Science.gov

Sample records for accelerator facility cebaf

  1. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory

    SciTech Connect

    Leemann, Chrisoph; Douglas, David R; Krafft, Geoffrey A

    2001-08-01

    The Jefferson Laboratory's superconducting radiofrequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides multi-GeV continuous-wave (cw) beams for experiments at the nuclear and particle physics interface. CEBAF comprises two antiparallel linacs linked by nine recirculation beam lines for up to five passes. By the early 1990s, accelerator installation was proceeding in parallel with commissioning. By the mid-1990s, CEBAF was providing simultaneous beams at different but correlated energies up to 4 GeV to three experimental halls. By 2000, with srf development having raised the average cavity gradient up to 7.5 MV/m, energies up to nearly 6 GeV were routine, at 1-150 muA for two halls and 1-100 nA for the other. Also routine are beams of >75% polarization. Physics results have led to new questions about the quark structure of nuclei, and therefore to user demand for a planned 12 GeV upgrade. CEBAF's enabling srf technology is also being applied in other projects.

  2. Environmental Management Assessment of the Continuous Electron Beam Accelerator Facility (CEBAF)

    SciTech Connect

    Not Available

    1993-03-01

    This report documents the results of the Environmental Management Assessment performed at the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the CEBAF Site Office; the CEBAF management and operating contractor (M&O), Southeastern Universities Research Association, Inc. (SURA); the Oak Ridge Field Office (OR); and the responsible DOE Headquarters Program Office, the Office of Energy Research (ER). The onsite portion of the assessment was conducted from March 8 through March 19, 1993, by the US Department of Energy`s (DOE`s) Office of Environmental Audit (EH-24) located within the office of Environment, Safety and Health (EH). DOE 5482.1 B, ``Environment, Safety and Health Appraisal Program,`` and Secretary of Energy Notice (SEN)-6E-92, ``Departmental Organizational and Management Arrangements,`` establish the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission utilizing systematic and periodic evaluations of the Department`s environmental programs within line organizations, and through use of supplemental activities which serve to strengthen self-assessment and oversight functions within program, field, and contractor organizations.

  3. CEBAF: The Continuous Electron Beam Accelerator Facility and its Physics Program

    SciTech Connect

    Mougey, Jean

    1992-01-01

    With the 4 GeV Continuous Electron Beam Accelerator Facility presently under construction in Newport News, Virginia, a new domain of nuclear and subnuclear phenomena can be investigated, mainly through coincidence experiments. An overview of the characteristic features of the accelerator and associated experimental equipment is given. Some examples of the physics programs are briefly described.

  4. Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Joseph Grames, Douglas Higinbotham, Hugh Montgomery

    2010-09-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  5. Field Emission in CEBAF's SRF Cavities and Implications for Future Accelerators

    SciTech Connect

    Jay Benesch

    2006-02-15

    Field emission is one of the key issues in superconducting RF for particle accelerators. When present, it limits operating gradient directly or via induced heat load at 2K. In order to minimize particulate contamination of and thus field emission in the CEBAF SRF cavities during assembly, a cold ceramic RF window was placed very close to the accelerating cavity proper. As an unintended consequence of this, the window is charged by field-emitted electrons, making it possible to monitor and model field emission in the CEBAF cavities since in-tunnel operation began. From January 30, 1995, through February 10, 2003, there were 64 instances of spontaneous onset or change in cavity field emission with a drop in usable gradient averaging 1.4 ({sigma} 0.8) MV/m at each event. Fractional loss averaged 0.18 ({sigma} 0.12) of pre-event gradient. This event count corresponds to 2.4 events per century per cavity, or 8 per year in CEBAF. It is hypothesized that changes in field emission are due to adsorbed gas accumulation. The possible implications of this and other observations for the International Linear Collider (ILC) and other future accelerators will be discussed.

  6. CEBAF at Jefferson Lab, an overview

    SciTech Connect

    Bernhard Mecking

    2001-12-01

    The Continuous Electron Accelerator Facility, CEBAF, is devoted to the investigation of the electromagnetic structure of mesons, nucleons, and nuclei using high energy and high duty-cycle and photon beams. The physics program and the experimental equipment at CEBAF will be described. Selected examples for the results obtained will be given. The motivation for upgrading the accelerator to higher energy and the corresponding experimental equipment will be discussed.

  7. Pre-college education programs at CEBAF

    SciTech Connect

    Beverly K. Hartline; Kathryn E. Strozak

    1993-12-01

    As a DOE nuclear physics basic research laboratory, the Continuous Electron Beam Accelerator Facility (CEBAF) provides a rich environment for precollege science education. Several innovative partnerships with schools, businesses, and academia demonstrate model approaches for enhancing teachers and motivating students. Becoming Enthusiastic About Math and Science (BEAMS) immerses classes of 5th/6th graders for a full week at CEBAF. Their FCCSET Summer Institute equips teachers to ''do science'' in their middle and high schools classes.

  8. CEBAF - environmental protection program plan

    SciTech Connect

    1995-10-01

    An important objective in the successful operation of the Continuous Electron Beam Accelerator Facility (CEBAF) is to ensure protection of the public and the environment. To meet this objective, the Southeastern Universities Research Association, Inc., (SURA) is committed to working with the US Department of Energy (DOE) to develop, implement, and manage a sound and workable environmental protection program at CEBAF. This environmental protection plan includes information on environmental monitoring, long-range monitoring, groundwater protection, waste minimization, and pollution prevention awareness program plan.

  9. The Science and Experimental Equipment for the 12 GeV Upgrade of CEBAF

    SciTech Connect

    Arrington, John; Bernstein, Aron; Brooks, William; Burker, Volker; Cardman, Lawrence; Carlson, Carl; Cates, Gordon; Chen, Jian-Ping; Dzierba, Alex; Ent, Rolf; Elouadrhiri, Latifa; Fenker, Howard; Gao, Haiyan; Gasparian, Ashot; Goity, Jose; Higinbotham, Douglas; Holt, Roy; Hyde, Charles; De Jager, Cornelis; Jeschonnek, Sabine; Ji, Xiangdong; Jiang, Xiangdong; Jones, Mark; Keppel, Cynthia; Kuhn, Sebastian; Kumar, Krishna; Laget, Jean; Mack, David; Meyer, Curtis; Melnitchouk, Wolodymyr; Meziani, Zein-Eddine; Radyushkin, Anatoly; Ramsey-Musolf, Mike; Reimer, Paul; Richards, David; Rondon-Aramayo, Oscar; Salgado, Carlos; Smith, Elton; Schiavilla, Rocco; Souder, Paul; Stoler, Paul; Thomas, Anthony; Ulmer, Paul; Weinstein, Lawrence; Weiss, Christian

    2005-01-10

    This Conceptual Design Report (CDR) presents the compelling scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab to 12 GeV. Such a facility will make profound contributions to the study of hadronic matter.

  10. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facility's 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week maintenance period with no interruption to beam operations. We present the results of this effort.

  11. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-03-22

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations.

  12. Admittance Test and Conceptual Study of a CW Positron Source for CEBAF

    SciTech Connect

    Golge, Serkan; Hyde, Charles E.; Freyberger, Arne

    2009-09-02

    A conceptual study of a Continuous Wave (CW) positron production is presented in this paper. The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB) operates with a CW electron beam with a well-defined emittance, time structure and energy spread. Positrons created via bremsstrahlung photons in a high-Z target emerge with a large emittance compared to incoming electron beam. An admittance study has been performed at CEBAF to estimate the maximum beam phase space area that can be transported in the LINAC and in the Arcs. A positron source is described utilizing the CEBAF injector electron beam, and directly injecting the positrons into the CEBAF LINAC.

  13. Operating experience at CEBAF

    SciTech Connect

    Legg, R.

    1996-07-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, is a 5-pass, recirculating, superconducting rf linac designed to provide exceptional beam quality at 4 GeV up to 200 {mu}A CW. It is made up of an injector, two 400-MeV linacs, and 9 recirculation arcs having a total beamline length of more than 4.5 km. On Nov. 5, 1995, CEBAF delivered a 4 GeV, 25-{mu}A CW electron beam to the first of 3 experimental halls and the experimental physics program was started 10 days later. Accelerator availability during the first month of the experimental run exceeded 75%. Beam properties measured in the experimental hall to date are a one sigma momentum spread of 5{times}10{sup -5} and an rms emittance of 0.2 nanometer-radians, better than design specification. CW beam has been provided from all 5 passes at 800 MeV intervals. Outstanding performance of the superconducting linacs suggests a machine energy upgrade to 6 GeV in the near term with eventual machine operation at 8-10 GeV. Results from commissioning and operations experience since the last conference are presented.

  14. CEBAF Commissioning and Future Plans

    SciTech Connect

    Grunder, Hermann A.

    1996-01-01

    With first beam on target in July 1994 , the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia began capitalizing on years of planning and work to create a laboratory devoted to the exploration of matter that interacts through the strong force, which holds the quarks inside the proton and binds protons and neutrons into the nucleus. This event is made more remarkable in that the accelerator is available to physicists on schedule and within cost. The success of the project is due largely to a reasoned approach to its planning and the extraordinary work of scores of talented and motivated individuals.

  15. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    SciTech Connect

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  16. LLRF System for the CEBAF Separator Upgrade

    SciTech Connect

    Plawski, Tomasz E.; Bachimanchi, Ramakrishna; Hovater, J. Curt; Seidman, David J.; Wissmann, Mark J.

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of four new 748.5 MHz normal conducting deflecting cavities in the 5th pass extraction region. This system will work together with the existing 499 MHz RF Separator in order to allow simultaneous delivery of the beam to four CEBAF experimental halls. The RF system employs two digital LLRF systems controlling four cavities in a vector sum. Cavity tune information of the individual cavities is also obtained using a multiplexing scheme of the forward and reflected RF signals. In this paper we will present detailed LLRF design and the current status of the CEBAF 748.5/499 MHz beam extraction system.

  17. Physics at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Lawrence Cardman

    2005-10-22

    The CEBAF accelerator at JLab is fulfilling its scientific mission to understand how hadrons are constructed from the quarks and gluons of QCD, to understand the QCD basis for the nucleon-nucleon force, and to explore the transition from the nucleon-meson to a QCD description. Its success is based on the firm foundation of experimental and theoretical techniques developed world-wide over the past few decades, on complementary data provided by essential lower-energy facilities, such as MAMI, and on the many insights provided by the scientists we are gathered here to honor.

  18. CEBAF beam loss accounting

    SciTech Connect

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  19. Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Sun, Rai-Ko S.

    1991-12-01

    The MORSE{ }CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.

  20. Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Sun, Rai-Ko S.

    1991-12-01

    The MORSE{_}CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.

  1. The Brookhaven Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S. ); McDonald, K.T.; Russell, D.P. ); Jiang, Z.Y. (State Univ. of New York, Stony Brook, NY (Un

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO{sub 2} laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs.

  2. CEBAF at higher energies and the kaon electromagnetic form factor

    SciTech Connect

    Baker, O.K.

    1994-04-01

    The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.

  3. Electron Spin Precession at CEBAF

    SciTech Connect

    Douglas Higinbotham

    2009-08-01

    The nuclear physics experiments at the Thomas Jefferson National Accelerator Facility often require longitudinally polarized electrons to be simultaneously delivered to three experimental halls. The degree of longitudinal polarization to each hall varies as function of the accelerator settings, making it challenging in certain situations to deliver a high degree of longitudinal polarization to all the halls simultaneously. Normally, the degree of longitudinal polarization the halls receive is optimized by changing the initial spin direction at the beginning of the machine with a Wien filter. Herein, it is shown that it is possible to further improve the degree of longitudinal polarization for multiple experimental halls by redistributing the energy gain of the CEBAF linacs while keeping the total energy gain fixed.

  4. An Electron-Ion Collider at CEBAF

    SciTech Connect

    Kees de Jager; Lia Merminga; Ya. Derbenev

    2002-10-01

    Electron-ion colliders with a center of mass energy between 15 and 100 GeV, a luminosity of at least 10{sup 33}cm{sup -1}s{sup -1}, and a polarization of both beams at or above 80% have been proposed for future studies of hadronic structure. The scheme proposed here would accelerate the electron beam using the CEBAF recirculating linac with energy recovery. If all accelerating structures presently installed in the CEBAF tunnel are replaced by ones with a {approx}20 MV/m gradient, then a single recirculation results in an electron beam energy of about 5 GeV. After colliding with protons/light ions circulating in a figure-of-eight storage ring (for flexibility of spin manipulation) at an energy of up to 100 GeV, the electrons are re-injected into the CEBAF accelerator for deceleration and energy recovery. In this report several lay-out options and their respective feasibilities will be presented and discussed, together with parameters which would provide a luminosity of up to 1 x 10{sup 35} cm{sup -2}s{sup -1}. The feasibility of combining such a collider at a center-of-mass energy [sq rt] s of up to 43 GeV with a fixed target facility of 25 GeV is also explored.

  5. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect

    1990-04-13

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  6. The CEBAF Element Database and Related Operational Software

    SciTech Connect

    Larrieu, Theodore; Slominski, Christopher; Keesee, Marie; Turner, Dennison; Joyce, Michele

    2015-09-01

    The newly commissioned 12GeV CEBAF accelerator relies on a flexible, scalable and comprehensive database to define the accelerator. This database delivers the configuration for CEBAF operational tools, including hardware checkout, the downloadable optics model, control screens, and much more. The presentation will describe the flexible design of the CEBAF Element Database (CED), its features and assorted use case examples.

  7. Commissioning and Operation of 12 GeV CEBAF

    SciTech Connect

    Freyberger, Arne P.

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) located at the Thomas Jefferson National Accelerator Laboratory (JLab) has been recently upgraded to deliver continuous electron beams to the experimental users at a maximum energy of 12 GeV, three times the original design energy of 4 GeV. This paper will present an overview of the upgrade, referred to as the 12GeV upgrade, and highlights from recent beam commissioning results.

  8. The Upgrade of CEBAF to 12 GeV: Physics Motivations and Technical Aspects

    SciTech Connect

    Bernhard Mecking; Larry Cardman

    2002-08-01

    The Continuous Electron Beam Accelerator Facility, CEBAF, makes use of electron and photon beams with an energy up to 6 GeV to investigate the electromagnetic structure of mesons, nucleons, and nuclei. We discuss the physics motivation for upgrading the facility to a maximum energy of 12 GeV and some of the key technological aspects of the upgrade.

  9. COMMISSIONING AND OPERATION OF THE CEBAF 100 MV CRYOMODULES

    SciTech Connect

    Allison, Trent; Davis, G; Drury, Michael; Harwood, Leigh; Hogan, John; Kimber, Andrew; Lahti, George; Merz, William; Nelson, Richard; Plawski, Tomasz; Seidman, David; Spata, Michael; Wilson, Michael; Hovater, J

    2012-07-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules and RF systems. The superconducting RF cavities are designed to operate CW at a maximum accelerating gradient of 19.3 MV/m. To support the higher gradients and higher Q{sub L} ({approx} 3 x 10{sup 7}), a new RF system has been developed and is being installed to power and control the cavities. The RF system employs digital control and 13 kW klystrons. Recently, two of these cryomodules and associated RF hardware and software have been installed and commissioned in the CEBAF accelerator. Electrons at linac currents up to 540 {micro}A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the RF system and cryomodules.

  10. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  11. Bond integrity of microwave absorbers for CEBAF

    SciTech Connect

    A. Ananda; Y. Verma; B.T. Smith; P.H. Johnson; I.E. Campisi; K.E. Finger

    1992-10-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) uses superconducting niobium cavities. Specially developed microwave absorbing ceramics are used in the cavities to absorb the higher order mode power. The ceramic absorbers are brazed to copper mounts. The structural integrity and the thermal contact of the braze joints are essential. The ultrasonic reflection signal from the various bonds is evaluated to locate voids and partial braze surfaces. The acoustic wave properties of the four components of the structure are used as input to an ultrasonic transmission line model which is compared to the experimental data. There is good correlation between the ultrasonic reflection data and destructive testing of the bonds.

  12. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  13. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  14. The CEBAF II/ELIC Upgrade of CEBAF

    SciTech Connect

    Jefferson Lab

    2003-04-01

    A strong physics case has been established for constructing an extremely high luminosity ({approx} 10{sup 38} cm{sup -2} sec{sup -1}), CEBAF-like accelerator with energies in the 20-30 GeV range. There have also been a series of studies investigating the scientific potential of an electron-light ion collider (ELIC) operating in the 20-65 GeV center-of-mass energy range. The facility at Jefferson Lab can be upgraded to provide either (or both) of these options in a straightforward manner. An energy upgrade of CEBAF to 25 GeV would support extensions of the CEBAF 12 GeV program to smaller x and higher Q{sup 2}, and, in particular, support a program of deeply virtual meson production that would permit the flavor separation of the Generalized Parton Distributions that characterize the nucleon's properties. A high-luminosity electron light ion collider (ELIC) in the center-of-mass energy range {radical}s of 20-65 GeV, would build on the physics insights obtained from the CEBAF 12 GeV upgrade, and expand on our understanding of the structure of the nucleon and nuclear binding. While questions remain on the details of the science program and on technical aspects of the facility design, we expect that the facility's research program will be absolutely central to the field of nuclear physics. In particular, such a facility will provide a unique tool to: (1) Complete our quantitative understanding of how quarks and gluons provide the binding and the spin of the nucleon; (2) Understand how quarks and gluons evolve into hadrons via the dynamics of confinement; and (3) Refine our understanding of how the nuclear binding arises from QCD. The April 2002 Long-Range Plan for the Next Decade, developed by the 2001-2002 Nuclear Sciences Advisory Committee (NSAC) Long Range Planning Process, noted that a 'ring-linac option where a linear electron beam is incident on a stored ion beam' is one of two classes of machine design for an electron-ion collider (the other is a ring-ring design

  15. Fabrication and Testing Status of CEBAF 12 GeV Upgrade Cavities

    SciTech Connect

    Marhauser, F; Davis, G K; Forehand, D; Grenoble, C; Hogan, J; Overton, R B; Reilly, A V; Rimmer, R A; Stirbet, M

    2011-09-01

    The 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) is under way. All cavities have been built by industry and are presently undergoing post-processing and final low and high power qualification before cryomodule assembly. The status is reported including fabrication-related experiences, observations and issues throughout production, post-processing and qualification.

  16. CEBAF Upgrade: Cryomodule Performance And Lessons Learned

    SciTech Connect

    Drury, Michael A.; Davis, G. Kirk; Hogan, John P.; Hovater, J. Curt; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joe; Reece, Charles E.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2014-02-01

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.

  17. CEBAF SRF Performance during Initial 12 GeV Commissioning

    SciTech Connect

    Bachimanchi, Ramakrishna; Allison, Trent; Daly, Edward; Drury, Michael; Hovater, J; Lahti, George; Mounts, Clyde; Nelson, Richard; Plawski, Tomasz

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.

  18. UPGRADING THE CEBAF INJECTOR WITH A NEW BOOSTER, HIGHER VOLTAGE GUN, AND HIGHER FINAL ENERGY

    SciTech Connect

    Reza Kazimi, Arne Freyberger, Alicia Hofler, Andrew Hutton, Fay Hannon

    2012-07-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab will be upgraded from 6 GeV to 12 GeV in the next few years. To meet the requirement of the new machine and to take the opportunity to improve the beam quality, the CEBAF injector will be upgraded with a higher voltage gun, a new booster, and a new accelerating RF module. The CEBAF injector creates and accelerates three beams at different currents simultaneously. The beams are interleaved, each at one third of the RF frequency, traveling through the same beam line. The higher voltage gun will lower the space charge effects. The new booster with optimized beam dynamics will complete the bunching process and provide initial acceleration matched to the new gun voltage. Using our latest SRF design, the new booster has significantly lower x/y coupling effects that should improve our beam setup and operation for the highly sensitive parity experiments scheduled for the CEBAF's future. Finally, the new accelerating RF module will roughly double the injector final energy to match the rest of the 12 GeV accelerator. In this paper we will provide more detail about this upgrade.

  19. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  20. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  1. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  2. Commissioning of CEBAF

    SciTech Connect

    Andrew Hutton

    1994-06-01

    Construction of the CEBAF accelerator, a 4 GeV CW recirculating linac, is virtually complete. The 338 power sources and superconducting RF cavities, which have all run above nominal operating gradient in vertical tests (average 10.7 MeV/m), are installed. All the major components of the nine recirculation arcs are installed and aligned. Pre-commissioning was performed in parallel with construction. Ninety-nine superconducting cavities were operated simultaneously at the nominal gradient of 5 MeV/m. A maximum beam current of 110 PA CW (ZOO PA design) was reached. A cryomodule with eight cavities has operated at 8 MeV/m. Commissioning of the entire machine began in May 94. Results obtained during commissioning of the two linacs and the first arc are presented. 600 MeV beam is ready to be brought to the first experimental hall meeting a DOE milestone established in 1988.

  3. Radiation safety training for accelerator facilities

    SciTech Connect

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy`s (DOE`s) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise.

  4. CEBAF UV/IR FEL subsystem testing and validation program

    SciTech Connect

    G.R. Neil; S.V. Benson; H.F. Dylla; H. Liu

    1995-01-01

    A design has been established for IR and UV FELs within the Laser Processing Consortium's (LPC) program for development and application of high-average-power FELs for materials processing. Hardware prototyping and testing for the IR portion of the system are underway. The driver portion has been designed based on the superconducting radio-frequency (SRF) technology now seeing large-scale application in the commissioning of CEBAF, the Continuous Electron Beam Accelerator Facility, where LPC activities are centered. As of July 1994, measurements of beam performance confirm SRF's benefits in beam quality and stability, which are applicable to high-average-power FELs.

  5. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  6. UCLA Neptune Facility for Advanced Accelerator Studies

    SciTech Connect

    Tochitsky, Sergei Ya.; Clayton, Christopher E.; Marsh, Kenneth A.; Joshi, Chandrashekhar; Rosenzweig, James B.; Pellegrini, Claudio

    2004-12-07

    The Neptune Laboratory at UCLA is being used for exploring concepts useful for advanced accelerators. This facility hosts a TW-class CO2 laser system and a high-brightness photoinjector producing a 14 MeV electron beam. The goal for the laboratory is to carry out experiments on high-gradient acceleration of externally injected electrons in both laser-driven relativistic plasma waves and EM laser field in vacuum. Experiments on plasma beat-wave acceleration using a prebunched electron beam, a high-energy gain 10-{mu}m inverse free electron laser accelerator, longitudinal electron beam shaping and laser based light-sources are planned.

  7. Redetermining CEBAF's Absolute Energy

    NASA Astrophysics Data System (ADS)

    Su, Tong; Jlab Marathon Collaboration

    2015-04-01

    With the upgrade of the Jefferson Lab accelerator (CEBAF) from 6 GeV max energy to 12 GeV, all the dipole magnets in the machine were refurbished. Most of them were switched from open c-shaped to closed h-shaped by adding extra iron. With these upgraded magnets, the energy calibration of the accelerator needed to be redetermined. We will show how an extra external dipole, which is run in series with those in the machine, helps us cross check the current in the magnets as well as precisely map out the integral field for any machine setting. Using knowledge of the relative performance of the dipoles as well as the bend angle into the Hall, has allowed us to already determine a 4th pass 7 GeV beam to better than 7 MeV. In the future, we will use g-2 spin precession as a second independent energy determination. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177 (JLab).

  8. The CEBAF Element Database

    SciTech Connect

    Theodore Larrieu, Christopher Slominski, Michele Joyce

    2011-03-01

    With the inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting control computers to building controls screens. A requirement influencing the CED design is that it provide access to not only present, but also future and past configurations of the accelerator. To accomplish this, an introspective database schema was designed that allows new elements, types, and properties to be defined on-the-fly with no changes to table structure. Used in conjunction with Oracle Workspace Manager, it allows users to query data from any time in the database history with the same tools used to query the present configuration. Users can also check-out workspaces to use as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented Application Programming Interface (API) that is translated automatically from original C++ source code into native libraries for scripting languages such as perl, php, and TCL making access to the CED easy and ubiquitous.

  9. Magnetic field error measurement of the CEBAF (NIST) wiggler using the pulsed wire method

    SciTech Connect

    Wallace, Stephen; Colson, William; Neil, George; Harwood, Leigh

    1993-07-01

    The National Institute for Science and Technology (NIST) wiggler has been loaded to the Continuous Electron Beam Accelerator Facility (CEBAF). The pulsed wire method [R.W. Warren, Nucl. Instr. and Meth. A272 (1988) 267] has been used to measure the field errors of the entrance wiggler half, and the net path deflection was calculated to be Δx ≈ 5.2 m.

  10. Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF

    SciTech Connect

    Dave Doughty; S. Lemon; P. Bonneau

    1992-10-01

    The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF (Continuous Electron Beam Accelerator Facility) has been studied. It is found that the newest ECL (emitter coupled logic) flip-flops (ECLinPS) are much faster than older families at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.

  11. Performance of First C100 Cryomodules for the CEBAF 12 GeV Upgrade Project

    SciTech Connect

    Drury, Michael A.; Burrill, Andrew B.; Davis, G. Kirk; Hogan, John P.; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joseph; Reece, Charles E.; Reilly, Anthony V.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2012-09-01

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the project is a doubling of the available beam energy of CEBAF from 6 GeV to 12 GeV. This increase in beam energy will be due primarily to the construction and installation of ten "C100" cryomodules in the CEBAF linacs. The C100 cryomodules are designed to deliver an average 108 MV each from a string of eight seven-cell, electropolished superconducting RF cavities operating at an average accelerating gradient of 19.2 MV/m. The new cryomodules fit in the same available linac space as the original CEBAF 20 MV cryomodules. Cryomodule production started in September 2010. Initial acceptance testing started in June 2011. The first two C100 cryomodules were installed and tested from August 2011 through October 2011, and successfully operated during the last period of the CEBAF 6 GeV era, which ended in May 2012. This paper will present the results of acceptance testing and commissioning of the C100 style cryomodules to date.

  12. CEBAF celebrates seven years of physics

    SciTech Connect

    Douglas Higinbotham

    2003-11-01

    Jefferson Lab in Newport News, Virginia, recently celebrated the first seven years of physics with the Continuous Electron Beam Accelerator Facility, CEBAF. The unique design of this electron accelerator allows three experimental halls to be operated simultaneously, with a total beam current of 200 {micro}A and a beam polarization of up to 80%. With this facility, a user community of more than 1000 scientists from 187 institutions in 20 countries has completed 81 nuclear-physics experiments, with substantial data taken on 23 more. From the data obtained in these experiments, more than 250 refereed journal articles have been published and 146 doctoral degrees have been awarded. In the near future more than 60 experiments are planned, and there are currently 128 PhD theses in progress. To celebrate and review these accomplishments, while also looking toward the future, the Jefferson Lab user group board of directors organized a symposium, which was held on 11-13 June and dedicated to the memory of Nathan Isgur, Jefferson Lab's first chief scientist. The meeting was divided into eight physics topics: nucleon form factors, few-body physics, reactions involving nuclei, strangeness production, structure functions, parity violation, deep exclusive reactions and hadron spectroscopy. Each topic was presented by one experimentalist and one theorist.

  13. The BNL Accelerator Test Facility control system

    SciTech Connect

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

  14. Petabyte Class Storage at Jefferson Lab (CEBAF)

    NASA Technical Reports Server (NTRS)

    Chambers, Rita; Davis, Mark

    1996-01-01

    By 1997, the Thomas Jefferson National Accelerator Facility will collect over one Terabyte of raw information per day of Accelerator operation from three concurrently operating Experimental Halls. When post-processing is included, roughly 250 TB of raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line. Critical to the experimental program at Jefferson Lab (JLab) is the networking and computational capability to collect, store, retrieve, and reconstruct data on this scale. The design criteria include support of a raw data stream of 10-12 MB/second from Experimental Hall B, which will operate the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS). Keeping up with this data stream implies design strategies that provide storage guarantees during accelerator operation, minimize the number of times data is buffered allow seamless access to specific data sets for the researcher, synchronize data retrievals with the scheduling of postprocessing calculations on the data reconstruction CPU farms, as well as support the site capability to perform data reconstruction and reduction at the same overall rate at which new data is being collected. The current implementation employs state-of-the-art StorageTek Redwood tape drives and robotics library integrated with the Open Storage Manager (OSM) Hierarchical Storage Management software (Computer Associates, International), the use of Fibre Channel RAID disks dual-ported between Sun Microsystems SMP servers, and a network-based interface to a 10,000 SPECint92 data processing CPU farm. Issues of efficiency, scalability, and manageability will become critical to meet the year 2000 requirements for a Petabyte of near-line storage interfaced to over 30,000 SPECint92 of data processing power.

  15. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    SciTech Connect

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  16. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  17. The rare isotope accelerator (RIA) facility project

    SciTech Connect

    Christoph Leemann

    2000-08-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

  18. Flame acceleration studies in the MINIFLAME facility

    SciTech Connect

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

    1989-07-01

    Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

  19. The CEBAF large acceptance spectrometer (CLAS)

    NASA Astrophysics Data System (ADS)

    Mecking, B. A.; Adams, G.; Ahmad, S.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Auger, T.; Avakian, H.; Ball, J. P.; Barbosa, F. J.; Barrow, S.; Battaglieri, M.; Beard, K.; Berman, B. L.; Bianchi, N.; Boiarinov, S.; Bonneau, P.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Carstens, T.; Cetina, C.; Christo, S. B.; Cole, P. L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cuevas, R. C.; Degtyarenko, P. V.; Dennis, L.; DeSanctis, E.; DeVita, R.; Distelbrink, J.; Dodge, G. E.; Dodge, W.; Doolittle, G.; Doughty, D.; Dugger, M.; Duncan, W. S.; Dytman, S.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Feuerbach, R. J.; Ficenec, J.; Frolov, V.; Funsten, H.; Gilfoyle, G. P.; Giovanetti, K. L.; Golovatch, E.; Gram, J.; Guidal, M.; Gyurjyan, V.; Heddle, D.; Hemler, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hyde-Wright, C. E.; Insley, D.; Ito, M. M.; Jacobs, G.; Jenkins, D.; Joo, K.; Joyce, D.; Kashy, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L.; Koubarovski, V.; Kuhn, S. E.; Lake, A.; Lawrence, D.; Longhi, A.; Lukashin, K.; Lachniet, J.; Magahiz, R. A.; Major, W.; Manak, J. J.; Marchand, C.; Martin, C.; Matthews, S. K.; McMullen, M.; McNabb, J. W. C.; Mestayer, M. D.; Minehart, R.; Mirazita, M.; Miskimen, R.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Niculescu, I.; Niczyporuk, B. B.; Nozar, M.; O'Brien, J. T.; Opper, A. K.; O'Meara, J. E.; Pasyuk, E.; Philips, S. A.; Polli, E.; Price, J. W.; Pozdniakov, S.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Riggs, C.; Ripani, M.; Ritchie, B. G.; Robb, J.; Ronchetti, F.; Rossi, P.; Roudot, F.; Salgado, C.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Smith, E. S.; Smith, L. C.; Smith, T.; Sober, D. I.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Taiuti, M.; Taylor, W. M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tilles, D.; Todor, L.; Tung, T. Y.; Tuzel, W.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Welsh, R. E.; Weygand, D. P.; Wilkin, G. R.; Witkowski, M.; Wolin, E.; Yegneswaran, A.; Yergin, P.; Yun, J.

    2003-05-01

    The CEBAF large acceptance spectrometer (CLAS) is used to study photo- and electro-induced nuclear and hadronic reactions by providing efficient detection of neutral and charged particles over a good fraction of the full solid angle. A collaboration of about 30 institutions has designed, assembled, and commissioned CLAS in Hall B at the Thomas Jefferson National Accelerator Facility. The CLAS detector is based on a novel six-coil toroidal magnet which provides a largely azimuthal field distribution. Trajectory reconstruction using drift chambers results in a momentum resolution of 0.5% at forward angles. Cherenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data-acquisition rates allow operation at a luminosity of 10 34 nucleon cm -2 s-1. These capabilities are being used in a broad experimental program to study the structure and interactions of mesons, nucleons, and nuclei using polarized and unpolarized electron and photon beams and targets. This paper is a comprehensive and general description of the design, construction and performance of CLAS.

  20. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  1. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    SciTech Connect

    Wang, Yan; Hofler, Alicia S.; Kazimi, Reza

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for the 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are described in this paper. The results of beam commissioning of the injector are also presented.

  2. Superconducting cavity tuner performance at CEBAF

    SciTech Connect

    Marshall, J.; Preble, J.; Schneider, W.

    1993-06-01

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a 4 GeV, multipass CW electron beam is to be accelerated by 338 SRF, 5-cell niobium cavities operating at a resonant frequency of 1497 MHz. Eight cavities arranged as four pairs comprise a cyromodule, a croygenically isolated linac subdivision. The frequency is controlled by a mechanical tune attached to the first and fifth cell of the cavity which elastically deforms the cavity and thereby alters its resonant frequency. The tuner is driven by a stepper motor mounted external to the cryomodule that transfers torque through two rotary feedthroughs. A linear variable differential transducer (LVDT) mounted on the tuner monitors the displacement, and two limit switches interlock the movement beyond a 400 kHz bandwidth. Since the cavity has a loaded Q of 6.6 {center_dot} 10{sup 6}, the control system must maintain the frequency of the cavity to within {plus_minus} 50 Hz of the drive frequency for efficient coupling. This requirement is somewhat difficult to achieve since the difference in thermal contractions of the cavity and the tuner creates a frequency hystersis of approximately 10 kHz. The cavity is also subject to frequency shifts due to pressure fluctuations of the helium bath as well as radiation pressure. This requires that each cavity be characterized in terms of frequency change as a function of applied motor steps to allow proper tuning operations. This paper describes the electrical and mechanical performance of the cavity tuner during the commissioning and operation of the cryomodulus manufactured to date.

  3. Petabyte class storage at Jefferson Lab (CEBAF)

    SciTech Connect

    Chambers, R.; Davis, M.

    1996-08-01

    By 1997, this facility will collect over 1 Terabyte of raw information/day accelerator operation from three concurrently operating experimental halls. With post-processing, it means that about 250 TB raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line. Critical to the program is the networking and computational capability to collect, store, retrieve, and reconstruct data on this scale. Design criteria include support of a raw data stream of 10-12 MB/second from Experimental Hall B, which will operate the CEBAF Large Acceptance Spectrometer. Keeping up with this data stream implies design strategies that provide storage guarantees during accelerator operation, minimize the number of times data is buffered, allow seamless access to specific data sets for the researcher, synchronize data retrievals with scheduling of postprocessing calculations on the data reconstruction CPU farms, as well as support the site capability for data reconstruction and reduction at same overall rate that new data is being collected. Current implementation uses state of the art StorageTek Redwood tape drives and robotics library integrated with the Open Storage Manager Hierarchical Storage Management software (Computer Associates, International), the use of Fibre Channel RAID disks dual-ported between Sun Microsystems SMP servers, and a network-based interface to a 10,000 SPECint92 data processing CPU farm. Issues of efficiency, scaleability, and manageability will become critical to meet the year 2000 requirements for a Petabyte of near-line storage interfaced to over 30,000 SPECint92 of data processing power.

  4. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  5. Environmental Assessment and Finding of No Significant Impact: Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia

    SciTech Connect

    N /A

    2002-07-13

    The U. S. Department of Energy (DOE), in this Environmental Assessment (EA), reports the results of an analysis of the potential environmental impacts from the proposed construction of various site improvements and the proposed installation and operation of the Helios light source at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia. Jefferson Lab is operated by the Southeastern Universities Research Association, Inc. (SURA) under contract to DOE. With this proposal, DOE intends to construct no more than four major two or three story additions totaling about 151,000 sq. ft. (square feet) to CEBAF Center, the main facility administration building, and the addition of three new single story and one two story operations support structures on the accelerator site. The structures are a 28,000 sq. ft. storage building, a 15,100 sq. ft. technical support building, a 3,500 sq. ft. refrigeration service building, and a two-story 22,600 sq. ft addition to the Free Electron Laser (FEL) facility. The proposed action also involves the installation and operation of the Helios (High-Energy Lithography Source) accelerator in the FEL Addition. DOE proposes to take this action to provide Jefferson Lab with improved staff and operations support facilities that, along with the operation of Helios, will provide an increased capability to facilitate accelerator and physics program operations. Support activities necessary to effect the installation and operation of Helios would begin in Fiscal Year (FY) 03. It is expected that the Helios machine should be available to serve developmental and operational activities in support of the physics program later in FY 04. In this EA, DOE presents the no action alternative, alternatives considered and dismissed, and the proposed action alternative. It also evaluates the impacts of each.

  6. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory

    NASA Astrophysics Data System (ADS)

    Xia, G.; Nie, Y.; Mete, O.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.; Pacey, T.; Li, Y.; Wei, Y.; Welsch, C.

    2016-09-01

    A plasma accelerator research station (PARS) has been proposed to study the key issues in electron driven plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. In this paper, the quasi-nonlinear regime of beam driven plasma wakefield acceleration is analysed. The wakefield excited by various CLARA beam settings are simulated by using a 2D particle-in-cell (PIC) code. For a single drive beam, an accelerating gradient up to 3 GV/m can be achieved. For a two bunch acceleration scenario, simulation shows that a witness bunch can achieve a significant energy gain in a 10-50 cm long plasma cell.

  7. Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules

    SciTech Connect

    Marhauser, Frank; Johnson, Rolland; Rodriguez, Rodolfo; Degtiarenko, Pavel; Hutton, Andrew; Kharashvili, George; Reece, Charles; Rimmer, Robert

    2013-09-01

    High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities.

  8. Concepts for ELIC - A High Luminosity CEBAF Based Electron-Light Ion Collider

    SciTech Connect

    Ya. Derbenev, A. Bogacz, G. Krafft, R. Li, L. Merminga, B. Yunn, Y. Zhang

    2006-09-01

    A CEBAF accelerator based electron-light ion collider (ELIC) of rest mass energy from 20 to 65 GeV and luminosity from 10^33 to 10^35 cm6-2s^-1 with both beams polarized is envisioned as a future upgrade to CEBAF. A two step upgrade scenario is under study: CEBAF accelerator-ring-ring scheme (CRR) as the first step, and a multi-turn ERL-ring as the second step, to attain a better electron emittance and maximum luminosity. In this paper we report results of our studies of the CRR version of ELIC.

  9. The CEBAF RF Separator System Upgrade

    SciTech Connect

    J. Hovater; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-08-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance.

  10. Future directions of accelerator-based NP and HEP facilities

    SciTech Connect

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  11. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  12. The Dust Accelerator Facility at CCLDAS

    NASA Astrophysics Data System (ADS)

    Shu, A. J.; Collette, A.; Drake, K.; Gruen, E.; Horanyi, M.; Leblanc, S.; Munsat, T.; Northway, P.; Robertson, S. H.; Srama, R.; Sternovsky, Z.; Thomas, E.; Wagner, M.; Colorado CenterLunar Dust; Atmospheric Studies

    2010-12-01

    At the Colorado Center for Lunar Dust and Atmospheric Science (CCLDAS) we are in the process of assembling a 3MV macroscopic (~1um) dust particle accelerator. The acceleration unit is being made by the National Electrostatics Corporation (NEC). The accelerator consists of a pelletron generator and potential rings encased in an enclosure held at 6 atm of SF6. A pulsed dust source is used to inject particles into the accelerator. Here we describe advancements in dust accelerator technology at CCLDAS to allow more functionality and ease of use, focusing primarily on dust source control, and the capability to select a precise range in dust mass and velocity. Previously, the dust source was controlled by long plastic rods turning potentiometers inside the SF6 environment providing little to no feedback and repeatability. We describe a fiber optic control system that allows full control of the pulse characteristics being sent to the dust source using a LabVIEW control program to increase usability. An electrostatic Einzel lens is being designed using the ion-optics code SIMION to determine the properties of the electrodes needed for the optimum focusing of the dust beam. Our simulations studies indicate that the dust beam can be directed into a 0.5mm diameter spot. Our planned experiments require a high degree of control over particles size, speed, charge and other characteristics. In order to ensure that only particles of the desired characteristics are allowed to pass into the target chamber, two deflection plates are used to eliminate unwanted particles from the beam. Further simulations are being done to determine the possibility of bending the beamline to allow active selection of particles. The current design of the selection unit uses nuclear accelerator techniques to determine the velocity and charge of each particle and digital timing and logic to choose particles that will be allowed to pass. This requires a high signal to noise ratio due to the need for a well

  13. The CEBAF Master Oscillator and Distribution Remodeling

    SciTech Connect

    Tomasz Plawski, J. Hovater, John Musson, Ramakrishna Bachimanchi

    2009-05-01

    Jefferson Lab's CEBAF accelerator operation requires various frequency references to be distributed along the site. Three signals: 10 MHz, 70 MHz and 499 MHz are synthesized in the Machine Control Center (MCC) while 1427 MHz and 429 MHz are derived from 499 MHz and 70 MHz signals in four separate locations. We are replacing our obsolete 10 MHz, 70 MHz and 499 MHz sources with new sources that will incorporate a GPS receiver to discipline a 10 MHz reference. In addition the MO (Master Oscillator) system will be redundant (duplicate MO) and a third signal source will be used as a system diagnostic. Moreover, the 12 GeV Energy Upgrade for CEBAF accelerator will be adding 80 new RF systems. To support them the distribution of 1427 MHz and 70 MHz signals has to be extended and be able to deliver enough LO (Local Oscillator) and IF (Intermediate Frequency) power to 320 old and 80 new 80 RF systems. This paper discusses the new MO and the drive line extension.

  14. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    SciTech Connect

    LOWENSTEIN,D.I.

    2000-05-28

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10{sup 10} to 10{sup 11} ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented.

  15. BNL accelerator-based radiobiology facilities.

    PubMed

    Lowenstein, D I

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  16. DIANA - An Underground Accelerator Facility for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Champagne, Arthur

    2011-10-01

    Measuring nuclear reactions of astrophysical interest at stellar energies is usually a daunting task because the cross sections are very small and background rates can be comparatively large. Often, cosmic-ray interactions set the limit on experimental sensitivity, but can be reduced to an insignificant level by placing an accelerator underground -- as has been demonstrated by the LUNA accelerators in the Gran Sasso underground laboratory. The Dual Ion Accelerator facility for Nuclear Astrophysics (DIANA) is a proposed next-generation underground accelerator facility, which would be constructed at the 4850 ft level of the Homestake Mine in Lead, SD. This talk will describe DIANA and the questions in nuclear astrophysics that can be explored at such a laboratory.

  17. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  18. A review of accelerator concepts for the Advanced Hydrotest Facility

    SciTech Connect

    Toepfer, A.J.

    1998-08-01

    The Advanced Hydrotest Facility (AHF) is a facility under consideration by the Department of Energy (DOE) for conducting explosively-driven hydrodynamic experiments. The major diagnostic tool at AHF will be a radiography accelerator having radiation output capable of penetrating very dense dynamic objects on multiple viewing axes with multiple pulses on each axis, each pulse having a time resolution capable of freezing object motion ({approx}50-ns) and achieving a spatial resolution {approx}1 mm at the object. Three accelerator technologies are being considered for AHF by the DOE national laboratories at Los Alamos (LANL), Livermore (LLNL), and Sandia (SNL). Two of these are electron accelerators that will produce intense x-ray pulses from a converter target yielding a dose {approx}1,000--2,000 Rads {at} 1 meter. LLNL has proposed a 16--20 MeV, 3--6 kA linear induction accelerator (LIA) driven by FET-switched modulators driving metglas loaded cavities. SNL has proposed a 12-MeV, 40-kA Inductive Voltage Adder (IVA) accelerator based on HERMES III pulsed power technology. The third option is a 25--50-GeV proton accelerator capable of {approx}10{sup 13} protons/pulse proposed by LANL. This paper will review the current status of the three accelerator concepts for AHF.

  19. View of new centrifuge at Flight Acceleration Facility

    NASA Technical Reports Server (NTRS)

    1966-01-01

    View of the new centrifuge at the Manned Spacecraft Center (MSC), located in the Flight Acceleration Facility, bldg 29. The 50-ft. arm can swing the three man gondola to create g-forces astronauts will experience during controlled flight and during reentry. The centrifuge was designed primarily for training Apollo astronauts.

  20. The BNL Accelerator Test Facility and experimental program

    SciTech Connect

    Ben-Zvi, I. |

    1992-09-01

    The Accelerator Test Facility (ATF) at BNL is a users` facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF`s experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  1. The BNL Accelerator Test Facility and experimental program

    SciTech Connect

    Ben-Zvi, I. State Univ. of New York, Stony Brook, NY . Dept. of Physics)

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  2. Commissioning of the Digital LLRF for CEBAF Injector/Separator

    SciTech Connect

    Tomasz Plawski; Hai Dong; J. Hovater; George Lahti; Lawrence King; John Musson

    2006-08-16

    The design and production of the 499 MHz digital Low-Level RF control system for the CEBAF accelerator has been completed. The first five systems have been installed for use with the CEBAF Separator RF deflecting cavities operating at 499 MHz. The next four systems were installed in the injector on the chopping cavities (also 499 MHz deflecting cavities). The new LLRF system replaced an analog system that was over 15 years old. For initial testing, an extensive acceptance plan along with a LLRF test stand was developed and incorporated to assure system performance as well as reliability. Various VHDL firmware was developed to support operation of this system and included specific operational diagnostics. Once the acceptance tests were completed, the new systems were installed in the accelerator in parallel with the existing analog LLRF for extensive in-situ testing and comparison. Once commissioned,, the new RF systems were assigned to the CEBAF accelerator and turned over to Accelerator Operations. This paper will address the VHDL firmware evolution, the automated tests, and the performance measurements made throughout the installation and commissioning process.

  3. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Gu, Qiang

    2011-11-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility. It is also attractive in beam dynamics in maintaining a high quality electron beam, which is an important factor in the performance of a free electron laser. In this paper, a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility. Throughout the comprehensive simulation, we conclude that the C-band structure is much more competitive.

  4. RF Power Upgrade for CEBAF at Jefferson Laboratory

    SciTech Connect

    Andrew Kimber,Richard Nelson

    2011-03-01

    Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  5. The (. gamma. ,K) program: A new CEBAF initiative for the study of nuclear strangeness

    SciTech Connect

    Chrien, R.E.; Hungerford, E.V.

    1987-06-01

    This paper is a summary of the CEBAF working group discussions on electromagnetic production of strangeness in nuclear systems. A review of the recent BNL results in (..pi..,K) is presented as representative of the physics questions that could be addressed with the CEBAF facility. Recommendations of the working group concerning the necessary experimental apparatus for a (e,e',K) program are presented. 13 figs., 2 tabs.

  6. Baseline measurements of terrestrial gamma radioactivity at the CEBAF site

    SciTech Connect

    Wollenberg, H.A.; Smith, A.R.

    1991-10-01

    A survey of the gamma radiation background from terrestrial sources was conducted at the CEBAF site, Newport News, Virginia, on November 12--16, 1990, to provide a gamma radiation baseline for the site prior to the startup of the accelerator. The concentrations and distributions of the natural radioelements in exposed soil were measured, and the results of the measurements were converted into gamma-ray exposure rates. Concurrently, samples were collected for laboratory gamma spectral analyses.

  7. The Brookhaven National Laboratory (BNL) Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1990-01-01

    The design of the Brookhaven National Laboratory Accelerator Test Facility is presented including the design goals and computational results. The heart of the system is a radiofrequency electron gun utilizing a photo-excited metal cathode followed by a conventional electron linac. The Nd:YAG laser used to drive the cathode with 6 ps long pulses can be synchronized to a high peak power CO{sub 2} laser in order to study laser acceleration of electrons. Current operational status of the project will be presented along with early beam tests.

  8. Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade

    SciTech Connect

    Hogan, John P.; Burrill, Andrew B.; Drury, Michael A.; Harwood, Leigh H.; Hovater, J. Curt; Reece, Charles E.; Wiseman, Mark A.

    2013-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is nearing completion of an energy upgrade from 6 to 12 GeV. An integral part of the upgrade is the addition of ten new cryomodules, each consisting of eight seven-cell superconducting radio-frequency (SRF) cavities. An average performance of 100+MV of acceleration per cryomodule is needed to achieve the 12 GeV beam energy goal. The production methodology was for industry to provide and deliver the major components to Jefferson Lab, where they were tested and assembled into cryomodules. The production process begins with an inspection upon receiving of all major components followed by individual performance qualification testing. The SRF cavities received their final chemical processing and cleaning at Jefferson Lab. The qualified components along with all associated hardware and instrumentation are assembled, tested, installed into CEBAF and run through an integrated system checkout in preparation for beam operations. The production process is complete and one of the first completed cryomodules has successfully produced 108 MV of acceleration with a linac beam current of 465 {micro}A.

  9. Commissioning and Operational Experience With an Intermediate Upgrade Cryomodule for the CEBAF 12 GeV Upgrade

    SciTech Connect

    Thomas Powers; G. Davis; Michael Drury; Christiana Grenoble; J. Hovater; Lawrence King; Tomasz Plawski; Joseph Preble

    2005-07-10

    Three cryomodules have been designed and built as intermediate prototypes for the CEBAF 12 GeV upgrade. This paper will discuss the commissioning and operational experience with the second of these cryomodules, which was installed and commissioned in the Jefferson Lab 10 kW Free Electron Laser Facility. Within the cryomodule are eight 7-cell, 1497 MHz cavities. It was designed to accelerate 1 mA of beam in excess of 70 MV and to have the same footprint as a standard CEBAF cryomodule. The cryomodule was installed in parallel with the FEL beam line in the spring of 2004 and characterized simultaneous with beam delivery. It was installed in the beam line in the early summer of 2004 and has since been operated as part of an energy recovered linac with 5 mA of beam current and 75 MV accelerating gradient for extended periods of time. Additionally, it was operated at 1 mA of beam current and 80 MV of accelerating gradient for several hours without a trip. In the latter operating mode the beam current was limited by the injector setup.

  10. The Argonne wakefield accelerator facility: status and recent activities.

    SciTech Connect

    Conde, M. E.; Antipov, S.; Gai, W.; Jing, C.; Konecny, R.; Liu, W.; Power, J. G.; Wang, H.; Yusof, Z.; High Energy Physics

    2005-01-01

    The Argonne Wakefield Accelerator Facility (AWA) is dedicated to the study of electron beam physics and the development of accelerating structures based on electron beam driven wakefields. In order to carry out these studies, the facility employs a photocathode RF gun capable of generating electron beams with high bunch charges (up to 100 nC) and short bunch lengths. This high intensity beam is used to excite wakefields in the structures under investigation. The wakefield structures presently under development are dielectric loaded cylindrical waveguides with operating frequencies of 7.8 or 15.6 GHz. The facility is also used to investigate the generation and propagation of high brightness electron beams. Presently under investigation, is the use of photons with energies lower than the work function of the cathode surface (Schottky-enabled photoemission), aimed at generating electron beams with low thermal emittance. Novel electron beam diagnostics are also developed and tested at the facility. The AWA electron beam is also used in laboratory-based astrophysics experiments; namely, measurements of microwave Cherenkov radiation and fluorescence of air. We report on the current status of the facility and present recent results.

  11. A new electron accelerator facility for commercial and educational uses

    NASA Astrophysics Data System (ADS)

    Uribe, R. M.; Vargas-Aburto, C.

    2001-07-01

    A 5 MeV 150 kW electron accelerator facility (NEO Beam Alliance Inc.) has recently initiated operations in Ohio. NEO Beam is the result of a "partnership" between Kent State University (KSU) and a local plastics company (Mercury Plastics, Inc.). The accelerator will be used for electron beam processing, and for educational activities. KSU has created a university-wide Program on Electron Beam Technology (EBT) to address both instructional (including workforce training and development) and research opportunities. In this work, a description is made of the facility and its genesis. Present curricular initiatives are described. Preliminary dosimetry measurements performed with radiochromic (RC) dye films, calorimeters, and alanine pellets are presented and discussed.

  12. The target laboratory of the Pelletron Accelerator's facilities

    SciTech Connect

    Ueta, Nobuko; Pereira Engel, Wanda Gabriel

    2013-05-06

    A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

  13. Dielectric Wakefield Accelerator Experiments at the SABER Facility

    SciTech Connect

    Kanareykin, A.; Thompson, M.C.; Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Badakov, H.; Cook, A.M.; Rosenzweig, J.B.; Tikhoplav, R.; Travish, G.; Muggli, P.; /Southern California U.

    2008-01-28

    Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC Final Focus Test Beam (FFTB), are foreseen to be produced at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of multi-GV/m in plasmas. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 um and 200 um ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in fused silica (with full data analysis still ongoing) [1]. With the construction and commissioning of the SABER facility at SLAC, new experiments would be made possible to test further aspects of DWAs including materials, tube geometrical variations, direct measurements of the Cerenkov fields, and proof of acceleration in tubes >10 cm in length. This collaboration will investigate breakdown thresholds and accelerating fields in new materials including CVD diamond. Here we describe the experimental plans, beam parameters, simulations, and progress to date as well as future prospects for machines based of DWA structures.

  14. Measuring and adjusting the path length at CEBAF

    SciTech Connect

    Krafft, G.A.; Crofford, M.; Douglas, D.R.

    1995-12-31

    Accurately setting the path length around the machine is central to the proper operation of the CEBAF accelerator. The CEBAF main accelerator consists of two recirculating superconducting linacs operating at 1497 MHz fundamental frequency. The electron beam can recirculate up to five times through the two linacs before it is extracted to the experimental halls. In order to obtain maximum energy gain and minimum energy spread through the linacs, all passes should arrive at the beginning of the linacs in phase at the crest of the RF cycle. In this paper we explain how the arrival times of higher pass beams are measured with respect to the first pass to less than one degree of RF phase and how the path length around the machine is adjusted. Following a brief introduction to the CEBAF design and some local nomenclature, these topics will be discussed: differential RF phase measurements of time delay, the energy method of cresting the higher pass beams, results obtained with the measurement techniques, future plans and improvements to the devices, and finally, a set of conclusions. 3 refs., 5 figs., 1 tab.

  15. RF Design Optimization for New Injector Cryounit at CEBAF

    SciTech Connect

    Wang, Haipeng; Cheng, Guangfeng; Hannon, Fay E.; Hofler, Alicia S.; Kazimi, Reza; Preble, Joe; Rimmer, Robert A.

    2013-06-01

    A new injector superconducting RF (SRF) cryounit with one new 2-cell, B=0.6 cavity plus one refurbished 7-cell, B=0.97, C100 style cavity has been re-designed and optimized for the engineering compatibility of existing module for CEBAF operation. The optimization of 2-cell cavity shape for longitudinal beam dynamic of acceleration from 200keV to 533keV and the minimization of transverse kick due to the waveguide couplers to less than 1 mrad have been considered. Operating at 1497MHz, two cavities has been designed into a same footprint of CEBAF original quarter cryomodule to deliver an injection beam energy of 5MeV in less than 0.27{degree} rms bunch length and a maximum energy spread of 5keV.

  16. Workshop on CEBAF at higher energies

    SciTech Connect

    Isgur, N.; Stoler, P.

    1994-04-01

    Since the current parameters of CEBAF were defined almost a decade ago, there has been a remarkably fruitful evolution of our picture of the behavior of strongly interacting matter that apparently could be addressed by CEBAF at higher energies. Favorable technical developments coupled with foresight in initial laboratory planning have now made it feasible to consider approximately doubling CEBAF`s current design energy of 4 GeV to approach 10 GeV at rather modest cost. The purpose of the workshop, sponsored by the CEBAF User Group, was to begin to develop the next phase of CEBAF`s program by giving the entire community the opportunity to participate in defining the future of our field, and in particular the physics accessible with an upgraded CEBAF energy. It is intended that this report mark the first step toward an ultimate goal of defining a physics program that will form the basis for an upgrade of CEBAF. The report begins with a brief overview of the workshop`s conclusions. Its body consists of sections corresponding to the workshop`s Working Groups on Hadron Spectroscopy and Production, High Q{sup 2} Form Factors and Exclusive Reactions, Inclusive and Semi-Inclusive Processes, and Hadrons in the Nuclear Medium. Each section begins with the working group summaries and is followed by associated plenary talks summarizing the outstanding physics issues addressable by an upgrade, which are in turn followed by individual contributions presenting specific physics programs. An appendix describes capabilities of CEBAF`s current experimental equipment at higher energies; another appendix lists workshop participants. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  17. Novel neutron sources at the Radiological Research Accelerator Facility

    SciTech Connect

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  18. Novel neutron sources at the Radiological Research Accelerator Facility.

    PubMed

    Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  19. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE PAGES

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  20. Novel neutron sources at the Radiological Research Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  1. Novel neutron sources at the Radiological Research Accelerator Facility

    PubMed Central

    Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

    2012-01-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

  2. SATIF-2 shielding aspects of accelerators, targets and irradiation facilities

    SciTech Connect

    1995-12-31

    Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field.

  3. A Tau-Charm Factory at CEBAF

    SciTech Connect

    Seth, K.K.

    1994-04-01

    It is proposed that a Tau Charm Factory represents a natural extension of CEBAF into higher energy domains. The exciting nature of the physics of charm quarks and tau leptons is briefly reviewed and it is suggested that the concept of a linac-ring collider as a Tau Charm Factory at CEBAF should be seriously studied.

  4. DIANA: nuclear astrophysics with a deep underground accelerator facility

    NASA Astrophysics Data System (ADS)

    Lemut, Alberto

    2013-10-01

    Current stellar model simulations are at a level of precision such that nuclear reaction rates represent a major source of uncertainty for theoretical predictions and for the analysis of observational signatures. To address several open questions in cosmology, astrophysics, and non-Standard-Model neutrino physics, new high precision measurements of direct-capture nuclear fusion cross sections are essential. Experimental studies of nuclear reaction of astrophysical interest are hampered by the exponential drop of the cross-section. The extremely low value of σ (E) within the Gamow peak prevents measurement in a laboratory at the earth surface. The signal to noise ratio would be too small, even with the highest beam intensities presently available from industrial accelerators, because of the cosmic ray interactions with the detectors and surrounding materials. An excellent solution is to install an accelerator facility deep underground where the cosmic rays background into detectors is reduced by several order of magnitude, allowing the measurements to be pushed to far lower energies than presently possible. This has been clearly demonstrated at the Laboratory for Underground Nuclear Astrophysics (LUNA) by the successful studies of critical reactions in the pp-chains and first reaction studies in the CNO cycles. However many critical reactions still need high precision measurements, and next generation facilities, capable of very high beam currents over a wide energy range and state of the art target and detection technology, are highly desirable. The DIANA accelerator facility is being designed to achieve large laboratory reaction rates by delivering high ion beam currents (up to 100 mA) to a high density (up to 1018 atoms/cm2), super-sonic jet-gas target as well as to a solid target. DIANA will consist of two accelerators, 50-400 kV and 0.4-3 MV, that will cover a wide range of ion beam intensities, with sufficient energy overlap to consistently connect the

  5. Accelerator shield design of KIPT neutron source facility

    SciTech Connect

    Zhong, Z.; Gohar, Y.

    2013-07-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  6. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    SciTech Connect

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

  7. Review of accelerator conceptual design for the International Fusion Materials Irradiation Facility (IFMIF)

    SciTech Connect

    Berwald, D.H.; Rathke, J.W.; Bruhwiler, D.L.

    1996-12-31

    A Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) will be completed in December 1996. The IFMIF accelerator system, comprising two 125 mA, 40 MeV deuterium accelerators is a key element of the IFMIF facility. This paper describes the status of the accelerator design as of June, 1996. 7 refs., 3 figs., 1 tab.

  8. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  9. CEBAF NEW DIGITAL LLRF SYSTEM EXTENDED FUNCTIONALITY

    SciTech Connect

    T. Allison; K. Davis; H. Dong; C. Hovater; L. King; J. Musson; T. Plawski

    2007-06-18

    The new digital LLRF system for the CEBAF 12GeV accelerator will perform a variety of tasks, beyond field control [1]. In this paper we present the superconducting cavity resonance control system designed to minimize RF power during gradient ramp and to minimize RF power during steady state operation. Based on the calculated detuning angle, which represents the difference between reference and cavity resonance frequency, the cavity length will be adjusted with a mechanical tuner. The tuner has two mechanical driving devices, a stepper motor and a piezo-tuner, to yield a combination of coarse and fine control. Although LLRF piezo processing speed can achieve 10 kHz bandwidth, only 10 Hz speed is needed for 12 GeV upgrade. There will be a number of additional functions within the LLRF system; heater controls to maintain cryomodule's heat load balance, ceramic window temperature monitoring, waveguide vacuum interlocks, ARC detector interlock and quench detection. The additional functions will be divided between the digital board, incorporating an Altera FPGA and an embedded EPICS IOC. This paper will also address hardware evolution and test results performed with different SC cavities.

  10. Treatment Facility F: Accelerated Removal and Validation Project

    SciTech Connect

    Sweeney, J.J.; Buettner, M.H.; Carrigan, C.R.

    1994-04-01

    The Accelerated Removal and Validation (ARV) phase of remediation at the Treatment Facility F (TFF) site at Lawrence Livermore National Laboratory (LLNL) was designed to accelerate removal of gasoline from the site when compared to normal, single shift, pump-and-treat operations. The intent was to take advantage of the in-place infrastructure plus the increased underground temperatures resulting from the Dynamic Underground Stripping Demonstration Project (DUSDP). Operations continued 24-hours (h) per day between October 4 and December 12, 1993. Three contaminant removal rate enhancement approaches were explored during the period of continuous operation. First, we tried several configurations of the vapor pumping system to maximize the contaminant removal rate. Second, we conducted two brief trials of air injection into the lower steam zone. Results were compared with computer models, and the process was assessed for contaminant removal rate enhancement. Third, we installed equipment to provide additional electrical heating of contaminated low-permeability soil. Four new electrodes were connected into the power system. Diagnostic capabilities at the TFF site were upgraded so that we could safely monitor electrical currents, soil temperatures, and water treatment system processes while approximately 300 kW of electrical energy was being applied to the subsurface.

  11. CEBAF at higher energies: Working group report on hadron spectroscopy and production

    SciTech Connect

    Barnes, T. |; Napolitano, J.

    1994-04-01

    This report summarizes topics in hadron spectroscopy and production which could be addressed at CEBAF with an energy upgrade to E{sub {gamma}} = 8 GeV and beyond. The topics discussed include conventional meson and baryon spectrocopy, spectroscopy of exotica (especially molecules and hybrids), CP and CPT tests using {phi} mesons, and new detector and accelerator options.

  12. Performance Evaluation of Undulator Radiation at CEBAF

    SciTech Connect

    Chuyu Liu, Geoffrey Krafft, Guimei Wang

    2010-05-01

    The performance of undulator radiation (UR) at CEBAF with a 3.5 m helical undulator is evaluated and compared with APS undulator-A radiation in terms of brilliance, peak brilliance, spectral flux, flux density and intensity distribution.

  13. Proposed Dark Current Studies at the Argonne Wakefield Accelerator Facility

    SciTech Connect

    Antipov, S.P.; Conde, Manoel Eduardo; Gai, Wei; Power, John Gorham; Yusof, Z.M.; Spentzouris, L.K.; Dolgashev, V.A.; /SLAC

    2008-01-18

    A study of dark currents has been initiated at the Argonne Wakefield Accelerator Facility (AWA). Emission of dark current is closely related to a breakdown. Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. An imaging system is being put together to identify single emitters on the cathode surface. This will allow us to study dark current properties in the gun. We also plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV). Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after can shed some light on a modification of metal surface after the breakdown.

  14. [Leakage radiations in a medical electron accelerator facility--calculation of neutron doses in the facility].

    PubMed

    Ishimatsu, K; Morikawa, K

    1990-02-01

    Neutron doses often come dominant in mazes of electron accelerator facilities in which X-rays of energies more than 10 MV are produced. A simple analytical method to calculate neutron doses in such a facility is developed. In the calculation procedure, it is assumed that the irradiation room is spherical in shape and the maze is cylindrical. Multiple reflection of neutrons is also considered using the albedo concept in the calculation. The procedure allows to exist a hanging wall over the entrance of the irradiation room and also multiple legs in the maze. All the parameters used in the calculation are given definitely in the procedure, and any experiment is unnecessary to determine value of the parameters. Comparison of the calculated results with experimental ones will be described in the following report. PMID:2326507

  15. High Order Modes Survey and Mitigation of the CEBAF C100 Cryomodules

    NASA Astrophysics Data System (ADS)

    Guo, Jiquan; Wang, Haipeng

    Ten new C100 cryomodules have been fabricated and installed for the CEBAF 12 GeV upgrade project in the past few years. The dipole high order modes (HOM) of these modules need to be controlled to avoid beam breakup (BBU) instability. Over the last few years, we surveyed the HOM for all the 80 cavities of the C100 modules in the Vertical Test Area (VTA), as well as in the JLAB Cryomodule Test Facility (CMTF) and the CEBAF tunnel. Additional measures such as waveguide filters were applied to reduce the quality factor of the out of spec modes. In addition, we also measured the fundamental mode passband (a.k.a. the same passband) of all the cavities. In this paper, we will present the HOM survey methodology and results from CMTF and CEBAF survey, as well as the same passband mode results. We will also discuss the causes and mitigation measures of the high Q modes.

  16. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  17. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    NASA Astrophysics Data System (ADS)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  18. ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

    SciTech Connect

    Lia Merminga; Yaroslav Derbenev

    2004-02-01

    Electron-light ion colliders with center of mass energy between 20 and 100 GeV, luminosity between 10{sup 33} and 10{sup 35} cm{sup -2} sec{sup -1}, and polarization of both beams at or above 80% have been proposed for the study of hadronic structure. The Electron-Light Ion Collider (ELIC) facility would require the upgrade of CEBAF to 5-7 GeV energy recovering linac and the realization of an ion storage ring complex, accelerating and storing light ions of up to 150 GeV. In this report several innovative features of electron and ion beam designs and their advantages in delivering the luminosity and spin are described. These features include: electron circulator ring to reduce electron polarized source and energy recovering linac requirements, twisted spin booster and collider ring; interaction points with low beta-star and crab-crossing using the short, cooled ion bunches. Accelerator physics and technology issues for both protons/ions and electrons are presented. The feasibility of an integrated fixed target program at 25 GeV and collider program with center of mass energy between 20 and 65 GeV is explored.

  19. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  20. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  1. Application of the National Ignition Facility distinguishable-from-background program to accelerator facilities at Lawrence Livermore National Laboratory.

    PubMed

    Packard, Eric D; Mac Kenzie, Carolyn

    2013-06-01

    Lawrence Livermore National Laboratory must control potentially activated materials and equipment in accordance with U.S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment, which requires DOE approval of the process used to release volumetrically contaminated personal property and establishes a dose constraint of 10 µSv y(-1) (1 mrem y(-1)) for clearance of such property. The National Ignition Facility at Lawrence Livermore National Laboratory developed a technical basis document and protocol for determining the radiological status of property that is potentially activated from exposure to neutron radiation produced via fusion of tritium and deuterium. The technical basis included assessment of the neutron energy, the type of materials potentially exposed and the likely activation products, and the sensitivity of radiation detectors used to survey the property. This paper evaluates the National Ignition Facility technical basis document for applicability to the release of property from Lawrence Livermore National Laboratory's various accelerator facilities considering the different types of particles accelerated, radiations produced, and resultant activation products. Extensive process knowledge regarding the accelerators' operations, accompanied by years of routine surveys, provides an excellent characterization of these facilities. Activation studies conducted at the Stanford Linear Accelerator and the High Energy Accelerator Research Organization in Japan corroborate that the long-lived radionuclides produced at accelerator facilities are of the same variety produced at the National Ignition Facility. Consequently, Lawrence Livermore National Laboratory concludes that the release protocol developed for the National Ignition Facility can be used appropriately at all its accelerator facilities.

  2. PERFORMANCE OF THE CEBAF PROTOTYPE CRYOMODULE RENASCENCE

    SciTech Connect

    Charles Reece; Edward Daly; G. Davis; Michael Drury; William Hicks; Joseph Preble; Haipeng Wang

    2008-02-12

    The prototype cryomodule Renascence was constructed as an energy building block for securing 6 GeV operation of CEBAF and to validate design elements for future CEBAF upgrade modules. These elements include the new “HG” and “LL” 7-cell cavity designs and a new tuner design.[1,2] Issues were identified during initial testing in 2005. The module has been reworked to address the issues with thermal stability, component breakage, and tuner motion. In addition, opportunity was taken to employ upgraded cleaning and assembly techniques for the cavity string. The HOM coupler heating issue was resolved, and seven of the eight cavities in the cryomodule have run stably at an average of 20 MV/m CW. The cryogenic, rf, and mechanical performance of the cryomodule are presented. Commissioning in CEBAF has just been completed in October 2007.

  3. STANDARDIZATION OF CEBAF 12 GEV UPGRADE CAVITY TESTING

    SciTech Connect

    Tiffany Bass, G. Davis, Christiana Wilson, Mircea Stirbet

    2012-07-01

    CEBAF 12GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. Each cavity underwent RF qualification at 2.07K using a high power accelerating gradient test and an HOM survey in Jefferson Lab's Vertical Testing Area (VTA) before cavity string assembly. In order to ensure consistently high quality data, updated cavity testing procedures and analysis were implemented and used by a group of VTA operators. For high power tests, a cavity testing procedure was developed and used in conjunction with a LabVIEW program to collect the test data. Additionally while the cavity was at 2.07K, an HOM survey was performed using a network analyzer and a combination of Excel and Mathematica programs. Data analysis was standardized and an online logbook, Pansophy, was used for data storage and mining. The Pansophy system allowed test results to be easily summarized and searchable across all cavity tests. In this presentation, the CEBAF 12GeV upgrade cavity testing procedure, method for data analysis, and results reporting results will be discussed.

  4. A facility for accelerator research and education at Fermilab

    SciTech Connect

    Church, Mike; Nagaitsev, Sergei; /Fermilab

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  5. The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1994-04-01

    This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user`s guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented.

  6. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  7. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    SciTech Connect

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  8. Berkeley Accelerator Space Effects (BASE) Light Ion FacilityUpgrade

    SciTech Connect

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-07-07

    The BASE Light Ion Facility upgrades have been completed. All proton beams are now delivered to Cave 4A. New control software, a larger diameter beam window, and improved quality assurance measures have been added.

  9. DEVICE CONTROL TOOL FOR CEBAF BEAM DIAGNOSTICS SOFTWARE

    SciTech Connect

    Pavel Chevtsov

    2008-02-11

    Continuously monitoring the beam quality in the CEBAF accelerator, a variety of beam diagnostics software created at Jefferson Lab makes a significant contribution to very high availability of the machine for nuclear physics experiments. The interface between this software and beam instrumentation hardware components is provided by a device control tool, which is optimized for beam diagnostics tasks. As a part of the device/driver development framework at Jefferson Lab, this tool is very easy to support and extend to integrate new beam instrumentation components. All device control functions are based on the configuration (ASCII text) files that completely define the used hardware interface standards (CAMAC, VME, RS-232, GPIB, etc.) and communication protocols. The paper presents the main elements of the device control tool for beam diagnostics software at Jefferson Lab.

  10. FAIR - An International Accelerator Facility for Research with Ions and Antiprotons

    SciTech Connect

    Henning, Walter

    2005-06-08

    An overview is given on the international Facility for Antiproton and Ion Research (FAIR) at GSI, its science motivation and goals, the facility lay-out and characteristics, the accelerator design challenges, the schedule for construction, and the international interest/participation in the project.

  11. eDT and Model-based Configuration of 12GeV CEBAF

    SciTech Connect

    Turner, Dennison L.

    2015-09-01

    This poster will discuss model-driven setup of CEBAF for the 12GeV era, focusing on the elegant Download Tool (eDT). eDT is a new operator tool that generates magnet design setpoints for various machine energies and pass configurations. eDT was developed in the effort towards a process for reducing machine configuration time and reproducibility by way of an accurate accelerator model.

  12. Investigation of hypersonic ramjet propulsion cycles using a ram accelerator test facility

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Chew, G.; De Turenne, J. A.; Dunmire, B.

    1991-01-01

    Experimental research on hypersonic propulsion using a ram accelerator test facility is presented. The gasdynamics of the ram accelerator has been studied experimentally in a 38-mm bore facility over the Mach number range of 2.5 to 8.5, using methane- and ethylene-based propellant mixtures. Three different propulsive modes, centered on the Chapman-Jouguet (C-J) detonation speed of the combustible gas, have been experimentally observed. Projectiles have been accelerated smoothly from velocities below to above the C-J speed within a single propellant mixture.

  13. Inverse Cherenkov and inverse FEL accelerator experiments at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.V.; vanSteenbergen, A.; Babzien, M.

    1995-12-31

    Status update on the ongoing inverse Cherenkov acceleration experiment and prospects to its 100 MeV short-term upgrade. The first report on 1 MeV electron acceleration with the 0.5 GW CO{sub 2} laser used in the inverse FEL scheme. (author). 22 refs., 8 figs., 1 tab.

  14. Design and Implementation of the CEBAF Element Database

    SciTech Connect

    Theodore Larrieu, Christopher Slominski, Michele Joyce

    2011-10-01

    With inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a first step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting front-end computers to building controls screens. A particular requirement influencing the CED design is that it must provide consistent access to not only present, but also future, and eventually past, configurations of the CEBAF accelerator. To accomplish this, an introspective database schema was designed that allows new elements, element types, and element properties to be defined on-the-fly without changing table structure. When used in conjunction with the Oracle Workspace Manager, it allows users to seamlessly query data from any time in the database history with the exact same tools as they use for querying the present configuration. Users can also check-out workspaces and use them as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented API that is translated automatically from original C++ into native libraries for script languages such as perl, php, and TCL making access to the CED easy and ubiquitous. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  15. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    SciTech Connect

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-12-07

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator.

  16. Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.G.; Tantawi, S.G.; Nantista, C.D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, R.W.; Bruce, R.L.; Fliflet, A.W.; Lewis, D.; /Naval Research Lab, Wash., D.C. /LET Corp., Washington /Argonne /SLAC /Tsinghua U., Beijing

    2005-06-22

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron inector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx} 8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRl, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator.

  17. Sensitivity and alternative operating point studies on a high charge CW FEL injector test stand at CEBAF

    SciTech Connect

    Liu, H.; Kehne, D.; Benson, S.

    1995-12-31

    A high charge CW FEL injector test stand is being built at CEBAF based on a 500 kV DC laser gun, a 1500 MHz room-temperature buncher, and a high-gradient ({approx}10 MV/m) CEBAF cryounit containing two 1500 MHz CEBAF SRF cavities. Space-charge-dominated beam dynamics simulations show that this injector should be an excellent high-brightness electron beam source for CW UV FELs if the nominal parameters assigned to each component of the system are experimentally achieved. Extensive sensitivity and alternative operating point studies have been conducted numerically to establish tolerances on the parameters of various injector system components. The consequences of degraded injector performance, due to failure to establish and/or maintain the nominal system design parameters, on the performance of the main accelerator and the FEL itself are discussed.

  18. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  19. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  20. CEBAF'S New RF Separator Structure Test Results

    SciTech Connect

    Reza Kazimi; Jock Fugitt; A. Krycuk; Charles Sinclair; Larry Turlington

    1993-05-01

    Prototypes of the rf separator for CEBAF have been made and successfully beam tested. The structure is a new design which has a high transverse shunt impedance together with a small transverse dimension compared to more conventional rf deflecting structures. Five rf separators will be used at CEBAF to allow beam from any one of the five recirculation passes to be delivered to any of the three experimental halls. The authors have already described the basic design of the structure and theoretical calculations. They have also reported some results from rf measurements and beam tests. In this paper they present more beam test results, their final design parameters, and test results of coupling two 1/2 wavelength cavities together.

  1. Color transparency after the NE18 and E665 experiments: Outlook and perspectives at CEBAF

    SciTech Connect

    Nemchik, J.; Nikolaev, N.N.; Zakharov, B.G.

    1994-04-01

    CEBAF is a high-luminocity factory of virtual photons with variable virtuality Q{sup 2} and transverse size. This makes CEBAF, in particular after the energy upgrade to (8-12)GeV, an ideal facility for uncovering new phenomena, and opening new windows, at the interface of the perturbative and nonperturbative QCD. The authors discuss color transparency as the case for a broad program on electroproduction of vector mesons {rho}{sup 0}, {omega}{sup 0}, {phi}{sup 0} and their radial excitations {rho}{prime}, {omega}{prime}, {phi}{prime} at CEBAF. They also comment on the second generation of experiments on color transparency in {sup 4}He(e, e{prime}p) scattering, which are also feasible at CEBAF. In 1994, they can make more reliable projections into future because their understanding of the onset of color transparency has greatly been augmented by two experiments completed in 1993: (i) no effect of CT was seen in the SLAC NE18 experiment on A(e, e{prime}p) scattering at virtualities of the exchanged photon Q{sup 2} {approx_lt} 7 GeV{sup 2}, (ii) strong signal of CT was observed in the FNAL E665 experiment on exclusive {rho}{sup 0}-meson production in deep inelastic scattering in the same range of Q{sup 2}. They discuss the impact of these observations on the CEBAF experimental program. They argue they both are good news, both were anticipated theoretically, and both rule in the correct QCD mechanism of the onset of CT.

  2. Nucleon resonance electroproduction at high momentum transers: Results from SLAC and suggestions for CEBAF

    SciTech Connect

    Keppel, C.

    1994-04-01

    Nucleon resonance electroproduction results from SLAC Experiment E14OX are presented. A CEBAF facility with doubled energy would enable similar high momentum transfer measurements to be made with greater accuracy. Of particular interest are the Delta P{sub 33}(1232) resonance form factor and R = {sigma}{sub L}/{sigma}{sub T}, the ratio of the longitudinal and transverse components of the cross section. A suggestion is made to study these quantities in conjunction with Bloom-Gilman duality.

  3. Elastic form factors at higher CEBAF energies

    SciTech Connect

    Petratos, G.G.

    1994-04-01

    The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.

  4. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  5. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    NASA Astrophysics Data System (ADS)

    Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  6. "DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    SciTech Connect

    Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

    2009-05-28

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

  7. Test Sequence for Superconducting XFEL Cavities in the Accelerator Module Test Facility (AMTF) at DESY

    NASA Astrophysics Data System (ADS)

    Schaffran, J.; Petersen, B.; Reschke, D.; Swierblewski, J.

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2016 onwards, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The main part of the superconducting European XFEL linear accelerator consists of 100 accelerator modules with 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF) at DESY. This paper gives an overview of the test sequences for the superconducting cavities, applied in the preparation area and at the two cryostats (XATC) of the AMTF-hall, and describes the complete area. In addition it summarizes the tests and lessons learnt until the middle of 2014.

  8. Operational experience from a large EPICS-based accelerator facility

    SciTech Connect

    Ciarlette, D.J.; Gerig, R.

    1995-12-31

    The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation x-ray light source which uses the Experimental Physics and Industrial Control System (EPICS) to operate its linear accelerator, positron accumulator ring, booster synchrotron, and storage ring equipment. EPICS has been used at the APS since the beginning of installation and commissioning. Currently, EPICS controls approximately 100 VME crates containing over 100,000 process variables. With this complexity, the APS has had to review some of the methods originally employed and make changes as necessary. In addition, due to commissioning and operational needs, higher-level operator software needed to be created. EPICS has been flexible enough to allow this.

  9. Production and Testing Experience with the SRF Cavities for the CEBAF 12 GeV Upgrade

    SciTech Connect

    A. Burrill, G.K. Davis, F. Marhauser, C.E. Reece, A.V. Reilly, M. Stirbet

    2011-09-01

    The CEBAF recirculating CW electron linear accelerator at Jefferson Lab is presently undergoing a major upgrade to 12 GeV. This project includes the fabrication, preparation, and testing of 80 new 7-cell SRF cavities, followed by their incorporation into ten new cryomodules for subsequent testing and installation. In order to maximize the cavity Q over the full operable dynamic range in CEBAF (as high as 25 MV/m), the decision was taken to apply a streamlined preparation process that includes a final light temperature-controlled electropolish of the rf surface over the vendor-provided bulk BCP etch. Cavity processing work began at JLab in September 2010 and will continue through December 2011. The excellent performance results are exceeding project requirements and indicate a fabrication and preparation process that is stable and well controlled. The cavity production and performance experience to date will be summarized and lessons learned reported to the community.

  10. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    NASA Astrophysics Data System (ADS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-09-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  11. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    SciTech Connect

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  12. The Gent University 15 MeV high-current linear electron accelerator facility

    NASA Astrophysics Data System (ADS)

    Mondelaers, W.; Van Laere, K.; Goedefroot, A.; Van den Bossche, K.

    1996-01-01

    The Gent University 15 MeV 20kW linear electron accelerator facility was initially designed for fundamental nuclear physics research. During the last years a large effort has been devoted to the expansion of the range of machine applications in view of a new extensive experimental programme in the fields of atomic and solid-state physics, biomaterials research, polymer chemistry, space research, food technology, high-dose dosimetry and radiation therapy. The accelerator facility in its present configuration, the peripheral equipment and the experimental programme are described with emphasis on the original features.

  13. Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fisher, A.S.; Friedman, A.; Gallardo, J.; Ingold, G.; Kirk, H.; Kramer, S.; Lin, L.; Rogers, J.T.; Sheehan, J.F.; van Steenbergen, A.; Woodle, M.; Xie, J.; Yu, L.H.; Zhang, R. ); Bhowmik, A. . Rocketdyne Div.)

    1991-01-01

    The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs.

  14. Development and initial operating characteristics of the 20 megawatt linear plasma accelerator facility

    NASA Technical Reports Server (NTRS)

    Carter, A. F.; Weaver, W. R.; Mcfarland, D. R.; Wood, G. P.

    1971-01-01

    A 20-megawatt linear plasma accelerator facility, a steady flow, Faraday-type plasma accelerator facility for high velocity aerodynamic testing, was constructed, developed, and brought to an operational status. The accelerator has a 63.5-mm-square and 0.5-meter-long channel and utilizes nitrogen-seeded with 2 % mole fraction of cesium vapor. Modification of the original accelerator design characteristics and the improvements necessary to make the arc heater a suitable plasma source are described. The measured accelerator electrode current distribution and the electrode-wall potential distributions are given. The computed and the measured values are in good agreement. Measured pitot pressure indicates that an accelerator exit velocity of 9.2 km/sec, is obtained with 30 of the 36 electrode pairs powered and corresponds to a velocity increase to about 2 1/4 times the computed entrance velocity. The computed stagnation enthalpy at the accelerator exit is 92 MJ/kg, and the mass density corresponds to an altitude of about 58 km. The 92 MJ/kg stagnation enthalpy corresponds to a kinetic energy content at low temperature equivalent to a velocity of 13.6 km/sec.

  15. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  16. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  17. Beam Dynamics in the Cebaf Superconducting Cavities.

    NASA Astrophysics Data System (ADS)

    Li, Zenghai

    1995-01-01

    This work is a study of beam dynamics in the CEBAF superconducting cavities under the influence of the fields generated by externally applied RF and beam particles. A full 3-D modeling of the CEBAF 5-cell superconducting cavity is carried out. Details of the modeling with MAFIA are discussed. Multipole fields due to the asymmetric couplers are studied by means of 3-D Fourier transforms. The cavity steering and focusing of the multipole fields are studied. Experimental measurements of these effects are performed to validate the modeling. Evaluation of the cavity misalignment is discussed. The emittance degradation effects in the CEBAF superconducting linacs and an FEL driver linac due to the head-tail effects of the cavity steering and the x - y coupling effects of the multipole fields are studied. The beam-cavity interactions for cases of v _{s}, v_{t} not= c are studied. The Lindman boundary condition is implemented to accommodate simulation of infinite long beam pipes of the beam line. A fourth-order finite-difference algorithm is derived in cylindrical coordinates to reduce the frequency dependent truncation errors, which were discovered in the process of calculating wake fields of very short bunches, of the second-order Yee algorithm. The effects of the slippage between the source particle and the test particle are considered in the wake function calculations. Radial scaling relations are obtained for calculating the wake functions on the axis from the integrated value at the beam pipe radius. The scaling found not only depends on the beam energy but also depends on the bunch length of the beam and the opening of the cavity. The conditions for the validity of the ultrarelativistic treatment of the wakefield are discussed. The emittance growth and the energy spread due to the combined effects of the cavity multipole fields and the wakefields in a 40 MeV IR FEL driver linac are studied.

  18. Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

    SciTech Connect

    Araki, S.; Hayano, H.; Higashi, Y.; Honda, Y.; Kanazawa, K.; Kubo, K.; Kume, T.; Kuriki, M.; Kuroda, S.; Masuzawa, M.; Naito, T.; Okugi, T.; Sugahara, R.; Takahashi, T.; Tauchi, T.; Terunuma, N.; Toge, N.; Urakawa, J.; Vogel, V.; Yamaoka, H.; Yokoya, K.; /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Novosibirsk, IYF /Daresbury /CERN /Hiroshima U. /Orsay, LAL /LLNL, Livermore /North Carolina A-T State U. /Oxford U. /Pohang Accelerator Lab. /Queen Mary, U. of London /Royal Holloway, U. of London /DESY /SLAC /University Coll. London /Oregon U. /Tokyo U.

    2005-05-27

    To reach design luminosity, the International Linear Collider (ILC) must be able to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittances are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 37 nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.

  19. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  20. SINBAD-The accelerator R&D facility under construction at DESY

    NASA Astrophysics Data System (ADS)

    Dorda, U.; Assmann, R.; Brinkmann, R.; Flöttmann, K.; Hartl, I.; Hüning, M.; Kärtner, F.; Fallahi, A.; Marchetti, B.; Nie, Y.; Osterhoff, J.; Schlarb, H.; Zhu, J.; Maier, A. R.

    2016-09-01

    The SINBAD facility (Short INnovative Bunches and Accelerators at DESY) is a long-term dedicated accelerator research and development facility currently under construction at DESY. It will be located in the premises of the old DORIS accelerator complex and host multiple independent experiments cost-effectively accessing the same central infrastructure like a central high power laser. With the removal of the old DORIS accelerator being completed, the refurbishment of the technical infrastructure is currently starting up. The presently ongoing conversion of the area into the SINBAD facility and the currently foreseen layout is described. The first experiment will use a compact S-band linac for the production of ultra-short bunches at hundred MeV. Once established, one of the main usages will be to externally inject electrons into a laser-driven plasma wakefield accelerator to boost the energy to GeV-level while maintaining a usable beam quality, ultimately aiming to drive an FEL. The second experiment already under planning is the setup of an attosecond radiation source with advanced technology. Further usage of the available space and infrastructure is revised and national and international collaborations are being established.

  1. Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations

    SciTech Connect

    Mao, X.S.; Leitner, M.Santana; Vollaire, J.

    2011-08-22

    Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

  2. High Gradient Operation with the CEBAF Upgrade RF Control System

    SciTech Connect

    J. Hovater; G. Davis; Hai Dong; Alicia Hofler; Lawrence King; John Musson; Tomasz Plawski

    2006-08-16

    The CEBAF Accelerator at Jefferson Lab is presently a 6 GeV five pass electron accelerator consisting of two superconducting linacs joined by independent magnetic transport arcs. Energy will be upgraded to 12 GeV with the addition of 10 new high gradient cryomodules (17+ MV/m). The higher gradients pose significant challenges beyond what the present analog low level RF (LLRF) control systems can handle reliably; therefore, a new LLRF control system is needed. A prototype system has been developed incorporating a large FPGA and using digital down and up conversion to minimize the need for analog components. The new system is more flexible and less susceptible to drifts and component nonlinearities. Because resonance control is critical to reach high gradients quickly, the new cryomodules will include a piezoelectric tuner for each cavity, and the LLRF controls must incorporate both feedback and feed-forward methods to achieve optimal resonance control performance. This paper discusses development of the new RF system, system performance for phase and amplitude stability and resonance control under Lorentz detuning measured during recent tests on a prototype cryomodule.

  3. Host-based data acquisition system to control pulsed facilities of the accelerator

    NASA Astrophysics Data System (ADS)

    Zamriy, V. N.

    2016-09-01

    The report discusses development of the host-based system to carry out timed measurements and data acquisition for the control of pulsed facilities of the accelerator. We consider modes of timing and allocation of operations of channels and the system node. The time of any working cycle of the pulsed facilities, rate of a data flow and an amount of serviced channels are coordinated with operation characteristics of the system node. Estimations of the readout rate of the data and the waiting time demonstrate the system efficiency. The technique has been developed to provide checking of groups of pulse parameters and control the facilities of the linear accelerator of electrons LUE-200 of the neutron source IREN.

  4. Current Status of the IAP NASU Accelerator-Based Analytical Facility

    NASA Astrophysics Data System (ADS)

    Buhay, O. M.; Drozdenko, A. A.; Zakharets, M. I.; Ignat'ev, I. G.; Kramchenkov, A. B.; Miroshnichenko, V. I.; Ponomarev, A. G.; Storizhko, V. E.

    Accelerator-based analytical facility (AAF) of the Institute of Applied Physics of the National Academy of Sciences of Ukraine is described. The research facility is based on a compact single ended machine with the maximum accelerating potential of 2 MV. The facility has five analytical end-stations: an scanning ion microprobe end-station with spatial resolution of less than 2 μm, a high-resolution Rutherford backscattering spectrometry end-station with a magnetic spectrometer (ΔE/E<1.5×10-3), end-station for elastic recoil detection analysis equipped with an electrostatic spectrometer (ΔE/E<1.5×10-3), end-station for particle induced gamma ray spectroscopy, and an ion induced luminescence end-station. Key specifications of the end-stations and their potential features are given.

  5. Simultaneous Four-Hall Operation for 12 GeV CEBAF

    SciTech Connect

    Kazimi, Reza

    2013-06-01

    The CEBAF accelerator at Jefferson lab will have a new experimental hall, Hall D, added to its existing three halls as a part of the ongoing 12 GeV upgrade. Under the present CEBAF design, there is no option for sending beam to all four halls simultaneously. At least one hall has to stay down during the machine operation. A new pattern for interleaving the beam bunches is introduced that allows simultaneous operation of all four halls and provide opportunity for additional future experimental beams. The new configuration presents only a minimal change to the existing CEBAF extraction system. In fact all the lower pass extractions will stay as they are and only the frequency of 5th?pass horizontal RF separator will change. In order to make room for the new Hall D beam among the existing three beams, the beam repetition rate is reduced only for the halls taking beam at the highest pass. This and other details of the new configuration and beam pattern will be presented and discussed. A separate paper in this conference will cover the implementation choices including changes to the beam source and extraction region.*

  6. Hurricane Isabel gives accelerators a severe test

    SciTech Connect

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  7. A facility for studying irradiation accelerated corrosion in high temperature water

    NASA Astrophysics Data System (ADS)

    Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

    2014-08-01

    A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 μA/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

  8. Photoproduction of Scalar Mesons Using the CEBAF Large Acceptance Spectrometer (CLAS)

    NASA Astrophysics Data System (ADS)

    Chandavar, Shloka K.

    The search for glueballs has been ongoing for several decades. The lightest glueball has been predicted by quenched lattice QCD to have mass in the range of 1.0--1.7 GeV and JPC = 0++ . The mixing of glueball states with neighbouring meson states complicates their identification and hence several experiments have been carried out over the years to study the glueball candidates. By analyzing the decay channels and production mechanisms of these candidates, their glueball content can theoretically be determined. In reality, a lot of confusion still exists about the status of these glueball candidates. The f0(1500) is one of several contenders for the lightest glueball, which has been extensively studied in several different kinds of experiments. However, there exists no photoproduction data on this particle. In the analysis presented in this dissertation, the presence of the f0(1500) in the KS 0KS0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility, also called Jefferson Lab (JLab). This is done by studying the reaction, gammap → fJp → KS0 KS0p → 2(pi +pi-)p using data from the g12 experiment. A clear peak is seen at 1500 MeV in the background subtracted data. This is enhanced if the momentum transfer is restricted to be less than 1 GeV2. Comparing with simulations, it is seen that this peak is associated with t channel production mechanism. The f 2'(1525) has a mass of 1525 MeV and a width of 73 MeV, and hence there is a possibility of it contributing to the peak observed in our data. A moments analysis seems to suggest some presence of a D wave, however, the low acceptance at forward and backward angles prohibits a definitive conclusion.

  9. Accelerators for the advanced exotic beam facility in the U.S.

    SciTech Connect

    Ostroumov, P. N.; Fuerst, J. D.; Kelly, M. P.; Mustapha, B.; Nolen, J. A.; Shepard, K. W.; Physics

    2007-01-01

    The Office of Science of the Department of Energy is currently considering options for an advanced radioactive beam facility in the U.S which is a reduced scale version of the Rare Isotope Accelerator (RIA) project [1,2]. This facility will have unique capabilities compared with others both existing and planned elsewhere. As envisioned at ANL, the facility, called the Advanced Exotic Beam Laboratory (AEBL), would consist of a heavy-ion driver linac, a post-accelerator and experimental areas. Secondary beams of rare isotopes will be available as high quality reaccelerated or stopped beams from a gas catcher and high power ISOL targets, as well as, high energy beams following in-flight fragmentation or fission of heavy ions. The proposed design of the AEBL driver linac is a cw, fully superconducting, 833 MV linac capable of accelerating uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. An extensive research and development effort has resolved many technical issues related to the construction of the driver linac and other systems required for AEBL. This paper presents the status of planning, some options for such a facility, as well as, progress in related R&D.

  10. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  11. The Radiological Research Accelerator Facility. Progress report, December 1, 1991--November 30, 1992

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  12. The Radiological Research Accelerator Facility. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  13. A microwiggler Free-Electron Laser at the Brookhaven Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Kirk, H.; Pellegrini, C.; Vansteenbergen, A.; Bhowmik, A.

    1989-09-01

    The design and status of an FEL experiment at the Brookhaven National Laboratory Accelerator Test Facility is reported. A 50 MeV high brightness electron beam will be utilized for an oscillator experiment in the visible wavelength region. The microwiggler to be used is a superferric planar undulator with a 0.88 cm period, 60 cm length and K = 0.35. The optical cavity is a 368 cm long stable resonator with broadband dielectric coated mirrors.

  14. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL.

    PubMed

    Ceballos, C; Esposito, J; Agosteo, S; Colautti, P; Conte, V; Moro, D; Pola, A

    2011-12-01

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the (9)Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  15. Performance of the Argonne Wakefield Accelerator Facility and initial experimental results

    SciTech Connect

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-10-01

    The Argonne Wakefield Accelerator facility has begun its experimental program. It is designed to address advanced acceleration research requiring very short, intense electron bunches. It incorporates two photocathode based electron sources. One produces up to 100 nC, multi-kiloamp `drive` bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity `witness` pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. This paper discusses commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator.

  16. High-Power Accelerator Research and Development at the NRL 11.424-GHz Magnicon Facility

    NASA Astrophysics Data System (ADS)

    Gold, Steven H.; Kinkead, Allen K.; Nezhevenko, Oleg A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Vikharev, Anatoly; Ivanov, Oleg; Kuzikov, Sergey; Gorbachev, Alexey; Isaev, Vladimir A.; Gai, Wei; Power, John G.; Konecny, Richard

    2002-11-01

    An 11.424-GHz magnicon amplifier has been jointly developed by the Naval Research Laboratory and Omega-P, Inc. as an alternative technology to klystrons for powering a future X-band linear collider. This paper will discuss its background, operating principles, and results to date, as well its present status as a facility for collaborative research on accelerator-related technologies that require high-power 11.424-GHz radiation. Two research programs are currently under way using the output of the magnicon. The first, a collaboration with Omega-P, Inc. and the Institute of Applied Physics, is investigating active microwave pulse compressors using plasma switch tubes. The second, a collaboration with Argonne National Laboratory and SLAC, is investigating dielectric-loaded accelerating (DLA) structures, with the ultimate goal of developing a compact DLA accelerator.

  17. High Power Accelerator R&D at the NRL 11.424-GHz Magnicon Facility

    NASA Astrophysics Data System (ADS)

    Gold, Steven H.; Kinkead, Allen K.; Nezhevenko, Oleg A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Vikharev, Anatoly L.; Ivanov, Oleg A.; Kuzikov, Sergey V.; Gorbachev, Alexey M.; Isaev, Vladimir A.; Gai, Wei; Konecny, Richard; Power, John G.

    2002-12-01

    An 11.424-GHz magnicon amplifier has been jointly developed by the Naval Research Laboratory and Omega-P, Inc. as an alternative technology to klystrons for powering a future X-band linear collider. This paper will discuss its background, operating principles, and results to date, as well its present status as part of a facility for collaborative research on accelerator-related technologies that require high-power 11.424-GHz radiation. Two collaborative research programs are currently under way using the magnicon output. The first, a collaboration with Omega-P, Inc. and the Institute of Applied Physics, is investigating active microwave pulse compressors using plasma switch tubes. The second, a collaboration with Argonne National Laboratory and SLAC, is investigating dielectric-loaded accelerating (DLA) structures, with the ultimate goal of developing a compact DLA accelerator.

  18. Design of 57.5 MHz cw RFQ structure for the rare isotope accelerator facility.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Kashinsky, D. A.; Minaev, S. A.; Pershin, V. I.; Yaramishev, S. G.; Tretyakova, T. E.

    2002-01-29

    The Rare Isotope Accelerator (RIA) facility includes a driver linac for production of 400 kW CW heavy-ion beams. The initial acceleration of heavy-ions delivered from an ECR ion source can be effectively performed by a 57.5 MHz four-meter long RFQ. The principal specifications of the RFQ are: (1) formation of extremely low longitudinal emittance; (2) stable operation over a wide range of voltage for acceleration of various ion species needed for RIA operation; (3) simultaneous acceleration of two-charge states of uranium ions. CW operation of an accelerating structure leads to a number of requirements for the resonators such as high shunt impedance, efficient water cooling of all parts of the resonant cavity, mechanical stability together with precise alignment, reliable rf contacts, a stable operating mode and fine tuning of the resonant frequency during operation. To satisfy these requirements a new resonant structure has been developed. This paper discusses beam dynamics and electrodynamics design of the RFQ cavity, as well as, some aspects of the mechanical design of this low-frequency CW RFQ.

  19. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    SciTech Connect

    Buckner, M.; Cappiello, M.; Pitcher, E.; O`Brien, H.

    1998-08-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M{ampersand}O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project.

  20. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    NASA Astrophysics Data System (ADS)

    Bateman, F. B.; Desrosiers, M. F.; Hudson, L. T.; Coursey, B. M.; Bergstrom, P. M.; Seltzer, S. M.

    2003-08-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

  1. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    SciTech Connect

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-08-26

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

  2. Can-AMS: The New Accelerator Mass Spectrometry Facility At The University Of Ottawa

    SciTech Connect

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.; Kotzer, T.; Litherland, A. E.

    2011-06-01

    The Canadian Centre for Accelerator Mass Spectrometry (AMS) at the University of Ottawa will be equipped with a new, 3 MV tandem accelerator with peripheral equipment for the analysis of elements ranging from tritium to the actinides. This facility, along with a wide array of support instrumentation recently funded by the Canada Foundation for Innovation, will be located in a new science building on the downtown campus of the University of Ottawa. In addition to providing the standard AMS measurements on {sup 14}C, {sup 10}Be, {sup 26}Al, {sup 36}Cl and {sup 129}I for earth, environmental, cultural and biomedical sciences, this facility will incorporate the new technologies of anion isobar separation at low energies using RFQ chemical reaction cells for {sup 36}Cl and new heavy element applications, integrated sample combustion and gas ion source for biomedical and environmental {sup 14}C analysis and the use of novel target matrices for expanding the range of applicable elements and simplifying sample preparation, all currently being developed at IsoTrace. This paper will outline the design goals for the new facility, present some details of the new AMS technologies, in particular the Isobar Separator for Anions and discuss the design of the AMS system resulting from these requirements.

  3. Recent advances in UHV techniques for particle accelerators

    SciTech Connect

    M. G. Rao

    1995-01-01

    The ultrahigh vacuum (UHV) requirements for storage rings and accelerators, and the development of the science and technology of UHV for particle accelerators and magnetic fusion devices have been recently reviewed by N.B. Mistry and H.F. Dylla respectively. In this paper, the latest developments in the advancement of UHV techniques for the vacuum integrity of Continuous Electron Beam Accelerator Facility (CEBAF) and for successfully dealing with the synchrotron radiation related beam line vacuum problem encountered in the design of the SSC are reviewed: the review includes developments in extreme sensitivity He leak detection technique based on the dynamic adsorption and desorption of He, operation of ionization gauges at Lhe temperatures, metal sponges for the effective cryopumping of H{sup 2} and He to pressures better than 10{sup -14} torr, and low cost and high He sensitivity RGA's. The details of a new extreme sensitivity He leak detector system are also discussed here.

  4. The Machine Protection System for the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Wu, Jinyuan; Warner, Arden; Liu, Ning; Neswold, Richard; Carmichael, Linden

    2015-11-15

    The Machine Protection System (MPS) for the Fermilab Accelerator Science and Technology Facility (FAST) has been implemented and tested. The system receives signals from several subsystems and devices which conveys the relevant status needed to the safely operate the accelerator. Logic decisions are made based on these inputs and some predefined user settings which in turn controls the gate signal to the laser of the photo injector. The inputs of the system have a wide variety of signal types, encoding methods and urgencies for which the system is designed to accommodate. The MPS receives fast shutdown (FSD) signals generated by the beam loss system and inhibits the beam or reduces the beam intensity within a macropulse when the beam losses at several places along the accelerator beam line are higher than acceptable values. TTL or relay contact signals from the vacuum system, toroids, magnet systems etc., are chosen with polarities that ensure safe operation of the accelerator from unintended events such as cable disconnection in the harsh industrial environment of the experimental hall. A RS422 serial communication scheme is used to interface the operation permit generator module and a large number of movable devices each reporting multi-bit status. The system also supports operations at user defined lower beam levels for system conunissioning. The machine protection system is implemented with two commercially available off-the-shelf VMEbus based modules with on board FPGA devices. The system is monitored and controlled via the VMEbus by a single board CPU

  5. Beam Test of Multi-Bunch Energy Compensation System in the Accelerator Test Facility at KEK

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Shigeru; Hayano, Hitoshi; Kubo, Kiyoshi; Korhonen, Timo; Nakamura, Shogo; Naito, Takashi; Oide, Katsunobu; Takeda, Seishi; Terunuma, Nobuhiro; Urakawa, Junji

    2004-08-01

    A beam test of the multi-bunch energy compensation system (ECS) was performed using the Δ F method with the 2856± 4.327 MHz accelerating structures in the accelerator test facility (ATF) at KEK. The 1.54 GeV S-band linac of the ATF was designed to accelerate a multi-bunch beam that consists of 20 bunches with 2.8 ns spacing. The multi-bunch beam with 2.0× 1010 electrons/bunch has an energy deviation of about 8.5% at the end of the linac due to transient beam loading without ECS. The ATF linac is the injector of the ATF damping ring (DR), whose energy acceptance is ± 0.5%. The beam loading compensation system is necessary in the ATF linac for the successful injection of multi-bunch into DR. The rf system of the linac consists of 8 regular rf units with the SLED system and 2 ECS rf units without the SLED system. The accelerating structures of the regular units are driven at 2856 MHz and the 2 ECS structures are operated with slightly different rf frequencies of 2856± 4.327 MHz. In the beam test, we have succeeded in compressing the multi-bunch energy spread within the energy acceptance of the DR using Δ F ECS. The principle of the beam loading compensation system of KEK-ATF and the experimental results are described in this paper.

  6. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  7. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  8. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  9. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  10. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  11. Accelerator Test Facility for Muon Collider and Neutrino Factory R&d

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. This article briefly reviews the needs and possibilities for a Muon Collider beam test facility to carry out the R&D program on the collider front-end and 6D cooling demonstration experiment.

  12. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    SciTech Connect

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-07-10

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand.

  13. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Spata, Michael F.

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  14. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  15. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 4

    SciTech Connect

    Parsa, Z.

    1995-10-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory. Editing and changes to the authors` contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on eight presentations: ``Application of Accelerator-Driven Spallation Targets - Including Tritium Production and Nuclear Waste Transmutation``, ``BNL 5 MW Pulsed Spallation Neutron Source Study``, ``Designing and Understanding of Magnets with the Help of Conformal Mapping``, ``Laser - Electron Beam Scattering Coherent Compton X-Ray Sources``, ``The LHC Project``, ``Optimization of the Photocathode-Linac Separation for the ATF [Accelerator Test Facility] Injection System``, ``On CEBAF Commissioning: First Results``, and ``The Proposed Booster Application Facility at BNL``. An Appendix lists dates, topics, and speakers from October 1989 to December 1994.

  16. Radiation shielding and patient organ dose study for an accelerator- based BNCT Facility at LBNL

    SciTech Connect

    Costes, S.V.; Vujic, J.; Donahue, R.J.

    1996-10-24

    This study considers the radiation safety aspects of several designs discussed in a previous report of an accelerator-based source of neutrons, based on the [sup 7]Li(p,n) reaction, for a Boron Neutron Capture Therapy (BNCT) Facility at Lawrence Berkeley National Laboratory (LBNL). determines the optimal radiation shield thicknesses for the patient treatment room. Since this is an experimental facility no moderator or reflector is considered in the bulk wall shield design. This will allow the flexibility of using any postulated moderator/reflector design and assumes sufficient shielding even in the absence of a moderator/reflector. In addition the accelerator is assumed to be capable of producing 100 mA of 2.5 MeV proton beam current. The addition of 1% and 2% [sup 10]B (by weight) to the concrete is also investigated. The second part of this paper determines the radiation dose to the major organs of a patient during a treatment. Simulations use the MIRD 5 anthropomorphic phantom to calculate organ doses from a 20 mA proton beam assuming various envisioned moderator/reflector in place. Doses are tabulated by component and for a given uniform [sup 10]B loading in all organs. These are presented in for a BeO moderator and for an Al/AlF[sub 3] moderator. Dose estimates for different [sup 10]B loadings may be scaled.

  17. An accelerator facility for WDM, HEDP, and HIF investigations in Nazarbayev University

    NASA Astrophysics Data System (ADS)

    Kaikanov, M.; Baigarin, K.; Tikhonov, A.; Urazbayev, A.; Kwan, J. W.; Henestroza, E.; Remnev, G.; Shubin, B.; Stepanov, A.; Shamanin, V.; Waldron, W. L.

    2016-05-01

    Nazarbayev University (NU) in Astana, Kazakhstan, is planning to build a new multi-MV, ∼10 to several hundred GW/cm2 ion accelerator facility which will be used in studies of material properties at extreme conditions relevant to ion-beam-driven inertial fusion energy, and other applications. Two design options have been considered. The first option is a 1.2 MV induction linac similar to the NDCX-II at LBNL, but with modifications, capable of heating a 1 mm spot size thin targets to a few eV temperature. The second option is a 2 - 3 MV, ∼200 kA, single-gap-diode proton accelerator powered by an inductive voltage adder. The high current proton beam can be focused to ∼1 cm spot size to obtain power densities of several hundred GW/cm2, capable of heating thick targets to temperatures of tens of eV. In both cases, a common requirement to achieving high beam intensity on target and pulse length compression is to utilize beam neutralization at the final stage of beam focusing. Initial experiments on pulsed ion beam neutralization have been carried out on a 0.3 MV, 1.5 GW single-gap ion accelerator at Tomsk Polytechnic University with the goal of creating a plasma region in front of a target at densities exceeding ∼1012 cm-3.

  18. Measuring spin-dependent structure functions at CEBAF

    SciTech Connect

    Schaefer, A.

    1994-04-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.

  19. Neutron source in the MCNPX shielding calculating for electron accelerator driven facility

    SciTech Connect

    Zhong, Z.; Gohar, Y.

    2012-07-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of an experimental neutron source facility. It is an accelerator driven system (ADS) utilizing a subcritical assembly driven by electron accelerator. The facility will be utilized for performing basic and applied nuclear researches, producing medical isotopes, and training young nuclear specialists. Monte Carlo code MCNPX has been utilized as a design tool due to its capability to transport electrons, photons, and neutrons at high energies. However the facility shielding calculations with MCNPX need enormous computational resources and the small neutron yield per electron makes sampling difficulty for the Monte Carlo calculations. A method, based on generating and utilizing neutron source file, was proposed and tested. This method reduces significantly the required computer resources and improves the statistics of the calculated neutron dose outside the shield boundary. However the statistical errors introduced by generating the neutron source were not directly represented in the results, questioning the validity of this methodology, because an insufficiently sampled neutron source can cause error on the calculated neutron dose. This paper presents a procedure for the validation of the generated neutron source file. The impact of neutron source statistic on the neutron dose is examined by calculating the neutron dose as a function of the number of electron particles used for generating the neutron source files. When the value of the calculated neutron dose converges, it means the neutron source has scored sufficient records and statistic does not have apparent impact on the calculated neutron dose. In this way, the validity of neutron source and the shield analyses could be verified. (authors)

  20. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  1. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  2. Fostering European Collaborations: EUFRAT and work done at the accelerator facilities of JRC-IRMM

    NASA Astrophysics Data System (ADS)

    Mondelaers, W.; Hambsch, F.-J.; Heyse, J.; Kopecky, S.; Oberstedt, S.; Plompen, A.; Schillebeeckx, P.; Siegler, P.

    2016-11-01

    The European Commission via the General Directorate RTD in its different Framework Programs supported collaborations of member state institutions dealing with nuclear data. The projects EFNUDAT, ERINDA, CHANDA and EUFRAT all have in common Transnational Access Activities (TAA) to partner institutions. Within the past 10years the collaborations have grown and in CHANDA now 35 partners are involved of which 16 offer TAA to their facilities. Since June 2014 JRC-IRMM, one of the driving forces behind the TAA, launched its own TAA project EUFRAT to foster collaborations with member states institutions. The calls for proposals are open ended with a deadline twice a year. A Project Advisory Committee discusses the proposals and decides on about approval. Financial support is given to approved proposals for two scientists. So far two calls have been evaluated with a request for access totalling more than 5000h. Examples of proposals at the accelerator facilities at the JRC-IRMM are presented showing the multitude of possibilities using the nuclear facilities at the JRC-IRMM.

  3. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  4. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.

  5. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  6. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Lewis, D. III

    2006-01-03

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to {approx}8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  7. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    NASA Astrophysics Data System (ADS)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-10-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.

  8. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.

    PubMed

    García-Cañadas, Jorge; Adkins, Nicholas J E; McCain, Stephen; Hauptstein, Bastian; Brew, Ashley; Jarvis, David J; Min, Gao

    2016-06-13

    A series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates. The composition of all the samples prepared was tested by energy dispersive X-ray spectroscopy (EDS). Then, their thermoelectric properties (power factor) at room temperature were screened in a specially designed new high-throughput setup. After the screening, the thermoelectric properties can be mapped with the possibility of identifying compositional trends. As a proof-of-concept, a promising thermoelectric ternary system, Al-Fe-Ti, has been identified, demonstrating the capability of this accelerated approach.

  9. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.

    PubMed

    García-Cañadas, Jorge; Adkins, Nicholas J E; McCain, Stephen; Hauptstein, Bastian; Brew, Ashley; Jarvis, David J; Min, Gao

    2016-06-13

    A series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates. The composition of all the samples prepared was tested by energy dispersive X-ray spectroscopy (EDS). Then, their thermoelectric properties (power factor) at room temperature were screened in a specially designed new high-throughput setup. After the screening, the thermoelectric properties can be mapped with the possibility of identifying compositional trends. As a proof-of-concept, a promising thermoelectric ternary system, Al-Fe-Ti, has been identified, demonstrating the capability of this accelerated approach. PMID:27186664

  10. Overview of progress on the improvement projects for the LANSCE accelerator and target facilities

    SciTech Connect

    Macek, R.J.; Browne, J.; Brun, T.; Donahue, J.B.; Fitzgerald, D.H.; Hoffman, E.; Pynn, R.; Schriber, S.; Weinacht, D.

    1997-06-01

    Three projects have been initiated since 1994 to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center (LANSCE). The LANSCE Reliability Improvement Project (LRIP) was separated into two phases. Phase 1, completed in 1995, targeted near-term improvements to beam reliability and availability that could be completed in one-year`s time. Phase 2, now underway and scheduled for completion in May 1998, consists of two projects: (a) implementation of direct H-injection for the Proton Storage Ring (PSR) and (b) an upgrade of the target/moderator system for the short pulse spallation neutron (SPSS) source. The latter will reduce the target change-out time from about 10 months to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current to 200 {micro}A at 30 Hz and providing up to seven new neutron scattering instruments.

  11. Micron-scale laser-wire scanner for the KEK Accelerator Test Facility extraction line

    NASA Astrophysics Data System (ADS)

    Boogert, Stewart T.; Blair, Grahame A.; Boorman, Gary; Bosco, Alessio; Deacon, Lawrence C.; Karataev, Pavel; Aryshev, Alexander; Fukuda, Masafumi; Terunuma, Nobihiro; Urakawa, Junji; Corner, Laura; Delerue, Nicolas; Foster, Brian; Howell, David; Newman, Myriam; Senanayake, Rohan; Walczak, Roman; Ganaway, Fred

    2010-12-01

    A laser-wire transverse electron beam size measurement system has been constructed and operated at the Accelerator Test Facility (ATF) extraction line at KEK. The construction of the system is described in detail along with the environment of the ATF related to the laser wire. A special set of electron beam optics was developed to generate an approximately 1μm vertical focus at the laser-wire location. The results of our operation at the ATF extraction line are presented, where a minimum rms electron beam size of 4.8±0.3μm was measured, and smaller electron beam sizes can be measured by developing the method further. The beam size at the laser-wire location was changed using quadrupoles and the resulting electron beam size measured, and vertical emittance extracted.

  12. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect

    Moon, Chang-Bum

    2014-04-15

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  13. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    NASA Astrophysics Data System (ADS)

    Ullmann, C.; Berezov, R.; Fils, J.; Chauvin, N.; Delferriere, O.; Hollinger, R.; Kester, O.; Vinzenz, W.

    2014-02-01

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 1010 cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 1016 protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms).

  14. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    SciTech Connect

    Ullmann, C. Kester, O.; Chauvin, N.; Delferriere, O.

    2014-02-15

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms)

  15. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect

    Harwood, Leigh H.

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  16. Nucleon Form Factors experiments with 12 GeV CEBAF

    SciTech Connect

    Wojtsekhowski, B.

    2008-10-13

    A number of precision form factor experiments at high momentum transfer will be performed with the 11 GeV electron beam of CEBAF. We review the approved proposals and the conceptual schemes of several new suggestions. Form factor data will serve as a major input for the construction of a tomographic image of the nucleon.

  17. Proposed high-power UV industrial demonstration laser at CEBAF

    NASA Astrophysics Data System (ADS)

    Benson, Stephen V.; Bisognano, Joseph J.; Bohn, Courtlandt L.; Cardman, Larry; Colson, William B.; Davidson, Paul C.; Douglas, David; Dylla, H. Frederick; Engwall, David; Fugitt, Jock; Goldstein, John C.; Jordan, Kevin; Kehne, David; Li, Zhenghai; Liu, Hong-Xiu; Merminga, Lia; Neil, George R.; Neuffer, David; Shinn, Michelle D.; Wiseman, Mark; Wong, Robert K.

    1996-04-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Accelerator Facility in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining The laser is a free-electron laser with average power output exceeding 1 kW in the ultraviolet. The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-lug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. We will describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. We will also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported.

  18. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  19. AIRIX: an induction accelerator facility developed at CEA for flash radiography in detonics

    NASA Astrophysics Data System (ADS)

    Cavailler, Claude

    1999-06-01

    AIRIX is an induction linear accelerator which will be used for flash radiography in CEA/DAM. Designed to produce an X-ray dose of more than 500 Rads at 1 meter with an X-ray focal spot size diameter of less than 2 mm (LANL-CEA DAM definition), this facility consists in a 4 MeV/3.5 kA pulsed electron injector and 16 MeV induction accelerator powered by 32 high voltage generators. A prototype of this accelerator, called PIVAIR, has been studied and realized in CEA CESTA near Bordeaux. PIVAIR is a validation step for AIRIX at 8 MeV. It includes an injector (4 MeV, 3.5 kA, 60 ns) and 16 inductor cells supplied by 8 high voltage generators (250 kV, 70 ns). Two different technologies of induction cells have been tested (rexolite insulator or ferrite under vacuum). We have chosen ferrite under vacuum cells technology after comparison of results on beam transport and reliability tests. A focusing experiment at 7.2 MeV of the electron beam as been achieved during summer 1997. We have begun to produce X-rays in October 1997. A dose level of 50 Rad at 1 meter has been achieved with an X-ray spot size diameter of 3.5 to 4 mm (LANL-CEA DAM definition). Static flash radiography of very dense object have been achieved from November 97 until February 98. We have been able to test in situ new kinds of very high sensitive X- ray detectors and to check they had reached our very ambitious goals: (1) quantum efficiency at 5 MeV greater than 50% instead of 1% for luminous screens and film; (2) sensitivity less than 10 (mu) Rad (100 time more sensitive than radiographic luminous screens and films); (3) dynamic range greater than 100; (4) resolution less than 2 mm. We will present in this communication brand new kinds of detection systems, called high stopping power detectors, such as: (1) (gamma) camera with segmented thick crystal of BGO and MCP image intensifier; (2) multistep parallel plate avalanche chamber; (3) pixellized CdTe MeV photoconductor matrix. AIRIX accelerator is being

  20. Electron-Ion Collider at CEBAF: New Insights and Conceptual Progress

    SciTech Connect

    Yaroslav Derbenev; Andrei Afanasev; Kevin Beard; Lawrence Cardman; Swapan Chattopadhyay; Pavel Degtiarenko; Jean Delayen; Rolf Ent; Andrew Hutton; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Byung Yunn; Petr Ostroumov

    2004-07-01

    We report on progress in the conceptual development of the proposed high luminosity (up to 1035 cm-2s-1) and efficient spin manipulation (using ''figure 8'' boosters and collider rings) Electron-Ion Collider at the CEBAF. This facility would use a polarized 5-7 GeV electron beam from a superconducting energy recovering linac with a kicker-operated circulator ring, and a 30-150 GeV ion beam in a storage ring (for polarized p, d, 3He, Li and unpolarized totally stripped nuclei up to Ar). Ultra-high luminosity is envisioned to be achieved with very short crab-crossing bunches at 1.5 GHz repetition rate. Our recent studies were concentrated on understanding beam-beam interaction, ion beam instabilities, luminosity lifetime due to intrabeam scatterings, ERL-ring synchronization, and ion spin control. We also proposed a preliminary conceptual design of the interaction region.

  1. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    SciTech Connect

    Nath, Subrata

    2010-09-07

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer {approx}1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  2. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    SciTech Connect

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities.

  3. Design and high order optimization of the Accelerator Test Facility lattices

    NASA Astrophysics Data System (ADS)

    Marin, E.; Tomás, R.; Bambade, P.; Kubo, K.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; Seryi, A.; White, G. R.; Woodley, M.

    2014-02-01

    The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction scheme which is implemented in the final focus systems of future linear colliders such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). The ATF2 nominal and ultralow β* lattices are designed to vertically focus the beam at the focal point, or usually referred to as interaction point (IP), down to 37 and 23 nm, respectively. The vertical chromaticities of the nominal and ultralow β* lattices are comparable to those of ILC and CLIC, respectively. When the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design values. In this paper we describe the analysis of the high order aberrations that allows identifying the sources of the observed beam size growth. In order to recover the design spot sizes three solutions are considered, namely final doublet replacement, octupole insertion, and optics modification. Concerning the future linear collider projects, the consequences of magnetic field errors of the focusing quadrupole magnet of the final doublet are also addressed.

  4. Decay spectroscopy with Solenogam at the ANU Heavy Ion Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gerathy, M. S. M.; Reed, M. W.; Lane, G. J.; Kibédi, T.; Hota, S. S.; Stuchbery, A. E.

    2016-09-01

    Solenogam is a recoil spectrometer designed and constructed for use at the Australian National University (ANU) Heavy-Ion Accelerator Facility (HIAF). The design enables the study of nuclear excitations populated by the decay of long-lived states such as isomers and radioactive ground states. Solenogam is comprised of high-sensitivity γ-ray and electron detector arrays coupled to a new 8-T solenoid. While the installation of the 8-T solenoid proceeds, off-line measurements have been made to characterise Solenogam's performance. Gamma-electron coincidences in the electron capture decay of 182Re into 182W were used to investigate conversion coeffcients and γ-e- angular correlations. The measured conversion coeffcients show good agreement with theoretical calculations and have been used to extract E0/E2 mixing ratios for a number of J → J transitions. The angular correlations measured by the array are in qualitative agreement with theoretical calculations. However, the magnitudes of the correlations are attenuated by approximately 40% for reasons unknown at present. These results are the first full use of the Solenogam system for γ-e- coincidence measurements and have proven that the system is capable of highly-sensitive internal conversion analysis of complex decays.

  5. Probing half βy* optics in the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Patecki, M.; Bett, D.; Marin, E.; Plassard, F.; Tomás, R.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.

    2016-10-01

    A nanometer beam size at the interaction point (IP) is required for future linear colliders to achieve the desired rate of particle collisions. KEK Accelerator Test Facility 2 (ATF2), a scaled down implementation of the linear collider beam delivery system, serves for demonstrating the feasibility of the final focus system (FFS). An unprecedented low vertical beam size at the IP of about 40 nm has been already measured in ATF2 using the optics with a nominal βy* . In our study we decrease the βy* value in order to investigate the performance of more chromatic optics and to study the limits of beam focusing at the IP. Stronger beam focusing amplifies the aberrations from the final focus imperfections which cause an increase of the beam size at the IP. Simulations show that the multipolar errors and final doublet fringe fields spoil the IP beam sizes for ultralow βy* optics but can be mitigated either by increasing the value of the horizontal β* or installing a pair of octupole magnets. We report on our first experimental steps towards the ultralow βy* in ATF2. New methods for the beam diagnostics at the IP were developed in order to precisely set the desired optics. βy* value was half the nominal value. The beam tuning was performed and the measured beam size is compared with the simulation results.

  6. Using gaseous emissions of a proton accelerator facility as tracer for small-scale atmospheric dispersion.

    PubMed

    Butterweck, G; Heese, I; Hugi, R; Züllig, J; Hödlmoser, H; Hohmann, E; Mayer, S

    2015-04-01

    The gaseous effluents of the proton accelerator facility located in the Western part of the Paul Scherrer Institute, Aargau, Switzerland, contain a mixture of positron emitters (50 % (15)O, 20 % (13)N and 30 % (11)C). For the experimental verification of a future upgrade of the dispersion model in the complex topography of the Aare valley, a measuring campaign using three continuous gamma-spectrometric measuring stations was launched in 2011. The concept of a modified man-made-gross-count (MMGC) ratio yields a clear signal associated with the positron emitters while minimising the influence of radon progeny rain-out events. A dependence of the measured MMGC ratios on the emitted activity and wind direction could be demonstrated using frequency distributions of the modified MMGC ratio measured in 2012 and 2013. A significant fraction of high MMGC-ratio values was found associated with dispersion directions (based on measurements of the wind direction in 70 m above ground) not towards or even against the direction between stack and measuring station.

  7. Implementation of the Polarized HD target at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Chaden Djalali; David Tedeschi

    2007-01-30

    The original goal of this proposal was to study frozen spin polarized targets (HD target and other technologies) and produce a conceptual design report for the implementation of such a target in the HALL B detector of the Thomas Jefferson National Accelerator Facility (JLab). During the first two years of the proposal, we came to the conclusion that the best suited target for JLab was a frozen spin target and helped with the design of such a target. We have not only achieved our original goal but have exceeded it by being involved in the actual building and testing of parts the target. The main reason for this success has been the hiring of a senior research associate, Dr. Oleksandr Dzyubak, who had more than 10 years of experience in the field of frozen spin polarized targets. The current grant has allowed the USC nuclear physics group to strengthen its role in the JLab collaboration and make important contribution to both the detector development and the scientific program.

  8. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Constanzo, J.; Fallavier, M.; Alphonse, G.; Bernard, C.; Battiston-Montagne, P.; Rodriguez-Lafrasse, C.; Dauvergne, D.; Beuve, M.

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  9. Polarization Measurements in Photoproduction with CEBAF Large Acceptance Spectrometer

    SciTech Connect

    E. Pasyuk

    2010-05-01

    A significant part of the experimental program in Hall-B of the Jefferson Lab is dedicated to the studies of the structure of baryons. CEBAF Large Acceptance Spectrometer (CLAS), availability of circularly and linearly polarized photon beams and recent addition of polarized targets provides remarkable opportunity for single, double and in some cases triple polarization measurements in photoproduction. An overview of the experiments will be presented.

  10. A VXIbus based trigger for the CLAS detector at CEBAF

    SciTech Connect

    D.C. Doughty, Jr.; J. Englert; R. Hale; S. Lemon; P. Leung; C. Cuevas; D. Joyce

    1992-04-01

    A VXIbus based first level triggering system for the CLAS detector at CEBAF has been designed and prototyped. It uses pipelining and a triple memory lookup to produce a dead-timeless trigger decision with an average latency of 110 nS and a jitter of 20 nS. The VXIbus Extended Start/Stop triggering protocols allow sub-nanosecond time synchronization.

  11. A VXIbus based trigger for the CLAS detector at CEBAF

    SciTech Connect

    Doughty, D.C. Jr.; Englert, J.; Hale, R.; Lemon, S. ); Leung, P. ); Cuevas, C.; Joyce, D. )

    1992-04-01

    This paper discusses a VXIbus based first level triggering system for the CLAS detector at CEBAF which has been designed and prototyped. It uses pipelining and a triple memory lookup to produce a dead-timeless trigger decision with an average latency of 110 ns and a jitter of 20 ns. The VXIbus Extended Start/Stop triggering protocols allow sub-nanosecond time synchronization.

  12. Restoration of accelerator facilities damaged by Great East Japan Earthquake at Cyclotron and Radioisotope Center, Tohoku University.

    PubMed

    Wakui, Takashi; Itoh, Masatoshi; Shimada, Kenzi; Yoshida, Hidetomo P; Shinozuka, Tsutomu; Sakemi, Yasuhiro

    2014-01-01

    The Cyclotron and Radioisotope Center (CYRIC) of Tohoku University is a joint-use institution for education and research in a wide variety of fields ranging from physics to medicine. Accelerator facilities at the CYRIC provide opportunities for implementing a broad research program, including medical research using positron emission tomography (PET), with accelerated ions and radioisotopes. At the Great East Japan Earthquake on March 11, 2011, no human injuries occurred and a smooth evacuation was made in the CYRIC, thanks to the anti-earthquake measures such as the renovation of the cyclotron building in 2009 mainly to provide seismic strengthening, fixation of shelves to prevent the falling of objects, and securement of the width of the evacuation route. The preparation of an emergency response manual was also helpful. However, the accelerator facilities were damaged because of strong shaking that continued for a few minutes. For example, two columns on which a 930 cyclotron was placed were damaged, and thereby the 930 cyclotron was inclined. All the elements of beam transport lines were deviated from the beam axis. Some peripheral devices in a HM12 cyclotron were broken. Two shielding doors fell from the carriage onto the floor and blocked the entrances to the rooms. The repair work on the accelerator facilities was started at the end of July 2011. During the repair work, the joint use of the accelerator facilities was suspended. After the repair work was completed, the joint use was re-started at October 2012, one and a half years after the earthquake.

  13. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  14. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    NASA Astrophysics Data System (ADS)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  15. Using a commercial mathematics software package for on-line analysis at the BNL Accelerator Test Facility

    SciTech Connect

    Malone, R.; Wang, X.J.

    1999-06-14

    BY WRITING BOTH A CUSTOM WINDOWS(NTTM) DYNAMIC LINK LIBRARY AND GENERIC COMPANION SERVER SOFTWARE, THE INTRINSIC FUNCTIONS OF MATHSOFT MATHCAD(TM) HAVE BEEN EXTENDED WITH NEW CAPABILITIES WHICH PERMIT DIRECT ACCESS TO THE CONTROL SYSTEM DATABASES OF BROOKHAVEN NATIONAL LABORATORY ACCELERATOR TEST FACILITY. UNDER THIS SCHEME, A MATHCAD WORKSHEET EXECUTING ON A PERSONAL COMPUTER BECOMES A CLIENT WHICH CAN BOTH IMPORT AND EXPORT DATA TO A CONTROL SYSTEM SERVER VIA A NETWORK STREAM SOCKET CONNECTION. THE RESULT IS AN ALTERNATIVE, MATHEMATICALLY ORIENTED VIEW OF CONTROLLING THE ACCELERATOR INTERACTIVELY.

  16. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    SciTech Connect

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten

  17. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at theLBNL LOASIS Facility

    SciTech Connect

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-09-01

    We present a design for a compact FEL source of ultrafast, high-peak flux, soft x-ray pulses employing a high-current, GeV-energy electron beam from the existing laser-plasma accelerator at the LBNL LOASIS laser facility. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing both to the high current ({approx} 10 kA) and reasonable charge/pulse ({approx} 0.1-0.5 nC) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially 10{sup 13}--10{sup 14} photons/pulse. We examine devices based both on SASE and high-harmonic generated input seeds to give improved coherence and reduced undulator length, presenting both analytic scalings and numerical simulation results for expected FEL performance. A successful source would result in a new class of compact laser-driven FELs in which a conventional RF accelerator is replaced by a GeV-class laser-plasma accelerator whose active acceleration region is only a few cm in length.

  18. Short-orbit spectrometer for Hall C at CEBAF

    SciTech Connect

    Jackson, H.E.; Potterveld, D.H.; Zeidman, B.

    1995-08-01

    An examination of the proposed experimental program for Hall C at CEBAF reveals a major emphasis on coincidence experiments involving a {open_quotes}core{close_quotes} spectrometer and a second arm capable of detecting particles with momenta < 2 GeV/c with moderate energy and angular resolution. In most cases, the core spectrometer serves to tag a virtual photon, which induces a reaction in a nuclear target resulting in the ejection of a hadron in the energy range (0.2-2.0 GeV) which is observed in the second spectrometer. Nuclear physics topics addressed in these experiments include color transparency, nucleon propagation, pion electroproduction, and hyperon physics. All of these programs require an acceptance in the hadron spectrometer as large as possible in solid angle and momentum to maximize operational efficiency. In addition, relatively short spectrometer drift lengths are required in experiments involving detection of pions or kaons in order to minimize decay losses. Because the requirements for energy resolution in this class of experiments is moderate, typically {approximately} 10{sup -3}, an optimized design with a short optical length less than 10 m will provide a well-matched spectrometer capability. Excellent particle discrimination will be essential for detection of pions and kaons in the presence of high backgrounds. Operation at luminosities as high as 10{sup 38}/cm{sup 2} sec will be required frequently. To provide this second-arm capability, the Argonne group has built, under contract to CEBAF, a short-orbit spectrometer, the SOS, based on a QD{bar D} design. The QD{bar D} configuration provides a large momentum acceptance, with good energy resolution and solid-angle acceptance in a very compact geometry which can meet the needs of a broad spectrum of studies appropriate for Hall C at CEBAF.

  19. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    SciTech Connect

    Lamm, Michael; Zlobin, Alexander; /Fermilab

    2010-01-01

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory [1]-[2]. In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  20. Be aware of neutrons outside short mazes from 10-MV linear accelerators X-rays in radiotherapy facilities.

    PubMed

    Brockstedt, S; Holstein, H; Jakobsson, L; Tomaszewicz, A; Knöös, T

    2015-07-01

    During the radiation survey of a reinstalled 10-MV linear accelerator in an old radiation treatment facility, high dose rates of neutrons were observed. The area outside the maze entrance is used as a waiting room where patients, their relatives and staff other than those involved in the actual treatment can freely pass. High fluence rates of neutrons would cause an unnecessary high effective dose to the staff working in the vicinity of such a system, and it can be several orders higher than the doses received due to X-rays at the same location. However, the common knowledge appears to have been that the effect of neutrons at 10-MV X-ray linear accelerator facilities is negligible and shielding calculations models seldom mention neutrons for this operating energy level. Although data are scarce, reports regarding this phenomenon are now emerging. For the future, it is advocated that contributions from neutrons are considered already during the planning stage of new or modified facilities aimed for 10 MV and that estimated dose levels are verified.

  1. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  2. Nonperturbative QCD and elastic processes at CEBAF energies

    SciTech Connect

    Radyushkin, A.V. |

    1994-04-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.

  3. A Thermal/Hydraulic Safety Assessment of the Blanket Conceptual Design for the Accelerator Production of Tritium Facility

    SciTech Connect

    Hamm, L.L.; Lee, S.Y.; Shadday, M.A.; Smith, F.G. III

    1998-09-01

    In support of the Accelerator Production of Tritium (APT) project, safety analyses for the blanket system have been performed based on the conceptual design for the Target/Blanket (T/B) Facility. During mitigated event sequences safety engineered features, such as the residual heat removal (RHR) and cavity flood systems, provide sufficient protection for maintaining the structural integrity of the blanket system and its components. During unmitigated (with beam shutdown only) event sequences, passive features such as natural circulation, thermal inertia, and boil-off provide significant time for corrective measures to be taken.

  4. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  5. 10-GW CO{sub 2} laser system at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.; Fischer, J.; Fisher, A.S.

    1993-12-31

    Design and performance of a high peak-power CO{sub 2} laser system to produce subnanosecond IR pulses for electron acceleration experiment are presented. We discuss theoretical aspects of the picosecond laser pulse propagation in a molecular amplifier and a design approach towards compact Terawatt CO{sub 2} laser systems.

  6. CEBAF 200 kV Inverted Electron Gun

    SciTech Connect

    Grames, J M; Clark, J; Hansknecht, J; Poelker, M; Stutzman, M L; Suleiman, R; Surles-Law, K.E.L.; BastaniNejad, M; McCarter, J J

    2011-03-01

    Two DC high volt­age GaAs pho­to­guns have been built at Jef­fer­son Lab based on a com­pact in­vert­ed in­su­la­tor de­sign. One pho­to­gun pro­vides the po­lar­ized elec­tron beam at CEBAF and op­er­ates at 130 kV bias volt­age. The other gun is used for high av­er­age cur­rent life­time stud­ies at a ded­i­cat­ed test fa­cil­i­ty and has been op­er­at­ed at bias volt­age up to 225 kV. The ad­van­tages of high­er DC volt­age for CEBAF in­clude re­duced space-charge emit­tance growth and the po­ten­tial for pro­longed pho­to­cath­ode life­time. How­ev­er, a con­se­quence of op­er­at­ing at high­er volt­ages is the in­creased like­li­hood of field emis­sion or break­down, both of which are un­ac­cept­able. High­lights of the R&D stud­ies lead­ing to­ward a pro­duc­tion 200keV GaAs pho­to­gun for CEBAF will be pre­sent­ed.

  7. Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989

    SciTech Connect

    Thiessen, H.A.

    1990-04-01

    The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (second of two) included papers on computer controls, polarized beam, rf, magnet and power supplies, experimental areas, and instabilities. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended.

  8. Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio

    SciTech Connect

    Lehew, J.G.; Bradford, J.D.; Cabbil, C.C.

    2006-07-01

    CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the

  9. LLNL/UC (Lawrence Livermore National Laboratory)/(University of California) AMS (accelerator mass spectrometry) facility and research program

    SciTech Connect

    Davis, J.C.; Proctor, I.D.; Southon, J.R.; Caffee, M.W.; Heikkinen, D.W.; Roberts, M.L.; Moore, T.L.; Turteltaub, K.W.; Nelson, D.E.; Loyd, D.H.; Vogel, J.S.

    1990-04-18

    The Lawrence Livermore National Laboratory (LLNL) and the University of California (UC) now have in operation a large AMS spectrometer built as part of a new multiuser laboratory centered on an FN tandem. AMS measurements are expected to use half of the beam time of the accelerator. LLNL use of AMS is in research on consequences of energy usage. Examples include global warming, geophysical site characterization, radiation biology and dosimetry, and study of mutagenic and carcinogenic processes. UC research activities are in clinical applications, archaeology and anthropology, oceanography, and geophysical and geochemical research. Access is also possible for researchers outside the UC system. The technological focus of the laboratory is on achieving high rates of sample through-put, unattended operation, and advances in sample preparation methods. Because of the expected growth in the research programs and the other obligations of the present accelerator, we are designing a follow-on dedicated facility for only AMS and microprobe analysis that will contain at least two accelerators with multiple spectrometers. 10 refs., 1 fig.

  10. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    SciTech Connect

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  11. Status report on the development of a high-power UV/IR FEL at CEBAF

    SciTech Connect

    Benson, S.; Bohn, C.; Dylla, H.F.

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  12. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    SciTech Connect

    J. Denard; A. Saha; G. Lavessiere

    2001-07-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 {micro}A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 {micro}A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 {micro}A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described.

  13. {sup 3}He target for Hall C at CEBAF

    SciTech Connect

    Zeidman, B.; Zeuli, A.

    1995-08-01

    A major fraction of the physics program for Hall C involves scattering from cryogenic targets of the lightest nuclei, i.e. H, D, and {sup 3,4}He. Argonne is constructing the He target that will consist of a 4cm cylinder, operating at a pressure of 10 atmospheres and a temperature of {approximately}5.2 degrees Kelvin. CEBAF is currently constructing a cryo-target system for liquid H and D cells and the cooled, pressurized helium targets. The He target system includes cell loop, the He supply systems, and the additional equipment needed to ensure minimum loss of {sup 3}He in the event of target rupture. Some of the major components have been completed, while the balance of the system will be ready for installation this fiscal year.

  14. Feasibility and conceptual design of a C.W. positron source at CEBAF

    NASA Astrophysics Data System (ADS)

    Golge, Serkan

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm·mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as delta = 3 x 10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV⊗10 mA e- beam impinging on a 2 mm W target with a 100 mum spot size, we can get up to 3 muA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings. 1,2 1S. Golge et al., in Proceedings of PAC07, Albuquerque, New Mexico, June 2007 2S. Golge et al., AIP Conf. Proc., 1160, 109 (2009)

  15. Feasibility and conceptual design of a C.W. positron source at CEBAF

    SciTech Connect

    Golge, Serkan

    2010-08-01

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm∙mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as δ = 3×10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV Ⓧ10 mA e- beam impinging on a 2 mm W target with a 100 μm spot size, we can get up to 3 μA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings.

  16. Upgrade to Cryomodule Test Facility at Jefferson Lab

    SciTech Connect

    Thomas Powers; Trent Allison; G. Davis; Michael Drury; Christiana Grenoble; Lawrence King; Tomasz Plawski; Joseph Preble

    2003-09-01

    The cryomodule test facility (CMTF) was originally implemented in the late eighties for testing of a small fraction of the cryomodules during the production run for the Continuous Electron Beam Accelerator Facility [1]. The original system was built using a dedicated wiring scheme and a pair of 2 kW, 1497 MHz RF sources. This dedicated system made it difficult to test cryomodules and other RF structures of non-standard configuration. Additionally, due to a previously installed cyclotron, there were static magnetic fields in excess of 6 Gauss within the test cave, which limited the capability of the facility when measuring the quality factor of superconducting cavities. Testing of the Spallation Neutron Source cryomodules as well as future upgrades to the CEBAF accelerator necessitated that the facility be reconfigured to be flexible both with respect to RF source power and cryomodule wiring configuration. This paper will describe the implementation of a generalized wiring scheme t hat is easily adapted to different cryomodule configurations. It will also describe the capabilities of the LabView based low level RF controls and the related data acquisition systems currently being used to test cryomodules and related hardware. The high power RF source capabilities will be described. The magnetic shielding put in place in order to reduce the ambient magnetic file to levels below 50 mGauss will also be described.

  17. Development of an Electromagnetic Acceleration Facility for Impact and Fracture Studies at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Pahari, S.; Suryaprasad, I. V. V.; Shiv, N.; Madhavan, S.; Sijoy, C. D.; Chaturvedi, S.

    2011-07-01

    Experimental studies of strain time history and fracture & penetration resulting from the high velocity impact of solid projectiles on solid targets have been initiated. Design, fabrication, testing and commissioning of an electromagnetic impact facility driven by a capacitor bank have been carried out in this regard. The facility presently has an induction coil gun driving a cylindrical hollow/solid projectile on to a target. 3-7 kJ capacitor banks have been used to drive the launchers. The parameters of the coil gun are in consonance with a computer code developed in-house for the validation and optimization of the coil dimension and bank parameters. Systematic studies have been carried out for validation of code and understanding and benchmarking coil performance. Reproducible velocities of the order of 100 m/s have been successfully achieved with projectiles of masses 20 gm. Preliminary impact studies carried out on Alumnium target plates have given the strain time history.

  18. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    SciTech Connect

    Adonin, A. A. Hollinger, R.

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  19. Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility

    SciTech Connect

    Parsa, Z.; Ko, S.K.

    1995-10-01

    We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given.

  20. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  1. Test simulation of neutron damage to electronic components using accelerator facilities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.

    2015-12-01

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  2. Improved Prototype Cryomodule for the CEBAF 12 GeV Upgrade

    SciTech Connect

    Charles Reece; Danny Machie; Edward Daly; Isidoro Campisi; Jacek Sekutowicz; John Hogan; Karl Smith; Katherine Wilson; Mark Wiseman; Peter Kneisel; Timothy Whitlatch; William Hicks; Timothy Rothgeb

    2003-05-12

    In order to provide a higher performance building block cryomodule for the CEBAF 12 GeV upgrade, modifications have been made to the design of the Upgrade Cryomodule. The prototype cryomodule will be completed in 2004 and be installed for operation in CEBAF. Design changes enable the use of higher gradient cavities to achieve greater than 100 MV per cryomodule while not exceeding the budgeted cryogenic load of 300 W during steady-state operation.

  3. Calibration of a new experimental chamber for PIXE analysis at the Accelerator Facilities Division of Atomic Energy Centre Dhaka (AECD)

    NASA Astrophysics Data System (ADS)

    Hassan, Md. Taufique; Shariff, Md. Asad; Hossein, Amzad; Abedin, Md. Joynal; Fazlul Hoque, A. K. M.; Chowdhuri, M. S.

    2015-05-01

    A new experimental chamber has been installed at the 3 MV Van de Graaff Accelerator Facilities Division in the Atomic Energy Centre, Dhaka, to perform different Ion Beam Analysis (IBA) techniques. The calibration of this new setup for Particle Induced X-ray Emission (PIXE) technique has been done using a set of thin MicroMatter standards and GUPIX (PIXE spectrum analysis software), which is explicated in this paper. The effective thicknesses of the beryllium window of the X-ray detector and of the different absorbers used were determined. For standardization, the so called instrumental constant H (product of detector solid angle and the correction factor for the setup) as function of X-ray energy were determined and stored inside the GUPIX library for further PIXE analysis.

  4. The JLab 12 GeV Energy Upgrade of CEBAF for QCD and Hadronic Physics

    SciTech Connect

    Cardman, Lawrence; Harwood, Leigh

    2007-06-25

    CEBAF at Jefferson Lab is a 5-pass, recirculating cw electron linac operating at ~6 GeV and devoted to basic research in nuclear physics. The 12 GeV Upgrade is a major project, sponsored by the DOE Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. We anticipate that the project will receive Critical Decision 2 approval this year and begin construction in 2008. The research program motivating the Upgrade includes: the study of hybrid mesons, which involve excited states of the glue, to explore the nature of quark confinement; dramatic improvements in our understanding of the QCD structure of the hadrons through the extension of our knowledge of their parton distribution functions to high xBjorken, where they are dominated by underlying valence quark structure, and a program of nucleon “tomography” via measurements of the Generalized Parton Distributions (GPDs), a broad program of experiments in the physics of nuclei that aims to understand the QCD basis for the nucleon-nucleon force and how nucleons and mesons arise as an approximation to the underlying quark-gluon structure; and precision tests of the Standard Model through parity violating deep inelastic and Møller scattering. The Upgrade includes: doubling the accelerating voltages of the linacs by adding 10 new high-performance cryomodules; the requisite expansion of the 2K cryogenics plant and rf power systems to support these cryomodules; upgrading the beam transport system from 6 to 12 GeV through extensive re-use and/or modification of existing hardware; and the addition of one recirculation arc, a new experimental area, and the beamline to it; and the construction of major new experimental equipment for the GPD, high-xBjorken, and hybrid meson programs. The presentation will describe the science briefly and provide some details about the accelerator plans.

  5. Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics

    SciTech Connect

    Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.

  6. Real time and accelerated stability studies of Tetanus toxoid manufactured in public sector facilities of Pakistan.

    PubMed

    Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem

    2013-11-01

    Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate long﷓term thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.

  7. The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: Overview and examples of applications

    NASA Astrophysics Data System (ADS)

    Taccetti, N.; Giuntini, L.; Casini, G.; Stefanini, A. A.; Chiari, M.; Fedi, M. E.; Mandò, P. A.

    2002-04-01

    An electrostatic chopper has been installed at the KN 3000 accelerator in Florence to obtain short beam pulses with a number of particles per pulse whose average value can be chosen by varying the current intensity at the deflector plates input. Beam pulses can be obtained containing an average number of particles per pulse from less than one to thousands. The transmitted beam pulses can be as short as 200 ps FWHM, at a repetition rate up to about 100 kHz. Among the many applications of the facility, the direct measurement of energy loss and straggling of protons in Kapton and aluminium is reported. In this measurement, the facility has been tuned for transmission of mainly single-proton pulses; the beam energy is directly measured downstream with a good energy-resolution detector, without and with absorbers in front. In general, measurements of this kind can be directed both to study the basic processes of charged particles interactions in materials, or more practically to obtain the effective values of energy parameters useful in many IBA applications, avoiding the need to rely on simulations or theoretical estimates. Also briefly described is an application to Si-detector testing. In this case, the facility has been tuned for transmission of pulses containing many hundreds of protons of energy Ep=2.5 MeV and the detector is directly exposed to the pulses. Spectra containing equally spaced peaks at energies multiple of Ep are obtained and the response linearity of the detector plus electronics system can thus be checked.

  8. The Development of Biomedical Applications of Nuclear Physics Detector Technology at the Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew

    2003-10-01

    The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for the United States Department of Energy. As a user facility for physicists worldwide, its primary mission is to conduct basic nuclear physics research of the atom's nucleus at the quark level. Within the Jefferson Lab Physics Division is the Jefferson Lab Detector Group which was formed to support the design and construction of new detector systems during the construction phase of the major detector systems at Jefferson Lab and to act as technical consultants for the lab scientists and users. The Jefferson Lab Detector Group, headed by Dr. Stan Majewski, has technical capabilities in the development and use of radiation detection systems. These capabilities include expertise in nuclear particle detection through the use of gas detectors, scintillation and light guide techniques, standard and position-sensitive photomultiplier tubes (PSPMTs), fast analog readout electronics and data acquisition, and on-line image formation and analysis. In addition to providing nuclear particle detector support to the lab, the group has for several years (starting in 1996) applied these technologies to the development of novel high resolution gamma-ray imaging systems for biomedical applications and x-ray imaging techniques. The Detector Group has developed detector systems for breast cancer detection, brain cancer therapy and small animal imaging to support biomedical research. An overview will be presented of how this small nuclear physics detector research group by teaming with universities, medical facilities, industry and other national laboratories applies technology originating from basic nuclear physics research to biomedical applications.

  9. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    SciTech Connect

    Mueth, Joachim

    2013-07-01

    The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials, and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited

  10. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.

    SciTech Connect

    Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

    2009-06-09

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the

  11. Using Polarimetry to Determine the CEBAF Beam Energy

    SciTech Connect

    Higinbotham, Douglas W.

    2014-06-01

    As Jefferson Lab begins operations with its upgraded CEBAF a ccelerator, the lab once again needs to experimentally determine the absolute beam energy of the machine. Previously, the CE- BAF beam energy was determined using precision measurement s of the bending magnet integral fields along with beam position information. The result obta ined from this technique was cross- checked with elastic scattering from hydrogen where knowle dge of the scattering angles of the electron and proton allow the beam energy to be determined. Wh ile the field integral method will still work with the upgraded machine, the elastic cross sect ion becomes too small to make preci- sion measurements at angles that are large enough to be easil y accessible; thus a new technique for energy determination has been sought. It will be shown th at by making use of polarimetry, one can use CEBAF’s polarized electrons’ g-2 spin precessio n to determine the absolute beam energy. This can be done in a single hall if the parameters of t he machine, such as the injector energy and linac imbalance, are known or with two halls witho ut any knowledge of the machine parameters

  12. Low mass large aperture vacuum window development at CEBAF

    SciTech Connect

    Keppel, C.

    1995-04-01

    Large aperture low mass vacuum windows are being developed for the HMS (High Momentum Spectrometer) and SOS (Short Orbit Spectrometer) spectrometers in Hall C at CEBAF. Because multiple scattering degrades the performance of a spectrometer it is important that the volume be evacuated and that the entrance and exit windows be as low mass as possible. The material used for such windows must be thin and light enough so as to have minimum effect of the beam, and at the same time, be thick and strong enough to operate reliably and safely. To achieve these goals, composite vacuum windows have been constructed of a thin sheet of Mylar with a reinforcing fabric. Reinforcing fabrics such as Kevlar and Spectra are available with tensile strengths significantly greater than that of Mylar. A thin layer of Myler remains necessary since the fabrics cannot achieve any sort of vacuum seal. The design, fabrication, testing, and operating experience with such composite windows for the Hall C spectrometers will be discussed.

  13. RF System Modeling for the CEBAF Energy Upgrade

    SciTech Connect

    Tomasz Plawski, J. Hovater

    2009-05-01

    An RF system model, based on MATLAB/SIMULINK, has been developed for analyzing the basic characteristics of the low level RF (LLRF) control system being designed for the CEBAF 12 GeV Energy Upgrade. In our model, a typical passband cavity representation is simplified to in-phase and quadrature (I&Q) components. Lorentz Force and microphonic detuning are incorporated as a new quadrature carrier frequency (frequency modulation). Beam is also represented as in-phase and quadrature components and superpositioned with the cavity field vector. Signals pass through two low pass filters, where the cutoff frequency is equal to half of the cavity bandwidth, then they are demodulated using the same detuning frequency. Because only baseband I&Q signals are calculated, the simulation process is very fast when compared to other controller-cavity models. During the design process we successfully analyzed gain requirements vs. field stability for different superconducting cavity microphonic backgrounds and Lorentz Force coefficients. Moreover, we were able to evaluate different types of a LLRF system’s control algorithm: GDR (Generator Driven Resonator) and SEL (Self Excited Loop) [1] as well as klystron power requirements for different cavities and beam loads.

  14. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  15. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  16. Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa

    SciTech Connect

    Not Available

    1990-05-01

    The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

  17. Conceptual MEIC electron ring injection scheme using CEBAF as a full energy injector

    SciTech Connect

    Guo, Jiquan; Lin, Fanglei; Rimmer, Robert A.; Wang, Haipeng; Wang, Shaoheng; Zhang, Yuhong

    2015-09-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is planning to use the newly upgraded 12 GeV CEBAF 1497 MHz SRF CW recirculating linac as a full-energy injector for the electron collider ring. The electron collider ring is proposed to reuse the 476 MHz PEP-II RF system to achieve high installed voltage and high beam power. The MEIC electron injection requires 3-10 (or 12) GeV beam in 3-4µs long bunch trains with low duty factor and high peak current, resulting in strong transient beam loading for the CEBAF. In this paper, we propose an injection scheme that can match the two systems' frequencies with acceptable injection time, and also address the transient beam loading issue in CEBAF. The scheme is compatible with future upgrade to 952.6 MHz SRF system in the electron ring.

  18. Design of High Luminosity Ring-Ring Electron- Light Ion Collider at CEBAF

    SciTech Connect

    Slawomir Bogacz; Antje Bruell; Jean Delayen; Yaroslav Derbenev; Rolf Ent; Joseph Grames; Andrew Hutton; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Bogdan Wojtsekhowski; Byung Yunn; Yuhong Zhang; C Montag

    2007-06-25

    Experimental studies of fundamental structure of nucleons require an electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams polarized. A CEBAF-based collider of 9 GeV electrons/positrons and 225 GeV ions is envisioned to meet this science need and as a next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. A ring-ring scheme of this collider developed recently takes advantage of the existing polarized electron CW beam from the CEBAF and a green-field design of an ion complex with electron cooling. We present a conceptual design and report design studies of this high-luminosity collider.

  19. Exclusive processes: Tests of coherent QCD phenomena and nucleon substructure at CEBAF

    SciTech Connect

    Brodsky, S.J.

    1994-07-01

    Measurements of exclusive processes such as electroproduction, photoproduction, and Compton scattering are among the most sensitive probes of proton structure and coherent phenomena in quantum chromodynamics. The continuous electron beam at CEBAF, upgraded in laboratory energy to 10--12 GeV, will allow a systematic study of exclusive, semi-inclusive, and inclusive reactions in a kinematic range well-tuned to the study of fundamental nucleon and nuclear substructure. I also discuss the potential at CEBAF for studying novel QCD phenomena at the charm production threshold, including the possible production of nuclear-bound quarkonium.

  20. The Workshop on Microwave-Absorbing Materials for Accelerators

    SciTech Connect

    Isidoro Campisi

    1993-05-01

    A workshop on the physics and applications of microwave-absorbing materials in accelerators and related systems was held at CEBAF February 22-24, 1993. The gathering brought together about 150 scientists and representatives of industries from all over the world. The main topics of discussion were the properties of ''absorbing'' materials and how the stringent conditions in an accelerator environment restrict the choice of usable material.

  1. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  2. Results of the Workshop on Microwave-Absorbing Materials for Accelerators (MAMA): A Personal View

    SciTech Connect

    Campisi, I E

    1993-04-01

    The first workshop on the properties and uses of special materials for absorption of microwaves in particle accelerators was held at the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, February 22-24, 1993. The meeting's purpose was to review the advances of ceramic and materials science and to describe the accelerator projects the success of which strongly depends on the existence and availability of microwave-absorbing materials with special characteristics. Scientists from various branches of physics, materials science, microwave engineering, accelerator physics and from national and international laboratories, from universities and industries participated in this gathering. This interdisciplinary meeting brought new people and new ideas together which in the future will bloom into better understanding of general materials and of physical processes and eventually to collaborative efforts to design and produce custom made materials. This paper describes the major topics covered in the workshop and is a personal elaboration of the author on the future possibilities opened by this interaction.

  3. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  4. W.K.H. Panofsky Prize in Experimental Particle Physics: The design, construction and performance of the B Factory accelerator facilities, PEP-II and KEKB

    NASA Astrophysics Data System (ADS)

    Dorfan, Jonathan

    2016-03-01

    The discovery and elucidation of CP violation in the B-meson system presented daunting challenges for the accelerator and detector facilities. This talk discusses how these challenges were met and overcome in the electron-positron colliding-beam accelerator facilities PEP-II (at SLAC) and KEKB (at KEK). The key challenge was to produce unprecedentedly large numbers of B-mesons in a geometry that provided high-statistics, low-background samples of decays to CP eigenstates. This was realized with asymmetric collisions at the Γ(4S) at peak luminosities in excess of 3 ×1033 /sq. cm/sec. Specialized optics were developed to generate efficient, low background, multi-bunch collisions in an energy-asymmetric collision geometry. Novel technologies for the RF, vacuum and feedback systems permitted the storage of multi-amp, multi-bunch beams of electrons and positrons, thereby generating high peak luminosities. Accelerator uptimes greater than 95 percent, combined with high-intensity injection systems, ensured large integrated luminosity. Both facilities rapidly attained their design specifications and ultimately far exceeded the projected performance expectations for both peak and integrated luminosity.

  5. The French accelerator mass spectrometry facility ASTER after 4 years: Status and recent developments on 36Cl and 129I

    NASA Astrophysics Data System (ADS)

    Arnold, Maurice; Aumaître, Georges; Bourlès, Didier L.; Keddadouche, Karim; Braucher, Régis; Finkel, Robert C.; Nottoli, Emmanuelle; Benedetti, Lucilla; Merchel, Silke

    2013-01-01

    Since the acceptance tests of the French 5 MV accelerator mass spectrometry facility ASTER in 2007, routine measurement conditions for the long-lived radionuclides 10Be and 26Al have been established. Yearly sample throughput as high as over 3300 unknowns has been reached for 10Be in 2010. Cross-contamination for volatile elements has been largely solved by an ion source upgrade allowing 36Cl measurements at ASTER. However, recent long-term tests using 35Cl/37Cl samples with strongly varying ratios have shown that identical targets lead to different 35Cl/37Cl results at the 2-4% level when being measured after a time gap of 24 h while the source is running other samples. Besides time dependent mass fractionation, another likely reason for this effect might be source memory, thus, asking for sophisticated measurement strategies and improved data evaluation and eventually further ion source improvement. Finally, after establishing quality assurance by cross-calibration of secondary in-house 26Al and 41Ca standards and taking part in round-robin exercises of 10Be and 36Cl, a two-step cross-calibration of secondary in-house 129I standards has been performed. The NIST 3231 standard containing 129I/127I at (0.981 ± 0.012) × 10-6 has been used for step-wise dilution with NaI to produce gram-quantities of lower-level standards for every-day use. The resulting material SM-I-9 (129I/127I: ∼1 × 10-9) has been measured vs. AgI produced using minimum chemistry from the two NIST ampoules containing a solution with a nominal ratio 129I/127I of (0.982 ± 0.012) × 10-8. In a second stage, SM-I-10 and SM-I-11 with ratios of ∼1 × 10-10 and ∼1 × 10-11, respectively, have been cross-calibrated against SM-I-9. Individual uncertainties of the traceable secondary standards are 1.3-1.4% (2σ), mainly originating from the given uncertainty of the primary NIST 3231 at the 10-8 level. The cross-contamination for iodine is in the range of 0.4-0.6% within the first 20 h of running

  6. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.

  7. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  8. First attempt of at-cavity cryogenic X-ray detection in a CEBAF cryomodule for field emission monitoring

    SciTech Connect

    Geng, Rongli; Daly, Edward; Drury, Michael; Palczewski, Ari

    2015-09-01

    We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carried out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.

  9. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Lizee, Arnaud

    1996-01-01

    The object of this work, started in March of 1995, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involves using a combination of 2- and 3-D numerical models, scaling analyses, 1-D models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USMP-3 spaceflight which took place earlier this year (22 Feb. - 6 Mar. 1996). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification system

  10. Optimizing the CEBAF Injector for Beam Operation with a Higher Voltage Electron Gun

    SciTech Connect

    F.E. Hannon, A.S. Hofler, R. Kazimi

    2011-03-01

    Recent developments in the DC gun technology used at CEBAF have allowed an increase in operational voltage from 100kV to 130kV. In the near future this will be extended further to 200kV with the purchase of a new power supply. The injector components and layout at this time have been designed specifically for 100kV operation. It is anticipated that with an increase in gun voltage and optimization of the layout and components for 200kV operation, that the electron bunch length and beam brightness can be improved upon. This paper explores some upgrade possibilities for a 200kV gun CEBAF injector through beam dynamic simulations.

  11. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    SciTech Connect

    Sairam, T. Bhatt, Pragya; Safvan, C. P.; Kumar, Ajit; Kumar, Herendra

    2015-11-15

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  12. The problems associated with the monitoring of complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities.

    PubMed

    Bilski, P; Blomgren, J; d'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2007-01-01

    The European Commission is funding within its Sixth Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organisational framework for this project is provided by the European Radiation Dosimetry Group EURADOS. One task within the CONRAD project, Work Package 6 (WP6), was to provide a report outlining research needs and research activities within Europe to develop new and improved methods and techniques for the characterisation of complex radiation fields at workplaces around high-energy accelerators, but also at the next generation of thermonuclear fusion facilities. The paper provides an overview of the report, which will be available as CERN Yellow Report.

  13. Design of a hard X-ray beamline and end-station for pump and probe experiments at Pohang Accelerator Laboratory X-ray Free Electron Laser facility

    NASA Astrophysics Data System (ADS)

    Park, Jaeku; Eom, Intae; Kang, Tai-Hee; Rah, Seungyu; Nam, Ki Hyun; Park, Jaehyun; Kim, Sangsoo; Kwon, Soonam; Park, Sang Han; Kim, Kyung Sook; Hyun, Hyojung; Kim, Seung Nam; Lee, Eun Hee; Shin, Hocheol; Kim, Seonghan; Kim, Myong-jin; Shin, Hyun-Joon; Ahn, Docheon; Lim, Jun; Yu, Chung-Jong; Song, Changyong; Kim, Hyunjung; Noh, Do Young; Kang, Heung Sik; Kim, Bongsoo; Kim, Kwang-Woo; Ko, In Soo; Cho, Moo-Hyun; Kim, Sunam

    2016-02-01

    The Pohang Accelerator Laboratory X-ray Free Electron Laser project, a new worldwide-user facility to deliver ultrashort, laser-like x-ray photon pulses, will begin user operation in 2017 after one year of commissioning. Initially, it will provide two beamlines for hard and soft x-rays, respectively, and two experimental end-stations for the hard x-ray beamline will be constructed by the end of 2015. This article introduces one of the two hard x-ray end-stations, which is for hard x-ray pump-probe experiments, and primarily outlines the overall design of this end-station and its critical components. The content of this article will provide useful guidelines for the planning of experiments conducted at the new facility.

  14. Recent US target-physics-related research in heavy-ion inertial fusion: simulations for tamped targets and for disk experiments in accelerator test facilities

    SciTech Connect

    Mark, J.W.K.

    1982-03-22

    Calculations suggest that experiments relating to disk heating, as well as beam deposition, focusing and transport can be performed within the context of current design proposals for accelerator test-facilities. Since the test-facilities have lower ion kinetic energy and beam pulse power as compared to reactor drivers, we achieve high-beam intensities at the focal spot by using short focal distance and properly designed beam optics. In this regard, the low beam emittance of suggested multi-beam designs are very useful. Possibly even higher focal spot brightness could be obtained by plasma lenses which involve external fields on the beam which is stripped to a higher charge state by passing through a plasma cell. Preliminary results suggest that intensities approx. 10/sup 13/ - 10/sup 14/ W/cm/sup 2/ are achievable. Given these intensities, deposition experiments with heating of disks to greater than a million degrees Kelvin (100 eV) are expected.

  15. A photon calorimeter using lead tungstate crystals for the CEBAF HAll A Compton polarimeter

    SciTech Connect

    D. Neyret; T. Pussieux; T. Auger; M. Baylac; E. Burtin; C. Cavata; R. Chipaux; S. Escoffier; N. Falletto; J. Jardillier; S. Kerhoas; D. Lhuillier; F. Marie; C. Veyssiere; J. Ahrens; R. Beck; M. Lang

    2000-05-01

    A new Compton polarimeter is built on the CEBAF Hall A electron beam line. Performances of 10% resolution and 1% calibration are required for the photon calorimeter of this polarimeter. This calorimeter is built with lead tungstate scintillators coming from the CMS electromagnetic calorimeter R&D. Beam tests of this detector have been made using the tagged photon beam line at MAMI, Mainz, and a resolution of 1.76%+2.75%/v+0.41%/E has been measured.

  16. Evaluation and Correction of the Non-linear Distortion of CEBAF Beam Position Monitors

    SciTech Connect

    M. Spata, T.L. Allison, K.E. Cole, J. Musson, J. Yan

    2011-09-01

    The beam position monitors at CEBAF have four antenna style pickups that are used to measure the location of the beam. There is a strong nonlinear response when the beam is far from the electrical center of the device. In order to conduct beam experiments at large orbit excitation we need to correct for this nonlinearity. The correction algorithm is presented and compared to measurements from our stretched wire BPM test stand.

  17. Simultaneous cancellation of beam emittance and energy spread in the CEBAF nuclear physics injector chopping system

    SciTech Connect

    Liu, H.; Bisognano, J.

    1993-06-01

    The CEBAF nuclear physics injector will utilize a unique chopping system consisting of two identical square box RF cavities with an inverting lens and a chopper aperture in-between. This system produces three interleaved 499 MHz cw electron beams from a 100 kV input beam. In this paper, we present our theoretical and numerical studies on how both emittance and energy spread are cancelled simultaneously in the dechopping process in the second cavity.

  18. Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF

    SciTech Connect

    Doughty, D.C. Jr.; Lemon, S. ); Bonneau, P. )

    1993-08-01

    The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF has been studied. The authors find that the newest ECL flip-flops (ECLinPS) are much faster than older families (10H) at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.

  19. Evaluating the Potential of Commercial GIS for Accelerator Configuration Management

    SciTech Connect

    T.L. Larrieu; Y.R. Roblin; K. White; R. Slominski

    2005-10-10

    The Geographic Information System (GIS) is a tool used by industries needing to track information about spatially distributed assets. A water utility, for example, must know not only the precise location of each pipe and pump, but also the respective pressure rating and flow rate of each. In many ways, an accelerator such as CEBAF (Continuous Electron Beam Accelerator Facility) can be viewed as an ''electron utility''. Whereas the water utility uses pipes and pumps, the ''electron utility'' uses magnets and RF cavities. At Jefferson lab we are exploring the possibility of implementing ESRI's ArcGIS as the framework for building an all-encompassing accelerator configuration database that integrates location, configuration, maintenance, and connectivity details of all hardware and software. The possibilities of doing so are intriguing. From the GIS, software such as the model server could always extract the most-up-to-date layout information maintained by the Survey & Alignment for lattice modeling. The Mechanical Engineering department could use ArcGIS tools to generate CAD drawings of machine segments from the same database. Ultimately, the greatest benefit of the GIS implementation could be to liberate operators and engineers from the limitations of the current system-by-system view of machine configuration and allow a more integrated regional approach. The commercial GIS package provides a rich set of tools for database-connectivity, versioning, distributed editing, importing and exporting, and graphical analysis and querying, and therefore obviates the need for much custom development. However, formidable challenges to implementation exist and these challenges are not only technical and manpower issues, but also organizational ones. The GIS approach would crosscut organizational boundaries and require departments, which heretofore have had free reign to manage their own data, to cede some control and agree to a centralized framework.

  20. An intrinsically safe facility for forefront research and training on nuclear technologies — An example of accelerator: the SPES cyclotron

    NASA Astrophysics Data System (ADS)

    Maggiore, M.; Lombardi, A.; Piazza, L. A. C.; Prete, G.

    2014-04-01

    The SPES project, under construction at INFN, Laboratori Nazionali di Legnaro, is a research facility for nuclear and applied physics, based on a high-current H- cyclotron with two exits. One exit will be devoted to supply an ISOL facility for the production of radioactive beams, the second one can be used as driver for the ADS system. The main characteristics of the cyclotron are described together with the main building designed to operate high-current proton beams according to radioprotection rules.

  1. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    NASA Astrophysics Data System (ADS)

    Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.

    2005-04-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.

  2. An Infrared Laser Testing Facility for the Characterization of the CLAS12 Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Phillips, Sarah

    2011-04-01

    During the 12 GeV upgrade to the CEBAF accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The Nuclear Physics Group at the University of New Hampshire is part of the collaboration working to design and build this new detector system. Among the new detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is essential to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before their installation in the full detector system. The UNH Nuclear Physics Group is designing and building a laser testing facility at UNH to perform this task. The design for the testing facility consists of a 1064 nm infrared laser system and a precision positioning mechanism to scan the laser light on the detector by a computer controlled system designed to efficiently test the large number of detectors prior to installation. The detector signals are read out by a computer data acquisition system for analysis. The facility also includes a cleanroom area to house the test stand, and a dry storage containment system for the storage of the detectors.

  3. SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature

    SciTech Connect

    Robert Rimmer; Jay Benesch; Joseph Preble; Charles Reece

    2005-05-01

    In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maintenance shutdown. We report on the overall SRF performance of the machine after these major disturbances and on efforts to characterize and optimize the new behavior for high-energy running.

  4. Construction of. gamma pi. /sup 0/ spectrometer and photon tagging facility at Bates Linear Accelerator. Final report, July 31, 1979-July 31, 1980

    SciTech Connect

    Booth, E.C.

    1981-08-01

    The funds provided under Contract No. DE-AC02-79ER10486 were totally expended for hardware and supplies required by two related devices at the Bates Linear Accelerator. These were a photon tagging facility and a ..gamma pi../sup 0/ spectrometer in Beam Line C of the new South Experimental Hall. Construction was begun in November of 1979 and both systems became fully operational in the summer of 1981. Preliminary data was taken in 1980 with a prototype ..gamma pi../sup 0/ spectrometer will be carried out in the fall of 1981 and spring of 1982. The photon tagging system has been used successfully to calibrate the ..gamma pi../sup 0/ spectrometer for the BU - MIT collaboration and to test a lead glass detector system for Brandeis University.

  5. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    NASA Astrophysics Data System (ADS)

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Müller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-01

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  6. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    SciTech Connect

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Mueller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-10

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  7. Quasi-free ({ital e,e`p}) reactions: the first look from CEBAF

    SciTech Connect

    Abbott, D.; Amatuoni, T.; Armstrong, C.

    1996-11-01

    Coincidence cross sections for ({ital e,e{sup `}p}) quasi-elastic scattering were measured at CEBAF with high statistical precision for C, Fe, and Au targets for 0.6 {lt} Q{sup 2} {lt} 3.3 GeV{sup 2}. {ital E{sub m}} and {ital P{sub m}} distributions obtained from a preliminary analysis are in reasonable agreement with prior data from SLAC, The preliminary results are compared with a PWIA calculation to determine the nuclear transparency as a function of Q{sup 2} and A. A. Rosenbluth analysis to extract the longitudinal and transverse cross sections from these data is anticipated.

  8. Diffractive electroproduction of s{bar s} mesons off nuclei at CEBAF energies

    SciTech Connect

    Benhar, O.; Nikolaev, N.N.; Zakharov, B.G.

    1994-04-01

    The authors discuss diffractive incoherent electroproduction of s{bar s} mesons off nuclear targets at beam energies that are expected to be available at CEBAF (5-8 GeV). The Q{sup 2} and target mass dependence of the {phi} and {phi}{prime} transparency ratios has been studied within a theoretical approach in which the propagation of the s{bar s} pair through the nuclear medium is described in terms of the quantum mechanical evolution operator. The authors predict a complex pattern of nuclear effects, whose experimental study may provide information on several issues relevant to the understanding of QCD, both in the perturbative and nonperturbative regimes.

  9. Vibration Response Testing of the CEBAF 12GeV Upgrade Cryomodules

    SciTech Connect

    Davis, G. Kirk; Matalevich, Joseph R.; Wiseman, Mark A.; Powers, Thomas J.

    2012-09-01

    The CEBAF 12 GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. These cryomodules were tested during production to characterize their microphonic response in situ. For several early cryomodules, detailed (vibration) modal studies of the cryomodule string were performed during the assembly process to identify the structural contributors to the measured cryomodule microphonic response. Structural modifications were then modelled, implemented, and verified by subsequent modal testing and in-situ microphonic response testing. Interim and latest results from this multi-stage process will be reviewed.

  10. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1998-01-01

    The research accomplishments summarized in this Final Report during the period from 3/95 to 3/98, which included a 12 months no-cost extension granted at the end of the nominal 2 year period of performance. The report has 5 sections, in section 1 the objectives are presented, a task description is given and the background and significance of the work is outlined. In section 2 the research accomplishments are summarized. In section 3 publications and presentations are listed. Student participation is listed in 4. The work is summarized in section 5. and references for sections 1 and 2 are supplied in section 6. The object of this work, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involved using a combination of 2- and 3-D numerical models, scaling analyses, ID models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USW-3 space flight which took place between February 22 through March 6, 199). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification

  11. FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale

    SciTech Connect

    Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

    1989-04-01

    This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H/sub 2/), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H/sub 2/ with obstacles and no transverse venting. 67 refs., 62 figs.

  12. Development of high current Bi and Au beams for the synchrotron operation at the GSI accelerator facility

    SciTech Connect

    Adonin, A.; Hollinger, R.

    2012-02-15

    In this work, the latest results of developing high current ion beams of Au and Bi at GSI facility are described. The difficulties in the production of required charge state in vacuum arc discharge ion sources using the pure materials in the cathodes are discussed. As a possible solution, admix of a small amount of more refractory metal to the cathode material is considered. As a significant result, a dramatic improvement in the production of high charge state Bi ions using the mixed Bi-Cu cathodes (with 8%-15% of Cu admixed) compared to pure Bi cathodes is presented. The preliminary results of investigation of the material structure of Bi-Cu cathodes are discussed. As a next step, it is planned to test the composition of Au with Pd, Zr, and Fe as cathode materials.

  13. Numerical simulations and theoretical analysis of proposed heavy-ion-matter experiments at the GSI Darmstadt accelerator facility

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Hoffmann, D. H. H.; Maruhn, J. A.; Lutz, K.-J.; Bock, R.

    1998-12-01

    This paper presents one- and two-dimensional computer simulations of the hydrodynamic response of solid cylindrical targets made of different materials that are irradiated by intense beams of energetic ions. The beam parameters considered in this study correspond to the design parameters of the heavy ion beam that will be produced at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt heavy ion synchrotron facility (SIS) in 1999. A few calculations, however, were also done using the beam parameters that are currently available at the SIS. Different values for specific energy deposition including 1, 10, 50, and 100 kJ/g, respectively, have been considered, whereas a number of different pulse lengths, namely, 10, 50, 100, and 200 ns, have been assumed. Various target materials, for example, solid lead, solid neon, and solid hydrogen, have been used. It is expected that this simulation study will be very helpful in the design of efficient targets for the future experiments at the GSI. These experiments will hopefully provide very useful information about many important basic physics phenomena, such as enhanced energy loss of heavy ions in hot dense plasmas, equation-of state (EOS) of matter under extreme conditions, material opacity and shock wave propagation. Another very interesting experiment with important practical implications that could be done at this facility may be the creation of metallic hydrogen by imploding appropriately designed multilayered targets containing a layer of frozen hydrogen. This paper presents the design of such a target, together with implosion simulations of this target using a hydrodynamic simulation model. These simulations show that it may be possible to compress the frozen hydrogen to achieve the theoretically predicted physical conditions necessary for hydrogen metallization (a density of the order of 1 to 2 g/cm3, a temperature of a few 0.1 eV and a pressure of about 2-5 megabar). In some cases, compression of frozen

  14. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zou, Yubin; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator-based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8-2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8-2.0 ms, especially for materials with strong moderating capability.

  15. The André E. Lalonde AMS Laboratory - The new accelerator mass spectrometry facility at the University of Ottawa

    NASA Astrophysics Data System (ADS)

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.; Cornett, R. J.; Litherland, A. E.; Klein, M.; Mous, D. J. W.; Alary, J.-F.

    2015-10-01

    The University of Ottawa, Canada, has installed a multi-element, 3 MV tandem AMS system as the cornerstone of their new Advanced Research Complex and the principal analytical instrument of the André E. Lalonde Accelerator Mass Spectrometry Laboratory. Manufactured by High Voltage Engineering Europa B.V., the Netherlands, it is equipped with a 200 sample ion source, a high resolution, 120° injection magnet, a 90° high energy analysis magnet (mass-energy product 350 MeV-AMU), a 65°, 1.7 m radius electric analyzer and a 2 channel gas ionization detector. It is designed to analyze isotopes ranging from tritium to the actinides and to accommodate the use of fluoride target materials. This system is being extended with a second injection line, consisting of selected components from the IsoTrace Laboratory, University of Toronto. This line will contain a pre-commercial version of the Isobar Separator for Anions, manufactured by Isobarex Corp., Bolton, Ontario, Canada. This instrument uses selective ion-gas reactions in a radio-frequency quadrupole cell to attenuate both atomic and molecular isobars. This paper discusses the specifications of the new AMS equipment, reports on the acceptance test results for 10Be, 14C, 26Al and 127I and presents typical spectra for 10Be and actinide analyses.

  16. Characterization of the CEBAF 100 kV DC GaAs Photoelectron Gun Vacuum System

    SciTech Connect

    Stutzman, M L; Adderley, P; Brittian, J; Clark, J; Grames, J; Hansknecht, J; Myneni, G R; Poelker, M

    2007-05-01

    A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower part of the UHV range. Measured NEG pump speed is high at pressures above 5×10-11 Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers.

  17. High-current CW beam profile monitors using transition radiation at CEBAF

    NASA Astrophysics Data System (ADS)

    Piot, P.; Denard, J.-C.; Adderley, P.; Capek, K.; Feldl, E.

    1997-01-01

    One way of measuring the profile of CEBAF's low-emittance, high-power beam is to use the optical transition radiation (OTR) emitted from a thin foil surface when the electron beam passes through it. We present the design of a monitor using the forward OTR emitted from a 0.25-μm carbon foil. We believe that the monitor will resolve three main issues: i) whether the maximum temperature of the foil stays below the melting point, ii) whether the beam loss remains below 0.5%, in order not to trigger the machine protection system, and iii) whether the monitor resolution (unlike that of synchrotron radiation monitors) is better than the product λγ. It seems that the most serious limitation for CEBAF is the beam loss due to beam scattering. We present results from Keil's theory and simulations from the computer code GEANT as well as measurements with aluminum foils with a 45-MeV electron beam. We also present a measurement of a 3.2-GeV beam profile that is much smaller than λγ, supporting Rule and Fiorito's calculations of the OTR resolution limit due to diffraction.

  18. Photoproduction opportunities at CEBAF: Meson spectroscopy and the physics of flying {phi}`s

    SciTech Connect

    Dzierba, A.R.

    1994-04-01

    The availability of high-intensity photon beams with an efficient duty-factor and with energies in the range 10 to 12 GeV makes possible studies in meson spectroscopy, rare decays and possibly symmetry tests such as CP and CPT. Indeed, with a 6 GeV tagged photon beam, realizable in the near future at CEBAF, measurements of rare radiative decays of the {phi}`s will be made. At higher energies, a photon beam could be used to answer a number of questions in meson spectroscopy. An even more exciting possibility is the use of photon beams to produce an intense source of {phi}`s. The physics contemplated at e{sup +}e{sup {minus}} {phi} factories, such as CP and CPT tests, might be also studied at CEBAF with completely different and complementary systematics; e.g. having the {phi}`s decay in flight may offer distinct advantages over {phi}`s produced at rest.

  19. A content addressable memory for use in CEBAF's CLAS detector level 2 triggering system

    SciTech Connect

    R.F. Hodson; D.C. Doughty, Jr.; D.C. Allgood; S.A. Campbell; W.C. Wilson; M.H. Bickley

    1996-06-01

    A collaboration of researchers from CEBAF, CNU and NASA is designing a 256-32 specialized Content Addressable Memory (CAM) for the level 2 triggering system in CEBAF's CLAS detector. These integrated circuits will find tracks and the momentum and angle of each track within 2 microseconds of an event. The custom CAM can operate as conventional memory, performing read and write operations, and can additionally perform independent byte compare operations across all words simultaneously. It is this compare feature which makes these CAMs attractive for identifying tracks passing through drift chambers by linking together segment number triplets within the CAM. Simulations have indicated that less than 16 k triplets need to be stored for each sector of the detector. This implies the level 2 triggering can be performed with 64 CAM chips per sector, or 384 total. Each data channel into a sector CAM array is buffered in a FIFO and is designed to handle aggregate data rates up to 750 Mbs for three channels (one channel/superlayer). The architecture of the level 2 trigger and details of the CAM chip design are discussed along with a performance report on our prototype CAMs

  20. Single-particle irradiation of mammalian cells at the radiological research accelerator facility: induction of chromosomal changes

    NASA Astrophysics Data System (ADS)

    Geard, C. R.; Brenner, D. J.; Randers-Pehrson, G.; Marino, S. A.

    1991-03-01

    Ionizing radiations have been shown to be able to induce the death of mammalian cells and initiate mutagenic or carcinogenic change. While all three end points are related through chromosomal changes, the latter in particular is of profound concern to human populations. We have undertaken a series of studies wherein mammalian cells were irradiated with low fluences of charged particles (protons, deuterons, helium ions) of defined LET from 10 to about 200 keV per micrometer. Frequencies of induced chromosomal changes were related to fluence at each LET, such that the induction of chromosomal changes per cell per charged particle could be estimated. However, for human exposures from densely ionizing radiation, such as the alpha particles from radon daughters, effects are dominated by the traversal of cells by single particles. Conventional experiments inevitably result in cells being exposed to a distribution (Poisson) of particle traversals. As the effect is unlikely to be a linear function of the number of traversals, a preferred approach would be to irradiate cells with exactly one (or any known number) of particles. To this end we are developing a dedicated beam line (microbeam) on a 4.2 MV Van de Graaff accelerator such that individual particles will vertically traverse individual living mammalian cells positioned by a microscope-based imaging system under computer control. "Conventional" low-fluence and "single-particle" studies will be compared, allowing critical evaluations of the potential of individual high LET charged particles to initiate change. This will have particular relevance both to consideration of the human health risks of radon daughter alpha particles and of basic mechanisms of chromosome aberration formation.

  1. Development of a methodology to accelerate a spontaneous grass colonization in a tailings storage facility under semiarid mediterranean climate type

    NASA Astrophysics Data System (ADS)

    Ginocchio, Rosanna; Arellano, Eduardo; Morales-Ladron de Guevara, Arturo

    2016-04-01

    Phytostabilization of massive mine tailings (>400 he) under semiarid environments is challenging, particularly when no organic amendments are locally available and no irrigation is possible. Increasing tendency for reprocessing old tailings to recover valued metals further pioneer the need for simple but effective plant covers. The choice of plant species and form of management are thus very important. CODELCO-Chile chose the Cauquenes post-operational tailings storage facility (TFS; 700 ha), that will be reprocessed for copper and other elements in the near future, to evaluate efficacy of the phytostabilization technology under semiarid conditions in central Chile. Surface application of a polymer (Soiltac TM) has been used for wind control of tailings but phytostabilization is considered as a best cost-effective alternative. A field study was performed to define a management program to improve the establishment and cover of an annual native grass (Vulpia myuros var. megalura), a spontaneous colonizer of the TSF. Considered management factors were control of macro herbivores (with and without fence), macronutrient improvement (with and without application of N-rich foliar fertilizer), and improvement of seed retention in the substrate (with and without small-scale rugosity; with and without lived wind-breakers; with and without mechanical wind-breakers). Each treatment was replicated three times and established in 2 m x 2 m quadrats. Plant response variables were monitored after 1 and 2 grass growing seasons. Application of N-rich foliar fertilizer and any wind control mechanism for seed retention in the substrate were effective for significantly improving both grass cover and biomass production in time, irrespective of macro-herbivore control. Seed production was significantly improved when macro herbivores were excluded and was positively and significantly correlated to vegetative biomass production. When applying this management program for tailings

  2. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    SciTech Connect

    Bohn, C.L.

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  3. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  4. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  5. Studies of beam halo formation in the 12GeV CEBAF design

    SciTech Connect

    Yves Roblin; Arne Freyberger

    2007-06-01

    Beam halo formation in the beam transport design for the Jefferson Lab 12GeV upgrade was investigated using 12GeV beam transport models as well as data from 6GeV CEBAF operations. Various halo sources were considered; these covered both nuclear interactions with beam gas as well as optics-related effects such as non linearities in the magnetic fields of the transport elements. Halo due to beam gas scattering was found to be less of a problem at 12GeV compared to the 6GeV machine. Halo due to non linear effects of magnetic elements was characterized as a function of beam orbit and functional forms of the distribution were derived. These functional forms were used as inputs in subsequent detector optimizations studies.

  6. Design and manufacture of the dipole coil for the CEBAF High Momentum Spectrometer

    SciTech Connect

    P. Bogensberger; R.K. Maix; F. Ramsauer; A. Umschaden; H. Kofler; K. Piswanger; P. Brindza

    1993-03-01

    The superconducting coil for the CEBAF High Momentum Spectrometer is under construction. The coil is a bath cooled system with an external coolant reservoir tank. Design and manufacturing procedures of the bobbin structure and coil are described. The overall coil/cryostat dimensions are about 7.3-3.9-1.9 m. The cooling system works on the thermal siphon principle. An outline of the conductor layout and its physical performance are shown. Bare conductors separated with special glass epoxy insulation spacers are used to get a sufficient surface for cryogenic stability. A special method for coil clamping has been developed to get sufficient mechanical prestress after cooldown and during operation up to nominal current

  7. Issues in light meson spectroscopy: The case for meson spectroscopy at CEBAF

    SciTech Connect

    Godfrey, S.

    1994-04-01

    The author reviews some outstanding issues in meson spectroscopy. The most important qualitative issue is whether hadrons with explicit gluonic degrees of freedom exist. To answer this question requires a much better understanding of conventional q{bar q} mesons. The author therefore begins by examining the status of conventional meson spectroscopy and how the situation can be improved. The expected properties of gluonic excitations are discussed with particular emphasis on hybrids to give guidance to experimental searches. Multiquark systems are commented upon as they are likely to be important in the mass region under study and will have to be understood better. In the final section the author discusses the opportunities that CEBAF can offer for the study of meson spectroscopy.

  8. Excited baryon form-factors at high momentum transfer at CEBAF at higher energies

    SciTech Connect

    Stoler, P.

    1994-04-01

    The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.

  9. Exploiting new electrochemical understanding of niobium electropolishing for improved performance of SRF cavities for CEBAF

    SciTech Connect

    Reece, Charles E.; Tian, Hui

    2010-09-01

    Recent incorporation of analytic electrochemistry into the development of protocols for electropolishing niobium SRF cavities has yielded new insights for optimizing this process for consistent, high-performance results. Use of reference electrodes in the electrolyte, electrochemical impedance spectroscopy (EIS), rotating disk electrodes (RDE), and controlled sample temperatures has greatly clarified the process dynamics over the empirical understanding developed via years of practice. Minimizing RF losses at high operational gradients is very valuable for CW linacs. Jefferson Lab is applying these new insights to the low-loss 7-cell cavity design developed for the CEBAF 12 GeV Upgrade. Together with controlled cleaning and assembly techniques to guard against field-emission-causing particulates, the resulting process is yielding consistent cavity performance that exceeds project requirements. Cavity tests show BCS-limited Q well above 30 MV/m. Detailed process data, interpretation, and resulting rf performance data will be presented.

  10. Study of Arc-Related RF Faults in the CEBAF Cryomodules

    SciTech Connect

    Douglas Curry; Ganapati Myneni; Ganapati Rao Myneni; John Musson; Thomas Powers; Timothy Whitlatch; Isidoro Campisi; Haipeng Wang

    2004-07-01

    A series of measurements has been conducted on two superconducting radio-frequency (RF) cavity pairs, installed in cryomodules and routinely operated in the Continuous Electron Beam Accelerator Facility, in order to study the RF-vacuum interaction during an RF fault. These arc-related fault rates increase with increasing machine energy, contribute to system downtime, and directly affect the accelerator's availability. For this study, the fundamental power coupler waveguides have been instrumented with vacuum gauges, additional arc detectors, additional infrared sensors, and temperature sensors in order to measure the system response during both steady-state operations and RF fault conditions. Residual gas analyzers have been installed on the waveguide vacuum manifolds to monitor the gas species present during cooldown, RF processing, and operation. Measurements of the signals are presented, a comparison with analysis is shown and results are discussed. The goal of this study is to characterize the RF-vacuum interaction during normal operations. With a better understanding of the installed system response, methods for reducing the fault rate may be devised, ultimately leading to improvements in availability.

  11. SNEAP 80: symposium of Northeastern Accelerator personnel

    SciTech Connect

    Billen, J.H.

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  12. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  13. Cavity Design, Fabrication and Commission Performance of a 750MHz, 4-rod Separator for CEBAF 4-Hall Beam Delivery System

    SciTech Connect

    Wang, Haipeng; Cheng, Guangfeng; Turlington, Larry T.; Wissmann, Mark J.

    2015-09-01

    A short version of the original CEBAF normal conducting 4-rod separator cavity has been developed into a 750MHz one * since the concept of simultaneous 4-hall operation for CEBAF is introduced **. This work has been advanced further based on the EM design optimization, bench measurement and by conducting RF-thermal coupled simulation using CST and ANSYS to confirm the cavity tuning and thermal performance. The cavity fabrication used matured technology like copper plating and machining. The cavity flanges, couplers, tuners and cooling channels adopted consistent/compatible hardware with the existing 500MHz cavities. The electromagnetic and thermal design simulations have greatly reduced the prototyping and bench tuning time of the first prototype. Four production cavities have reached a typical 1.94MV kick voltage or 3.0kW wall loss on each cavity after a minor multipactoring or no processing, 7.5% overhead power than the design specification.

  14. Fabrication and Testing of the SRF cavities for the CEBAF 12 GeV Upgrade Prototype Cryomodule Renascence

    SciTech Connect

    C. E. Reece; E. F. Daly; S. Manning; R. Manus; S. Morgan; J. P. Ozelis; L. Turlington

    2005-05-01

    Twelve seven-cell niobium cavities for the CEBAF 12 GeV upgrade prototype cryomodule Renascence have been fabricated at JLab and tested individually. This set includes four of the ''Low Loss'' (LL) design and eight of the ''High Gradient'' (HG) design. The fabrication strategy was an efficient mix of batch job-shop component machining and in-house EBW, chemistry, and final-step machining to meet mechanical tolerances. Process highlights will be presented. The cavities have been tested at 2.07 K, the intended CEBAF operating temperature. Performance exceeded the tentative design requirement of 19.2 MV/m CW with less than 29 W dynamic heat dissipation. These results, as well as the HOM damping performance are presented.

  15. Fabrication and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade Prototype Cryomodule Renascence

    SciTech Connect

    Charles Reece; Edward Daly; Stephen Manning; Robert Manus; Samuel Morgan; Joseph Ozelis; Larry Turlington

    2005-05-01

    Twelve seven-cell niobium cavities for the CEBAF 12 GeV upgrade prototype cryomodule Renascence have been fabricated at JLab and tested individually. This set includes four of the ''Low Loss'' (LL) design and eight of the ''High Gradient'' (HG) design. The fabrication strategy was an efficient mix of batch job-shop component machining and in-house EBW, chemistry, and final-step machining to meet mechanical tolerances. Process highlights will be presented. The cavities have been tested at 2.07 K, the intended CEBAF operating temperature. Performance exceeded the tentative design requirement of 19.2 MV/m cw with less than 29 W dynamic heat dissipation. These results, as well as the HOM damping performance will be presented.

  16. Recent Progress on Design Studies of High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF

    SciTech Connect

    Zhang, Y; Bruell, A; Chevtsov, P; Derbenev, Y S; Ent, R; Krafft, G A; Li, R; Merminga, L; Yunn, B C

    2009-05-01

    The conceptual design of a ring-ring electron-ion collider based on CEBAF has been continuously optimized to cover a wide center-of-mass energy region and to achieve high luminosity and polarization to support next generation nuclear science programs. Here, we summarize the recent design improvements and R&D progress on interaction region optics with chromatic aberration compensation, matching and tracking of electron polarization in the Figure-8 ring, beam-beam simulations and ion beam cooling studies.

  17. Color coherent effects in (e,e{prime}N) and (e,e{prime}N,N(h)) processes at CEBAF

    SciTech Connect

    Frankfurt, L.L.; Sargsyan, M.M.; Strikman, M.I. |

    1994-04-01

    The options for investigating color coherent effects and competing nuclear effects of nucleon-nucleon correlations in nuclei, nuclear shell effects in (e, e{prime}N) and (e, e{prime}NN(h)) reactions are considered. They argue that extension of CEBAF energies to reach Q{sup 2} = 10 GeV{sup 2} will allow systematical investigations of color coherent effects in nonperturbative regime of QCD and their interplay with nuclear effects.

  18. HIGH POWER TEST OF RF SEPARATOR FOR 12 GEV UPGRADE OF CEBAF AT JLAB

    SciTech Connect

    S. Ahmed, M. Wissmann, J. Mammosser, C. Hovater, M. Spata, G. Krafft, J. Delayen

    2012-07-01

    CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, we are exploring the possibility of extension of existing normal conducting 499 MHz TEM-type rf separator cavities. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test of 4 kW confirms that the cavity meet the requirement.

  19. Drift-Chamber Gas System Controls Development for the CEBAF Large Acceptance Spectrometer

    SciTech Connect

    M. F. Vineyard; T. J. Carroll; M. N. Lack

    1996-07-01

    The CEBAF Large Acceptance Spectrometer (CLAS) is a superconducting toroidal magnet with a large volume of drift chambers for charged particle tracking. The performance of these chambers depends on accurate monitoring and control of the mixture, flow rate, pressure, temperature, and contaminant levels of the gas. To meet these requirements, a control system is being developed with EPICS. The interface hardware consists of VME ADCs and three RS-232 low-level hardware controllers. The RS-232 instruments include MKS 647A mass flow controllers to control and monitor the gas mixture and flow, MKS 146B pressure gauge controllers to measure pressures, and a Panametrics hygrometer to monitor temperatures and the concentrations of oxygen, water vapor, and ethane. Many of the parameters are available as analog signals which will be monitored with XYCOM VME analog input cards and configured for alarms and data logging. The RS-232 interfaces will be used for remote control of the hardware and verification of the analog readings. Information will be passed quickly and efficiently to and from the user through a graphical user interface. A discussion of the requirements and design of the system is presented.

  20. Source and Extraction for Simultaneous Four-hall Beam Delivery System at CEBAF

    SciTech Connect

    Kazimi, Reza; Wang, Haipeng; Spata, Mike F.; Hansknecht, John C.

    2013-06-01

    A new design for simultaneous delivery of the electron beam to all four 12 GeV CEBAF experimental halls* requires a new 750 MHz RF separator system in the 5th pass extraction region, a 250 MHz repetition rate for its beams, and addition of a fourth laser at the photo-cathode gun. The proposed system works in tandem with the existing 500 MHz RF separators and beam repetition rate on the lower passes. The new 5th pass RF separators will have the same basic design but modified to run at 750 MHz. The change to the beam repetition rate will be at the photo-cathode gun through an innovative upgrade of the seed laser driver system using electro-optic modulators. The new laser system also allows addition of the fourth laser. The new RF separators, the new laser system and other hardware changes required to implement the Four-Hall operation delivery system will be discussed in this paper.

  1. Studies of Nucleon Form Factors with 12 GeV CEBAF and SuperBigBite

    SciTech Connect

    Hansen, Jens-Ole

    2012-04-01

    The elastic electromagnetic form factors are among the most fundamental quantities that describe the ground-state structure of the proton and neutron. Precision data of the form factors over a wide kinematical range provide a powerful test of current theories of hadron structure. A number of experiments aiming to measure the electric and magnetic elastic form factors of the neutron, G{sub E}{sup n} and G{sub M}{sup n}, and proton, G{sub E}{sup p}, at very high momentum transfer, up to the range of Q{sup 2} = 10-14 (GeV/c){sup 2}, are planned to be carried out with the future 11 GeV electron beam of the upgraded CEBAF at Jefferson Lab. These experiments will determine the nucleon form factors with unprecedented precision to Q{sup 2}-values up to three times higher than those of existing data. We review the approved proposals and the conceptual design of a new spectrometer, SuperBigBite, that will be used in these and other future experiments at Jefferson Lab.

  2. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  3. Overview of accelerators in medicine

    SciTech Connect

    Lennox, A.J. |

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field.

  4. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    SciTech Connect

    Vainas, B.; Eliyahu, I.; Weissman, L.; Berkovits, D.

    2012-02-15

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.

  5. Exclusive and Semi-Exclusive Reactions at a Higher Energy CEBAF

    SciTech Connect

    Carl Carlson

    1998-06-01

    More energy at CEBAF provides more opportunity for studies of hadron and nuclear properties. Many of the experiments that could be done are extensions of things already done at lower energies. Others represent new initiatives that could not work or could not theoretically be interpreted at lower energies. The author concentrates on the new initiatives, but do not wish our thinking to neglect what can be learned from continuations of lower energy work. The author begins with a list of some things that should be continued into a new energy regime. (1) Baryon and meson spectroscopy of higher mass states. With 4 GeV incoming electron energy, strange mesons are limited to 1.8 GeV in mass and charm is not producible. (2) Exclusive reactions, including meson and baryon form factors and reactions on few nucleon systems. The latter includes deuteron photodisintegration, the A and B form factors of the deuteron, and the deuteron tensor polarization T{sub 20}. (And we should not forget T{sub 20} in inclusive scattering.) (3) Hadrons in the nuclear medium, with such topics as color transparency, electroproduction of {rho} mesons, virtual Compton scattering off nuclei, and backward hadrons from e-d reactions. The very last must be especially important, since it gives the logo used in the advertizing for this conference. In addition, there are new initiatives that this talk will call attention to, in particular: (1) semi-exclusive meson production; (2) duality in semi-exclusive reactions; and (3) new views of exclusive reactions and perturbative QCD (leading to ''off-forward parton distributions'').

  6. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  7. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. Longitudinal laser ion acceleration in low density targets: experimental optimization on the Titan laser facility and numerical investigation of the ultra-high intensity limit

    NASA Astrophysics Data System (ADS)

    d'Humières, E.; Chen, S.; Lobet, Mathieu; Sciscio, M.; Antici, Patrizio; Bailly-Grandvaux, Mathieu; Gangolf, Thomas; Revet, Guilhem; Santos, Joao J.; Schroer, Anna-Marie; Willi, O.; Tikhonchuk, Vladimir T.; Pepin, Henri; Fuchs, Julien

    2015-05-01

    Recent theoretical and experimental studies suggest the possibility of enhancing the efficiency and ease of laser acceleration of protons and ions using underdense or near critical plasmas through electrostatic shocks. Very promising results were recently obtained in this regime. In these experiments, a first ns pulse was focused on a thin target to explode it and a second laser with a high intensity was focused on the exploded foil. The delay between two lasers allowed to control the density gradient seen by the second laser pulse. The transition between various laser ion acceleration regimes depending on the density gradient length was studied. With a laser energy of a few Joules, protons with energies close to the energies of TNSA accelerated protons were obtained for various exploded foils configurations. In the high energy regime (~180 J), protons with energies significantly higher than the ones of TNSA accelerated protons were obtained when exploding the foil while keeping a good beam quality. These results demonstrate that low-density targets are promising candidates for an efficient proton source that can be optimized by choosing appropriate plasma conditions. New experiments were also performed in this regime with gas jets. Scaling shock acceleration in the low density regime to ultra high intensities is a challenge as radiation losses and electron positron pair production change the optimization of the shock process. Using large-scale Particle-In-Cell simulations, the transition to this regime in which intense beams of relativistic ions can be produced is investigated.

  9. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  10. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  11. Evaluation of HVDC cables for the St. Lawrence River crossing of Hydro-Quebec's 500 kV DC line. Part 2; Cable testing facility for dielectric and accelerated aging

    SciTech Connect

    Trinh, N.G.; Couderc, D.; Faucher, P.; Chaaban, M.; Belec, M.; Leduc, J. )

    1992-04-01

    This paper describes the new cable testing facility at IREQ for long-term accelerated aging tests on HV cables. This test facility was required as part of an extensive program to evaluate the high-voltage cables for the river crossing of Hydro-Quebec's new transmission lines rated 800 kV AC and {plus minus}500 kV DC. The first application was for the evaluation of self-contained oil-filled (SCOF) cables for the St. Lawrence river crossing of the {plus minus}500 kV Quebec-New England HVDC power transmission system. The paper also describes the specific dielectric constraints resulting from the insertion of a short length of cable into a long line and, also, the circuits developed for the special tests, which reproduce the specific cable test conditions.

  12. Adsorption behavior of beryllium(II) on copper-oxide nanoparticles dispersed in water: A model for (7)Be colloid formation in the cooling water for electromagnets at high-energy accelerator facilities.

    PubMed

    Bessho, Kotaro; Kanaya, Naoki; Shimada, Saki; Katsuta, Shoichi; Monjushiro, Hideaki

    2014-01-01

    The adsorption behavior of Be(II) on CuO nanoparticles dispersed in water was studied as a model for colloid formation of radioactive (7)Be nuclides in the cooling water used for electromagnets at high-energy proton accelerator facilities. An aqueous Be(II) solution and commercially available CuO nanoparticles were mixed, and the adsorption of Be(II) on CuO was quantitatively examined. From a detailed analysis of the adsorption data measured as a function of the pH, it was confirmed that Be(II) is adsorbed on the CuO nanoparticles by complex formation with the hydroxyl groups on the CuO surface (>S-OH) according to the following equation: n > S-OH + Be(2+) ⇔ (>S-O)n Be((2-n)+) + nH(+) (n = 2, 3) S : solid surface. The surface-complexation constants corresponding to the above equilibrium, β(s,2) and β(s,3), were determined for four types of CuO nanoparticles. The β(s,2) value was almost independent of the type of nanoparticle, whereas the β(s,3) values varied with the particle size. These complexation constants successfully explain (7)Be colloid formation in the cooling water used for electromagnets at the 12-GeV proton accelerator facility.

  13. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    NASA Technical Reports Server (NTRS)

    Alexander J. Iwan D. (Principal Investigator)

    1996-01-01

    The objective of this work is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involves using a combination of 2- and 3-D numerical models, scaling analyses, ID models and the results of ground-based and low-gravity experiments. The latter are to be conducted during the MEPHISTO experiment scheduled for USMP-3 in early 1996. The models will be used to predict the response of the transport conditions and consequent solute segregation in directionally solidifying tin-bismuth melt. Real-time Seebeck voltage variations across a Sn-Bi melt during directional solidification in MEPHISTO on USMP-1 show a distinct variation which can be correlated with thruster firings. The Seebeck voltage measurement is related to the response of the instantaneous average melt composition at the melt-solid interface. This allows a direct comparison of numerical simulations with the Seebeck signals obtained on USMP-1. The effects of such accelerations on composition for a directionally solidifying Sn-Bi alloy have been simulated numerically. USMP-1 acceleration data was used to assist in our choice of acceleration magnitude and orientation. The results show good agreement with experimental observations. The USMP-3 experiments took place earlier this year (February 22 through March 6). There were several differences between the USMP-3 experiments as compared to USMP-1. Firstly a more concentrated alloy was solidified and, secondly, Primary Reaction Control System thruster burns were requested at particular times during four separate growth runs. This allowed us to monitor the response Seebeck response under well-characterized growth conditions. In addition, we carried out simulations during the experiment in order to interpret the Seebeck signal. Preliminary results are described here.

  14. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  15. Forward Drift Chamber for the GlueX experiment at the 12 GeV CEBAF machine

    SciTech Connect

    Lubomir Pentchev, Benedikt Zihlmann

    2011-06-01

    The GlueX experiment will search for exotic mesons produced by 9 GeV linearly polarized photons from the upgraded CEBAF machine. It is critical to detect and measure the four-momenta of all the charged particles and photons resulting from the decays of the mesons. The solenoid-based detector system includes tracking detectors and calorimeters. The Forward Drift Chamber, FDC, consists of 24 circular planar drift chambers of 1m diameter. Additional cathode readout is required to achieve efficient pattern recognition. The detection of low energy photons by the electromagnetic calorimeters imposes constraints on the amount of material used in the FDC. The specific features of the detector and the readout electronics will be described. Results from the tests of the full scale prototype will be presented, as well.

  16. Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF

    SciTech Connect

    Yuhong Zhang,Ji Qiang

    2009-05-01

    The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

  17. First e⁻/γ Commissioning Results for the GlueX Experiment/Hall D at CEBAF

    SciTech Connect

    McCaughan, Michael D.; Satogata, Todd J.; Roblin, Yves R.; Benesch, Jay F.

    2015-09-01

    Experimental Hall D, with flagship experiment GlueX, was constructed as part of the 12 GeV CEBAF upgrade. A new magnetically extracted electron beam line was installed to support this hall. Bremsstrahlung photons from retractable radiators are delivered to the experiment through a series of collimators following a long drift to allow for beam convergence. Coherent Bremsstrahlung generated by interaction with a diamond radiator will achieve a nominal 40% linear polarization and photon energies between 8.5 and 9 GeV from 12.1 GeV electrons, which are then tagged or diverted to a medium power 60kW electron dump. The expected photon flux is 107-108 Hz. This paper discusses the experimental line design, commissioning experience gained since first beam in spring 2014, and the present results of beam commissioning by the experiment.

  18. Results from CEBAF experiment E89-012: Measurements of deuteron photo-disintegration up to 4 GeV

    SciTech Connect

    Miller, M.A.; Beck, D.H.; Bochna, C.W.; Cadman, R.V.; Forest, T.A.; Gao, G.A.; Holt, R.J.; Nathan, A.M.; Owen, B.R.; Simicevic, N.; Terburg, B.P.; Williamson, S.E.; Cardman, L.; Carlini, R.D.; Dunne, J.A.; Ent, R.; Mack, D.J.; Madey, R.; Mitchell, J.H.; Vulcan, W.F.; Wood, S.A.; Yan, C.; Suleiman, R.; Meekins, D.G.; Filippone, B.W.; Madey, R.; McKeown, R.D.; Baker, O.K.; Cha, J.; Eden, T.; Gueye, P.L.J.; Harvey, M.; Hinton, W.; Keppel, C.E.; Niculescu, G.; Niculescu, I.; Savage, G.; Tang, L.; Beatty, D.P.; Fortune, H.T.; Koltenuk, D.M.; Danagoulianm, S.; Breuer, H.; Chant, N.S.; Collins, G.; Duncan, F.A.; Gustafsson, K.K.; Lung, A.F.; Mohring, R.M. Belz, J.E. Bosted, P.E. Brash, E.J. Cothran, C.; Geesaman, D.F.; Hansen, J-O.; Jackson, H.E.; O`Neill, T.G.; Potterveld, D.H.; Reinhold, J.; Zeidman, B.; Dutta, D.; Stoler, P.; Price, J.W.; Napolitano, J.; Frolov, V.V.; Gilman, R.; Kumbartzki, G.; Ransome, R.; Rutt, P.M.; McFarlane, K.W.; Van Westru, D.W.

    1997-05-01

    The first measurements of differential cross sections for deuteron photo-disintegration at photon energies up to 4 GeV were performed at the Thomas Jefferson National Accelerator Facility early in 1996. Cross section results for D({gamma},p)n at proton center of mass angle of 35{degree}, 53{degree} and 90{degree} will be presented. These results are in good agreement with previous measurements at low energy and extend to higher energies where data were previously unavailable. The 90{degree} degree data show behavior consistent with the constituent counting rules up to 4 GeV and are also in fair agreement with the asymptotic meson exchange model. The 37{degree} and 53{degree} data do not show clear signs of counting rule behavior, although a threshold in transverse momentum for the onset of scaling cannot be excluded. {copyright} {ital 1997 American Institute of Physics.}

  19. Results from CEBAF experiment E89-012: Measurements of deuteron photo-disintegration up to 4 GeV

    SciTech Connect

    Mike Miller; David Abbott; Abdellah Ahmidouch; Chris Armstrong; John Arrington; K. A. Assamagan; Oliver K. Baker; S. P. Barrow; D. P. Beatty; D. H. Beck; S. Y. Beedoe; Elizabeth Beise; J. E. Belz; 0 C. W. Bochna; Peter Bosted; Ed Brash; Herbert Breuer; R. V. Cadman; Larry Cardman; Roger Carlini; Jinseok Cha; Nicholas Chant; G. Collins; C. Cothran; W. J. Cummings; Samuel Danagoulian; F. A. Duncan; J. A. Dunne; Dipangkar Dutta; Tom Eden; Rolf Ent; Bradley Filippone; Tony A. Forest; H. T. Fortune; Valera V. Frolov; Haiyan Gao; Donald Geesaman; Ron Gilman; Paul Gueye; Kenneth Gustafsson; Jens-Ole Hansen; M. Harvey; Wendy Hinton; R. J. Holt; Hal Jackson; Cynthia Keppel; M. A. Khandaker; Ed Kinney; Andi Klein; 0 Doug Koltenuk; Gerfried Kumbartzki; Allison Lung; David Mack; Richard Madey; Pete Markowitz; Kenneth McFarlane; Robert McKeown; David Meekins; Z-E. Meziani; J. H. Mitchell; Hamlet Mkrtchyan; R. M. Mohring; James Napolitano; Alan Nathan; Gabriel Niculescu; Ioana Niculescu; Tom O'Neill; B. R. Owen; S. Pate; Dave Potterveld; John Price; G. L. Rakness; Ronald Ransome; Juerg Reinhold; Paul Rutt; G. Savage; Ralph Segel; N. Simicevic; Paul Stoler; Riad Suleiman; Liguang Tang; B. P. Terburg; D. Van Westrum; Bill Vulcan; S. E. Williamson; Michael Witkowski; Stephen Wood; Chen Yan; Ben Zeidman

    1997-05-01

    The first measurements of differential cross sections for deuteron photo-disintegration at photon energies up to 4 GeV were performed at the Thomas Jefferson National Accelerator Facility early in 1996. Cross section results for D(gamma,p)n at proton center of mass angle of 35{sup o}, 53{sup o} and 90{sup o} will be presented. These results are in good agreement with previous measurements at low energy and extend to higher energies where data were previously unavailable. The 90{sup o} degree data show behavior consistent with the constituent counting rules up to 4 GeV and are also in fair agreement with the asymptotic meson exchange model. The 37{sup o} and 53{sup o} data do not show clear signs of counting rule behavior, although a threshold in transverse momentum for the onset of scaling cannot be excluded.

  20. Investigations on the vacuum current in the magnetic insulated Karlsruhe light ion facility high-energy linear induction accelerator (KALIF-HELIA)

    NASA Astrophysics Data System (ADS)

    Illy, S.; Kuntz, M.; Westermann, T.

    1994-08-01

    In order to increase the applied voltage in pulsed power ion diodes, the Karlsruhe light ion facility will be extended by a voltage adder. An important problem with such a device is how the electron loss current can be controlled in the vacuum feed. Based on a static, one-dimensional analytic model and two-dimensional particle-in-cell (PIC) simulations, a detailed knowledge of the electron flow in the voltage adder is obtained. Time-dependent simulations support qualitatively the observation of laminar electron flow. The electrons form a band corresponding to the section on which they originate. It is demonstrated that with the introduction of guard rings, appropriately positioned in the feed, the electron loss current can be reduced by more than 50%.

  1. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  2. Interfacing to accelerator instrumentation

    SciTech Connect

    Shea, T.J.

    1995-12-31

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

  3. Proceedings of the international workshop on hadron facility technology

    SciTech Connect

    Thiessen, H.A.

    1987-12-01

    The conference included papers on facility plans, beam dynamics, accelerator hardware, and experimental facilities. Individual abstracts were prepared for 43 papers in the conference proceedings. (LEW)

  4. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  5. Accelerator structure work for NLC

    SciTech Connect

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B.; Gluckstern, R.; Ko, K.; Kroll, N. |

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  6. The 6 GeV TMD Program at Jefferson Lab

    SciTech Connect

    Puckett, Andrew J.

    2015-01-01

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  7. The 6 GeV TMD Program at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Puckett, Andrew

    2015-01-01

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  8. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  9. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  10. Computing requirements for S. S. C. accelerator design and studies

    SciTech Connect

    Dragt, A.; Talman, R.; Siemann, R.; Dell, G.F.; Leemann, B.; Leemann, C.; Nauenberg, U.; Peggs, S.; Douglas, D.

    1984-01-01

    We estimate the computational hardware resources that will be required for accelerator physics studies during the design of the Superconducting SuperCollider. It is found that both Class IV and Class VI facilities (1) will be necessary. We describe a user environment for these facilities that is desirable within the context of accelerator studies. An acquisition scenario for these facilities is presented.

  11. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  12. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  13. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  14. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  15. The ISAC post-accelerator

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Marchetto, M.

    2014-01-01

    The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

  16. Accelerator Physics Working Group Summary

    NASA Astrophysics Data System (ADS)

    Li, D.; Uesugi, T.; Wildnerc, E.

    2010-03-01

    The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.

  17. Low Level RF System for Jefferson Lab Cryomodule Test Facility

    SciTech Connect

    Tomasz Plawski; Trent Allison; Jean Delayen; J. Hovater; Thomas Powers

    2003-05-01

    The Jefferson Lab Cryomodule Test Facility (CMTF) has been upgraded to test and commission SNS and CEBAF Energy Upgrade cryomodules. Part of the upgrade was to modernize the superconducting cavity instrumentation and control. We have designed a VXI based RF control system exclusively for the production testing of superconducting cavities. The RF system can be configured to work either in Phase Locked Loop (PLL) or Self Excited Loop (SEL) mode. It can be used to drive either SNS 805 MHz or CEBAF Energy Upgrade 1497 MHz superconducting cavities and can be operated in pulsed or continuous wave (CW) mode. The base design consists of RF-analog and digital sections. The RF-analog section includes a Voltage Control Oscillator (VCO), phase detector, I&Q modulator and ''low phase shift'' limiter. The digital section controls the analog section and includes ADC, FPGA, and DAC . We will discuss the design of the RF system and how it relates to the support of cavity testing.

  18. Future HEP Accelerators: The US Perspective

    SciTech Connect

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  19. Experimental Plans to Explore Dielectric Wakefield Acceleration in the THZ Regime

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Piot, P.; Behrens, C.; Elsen, E.; Flottmann, K.; Gerth, C.; Kube, G.; Schmidt, B.; Osterhoff, J.; Stoltz, P.

    2011-09-07

    Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate the performances of a possible experiment under consideration at the FLASH facility in DESY to explore wakefield acceleration with an enhanced transformer ratio. The experiment capitalizes on a unique pulse shaping capability recently demonstrated at this facility. In addition, the facility incorporates a superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of potential dynamical effects in dielectric wakefield accelerators.

  20. Recent Activities at Tokai Tandem Accelerator

    NASA Astrophysics Data System (ADS)

    Ishii, Tetsuro

    2010-05-01

    Recent activities at the JAEA-Tokai tandem accelerator facility are presented. The terminal voltage of the tandem accelerator reached 19.1 MV by replacing acceleration tubes. The multi-charged positive-ion injector was installed in the terminal of the tandem accelerator, supplying high-current noble-gas ions. A superconducting cavity for low-velocity ions was developed. Radioactive nuclear beams of 8,9Li and fission products, produced by the tandem accelerator and separated by the ISOL, were supplied with experiment. Recent results of nuclear physics experiments are reported.

  1. Accelerator Technology Division progress report, FY 1992

    SciTech Connect

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  2. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  3. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  4. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  5. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  6. EM Structure Based and Vacuum Acceleration

    SciTech Connect

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  7. Superconducting magnet technology for accelerators

    SciTech Connect

    Palmer, R.; Tollestrup, A.V.

    1984-03-01

    A review article on superconducting magnets for accelerators should first answer the question, why superconductivity. The answer revolves around two pivotal facts: (1) fields in the range of 2 T to 10 T can be achieved; and (2) the operating cost can be less than conventional magnets. The relative importance of these two factors depends on the accelerator. In the case where an upgrade of an accelerator at an existing facility is planned, the ability to obtain fields higher than conventional magnets leads directly to an increase in machine energy for the given tunnel. In the case of a new facility, both factors must be balanced for the most economical machine. Ways to achieve this are discussed.

  8. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  9. A Survey of Hadron Therapy Accelerator Technologies.

    SciTech Connect

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  10. Coherent THz Pulses from Linear Accelerators

    SciTech Connect

    G.L. Carr; H. Loos; J.B. Murphy; T. Shaftan; B. Sheehy; X.-J. Wang; W.R. McKinney; M.C. Martin; G.P. Williams; K. Jordan; G. Neil

    2003-10-01

    Coherent THz pulses are being produced at several facilities using relativistic electrons from linear accelerators. The THz pulses produced at the Brookhaven accelerator have pulse energies exceeding 50 {micro}J and reach a frequency of 2 THz. The high repetition rate of the Jefferson Lab accelerator leads to an average THz power of 20 watts. Possible uses for these high power pulses are discussed.

  11. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  12. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  13. Accelerator Center: National symbol or white elephant?

    SciTech Connect

    1995-06-02

    This article discusses the possible future of the National Accelerator Center facility in South Africa. This state of the art facility with a 200-megaelectrol-volt proton cyclotron, carries out important nuclear physics research but takes a huge part of South Africa`s total science research budget.

  14. Performance specifications for proton medical facility

    SciTech Connect

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R.; Kubo, H.; Verhey, L.J. |; Castro, J.R. ||

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  15. TRACKING ACCELERATOR SETTINGS.

    SciTech Connect

    D OTTAVIO,T.; FU, W.; OTTAVIO, D.P.

    2007-10-15

    Recording setting changes within an accelerator facility provides information that can be used to answer questions about when, why, and how changes were made to some accelerator system. This can be very useful during normal operations, but can also aid with security concerns and in detecting unusual software behavior. The Set History System (SHS) is a new client-server system developed at the Collider-Accelerator Department of Brookhaven National Laboratory to provide these capabilities. The SHS has been operational for over two years and currently stores about IOOK settings per day into a commercial database management system. The SHS system consists of a server written in Java, client tools written in both Java and C++, and a web interface for querying the database of setting changes. The design of the SHS focuses on performance, portability, and a minimal impact on database resources. In this paper, we present an overview of the system design along with benchmark results showing the performance and reliability of the SHS over the last year.

  16. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  17. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  18. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  19. Technology of magnetically driven accelerators

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-03-26

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability. 8 figs., 1 tab.

  20. Technology of magnetically driven accelerators

    SciTech Connect

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-10-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  1. Cascaded proton acceleration by collisionless electrostatic shock

    NASA Astrophysics Data System (ADS)

    Xu, T. J.; Shen, B. F.; Zhang, X. M.; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-01

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  2. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  3. Inverse Cerenkov laser acceleration experiment at ATF

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Pogorelsky, I.; Fernow, R.; Kusche, K. P.; Liu, Y.; Kimura, W. D.; Kim, G. H.; Romea, R. D.; Steinhauer, L. C.

    Inverse Cerenkov laser acceleration was demonstrated using an axicon optical system at the Brookhaven Accelerator Test Facility (ATF). The ATF S-band linac and a high power 10.6 MICROMETERSCO2 laser were used for the experiment. Experimental arrangement and the laser and the electron beams synchronization are discussed. The electrons were accelerated more than 0.7 MeV for a 34 MW CO2 laser power. More than 3.7 MeV acceleration was measured with 0.7 GW CO2 laser power, which is more than 20 times of the previous ICA experiment. The experimental results are compared with computer program TRANSPORT simulations.

  4. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  5. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  6. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  7. Hadron accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  8. Summary Report of Working Group 1: Laser-Plasma Acceleration

    SciTech Connect

    Geddes, C. G. R.; Clayton, C.; Lu, W.; Thomas, A. G. R.

    2010-11-04

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  9. Summary Report of Working Group 1: Laser-Plasma Acceleration

    SciTech Connect

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  10. The deuteron accelerator preliminary design for BISOL

    NASA Astrophysics Data System (ADS)

    Peng, S. X.; Zhu, F.; Wang, Z.; Gao, Y.; Guo, Z. Y.

    2016-06-01

    BISOL, which was named as Beijing_ISOL before (Cui et al., 2013), is the abbreviation of Beijing Isotope-Separation-On-Line neutron beam facility. It is proposed jointly by Peking University (PKU) and China Institute of Atomic Energy (CIAE) for basic science study and application. It is a double driven facility that can be driven by a reactor or a deuteron accelerator. The deuteron driver accelerator should accelerate the deuteron beam up to 40 MeV with maximum beam current of 10 mA. Proton beams up to 33 MeV and He2+ beams up to 81.2 MeV can also be accelerated in this accelerator. The accelerator can be operated on either CW (continuous waveform) or pulsed mode, and the ion energy can be adjusted in a wide range. The accelerator will also allow independent operation of the RIB (Radioactive Ion Beams) system. It will be mainly charged by PKU group. Details of the deuteron accelerator preliminary design for BISOL will be given in this paper.

  11. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  12. A new small accelerator for radiocarbon dating

    SciTech Connect

    Suter, M.; Huber, R.; Jacob, S. A. W.; Synal, H.-A.; Schroeder, J. B.

    1999-06-10

    A new small and compact radiocarbon dating facility based on a 500 kV Pelletron accelerator has been built. The novel feature is that it operates with 1{sup +} ions. The interfering molecules are destroyed by collisions in the gas stripper. The results of first test measurements demonstrate that stability, background and transmission are equal to the performance of conventional AMS systems based on larger accelerators.

  13. FACET: SLAC___s New User Facility

    SciTech Connect

    Clarke, C.I.; Decker, F.-J.; England, R.J.; Erickson, R.A.; Hast, C.; Hogan, M.J.; Li, S.Z.; Litos, M.D.; Nosochkov, Y.; Seeman, J.T.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-05-16

    FACET (Facility for Advanced Accelerator Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. The first User Run started in spring 2012 with 20 GeV, 3 nC electron beams. The facility is designed to provide short (20 {micro}m) bunches and small (20 {micro}m wide) spot sizes, producing uniquely high power beams. FACET supports studies from many fields but in particular those of Plasma Wakefield Acceleration and Dielectric Wakefield Acceleration. The creation of drive and witness bunches and shaped bunch profiles is possible with 'Notch' Collimation. FACET is also a source of THz radiation for material studies. Positrons will be available at FACET in future user runs. We present the User Facility and the available tools and opportunities for future experiments.

  14. Accelerator and electrodynamics capability review

    SciTech Connect

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  15. The ATLAS Facility at Argonne National Laboratory

    SciTech Connect

    1997-07-01

    The Argonne Tandem Linac Accelerator System (ATLAS) is a superconducting low-energy heavy ion accelerator. Its primary purpose is to provide beams for research in nuclear structure physics. This report begins with a brief history of ATLAS and then describes the current design of the facility. Also summarized are the experimental equipment and research programs. It concludes with a proposal for turning ATLAS into a radioactive beam facility.

  16. Technical Design of Hadron Therapy Facilities

    SciTech Connect

    Alonso, J.R.

    1993-08-01

    Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Lorna Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

  17. Technical design of hadron therapy facilities

    SciTech Connect

    Alonso, J.R.

    1993-08-01

    Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Loma Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

  18. The IAE Peking HI-13 tandem accelerator

    NASA Astrophysics Data System (ADS)

    Ju-xian, Yu

    1981-05-01

    A new tandem accelerator laboratory is under construction at the Institute of Atomic Energy in Peking. This institute was built in 1958 and equipped with a reactor, cyclotron, electrostatic accelerator and some other facilities to meet the increasing interest in nuclear study and its application in China. The project of this tandem laboratory was approved in 1978. A 13 MV tandem accelerator will be provided by the High Voltage Engineering Corporation of Burlington, Massachusetts, USA, and a Q3D magnetic spectrometer by AB Scanditronix, Sweden. Some auxiliary systems, experimental equipment and the tank of the tandem are being designed and manufactured in China.

  19. The Argonne Wakefield Accelerator: Overview and status

    SciTech Connect

    Schoessow, P.; Chojnacki, E.; Gai, W.; Ho, C.; Konecny, R.; Power, J.; Rosing, M.; Simpson, J.

    1993-08-01

    The Argonne Wakefield Accelerator (AWA) is a new facility for advanced accelerator research, with a particular emphasis on studies of high gradient ({approximately}100 MeV/m) wakefield acceleration. A novel high current short pulse L-Band photocathode and preaccelerator will provide 100 nC electron bunches at 20 MeV to be used as a drive beam, while a second high brightness gun will be used to generate a 5 MeV witness beam for wakefield measurements. We will present an overview of the various AWA systems, the status of construction, and initial commissioning results.

  20. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  1. Holifield Heavy Ion Research Facility: Users handbook

    SciTech Connect

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

  2. Electroweak Physics at Jefferson Lab

    SciTech Connect

    R. D. McKeown

    2012-03-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility provides CW electron beams with high intensity, remarkable stability, and a high degree of polarization. These capabilities offer new and unique opportunities to search for novel particles and forces that would require extension of the standard model. CEBAF is presently undergoing an upgrade that includes doubling the energy of the electron beam to 12 GeV and enhancements to the experimental equipment. This upgraded facility will provide increased capability to address new physics beyond the standard model.

  3. The Pinhole/Occulter facility

    NASA Technical Reports Server (NTRS)

    Dabbs, J. R.; Tandberg-Hanssen, E. A.; Hudson, H. S.

    1982-01-01

    The outer solar atmosphere exhibits a great variety of dynamic and energetic plasma phenomena, from the catastrophic energy release of solar flares to the steady acceleration of the solar wind. The Pinhole/Occulter Facility contains the instruments necessary for broadband X-ray imaging, combined with simultaneous ultraviolet and white light spectroscopy and imaging.

  4. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  5. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  6. University of Virginia Reactor Facility Decommissioning Results

    SciTech Connect

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  7. Operation of the accelerator

    SciTech Connect

    Pardo, R.C.; Batzka, B.; Billquist, P.J.

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  8. VitisGen: accelerating grape cultivar improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VitisGen is a multiple institute collaborative project funded by the USDA SCRI program, with a long term goal to accelerate grape cultivar improvement by using cutting-edge molecular marker technologies, rigorous centralized facilities to characterize traits, and molecular breeding expertise. The ge...

  9. (Advanced accelerator physics featuring the problems of small rings)

    SciTech Connect

    Olsen, D.K.

    1989-10-16

    The traveler attended the CERN Accelerator School and Uppsala University short course on Advanced Accelerator Physics held on the University campus, Uppsala, Sweden, from September 18-29, 1989. The course, attended by 81 people, was well conceived, well presented, and informative. The course was organized and specialized on the problems of small rings. The traveler also visited the CELSIUS ring facility of Uppsala University and the CRYRING ring facility of the Manne Siegbahn Institute in Stockholm, Sweden.

  10. Test stands for testing serial XFEL accelerator modules

    NASA Astrophysics Data System (ADS)

    Bozhko, Yury; Anashin, Vadim; Belova, Lyudmila; Boeckmann, Torsten Axel; Kholopov, Michail; Konstantinov, Valeriy; Petersen, Bernd; Pivovarov, Sergey; Pyata, Eugeny; Sellmann, Detlef; Wang, Xilong; Zhirnov, Anatoly; Zolotov, Anatoly

    2012-06-01

    The superconducting accelerator module is the key component of the European X-ray Free Electron Laser (XFEL) project to be built at DESY Hamburg. The XFEL linear accelerator will consist of 100 accelerator modules in order to produce pulsed electron beam with the energy of 17.5 GeV. All accelerator modules have to be tested after the assembly and before being installed in the accelerator tunnel. The tests will take place in the Accelerator Module Test Facility (AMTF) being constructed at DESY. Besides test stands for testing superconducting cavities and magnets constituting the accelerator modules, AMTF will come with three test stands for testing the completed accelerator modules. This paper describes layout of the test stands within the AMTF, cryogenic design of the test stand, design issues of principal components and schedule.

  11. Colliding-beam-accelerator lattice

    SciTech Connect

    Claus, J.; Cornacchia, M.; Courant, E.D.; Parzen, G.

    1983-01-01

    We describe the lattice of the Colliding Beam Accelerator, a 400 x 400 GeV pp facility proposed for construction at Brookhaven National Laboratory. The structure adopted is very versatile, in part in consequence of its desirable behavior as function of momentum deviation and as function of the betatron tunes. Each of the six insertions can be arranged to meet specific requirements at the crossing points as illustrated by a discussion of the tuneable low-beta insertions. The luminosity in these low-beta insertions (2 x 10/sup 33/ cm/sup -2/ sec/sup -1/) would be an order of magnitude larger than the standard insertions.

  12. Induced activation in accelerator components

    NASA Astrophysics Data System (ADS)

    Bungau, Cristian; Bungau, Adriana; Cywinski, Robert; Barlow, Roger; Edgecock, Thomas Robert; Carlsson, Patrick; Danared, Hâkan; Mezei, Ferenc; Holm, Anne Ivalu Sander; Møller, Søren Pape; Thomsen, Heine Dølrath

    2014-08-01

    The residual activity induced in particle accelerators is a serious issue from the point of view of radiation safety as the long-lived radionuclides produced by fast or moderated neutrons and impact protons cause problems of radiation exposure for staff involved in the maintenance work and when decommissioning the facility. This paper presents activation studies of the magnets and collimators in the High Energy Beam Transport line of the European Spallation Source due to the backscattered neutrons from the target and also due to the direct proton interactions and their secondaries. An estimate of the radionuclide inventory and induced activation are predicted using the GEANT4 code.

  13. UCLA accelerator research and development

    SciTech Connect

    Cline, D.B.

    1992-01-01

    This progress report covers work supported by the above DOE grant over the period November 1, 1991 to July 31, 1992. The work is a program of experimental and theoretical studies in advanced particle accelerator research and development for high energy physics applications. The program features research at particle beam facilities in the United States and includes research on novel high power sources, novel focussing systems (e.g. plasma lens), beam monitors, novel high brightness, high current gun systems, and novel flavor factories in particular the {phi} Factory.

  14. Capture, acceleration and bunching rf systems for the MEIC booster and storage rings

    SciTech Connect

    Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei; Morozov, Vasiliy; Rimmer, Robert A.; Wang, Haipeng; Zhang, Yuhong

    2015-09-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energy ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.

  15. A prototype of a beam steering assistant tool for accelerator operations

    SciTech Connect

    M. Bickley; P. Chevtsov

    2006-10-24

    The CEBAF accelerator provides nuclear physics experiments at Jefferson Lab with high quality electron beams. Three experimental end stations can simultaneously receive the beams with different energies and intensities. For each operational mode, the accelerator setup procedures are complicated and require very careful checking of beam spot sizes and positions on multiple beam viewers. To simplify these procedures and make them reproducible, a beam steering assistant GUI tool has been created. The tool is implemented as a multi-window control screen. The screen has an interactive graphical object window, which is an overlay on top of a digitized live video image from a beam viewer. It allows a user to easily create and edit any graphical objects consisting of text, ellipses, and lines, right above the live beam viewer image and then save them in a file that is called a beam steering template. The template can show, for example, the area within which the beam must always be on the viewer. Later, this template can be loaded in the interactive graphical object window to help accelerator operators steer the beam to the specified area on the viewer.

  16. Theoretical aspects of the CEBAF 89-009 experiment on inclusive scattering of 4.05 GeV electrons from nuclei

    SciTech Connect

    Avraham Rinat; M.F. Taragin

    1999-10-01

    We compare recent CEBAF data on inclusive electron scattering of 4.05 GeV electrons on nuclei with predictions, based on a relation between structure functions (SF) of a nucleus, a nucleon, and a nucleus of point nucleons. The latter contains nuclear dynamics, e.g., binary collision contributions in addition to the asymptotic limit. The agreement with data is good, except in low-intensity regions. Computed ternary collision contributions appear too small for an explanation. We perform scaling analyses in Gurvitz's scaling variable and find that for y{sub G} {gt_or_lt} 0, ratios of scaling functions for pairs of nuclei differ by less than 15-20% from 1. Scaling functions for (y{sub G} < 0) are, for increasing Q{sup 2}, shown to approach a plateau from above. We observe only weak Q{sup 2} dependence in final-state interactions (FSI), which in the relevant kinematic region is ascribed to the diffractive nature of NN amplitudes appearing in FSI. This renders it difficult to separate asymptotic from FSI parts and seriously hampers the extraction of n(p) from scaling analyses in a model-independent fashion.

  17. Remote handling and accelerators

    NASA Astrophysics Data System (ADS)

    Wilson, M. T.

    The high-current levels of contemporary and proposed accelerator facilities induce radiation levels into components, requiring consideration be given to maintenance techniques that reduce personnel exposure. Typical components involved include beamstops, targets, collimators, windows, and instrumentation that intercepts the direct beam. Also included are beam extraction, injection, splitting, and kicking regions, as well as purposeful spill areas where beam tails are trimmed and neutral particles are deposited. Scattered beam and secondary particles activate components all along a beamline such as vacuum pipes, magnets, and shielding. Maintenance techniques vary from hands-on to TV-viewed operation using state-of-the-art servomanipulators. Bottom- or side-entry casks are used with thimble-type target and diagnostic assemblies. Long-handled tools are operated from behind shadow shields. Swinging shield doors, unstacking block, and horizontally rolling shield roofs are all used to provide access. Common to all techniques is the need to make operations simple and to provide a means of seeing and reaching the area.

  18. Biomedical research with heavy ions at the IMP accelerators

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    The main ion-beam acceleration facilities and research activities at the Institute of Modern Physics (IMP), Chinese Academy of Sciences are briefly introduced. Some of the biomedical research with heavy ions such as heavy-ion biological effect, basic research related to heavy-ion cancer therapy and radiation breeding at the IMP accelerators are presented.

  19. FACET: The New User Facility at SLAC

    SciTech Connect

    Clarke, C.I.; Decker, F.J.; Erikson, R.; Hast, C.; Hogan, M.J.; Iverson, R.; Li, S.Z.; Nosochkov, Y.; Phinney, N.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; Seryi, A.; Wittmer, W.; /Michigan State U.

    2011-12-13

    FACET (Facility for Advanced Accelerator and Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. Its high power electron and positron beams make it a unique facility, ideal for beam-driven Plasma Wakefield Acceleration studies. The first 2 km of the SLAC linac produce 23 GeV, 3.2 nC electron and positron beams with short bunch lengths of 20 {mu}m. A final focusing system can produce beam spots 10 {mu}m wide. User-aided Commissioning took place in summer 2011 and FACET will formally come online in early 2012. We present the User Facility, the current features, planned upgrades and the opportunities for further experiments. Accelerators are our primary tool for discovering the fundamental laws to the universe. Each new frontier we probe requires a new, more powerful method. Accelerators are therefore increasing in size and cost. The future of this field requires new accelerating techniques that can reach the high energies required over shorter distances. New concepts for high gradient acceleration include utilizing the wakes in plasma and dielectric and metallic structures. FACET was built to provide a test bed for novel accelerating concepts with its high charge and highly compressed beams. As a test facility unlike any other, it has also attracted groups interested in beam diagnostic techniques and terahertz studies. The first phase of the construction was completed in May 2011. Beam commissioning began in June and was interleaved with the installation of five experiments. Users were invited to aid with the commissioning for the month of August during which time experimental hardware and software were checked out and some first measurements were taken. FACET is currently in the process of becoming a Department of Energy User Facility for High Energy Physics.

  20. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  1. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  2. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  3. Picosecond CO{sub 2} laser for relativistic particle acceleration

    SciTech Connect

    Pogorelsky, I.; Ben-Zvi, I.; Kimura, W.D.; Kurnit, N.A.; Kannari, F.

    1994-06-01

    A table-top 20-GW 50-ps CO{sub 2} laser system is under operation at the Brookhaven Accelerator Test Facility. We compare laser performance with model predictions. Extrapolations suggest the possibility of compact terawatt CO{sub 2} laser systems suitable as laser accelerator drivers and for other strong-field applications. Latest progress on an Inverse Cherenkov Laser Accelerator experiment is reported.

  4. Triple ion beam irradiation facility

    SciTech Connect

    Lewis, M.B.; Allen, W.R.; Buhl, R.A.; Packan, N.H.; Cook, S.W.; Mansur, L.K.

    1988-12-01

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm/sup 2/ in area. Typical depth ranges are 0.1 to 1.0 ..mu..m. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab.

  5. Initial operation of the Holifield facility

    SciTech Connect

    Ball, J.B.

    1982-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new Pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility.

  6. Inverse Cerenkov laser acceleration experiment at ATF

    SciTech Connect

    Wang, X.J.; Pogorelsky, I.; Fernow, R.; Kusche, K.P.; Liu, Y.; Kimura, W.D.; Kim, G.H.; Romea, R.D.; Steinhauer, L.C.

    1994-09-01

    Inverse Cerenkov laser acceleration was demonstrated using an axicon optical system at the Brookhaven Accelerator Test Facility (ATF). The ATF S-band linac and a high power 10.6 {mu}m CO{sub 2} laser were used for the experiment. Experimental arrangement and the laser and the electron beams synchronization are discussed. The electrons were accelerated more than 0.7 MeV for a 34 MW CO{sub 2} laser power. More than 3.7 MeV acceleration was measured with 0.7 GW CO{sub 2} laser power, which is more than 20 times of the previous ICA experiment. The experimental results are compared with computer program TRANSPORT simulations.

  7. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  8. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  9. Linear accelerator: A concept

    NASA Technical Reports Server (NTRS)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  10. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  11. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  12. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  13. Production facilities

    SciTech Connect

    Not Available

    1989-01-01

    This book presents a cross section of different solutions to the many unique production problems operators face. Sections address benefit vs. cost options for production facility designs, oil and gas separation processes and equipment, oil treating and desalting systems, and water treating methods and equipment. Papers were selected to give an overall view of factors involved in optimizing the design of cost-effective production facilities.

  14. MEQALAC rf accelerating structure

    SciTech Connect

    Keane, J.; Brodowski, J.

    1981-01-01

    A prototype MEQALAC capable of replacing the Cockcroft Walton pre-injector at BNL is being fabricated. Ten milliamperes of H/sup -/ beam supplied from a source sitting at a potential of -40 kilovolt is to be accelerated to 750 keV. This energy gain is provided by a 200 Megahertz accelerating system rather than the normal dc acceleration. Substantial size and cost reduction would be realized by such a system over conventional pre-accelerator systems.

  15. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  16. Accelerated Tank Closure Demonstration Project

    SciTech Connect

    SAMS, T.L.

    2003-02-01

    Among the highest priorities for action under the ''Hanford Federal Facility and Agreement and Consent Order'', hereafter referred to as the Tri-Party Agreement, is the retrieval, treatment and disposal of Hanford Site tank waste. Tank waste is recognized as one of the primary threats to the Columbia River and one of the most complex technical challenges. Progress has been made in resolving safety issues, characterizing tank waste and past tank leaks, enhancing double-shell tank waste transfer and operations systems, retrieving single-shell tank waste, deploying waste treatment facilities, and planning for the disposal of immobilized waste product. However, limited progress has been made in developing technologies and providing a sound technical basis for tank system closure. To address this limitation the Accelerated Tank Closure Demonstration Project was created to develop information through technology demonstrations in support of waste retrieval and closure decisions. To complete its mission the Accelerated Tank Closure Demonstration Project has adopted performance objectives that include: protecting human health and the environment; minimizing/eliminating potential waste releases to the soil and groundwater; preventing water infiltration into the tank; maintaining accessibility of surrounding tanks for future closure; maintaining tank structural integrity; complying with applicable waste retrieval, disposal, and closure regulations; and maintaining flexibility for final closure options in the future.

  17. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  18. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  19. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  20. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  1. High Intensity Accelerator and Neutron Source in China

    NASA Astrophysics Data System (ADS)

    Guan, Xialing; Wei, J.; Loong, Chun

    2011-06-01

    High intensity Accelerator is being studied all over world for numerous applications, which includes the waste transmutation, spallation neutron source and material irradiation facilities. The R/D activities of the technology of High intensity accelerator are also developed in China for some year, and have some good facilities around China. This paper will reports the status of some high intensity accelerators and neutron source in China, which including ADS/RFQ; CARR; CSNS; PKUNIFTY & CPHS. This paper will emphatically report the Compact Pulsed Hadron Source (CPHS) led by the Department of Engineering Physics of Tsinghua University in Beijing, China.

  2. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-01-01

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  3. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-12-31

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  4. ESS Accelerator Cryoplant Process Design

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Arnold, P.; Hees, W.; Hildenbeutel, J.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility being built with extensive international collaboration in Lund, Sweden. The ESS accelerator will deliver protons with 5 MW of power to the target at 2.0 GeV, with a nominal current of 62.5 mA. The superconducting part of the accelerator is about 300 meters long and contains 43 cryomodules. The ESS accelerator cryoplant (ACCP) will provide the cooling for the cryomodules and the cryogenic distribution system that delivers the helium to the cryomodules. The ACCP will cover three cryogenic circuits: Bath cooling for the cavities at 2 K, the thermal shields at around 40 K and the power couplers thermalisation with 4.5 K forced helium cooling. The open competitive bid for the ACCP took place in 2014 with Linde Kryotechnik AG being selected as the vendor. This paper summarizes the progress in the ACCP development and engineering. Current status including final cooling requirements, preliminary process design, system configuration, machine concept and layout, main parameters and features, solution for the acceptance tests, exergy analysis and efficiency is presented.

  5. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  6. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  7. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  8. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  9. Accelerator production of tritium authorization basis strategy

    SciTech Connect

    Miller, L.A.; Edwards, J.; Rose, S.

    1996-05-01

    The Accelerator Production of Tritium (APT) project has proposed a strategy to develop the APT authorization basis and safety case based on DOE orders and fundamental requirements for safe operation. The strategy is viable regardless of whether the APT is regulated by DOE or by an external regulatory body. Currently the operation of Department of Energy (DOE) facilities is authorized by DOE and regulated by DOE orders and regulations while meeting the environmental protection requirements of the Environmental Protection Agency (EPA) and the states. In the spring of 1994, Congress proposed legislation and held hearings related to requiring all DOE operations to be subject to external regulation. On January 25, 1995, DOE, with the support of the White House Council on Environmental Quality, created the Advisory Committee on External Regulation of Department of Energy Nuclear Safety. This committee divided its recommendations into three areas: (1) facility safety, (2) worker safety, and (3) environmental protection. In the area of facility safety the committee recommended external regulation of DOE nuclear facilities by either the Nuclear Regulatory Commission (NRC) or a restructured Defense Nuclear Facilities Safety Board (DNFSB). In the area of worker safety, the committee recommended that the Occupational Safety and Health Administration (OSHA) regulate DOE nuclear facilities. In the environmental protection area, the committee did not recommend a change in the regulation by the EPA and the states of DOE nuclear facilities. If these recommendations are accepted, all DOE nuclear facilities will be impacted to some extent.

  10. The Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)

    1983-01-01

    Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.

  11. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  12. Accelerated coffee pulp composting.

    PubMed

    Sánchez, G; Olguín, E J; Mercado, G

    1999-02-01

    The effect of two abundant, easily available and very low-cost agro-industrial organic residues, i.e., filter cake from the sugar industry and poultry litter, on the composting stabilization time of coffee pulp and on the quality of the produced compost, was evaluated. Piles of one cubic meter were built and monitored within the facilities of a coffee processing plant in the Coatepec region of the State of Veracruz, Mexico. Manual aeration was carried out once a week. A longer thermophilic period (28 days) and a much lower C/N ratio (in the range of 6.9-9.1) were observed in the piles containing the amendments, as compared to the control pile containing only coffee pulp (14 days and a C/N ratio of 14.4, respectively). The maximum assimilation rate of the reducing sugars was 1.6 g kg-1 d-1 (from 7.5 to 5.3%) during the first two weeks when accelerators were present in the proportion of 20% filter cake plus 20% poultry litter, while they accumulated at a rate of 1.2 g kg-1 d-1 (from 7.4 to 9.13%) during the same period in the control pile. The best combination of amendments was 30% filter cake with 20% poultry litter, resulting in a final nitrogen content as high as 4.81%. The second best combination was 20% filter cake with 10% poultry litter, resulting in a compost which also contained a high level of total nitrogen (4.54%). It was concluded that the use of these two residues enhanced the composting process of coffee pulp, promoting a shorter stabilization period and yielding a higher quality of compost.

  13. Accelerators for heavy-charged-particle radiation therapy.

    PubMed

    Coutrakon, George B

    2007-08-01

    This paper focuses on current and future designs of medical hadron accelerators for treating cancers and other diseases. Presently, five vendors and several national laboratories have produced heavy-particle medical accelerators for accelerating nuclei from hydrogen (protons) up through carbon and oxygen. Particle energies are varied to control the beam penetration depth in the patient. As of the end of 2006, four hospitals and one clinic in the United States offer proton treatments; there are five more such facilities in Japan. In most cases, these facilities use accelerators designed explicitly for cancer treatments. The accelerator types are a combination of synchrotrons, cyclotrons, and linear accelerators; some carry advanced features such as respiration gating, intensity modulation, and rapid energy changes, which contribute to better dose conformity on the tumor when using heavy charged particles. Recent interest in carbon nuclei for cancer treatment has led some vendors to offer carbon-ion and proton capability in their accelerator systems, so that either ion can be used. These features are now being incorporated for medical accelerators in new facilities.

  14. Technology development for high power induction accelerators

    SciTech Connect

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  15. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  16. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  17. A feasibility study of a hypersonic real-gas facility

    NASA Technical Reports Server (NTRS)

    Gully, J. H.; Driga, M. D.; Weldon, W. F.

    1987-01-01

    A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.

  18. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find a pressing…

  19. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  20. Switched matrix accelerator

    SciTech Connect

    Whittum, David H.; Tantawi, Sami G.

    2001-01-01

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We also provide an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392 GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  1. Switched Matrix Accelerator

    SciTech Connect

    Whittum, David H

    2000-10-04

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  2. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  3. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  4. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  5. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  6. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  7. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  8. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  9. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  10. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  11. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  12. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  13. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  14. The US Muon Accelerator Program (MAP)

    SciTech Connect

    Bross, Alan D.; /Fermilab

    2010-12-01

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  15. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  16. R&D for Future Accelerators

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank

    Research & development for future accelerators are reviewed. First, I discuss colliding hadron beams, in particular upgrades to the Large Hadron Collider (LHC). This is followed by an overview of new concepts and technologies for lepton ring colliders, with examples taken from VEPP-2000, DAFNE-2, and Super-KEKB. I then turn to recent progress and studies for the multi-TeV Compact Linear Collider (CLIC). Some generic linear-collider research, centered at the KEK Accelerator Test Facility, is described next. Subsequently, I survey the neutrino factory R&D performed in the framework of the US feasibility study IIa, and I also comment on a novel scheme for producing monochromatic neutrinos from an electron-capture beta beam. Finally, I present innovative ideas for a high-energy muon collider and I consider recent experimental progress on laser and plasma acceleration.

  17. R&D for Future Accelerators

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank

    2006-01-01

    Research & development for future accelerators are reviewed. First, I discuss colliding hadron beams, in particular upgrades to the Large Hadron Collider (LHC). This is followed by an overview of new concepts and technologies for lepton ring colliders, with examples taken from VEPP-2000, DAFNE-2, and Super-KEKB. I then turn to recent progress and studies for the multi-TeV Compact Linear Collider (CLIC). Some generic linear-collider research, centered at the KEK Accelerator Test Facility, is described next. Subsequently, I survey the neutrino factory R&D performed in the framework of the US feasibility study IIa, and I also comment on a novel scheme for producing monochromatic neutrinos from an electron-capture beta beam. Finally, I present innovative ideas for a high-energy muon collider and I consider recent experimental progress on laser and plasma acceleration.

  18. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    The Universe is a violent place - as astronomers use increasingly sensitive means and methods to study the diverse processes out there, they become aware of the extraordinary forces acting in the space that surrounds us. With larger telescopes and ever-more sophisticated instruments, new information is gained about remote celestial objects and their behaviour. Among the most intriguing ones are the radio galaxies which emit prodiguous amounts of energy, in the form of fast-moving particles and intense electromagnetic radiation. One of these is known as 3C 445 ; it is located near the celestial equator within the zodiacal constellation Aquarius (The Waterman), at a distance of about 1 billion light-years. It most probably harbours a black hole at its centre, more massive than the one at the centre of our own galaxy, the Milky Way ( ESO PR 19/02 ). This galaxy was first observed from Cambridge (United Kingdom) in the 1950's and was listed as radio source no. 445 in the Third Cambridge Catalogue (1959), hence the name. Later observations revealed a strong outflow from this galaxy's active centre, visible on radio maps as two opposite plasma jets with strong synchrotron radiation ( [2]) originating from rapidly moving electrons in the associated magnetic field (image "a" in PR Photo 26/02 ). Now, a trio of European astronomers [1] have used two advanced instruments, ISAAC and FORS1 on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) to obtain near-infrared images of these jets (images "b" and "c" in PR Photo 26/02 ). As can be clearly seen on the radio picture of 3C 445 obtained with the NRAO Very Large Array (VLA) radio facility ("a"), the plasma jets of fast particles emanating from the galaxy ram into the surrounding intergalactic medium (mostly primordial hydrogen), thereby producing two "shocks" , both at a distance of approximately 1.5 million light-years from the central galaxy and with particularly strong synchrotron emission. With a total

  19. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  20. The integration of two control systems

    SciTech Connect

    Bickley, M.; White, K.

    1995-12-31

    During the past year the Continuous Electron Beam Accelerator Facility (CEBAF) has installed a new machine control system, based on the Experimental Physics and Industrial Control System (EPICS). The migration from CEBAF`s old control system, Thaumaturgic Automated Control Logic (TACL), had to be done concurrently with commissioning of the CEBAF accelerator. The smooth transition to EPICS was made possible by the similarity of the control systems` topological design and network communication protocol. Both systems have operator display computer nodes which are decoupled from the data acquisition and control nodes. The communication between display and control nodes of both control systems is based on making named requests for data, with data being passed on change of value. Due to TACL`s use of a central communications process, it was possible to integrate both control systems` network communications in that process. This in turn meant that CEBAF did not require changes to any other software in order to support network communication between TACL and EPICS. CEBAF implemented the machine`s control under EPICS in an evolutionary, controlled manner. 4 refs., 3 figs.