalan, Abhilash; Linnoila, Ilona; Cultraro, Constance M.; Giannakou, Andreas; Nemati, Roxanne; Zhang, Xu; Webster, Joshua D.; Ritt, Daniel; Ghosal, Sarani; Hoschuetzky, Heinz; Simpson, R. Mark; Biswas, Romi; Politi, Katerina; Morrison, Deborah K.; Varmus, Harold E.; Guha, Udayan

    2015-01-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here we demonstrate that Mig6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for Mig6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. PMID:25735773

  13. Prognostics of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saxena, Abhinav; Saha, Sankalita; Goebel, Kai F.

    2011-01-01

    An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor switching devices that are instrumental in electronics equipment such as those used in operation and control of modern aircraft and spacecraft. The MOSFETs examined here were aged under thermal overstress in a controlled experiment and continuous performance degradation data were collected from the accelerated aging experiment. Dieattach degradation was determined to be the primary failure mode. The collected run-to-failure data were analyzed and it was revealed that ON-state resistance increased as die-attach degraded under high thermal stresses. Results from finite element simulation analysis support the observations from the experimental data. Data-driven and model based prognostics algorithms were investigated where ON-state resistance was used as the primary precursor of failure feature. A Gaussian process regression algorithm was explored as an example for a data-driven technique and an extended Kalman filter and a particle filter were used as examples for model-based techniques. Both methods were able to provide valid results. Prognostic performance metrics were employed to evaluate and compare the algorithms.

  14. Accelerating the Customer-Driven Microgrid Through Real-Time Digital Simulation

    SciTech Connect

    I. Leonard; T. Baldwin; M. Sloderbeck

    2009-07-01

    Comprehensive design and testing of realistic customer-driven microgrids requires a high performance simulation platform capable of incorporating power system and control models with external hardware systems. Traditional non real-time simulation is unable to fully capture the level of detail necessary to expose real-world implementation issues. With a real-time digital simulator as its foundation, a high-fidelity simulation environment that includes a robust electrical power system model, advanced control architecture, and a highly adaptable communication network is introduced. Hardware-in-the-loop implementation approaches for the hardware-based control and communication systems are included. An overview of the existing power system model and its suitability for investigation of autonomous island formation within the microgrid is additionally presented. Further test plans are also documented.

  15. Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities

    SciTech Connect

    Bykov, Andrei M.; Osipov, Sergei M.; Ellison, Donald C.; Vladimirov, Andrey E. E-mail: osm2004@mail.ru E-mail: avenovo@gmail.com

    2014-07-10

    We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvénic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (∼eV) injected at the viscous subshock to the escape of the highest energy CRs (∼PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.

  16. Nuclear reactions with 14 MeV neutrons and bremsstrahlungs in giant dipole resonance (GDR) region using small accelerators

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; Van Do, Nguyen; An, Truong Thi; Son, Nguyen Ngoc

    2003-07-01

    In 1974 an accelerator of deterium, namely neutron generator NA-3-C was put into operation and in 1982 another accelerator of electron Microtron MT-17 started its work in the Institute of Physics. Though very modest these accelerators are useful for developing countries as Vietnam in both Nuclear Physics Research and Training. In this report we present some results obtained in studies on Nuclear Data, Nuclear Reactions as well as nuclear activation analysis methods. We also would like to discuss about the possibilities of collaboration in the future.

  17. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    SciTech Connect

    Anania, M. P.; Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A.; Geer, S. B. van der; Loos, M. J. de; Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A.; Gillespie, W. A.; MacLeod, A. M.

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  18. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  19. Micro-sphere layered targets efficiency in laser driven proton acceleration

    SciTech Connect

    Floquet, V.; Martin, Ph.; Ceccotti, T.; Klimo, O.; Psikal, J.; Limpouch, J.; Proska, J.; Novotny, F.; Stolcova, L.; Velyhan, A.; Macchi, A.; Sgattoni, A.; Vassura, L.; Labate, L.; Baffigi, F.; Gizzi, L. A.

    2013-08-28

    Proton acceleration from the interaction of high contrast, 25 fs laser pulses at >10{sup 19} W/cm{sup 2} intensity with plastic foils covered with a single layer of regularly packed micro-spheres has been investigated experimentally. The proton cut-off energy has been measured as a function of the micro-sphere size and laser incidence angle for different substrate thickness, and for both P and S polarization. The presence of micro-spheres with a size comparable to the laser wavelength allows to increase the proton cut-off energy for both polarizations at small angles of incidence (10∘). For large angles of incidence, however, proton energy enhancement with respect to flat targets is absent. Analysis of electron trajectories in particle-in-cell simulations highlights the role of the surface geometry in the heating of electrons.

  20. Electron yield enhancement in a laser wakefield accelerator driven by asymmetric laser pulses

    SciTech Connect

    Leemans, W.P.; Catravas, P.; Esarey, E.; Geddes, C.G.R.; Toth, C.; Trines, R.; Schroeder, C.B.; Shadwick, B.A.; van Tilborg, J.; Faure, J.

    2002-08-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied using > 10{sup 19} cm{sup -3} plasmas and a 10 TW, > 45 fs, Ti:Al{sub 2}O{sub 3} laser. Laser pulse shape was controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability and that frequency chirp is of minimal importance for the experimental parameters.

  1. Modelling the behaviour of oxide fuels containing minor actinides with urania, thoria and zirconia matrices in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Sobolev, V.; Lemehov, S.; Messaoudi, N.; Van Uffelen, P.; Aı̈t Abderrahim, H.

    2003-06-01

    The Belgian Nuclear Research Centre, SCK • CEN, is currently working on the pre-design of the multipurpose accelerator-driven system (ADS) MYRRHA. A demonstration of the possibility of transmutation of minor actinides and long-lived fission products with a realistic design of experimental fuel targets and prognosis of their behaviour under typical ADS conditions is an important task in the MYRRHA project. In the present article, the irradiation behaviour of three different oxide fuel mixtures, containing americium and plutonium - (Am,Pu,U)O 2- x with urania matrix, (Am,Pu,Th)O 2- x with thoria matrix and (Am,Y,Pu,Zr)O 2- x with inert zirconia matrix stabilised by yttria - were simulated with the new fuel performance code MACROS, which is under development and testing at the SCK • CEN. All the fuel rods were considered to be of the same design and sizes: annular fuel pellets, helium bounded with the stainless steel cladding, and a large gas plenum. The liquid lead-bismuth eutectic was used as coolant. Typical irradiation conditions of the hottest fuel assembly of the MYRRHA subcritical core were pre-calculated with the MCNPX code and used in the following calculations as the input data. The results of prediction of the thermo-mechanical behaviour of the designed rods with the considered fuels during three irradiation cycles of 90 EFPD are presented and discussed.

  2. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates.

    PubMed

    Kominoski, John S; Rosemond, Amy D; Benstead, Jonathan P; Gulis, Vladislav; Maerz, John C; Manning, David W P

    2015-04-01

    Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and.drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-moderate N and P concentrations are needed to establish likely interdependent effects of dual N and P enrichment on baseline activity in stream ecosystems. We established 25 combinations of dissolved inorganic N (DIN; 55-545 µg/L) and soluble reactive P (SRP; 4-86 µg/L) concentrations with corresponding N:P molar ratios of 2-127 in experimental stream channels. We excluded macroinvertebrates, focusing on microbially driven breakdown of maple (Acer rubrum L.) and rhododendron (Rhododendron maximum L.) leaf litter. Breakdown rates, k, per day (d-1) and per degree-day (dd-l), increased by up to 6X for maple and 12× for rhododendron over our N and P enrichment gradient compared to rates at low ambient N and P concentrations. The best models of k (d- and dd-1) included litter species identity and N and P concentrations; there was evidence for both additive and interactive effects of N and P. Models explaining variation in k dd-1 were supported by N and P for both maple and rhododendron (R =0.67 and 0.33, respectively). Residuals in the relationship between k dd-1 and N concentration were largely explained by P, but residuals for k dd-1 and P. concentration were less adequately explained by N. Breakdown rates were more closely related to nutrient concentrations than variables associated with measurements of two mechanistic parameters associated with C loss (fungal biomass and microbial respiration rate). We also determined the effects of nutrient addition on litter C: nutrient stoichiometry and found reductions in litter C:N and C:P along our experimental nutrient gradient. Our results indicate that

  3. Vlasov simulation of laser-driven shock acceleration and ion turbulence

    NASA Astrophysics Data System (ADS)

    Grassi, A.; Fedeli, L.; Sgattoni, A.; Macchi, A.

    2016-03-01

    We present a Vlasov, i.e. a kinetic Eulerian simulation study of nonlinear collisionless ion-acoustic shocks and solitons excited by an intense laser interacting with an overdense plasma. The use of the Vlasov code avoids problems with low particle statistics and allows a validation of particle-in-cell results. A simple, original correction to the splitting method for the numerical integration of the Vlasov equation has been implemented in order to ensure the charge conservation in the relativistic regime. We show that the ion distribution is affected by the development of a turbulence driven by the relativistic ‘fast’ electron bunches generated at the laser-plasma interaction surface. This leads to the onset of ion reflection at the shock front in an initially cold plasma where only soliton solutions without ion reflection are expected to propagate. We give a simple analytical model to describe the onset of the turbulence as a nonlinear coupling of the ion density with the fast electron currents, taking the pulsed nature of the relativistic electron bunches into account.

  4. Towards controlled flyer acceleration by a laser-driven mini flyer

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Fedotov, Vitalij; Baek, Wonkye; Yoh, Jack J.

    2014-06-01

    A laser driven flyer (LDF) system is designed to blast off a very small, thin flyer plate for impact on a target. When a Nd:YAG laser beam is focused through a transparent substrate onto thin metal, a fraction of the metal is ablated. The blow-off products being contained between the substrate and the flyer make the remaining thin film launch as a separate flyer. Some energy of the laser beam is lost by reflection at the boundary between substrate and metal because of the high reflectivity. By using a proper metal of high absorptance at 1.064 μm wavelength, the laser coupling to the flyer would define the system efficiency of a launch system. An effort is presented here to improve the coupling results in the enhancement of the flyer velocity for a given pulse energy. An optimum energy conversion between laser energy and kinetic energy of the flyer is achieved through a black paint coating technique as opposed to a more conventional means of a multi-layered approach requiring electron beaming or magnetron sputtering that are rather expensive and time consuming. The mini flyer flown under 1.4 km/s showed a controlled flight trajectory without fragmentation, suggesting that performance of this simple system is competitive to if not better than other attempts by the multi-layered LDF systems.

  5. Neutronic and Physical Characteristics of an Accelerator Driven System with a Lead-208 Coolant

    SciTech Connect

    Khorasanov, Georgy L.; Ivonov, Anatoly P.; Blokhin, Anatoly I.

    2006-07-01

    In the paper a possibility of using a lead isotope, pure Pb-208, as a coolant for a subcritical core of 80 MW thermal capacity of the PDS-XADS type facility is considered. Calculations of neutronic characteristics were performed using Monte Carlo technique. The following initial data were chosen: an annular core with a target, as a neutron source, at its centre; the core coolant -- Pb-208 (100%); a fuel -- a mix of mono nitrides of depleted uranium and power plutonium with a small share of neptunium and americium; the target coolant -- a modified lead and bismuth eutectic, Pb-208(80%)-Bi(20%); proton beam energy -- 600 MeV; effective multiplication factor of the core under operation -- K{sub eff} = 0.97; thermal capacity of the core -- N = 80 MW. From calculations performed it follows that in using Pb-208 as the core coolant the necessary intensity of the external source of neutrons to deliver 80 MW thermal capacity is equal to S = 2.29-10{sup 17} n/s that corresponds to proton beam current I{sub p} = 2.8 mA and beam capacity P{sub p} 1.68 MW. In using natural lead instead of Pb-208 as the core coolant, effective multiplication factor of the core in normal operating regime falls down to the value equal to K{sub eff} = 0.95. In these conditions multiplication of external neutrons in the core and thermal capacity of the subcritical core are below nominal by 1.55 times. For achievement the rated core power N=80 MW it is required on {approx}20-30% to increase the fuel loading and volume of the core, or by 1.55 times to increase intensity of the external source of neutrons. In the last case, the required parameters of the neutron source and of the corresponding proton beam are following: intensity of the neutron source S = 3.55 10{sup 17} n/s., beam current I{sub p} = 4.32 mA, beam capacity P{sub p} 2.59 MW. To exploit the accelerator with the reduced proton beam current it will be required about 56 tons of Pb-208, as a minimum, for the core coolant. Charges for its

  6. Enhanced single-stage laser-driven electron acceleration by self-controlled ionization injection.

    PubMed

    Li, Song; Hafz, Nasr A M; Mirzaie, Mohammad; Sokollik, Thomas; Zeng, Ming; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-12-01

    We report on overall enhancement of a single-stage laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3% nitrogen gas in 99.7% helium gas. Upon the interaction of 30-TW, 30-fs laser pulses with a gas jet of the above gas mixture, >300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5 × 10(18) cm(-3). Compared with the uncontrolled electron self-injection in pure helium gas jet, the ionization injection process due to the presence of ultra-low nitrogen concentrations appears to be self-controlled; it has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1%, making them suitable for driving ultra-compact free-electron lasers. PMID:25606890

  7. Principles of self-modulated proton driven plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Pukhov, Alexander; Tuckmantel, Tobias; Kumar, N.; Upadhyay, A.; Lotov, K.; Khudik, V.; Siemon, C.; Shvets, G.; Muggli, P.; Caldwell, A.

    2012-12-01

    When a long proton bunch propagates in plasma, it is subject to the self-modulational instability. The radius of the proton bunch is modulated at the background plasma wavelength. The wake field is then resonantly excited. The amplitude of the wake is growing exponentially up to a saturation level that can reach a significant fraction of the wave breaking limit. The phase velocity of the wake is defined not only by the driver velocity, but also by the own instability dynamics. At the linear stage of the instability, the phase velocity is decreased that allows to inject low energy electrons in the wake. At the saturation phase, the wake phase velocity becomes close to that of the drvier. Side injection of particles at the right position in plasma may help to improve the maximum energy gain and the quality of acceleration. The wake's phase velocity can be controlled by smooth density gradients. The modulations of the proton bunch can be diagnosed by a transverse coherent transition radiation.

  8. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    SciTech Connect

    Kimura, Wayne D

    2008-06-27

    The original goals of the Staged Electron Laser Acceleration – Laser Wakefield (STELLA-LW) program were to investigate two new methods for laser wakefield acceleration (LWFA). In pseudo-resonant LWFA (PR-LWFA), a laser pulse experiences nonlinear pulse steepening while traveling through the plasma. This steepening allows the laser pulse to generate wakefields even though the laser pulse length is too long for resonant LWFA to occur. For the conditions of this program, PR-LWFA requires a minimum laser peak power of 3 TW and a low plasma density (10^16 cm^-3). Seeded self-modulated LWFA (seeded SM-LWFA) combines LWFA with plasma wakefield acceleration (PWFA). An ultrashort (~100 fs) electron beam bunch acts as a seed in a plasma to form a wakefield via PWFA. This wakefield is subsequently amplified by the laser pulse through a self-modulated LWFA process. At least 1 TW laser power and, for a ~100-fs bunch, a plasma density ~10^17 cm^-3 are required. STELLA-LW was located on Beamline #1 at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). The ATF TW CO2 laser served as the driving laser beam for both methods. For PR-LWFA, a single bunch was to probe the wakefield produced by the laser beam. For seeded SM-LWFA, the ATF linac would produce two bunches, where the first would be the seed and the second would be the witness. A chicane would compress the first bunch to enable it to generate wakefields via PWFA. The plasma source was a short-length, gas-filled capillary discharge with the laser beam tightly focused in the center of the capillary, i.e., no laser guiding was used, in order to obtain the needed laser intensity. During the course of the program, several major changes had to be made. First, the ATF could not complete the upgrade of the CO2 laser to the 3 TW peak power needed for the PR-LWFA experiment. Therefore, the PR-LWFA experiment had to be abandoned leaving only the seeded SM-LWFA experiment. Second, the ATF discovered that the

  9. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    SciTech Connect

    Park, J.J.; Buksa, J.J.

    1994-08-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

  10. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-01

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  11. Synergy Between Experiments and Simulations in Laser and Beam-Driven Plasma Acceleration and Light Sources

    NASA Astrophysics Data System (ADS)

    Mori, Warren B.

    2015-11-01

    Computer simulations have been an integral part of plasma physics research since the early 1960s. Initially, they provided the ability to confirm and test linear and nonlinear theories in one-dimension. As simulation capabilities and computational power improved, then simulations were also used to test new ideas and applications of plasmas in multi-dimensions. As progress continued, simulations were also used to model experiments. Today computer simulations of plasmas are ubiquitously used to test new theories, understand complicated nonlinear phenomenon, model the full temporal and spatial scale of experiments, simulate parameters beyond the reach of current experiments, and test the performance of new devices before large capital expenditures are made to build them. In this talk I review the progress in simulations in a particular area of plasma physics: plasma based acceleration (PBA). In PBA a short laser pulse or particle beam propagates through long regions of plasma creating plasma wave wakefields on which electrons or positrons surf to high energies. In some cases the wakefields are highly nonlinear, involve three-dimensional effects, and the trajectories of plasma particles cross making it essential that fully kinetic and three-dimensional models are used. I will show how particle-in-cell (PIC) simulations were initially used to propose the basic idea of PBA in one dimension. I will review some of the dramatic progress in the experimental demonstration of PBA and show how this progress was dramatically helped by a synergy between experiments and full-scale multi-dimensional PIC simulations. This will include a review of how the capability of PIC simulation tools has improved. I will also touch on some recent progress on improvements to PIC simulations of PBA and discuss how these improvements may push the synergy further towards real time steering of experiments and start to end modeling of key components of a future linear collider or XFEL based on PBA

  12. A Thorium/Uranium fuel cycle for an advanced accelerator transmutation of nuclear waste concept

    SciTech Connect

    Truebenbach, M.T.; Henderson, D.L.; Venneri, F.

    1993-12-31

    Utilizing the high thermal neutron flux of an accelerator driven transmuter to drive a Thorium-Uranium fuel production scheme, it is possible to produce enough energy in the transmuter not only to power the accelerator, but to have enough excess power available for commercial use. A parametric study has been initiated to determine the ``optimum`` equilibrium operation point in terms of the minimization of the equilibrium actinide inventory and the fuel {alpha} for various residence times in the High Flux Region (HFR) and in the Low Flux Region (LFR). For the cases considered, the ``optimum`` equilibrium operation point was achieved for a HFR residence time of 45 days and a LFR residence time of 60 days. For this case, the total actinide inventory in the system is about 20 tonnes and the fuel {alpha} approximately 1.46.

  13. Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.

    PubMed

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2016-01-01

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid-nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. PMID:27190001

  14. Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae

    PubMed Central

    Weng, Mao-Lun; Ruhlman, Tracey A.; Jansen, Robert K.

    2016-01-01

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. PMID:27190001

  15. Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    An, W.; Zhou, M.; Vafaei-Najafabadi, N.; Marsh, K. A.; Clayton, C. E.; Joshi, C.; Mori, W. B.; Lu, W.; Adli, E.; Corde, S.; Litos, M.; Li, S.; Gessner, S.; Frederico, J.; Hogan, M. J.; Walz, D.; England, J.; Delahaye, J. P.; Muggli, P.

    2013-10-01

    Strategies for mitigating ionization-induced beam head erosion in an electron-beam-driven plasma wakefield accelerator (PWFA) are explored when the plasma and the wake are both formed by the transverse electric field of the beam itself. Beam head erosion can occur in a preformed plasma because of a lack of focusing force from the wake at the rising edge (head) of the beam due to the finite inertia of the electrons. When the plasma is produced by field ionization from the space charge field of the beam, the head erosion is significantly exacerbated due to the gradual recession (in the beam frame) of the 100% ionization contour. Beam particles in front of the ionization front cannot be focused (guided) causing them to expand as in vacuum. When they expand, the location of the ionization front recedes such that even more beam particles are completely unguided. Eventually this process terminates the wake formation prematurely, i.e., well before the beam is depleted of its energy. Ionization-induced head erosion can be mitigated by controlling the beam parameters (emittance, charge, and energy) and/or the plasma conditions. In this paper we explore how the latter can be optimized so as to extend the beam propagation distance and thereby increase the energy gain. In particular we show that, by using a combination of the alkali atoms of the lowest practical ionization potential (Cs) for plasma formation and a precursor laser pulse to generate a narrow plasma filament in front of the beam, the head erosion rate can be dramatically reduced. Simulation results show that in the upcoming “two-bunch PWFA experiments” on the FACET facility at SLAC national accelerator laboratory the energy gain of the trailing beam can be up to 10 times larger for the given parameters when employing these techniques. Comparison of the effect of beam head erosion in preformed and ionization produced plasmas is also presented.

  16. Monitoring method for neutron flux for a spallation target in an accelerator driven sub-critical system

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang, He, Zhi-Yong; Yang, Lei; Zhang, Xue-Ying; Cui, Wen-Juan; Chen, Zhi-Qiang; Xu, Hu-Shan

    2016-07-01

    In this paper, we study a monitoring method for neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where a spallation target located vertically at the centre of a sub-critical core is bombarded vertically by high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose a multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied neutron production from a tungsten target bombarded by a 250 MeV-proton beam with Geant4-based Monte Carlo simulations. The simulation results indicate that the neutron flux at the central location is up to three orders of magnitude higher than the flux at lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron flux with a fission chamber (FC), by establishing the relation between the fission rate measured by FC and the spallation neutron flux. Since this relation is linear for a FC, a constant calibration factor is used to derive the neutron flux from the measured fission rate. This calibration factor can be extracted from the energy spectra of spallation neutrons. Finally, we have evaluated the proposed calibration method for a FC in the environment of an ADS system. The results indicate that the proposed method functions very well. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03010000 and XDA03030000) and the National Natural Science Foundation of China(91426301).

  17. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    PubMed

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. PMID:27484945

  18. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  19. Experimental study on the thorium-loaded accelerator-driven system at the Kyoto Univ. critical assembly

    SciTech Connect

    Pyeon, C. H.; Yagi, T.; Lim, J. Y.; Misawa, T.

    2012-07-01

    The experimental study on the thorium-loaded accelerator-driven system (ADS) is conducted in the Kyoto Univ. Critical Assembly (KUCA). The experiments are carried out in both the critical and subcritical states for attaining the reaction rates of the thorium capture and fission reactions. In the critical system, the thorium plate irradiation experiment is carried out for the thorium capture and fission reactions. From the results of the measurements, the thorium fission reactions are obtained apparently in the critical system, and the C/E values of reaction rates show the accuracy of relative difference of about 30%. In the ADS experiments with 14 MeV neutrons and 100 MeV protons, the subcritical experiments are carried out in the thorium-loaded cores to obtain the capture reaction rates through the measurements of {sup 115}In(n, {gamma}){sup 116m}In reactions. The results of the experiments reveal the difference between the reaction rate distributions for the change in not only the neutron spectrum but also the external neutron source. The comparison between the measured and calculated reaction rate distributions demonstrates a discrepancy of the accuracy of reaction rate analyses of thorium capture reactions through the thorium-loaded ADS experiments with 14 MeV neutrons. Hereafter, kinetic experiments are planned to be carried out to deduce the delayed neutron decay constants and subcriticality using the pulsed neutron method. (authors)

  20. Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration

    SciTech Connect

    Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe

    2011-09-09

    A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53 392), Ser15 (phospho-p53 15), Ser46 (phospho-p53 46) and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by multi-enzymes amplification strategy using gold nanorods (AuNRs) as nanocarrier for co-immobilization of horseradish peroxidase (HRP) and detection antibody (Ab2) at high ratio of HRP/Ab2, which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min, thus the whole sandwich immunoreactions could be completed in less than 5 min. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.

  1. A new vacuum insulated tandem accelerator for detection of explosives and special nuclear materials

    NASA Astrophysics Data System (ADS)

    Farrell, J. Paul; Powell, James; Murzina, Marina; Dudnikov, Vadim; Ivanov, Alexander

    2005-05-01

    This paper describes a radiation source that can be used to actively interrogate containers, trucks, trains, cars, etc to determine the presence and location of chemical explosives and special nuclear materials such as uranium and plutonium. Active interrogation methods using high energy photon or neutron sources to induce fission are the only feasible option for detection of highly enriched uranium (HEU) because passive detection methods are easily compromised by even moderate amounts of shielding. For detection of chemical explosives, the same active interrogation device can be used to produce resonant photons that can detect nitrogen that is used in most chemical explosives. The accelerator based system described here produces a penetrating beam of high energy photons or neutrons that can "see" inside a sealed container. If chemical explosives or special nuclear materials are present, they will emit a characteristic signal that is detected and interpreted by electronic sensors. Shielded "dirty bombs" can be detected by the attenuation of high energy photons caused by the density of the shield material. The interrogating source of radiation is based upon a new high current negative ion source and high current tandem accelerator. The accelerator accelerates ions and projects them onto an appropriately designed target. The target converts the energy of the ion beam into a high energy highly penetrating photon or neutron beam. The beam is made to pass through the container. If explosives, special nuclear materials or shielded dirty bombs are present, the beam together with a suitable detection system uniquely identifies the location, amount and density of material.

  2. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect

    Moon, Chang-Bum

    2014-04-15

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  3. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Ma, W.; Schreiber, J.

    2011-10-01

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the `hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th target and a deuterated CD2 foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 layer of the production target will be accelerated as well, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 1014 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 103 ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  4. Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport

    PubMed Central

    Schuster, Martin; Theisen, Ulrike; Kilaru, Sreedhar; Forge, Andrew; Martin-Urdiroz, Magdalena

    2012-01-01

    Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ∼1.0 µm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina. PMID:22851316

  5. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  6. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates

    PubMed Central

    2012-01-01

    Background Understanding the causes underlying heterogeneity of molecular evolutionary rates among lineages is a long-standing and central question in evolutionary biology. Although several earlier studies showed that modern frogs (Neobatrachia) experienced an acceleration of mitochondrial gene substitution rates compared to non-neobatrachian relatives, no further characterization of this phenomenon was attempted. To gain new insights on this topic, we sequenced the complete mitochondrial genomes and nine nuclear loci of one pelobatoid (Pelodytes punctatus) and five neobatrachians, Heleophryne regis (Heleophrynidae), Lechriodus melanopyga (Limnodynastidae), Calyptocephalella gayi (Calyptocephalellidae), Telmatobius bolivianus (Ceratophryidae), and Sooglossus thomasseti (Sooglossidae). These represent major clades not included in previous mitogenomic analyses, and most of them are remarkably species-poor compared to other neobatrachians. Results We reconstructed a fully resolved and robust phylogeny of extant frogs based on the new mitochondrial and nuclear sequence data, and dated major cladogenetic events. The reconstructed tree recovered Heleophryne as sister group to all other neobatrachians, the Australasian Lechriodus and the South American Calyptocephalella formed a clade that was the sister group to Nobleobatrachia, and the Seychellois Sooglossus was recovered as the sister group of Ranoides. We used relative-rate tests and direct comparison of branch lengths from mitochondrial and nuclear-based trees to demonstrate that both mitochondrial and nuclear evolutionary rates are significantly higher in all neobatrachians compared to their non-neobatrachian relatives, and that such rate acceleration started at the origin of Neobatrachia. Conclusions Through the analysis of the selection coefficient (ω) in different branches of the tree, we found compelling evidence of relaxation of purifying selection in neobatrachians, which could (at least in part) explain the

  7. Nuclear space-valued stochastic differential equations driven by Poisson random measures

    SciTech Connect

    Xiong, J.

    1992-01-01

    The thesis is devoted primarily to the study of stochastic differential equations on duals of nuclear spaces driven by Poisson random measures. The existence of a weak solution is obtained by the Galerkin method and the uniqueness is established by implementing the Yamada-Watanabe argument in the present setup. When the magnitudes of the driving terms are small enough and the Poisson streams occur frequently enough, it is proved that the stochastic differential equations mentioned above can be approximated by diffusion equations. Finally, the author considers a system of interacting stochastic differential equations driven by Poisson random measures. Let (X[sup n][sub i](t), [center dot][center dot][center dot], X[sup n][sub n](t)) be the solution of this system and consider the empirical measures [zeta]n([omega],B) [identical to] (1/n) (sum of j=1 to n) [delta]x[sup n][sub j]([center dot],[omega])(B) (n[>=]1). It is provided that [zeta][sub n] converges in distribution to a non-random measure which is the unique solution of a McKean-Vlasov equation. The above problems are motivated by applications to neurophysiology, in particular, to the fluctuation of voltage potentials of spatially distributed neurons and to the study of asymptotic behavior of large systems of interacting neurons.

  8. Acceleration mass spectrometer of the Budker Institute of Nuclear Physics for biomedical applications

    NASA Astrophysics Data System (ADS)

    Rastigeev, S. A.; Frolov, A. R.; Goncharov, A. D.; Klyuev, V. F.; Konstantinov, E. S.; Kutnyakova, L. A.; Parkhomchuk, V. V.; Petrozhitskii, A. V.

    2014-09-01

    An accelerator mass spectrometer (AMS) made at the Budker Institute of Nuclear Physics (BINP), Siberian Branch, Russian Academy of Sciences, is installed in the Geochronology of the Cenozoic Era Center for Collective Use for the carbon 14 dating of samples. Distinctive features of the BINP AMS include the use of a middle energy separator of ion beams, magnesium vapor target as a stripping target, and a time-of-flight telescope with thin films for accurate ion selection. Results of experiments measuring the radiocarbon concentration in test samples with radiocarbon labels for biomedical applications are presented.

  9. A Reconsideration of Electrostatically Accelerated and Confined Nuclear Fusion for Space Applications

    NASA Astrophysics Data System (ADS)

    MacLeod, C.; Gow, K. S.

    Most present-day research into Nuclear Fusion concentrates on high-temperature plasmas combined with Inertial or Magnetic Confinement. However, there exists another body of less well-known work based on Electrostatic Acceleration and Confinement. The most thoroughly researched of these devices is known as the Farnsworth Fusor. This paper reviews the technique and then argues that, with development, similar technologies would be particularly suited to space-borne applications, due to their safety, simplicity and light weight. The paper then goes on to suggest several possible directions for new research into such devices which might result in a working machine.

  10. Enhanced laser-radiation-pressure-driven proton acceleration by moving focusing electric-fields in a foil-in-cone target

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Wu, H. C.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ge, Z. Y.

    2015-02-01

    A foil-in-cone target is proposed to enhance stable laser-radiation-pressure-driven proton acceleration by avoiding the beam degradation in whole stage of acceleration. Two and three-dimensional particle-in-cell simulations demonstrate that the guiding cone can substantially improve the spectral and spatial properties of the ion beam and lead to better preservation of the beam quality. This can be attributed to the focusing effect of the radial sheath electric fields formed on the inner walls of the cone, which co-move with the accelerated foil and effectively suppress the undesirable transverse explosion of the foil. It is shown that, by using a transversely Gaussian laser pulse with intensity of ˜2.74 × 1022 W/cm2, a quasi-monoenergetic proton beam with a peak energy of ˜1.5 GeV/u, density ˜10nc, and transverse size ˜1λ0 can be obtained.

  11. Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Accelerating Nuclear Magnetic Resonance (NMR) Analysis of Soil Organic Matter with Dynamic Nuclear Polarization (DNP) Enhancement

    NASA Astrophysics Data System (ADS)

    Normand, A. E.; Smith, A. N.; Long, J. R.; Reddy, K. R.

    2014-12-01

    13C magic angle spinning (MAS) solid state Nuclear Magnetic Resonance (ssNMR) has become an essential tool for discerning the chemical composition of soil organic matter (SOM). However, the technique is limited due to the inherent insensitivity of NMR resulting in long acquisition times, especially for low carbon (C) soil. The pursuits of higher magnetic fields or concentrating C with hydrofluoric acid are limited solutions for signal improvement. Recent advances in dynamic nuclear polarization (DNP) have addressed the insensitivity of NMR. DNP utilizes the greater polarization of an unpaired electron in a given magnetic field and transfers that polarization to an NMR active nucleus of interest via microwave irradiation. Signal enhancements of up to a few orders of magnitude have been achieved for various DNP experiments. In this novel study, we conduct DNP 13C cross-polarization (CP) MAS ssNMR experiments of SOM varying in soil C content and chemical composition. DNP signal enhancements reduce the experiment run time allowing samples with low C to be analyzed in hours rather than days. We compare 13C CP MAS ssNMR of SOM with multiple magnetic field strengths, hydrofluoric acid treatment, and novel DNP approaches. We also explore DNP surface enhanced NMR Spectroscopy (SENP) to determine the surface chemistry of SOM. The presented results and future DNP MAS ssNMR advances will lead to further understanding of the nature and processes of SOM.

  13. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics

    SciTech Connect

    Battistoni, Giuseppe; Broggi, Francesco; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M.; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; /Siegen U. /CERN /Seibersdorf, Reaktorzentrum /INFN, Milan /Milan U. /SLAC /INFN, Legnaro /INFN, Bologna /Bologna U. /CERN /HITS, Heidelberg /CERN /CERN /Frascati /CERN /CERN /CERN /CERN /NASA, Houston

    2012-04-17

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such topics as accelerator related applications.

  14. Applications of FLUKA Monte Carlo code for nuclear and accelerator physics

    NASA Astrophysics Data System (ADS)

    Battistoni, Giuseppe; Broggi, Francesco; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fassò, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M.; Morone, Cristina; Muraro, Silvia; Parodi, Katia; Patera, Vincenzo; Pelliccioni, Mauricio; Pinsky, Larry; Ranft, Johannes; Roesler, Stefan; Rollet, Sofia; Sala, Paola R.; Santana, Mario; Sarchiapone, Lucia; Sioli, Massimiliano; Smirnov, George; Sommerer, Florian; Theis, Christian; Trovati, Stefania; Villari, R.; Vincke, Heinz; Vincke, Helmut; Vlachoudis, Vasilis; Vollaire, Joachim; Zapp, Neil

    2011-12-01

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such topics as accelerator related applications.

  15. High power linear accelerators for tritium production and transmutation of nuclear waste

    SciTech Connect

    Lawrence, G.P.

    1990-01-01

    Proton linacs driving high-flux spallation neutron sources are being considered for transmutation of nuclear waste and production of tritium. Advances in high-current linac technology have provided a basis for the development of credible designs for the required accelerator, which has a nominal 1.6-GeV energy, and a 250-mA cw current. A beam with these parameters incident on a liquid lead-bismuth (Pb-Bi) target can generate a thermal neutron flux of up to 5 {times} 10{sup 16} n/cm{sup 2}-s in a cylindrical blanket surrounding the spallation source. This high flux can produce tritium through the {sup 6}Li(n,{alpha})T or {sup 3}He(n,{gamma})T reactions, or can burn long-lived actinides and fission products from nuclear waste through capture and fission processes. In some system scenarios, waste actinides and/or other fissile materials in the blanket can produce sufficient fission energy to power the accelerator.

  16. High-power, high-brightness pseudospark-produced electron beam driven by improved pulse line accelerator

    SciTech Connect

    Junbino Zhu; Mingchang Wang; Zhijiang Wang

    1995-12-31

    A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10{sup 10}A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shots on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam.

  17. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Bo; Chen, Min; Schroeder, C. B.; Luo, Ji; Zeng, Ming; Li, Fei-Yu; Yu, Lu-Le; Weng, Su-Ming; Ma, Yan-Yun; Yu, Tong-Pu; Sheng, Zheng-Ming; Esarey, E.

    2016-03-01

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radius on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.

  18. Nuclear fusion of deuterons with light nuclei driven by Coulomb explosion of nanodroplets

    SciTech Connect

    Ron, Shlomo; Last, Isidore; Jortner, Joshua

    2012-11-15

    Theoretical-computational studies of table-top laser-driven nuclear fusion of high energy (up to 15 MeV) deuterons with {sup 7}Li, {sup 6}Li, T, and D demonstrate the attainment of high fusion yields. The reaction design constitutes a source of Coulomb exploding deuterium nanodroplets driven by an ultraintense, near-infrared, femtosecond Gaussian laser pulse (peak intensity 2 Multiplication-Sign 10{sup 18}-5 Multiplication-Sign 10{sup 19} W cm{sup -2}) and a solid, hollow cylindrical target containing the second reagent. The exploding nanodroplets source is characterized by the deuteron kinetic energies, their number, and the laser energy absorbed by a nanodroplet. These were computed by scaled electron and ion dynamics simulations, which account for intra-nanodroplet laser intensity attenuation and relativistic effects. The fusion yields Y are determined by the number of the source deuterons and by the reaction probability. When laser intensity attenuation is weak within a single nanodroplet and throughout the nanodroplets assembly, Y exhibits a power law increase with increasing the nanodroplet size. Y is maximized for the nanodroplet size and laser intensity corresponding to the 'transition' between the weak and the strong intensity attenuation domains. The dependence of Y on the laser pulse energy W scales as W{sup 2} for weak assembly intensity attenuation, and as W for strong assembly intensity attenuation. This reaction design attains the highest table-top fusion efficiencies (up to 4 Multiplication-Sign 10{sup 9} J{sup -1} per laser pulse) obtained up to date.

  19. Petawatt laser-driven wakefield accelerator: All-optical electron injection via collision of laser pulses and radiation cooling of accelerated electron bunches.

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Avitzour, Yoav; Yi, S. Austin; Shvets, Gennady

    2007-11-01

    We explore an electron injection into the laser wakefield accelerator (LWFA) using nearly head-on collision of the petawatt ultrashort (˜30 fs) laser pulse (driver) with a low- amplitude laser (seed) beam of the same duration and polarization. To eliminate the threat to the main laser amplifier we consider two options: (i) a frequency-shifted seed and (ii) a seed pulse propagating at a small angle to the axis. We show that the emission of synchrotron radiation due to betatron oscillations of trapped and accelerated electrons results in significant transverse cooling of quasi- monoenergetic accelerated electrons (with energies above 1 GeV). At the same time, the energy losses due to the synchrotron emission preserve the final energy spread of the electron beam. The ``dark current'' due to the electron trapping in multiple wake buckets and the effect of beam loading (wake destruction at the instant of beams collision) are discussed.

  20. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    NASA Astrophysics Data System (ADS)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  1. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  2. Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding.

    PubMed

    Li, Yihang; Hassinger, Linda; Thomson, Travis; Ding, Baojin; Ashley, James; Hassinger, William; Budnik, Vivian

    2016-08-01

    Defective RNA metabolism and transport are implicated in aging and degeneration [1, 2], but the underlying mechanisms remain poorly understood. A prevalent feature of aging is mitochondrial deterioration [3]. Here, we link a novel mechanism for RNA export through nuclear envelope (NE) budding [4, 5] that requires A-type lamin, an inner nuclear membrane-associated protein, to accelerated aging observed in Drosophila LaminC (LamC) mutations. These LamC mutations were modeled after A-lamin (LMNA) mutations causing progeroid syndromes (PSs) in humans. We identified mitochondrial assembly regulatory factor (Marf), a mitochondrial fusion factor (mitofusin), as well as other transcripts required for mitochondrial integrity and function, in a screen for RNAs that exit the nucleus through NE budding. PS-modeled LamC mutations induced premature aging in adult flight muscles, including decreased levels of specific mitochondrial protein transcripts (RNA) and progressive mitochondrial degradation. PS-modeled LamC mutations also induced the accelerated appearance of other phenotypes associated with aging, including a progressive accumulation of polyubiquitin aggregates [6, 7] and myofibril disorganization [8, 9]. Consistent with these observations, the mutants had progressive jumping and flight defects. Downregulating marf alone induced the above aging defects. Nevertheless, restoring marf was insufficient for rescuing the aging phenotypes in PS-modeled LamC mutations, as other mitochondrial RNAs are affected by inhibition of NE budding. Analysis of NE budding in dominant and recessive PS-modeled LamC mutations suggests a mechanism by which abnormal lamina organization prevents the egress of these RNAs via NE budding. These studies connect defects in RNA export through NE budding to progressive loss of mitochondrial integrity and premature aging. PMID:27451905

  3. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    SciTech Connect

    Badziak, J.; Rosiński, M.; Krousky, E.; Kucharik, M.; Liska, R.; Ullschmied, J.

    2015-03-15

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of such pressure with other laser-based methods known so far.

  4. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Rosiński, M.; Krousky, E.; Kucharik, M.; Liska, R.; Ullschmied, J.

    2015-03-01

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ˜ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of such pressure with other laser-based methods known so far.

  5. The physics of sub-critical lattices in accelerator driven hybrid systems: The MUSE experiments in the MASURCA facility

    SciTech Connect

    Chauvin, J. P.; Lebrat, J. F.; Soule, R.; Martini, M.; Jacqmin, R.; Imel, G. R.; Salvatores, M.

    1999-06-10

    Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment is planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties.

  6. CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0

    SciTech Connect

    Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

    2003-02-27

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  7. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  8. Simulation of reactor pulses in fast burst and externally driven nuclear assemblies

    NASA Astrophysics Data System (ADS)

    Green, Taylor Caldwell, IV

    The following research contributes original concepts to the fields of deterministic neutron transport modeling and reactor power excursion simulation. A deterministic neutron transport code was created to assess the value of new methods of determining neutron current, fluence, and flux values through the use of view factor and average path length calculations. The neutron transport code is also capable of modeling the highly anisotropic neutron transport of deuterium-tritium fusion external source neutrons using diffusion theory with the aid of a modified first collision source term. The neutron transport code was benchmarked with MCNP, an industry standard stochastic neutron transport code. Deterministic neutron transport methods allow users to model large quantities of neutrons without simulating their interactions individually. Subsequently, deterministic methods allow users to more easily couple neutron transport simulations with other physics simulations. Heat transfer and thermoelastic mechanics physics simulation modules were each developed and benchmarked using COMSOL, a commercial heat transfer and mechanics simulation software. The physics simulation modules were then coupled and used to simulate reactor pulses in fast burst and externally driven nuclear assemblies. The coupled system of equations represents a new method of simulating reactor pulses that allows users to more fully characterize pulsed assemblies. Unlike older methods of reactor pulse simulation, the method presented in this research does not require data from the operational reactor in order to simulate its behavior. The ability to simulate the coupled neutron transport and thermo-mechanical feedback present in pulsed reactors prior their construction would significantly enhance the quality of pulsed reactor pre-construction safety analysis. Additionally, a graphical user interface is created to allow users to run simulations and visualize the results using the coupled physics simulation

  9. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  10. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration for ion-driven fast ignition

    SciTech Connect

    Huang, Chengkun; Albright, Brian J

    2010-07-16

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of 100s of MeV energy and < 10% energy spread. An overdense run-scale foil target driven by a high intensity laser pulse can produce an ion beam that has attractive properties for this application. The Break Out Afterburner (BOA) is one laser-ion acceleration mechanism proposed to generate such beams, however the late stages of the BOA tend to produce too large of an energy spread. The spectral and spatial qualities of the beam quickly evolve as the ion beam and co-moving electrons continue to interact with the laser. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the co-moving electrons and improve the ion beam energy spread. Particle-In-Cell simulations reveal the dynamics of the ion beam under control. Optimal conditions for improving the spectral and spatial spread of the ion beam is explored for current laser and target parameters, leading to generation of ion beams of energy 100s of MeV and 6% energy spread, a vital step for realizing ion-driven fast ignition.

  11. Basic concept for an accelerator-driven subcritical system to be used as a long-pulse neutron source for Condensed Matter research

    NASA Astrophysics Data System (ADS)

    Vivanco, R.; Ghiglino, A.; de Vicente, J. P.; Sordo, F.; Terrón, S.; Magán, M.; Perlado, J. M.; Bermejo, F. J.

    2014-12-01

    A model for an accelerator-driven subcritical system to be operated as a source of cold neutrons for Condensed Matter research is developed at the conceptual level. Its baseline layout relies upon proven accelerator, spalattion target and fuel array technologies, and consists in a proton accelerator able to deliver some 67.5 mA of proton beam with kinetic energy 0.6 GeV, a pulse length of 2.86 ms, and repetition rate of 14 Hz. The particle beam hits a target of conventional design that is surrounded by a multiplicative core made of fissile/fertile material, composed by a subcritical array of fuel bars made of aluminium Cermet cooled by light water poisoned with boric acid. Relatively low enriched uranium is chosen as fissile material. An optimisation of several parameters is carried out, using as components of the objective function several characteristics pertaining the cold neutron pulse. The results show that the optimal device will deliver up to 80% of the cold neutron flux expected for some of the ongoing projects using a significantly lower proton beam power than that managed in such projects. The total power developed within the core rises up to 22.8 MW, and the criticality range shifts to a final keff value of around 0.9 after the 50 days cycle.

  12. Enhanced laser-radiation-pressure-driven proton acceleration by moving focusing electric-fields in a foil-in-cone target

    SciTech Connect

    Zou, D. B.; Zhuo, H. B. Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ge, Z. Y.; Wu, H. C.

    2015-02-15

    A foil-in-cone target is proposed to enhance stable laser-radiation-pressure-driven proton acceleration by avoiding the beam degradation in whole stage of acceleration. Two and three-dimensional particle-in-cell simulations demonstrate that the guiding cone can substantially improve the spectral and spatial properties of the ion beam and lead to better preservation of the beam quality. This can be attributed to the focusing effect of the radial sheath electric fields formed on the inner walls of the cone, which co-move with the accelerated foil and effectively suppress the undesirable transverse explosion of the foil. It is shown that, by using a transversely Gaussian laser pulse with intensity of ∼2.74 × 10{sup 22 }W∕cm{sup 2}, a quasi-monoenergetic proton beam with a peak energy of ∼1.5 GeV/u, density ∼10n{sub c}, and transverse size ∼1λ{sub 0} can be obtained.

  13. Theoretical approach of the photoinjector exit aperture influence on the wake field driven by an electron beam accelerated in an RF gun of free-electron laser ``ELSA''

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el; Dolique, J.-M.

    2000-06-01

    The wake field generated in the cylindrical cavity of an RF photoinjector, by a strongly accelerated electron beam, has been analytically calculated (Salah, Dolique, Nucl. Instr. and Meth. A 437 (1999) 27) under the assumption that the perturbation of the field map by the exit hole is negligible as long as the ratio: exit hole radius/cavity radius is lower than approximately 1/3. Shown experimentally in the different context of a long accelerating structure formed by a sequence of bored pill-box cavity (Figuera et al., Phys. Rev. Lett. 60 (1988) 2144; Kim et al., J. Appl. Phys. 68 (1990) 4942), this often-quoted result must be checked for the wake field map excited in a photo injector cavity. Further, in the latter case, the empirical rule in question can be broken more easily because, due to causality, the cavity radius to be considered is not the physical radius but that of the part of the anode wall around the exit hole reached by the beam electromagnetic influence. We present an analytical treatment of the wake field driven in a photoinjector by the accelerated electron beam which takes this hole effect into account, whatever the hole radius may be.

  14. Inhibition of Nuclear Factor of Activated T-Cells (NFAT) Suppresses Accelerated Atherosclerosis in Diabetic Mice

    PubMed Central

    Zetterqvist, Anna V.; Berglund, Lisa M.; Blanco, Fabiana; Garcia-Vaz, Eliana; Wigren, Maria; Dunér, Pontus; Andersson, Anna-Maria Dutius; To, Fong; Spegel, Peter; Nilsson, Jan; Bengtsson, Eva; Gomez, Maria F.

    2013-01-01

    Objective of the Study Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. Methodology and Principal Findings Streptozotocin (STZ)-induced diabetes in apolipoprotein E−/− mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. Conclusions Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications. PMID:23755169

  15. Nuclear burning-up of RAW in blanket of linac-driven

    SciTech Connect

    Beljakov, M.S.; Logashev, O.N.; Lopatkin, A.V.; Tocheny, L.V.; Khrjastov, H.A.; Blagovolin, P.P.; Kazaritsky, V.D.

    1993-12-31

    The progress in the field of designing and constructing a heavy-current proton linear accelerator became noticeable last year and allows one to count on large-scale industrial linac application. Symbiosis of linac and subcritical reactor as target has new opportunities for energetics. This accelerator concept is described.

  16. A Low-Charge, Hard X-Ray FEL Driven with an X-band Injector and Accelerator

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-02-17

    After the successful operation of FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source), soft and hard X-ray Free Electron Lasers (FELs) are being built, designed or proposed at many accelerator laboratories. Acceleration employing lower frequency RF cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic RF system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency RF acceleration process. In this paper, a hard X-ray FEL design using an all X-band accelerator at 11.424 GHz (from photo-cathode RF gun to linac end) is presented, without the assistance of any harmonic RF linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (RMS), low charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macro-particle 3-D simulation employing several computer codes is presented in this paper, where space charge, wakefields, incoherent and coherent synchrotron radiation (ISR and CSR) effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  17. Low-Charge, Hard X-Ray Free Electron Laser Driven with an X-Band Injector and Accelerator

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-04-17

    After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  18. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  19. Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A

    NASA Astrophysics Data System (ADS)

    Wykes, Sarka; Croston, Judith H.; Hardcastle, Martin J.; Eilek, Jean A.; Biermann, Peter L.; Achterberg, Abraham; Bray, Justin D.; Lazarian, Alex; Haverkorn, Marijke; Protheroe, Ray J.; Bromberg, Omer

    2013-10-01

    Observations of the FR I radio galaxy Centaurus A in radio, X-ray, and gamma-ray bands provide evidence for lepton acceleration up to several TeV and clues about hadron acceleration to tens of EeV. Synthesising the available observational constraints on the physical conditions and particle content in the jets, inner lobes and giant lobes of Centaurus A, we aim to evaluate its feasibility as an ultra-high-energy cosmic-ray source. We apply several methods of determining jet power and affirm the consistency of various power estimates of ~1 × 1043 erg s-1. Employing scaling relations based on previous results for 3C 31, we estimate particle number densities in the jets, encompassing available radio through X-ray observations. Our model is compatible with the jets ingesting ~3 × 1021 g s-1 of matter via external entrainment from hot gas and ~7 × 1022 g s-1 via internal entrainment from jet-contained stars. This leads to an imbalance between the internal lobe pressure available from radiating particles and magnetic field, and our derived external pressure. Based on knowledge of the external environments of other FR I sources, we estimate the thermal pressure in the giant lobes as 1.5 × 10-12 dyn cm-2, from which we deduce a lower limit to the temperature of ~1.6 × 108 K. Using dynamical and buoyancy arguments, we infer ~440-645 Myr and ~560 Myr as the sound-crossing and buoyancy ages of the giant lobes respectively, inconsistent with their spectral ages. We re-investigate the feasibility of particle acceleration via stochastic processes in the lobes, placing new constraints on the energetics and on turbulent input to the lobes. The same "very hot" temperatures that allow self-consistency between the entrainment calculations and the missing pressure also allow stochastic UHECR acceleration models to work.

  20. Study of the parametric oscillator driven by narrow-band noise to model the response of a fluid surface to time-dependent accelerations

    SciTech Connect

    Zhang, W.; Casademunt, J.; Vinals, J. )

    1993-12-01

    A stochastic formulation is introduced to study the large amplitude and high-frequency components of residual accelerations found in a typical microgravity environment (or [ital g]-jitter). The linear response of a fluid surface to such residual accelerations is discussed in detail. The analysis of the stability of a free fluid surface can be reduced in the underdamped limit to studying the equation of the parametric harmonic oscillator for each of the Fourier components of the surface displacement. A narrow-band noise is introduced to describe a realistic spectrum of accelerations, that interpolates between white noise and monochromatic noise. Analytic results for the stability of the second moments of the stochastic parametric oscillator are presented in the limits of low-frequency oscillations, and near the region of subharmonic parametric resonance. Based upon simple physical considerations, an explicit form of the stability boundary valid for arbitrary frequencies is proposed, which interpolates smoothly between the low frequency and the near resonance limits with no adjustable parameter, and extrapolates to higher frequencies. A second-order numerical algorithm has also been implemented to simulate the parametric stochastic oscillator driven with narrow-band noise. The simulations are in excellent agreement with our theoretical predictions for a very wide range of noise parameters. The validity of previous approximate theories for the particular case of Ornstein--Uhlenbeck noise is also checked numerically. Finally, the results obtained are applied to typical microgravity conditions to determine the characteristic wavelength for instability of a fluid surface as a function of the intensity of residual acceleration and its spectral width.

  1. Single pass, THz spectral range free-electron laser driven by a photocathode hybrid rf linear accelerator

    NASA Astrophysics Data System (ADS)

    Lurie, Yu.; Friedman, A.; Pinhasi, Y.

    2015-07-01

    A single pass, THz spectral range free-electron laser (FEL) driven by a photocathode hybrid rf-LINAC is considered, taking the Israeli THz FEL project developed in Ariel University as an example. Two possible configurations of such FEL are discussed: an enhanced coherent spontaneous emission FEL, and a prebunched FEL utilizing periodically modulated short electron beam pulses. A general study of the FEL configurations is carried out in the framework of a space-frequency approach, realized in WB3D numerical code. The configurations are studied and compared based on preliminary parameters of a drive hybrid rf-LINAC gun under development in University of California, Los Angeles.

  2. Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator

    SciTech Connect

    Murakami, M.; Tanaka, M.

    2013-04-22

    An ion acceleration scheme using carbon nanotubes (CNTs) is proposed, in which embedded fragments of low-Z materials are irradiated by an ultrashort intense laser to eject substantial numbers of electrons. Due to the resultant characteristic electrostatic field, the nanotube and embedded materials play the roles of the barrel and bullets of a gun, respectively, to produce highly collimated and quasimonoenergetic ion beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic MeV-order proton beams using nanometer-size CNT under a super-intense electrostatic field {approx}10{sup 14} V m{sup -1}.

  3. Thermal hydraulic studies of spallation target for one-way coupled Indian accelerator driven systems with low energy proton beam

    NASA Astrophysics Data System (ADS)

    Mantha, V.; Mohanty, A. K.; Satyamurthy, P.

    2007-02-01

    BARC has recently proposed a one-way coupled ADS reactor. This reactor requires typically 1 GeV proton beam with 2 mA of current. Approximately 8 kW of heat is deposited in the window of the target. Circulating liquid metal target (lead/lead-bismuth{eutectic) has to extract this heat and this is a critical R&D problem to be solved. At present there are very few accelerators, which can give few mA and high-energy proton beam. However, accelerators with low energy and hundreds of micro-ampere current are commercially available. In view of this, it is proposed in this paper to simulate beam window heating of 8 kW in the target with low-energy proton beam. Detailed thermal analysis in the spallation and window region has been carried out to study the capability of heat extraction by circulating LBE for a typical target loop with a proton beam of 30 MeV energy and current of 0.267 mA. The heat deposition study is carried out using FLUKA code and flow analysis by CFD code. The detailed analysis of this work is presented in this paper.

  4. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs.

    PubMed

    Matsuura, Yoshiyuki

    2016-05-22

    Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza. PMID:26519791

  5. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration for ion-driven fast ignition

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun

    2010-11-01

    Mid-Z ion driven fast ignition inertial fusion [1] requires ion beams of 100s of MeV energy and < 10% energy spread. An overdense nm-scale foil target driven by a high intensity laser pulse can produce an ion beam that has attractive properties for this application. The Break Out Afterburner (BOA) [2] is one laser-ion acceleration mechanism proposed to generate such beams, however the late stages of the BOA tend to produce too large of an energy spread. The spectral and spatial qualities of the beam quickly evolve as the ion beam and co-moving electrons continue to interact with the laser. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the co-moving electrons and improve the ion beam energy spread [3]. Particle-In-Cell simulations reveal the dynamics of the ion beam under control. Optimal conditions for improving the spectral and spatial spread of the ion beam is explored for current laser and target parameters, leading to generation of ion beams of energy 100s of MeV and 6% energy spread, a vital step for realizing ion-driven fast ignition. [4pt] [1] M. Roth et al., Phys. Rev. Lett. 86, 436 (2001); M. Temporal, J. J. Honrubia, and S. Atzeni, Phys. of Plasmas 9, 3098 (2002). [2] L. Yin, B. J. Albright, B. M. Hegelich, and J. C. Fern'andez, Laser and Part. Beams 24, 291 (2006). [3] C.-K. Huang, B. J. Albright, L. Yin, H.-C. Wu et al., submitted to Phys. Rev. Lett.

  6. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    NASA Astrophysics Data System (ADS)

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and

  7. Computer simulation of rocket/missile safing and arming mechanism (containing pin pallet runaway escapement, three-pass involute gear train and acceleration driven rotor)

    NASA Astrophysics Data System (ADS)

    Gorman, P. T.; Tepper, F. R.

    1986-03-01

    A complete simulation of missile and rocket safing and arming (S&A) mechanisms containing an acceleration-driven rotor, a three-pass involute gear train, and a pin pallet runaway escapement was developed. In addition, a modification to this simulation was formulated for the special case of the PATRIOT M143 S&A mechanism which has a pair of driving gears in addition to the three-pass gear train. The three motion regimes involved in escapement operation - coupled motion, free motion, and impact - are considered in the computer simulation. The simulation determines both the arming time of the device and the non-impact contact forces of all interacting components. The program permits parametric studies to be made, and is capable of analyzing pallets with arbitrarily located centers of mass. A sample simulation of the PATRIOT M143 S&A in an 11.9 g constant acceleration arming test was run. The results were in good agreement with laboratory test data.

  8. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  9. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  10. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  11. Probiotics Modulate Intestinal Expression of Nuclear Receptor and Provide Counter-Regulatory Signals to Inflammation-Driven Adipose Tissue Activation

    PubMed Central

    Mencarelli, Andrea; Distrutti, Eleonora; Renga, Barbara; D'Amore, Claudio; Cipriani, Sabrina; Palladino, Giuseppe; Donini, Annibale; Ricci, Patrizia; Fiorucci, Stefano

    2011-01-01

    Background Adipocytes from mesenteric white adipose tissue amplify the inflammatory response and participate in inflammation-driven immune dysfunction in Crohn's disease by releasing proinflammatory mediators. Peroxisome proliferator-activated receptors (PPAR)-α and -γ, pregnane x receptor (PXR), farnesoid x receptor (FXR) and liver x-receptor (LXR) are ligand-activated nuclear receptor that provide counter-regulatory signals to dysregulated immunity and modulates adipose tissue. Aims To investigate the expression and function of nuclear receptors in intestinal and adipose tissues in a rodent model of colitis and mesenteric fat from Crohn's patients and to investigate their modulation by probiotics. Methods Colitis was induced by TNBS administration. Mice were administered vehicle or VSL#3, daily for 10 days. Abdominal fat explants obtained at surgery from five Crohn's disease patients and five patients with colon cancer were cultured with VSL#3 medium. Results Probiotic administration attenuated development of signs and symptoms of colitis, reduced colonic expression of TNFα, IL-6 and IFNγ and reserved colonic downregulation of PPARγ, PXR and FXR caused by TNBS. Mesenteric fat depots isolated from TNBS-treated animals had increased expression of inflammatory mediators along with PPARγ, FXR, leptin and adiponectin. These changes were prevented by VSL#3. Creeping fat and mesenteric adipose tissue from Crohn's patients showed a differential expression of PPARγ and FXR with both tissue expressing high levels of leptin. Exposure of these tissues to VSL#3 medium abrogates leptin release. Conclusions Mesenteric adipose tissue from rodent colitis and Crohn's disease is metabolically active and shows inflammation-driven regulation of PPARγ, FXR and leptin. Probiotics correct the inflammation-driven metabolic dysfunction. PMID:21829567

  12. Nuclear Effects of Supernova-Accelerated Cosmic Rays on Early Solar System Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; The, L.-S.; Johnson, J.

    2008-03-01

    The solar system apparently formed in the neighborhood of massive stars. Supernova explosions of these stars accelerate cosmic rays to 100s of TeVs. These cosmic rays could accelerate the beta decay of certain radioactive species in meteorite parent bodies.

  13. Reduction of Prep1 levels affects differentiation of normal and malignant B cells and accelerates Myc driven lymphomagenesis.

    PubMed

    Iotti, Giorgio; Mejetta, Stefania; Modica, Livia; Penkov, Dmitry; Ponzoni, Maurilio; Blasi, Francesco

    2012-01-01

    The Prep1 homeodomain transcription factor has recently been recognized as a tumor suppressor. Among other features, haploinsufficiency of Prep1 is able to strongly accelerate the B-lymphomagenesis in EμMyc mice. Now we report that this occurs concomitantly with a change in the type of B-cell lymphomas generated by the Myc oncogene. Indeed, the tumors generated in the EμMyc-Prep1(+/-) mice are much more immature, being mostly made up of Pro-B or Pre-B cells, while those in the EμMyc-Prep1(+/+) mice are more differentiated being invariably IgM(+). Moreover, we show that Prep1 is in fact required for the differentiation of Pro-B and Pre-B cells into IgM(+) lymphocytes and/or their proliferation, thus showing also how a normal function of Prep1 affects EμMyc lymphomagenesis. Finally, we show that the haploinsufficiency of Prep1 is accompanied with a major decrease of Myc-induced apoptosis and that the haploinsufficieny is sufficient for all these effects because the second allele of Prep1 is not lost even at late stages. Therefore, the tumor-suppressive activity of Prep1 is intertwined with both the interference with Myc-induced apoptosis as well as with natural developmental functions of the protein. PMID:23133585

  14. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  15. Transient Thermo-Hydraulic Analysis of the Windowless Target System for the Lead Bismuth Eutectic Cooled Accelerator Driven System

    SciTech Connect

    Bianchi, Fosco; Ferri, Roberta; Moreau, Vincent

    2006-07-01

    The target system, whose function is to supply an external neutron source to the ADS sub-critical core to sustain the neutron chain reaction, is the most critical part of an ADS being subject to severe thermo-mechanical loading and material damage due to accelerator protons and fission neutrons. A windowless option was chosen as reference configuration for the target system of the LBE-cooled ADS within the European PDS-XADS project in order to reduce the material damage and to increase its life. This document deals with the thermo-hydraulic results of the calculations performed with STAR-CD and RELAP5 codes for studying the behaviour of the windowless target system during off-normal operating conditions. It also reports a description of modifications properly implemented in the codes needed for this analysis. The windowless target system shows a satisfactory thermo-hydraulic behaviour for the analysed accidents, except for the loss of both pumps without proton beam shut-off and the beam trips lasting more than one second. (authors)

  16. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGESBeta

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; Bargen, N. von; et al

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  17. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    NASA Technical Reports Server (NTRS)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  18. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition

  19. Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity.

    PubMed

    Anthony Jalin, Angela M A; Lee, Jae-Chul; Cho, Geum-Sil; Kim, Chunsook; Ju, Chung; Pahk, Kisoo; Song, Hwa Young; Kim, Won-Ki

    2015-11-01

    Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusion-evoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we investigated whether simvastatin could reduce the LPS-accelerated ischemic injury. Simvastatin (20 mg/kg) was orally administered to rats prior to cerebral ischemic insults (4 times at 72, 48, 25, and 1-h pre-ischemia). LPS was microinjected into rat corpus callosum 1 day before the ischemic injury. Treatment of simvastatin reduced the LPS-accelerated infarct size by 73%, and decreased the ischemia/reperfusion-induced expressions of pro-inflammatory mediators such as iNOS, COX-2 and IL-1β in LPS-injected rat brains. However, simvastatin did not reduce the infiltration of microglial/macrophageal cells into the LPS-pretreated brain lesion. In vitro migration assay also showed that simvastatin did not inhibit the monocyte chemoattractant protein-1-evoked migration of microglial/macrophageal cells. Instead, simvastatin inhibited the nuclear translocation of NF-κB, a key signaling event in expressions of various proinflammatory mediators, by decreasing the degradation of IκB. The present results indicate that simvastatin may be beneficial particularly to the accelerated cerebral ischemic injury under inflammatory or infectious conditions. PMID:26535078

  20. Bidimensional Particle-In-Cell simulations for laser-driven proton acceleration using ultra-short, ultra-high contrast laser

    SciTech Connect

    Scisciò, M.; Palumbo, L.; D'Humières, E.; Fourmaux, S.; Kieffer, J. C.; Antici, P.

    2014-12-15

    In this paper, we report on bi-dimensional Particle-In-Cell simulations performed in order to reproduce the laser-driven proton acceleration obtained when a commercial 200 TW Ti:Sa Laser hits a solid target. The laser-to prepulse contrast was enhanced using plasma mirrors yielding to a main-to-prepulse contrast of ∼10{sup 12}. We varied the pulse duration from 30 fs to 500 fs and the target thickness from 30 nm to several tens of μm. The on-target laser energy was up to 1.8 J leading to an intensity in excess of 10{sup 20 }W cm{sup −2}. A comparison between numerical and existing experimental data [S. Fourmaux et al., Phys. Plasmas 20, 013110 (2013)] is performed, showing a good agreement between experimental results and simulations which confirms that for ultra-thin targets there is an optimum expansion regime. This regime depends on the target thickness and on the laser intensity: if the target is too expanded, the laser travels through the target without being able to deposit its energy within the target. If the target is not sufficiently expanded, the laser energy is reflected by the target. It is important to note that maximum proton energies are reached at longer pulse durations (in the 100 fs regime) than what is currently the best compression pulse length for this type of lasers (typically 20–30 fs). This duration, around 50–100 fs, can be considered a minimum energy transfer time between hot electrons to ions during the considered acceleration process.

  1. Proceedings of the DOE workshop on the role of a high-current accelerator in the future of nuclear medicine

    SciTech Connect

    Moody, D.C.; Peterson, E.J.

    1989-05-01

    The meeting was prompted by recent problems with isotope availability from DOE accelerator facilities; these difficulties have resulted from conflicting priorities between physics experiments and isotope production activities. The workshop was a forum in which the nuclear medicine community, isotope producers, industry, and other interested groups could discuss issues associated with isotope availability (including continuous supply options), the role of DOE and industry in isotope production, and the importance of research isotopes to the future of nuclear medicine. The workshop participants endorsed DOE's presence in supplying radioisotopes for research purposes and recommended that DOE should immediately provide additional support for radionuclide production in the form of personnel and supplies, DOE should establish a policy that would allow income from sales of future ''routine'' radionuclide production to be used to support technicians, DOE should obtain a 70-MeV, 500-/mu/A variable-energy proton accelerator as soon as possible, and DOE should also immediately solicit proposals to evaluate the usefulness of a new or upgraded high-energy, high-current machine for production of research radionuclides. This proceedings volume is a summary of workshop sessions that explored the future radionuclide needs of the nuclear medicine community and discussed the DOE production capabilities that would be required to meet these needs.

  2. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF

    SciTech Connect

    Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.; Rosenberg, M.; Waugh, C. J.; Rinderknecht, H. G.; Casey, D. T.; Sio, H.; Ruszczynski, J. K.; Zhou, L.; Johnson, M. Gatu; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Ruiz, C. L.; Leeper, R. J.

    2012-04-15

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.

  3. Nuclear-driven flashlamp pumping of the atomic iodine laser. Final report

    SciTech Connect

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  4. Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution.

    SciTech Connect

    Shenoy, G. K.; Rohlsberger, R.; X-Ray Science Division; DESY

    2008-02-01

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, to a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.

  5. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53.

    PubMed

    Valente, L J; Grabow, S; Vandenberg, C J; Strasser, A; Janic, A

    2016-07-21

    The tumor suppressor p53 is mutated in ~50% of human cancers. P53 is activated by a range of stimuli and regulates several cellular processes, including apoptotic cell death, cell cycle arrest, senescence and DNA repair. P53 induces apoptosis via transcriptional induction of the BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA, and cell cycle arrest via p21. Induction of these processes was proposed to be critical for p53-mediated tumor suppression. It is therefore surprising that mice lacking PUMA, NOXA and p21, as well as mice bearing mutations in p53 that impair the transcriptional activation of these genes, are not tumor prone, unlike mice lacking p53 function, which spontaneously develop tumors with 100% incidence. These p53 target genes and the processes they regulate may, however, impact differently on tumor development depending on the oncogenic drivers. For example, loss of PUMA enhances c-MYC-driven lymphoma development in mice, but, interestingly, the acceleration was less impressive compared with that caused by the loss of even a single p53 allele. Different studies have reported that loss of p21 can accelerate, delay or have no impact on tumorigenesis. In an attempt to resolve this controversy, we examined whether loss of p21-mediated cell cycle arrest cooperates with PUMA deficiency in accelerating lymphoma development in Eμ-Myc mice (overexpressing c-MYC in B-lymphoid cells). We found that Eμ-Myc mice lacking both p21 and PUMA (Eμ-Myc;Puma(-/-);p21(-/-)) developed lymphoma at a rate comparable to Eμ-Myc;Puma(-/-) animals, notably with considerably longer latency than Eμ-Myc;p53(+/-)mice. Loss of p21 had no impact on the numbers, cycling or survival of pre-leukemic Eμ-Myc B-lymphoid cells, even when PUMA was lost concomitantly. These results demonstrate that even in the context of deregulated c-MYC expression, p53 must suppress tumor development by activating processes apart from, or in addition to, PUMA

  6. Economic impact of accelerated cleanup on regions surrounding the U.S. DOE's major nuclear weapons sites.

    PubMed

    Greenberg, M; Solitare, L; Frisch, M; Lowrie, K

    1999-08-01

    The regional economic impacts of the U.S. Department of Energy's accelerated environmental cleanup plan are estimated for the major nuclear weapons sites in Colorado, Idaho, New Mexico, South Carolina, Tennessee, and Washington. The analysis shows that the impact falls heavily on the three relatively rural regions around the Savannah River (SC), Hanford (WA), and Idaho National Engineering and Environmental Laboratory (ID) sites. A less aggressive phase-down of environmental management funds and separate funds to invest in education and infrastructure in the regions helps buffer the impacts on jobs, personal income, and gross regional product. Policy options open to the federal and state and local governments are discussed. PMID:10765427

  7. Feasibility study of an intense pulsed neutron source based on a powerful electron accelerator and a pulsed nuclear reactor

    SciTech Connect

    Bosamykin, V.S.; Voinov, M.A.; Gordeev, V.S.; Kuvshinov, M.I.; Morunov, K.A.; Pavlovskii, A.I.; Selemir, V.D.

    1995-12-31

    A promising candidate for a highly intense neutron source is a system coupling a powerful pulsed electron accelerator and a pulsed fast-neutron nuclear reactor. The LIU-10-GIR complex, located at the All-Russian Institute of Experimental Physics (VNIIEF), is described. Experiments were carried out during 1984--1990 to study the joint operation of these two widely differing physical systems and resolve basic scientific research problems. Experimental results are given, and the potential use of such a system as an intense neutron source is suggested.

  8. Surface fluorination of rutile-TiO2 thin films deposited by reactive sputtering for accelerating response of optically driven capillary effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Maeda, Hironobu; Konishi, Satoshi

    2016-06-01

    We report the acceleration of photoresponsive wettability switching by applying surface fluorination to rutile-TiO2 thin films deposited by reactive sputtering. Photoresponsive wettability switchable surfaces can be applied to optically driven liquid manipulation to enable the elimination of the electrical wiring and pneumatic tubing from fluidic systems. In this work, surface fluorination using CF4 plasma treatment is applied to rutile-TiO2 thin films, which exhibit a wider switching range of wettability than that of anatase-TiO2 thin films. Fluorine termination of TiO2 thin films increases the surface acidity and enhances its photocatalytic performance. TiO2 thin films with and without surface fluorination respectively exhibited the transition of contact angles ranging from 73.7 to 12.3°, and from 70.2 to 32° under UV irradiation for 15 min. Liquid introduction into a microchannel is also demonstrated, utilizing the developed TiO2 surface, which can generate a negative capillary pressure difference under ultraviolet light irradiation.

  9. The Transmutation of Nuclear Waste in the Two-Zone Subcritical System Driven by High- Intensity Neutron Generator - 12098

    SciTech Connect

    Babenko, V.O.; Gulik, V.I.; Pavlovych, V.M.

    2012-07-01

    The main problems of transmutation of high-level radioactive waste (minor actinides and long-lived fission products) are considered in our work. The range of radioactive waste of nuclear power is analyzed. The conditions under which the transmutation of radioactive waste will be most effective are analyzed too. The modeling results of a transmutation of the main radioactive isotopes are presented and discussed. The transmutation of minor actinides and long-lived fission products are modeled in our work (minor actinides - Np-237, Am-241, Am-242, Am-243, Cm-244, Cm-245; long-lived fission products - I-129, Tc-99). The two-zone subcritical system is calculated with help of different neutron-physical codes (MCNP, Scale, Montebarn, Origen). The ENDF/B-VI nuclear data library used in above calculations. Thus, radioactive wastes can be divided into two main groups that need to be transmuted. The minor actinides form the first group and the long-lived fission products form the second one. For the purpose of effective transmutation these isotopes must be extracted from the spent nuclear fuel with the help of either PUREX technology or pyrometallurgical technology. The two-zone reactor system with fast and thermal regions is more effective for nuclear waste transmutation than the one-zone reactor. Modeling results show that nearly all radioactive wastes can be transmuted in the two-zone subcritical system driven by a high-intensity neutron generator with the external neutron source strength of 1.10{sup 13} n/sec. Obviously, transmutation rate will increase with a rise of the external neutron source strength. From the results above we can also see that the initial loading of radioactive isotopes into the reactor system should exceed by mass those isotopes that are finally produced. (authors)

  10. Coupling and control in coherently driven and asymmetrically synchronized hybrid electron-nuclear spin system

    NASA Astrophysics Data System (ADS)

    Berec, V.

    2016-02-01

    We study the coupling and control adaptation of a hybrid electron-nuclear spin system using the laser mediated proton beam in MeV energy regime. The asymmetric control mechanism is based on exact optimization of both: the measure of exchange interaction and anisotropy of the hyperfine interaction induced in the resonance with optimal channeled protons (CP) superfocused field, allowing manipulation over arbitrary localized spatial centers while addressing only the electron spin. Using highly precise and coherent proton channeling regime we have obtained efficient pulse shaping separator technique aimed for spatio-temporal engineering of quantum states, introducing a method for control of nuclear spins, which are coupled via anisotropic hyperfine interactions in isolated electron spin manifold, without radio wave (RW) pulses. The presented method can be efficiently implemented in synchronized spin networks with the purpose to facilitate preservation and efficient transfer of experimentally observed quantum particle states, contributing to the overall background noise reduction.

  11. Dynamics of a mesoscopic nuclear spin ensemble interacting with an optically driven electron spin

    NASA Astrophysics Data System (ADS)

    Stanley, M. J.; Matthiesen, C.; Hansom, J.; Le Gall, C.; Schulte, C. H. H.; Clarke, E.; Atatüre, M.

    2014-11-01

    The ability to discriminate between simultaneously occurring noise sources in the local environment of semiconductor InGaAs quantum dots, such as electric and magnetic field fluctuations, is key to understanding their respective dynamics and their effect on quantum dot coherence properties. We present a discriminatory approach to all-optical sensing based on two-color resonance fluorescence of a quantum dot charged with a single electron. Our measurements show that local magnetic field fluctuations due to nuclear spins in the absence of an external magnetic field are described by two correlation times, both in the microsecond regime. The nuclear spin bath dynamics show a strong dependence on the strength of resonant probing, with correlation times increasing by a factor of 4 as the optical transition is saturated. We interpret the behavior as motional averaging of both the Knight field of the resident electron spin and the hyperfine-mediated nuclear spin-spin interaction due to optically induced electron spin flips.

  12. Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant

    SciTech Connect

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated

  13. Hypothesis-driven classification of materials using nuclear magnetic resonance relaxometry

    DOEpatents

    Espy, Michelle A.; Matlashov, Andrei N.; Schultz, Larry J.; Volegov, Petr L.

    2016-08-09

    Technologies related to identification of a substance in an optimized manner are provided. A reference group of known materials is identified. Each known material has known values for several classification parameters. The classification parameters comprise at least one of T.sub.1, T.sub.2, T.sub.1.rho., a relative nuclear susceptibility (RNS) of the substance, and an x-ray linear attenuation coefficient (LAC) of the substance. A measurement sequence is optimized based on at least one of a measurement cost of each of the classification parameters and an initial probability of each of the known materials in the reference group.

  14. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. PMID:26272165

  15. Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio

    SciTech Connect

    Lehew, J.G.; Bradford, J.D.; Cabbil, C.C.

    2006-07-01

    CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the

  16. Rapid Transmutation of High-Level Nuclear Wastes in a Catalyzed Fusion-Driven System

    NASA Astrophysics Data System (ADS)

    Demir, Nesrin; Genç, Gamze; Altunok, Taner; Yapıcı, Hüseyin

    2009-03-01

    The aim of this study is to investigate the high-level waste (HLW) transmutation potential of fusion-driven transmuter (FDT) based on catalyzed D-D fusion plasma for various fuel fractions. The Minor actinide (MA) (237Np, 241Am, 243Am and 244Cm) and long-lived fission product (LLFP) (99Tc, 129I and 135Cs) nuclides discharged from high burn-up pressured water reactor-mixed oxide spent fuel are considered as the HLW. The volume fractions of the MA and LLFP are raised from 10 to 20% stepped by 2% and 10 to 80% stepped by 5%, respectively. The transmutation analyses have been performed for an operation period (OP) of up to 6 years by 75% plant factor ( η) under a first-wall neutron load ( P) of 5 MW/m2 by using two different computer codes, the XSDRNPM/SCALE4.4a neutron transport code and the MCNP4B Monte Carlo code. The numerical results bring out that the considered FDT has a high neutronic performance for an effective and rapid transmutation of MA and LLFP as well as the energy generation along the OP.

  17. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  18. Neutronics Study on Accelerator Driven Subcritical Systems with Thorium-Based Fuel for Comparison Between Solid and Molten-Salt Fuels

    SciTech Connect

    Ishimoto, Shunsuke; Ishibashi, Kenji; Tenzou, Hideki; Sasa, Toshinobu

    2002-06-15

    Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven subcritical system (ADS). The ADS utilizes neutrons, which are generated by high-energy protons of giga-electron-volt-grade, but cross sections for the interaction of high-energy particles are not available for use in current ADS engineering design. In this paper the neutron behavior in the ADS target based on the related experimental data is clarified, and the feasibility of the ADS regarding both the molten salts (Flibe: {sup 7}LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4}, chloride: NaCl-ThCl{sub 4}-{sup 233}UCl{sub 4}) and oxide ([Th, {sup 233}U]O{sub 2}) fuels is examined. The difference between the experiment and the calculated result at the ADS high-energy region is discussed. In a comparison of the fuels, the time evolution of k{sub eff} and the beam current in the burning period are calculated. The calculated results suggest that the ADS with solid fuel has better future prospects than that with molten-salt fuels. The ADS with Flibe molten-salt fuel tends to require a high beam current and consequently needs the installation of a metallic spallation target and the continuous removal for fission products and protactinium. In comparison with the Flibe fuel, the ADS with chloride fuel has a flux distribution that is similar to a solid fuel reactor.

  19. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    SciTech Connect

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  20. Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

    2007-11-01

    This report presents results from the development and optimization of a reference commercialscale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540° C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 × 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

  1. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    NASA Astrophysics Data System (ADS)

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including

  2. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  3. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    SciTech Connect

    Shuets, G.

    2004-05-21

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

  4. Radiation-driven migration: the case of Minamisoma City, Fukushima, Japan, after the Fukushima nuclear accident.

    PubMed

    Zhang, Hui; Yan, Wanglin; Oba, Akihiro; Zhang, Wei

    2014-09-01

    The emigration of residents following the Fukushima nuclear accident has resulted in aging and depopulation problems in radiation-contaminated areas. The recovery of affected areas, and even those areas with low radioactive pollution levels, is still heavily affected by this problem. This slow recovery consequently affects immigration patterns. This review aims to present possible factors that have contributed to this dilemma. We first present an overview of the evacuation protocol that was administered in the study area following the Fukushima accident. We then analyze characteristics of the subsequent exodus by comparing population data for both before and after the accident. Based on the findings of existing literature, we identify three causes of emigration: (1) The health risks of living in a low radiation zone are still unknown; (2) The post-disaster psychological disturbance and distrust of government information promotes the emigration of evacuees; (3) an absence of economic vitality and of a leading industry renders the area less attractive to individuals residing outside of the city. Further research is needed on this issue, especially with respect to countermeasures for addressing this problem. PMID:25207491

  5. Water corrosion of spent nuclear fuel: radiolysis driven dissolution at the UO2/water interface.

    PubMed

    Springell, Ross; Rennie, Sophie; Costelle, Leila; Darnbrough, James; Stitt, Camilla; Cocklin, Elizabeth; Lucas, Chris; Burrows, Robert; Sims, Howard; Wermeille, Didier; Rawle, Jonathan; Nicklin, Chris; Nuttall, William; Scott, Thomas; Lander, Gerard

    2015-01-01

    X-ray diffraction has been used to probe the radiolytic corrosion of uranium dioxide. Single crystal thin films of UO(2) were exposed to an intense X-ray beam at a synchrotron source in the presence of water, in order to simultaneously provide radiation fields required to split the water into highly oxidising radiolytic products, and to probe the crystal structure and composition of the UO(2) layer, and the morphology of the UO(2)/water interface. By modeling the electron density, surface roughness and layer thickness, we have been able to reproduce the observed reflectivity and diffraction profiles and detect changes in oxide composition and rate of dissolution at the Ångström level, over a timescale of several minutes. A finite element calculation of the highly oxidising hydrogen peroxide product suggests that a more complex surface interaction than simple reaction with H(2)O(2) is responsible for an enhancement in the corrosion rate directly at the interface of water and UO(2), and this may impact on models of long-term storage of spent nuclear fuel. PMID:25932469

  6. Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS

    PubMed Central

    Perillo, Bruno; Di Santi, Annalisa; Cernera, Gustavo; Ombra, Maria Neve; Castoria, Gabriella; Migliaccio, Antimo

    2014-01-01

    Gene expression is governed by chromatin mainly through posttranslational modifications at the N-terminal tails of nucleosomal histone proteins. According to the histone code theory, peculiar sets of such modifications (marks) give rise to reproducible final effects on transcription and, very recently, a further level of complexity has been highlighted in binary switches between specific marks at adjacent residues. In particular, disappearance of dimethyl-lysine 9 in histone H3 is faced by phosphorylation of the following serine during activation of gene expression. Demethylation of lysine 9 by the lysine-specific demethylase 1 (LSD1) is a pre-requisite for addition of the phosphoryl mark to serine 10 and an essential step in the transcriptional control by estrogens. It generates a local burst of oxygen reactive species (ROS) that induce oxidation of nearby nucleotides and recruitment of repair enzymes with a consequent formation of single or double stranded nicks on DNA that modify chromatin flexibility in order to allow correct assembly of the transcriptional machinery.   We describe here the molecular mechanism by which members of the family of nuclear receptors prevent the potential damage to DNA during transcription of target genes elicited by the use of ROS to shape chromatin. The mechanism is based on the presence of phosphorylated serine 10 in histone H3 to prevent unbalanced DNA oxidation waves. We also discuss the opportunities raised by the use of voluntary derangement of this servo system to induce selective death in hormone-responsive transformed cells. PMID:25482200

  7. Radiation-Driven Migration: The Case of Minamisoma City, Fukushima, Japan, after the Fukushima Nuclear Accident

    PubMed Central

    Zhang, Hui; Yan, Wanglin; Oba, Akihiro; Zhang, Wei

    2014-01-01

    The emigration of residents following the Fukushima nuclear accident has resulted in aging and depopulation problems in radiation-contaminated areas. The recovery of affected areas, and even those areas with low radioactive pollution levels, is still heavily affected by this problem. This slow recovery consequently affects immigration patterns. This review aims to present possible factors that have contributed to this dilemma. We first present an overview of the evacuation protocol that was administered in the study area following the Fukushima accident. We then analyze characteristics of the subsequent exodus by comparing population data for both before and after the accident. Based on the findings of existing literature, we identify three causes of emigration: (1) The health risks of living in a low radiation zone are still unknown; (2) The post-disaster psychological disturbance and distrust of government information promotes the emigration of evacuees; (3) an absence of economic vitality and of a leading industry renders the area less attractive to individuals residing outside of the city. Further research is needed on this issue, especially with respect to countermeasures for addressing this problem. PMID:25207491

  8. Accurate determination of ⁴¹Ca concentrations in spent resins from the nuclear industry by accelerator mass spectrometry.

    PubMed

    Nottoli, Emmanuelle; Bourlès, Didier; Bienvenu, Philippe; Labet, Alexandre; Arnold, Maurice; Bertaux, Maité

    2013-12-01

    The radiological characterisation of nuclear waste is essential for managing storage sites. Determining the concentration of Long-Lived RadioNuclides (LLRN) is fundamental for their long-term management. This paper focuses on the measurement of low (41)Ca concentrations in ions exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). (41)Ca concentrations were successfully measured by Accelerator Mass Spectrometry (AMS) after the acid digestion of resin samples, followed by radioactive decontamination and isobaric suppression through successive hydroxide, carbonate, nitrate and final CaF2 precipitations. Measured (41)Ca concentrations ranged from 0.02 to 0.03 ng/g, i.e. from 0.06 to 0.09 Bq/g. The (41)Ca/(60)Co activity ratios obtained were remarkably reproducible and in good agreement with the current ratio used for resins management. PMID:24144617

  9. Regulation of Nuclear Hormone Receptors by MYCN-Driven miRNAs Impacts Neural Differentiation and Survival in Neuroblastoma Patients.

    PubMed

    Ribeiro, Diogo; Klarqvist, Marcus D R; Westermark, Ulrica K; Oliynyk, Ganna; Dzieran, Johanna; Kock, Anna; Savatier Banares, Carolina; Hertwig, Falk; Johnsen, John Inge; Fischer, Matthias; Kogner, Per; Lovén, Jakob; Arsenian Henriksson, Marie

    2016-07-26

    MYCN amplification and MYC signaling are associated with high-risk neuroblastoma with poor prognosis. Treating these tumors remains challenging, although therapeutic approaches stimulating differentiation have generated considerable interest. We have previously shown that the MYCN-regulated miR-17∼92 cluster inhibits neuroblastoma differentiation by repressing estrogen receptor alpha. Here, we demonstrate that this microRNA (miRNA) cluster selectively targets several members of the nuclear hormone receptor (NHR) superfamily, and we present a unique NHR signature associated with the survival of neuroblastoma patients. We found that suppressing glucocorticoid receptor (GR) expression in MYCN-driven patient and mouse tumors was associated with an undifferentiated phenotype and decreased survival. Importantly, MYCN inhibition and subsequent reactivation of GR signaling promotes neural differentiation and reduces tumor burden. Our findings reveal a key role for the miR-17∼92-regulated NHRs in neuroblastoma biology, thereby providing a potential differentiation approach for treating neuroblastoma patients. PMID:27396325

  10. Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice.

    PubMed

    Ramakrishnan, Parameswaran; Yui, Mary A; Tomalka, Jeffrey A; Majumdar, Devdoot; Parameswaran, Reshmi; Baltimore, David

    2016-08-01

    The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel-deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel-deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4(+) and CD8(+) T cells from c-Rel-deficient NOD mice showed significantly decreased T-cell receptor-induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel-competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel-deficient NOD mice. The results suggest that c-Rel-dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel-dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell-dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity. PMID:27217485

  11. Nuclear-Driven Copper-Based Hybrid Thermo/Electro Chemical Cycle for Hydrogen Production

    SciTech Connect

    Khalil, Yehia F.; Rostkowski, Katherine H.

    2006-07-01

    and sodium hydroxide. Finally, we discuss the applicability of high-temperature nuclear reactors as an ideal fit to providing thermal energy and electricity required for operating the hybrid thermochemical plant with high overall system efficiency. (authors)

  12. Observation of the acceleration by an electromagnetic field of nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    2008-02-01

    Measurements are reported of the acceleration of the first-forbidden beta decay of 137Cs by exposure to intense, low-frequency electromagnetic fields. Two separate experiments were done: one in a coaxial cavity, and the other in a coaxial transmission line. The first showed an increase in the beta decay rate of (6.8±3.2)×10-4 relative to the natural rate, and the other resulted in an increase of (6.5±2.0)×10- 4. In addition, a Fourier analysis of the rate of 662 keV gamma emission following from the beta decay in the standing-wave experiment showed a clear indication of the frequency with which the external field was switched on and off. A simultaneously detected gamma emission from a placebo nucleus showed no such peak.

  13. Issues regarding acceleration in crystals

    SciTech Connect

    Chen, P.; Cline, D.B.; Gabella, W.E.

    1992-12-01

    Both self-acceleration and laser-acoustic acceleration in crystals are considered. The conduction electrons in the crystal are treated as a plasma and are the medium through which the acceleration takes place. Self-acceleration is the possible acceleration of part of a bunch due to plasma oscillations driven by the leading part. Laser- acoustic acceleration uses a laser in quasi-resonance with an acoustic wave to pump up the plasma oscillation to accelerate a beam. Self-driven schemes though experimentally simple seem problematic because single bunch densities must be large.

  14. Induction of galectin-1 by TGF-β1 accelerates fibrosis through enhancing nuclear retention of Smad2

    SciTech Connect

    Jin Lim, Min; Ahn, Jiyeon; Youn Yi, Jae; Kim, Mi-Hyoung; Son, A-Rang; Lee, Sae-lo-oom; Lim, Dae-Seog; Soo Kim, Sung; Ae Kang, Mi; Han, Youngsoo; Song, Jie-Young

    2014-08-01

    Fibrosis is one of the most serious side effects in cancer patients undergoing radio-/ chemo-therapy, especially of the lung, pancreas or kidney. Based on our previous finding that galectin-1 (Gal-1) was significantly increased during radiation-induced lung fibrosis in areas of pulmonary fibrosis, we herein clarified the roles and action mechanisms of Gal-1 during fibrosis. Our results revealed that treatment with TGF-β1 induced the differentiation of fibroblast cell lines (NIH3T3 and IMR-90) to myofibroblasts, as evidenced by increased expression of the fibrotic markers smooth muscle actin-alpha (α-SMA), fibronectin, and collagen (Col-1). We also observed marked and time-dependent increases in the expression level and nuclear accumulation of Gal-1. The TGF-β1-induced increases in Gal-1, α-SMA and Col-1 were decreased by inhibitors of PI3-kinase and p38 MAPK, but not ERK. Gal-1 knockdown using shRNA decreased the phosphorylation and nuclear retention of Smad2, preventing the differentiation of fibroblasts. Gal-1 interacted with Smad2 and phosphorylated Smad2, which may accelerate fibrotic processes. In addition, up-regulation of Gal-1 expression was demonstrated in a bleomycin (BLM)-induced mouse model of lung fibrosis in vivo. Together, our results indicate that Gal-1 may promote the TGF-β1-induced differentiation of fibroblasts by sustaining nuclear localization of Smad2, and could be a potential target for the treatment of pulmonary fibrotic diseases. - Highlights: • Galectin-1 (Gal-1) promotes TGF-β-induced fibroblast differentiation via activation of PI3-kinase and p38 MAPK. • Gal-1 binds to Smad2 and phosphorylated Smad2. • GAl-1 may be a new therapeutic target for attenuating lung fibrotic process.

  15. Nuclear Countermeasure Activity of TP508 Linked to Restoration of Endothelial Function and Acceleration of DNA Repair

    PubMed Central

    Olszewska-Pazdrak, Barbara; McVicar, Scott D.; Rayavara, Kempaiah; Moya, Stephanie M.; Kantara, Carla; Gammarano, Chris; Olszewska, Paulina; Fuller, Gerald M.; Sower, Laurie E.; Carney, Darrell H.

    2016-01-01

    There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may contribute to both acute radiation syndromes and long-term effects of whole-body nuclear irradiation. Therefore, several drugs are being developed to mitigate the effects of nuclear radiation, most of these drugs will target and protect or regenerate leukocytes and platelets. Our laboratory has demonstrated that TP508, a 23-amino acid thrombin peptide, activates endothelial cells and stem cells to revascularize and regenerate tissues. We now show that TP508 can mitigate radiation-induced damage to endothelial cells in vitro and in vivo. Our in vitro results demonstrate that human endothelial cells irradiation attenuates nitric oxide (NO) signaling, disrupts tube formation and induces DNA double-strand breaks (DSB). TP508 treatment reverses radiation effects on NO signaling, restores tube formation and accelerates the repair of radiation-induced DSB. The radiation-mitigating effects of TP508 on endothelial cells were also seen in CD-1 mice where systemic injection of TP508 stimulated endothelial cell sprouting from aortic explants after 8 Gy irradiation. Systemic doses of TP508 that mitigated radiation-induced endothelial cell damage, also significantly increased survival of CD-1 mice when injected 24 h after 8.5 Gy exposure. These data suggest that increased survival observed with TP508 treatment may be due to its effects on vascular and microvascular endothelial cells. Our study supports the usage of a regenerative drug such as TP508 to activate endothelial cells as a countermeasure for mitigating the effects of nuclear radiation. PMID:27388041

  16. Nuclear Thermal Motion Driven Adiabatic Electron States Thermalization and the Induced Phase Transition From Insulator To Metal in Warm Dense Matters

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Hou, Yong; Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2016-05-01

    In warm dense matter(WDM), the thermal motion energy of a nucleus may be comparable to its coupling energy with the neighbor nuclei and comparable to the valence electronic orbital motion energy. As the much small mass of electrons, the fluctuations of the electron orbitals are almost adiabatic dynamical changes with nuclear motion. The electronic and nuclear structure of warm and dense He and Ar are simulated by using the density functional based molecular dynamics method. The nuclear thermal motion driven adiabatic thermalization of the electron states, depression of the energy band gap and even phase transitions of electron states from insulator to metal are predicted when the nuclear thermal motion energy is comparable to the coupling energy between the neighboring atoms as well as to the valence electronic orbital motion energy. These kind of nuclear thermal motion driven adiabatic electronic states from insulator to metal phase transition occurs at much lower temperatures than the normal thermal collision excitation in low density and high temperature gases.

  17. Science opportunities at high power accelerators like APT

    SciTech Connect

    Browne, J.C.

    1996-12-31

    This paper presents applications of high power RF proton linear accelerators to several fields. Radioisotope production is an area in which linacs have already provided new isotopes for use in medical and industrial applications. A new type of spallation neutron source, called a long-pulse spallation source (LPSS), is discussed for application to neutron scattering and to the production and use of ultra-cold neutrons (UCN). The concept of an accelerator-driven, transmutation of nuclear waste system, based on high power RF linac technology, is presented along with its impact on spent nuclear fuels.

  18. Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD.

    PubMed

    Hirai, Hiroyuki; Tani, Tetsuya; Katoku-Kikyo, Nobuko; Kellner, Steven; Karian, Peter; Firpo, Meri; Kikyo, Nobuaki

    2011-09-01

    Induced pluripotent stem cells (iPSCs) can be created by reprogramming differentiated cells through introduction of defined genes, most commonly Oct4, Sox2, Klf4, and c-Myc (OSKM). However, this process is slow and extremely inefficient. Here, we demonstrate radical acceleration of iPSC creation with a fusion gene between Oct4 and the powerful transactivation domain (TAD) of MyoD (M(3)O). Transduction of M(3) O as well as Sox2, Klf4, and c-Myc into fibroblasts effectively remodeled patterns of DNA methylation, chromatin accessibility, histone modifications, and protein binding at pluripotency genes, raising the efficiency of making mouse and human iPSCs more than 50-fold in comparison to OSKM. These results identified that one of the most critical barriers to iPSC creation is poor chromatin accessibility and protein recruitment to pluripotency genes. The MyoD TAD has a capability of overcoming this problem. Our approach of fusing TADs to unrelated transcription factors has far-reaching implications as a powerful tool for transcriptional reprogramming beyond application to iPSC technology. PMID:21732495

  19. Design and analysis of a radiatively-cooled, inertially-driven nuclear generator system for space-based applications

    SciTech Connect

    Apley, W.J.

    1989-01-01

    The RING (Radiatively-Cooled, Inertially-Driven Nuclear Generator) radiator is proposed as a novel heat rejection system for advanced space reactor power applications in the 1 to 25 MW(t) range. The RING radiator system employs four counter-rotating, hollow, cylindrical, ring-shaped tubes filled with liquid lithium. The rings pass through a cavity heat exchanger, absorb heat, and then re-radiate that absorbed heat to space. Each ring is made of thin-walled, corrugated Nb-1%Zr tubing with external fins, segmented to minimize the consequence of coolant loss. To examine both the system transient and steady-state thermal hydraulic response, a set of detailed, analytical computer codes was developed (RINGSYS-System Thermal Hydraulics and Power Rating/RINGDYN-System Dynamics/RINGRAD-Radiation Damage and Void Gas Formation/RINGDATG-Data Handling). An additional code (TEMPEST) was obtained to examine the impact of augmented, internal ring convective heat transfer on overall system performance. Performance results and a cumulative uncertainty analysis including analytical, computational, property, and environmental condition errors are presented. The optimized radiator configuration at a cavity temperature of 1500 K results in a 3.3 MW(t) heat removal capacity at a minimum radiator weight ratio of 2.1 kg/kW(t); or a radiator weight ratio of 4.0 kg/kW(t) at a maximum achievable capacity of 5.6 MW(t). Despite a higher kg/kW(t) ratio than reported for other comparable temperature radiator designs, the concept is an attractive option for use with high-temperature reactors in high or geosynchronous earth orbit, specifically where the essential design criteria emphasize reliability, safety, and repairability. This dissertation also describes the confirmatory research, especially related to the material and thermal characteristics of key components, necessary to ensure successful RING radiator system deployment.

  20. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)