Science.gov

Sample records for accelerator facility jlab

  1. High Power Operation of the JLab IR FEL Driver Accelerator

    SciTech Connect

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  2. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  3. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  4. Physics at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Lawrence Cardman

    2005-10-22

    The CEBAF accelerator at JLab is fulfilling its scientific mission to understand how hadrons are constructed from the quarks and gluons of QCD, to understand the QCD basis for the nucleon-nucleon force, and to explore the transition from the nucleon-meson to a QCD description. Its success is based on the firm foundation of experimental and theoretical techniques developed world-wide over the past few decades, on complementary data provided by essential lower-energy facilities, such as MAMI, and on the many insights provided by the scientists we are gathered here to honor.

  5. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    SciTech Connect

    D. Hardy; S.V. Benson; Michelle D. Shinn; S. Zhang

    2005-08-21

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS.

  6. Engineering the Big Chill: The Story of JLab's Central Helium Liquefier

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2014-03-01

    This article tells the story of the Central Helium Liquefier (CHL) at the Thomas Jefferson National Accelerator Facility (JLab), one of the US National Laboratories. JLab's successful superconducting radio frequency accelerator was only possible because a group of JLab engineers successfully tackled a complex of difficulties to build a cryogenic system that included the CHL, a task that required advancing the frontier of cryogenic technology. Ultimately, these cryogenic advances were applied far beyond JLab to the benefit of cutting-edge programs at other US national laboratories (Oak Ridge, Brookhaven, and the Facility for Rare Isotope Beams at MSU) as well as NASA. This innovation story dramatizes the sort of engineer-driven technological problem solving that allows the successful launch and operation of experimental projects. Along the way, the CHL story also provides an important addition to our understanding of the role played by engineers and industry in creating knowledge at physics laboratories.

  7. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    SciTech Connect

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  8. Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  9. JLAB Web Based Tracking System for Integrated Incident, Accident, Inspection, and Assessments

    SciTech Connect

    S. Prior; R. Lawrence

    2003-09-01

    The Thomas Jefferson National Accelerator Facility, or JLab, is a Department of Energy particle accelerator used to conduct fundamental physics research. In such a facility there are numerous statutory, regulatory, contractual, and best practice requirements for managing and analyzing environmental health and safety (EH&S) related data. A tracking system has been developed at JLab that meets the needs of all levels of the organization, from the front line worker to the most senior management. This paper describes the system implementation and performance to date.

  10. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  11. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  12. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  13. The “SF” System of Sextupoles for the JLAB 10 KW Free Electron Laser Upgrade

    SciTech Connect

    George Biallas, Mark Augustine, Kenneth Baggett, David Douglas, Robin Wines

    2009-05-01

    The characteristics of the system of “SF” Sextupoles for the infrared Free Electron Laser Upgrade1 at the Thomas Jefferson National Accelerator Facility (JLab) are described. These eleven sextupoles possess a large field integral (2.15 T/m) with +/- 0.2%

  14. Implementation of the Polarized HD target at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Chaden Djalali; David Tedeschi

    2007-01-30

    The original goal of this proposal was to study frozen spin polarized targets (HD target and other technologies) and produce a conceptual design report for the implementation of such a target in the HALL B detector of the Thomas Jefferson National Accelerator Facility (JLab). During the first two years of the proposal, we came to the conclusion that the best suited target for JLab was a frozen spin target and helped with the design of such a target. We have not only achieved our original goal but have exceeded it by being involved in the actual building and testing of parts the target. The main reason for this success has been the hiring of a senior research associate, Dr. Oleksandr Dzyubak, who had more than 10 years of experience in the field of frozen spin polarized targets. The current grant has allowed the USC nuclear physics group to strengthen its role in the JLab collaboration and make important contribution to both the detector development and the scientific program.

  15. The Hall D Physics Program at JLab

    SciTech Connect

    Leckey, John P.

    2012-09-01

    GlueX is one of the flagship experiments of the 12 GeV era at the Thomas Jefferson National Accelerator Facility (JLab). The energy of the electron accelerator at JLab is presently undergoing an upgrade from 6 GeV to 12 GeV and a 4th experimental hall (Hall D) is being added. The GlueX experimental apparatus consists of a tagged coherent bremsstrahlung photon beam incident on a liquid hydrogen target. The photoproduced mesons, which are created inside of a 2.2 T solenoid, will then pass through a pair of drift chambers and eventually deposit their energy into either of two calorimeters, depending on their respective angles. GlueX will attempt to map out the light meson spectrum and search for meson-gluon hybrids to better understand the confinement of quarks and gluons in quantum chromodynamics (QCD). There is little data on the photoproduction of light mesons and the GlueX experiment will exceed the current photoproduction data by several orders of magnitude in the first year alone. Photoproduction is specifically well suited to search for meson-gluon hybrids because in the flux tube model the production cross-sections are higher for meson-gluon hybrids from photons, with the spins of the virtual quark-antiquark pair aligned, than from other sources such as pions, with the spins of the quark-antiquark pair anti-aligned. There are also other Hall D experiments proposed to look for physics beyond the Standard Model by studying Eta rare or forbidden decay channels such as eta to two neutral pions. The 12 GeV upgrade of the JLab accelerator and the complete physics program of Hall D will be presented.

  16. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  17. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  18. Development of a Positron Source for JLab at the IAC

    SciTech Connect

    Forest, Tony

    2013-10-12

    We report on the research performed towards the development of a positron sour for Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, VA. The first year of work was used to benchmark the predictions of our current simulation with positron production efficiency measurements at the IAC. The second year used the benchmarked simulation to design a beam line configuration which optimized positron production efficiency while minimizing radioactive waste as well as design and construct a positron converter target. The final year quantified the performance of the positron source. This joint research and development project brought together the experiences of both electron accelerator facilities. Our intention is to use the project as a spring board towards developing a program of accelerator based research and education which will train students to meet the needs of both facilities as well as provide a pool of trained scientists.

  19. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  20. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  1. MEIC Detector and Interaction Region at JLab

    SciTech Connect

    Zhao, Zhiwen

    2015-09-01

    The Electron-Ion Collider (EIC) is envisioned as the next-generation US facility for exploring the strong interaction. The Medium-energy EIC (MEIC) is the first stage of the EIC at Jefferson Lab (JLab). It's aimed at mapping the spin and spatial structure of the quark and gluon sea in the nucleon, understanding the emergence of hadronic matter from color charge, and probing the gluon fields in nuclei. A full-acceptance detector is designed to measure the complete final state. Its interaction region allows spectators tagged with high resolution to catch all nuclear and partonic target fragments. The combination of a high luminosity, polarized lepton and ion beams, and detectors fully integrated with the accelerator will allow MEIC to be a unique opportunity to make breakthroughs in the study of nucleon structure and QCD dynamics.

  2. UCLA Neptune Facility for Advanced Accelerator Studies

    SciTech Connect

    Tochitsky, Sergei Ya.; Clayton, Christopher E.; Marsh, Kenneth A.; Joshi, Chandrashekhar; Rosenzweig, James B.; Pellegrini, Claudio

    2004-12-07

    The Neptune Laboratory at UCLA is being used for exploring concepts useful for advanced accelerators. This facility hosts a TW-class CO2 laser system and a high-brightness photoinjector producing a 14 MeV electron beam. The goal for the laboratory is to carry out experiments on high-gradient acceleration of externally injected electrons in both laser-driven relativistic plasma waves and EM laser field in vacuum. Experiments on plasma beat-wave acceleration using a prebunched electron beam, a high-energy gain 10-{mu}m inverse free electron laser accelerator, longitudinal electron beam shaping and laser based light-sources are planned.

  3. Argonne Wakefield Accelerator facility upgrade.

    SciTech Connect

    Conde, M.E.; Gai, W.; Konecny, R.; Power, J.G.; Schoessow, P.; Sun, X.

    2001-07-11

    The Argonne Wakefield Accelerator has been successfully used for conducting wakefield experiments in dielectric loaded structures and plasmas. Although the initial wakefield experiments were successful, higher drive beam quality would substantially improve the wakefield accelerating gradients. For this reason they have built a new 1-1/2 cell L-band photocathode RF gun. This gun is expected to produce 10-100 nC bunches with 2-5 ps rms pulse length and normalized emittance less than 100 mm mrad. The gun will initially have a copper photocathode, which will soon be replaced by a high quantum efficiency cesium telluride one, allowing the generation of a train of high charge bunches. the beam energy at the exit of the gun cavity will be in the range 7.5-10 MeV. A standing-wave linac structure operating at the same frequency (1.3 GHz) will increase the beam energy to about 15 MeV. This beam will be used in high-gradient wakefield acceleration experiments and other high intensity electron beam applications. Traveling-wave dielectric loaded structures, operating at 7.8 and 15.6 GHz, will be excited by the propagation of single bunches or by trains of up to 32 electron bunches, reaching gradients in excess of 100 MV/m over distances of the order of 1 meter.

  4. The Bucharest heavy ion accelerator facility

    NASA Astrophysics Data System (ADS)

    Ceauşescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivaşcu, M.; Păpureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-01

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  5. Refurbishment and testing of the 1970's era LASS solenoid coils for Jlab's Hall D

    NASA Astrophysics Data System (ADS)

    Ballard, Joshua; Biallas, George Herman; Brindza, Paul; Carstens, Thomas; Creel, Jonathan; Egiyan, Hovanes; Martin, Floyd; Qiang, Yi; Spiegel, Scot; Stevens, Mark; Wissmann, Mark; Wolin, Elliott

    2012-06-01

    Thomas Jefferson National Accelerator Facility (JLab) refurbished the Large Aperture Solenoid Spectrometer (LASS) [1], 1.85 m bore solenoid, consisting of four superconducting coils to act as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at JLab for the Glue Excitations Experiment (GlueX) [2]. The coils, built in 1971 at Stanford Linear Accelerator Center (SLAC) and used a second time for the Muon decays into Electron and GAmma ray (MEGA) Experiment [3] at Los Alamos, had electrical shorts and leaks to the insulating vacuum along with deteriorated superinsulation and instrumentation. Root cause diagnosis of the problems and the repair methods are described along with the measures used to qualify the vessels and piping within the Laboratory's Pressure Safety Program (mandated by 10CFR851). The extraordinary refrigerator operational methods used to utilize the obsolete cryogenic apparatus gathered for the off-line, single coil tests are described.

  6. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  7. The rare isotope accelerator (RIA) facility project

    SciTech Connect

    Christoph Leemann

    2000-08-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

  8. Flame acceleration studies in the MINIFLAME facility

    SciTech Connect

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

    1989-07-01

    Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

  9. Nonperturbative relativistic approach to pion form factors: Predictions for future JLab experiments

    SciTech Connect

    Krutov, A. F.; Troitsky, V. E.; Tsirova, N. A.

    2009-11-15

    Some predictions concerning possible results of the future experiments at the Thomas Jefferson National Accelerator Facility (JLab) on the pion form factor F{sub {pi}}(Q{sup 2}) are made. The calculations exploit the method proposed previously by the authors and based on the instant-form Poincare invariant approach to pions, considered as quark-antiquark systems. This model has predicted with surprising accuracy the values of F{sub {pi}}(Q{sup 2}), which were measured later in JLab experiments. The results are almost independent from the form of wave function. The pion mean square radius and the decay constant f{sub {pi}} also agree with experimental values. The model gives powerlike asymptotic behavior of F{sub {pi}}(Q{sup 2}) at high momentum transfer in agreement with QCD predictions.

  10. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  11. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  12. Multipacting analysis for JLAB ampere class cavities

    SciTech Connect

    Genfa Wu; Mircea Stirbet; Haipeng Wang; Robert Rimmer; Evan Donoghue

    2005-07-10

    JLAB's ampere class 5-cell cavities require a moderate accelerating gradient (16.7 {approx} 20MV/m). Electron multipacting activity in the machine operating range can degrade the expected performance. A survey was conducted in the area of multipacting analysis for beta=1 electron cavity shapes, including options for the new high current cavity shape. The results obtained provided useful guidance to the final cavity shape adopted and to its expected performance.

  13. Single Meson Photoproduction at JLab Energies

    NASA Astrophysics Data System (ADS)

    Mathieu, Vincent; Joint Physics Analysis Center Team

    2016-09-01

    In this talk, I present the results from the Joint Physics Analysis Center about the photoproduction of a single meson (pseudoscalar or vector meson). We have developed the theoretical formalism to analysis forthcoming data at the, recently upgraded, JLab facility. We also present prediction for observables in the energy range of Eg = 5-11 GeV. Material (codes, notes, sim- ulations, etc) can be found online at the JPAC interactive website: http://www.indiana.edu/ jpac/index.html

  14. Economics of electron beam accelerator facilities: Concept vs actual

    NASA Astrophysics Data System (ADS)

    Minbiole, Paul R.

    1995-02-01

    Electron beam accelerator facilities continue to demonstrate their ability to "add value" to a wide range of industrial products. The power, energy, and reliability of commercially available accelerators have increased steadily over the past several decades. The high throughput potential of modern electron beam facilities, together with the broad spectrum of commercial applications, result in the concept that an electron beam facility is an effective tool for adding economic value to industrial products. However, the high capital costs of such a facility (including hidden costs), together with practical limitations to high throughput (including several layers of inefficiencies), result in profit-and-loss economics which are more tenuous than expected after first analysis.

  15. Recirculating Linear Accelerators for Future Muon Facilities

    SciTech Connect

    S.A. Bogacz, K.B.Beard, R.P. Johnson

    2010-05-01

    Neutrino Factories (NF) and Muon Colliders (MC) require rapid acceleration of short-lived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness.

  16. The JLAB UV Undulator

    SciTech Connect

    Gottschalk, Steven C.; Benson, Steven V.; Moore, Steven Wesley

    2013-05-01

    Recently the JLAB FEL has demonstrated 150 W at 400 nm and 200 W at 700 nm using a 33mm period undulator designed and built by STI Optronics. This paper describes the undulator design and performance. Two key requirements were low phase error, zero steering and offset end fields and small rms trajectory errors. We will describe a new genetic algorithm that allowed phase error minimization to 1.8 degrees while exceeding specifications. The mechanical design, control system and EPICS interface will also be summarized.

  17. Fermilab accelerator control system: Analog monitoring facilities

    SciTech Connect

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  18. Accelerator based X-ray facilities applied to freight control

    NASA Astrophysics Data System (ADS)

    Gaillard, G.

    1996-06-01

    The first accelerator based X-ray facility dedicated to freight control, in this case air-freight pallets, became operational at Roissy-Charles-de-Gaulle airport in 1991. Since then, five other facilities have been built, three in Europe and the other two in China, for the control of trucks and sea-containers. In order to be able to see through these very large and dense objects, X-ray energies of several MeV are necessary. Two types of electron accelerators are used for the production of the X-ray beams: linear accelerators and electrostatic accelerators (Van de Graff or Pelletrons), depending on the beam quality requirements which depend on the technology used for the detection of X-rays. A brief description of the functioning of the X-ray inspection facilities is presented in this article as well as an estimation of their global cost and of their profitability.

  19. Section 7.3. accelerator facilities. Technology review of accelerator facilities

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph

    New initiatives in basic science, accelerator engineering and market development, continue to stimulate applications of electron accelerators. Contributions from scientific experts in each of these segments have been assimulated to reflect the present status of accelerator technology in radiation processing.

  20. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    SciTech Connect

    LOWENSTEIN,D.I.

    2000-05-28

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10{sup 10} to 10{sup 11} ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented.

  1. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  2. Accelerator-driven subcritical facility:Conceptual design development

    NASA Astrophysics Data System (ADS)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  3. Reliability Considerations for the Operation of Large Accelerator User Facilities

    SciTech Connect

    Willeke, F. J.

    2016-01-29

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  4. Individual monitoring for external radiation at accelerator facilities.

    PubMed

    Tanner, R J; Hager, L G

    2011-07-01

    Individual monitoring at accelerator facilities is discussed, within the framework set out by the International Commission on Radiological Protection and with reference to the implementation of the recommendations of that body within the European Basic Safety Standards. Legislation in other parts of the world may differ, but a worldwide perspective on this subject would be too exhaustive. The fields at accelerator facilities are contrasted in terms of particle type and energy with those encountered at more conventional sites within the nuclear fuel cycle, medical applications and general industry. The implications for individual monitoring are discussed in relation to the dose quantities for these accelerator fields and also with respect to the personal dosemeters options.

  5. Hypersonic aerodynamics test facility using the external propulsion accelerator

    NASA Technical Reports Server (NTRS)

    Rom, J.; Lewis, M.; Gupta, A.; Sabean, J.

    1995-01-01

    The use of the External propulsion Accelerator (EPA) for launching models of hypersonic aerodynamic configurations into an instrumented ballistic range is discussed. The aerodynamic model is encased inside an axisymmetric projectile designed to be accelerated to high speed in the EPA. Accelerator lengths required to achieve hypersonic speeds are estimated to vary from 10 meters for Mach 7, 40 meters for Mach 10, 150 meters for Mach 15, and 700 meters for Mach 30, assuming a limit of 50,000 g's acceleration. For a model span of 10 cm to 25 cm, the launch tube diameters are 40 cm and 100 cm, respectively. Using this EPA launcher will enable exact simulation of hypersonic flight in ground facilities where both the gas composition and pressure can be controlled in the ballistic range.

  6. 50 Years of the Radiological Research Accelerator Facility (RARAF).

    PubMed

    Marino, Stephen A

    2017-01-31

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were developed in the mid-1970s. In 1980 the facility was relocated to the Nevis Laboratories of Columbia University. RARAF now has seven beam lines, each having a dedicated irradiation facility: monoenergetic neutrons, charged particle track segments, two charged particle microbeams (one electrostatically focused to <1 μm, one magnetically focused), a 4.5 keV soft X-ray microbeam, a neutron microbeam, and a facility that produces a neutron spectrum similar to that of the atomic bomb dropped at Hiroshima. Biology facilities are available on site within close proximity to the irradiation facilities, making the RARAF very user friendly.

  7. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    SciTech Connect

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  8. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  9. The JLab TMD Program at 6 GeV and 11 GeV

    SciTech Connect

    Puckett, Andrew J.

    2016-05-01

    The precise mapping of the nucleon’s transverse momentum dependent parton distributions (TMDs) in the valence quark region has emerged as one of the flagship physics programs of the recently upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab). The TMDs describe the three-dimensional, spin-correlated densities of quarks and gluons in the nucleon in momentum space, and are accessible experimentally through detailed studies of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) process, N ( e ; e 0 h ) X . The already unrivaled intensity, polarization and duty factor performance of CEBAF will combine with the dramatic expansion of its kinematic reach embodied by the recent near-doubling of the maximum beam energy to enable the first fully differential precision measurements of SIDIS structure functions in the valence region. In this paper, I will review the existing and forthcoming SIDIS results from the 6 GeV era of CEBAF operations and present an overview of the planned JLab SIDIS program at 11 GeV beam energy

  10. The target laboratory of the Pelletron Accelerator's facilities

    SciTech Connect

    Ueta, Nobuko; Pereira Engel, Wanda Gabriel

    2013-05-06

    A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

  11. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  12. Novel neutron sources at the Radiological Research Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  13. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE PAGES

    Xu, Yanping; Garty, G.; Marino, S. A.; ...

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  14. Novel neutron sources at the Radiological Research Accelerator Facility

    PubMed Central

    Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

    2012-01-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

  15. Novel neutron sources at the Radiological Research Accelerator Facility

    SciTech Connect

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  16. SATIF-2 shielding aspects of accelerators, targets and irradiation facilities

    SciTech Connect

    1995-12-31

    Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field.

  17. JLAB Hurricane recovery

    SciTech Connect

    A. Hutton; D. Arenius; J. Benesch; S. Chattopadhyay; E. F. Daly; O. Garza; R. Kazimi; R. Lauzi; L. Merminga; W. Merz; R. Nelson; W. Oren; M. Poelker; P. Powers; J. Preble; V. Ganni; C. R. Reece; R. Rimmer; M. Spata; S. Suhring

    2004-07-01

    Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18, 2003 with winds of only 75 mph, creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerator complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail.

  18. Experimental Neutron Source Facility Based on Accelerator Driven System

    NASA Astrophysics Data System (ADS)

    Gohar, Yousry

    2010-06-01

    An experimental neutron source facility has been developed for producing medical isotopes, training young nuclear professionals, providing capability for performing reactor physics, material research, and basic science experiments. It uses a driven subcritical assembly with an electron accelerator. The neutrons driving the subcritical assembly were generated from the electron interactions with a target assembly. Tungsten or uranium target material is used for the neutron production through photonuclear reactions. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  19. Health physics manual of good practices for accelerator facilities

    SciTech Connect

    Casey, W.R.; Miller, A.J.; McCaslin, J.B.; Coulson, L.V.

    1988-04-01

    It is hoped that this manual will serve both as a teaching aid as well as a useful adjunct for program development. In the context of application, this manual addresses good practices that should be observed by management, staff, and designers since the achievement of a good radiation program indeed involves a combined effort. Ultimately, radiation safety and good work practices become the personal responsibility of the individual. The practices presented in this manual are not to be construed as mandatory rather they are to be used as appropriate for the specific case in the interest of radiation safety. As experience is accrued and new data obtained in the application of this document, ONS will update the guidance to assure that at any given time the guidance reflects optimum performance consistent with current technology and practice.The intent of this guide therefore is to: define common health physics problems at accelerators; recommend suitable methods of identifying, evaluating, and managing accelerator health physics problems; set out the established safety practices at DOE accelerators that have been arrived at by consensus and, where consensus has not yet been reached, give examples of safe practices; introduce the technical literature in the accelerator health physics field; and supplement the regulatory documents listed in Appendix D. Many accelerator health physics problems are no different than those at other kinds of facilities, e.g., ALARA philosophy, instrument calibration, etc. These problems are touched on very lightly or not at all. Similarly, this document does not cover other hazards such as electrical shock, toxic materials, etc. This does not in any way imply that these problems are not serious. 160 refs.

  20. DIANA: nuclear astrophysics with a deep underground accelerator facility

    NASA Astrophysics Data System (ADS)

    Lemut, Alberto

    2013-10-01

    Current stellar model simulations are at a level of precision such that nuclear reaction rates represent a major source of uncertainty for theoretical predictions and for the analysis of observational signatures. To address several open questions in cosmology, astrophysics, and non-Standard-Model neutrino physics, new high precision measurements of direct-capture nuclear fusion cross sections are essential. Experimental studies of nuclear reaction of astrophysical interest are hampered by the exponential drop of the cross-section. The extremely low value of σ (E) within the Gamow peak prevents measurement in a laboratory at the earth surface. The signal to noise ratio would be too small, even with the highest beam intensities presently available from industrial accelerators, because of the cosmic ray interactions with the detectors and surrounding materials. An excellent solution is to install an accelerator facility deep underground where the cosmic rays background into detectors is reduced by several order of magnitude, allowing the measurements to be pushed to far lower energies than presently possible. This has been clearly demonstrated at the Laboratory for Underground Nuclear Astrophysics (LUNA) by the successful studies of critical reactions in the pp-chains and first reaction studies in the CNO cycles. However many critical reactions still need high precision measurements, and next generation facilities, capable of very high beam currents over a wide energy range and state of the art target and detection technology, are highly desirable. The DIANA accelerator facility is being designed to achieve large laboratory reaction rates by delivering high ion beam currents (up to 100 mA) to a high density (up to 1018 atoms/cm2), super-sonic jet-gas target as well as to a solid target. DIANA will consist of two accelerators, 50-400 kV and 0.4-3 MV, that will cover a wide range of ion beam intensities, with sufficient energy overlap to consistently connect the

  1. Performance Evaluation Of An Irradiation Facility Using An Electron Accelerator

    SciTech Connect

    Uribe, R. M.; Hullihen, K.; Filppi, E.

    2011-06-01

    Irradiation parameters over a period of seven years have been evaluated for a radiation processing electron accelerator facility. The parameters monitored during this time were the electron beam energy, linearity of beam current, linearity of dose with the reciprocal value of the samples speed, and dose uniformity along the scanning area after a maintenance audit performed by the electron accelerator manufacturer. The electron energy was determined from the depth-dose curve by using a two piece aluminum wedge and measuring the practical range from the obtained curves. The linearity of dose with beam current, and reciprocal value of the speed and dose uniformity along the scanning area of the electron beam were determined by measuring the dose under different beam current and cart conveyor speed conditions using film dosimetry. The results of the experiments have shown that the energy in the range from 1 to 5 MeV has not changed by more than 15% from the High Voltage setting of the machine over the evaluation period, and dose linearity with beam current and cart conveyor speed has not changed. The dose uniformity along the scanning direction of the beam showed a dose uniformity of 90% or better for energies between 2 and 5 MeV, however for 1 MeV electrons this value was reduced to 80%. This parameter can be improved by changing the beam optics settings in the control console of the accelerator though.

  2. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  3. Hard Scattering Studies at Jlab

    SciTech Connect

    Harutyun Avagyan; Peter Bosted; Volker Burkert; Latifa Elouadrhiri

    2005-09-01

    We present current activities and future prospects for studies of hard scattering processes using the CLAS detector and the CEBAF polarized electron beam. Kinematic dependences of single and double spin asymmetries have been measured in a wide kinematic range at CLAS with a polarized NH{sub 3} and unpolarized liquid hydrogen targets. It has been shown that the data are consistent with factorization and observed target and beam asymmetries are in good agreement with measurements performed at higher energies, suggesting that the high energy-description of the semi-inclusive DIS process can be extended to the moderate energies of JLab measurements.

  4. Treatment Facility F: Accelerated Removal and Validation Project

    SciTech Connect

    Sweeney, J.J.; Buettner, M.H.; Carrigan, C.R.

    1994-04-01

    The Accelerated Removal and Validation (ARV) phase of remediation at the Treatment Facility F (TFF) site at Lawrence Livermore National Laboratory (LLNL) was designed to accelerate removal of gasoline from the site when compared to normal, single shift, pump-and-treat operations. The intent was to take advantage of the in-place infrastructure plus the increased underground temperatures resulting from the Dynamic Underground Stripping Demonstration Project (DUSDP). Operations continued 24-hours (h) per day between October 4 and December 12, 1993. Three contaminant removal rate enhancement approaches were explored during the period of continuous operation. First, we tried several configurations of the vapor pumping system to maximize the contaminant removal rate. Second, we conducted two brief trials of air injection into the lower steam zone. Results were compared with computer models, and the process was assessed for contaminant removal rate enhancement. Third, we installed equipment to provide additional electrical heating of contaminated low-permeability soil. Four new electrodes were connected into the power system. Diagnostic capabilities at the TFF site were upgraded so that we could safely monitor electrical currents, soil temperatures, and water treatment system processes while approximately 300 kW of electrical energy was being applied to the subsurface.

  5. Challenges/issues of NIS used in particle accelerator facilities

    NASA Astrophysics Data System (ADS)

    Faircloth, Dan

    2013-09-01

    High current, high duty cycle negative ion sources are an essential component of many high power particle accelerators. This talk gives an overview of the state-of-the-art sources used around the world. Volume, surface and charge exchange negative ion production processes are detailed. Cesiated magnetron and Penning surface plasma sources are discussed along with surface converter sources. Multicusp volume sources with filament and LaB6 cathodes are described before moving onto RF inductively coupled volume sources with internal and external antennas. The major challenges facing accelerator facilities are detailed. Beam current, source lifetime and reliability are the most pressing. The pros and cons of each source technology is discussed along with their development programs. The uncertainties and unknowns common to these sources are discussed. The dynamics of cesium surface coverage and the causes of source variability are still unknown. Minimizing beam emittance is essential to maximizing the transport of high current beams; space charge effects are very important. The basic physics of negative ion production is still not well understood, theoretical and experimental programs continue to improve this, but there are still many mysteries to be solved.

  6. Proposed Dark Current Studies at the Argonne Wakefield Accelerator Facility

    SciTech Connect

    Antipov, S.P.; Conde, Manoel Eduardo; Gai, Wei; Power, John Gorham; Yusof, Z.M.; Spentzouris, L.K.; Dolgashev, V.A.; /SLAC

    2008-01-18

    A study of dark currents has been initiated at the Argonne Wakefield Accelerator Facility (AWA). Emission of dark current is closely related to a breakdown. Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. An imaging system is being put together to identify single emitters on the cathode surface. This will allow us to study dark current properties in the gun. We also plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV). Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after can shed some light on a modification of metal surface after the breakdown.

  7. Commissioning Cornell OSTs for SRF cavity testing at Jlab

    SciTech Connect

    Eremeev, Grigory

    2011-07-01

    Understanding the current quench limitations in SRF cavities is a topic essential for any SRF accelerator that requires high fields. This understanding crucially depends on correct and precise quench identification. Second sound quench detection in superfluid liquid helium with oscillating superleak transducers is a technique recently applied at Cornell University as a fast and versatile method for quench identification in SRF cavities. Having adopted Cornell design, we report in this contribution on our experience with OST for quench identification in different cavities at JLab.

  8. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  9. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  10. Review of Recent Jlab Results

    SciTech Connect

    Elton Smith

    2005-08-21

    High quality polarized electron beams at Jefferson Lab make possible precision measurements of hadronic properties in the regime of strongly interacting QCD. We will describe a few programs at Jefferson Lab that are making measurements that link the basic static properties of hadrons to their quark sub-structure. For example, parity-violating electron proton elastic scattering probes the spatial distribution of strange quarks in the nucleon. The nucleon-Delta transition form factors give us information about the deformation of nucleons and Deltas. Finally, new high statistics measurements of photons scattering off proton and deuteron targets are used to set upper limits on the production of exotic baryons with strangeness S=+1. These examples will be used to illustrate the capabilities and focus of the experimental program at JLab.

  11. Application of the National Ignition Facility distinguishable-from-background program to accelerator facilities at Lawrence Livermore National Laboratory.

    PubMed

    Packard, Eric D; Mac Kenzie, Carolyn

    2013-06-01

    Lawrence Livermore National Laboratory must control potentially activated materials and equipment in accordance with U.S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment, which requires DOE approval of the process used to release volumetrically contaminated personal property and establishes a dose constraint of 10 µSv y(-1) (1 mrem y(-1)) for clearance of such property. The National Ignition Facility at Lawrence Livermore National Laboratory developed a technical basis document and protocol for determining the radiological status of property that is potentially activated from exposure to neutron radiation produced via fusion of tritium and deuterium. The technical basis included assessment of the neutron energy, the type of materials potentially exposed and the likely activation products, and the sensitivity of radiation detectors used to survey the property. This paper evaluates the National Ignition Facility technical basis document for applicability to the release of property from Lawrence Livermore National Laboratory's various accelerator facilities considering the different types of particles accelerated, radiations produced, and resultant activation products. Extensive process knowledge regarding the accelerators' operations, accompanied by years of routine surveys, provides an excellent characterization of these facilities. Activation studies conducted at the Stanford Linear Accelerator and the High Energy Accelerator Research Organization in Japan corroborate that the long-lived radionuclides produced at accelerator facilities are of the same variety produced at the National Ignition Facility. Consequently, Lawrence Livermore National Laboratory concludes that the release protocol developed for the National Ignition Facility can be used appropriately at all its accelerator facilities.

  12. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  13. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  14. The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1994-04-01

    This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user`s guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented.

  15. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    SciTech Connect

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M A; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  16. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    SciTech Connect

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  17. Radioactive waste management and decommissioning of accelerator facilities.

    PubMed

    Ulrici, Luisa; Magistris, Matteo

    2009-11-01

    During the operation of high-energy accelerators, the interaction of radiation with matter can lead to the activation of the machine components and of the surrounding infrastructures. As a result of maintenance operation and during decommissioning of the installation, considerable amounts of radioactive waste are evacuated and shall be managed according to the radiation-protection legislation. This paper gives an overview of the current practices in radioactive waste management and decommissioning of accelerators.

  18. Berkeley Accelerator Space Effects (BASE) Light Ion FacilityUpgrade

    SciTech Connect

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-07-07

    The BASE Light Ion Facility upgrades have been completed. All proton beams are now delivered to Cave 4A. New control software, a larger diameter beam window, and improved quality assurance measures have been added.

  19. FAIR - An International Accelerator Facility for Research with Ions and Antiprotons

    SciTech Connect

    Henning, Walter

    2005-06-08

    An overview is given on the international Facility for Antiproton and Ion Research (FAIR) at GSI, its science motivation and goals, the facility lay-out and characteristics, the accelerator design challenges, the schedule for construction, and the international interest/participation in the project.

  20. Investigation of hypersonic ramjet propulsion cycles using a ram accelerator test facility

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Chew, G.; De Turenne, J. A.; Dunmire, B.

    1991-01-01

    Experimental research on hypersonic propulsion using a ram accelerator test facility is presented. The gasdynamics of the ram accelerator has been studied experimentally in a 38-mm bore facility over the Mach number range of 2.5 to 8.5, using methane- and ethylene-based propellant mixtures. Three different propulsive modes, centered on the Chapman-Jouguet (C-J) detonation speed of the combustible gas, have been experimentally observed. Projectiles have been accelerated smoothly from velocities below to above the C-J speed within a single propellant mixture.

  1. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  2. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  3. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  4. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    SciTech Connect

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  5. The CASPAR underground accelerator facility for the study of low energy nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-09-01

    The drive of nuclear astrophysics is to push the limits of reaction measurements into the burning regime of astrophysical interest. As current laboratory experiments approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need for higher intensity accelerators, more robust and isotopically enriched target material and lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to the lower energies needed. The CASPAR facility is the first and only underground accelerator facility in the US, focused on the study of low energy reactions of nuclear astrophysical interest. Support provided by NSF Grant No. PHY 1419765, JINA-CEE Grant No. PHY 1430152 and the South Dakota Science and Technology Authority.

  6. Test Sequence for Superconducting XFEL Cavities in the Accelerator Module Test Facility (AMTF) at DESY

    NASA Astrophysics Data System (ADS)

    Schaffran, J.; Petersen, B.; Reschke, D.; Swierblewski, J.

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2016 onwards, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The main part of the superconducting European XFEL linear accelerator consists of 100 accelerator modules with 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF) at DESY. This paper gives an overview of the test sequences for the superconducting cavities, applied in the preparation area and at the two cryostats (XATC) of the AMTF-hall, and describes the complete area. In addition it summarizes the tests and lessons learnt until the middle of 2014.

  7. The Hall D solenoid helium refrigeration system at JLab

    NASA Astrophysics Data System (ADS)

    Laverdure, N.; Creel, J.; Dixon, K.; Ganni, V.; Martin, F.; Norton, R.; Radovic, S.

    2014-01-01

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  8. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  9. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  10. Recovery Act - Measurement of Parity Violation in Deep Inelastic Scattering and Studies of the Nucleon Spin Structure at JLab 6 and 11 GeV

    SciTech Connect

    Zheng, Xiaochao

    2016-03-10

    The program proposed contains two ingredients which aim to address aspects of two of the three research frontiers of nuclear science as identified in the 2007 NSAC Long Range Plan. The first topic, a test of the current Standard Model, is an ongoing project focusing on measurements of the parity-violating asymmetry in ~e-2H deep inelastic scattering (PVDIS). The PVDIS measurement is complementary to other completed or ongoing low- to medium-energy tests of the Standard Model. As the first, exploratory, step, an experiment using a 6 GeV electron beam will be carried out from October to December 2009 at the Thomas Jefferson National Accelerator Facility (JLab). Meanwhile, a program using the upgraded JLab 11 GeV beam is being planned. The PVDIS program as a whole will provide the first precision data on the axial quark neutral-weak coupling constants. This will either put the current Standard Model to a test that has never been done before, or reveal information on where to look for New Physics beyond the current Standard Model. The PVDIS program will also provide results on hadronic physics effects such as charge symmetry violation. The second part of the proposed program uses spin observables to address the research frontier concerning QCD and structure of the nucleon. An experiment using the JLab 6 GeV beam in 2001 showed that, contrary to predictions from perturbative quantum chromodynamics (pQCD), while the valence up quark’s spin is parallel to the nucleon’s spin, the valence down quark’s spin is not. In order to test the limit of QCD in describing the nucleon spin structure to a region beyond the 6 GeV kinematics, this measurement will be extended to a more energetic, “deeper” valence quark region using the upgraded JLab 11 GeV beam with a polarized 3He target. Although the two topics of the proposed program appear to focus on different physics, for the upgraded JLab 11 GeV beam, both will utilize a new, yet-to-be-built large acceptance

  11. The Dust Accelerator Facility of the Colorado Center for Lunar Dust and Atmospheric Studies

    SciTech Connect

    Horanyi, M.; Colette, A.; Drake, K.; Gruen, E.; Kempf, S.; Munsat, T.; Robertson, S.; Shu, A.; Sternovsky, Z.; Wang, X.

    2011-11-29

    The NASA Lunar Institute's Colorado Center for Lunar Dust and Atmospheric Studies has recently completed the construction of a new experimental facility to study hypervelocity dust impacts. The installation includes a 3 MV Pelletron, accelerating small particles in the size range of 0.1 to few microns to velocities in the range of 1 to 100 km/s. Here we report the capabilities of our facility, and the results of our first experiments.

  12. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  13. Development and initial operating characteristics of the 20 megawatt linear plasma accelerator facility

    NASA Technical Reports Server (NTRS)

    Carter, A. F.; Weaver, W. R.; Mcfarland, D. R.; Wood, G. P.

    1971-01-01

    A 20-megawatt linear plasma accelerator facility, a steady flow, Faraday-type plasma accelerator facility for high velocity aerodynamic testing, was constructed, developed, and brought to an operational status. The accelerator has a 63.5-mm-square and 0.5-meter-long channel and utilizes nitrogen-seeded with 2 % mole fraction of cesium vapor. Modification of the original accelerator design characteristics and the improvements necessary to make the arc heater a suitable plasma source are described. The measured accelerator electrode current distribution and the electrode-wall potential distributions are given. The computed and the measured values are in good agreement. Measured pitot pressure indicates that an accelerator exit velocity of 9.2 km/sec, is obtained with 30 of the 36 electrode pairs powered and corresponds to a velocity increase to about 2 1/4 times the computed entrance velocity. The computed stagnation enthalpy at the accelerator exit is 92 MJ/kg, and the mass density corresponds to an altitude of about 58 km. The 92 MJ/kg stagnation enthalpy corresponds to a kinetic energy content at low temperature equivalent to a velocity of 13.6 km/sec.

  14. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Lopez, David Juarez

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  15. Evaluation and analysis of the residual radioactivity for the 15UD Pelletron accelerator facility

    SciTech Connect

    Sonkawade, R. G.

    2007-07-01

    For the assessment of radiological impact of the accelerators, it will be better to have the documented information on activation of metal parts of the accelerator components. It is very much essential to get reliable data on these subjects. During acceleration of light ion, the residual radioactivity in the accelerator facility was found near the Analyzing Magnet, single slit, Beam Profile Monitors (BPM), Faraday Cups (FC), bellows, beginning of switching magnet bellows, at the target and the ladder. Study with HPGE detector gives an insight of the formation of the short or long lived radionuclides. The different targets used in the light ion experiment were also monitored and proper decommissioning and decontamination steps were followed. This paper presents the data of residual radioactivity in the 15UD Pelletron accelerator infrastructure. (author)

  16. Beam dynamics activities at the Thomas Jefferson National Accelerator Facility (Jefferson Lab)

    SciTech Connect

    Douglas, D.R.

    1997-12-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) has been funded by the US Navy to build an infra-red FEL driven by an energy-recovering compact SRF-based linear accelerator. The machine is to produce a 1 kW IR photon beam. The Jefferson Lab Accelerator Division is presently engaged in detailed design and beam dynamics studies for the driver accelerator. Principle beam dynamics and beam transport considerations include: (1) generation and transport of a high-quality, high-current, space-charge dominated beam; (2) the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; (3) low-loss transport of a large momentum spread, high-current beam; (4) beam break up (BBU) instabilities in the recirculating accelerator; (5) impedance policing of transport system components; and (6) RF drive system control during energy recovery and FEL operation.

  17. Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

    SciTech Connect

    Araki, S.; Hayano, H.; Higashi, Y.; Honda, Y.; Kanazawa, K.; Kubo, K.; Kume, T.; Kuriki, M.; Kuroda, S.; Masuzawa, M.; Naito, T.; Okugi, T.; Sugahara, R.; Takahashi, T.; Tauchi, T.; Terunuma, N.; Toge, N.; Urakawa, J.; Vogel, V.; Yamaoka, H.; Yokoya, K.; /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Novosibirsk, IYF /Daresbury /CERN /Hiroshima U. /Orsay, LAL /LLNL, Livermore /North Carolina A-T State U. /Oxford U. /Pohang Accelerator Lab. /Queen Mary, U. of London /Royal Holloway, U. of London /DESY /SLAC /University Coll. London /Oregon U. /Tokyo U.

    2005-05-27

    To reach design luminosity, the International Linear Collider (ILC) must be able to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittances are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 37 nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.

  18. Proceedings of: 2005 Particle Acceleration Confence

    SciTech Connect

    Henderson, Stuart

    2006-01-01

    The 21st Particle Accelerator Conference, PAC05, took place at the Knoxville Convention Center (KCC) from Monday through Friday, May 16-20, 2005. Sponsored by the American Physical Society (APS), the Institute of Electrics and Electronics Engineers (IEEE) with its subdivision of Nuclear and Plasma Sciences Society (NPSS), the conference was hosted by the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) Project and Thomas Jefferson National Accelerator Facility (JLab). The conference was chaired by Norbert Holtkamp, and the Local Organizing Committee was made up of staff from the ORNL SNS Project under the chairmanship of Stuart Henderson. The conference welcomed over 1400 delegates from the United States, Europe, Asia, the Middle East, South America and from as far away as Australia. Almost 1400 papers where processed during the conference and will be published on the Joint Accelerator Conferences Website (JACoW) page.

  19. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  20. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    SciTech Connect

    Ballard, Joshua T.; Biallas, George H.; Brown, G.; Butler, David E.; Carstens, Thomas J.; Chudakov, Eugene A.; Creel, Jonathan D.; Egiyan, Hovanes; Martin, F.; Qiang, Yi; Smith, Elton S.; Stevens, Mark A.; Spiegel, Scot L.; Whitlatch, Timothy E.; Wolin, Elliott J.; Ghoshal, Probir K.

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete the system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.

  1. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    SciTech Connect

    Prost, L. R.

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  2. A note on the adaptive optimal control of ion accelerator facilities

    SciTech Connect

    Huang, T. )

    1990-06-01

    The application of optimal control theory to the computer control system of an ion accelerator facility is presented. The process is shown to consist of mathematical modeling of the underlying process, parameter identification, as well as some design methods of the optimal computer control and the techniques of realizing adaptive control.

  3. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  4. SINBAD-The accelerator R&D facility under construction at DESY

    NASA Astrophysics Data System (ADS)

    Dorda, U.; Assmann, R.; Brinkmann, R.; Flöttmann, K.; Hartl, I.; Hüning, M.; Kärtner, F.; Fallahi, A.; Marchetti, B.; Nie, Y.; Osterhoff, J.; Schlarb, H.; Zhu, J.; Maier, A. R.

    2016-09-01

    The SINBAD facility (Short INnovative Bunches and Accelerators at DESY) is a long-term dedicated accelerator research and development facility currently under construction at DESY. It will be located in the premises of the old DORIS accelerator complex and host multiple independent experiments cost-effectively accessing the same central infrastructure like a central high power laser. With the removal of the old DORIS accelerator being completed, the refurbishment of the technical infrastructure is currently starting up. The presently ongoing conversion of the area into the SINBAD facility and the currently foreseen layout is described. The first experiment will use a compact S-band linac for the production of ultra-short bunches at hundred MeV. Once established, one of the main usages will be to externally inject electrons into a laser-driven plasma wakefield accelerator to boost the energy to GeV-level while maintaining a usable beam quality, ultimately aiming to drive an FEL. The second experiment already under planning is the setup of an attosecond radiation source with advanced technology. Further usage of the available space and infrastructure is revised and national and international collaborations are being established.

  5. Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations

    SciTech Connect

    Mao, X.S.; Leitner, M.Santana; Vollaire, J.

    2011-08-22

    Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

  6. The Berkeley accelerator space effects facility (BASE) - A newmission for the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, M.A.

    2005-09-06

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R&D in accelerator technology and a test facility for the National Security Space (NSS) community (the U.S. Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the Cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator and Space Effects (BASE) facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 AMeV ''cocktail'' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades.

  7. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher; Williams, Gwyn

    2012-07-01

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  8. A facility for studying irradiation accelerated corrosion in high temperature water

    NASA Astrophysics Data System (ADS)

    Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

    2014-08-01

    A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 μA/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

  9. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2016-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  10. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    SciTech Connect

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  11. Hypernuclear spectroscopy program at JLab Hall C

    SciTech Connect

    Hashimoto, Osamu; Hashimoto, Osamu; Nakamura, Satoshi; Acha Quimper, Armando; Ahmidouch, Abdellah; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Baker, O.; Baturin, Pavlo; Benmokhtar, Fatiha; Bosted, Peter; Carlini, Roger; Chen, X.; Christy, Michael; Cole, Leon; Danagoulian, Samuel; Daniel, AJI; Dharmawardane, Kahanawita; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gan, Liping; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Halkyard, Rebekah; Honda, D.; Horn, Tanja; Hu, Bitao; Hu, S.; Hungerford, Ed; Ispiryan, Mikayel; Johnston, Kathleen; Jones, Mark; Kalantarians, Narbe; Kaneta, M.; Kato, F.; Kato, Seigo; Kawama, Daisuke; Keppel, Cynthia; Li, Ya; Luo, Wei; Mack, David; Margaryan, Amur; Marikyan, Gagik; Maruyama, Nayuta; Matsumura, Akihiko; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Navasardyan, Tigran; Niculescu, Gabriel; Niculescu, Maria-Ioana; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Okayasu, Yuichi; Pamela, Priscilla; Perez, Naipy; Petkovic, Tomislav; Randeniya, Kapugodage; Reinhold, Joerg; Rivera Castillo, Roberto; Roche, Julie; Rodriguez, Victor; Sato, Yoshinori; Seva, Tomislav; Tang, Liguang; Simicevic, Neven; Smith, Gregory; Sumihama, Mizuki; Song, Y.; Tadevosyan, Vardan; Takahashi, Toshiyuki; Tamura, Hirokazu; Tvaskis, Vladas; Vulcan, William; Wang, B.; Wells, Steven; Yan, Chen; Yuan, Lulin; Zamkochian, S.

    2008-05-01

    DOI: http://dx.doi.org/10.1016/j.nuclphysa.2008.01.029
    Hypernuclear production by the (e,e?K+) reaction has unique advantages in hypernuclear spectroscopy of the S=?1 regime. The second-generation spectroscopy experiment on 12C, 7Li and 28Si targets has been recently carried out at JLab Hall C with a new experimental configuration (Tilt method) and also using a new high-resolution kaon spectrometer (HKS). The experiment is described and preliminary results are presented together with the empasis of significance of the (e,e?K+) reaction for ? hypernuclear spectroscopy and its future prospects.

  12. The Radiological Research Accelerator Facility. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  13. The Radiological Research Accelerator Facility. Progress report, December 1, 1991--November 30, 1992

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  14. Meson Spectroscopy At Jlab At 12 Gev

    SciTech Connect

    Fegan, Stuart

    2014-12-01

    The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new generation of experiments in hadronic nuclear physics, seeking to address fundamental questions in our understanding of QCD. The existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. This article will review the meson spectroscopy program being planned at the lab following the 12 GeV upgrade, utilising real and quasi-real photon beams in two of the lab's four experimental halls, whose distinct capabilities will enable an extensive set of spectroscopy experiments to be performed at the same facility.

  15. THE JLAMP VUV/SOFT X-RAY USER FACILITY AT JEFFERSON LABORATORY

    SciTech Connect

    S.V. Benson; D. Douglas; P. Evtushenko; J. Gubeli; F.E. Hannon; K. Jordan; J. M. Klopf; G.R. Neil; Michelle D. Shinn; C. Tennant; G.P. Williams; S. Zhang

    2010-05-01

    Jefferson Lab (JLab) is proposing JLAMP (JLab Amplifier), a 4th generation light source covering the 10-100 eV range in the fundamental mode with harmonics stretching towards the oxygen k-edge. The new photon science user facility will feature a two-pass superconducting LINAC to accelerate the electron beam to 600MeV at repetition rates of 4.68MHz continuous wave. The average brightness from a seeded amplifier free electron laser (FEL) will substantially exceed existing light sources in this device's wavelength range, extended by harmonics towards 2 nm. Multiple photon sources will be made available for pump-probe dynamical studies. The status of the machine design and technical challenges associated with the development of the JLAMP are presented here.

  16. The first picosecond terawatt CO{sub 2} laser at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO{sub 2} laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse.

  17. Estimation of thermal neutron fluences in the concrete of proton accelerator facilities from 36Cl production

    NASA Astrophysics Data System (ADS)

    Bessho, K.; Matsumura, H.; Miura, T.; Wang, Q.; Masumoto, K.; Hagura, H.; Nagashima, Y.; Seki, R.; Takahashi, T.; Sasa, K.; Sueki, K.; Matsuhiro, T.; Tosaki, Y.

    2007-06-01

    The thermal neutron fluence that poured into the shielding concrete of proton accelerator facilities was estimated from the in situ production of 36Cl. The thermal neutron fluences at concrete surfaces during 10-30 years of operation were in the range of 1012-1014 n/cm2. The maxima in thermal neutron fluences were observed at ≈5-15 cm in the depths analyzed for 36Cl/35Cl by AMS. These characteristics imply that thermalization of neutrons occurred inside the concrete. Compared to the several tens of MeV cyclotrons, secondary neutrons penetrate deeper into the concrete at the high-energy accelerators possessing acceleration energies of 400 MeV and 12 GeV. The attenuation length of neutrons reflects the energy spectra of secondary neutrons emitted by the nuclear reaction at the beam-loss points. Increasing the energy of secondary neutrons shifts the maximum in the thermal neutron fluences to deeper positions. The data obtained in this study will be useful for the radioactive waste management at accelerator facilities.

  18. Distributed UHV system for the folded tandem ion accelerator facility at BARC

    NASA Astrophysics Data System (ADS)

    Gupta, S. K.; Agarwal, A.; Singh, S. K.; Basu, A.; P, Sapna; Sarode, S. P.; Singh, V. P.; Subrahmanyam, N. B. V.; Bhatt, J. P.; Pol, S. S.; Raut, P. J.; Ware, S. V.; Singh, P.; Choudhury, R. K.; Kailas, S.

    2008-05-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) Facility at the Nuclear Physics Division, BARC is operational and accelerated beams of both light and heavy ions are being used extensively for basic and applied research. An average vacuum of the order of 10-8-10-9 Torr is maintained for maximum beam transmission and minimum beam energy spreads. The FOTIA vacuum system comprises of about 55 meter long, 100 mm diameter beam lines including various diagnostic devices, two accelerating tubes and four narrow vacuum chambers. The cross sections of the vacuum chambers are 14mm × 24mm for 180°, 38mm × 60mm and 19 × 44 mm for the and 70° & 90° bending magnets and Switching chambers respectively. All the beam line components are UHV compatible, fabricated from stainless steel 304L grade material fitted with metal gaskets. The total volume ~5.8 × 105 cm3 and surface area of 4.6 × 104 cm2, interspersed with total 18 pumping stations. The accelerating tubes are subjected to very high voltage gradient, 20.4 kV/cm, which requires a hydrocarbon free and clean vacuum for smooth operation of the accelerator. Vacuum interlocks are provided to various devices for safe operation of the accelerator. Specially designed sputter ion pumps for higher environmental pressure of 8 atmospheres are used to pump the accelerating tubes and the vacuum chamber for the 180° bending magnet. Fast acting valves are provided for isolating main accelerator against accidental air rush from rest of the beam lines. All the vacuum readings are displayed locally and are also available remotely through computer interface to the Control Room. Vacuum system details are described in this paper.

  19. Neutron research and facility development at the Oak Ridge Electron Linear Accelerator 1970 to 1995

    SciTech Connect

    Peelle, R.W.; Harvey, J.A.; Maienschein, F.C.; Weston, L.W.; Olsen, D.K.; Larson, D.C.; Macklin, R.L.

    1982-07-01

    This report reviews the accomplishments of the first decade of operation of the Oak Ridge Electron Linear Accelerator (ORELA) and discusses the plans for the facility in the coming decade. Motivations for scientific and applied research during the next decade are included. In addition, ORELA is compared with competing facilities, and prospects for ORELA's improvement and even replacement are reported. Development efforts for the next few years are outlined that are consistent with the anticipated research goals. Recommendations for hardware development include improving the electron injection system to give much larger short-pulse currents on a reliable basis, constructing an Electron Beam Injector Laboratory to help make this improvement possible, continuing a study of possibly replacing the electron accelerator with a proton machine, and replacing or upgrading the facility's data-acquistion and immediate-analysis computer systems. Increased operating time and more involvement of nuclear theorists are recommended, and an effective staff size for optimum use of this unique facility is discussed. A bibliography of all ORELA-related publications is included.

  20. Hypernuclear Spectroscopy at JLab Hall C

    SciTech Connect

    Hashimoto, Osamu; Doi, Daisuke; Fujii, Yu; Toshiyuki, Gogami; Kanda, Hiroki; Kaneta, M; Kawama, Daisuke; Maeda, Kazushige; Maruta, Tomofumi; Matsumura, Akihiko; Nagao, Sho; Nakamura, Satoshi; Shichijo, Ayako; Tamura, Hirokazu; Taniya, Naotaka; Yamamoto, Taku; Yokota, Kosuke; Kato, S; Sato, Yoshinori; Takahashi, Toshiyuki; Noumi, Hiroyuki; Motoba, T; Hiyama, E; Albayrak, Ibrahim; Ates, Ozgur; Chen, Chunhua; Christy, Michael; Keppel, Cynthia; Kohl, Karl; Li, Ya; Liyanage, Anusha Habarakada; Tang, Liguang; Walton, T; Ye, Zhihong; Yuan, Lulin; Zhu, Lingyan; Baturin, Pavlo; Boeglin, Werner; Dhamija, Seema; Markowitz, Pete; Raue, Brian; Reinhold, Joerg; Hungerford, Ed; Ent, Rolf; Fenker, Howard; Gaskell, David; Horn, Tanja; Jones, Mark; Smith, Gregory; Vulcan, William; Wood, Stephen; Johnston, C; Simicevic, Neven; Wells, Stephen; Samantha, Chhanda; Hu, Bitao; Shen, Ji; Wang, W; Zhang, Xiaozhuo; Zhang, Yi; Feng, Jing; Fu, Y; Zhou, Jian; Zhou, S; Jiang, Yi; Lu, H; Yan, Xinhu; Ye, Yunxiu; Gan, Liping; Ahmidouch, Abdellah; Danagoulian, Samuel; Gasparian, Ashot; Elaasar, Mostafa; Wesselmann, Frank; Asaturyan, Arshak; Margaryan, Amur; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Tadevosyan, Vardan; Androic, Darko; Furic, Miroslav; Petkovic, Tomislav; Seva, Tomislav; Niculescu, Gabriel; Niculescu, Maria-Ioana; Rodriguez, Victor; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Urciuoli, Guido; De Leo, Raffaele; Maronne, S; Achenbach, Carsten; Pochodzalla, J

    2010-03-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e'K+) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e'K+) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the “Tilt method” was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7ΛHe and 28ΛAl together with that of 12ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7Li, 9Be, 10B, 12C and 52Cr as well as with those of CH2 and H2O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  1. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  2. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    SciTech Connect

    Buckner, M.; Cappiello, M.; Pitcher, E.; O`Brien, H.

    1998-08-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M{ampersand}O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project.

  3. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    SciTech Connect

    Macek, R.J.

    1994-07-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

  4. Can-AMS: The New Accelerator Mass Spectrometry Facility At The University Of Ottawa

    SciTech Connect

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.; Kotzer, T.; Litherland, A. E.

    2011-06-01

    The Canadian Centre for Accelerator Mass Spectrometry (AMS) at the University of Ottawa will be equipped with a new, 3 MV tandem accelerator with peripheral equipment for the analysis of elements ranging from tritium to the actinides. This facility, along with a wide array of support instrumentation recently funded by the Canada Foundation for Innovation, will be located in a new science building on the downtown campus of the University of Ottawa. In addition to providing the standard AMS measurements on {sup 14}C, {sup 10}Be, {sup 26}Al, {sup 36}Cl and {sup 129}I for earth, environmental, cultural and biomedical sciences, this facility will incorporate the new technologies of anion isobar separation at low energies using RFQ chemical reaction cells for {sup 36}Cl and new heavy element applications, integrated sample combustion and gas ion source for biomedical and environmental {sup 14}C analysis and the use of novel target matrices for expanding the range of applicable elements and simplifying sample preparation, all currently being developed at IsoTrace. This paper will outline the design goals for the new facility, present some details of the new AMS technologies, in particular the Isobar Separator for Anions and discuss the design of the AMS system resulting from these requirements.

  5. Progress of Bep Treatments on Nb at JLAB

    SciTech Connect

    A.T. Wu, S. Jin, R.A. Rimmer,X.Y. Lu, K. Zhao

    2010-05-01

    Recent experimental results have indicated that Buffered Electropolishing (BEP) is a promising candidate for the next generation of surface treatment technique for Nb superconducting radio frequency (SRF) cavities to be used in particle accelerators. In order to lay the foundation for using BEP as the next generation surface treatment technique for Nb SRF cavities, some fundamental aspects of BEP treatments for Nb have to be investigated. In this report, recent progress on BEP study at JLab is shown. Improvements on the existing vertical BEP are made to allow water cooling from outside of a Nb single cell cavity in addition to cooling provided by acid circulation so that the temperature of the cavity can be stable during processing. Some investigation on the electrolyte mixture was performed to check the aging effect of the electrolyte. It is shown that good polishing results can still be obtained on Nb at a current density of 171 mA/cm when the BEP electrolyte was at the stationary condition and was more than 1.5 years old.

  6. Measurement of depth distributions of (3)H and (14)C induced in concrete shielding of an electron accelerator facility.

    PubMed

    Endo, Akira; Harada, Yasunori; Kawasaki, Katsuya; Kikuchi, Masamitsu

    2004-06-01

    The estimation of radioactivity induced in concrete shielding is important for the decommissioning of accelerator facilities. Concentrations of (3)H and (14)C in the concrete shielding of an electron linear accelerator were measured, and the depth distributions of (3)H and (14)C and gamma-ray emitters were discussed in relation to their formation reactions.

  7. The spin program with CLAS at JLab

    NASA Astrophysics Data System (ADS)

    Minehart, R. C.

    2005-01-01

    We report on the status of an extensive program to study the scattering of longitudinally polarized electrons from longitudinally polarized NH3 and ND3 targets using the CLAS detector at JLab. The data span a range in Q 2 from 0.05-4.5 (GeV/c)2 and a range in W, the γ* N invariant mass, up to about 3 GeV. With the excellent particle identification available with the CLA, both inclusive and exclusive scattering can be studied. The experimental techniques are reviewed and some preliminary results are presented. This paper focuses on extraction of the spin structure functiong g 1 for the proton and the deuteron.

  8. An Efficient RF Source for Jlab

    SciTech Connect

    Neubauer, M.; Dudas, A.; Rimmer, Robert A.; Wang, Haipeng

    2013-12-01

    We propose the development of a highly reliable high efficiency RF source for JLAB with a lower lifetime cost operating at 80% efficiency with system operating costs of about 0.7M$/year for the 6 GeV machine. The design of the RF source will be based upon two injection locked magnetrons in a novel combining architecture for amplitude modulation and a cross field amplifier (CFA) as an output tube for the 12 GeV upgrade. A cost analysis including efficiency and reliability will be performed to determine the optimum system architecture. Several different system architectures will be designed and evaluated for a dual injection locked magnetron source using novel combining techniques and possibly a CFA as the output tube. A paper design for the 1497 MHz magnetron system will be completed. The optimum system architecture with all relevant specifications will be completed so that a prototype can be built.

  9. The Machine Protection System for the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Wu, Jinyuan; Warner, Arden; Liu, Ning; Neswold, Richard; Carmichael, Linden

    2015-11-15

    The Machine Protection System (MPS) for the Fermilab Accelerator Science and Technology Facility (FAST) has been implemented and tested. The system receives signals from several subsystems and devices which conveys the relevant status needed to the safely operate the accelerator. Logic decisions are made based on these inputs and some predefined user settings which in turn controls the gate signal to the laser of the photo injector. The inputs of the system have a wide variety of signal types, encoding methods and urgencies for which the system is designed to accommodate. The MPS receives fast shutdown (FSD) signals generated by the beam loss system and inhibits the beam or reduces the beam intensity within a macropulse when the beam losses at several places along the accelerator beam line are higher than acceptable values. TTL or relay contact signals from the vacuum system, toroids, magnet systems etc., are chosen with polarities that ensure safe operation of the accelerator from unintended events such as cable disconnection in the harsh industrial environment of the experimental hall. A RS422 serial communication scheme is used to interface the operation permit generator module and a large number of movable devices each reporting multi-bit status. The system also supports operations at user defined lower beam levels for system conunissioning. The machine protection system is implemented with two commercially available off-the-shelf VMEbus based modules with on board FPGA devices. The system is monitored and controlled via the VMEbus by a single board CPU

  10. Status of high current ion source operation at the GSI accelerator facility

    SciTech Connect

    Hollinger, R.; Galonska, M.; Gutermuth, B.; Heymach, F.; Krichbaum, H.; Leible, K.-D.; Ochs, K.; Schaeffer, P.; Schaeffer, S.; Spaedtke, P.; Stork, M.; Wesp, A.; Mayr, R.

    2008-02-15

    Vacuum arc ion sources, Penning ion sources, and filament driven multicusp ion sources are used for the production of high current ion beams of a variety of metallic and gaseous ions at the GSI accelerator facility. For accelerator operation, the ion sources have to provide a stable beam over a long period of time with an energy of 2.2 keV/u and a maximum mass over charge ratio of 65. The status of beam time operation at the high current injector is presented here giving an outline on important ion source data, such as ion beam current, ion beam spectrum, transversal emittance, life time, duty factor, and transmission along the low energy beam transport section.

  11. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  12. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  13. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  14. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    SciTech Connect

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report the resulting neutron and photon dose fields.

  15. Upgrade of the A0 photoinjector laser system for NML accelerator test facility at Fermilab

    SciTech Connect

    Ruan, J.; Edwards, H.; Fliller, R.P., III; Santucci, J.K.; /Fermilab

    2007-06-01

    The current Fermilab A0 Photoinjector laser system includes a seed laser, a flashlamp pumped multipass amplifier cavity, a flashlamp pumped 2-pass amplifier system followed by an Infra-Red (IR) to Ultra-Violet (UV) conversion stage. However the current system can only deliver up to 800 pulses due to the low efficiency of Nd:Glass used inside multi-pass cavity. In this paper we will report the effort to develop a new multi pass cavity based on Nd:YLF crystal end-pumped by diode laser. We will also discuss the foreseen design of the laser system for the NML accelerator test facility at Fermilab.

  16. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    SciTech Connect

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-07-10

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand.

  17. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Spata, Michael F.

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  18. Overview and Status of the 12 GeV Cryogenic System Upgrade At Jlab

    SciTech Connect

    Dana Arenius, Jonathan Creel, Venkatarao Ganni, Kelly Dixon, Peter Knudsen

    2010-04-01

    As part of the planned Jefferson Laboratory's electron accelerator (CEBAF) power upgrade, ten additional superconducting RF cryomodules will be added to its accelerator linacs. Although physically the same size as each of the original 40 linac cryomodules, each new cryomodule will have approximately 4 times the acceleration power. To support the additional cryomodule heat loads generated, the existing 2K, 4600W Central Helium Liquefier (CHL) plant capacity will be doubled to a total of 9200W at 2K plus 24,000W at 35K for shield loads. The specified base line process cycle has been modeled after the laboratory s "Ganni Helium Cycle" process technology. In addition, a fourth physics experimental "Hall D" will be constructed which will have an additional stand alone 200W at 4K helium cryogenic plant. In October of 2008, Jefferson Laboratory (JLab) received approval for project "Critical Decision 3" construction phase status from the US Department of Energy.

  19. JLAMP: AN AMPLIFIER-BASED FEL IN THE JLAB SRF ERL DRIVER

    SciTech Connect

    Kevin Jordan; Stephen V. Benson; David Douglas; Pavel Evtushenko; Carlos Hernandez-Garcia; George R. Neil

    2007-06-13

    Notional designs for energy-recovering linac (“ERL”) -driven high average power free electron lasers (“FEL”s) often invoke amplifier-based architectures. To date, however, amplifier FELs have been limited in average power output to values several orders of magnitude lower than those demonstrated in optical-resonator based systems; this is due at least in part to the limited electron beam powers available from their driver accelerators. In order to directly contrast the performance available from amplifiers to that provided by high-power cavity-based resonators, we have developed a scheme to test an amplifier FEL in the JLab SRF ERL driver. We describe an accelerator system design that can seamlessly and non-invasively integrate a 10 m wiggler into the existing system and which provides, at least in principle, performance that would support high-efficiency lasing in an amplifier configuration. Details of the design and an accelerator performance analysis will be presented

  20. Materials irradiation facilities at the high-power Swiss proton accelerator complex

    NASA Astrophysics Data System (ADS)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Aebersold, Hans-Ulrich

    2007-04-01

    Within the Swiss proton accelerator complex at the Paul-Scherrer-Institute (PSI), several irradiation facilities are operated for investigation of materials behavior under high-dose irradiation conditions as well as for neutron activation analysis and isotope production. In LiSoR (liquid solid reaction), a liquid metal loop connected to the 72 MeV proton accelerator Injector 1, steel samples are irradiated while being in contact with flowing lead-bismuth-eutectic (LBE) at elevated temperatures and under tensile stress. In the spallation neutron source SINQ, the STIP program (SINQ Target Irradiation Program) allows materials irradiation under realistic spallation conditions, i.e. in a mixed spectrum of 570 MeV protons and spallation neutrons. Hundreds of samples, mainly austenitic and ferritic-martensitic steels such as 316L, T91 or F82H, were irradiated to doses up to 20 dpa as part of STIP. These also included steel samples in contact with liquid Hg and liquid LBE. MEGAPIE (MEGAwatt PIlot Experiment), a liquid metal target employing LBE, operated in SINQ during the second half of 2006, can be taken as a materials irradiation facility on its own. Adjacent to the target position, SINQ houses a neutron irradiation rabbit system serving activation analysis and isotope production.

  1. Measurements and simulations of wakefields at the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Snuverink, J.; Ainsworth, R.; Boogert, S. T.; Cullinan, F. J.; Lyapin, A.; Kim, Y. I.; Kubo, K.; Kuroda, S.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; White, G. R.

    2016-09-01

    Wakefields are an important factor in accelerator design, and are a real concern when preserving the low beam emittance in modern machines. Charge dependent beam size growth has been observed at the Accelerator Test Facility (ATF2), a test accelerator for future linear collider beam delivery systems. Part of the explanation of this beam size growth is wakefields. In this paper we present numerical calculations of the wakefields produced by several types of geometrical discontinuities in the beam line as well as tracking simulations to estimate the induced effects. We also discuss precision beam kick measurements performed with the ATF2 cavity beam position monitor system for a test wakefield source in a movable section of the vacuum chamber. Using an improved model independent method we measured a wakefield kick for this movable section of about 0.49 V /pC /mm , which, compared to the calculated value from electromagnetic simulations of 0.41 V /pC /mm , is within the systematic error.

  2. Accelerator mass spectrometry and radioisotope detection at the Argonne FN tandem facility

    SciTech Connect

    Henning, W.; Kutschera, W.; Paul, M.; Smither, R.K.; Stephenson, E.J.; Yntema, J.L.

    1980-01-01

    The Argonne FN tandem accelerator and standard components of its experimental heavy-ion research facility, have been used as a highly-sensitive mass spectrometer to detect several long-lived radioisotopes and measure their concentration by counting of accelerated ions. Background beams from isobaric nuclei have been eliminated by combining the dispersion from the energy loss in a uniform Al foil stack with the momentum resolution of an Enge split-pole magnetic spectrograph. Radioisotope concentrations in the following ranges have been measured: /sup 14/C//sup 12/C = 10/sup -12/ to 10/sup -13/, /sup 26/Al//sup 27/Al = 10/sup -10/ to 10/sup -12/, /sup 32/Si/Si = 10/sup -8/ to 10/sup -14/, /sup 36/Cl/Cl = 10/sup -10/ to 10/sup -11/. Particular emphasis was put on exploring to what extent the technique of identifying and counting individual ions in an accelerator beam can be conveniently used to determine nuclear quantities of interest when their measurement involves very low radioisotope concentrations. The usefulness of this method can be demonstrated by measuring the /sup 26/Mg(p,n)/sup 26/Al(7.2 x 10/sup 5/ yr) cross section at proton energies in the astrophysically interesting range just above threshold, and by determining the previously poorly known half life of /sup 32/Si.

  3. An accelerator facility for WDM, HEDP, and HIF investigations in Nazarbayev University

    NASA Astrophysics Data System (ADS)

    Kaikanov, M.; Baigarin, K.; Tikhonov, A.; Urazbayev, A.; Kwan, J. W.; Henestroza, E.; Remnev, G.; Shubin, B.; Stepanov, A.; Shamanin, V.; Waldron, W. L.

    2016-05-01

    Nazarbayev University (NU) in Astana, Kazakhstan, is planning to build a new multi-MV, ∼10 to several hundred GW/cm2 ion accelerator facility which will be used in studies of material properties at extreme conditions relevant to ion-beam-driven inertial fusion energy, and other applications. Two design options have been considered. The first option is a 1.2 MV induction linac similar to the NDCX-II at LBNL, but with modifications, capable of heating a 1 mm spot size thin targets to a few eV temperature. The second option is a 2 - 3 MV, ∼200 kA, single-gap-diode proton accelerator powered by an inductive voltage adder. The high current proton beam can be focused to ∼1 cm spot size to obtain power densities of several hundred GW/cm2, capable of heating thick targets to temperatures of tens of eV. In both cases, a common requirement to achieving high beam intensity on target and pulse length compression is to utilize beam neutralization at the final stage of beam focusing. Initial experiments on pulsed ion beam neutralization have been carried out on a 0.3 MV, 1.5 GW single-gap ion accelerator at Tomsk Polytechnic University with the goal of creating a plasma region in front of a target at densities exceeding ∼1012 cm-3.

  4. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  5. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  6. Fostering European Collaborations: EUFRAT and work done at the accelerator facilities of JRC-IRMM

    NASA Astrophysics Data System (ADS)

    Mondelaers, W.; Hambsch, F.-J.; Heyse, J.; Kopecky, S.; Oberstedt, S.; Plompen, A.; Schillebeeckx, P.; Siegler, P.

    2016-11-01

    The European Commission via the General Directorate RTD in its different Framework Programs supported collaborations of member state institutions dealing with nuclear data. The projects EFNUDAT, ERINDA, CHANDA and EUFRAT all have in common Transnational Access Activities (TAA) to partner institutions. Within the past 10years the collaborations have grown and in CHANDA now 35 partners are involved of which 16 offer TAA to their facilities. Since June 2014 JRC-IRMM, one of the driving forces behind the TAA, launched its own TAA project EUFRAT to foster collaborations with member states institutions. The calls for proposals are open ended with a deadline twice a year. A Project Advisory Committee discusses the proposals and decides on about approval. Financial support is given to approved proposals for two scientists. So far two calls have been evaluated with a request for access totalling more than 5000h. Examples of proposals at the accelerator facilities at the JRC-IRMM are presented showing the multitude of possibilities using the nuclear facilities at the JRC-IRMM.

  7. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  8. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  9. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    NASA Astrophysics Data System (ADS)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-10-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.

  10. Report on selected concerns regarding property accountability at the Continuous Electron Beam Accelerator facility

    SciTech Connect

    1995-11-24

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a federally funded research and development center at Newport News, Virginia, At the time of our review, Southeastern Universities Research Association (SURA) was operating CEBAF for the Department of Energy (DOE) under a management and operating (M&O) contract administered by DOE`s Oak Ridge Operations Office. SURA is currently operating CEBAF under a performance based management contract, The purpose of our inspection was to evaluate selected management issues regarding property accountability at CEBAF that we identified as a result of a complaint received by the Office of Inspector General. The complainant alleged a lack of accountability for Government equipment at CEBAF and the lack of an equipment inventory. Specifically, the complainant alleged, among other things, that after a named supervisor departed, CEBAF personnel had no idea what equipment had been assigned to the supervisor and could not account for any missing materials.

  11. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    NASA Astrophysics Data System (ADS)

    Mihalcea, D.; Jacobson, B.; Murokh, A.; Piot, P.; Ruan, J.

    2017-03-01

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ˜1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  12. Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins.

    PubMed

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via "electrostatic steering" and at the same time promote "folding-competent" encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular

  13. Development of a PYTHON-based emittance calculator at Fermilab Accelerator Science and Technology (FAST) facility

    NASA Astrophysics Data System (ADS)

    Green, A. T.

    Beam emittance is an important characteristic describing charged particle beams. In linear accelerators (linac), it is critical to characterize the beam phase space parameters and, in particular, to precisely measure transverse beam emittance. The quadrupole scan (quad-scan) is a well-established technique used to characterize transverse beam parameters in four-dimensional phase space, including beam emittance. A computational algorithm with PYTHON scripts has been developed to estimate beam parameters, in particular beam emittance, using the quad-scan technique in the electron linac at the Fermilab Accelerator Science and Technology (FAST) facility. This script has been implemented in conjunction with an automated quad-scan tool (also written in PYTHON) and has decreased the time it takes to perform a single quad-scan from an hour to a few minutes. From the experimental data, the emittance calculator quickly delivers several results including: geometrical and normalized transverse emittance, Courant-Snyder parameters, and plots of the beam size versus quadrupole field strength, among others. This paper will discuss the details of the techniques used, the results from several quad-scans preformed at FAST during the electron injector commissioning, and the PYTHON code used to obtain the results.

  14. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory

    SciTech Connect

    Leemann, Chrisoph; Douglas, David R; Krafft, Geoffrey A

    2001-08-01

    The Jefferson Laboratory's superconducting radiofrequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides multi-GeV continuous-wave (cw) beams for experiments at the nuclear and particle physics interface. CEBAF comprises two antiparallel linacs linked by nine recirculation beam lines for up to five passes. By the early 1990s, accelerator installation was proceeding in parallel with commissioning. By the mid-1990s, CEBAF was providing simultaneous beams at different but correlated energies up to 4 GeV to three experimental halls. By 2000, with srf development having raised the average cavity gradient up to 7.5 MV/m, energies up to nearly 6 GeV were routine, at 1-150 muA for two halls and 1-100 nA for the other. Also routine are beams of >75% polarization. Physics results have led to new questions about the quark structure of nuclei, and therefore to user demand for a planned 12 GeV upgrade. CEBAF's enabling srf technology is also being applied in other projects.

  15. Upgrade of the Drive LINAC for the AWA Facility Dielectric Two-Beam Accelerator

    SciTech Connect

    Power, John; Conde, Manoel; Gai, Wei; Li, Zenghai; Mihalcea, Daniel; /Northern Illinois U.

    2012-07-02

    We report on the design of a seven-cell, standing-wave, 1.3-GHz rf cavity and the associated beam dynamics studies for the upgrade of the drive beamline LINAC at the Argonne Wakefield Accelerator (AWA) facility. The LINAC design is a compromise between single-bunch operation (100 nC {at} 75 MeV) and minimization of the energy droop along the bunch train during bunch-train operation. The 1.3-GHz drive bunch-train target parameters are 75 MeV, 10-20-ns macropulse duration, and 16 x 60 nC microbunches; this is equivalent to a macropulse current and beam power of 80 A and 6 GW, respectively. Each LINAC structure accelerates approximately 1000 nC in 10 ns by a voltage of 11 MV at an rf power of 10 MW. Due to the short bunch-train duration desired ({approx}10 ns) and the existing frequency (1.3 GHz), compensation of the energy droop along the bunch train is difficult to accomplish by means of the two standard techniques: time-domain or frequency-domain beam loading compensation. Therefore, to minimize the energy droop, our design is based on a large stored energy rf cavity. In this paper, we present our rf cavity optimization method, detailed rf cavity design, and beam dynamics studies of the drive beamline.

  16. Low energy beam transport for facility for rare isotope beams driver linear particle accelerator.

    PubMed

    Sun, L T; Leitner, D; Machicoane, G; Pozdeyev, E; Smirnov, V; Vorozhtsov, S B; Winklehner, D; Zhao, Q

    2012-02-01

    The driver linac for the facility for rare isotope beams (FRIB) will provide a wide range of primary ion beams for nuclear physics research. The linac will be capable of accelerating a uranium beam to an energy of up to 200 Mev∕u and delivering it to a fragmentation target with a maximum power of 400 kW. Stable ion beams will be produced by a high performance electron cyclotron resonance ion source operating at 28 GHz. The ion source will be located on a high voltage platform to reach an initial beam energy of 12 keV∕u. After extraction, the ion beam will be transported vertically down to the linac tunnel in a low energy beam transport (LEBT) system and injected into a radio frequency quadrupole (RFQ) operating at a frequency of 80.5 MHz. To meet the beam power requirements, simultaneous acceleration of two-charge states will be used for heavier ions (≥Xe). This paper presents the layout of the FRIB LEBT and the beam dynamics in the LEBT. In particular, simulation and design of the beam line section before charge state selection will be detailed. The need to use an achromatic design for the charge state selection system and the advantage of an ion beam collimation system to limit the emittance of the beam injected into the RFQ will be discussed in this paper.

  17. BNL 56 MHz HOM damper prototype fabrication at JLAB

    SciTech Connect

    Huque, N.; McIntyre, G.; Daly, E. F.; Clemens, W.; Wu, Q.; Seberg, S.; Bellavia, S.

    2015-05-03

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  18. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    SciTech Connect

    Huque, Naeem A.; Daly, Edward F.; Clemens, William A.; McIntyre, Gary T.; Wu, Qiong; Seberg, Scott; Bellavia, Steve

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  19. K-Long Facility for JLab and its Scientific Potential

    NASA Astrophysics Data System (ADS)

    Strakovsky, Igor I.

    2016-11-01

    Our main interest in creating a secondary high-quality KL-beam is to investigate hyperon spectroscopy through both formation and production processes. We propose to study two-body reactions induced by the KL-beam on the proton target. The experiment should measure both differential cross sections and self-analyzed polarizations of the produced Λ-, Σ-, and Ξ-hyperons using the GlueX detector at the Jefferson Lab Hall D. New data will greatly constrain partial-wave analysis and reduce modeldependent uncertainties in the extraction of strange resonance properties, providing a new benchmark for comparisons with QCD-inspired models and LQCD calculations. The measurements will span c.m. cos θ from -0.95 to 0.95 in c.m. range above W = 1490 MeV and up to 4000 MeV.

  20. K-Long Facility for JLab and its Scientific Potential

    SciTech Connect

    Strakovski, Igor I.

    2016-11-29

    Our main interest in creating a secondary high-quality KL-beam is to investigate hyperon spectroscopy through both formation and production processes. We propose to study two-body reactions induced by the KL-beam on the proton target. The experiment should measure both differential cross sections and self-analyzed polarizations of the produced $\\Lambda$-, $\\Sigma$-, and $\\Xi$-hyperons using the GlueX detector at the Jefferson Lab Hall D. New data will greatly constrain partial-wave analysis and reduce model-dependent uncertainties in the extraction of strange resonance properties, providing a new benchmark for comparisons with QCD-inspired models and LQCD calculations. The measurements will span c.m. $\\cos\\theta$ from -0.95 to 0.95 in c.m. range above W = 1490MeV and up to 4000 MeV.

  1. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  2. The Berkeley Accelerator Space Effects (BASE) Facility A new mission for the 88-Inch Cyclotron at LBNL

    NASA Astrophysics Data System (ADS)

    McMahan, M. A.

    2005-12-01

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R&D in accelerator technology and a test facility for the National Security Space (NSS) community (the US Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator Space Effects (BASE) Facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 A MeV "cocktail" of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades.

  3. JLab's Hall A after the 12 GeV upgrade

    SciTech Connect

    John Lerose

    2004-11-14

    An overview is presented of the planned physics program for JLab's Hall A following the 12 GeV upgrade with emphasis on the equipment needed to achieve the desired experimental goals. Results of simulations of sample experiments with anticipated uncertainties are presented.

  4. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    SciTech Connect

    Nath, Subrata

    2010-09-07

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer {approx}1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  5. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    SciTech Connect

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.; BABZIEN, M.; SKARITKA, J.; RAKOWSKY, G.; YAKIMENKO, V.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Laser (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).

  6. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Constanzo, J.; Fallavier, M.; Alphonse, G.; Bernard, C.; Battiston-Montagne, P.; Rodriguez-Lafrasse, C.; Dauvergne, D.; Beuve, M.

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  7. Probing half βy* optics in the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Patecki, M.; Bett, D.; Marin, E.; Plassard, F.; Tomás, R.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.

    2016-10-01

    A nanometer beam size at the interaction point (IP) is required for future linear colliders to achieve the desired rate of particle collisions. KEK Accelerator Test Facility 2 (ATF2), a scaled down implementation of the linear collider beam delivery system, serves for demonstrating the feasibility of the final focus system (FFS). An unprecedented low vertical beam size at the IP of about 40 nm has been already measured in ATF2 using the optics with a nominal βy* . In our study we decrease the βy* value in order to investigate the performance of more chromatic optics and to study the limits of beam focusing at the IP. Stronger beam focusing amplifies the aberrations from the final focus imperfections which cause an increase of the beam size at the IP. Simulations show that the multipolar errors and final doublet fringe fields spoil the IP beam sizes for ultralow βy* optics but can be mitigated either by increasing the value of the horizontal β* or installing a pair of octupole magnets. We report on our first experimental steps towards the ultralow βy* in ATF2. New methods for the beam diagnostics at the IP were developed in order to precisely set the desired optics. βy* value was half the nominal value. The beam tuning was performed and the measured beam size is compared with the simulation results.

  8. High Brightness Gamma-Ray Production at Fermilab Accelerator Science and Technology (FAST) Facility

    SciTech Connect

    Mihalcea, Daniel; Jacobson, B.; Murokh, A.; Piiot, P.; Ruan, J.

    2016-10-10

    Electron beams with energies of the order of a few 100’s of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ∼ 1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  9. Decay spectroscopy with Solenogam at the ANU Heavy Ion Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gerathy, M. S. M.; Reed, M. W.; Lane, G. J.; Kibédi, T.; Hota, S. S.; Stuchbery, A. E.

    2016-09-01

    Solenogam is a recoil spectrometer designed and constructed for use at the Australian National University (ANU) Heavy-Ion Accelerator Facility (HIAF). The design enables the study of nuclear excitations populated by the decay of long-lived states such as isomers and radioactive ground states. Solenogam is comprised of high-sensitivity γ-ray and electron detector arrays coupled to a new 8-T solenoid. While the installation of the 8-T solenoid proceeds, off-line measurements have been made to characterise Solenogam's performance. Gamma-electron coincidences in the electron capture decay of 182Re into 182W were used to investigate conversion coeffcients and γ-e- angular correlations. The measured conversion coeffcients show good agreement with theoretical calculations and have been used to extract E0/E2 mixing ratios for a number of J → J transitions. The angular correlations measured by the array are in qualitative agreement with theoretical calculations. However, the magnitudes of the correlations are attenuated by approximately 40% for reasons unknown at present. These results are the first full use of the Solenogam system for γ-e- coincidence measurements and have proven that the system is capable of highly-sensitive internal conversion analysis of complex decays.

  10. Restoration of accelerator facilities damaged by Great East Japan Earthquake at Cyclotron and Radioisotope Center, Tohoku University.

    PubMed

    Wakui, Takashi; Itoh, Masatoshi; Shimada, Kenzi; Yoshida, Hidetomo P; Shinozuka, Tsutomu; Sakemi, Yasuhiro

    2014-01-01

    The Cyclotron and Radioisotope Center (CYRIC) of Tohoku University is a joint-use institution for education and research in a wide variety of fields ranging from physics to medicine. Accelerator facilities at the CYRIC provide opportunities for implementing a broad research program, including medical research using positron emission tomography (PET), with accelerated ions and radioisotopes. At the Great East Japan Earthquake on March 11, 2011, no human injuries occurred and a smooth evacuation was made in the CYRIC, thanks to the anti-earthquake measures such as the renovation of the cyclotron building in 2009 mainly to provide seismic strengthening, fixation of shelves to prevent the falling of objects, and securement of the width of the evacuation route. The preparation of an emergency response manual was also helpful. However, the accelerator facilities were damaged because of strong shaking that continued for a few minutes. For example, two columns on which a 930 cyclotron was placed were damaged, and thereby the 930 cyclotron was inclined. All the elements of beam transport lines were deviated from the beam axis. Some peripheral devices in a HM12 cyclotron were broken. Two shielding doors fell from the carriage onto the floor and blocked the entrances to the rooms. The repair work on the accelerator facilities was started at the end of July 2011. During the repair work, the joint use of the accelerator facilities was suspended. After the repair work was completed, the joint use was re-started at October 2012, one and a half years after the earthquake.

  11. Refurbishment and Testing of the 1970's Era LASS Solenoid Coils for JLab's Hall D

    SciTech Connect

    Anumagalla, Ravi; Biallas, George; Brindza, Paul; Carstens, Thomas; Creel, Jonathan; Egiyan, Hovanes; Martin, Floyd; Qiang, Yi; Spiegel, Scot; Stevens, Mark; Wissmann, Mark; Wolin, Elliott

    2012-07-01

    JLab refurbished the LASS1, 1.85 m bore Solenoid, consisting of four superconducting coils to act as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The coils, built in 1971 at Stanford Linier Accelerator Center and used a second time at the MEGA Experiment at Los Alamos, had electrical shorts and leaks to the insulating vacuum along with deteriorated superinsulation & instrumentation. Root cause diagnosis of the problems and the repair methods are described along with the measures used to qualify the vessels and piping within the Laboratory's Pressure Safety Program (mandated by 10CFR851). The extraordinary refrigerator operational methods used to utilize the obsolete cryogenic apparatus gathered for the off-line, single coil tests are described.

  12. The JLAB 3D program at 12 GeV (TMDs + GPDs)

    SciTech Connect

    Pisano, Silvia

    2015-01-01

    The Jefferson Lab CEBAF accelerator is undergoing an upgrade that will increase the beam energy up to 12 GeV. The three experimental Halls operating in the 6-GeV era are upgrading their detectors to adapt their performances to the new available kinematics, and a new Hall (D) is being built. The investigation of the three-dimensional nucleon structure both in the coordinate and in the momentum space represents an essential part of the 12-GeV physics program, and several proposals aiming at the extraction of related observables have been already approved in Hall A, B and C. In this proceedings, the focus of the JLab 3D program will be described, and a selection of proposals will be discussed.

  13. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  14. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    NASA Astrophysics Data System (ADS)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  15. A MRPC prototype for SOLID-TOF in Jlab

    SciTech Connect

    Wang, Y; Wang, J; Gonzalez-Diaz, D; Chen, H; Chen, J; Li, Y; Camsonne, A; Chen, J -P; Gao, H; Meziane, M

    2013-03-01

    A prototype of Multi-gap Resistive Plate Chamber (MRPC) for the future SoLID time of flight system at JLab has been developed. The counter, trapezoidal in shape, is assembled with the newly developed low-resistive Chinese glass. It has 10 × 0.25 mm gas gaps and 11 readout strips of different lengths. The strip width is 2.5 cm with a strip-to-strip interval of 3 mm. Preliminary tests performed with cosmic-rays showed an efficiency higher than 95% and a time resolution around 50 ps. Results under diffuse/uniform irradiation performed at JLab with scattered high energy electrons showed a time resolution of 70–80 ps and over-95% efficiency up to an incoming flux of 15 kHz/cm{sup 2}. These performances meet the requirements of the new time of flight system SoLID-TOF.

  16. Electroproduction of K+ Λ at JLab Hall-C

    SciTech Connect

    Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Dalton, M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, .; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.

    2013-02-07

    A Λ hypernuclear spectroscopic experiment, JLab E05-115 was performed at JLab Hall-C in 2009 by the (e, e' K+) reaction. Data of Λ hypernuclei with mass numbers from A = 7 to A = 52 were successfully taken, and the analyses are in progress. A polyethylene (CH2) target was used as a proton target to calibrate energy scales, and to study elementary process of the p(e, e' K+)Λ, Σ0reaction. We report a preliminary differential cross section of K+ Λ electro-production at low Q2 [~0.01 (GeV/c)2] and at small kaon angles (cosΘ$CM\\atop{K}$ ~0.97) in the present article.

  17. Studies of Resistive Wall Heating at JLAB FEL

    SciTech Connect

    Li, Rui; Benson, Stephen V.

    2013-06-01

    When the JLAB FEL is under CW operation, it had been observed that temperature rises over the wiggler vacuum chamber, presumably as the result of the power deposition on the resistive wall of the wiggler chamber. Previous analyses have been done on the resistive wall impedance for various cases, such as DC, AC, and anomalous skin effects*. Here we report an investigation on the beam kinetic energy losses for each of these cases. This study includes the non-ultrarelativistic effect on resistive wall loss, for both round pipe and parallel plates. We will present the comparison of our results with the measured data obtained during CW operation of the JLAB FEL. Other possible factors contributing to the measured heating will also be discussed.

  18. The electromagnetic calorimeter in JLab Real Compton Scattering Experiment

    SciTech Connect

    Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski

    2007-04-16

    A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.

  19. Hadron Structure Studies in Hall A at Jlab

    SciTech Connect

    Kees de Jager

    2007-10-08

    Three examples are presented from the broad program of nucleon structure research in Hall A at Jefferson Lab (JLab): a measurement of the neutron charge form factor to double the squared momentum-transfer of present data, highly accurate cross-section measurements of Deeply Virtual Compton Scattering and a program of parity-violating asymmetry studies with the 12 GeV upgrade that will provide sensitive probes of the Standard Model and its extensions.

  20. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at theLBNL LOASIS Facility

    SciTech Connect

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-09-01

    We present a design for a compact FEL source of ultrafast, high-peak flux, soft x-ray pulses employing a high-current, GeV-energy electron beam from the existing laser-plasma accelerator at the LBNL LOASIS laser facility. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing both to the high current ({approx} 10 kA) and reasonable charge/pulse ({approx} 0.1-0.5 nC) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially 10{sup 13}--10{sup 14} photons/pulse. We examine devices based both on SASE and high-harmonic generated input seeds to give improved coherence and reduced undulator length, presenting both analytic scalings and numerical simulation results for expected FEL performance. A successful source would result in a new class of compact laser-driven FELs in which a conventional RF accelerator is replaced by a GeV-class laser-plasma accelerator whose active acceleration region is only a few cm in length.

  1. Be aware of neutrons outside short mazes from 10-MV linear accelerators X-rays in radiotherapy facilities.

    PubMed

    Brockstedt, S; Holstein, H; Jakobsson, L; Tomaszewicz, A; Knöös, T

    2015-07-01

    During the radiation survey of a reinstalled 10-MV linear accelerator in an old radiation treatment facility, high dose rates of neutrons were observed. The area outside the maze entrance is used as a waiting room where patients, their relatives and staff other than those involved in the actual treatment can freely pass. High fluence rates of neutrons would cause an unnecessary high effective dose to the staff working in the vicinity of such a system, and it can be several orders higher than the doses received due to X-rays at the same location. However, the common knowledge appears to have been that the effect of neutrons at 10-MV X-ray linear accelerator facilities is negligible and shielding calculations models seldom mention neutrons for this operating energy level. Although data are scarce, reports regarding this phenomenon are now emerging. For the future, it is advocated that contributions from neutrons are considered already during the planning stage of new or modified facilities aimed for 10 MV and that estimated dose levels are verified.

  2. The JLab Ampere-Class cryomodule

    SciTech Connect

    Robert Rimmer; Edward Daly; William Hicks; James Henry; Joseph Preble; Mircea Stirbet; Haipeng Wang; Katherine Wilson; Genfa Wu

    2005-07-10

    We report on the design of a new cryomodule capable of accelerating high-current beams for future ERL based high power compact FELs. We discuss the factors influencing the design choices, including BBU threshold, frequency, HOM power, real-estate gradient, peak surface fields, and operating efficiency. We present a conceptual design that meets the requirements of compact MW-class FEL, however this module design could be useful for a wide range of applications such as electron cooling, electron-ion colliders, industrial processing etc. The concepts developed for this design could also be useful for larger ERL-based light sources, XFELs and even linear colliders.

  3. Future Facilities Summary

    SciTech Connect

    Albert De Roeck, Rolf Ent

    2009-10-01

    For the session on future facilities at DIS09 discussions were organized on DIS related measurements that can be expected in the near and medium –or perhaps far– future, including plans from JLab, CERN and FNAL fixed target experiments, possible measurements and detector upgrades at RHIC, as well as the plans for possible future electron proton/ion colliders such as the EIC and the LHeC project.

  4. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions {open_quotes}How much?{close_quotes} and {open_quotes}What kind?{close_quotes} of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient {open_quotes}scatterer,{close_quotes} and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h{sup {minus}1} was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs.

  5. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT.

    PubMed

    Evans, J F; Blue, T E

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions "How much?" and "What kind?" of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room , patient "scatterer," and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel.

  6. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  7. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  8. Electron Beam Moller Polarimeter at Jlab Hall a

    NASA Astrophysics Data System (ADS)

    Glamazdin, A.V.; Gorbenko, V.G.; Levchuk, L.G.; Pomatsalyuk, L.; Rubashkin, A.L.; Sorokin, P.V.; Dale, D.S.; Doyle, B.; Gorringe, T.; Korsch, W.; Zeps, V.; Chen, J.O.; Chudakov, E.; Nanda, S.; Saha, A.; Gasparian, A.

    As part of the spin-physics program at Jefferson Laboratory (JLab), a Mo ller polarimeter was developed to measure the polarization of electron beam of energies 0.8 to 5.0 GeV. A unique signature for Mo ller scattering is obtained using a series of three quadrupole magnets which provide an angular selection, and a dipole magnet for energy analysis. The design, commissioning and the first results of the polarization measurements of this polarimeter will be presented as well as future plans to use its small scattering angle capabilities to investigate physics in very low Q2 regime.

  9. Evaluation of LED-based Instrumentation for JLab Detectors

    NASA Astrophysics Data System (ADS)

    Durham, Stephanie; Parvatam, Ruhi

    2014-09-01

    Light-Emitting Diodes have a multitude of uses due to their increasing efficiency, reliability, durability, and practical size. The wavelength-intensity properties of LEDs are important in the characterization of aerogel optical properties and thus the uniformity and performance of the Hall C threshold aerogel Cherenkov detectors at Jefferson Laboratory. LEDs are also practical for the PWO-based calorimeters at JLab for monitoring and recovering these crystals during and after exposure to radiation. This project is aimed at the construction and evaluation of LED-based instrumentation to characterize the optical properties of aerogel used in the JLab aerogel detectors and its application to future detectors. LEDs emit light at a nominal wavelength, but their spectrum covers a broad range. It is thus important to understand the LED spectrum. A spectrometer was constructed including a collimator, diffraction grating, and high-speed photodiode to measure the voltage, which was then converted into luminous intensity. This presentation will convey the results from measurements with LED-based instrumentation and discuss the application of LEDs covering wavelengths from the ultraviolet to near-infrared regions in future PWO-based detectors. Light-Emitting Diodes have a multitude of uses due to their increasing efficiency, reliability, durability, and practical size. The wavelength-intensity properties of LEDs are important in the characterization of aerogel optical properties and thus the uniformity and performance of the Hall C threshold aerogel Cherenkov detectors at Jefferson Laboratory. LEDs are also practical for the PWO-based calorimeters at JLab for monitoring and recovering these crystals during and after exposure to radiation. This project is aimed at the construction and evaluation of LED-based instrumentation to characterize the optical properties of aerogel used in the JLab aerogel detectors and its application to future detectors. LEDs emit light at a nominal

  10. JLab SRF Cavity Fabrication Errors, Consequences and Lessons Learned

    SciTech Connect

    Frank Marhauser

    2011-09-01

    Today, elliptical superconducting RF (SRF) cavities are preferably made from deep-drawn niobium sheets as pursued at Jefferson Laboratory (JLab). The fabrication of a cavity incorporates various cavity cell machining, trimming and electron beam welding (EBW) steps as well as surface chemistry that add to forming errors creating geometrical deviations of the cavity shape from its design. An analysis of in-house built cavities over the last years revealed significant errors in cavity production. Past fabrication flaws are described and lessons learned applied successfully to the most recent in-house series production of multi-cell cavities.

  11. Performance and Modeling of the JLAB IR FEL Upgrade Injector

    SciTech Connect

    C. Hernandez-Garcia; K. Beard; S. Benson; G. Biallas; D. Bullard; D. Douglas; H. F. Dylla; R.Evans; A. Grippo; J. Gubeli; K. Jordan; G. Neil; Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn; S.Zhang

    2004-09-01

    The JLab IR Upgrade Injector has delivered up to 9.1 mA of CW electron beam current at 9 MeV. The injector is driven by a 350 kV DC Photocathode Gun. Injector behavior and beam-based measurements are in good agreement with PARMELA simulations. The injected beam envelopes were established by measuring beam spot sizes and comparing them with those predicted by a transpart matrix based model. The emittances were measured by fitting an initial trial beam matrix to the measured data. The injected bunch length was established by measuring the energy spread downstream of the Linac while operating at either side of crest.

  12. Neutron Spin Structure Measurements in JLab Hall A

    SciTech Connect

    Kees de Jager

    2004-08-01

    Recently, the high polarized luminosity available at Jefferson Lab (JLab) has allowed the study of the nucleon spin structure at an unprecedented precision, enabling us to access the hard-to-reach valence quark (high-x) region and also to accurately map the intermediate to low Q{sup 2} region. The high-x region is of special interest, because this is where the valence quark contributions are expected to dominate. With sea quarks and explicit gluon contributions expected not to be important, it is a clean region to test our understanding of nucleon structure.

  13. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  14. JLAB CLAS Results on Pion Production from Nuclear Target

    NASA Astrophysics Data System (ADS)

    Lee, Hyupwoo; Manly, Steven

    Preliminary results on single charged pion production in eA collisions at Ebeam = 5 GeV/c2 are presented. The data were collected using the CLAS detector, which is a multipurpose, large acceptance, magnetic spectrometer located in Hall B at the Thomas Jefferson National Accelerator Facility. Distributions in W, Q2, pπ, and θπ are shown for data produced using deuterium, carbon, iron, and lead targets. The motivation for this work is to provide distributions useful for tuning the hadronic final state interaction models used in extracting results from current and next generation neutrino oscillation experiments.

  15. Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989

    SciTech Connect

    Thiessen, H.A.

    1990-04-01

    The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (second of two) included papers on computer controls, polarized beam, rf, magnet and power supplies, experimental areas, and instabilities. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended.

  16. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    SciTech Connect

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  17. LLNL/UC (Lawrence Livermore National Laboratory)/(University of California) AMS (accelerator mass spectrometry) facility and research program

    SciTech Connect

    Davis, J.C.; Proctor, I.D.; Southon, J.R.; Caffee, M.W.; Heikkinen, D.W.; Roberts, M.L.; Moore, T.L.; Turteltaub, K.W.; Nelson, D.E.; Loyd, D.H.; Vogel, J.S.

    1990-04-18

    The Lawrence Livermore National Laboratory (LLNL) and the University of California (UC) now have in operation a large AMS spectrometer built as part of a new multiuser laboratory centered on an FN tandem. AMS measurements are expected to use half of the beam time of the accelerator. LLNL use of AMS is in research on consequences of energy usage. Examples include global warming, geophysical site characterization, radiation biology and dosimetry, and study of mutagenic and carcinogenic processes. UC research activities are in clinical applications, archaeology and anthropology, oceanography, and geophysical and geochemical research. Access is also possible for researchers outside the UC system. The technological focus of the laboratory is on achieving high rates of sample through-put, unattended operation, and advances in sample preparation methods. Because of the expected growth in the research programs and the other obligations of the present accelerator, we are designing a follow-on dedicated facility for only AMS and microprobe analysis that will contain at least two accelerators with multiple spectrometers. 10 refs., 1 fig.

  18. Study of Corona Discharge on 160 KeV, 10 mA Electron Accelerator Facility Using FEM

    NASA Astrophysics Data System (ADS)

    Ghazali, Abu Bakar Mhd; Sobri, Rokiah Mohd

    2008-05-01

    This paper describes a method to verify the overall design of our electron accelerator. It is free from corona or spark discharge phenomenon. This locally designed electron accelerator facility is located at Nuclear Malaysia Complex, Bangi, Selangor. In this study, we describe the geometry of the pressure vessel filled with SF6 gas at 2 atm to enclose the high voltage area of the accelerating tube. The Poisson's equation is used to calculate the contours of the electric field that is created between the cathode of -160 kV maximum and the wall of the vessel. The nearest sharp edge between the cathode and the pressure wall is 163 mm apart. The calculation is based on finite element method (FEM) for electrostatic charges in order to obtain an electric field contour in two-dimensional plane. We found that the surface charge density of the cathode is 1.1×10-5 C/m2 for the corona glowing seen at -90 kV. Moreover, the highest electric field near to (about 5 mm from) the sharp edge is about 2.7 MV/m, which is less than the dielectric strength of SF6 gas, i.e. 6 MV/m and therefore, it proved that our design of the pressure vessel is save from corona or spark discharges.

  19. Study of Corona Discharge on 160 KeV, 10 mA Electron Accelerator Facility Using FEM

    SciTech Connect

    Ghazali, Abu Bakar Mhd; Sobri, Rokiah Mohd

    2008-05-20

    This paper describes a method to verify the overall design of our electron accelerator. It is free from corona or spark discharge phenomenon. This locally designed electron accelerator facility is located at Nuclear Malaysia Complex, Bangi, Selangor. In this study, we describe the geometry of the pressure vessel filled with SF{sub 6} gas at 2 atm to enclose the high voltage area of the accelerating tube. The Poisson's equation is used to calculate the contours of the electric field that is created between the cathode of -160 kV maximum and the wall of the vessel. The nearest sharp edge between the cathode and the pressure wall is 163 mm apart. The calculation is based on finite element method (FEM) for electrostatic charges in order to obtain an electric field contour in two-dimensional plane. We found that the surface charge density of the cathode is 1.1x10{sup -5} C/m{sup 2} for the corona glowing seen at -90 kV. Moreover, the highest electric field near to (about 5 mm from) the sharp edge is about 2.7 MV/m, which is less than the dielectric strength of SF{sub 6} gas, i.e. 6 MV/m and therefore, it proved that our design of the pressure vessel is save from corona or spark discharges.

  20. Neutron Induced Reactions with the 17 Mev Facility at the Athens Tandem Accelerator NCSR 'Demokritos'

    NASA Astrophysics Data System (ADS)

    Vlastou, R.; Kalamara, A.; Serris, M.; Diakaki, M.; Kokkoris, M.; Paneta, V.; Axiotis, M.; Lagoyannis, A.

    In the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos" monoenergetic neutron beams have been produced in the energy range∼ 15-20 MeV using anew Ti-tritiated target of 373 GBq activity, by means of the 3H(d,n)4He reaction. The corresponding deuteron beam energies obtained from the accelerator, were in the 1.5-4.5MeV range.The maximum flux has been determined to be of the order of 106 n/cm2 s, implementing reference reactions. The 17.1MeV neutron beam has been used for the measurement of 197Au(n,2n) reaction cross section. Theoretical calculations have been performed via the statistical model code EMPIRE and compared to the experimental data of the present work and data from literature.

  1. Neutronics analysis of three beam-filter assemblies for an accelerator-based BNCT facility

    SciTech Connect

    Bleuel, D.L.; Costes, S.V.; Donahue, R.J.; Ludewigt, B.A.

    1997-08-01

    Three moderator materials, AlF{sub 3}/Al, D{sub 2}O and LiF, have been analyzed for clinical usefulness using the reaction {sup 7}Li(p,n) as an accelerator driven neutron source. Proton energies between 2.1 MeV and 2.6 MeV have been investigated. Radiation transport in the reflector/moderator assembly is simulated using the MCNP program. Depth-dose distributions in a head phanton are calculated with the BNCT-RTPE patient treatment planning program from INEEL using the MCNP generated neutron and photon spectra as the subsequent source. Clinical efficacy is compared using the current BMRR protocol for all designs. Depth-dose distributions are compared for a fixed normal tissue tolerance dose of 12.5 Gy-Eq. Radiation analyses also include a complete anthropomorphic phantom. Results of organ and whole body dose components are presented for several designs. Results indicate that high quality accelerator beams may produce clinically favorable treatments to deep-seated tumors when compared to the BMRR beam. Also discussed are problems identified in comparing accelerator and reactor based designs using in-air figures of merit as well as some results of spectrum-averaged RBE`s.

  2. Preliminary Design of JLAB Clas12 Large Superconducting Torus Magnet

    SciTech Connect

    Wang, B; Taylor, C; Zbasnik, J; Dell'Orco, D; Ross, J; Chen, J; Xu, L; Chen, H; Wagner, B; McMullin, J; Pong, R; Juang, T; Wang, M; Carter, C; Quettier, L; Burkert, V; Elouadrhiri, L; Kashy, D; Leung, E; Schneider, W

    2011-06-01

    Hall B at Jefferson Laboratory (JLAB) will need a 6-coil Torus producing a required integral of B-dl for an upgrade 12 GeV beam. In Sept. 2009, Wang NMR was awarded a contract to design, fabricate, assemble, deliver, and test at JLAB this ex citing magnet. The preliminary design review was completed by Dec. 2009 and intermediate design review will be completed by July 2010. Proto type coil construction, production of soldered conductor with SSC cable and final design review will be completed in 2010. We shall describe preliminary design and intermediate design for coil/cryostat, Torus central cylinder (hub), 48 cold mass suspensions, two intercoil support rings, cryocontrol tower, and adapter to Torus coil, magnet quench protection, and charge/ discharge con trol, and the two parallel path cooling design using supercritical helium. Because of coil in-plane and out-of-plane EM forces over these huge thin coils in addition to vacuum load, gravity load, and cool down thermal stress, we shall present the finite element analyses (FEA) on coil structure, 48 cold mass supports, intercoil cold rings, coil/ cryostat vacuum vessel, cryotower cryostat, and Torus hub. Finally, we shall shows that all pressure/ vacuum vessels and its weldment has satisfied ASME code.

  3. Development of an Electromagnetic Acceleration Facility for Impact and Fracture Studies at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Pahari, S.; Suryaprasad, I. V. V.; Shiv, N.; Madhavan, S.; Sijoy, C. D.; Chaturvedi, S.

    2011-07-01

    Experimental studies of strain time history and fracture & penetration resulting from the high velocity impact of solid projectiles on solid targets have been initiated. Design, fabrication, testing and commissioning of an electromagnetic impact facility driven by a capacitor bank have been carried out in this regard. The facility presently has an induction coil gun driving a cylindrical hollow/solid projectile on to a target. 3-7 kJ capacitor banks have been used to drive the launchers. The parameters of the coil gun are in consonance with a computer code developed in-house for the validation and optimization of the coil dimension and bank parameters. Systematic studies have been carried out for validation of code and understanding and benchmarking coil performance. Reproducible velocities of the order of 100 m/s have been successfully achieved with projectiles of masses 20 gm. Preliminary impact studies carried out on Alumnium target plates have given the strain time history.

  4. Experimental Setup and Commissioning of a Test Facility for Gain Evaluation of Microchannel-Plate Photomultipliers in High Magnetic Field at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Bringley, Eric; Cao, Tongtong; Ilieva, Yordonka; Nadel-Turonski, Pawel; Park, Kijun; Zorn, Carl

    2014-09-01

    At the Thomas Jefferson National Accelerator Facility (JLab) a research and development project for a Detector of Internally-Reflected Cherenkov light for the upcoming Electron Ion Collider is underway. One goal is the development of a compact readout camera that can operate in high magnetic fields. Small-size photon sensors, such as Microchannel-Plate Photomultipliers (MCP-PMT), are key components of the readout. Here we present our work to set up and commission a dedicated test facility at JLab where MCP-PMT gain is evaluated in magnetic fields of up to 5 T, and to develop a test procedure and analysis software to determine the gain. We operate the setup in a single-photon mode, where a light-emitting diode delivers photons to the sensor's photocathode. The PMT spectrum is measured with a flash Analog-to-Digital converter (fADC). We model the spectrum as a sum of an exponential background and a convolution of Poisson and Gaussian distributions of the pedestal and multiple photoelectron peaks, respectively. We determine the PMT's gain from the position of the single-photoelectron peak obtained by fitting the fADC spectrum to the model. Our gain uncertainty is <10%. The facility is now established and will have a long-lasting value for sensor tests and beyond-nuclear-physics applications.

  5. Test simulation of neutron damage to electronic components using accelerator facilities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.

    2015-12-01

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  6. Calibration of a new experimental chamber for PIXE analysis at the Accelerator Facilities Division of Atomic Energy Centre Dhaka (AECD)

    NASA Astrophysics Data System (ADS)

    Hassan, Md. Taufique; Shariff, Md. Asad; Hossein, Amzad; Abedin, Md. Joynal; Fazlul Hoque, A. K. M.; Chowdhuri, M. S.

    2015-05-01

    A new experimental chamber has been installed at the 3 MV Van de Graaff Accelerator Facilities Division in the Atomic Energy Centre, Dhaka, to perform different Ion Beam Analysis (IBA) techniques. The calibration of this new setup for Particle Induced X-ray Emission (PIXE) technique has been done using a set of thin MicroMatter standards and GUPIX (PIXE spectrum analysis software), which is explicated in this paper. The effective thicknesses of the beryllium window of the X-ray detector and of the different absorbers used were determined. For standardization, the so called instrumental constant H (product of detector solid angle and the correction factor for the setup) as function of X-ray energy were determined and stored inside the GUPIX library for further PIXE analysis.

  7. Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility.

    PubMed

    Bricault, P G; Ames, F; Dombsky, M; Labrecque, F; Lassen, J; Mjos, A; Minor, G; Tigelhoefer, A

    2012-02-01

    This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

  8. Magnetic field simulation of wiggler on LUCX accelerator facility using Radia

    NASA Astrophysics Data System (ADS)

    Sutygina, Y. N.; Harisova, A. E.; Shkitov, D. A.

    2016-11-01

    A flat wiggler consisting of NdFeB permanent magnets was installed on a compact linear electron accelerator LUCX (KEK) in Japan. After installing the wiggler on LUCX, the experiments on the generation of undulator radiation (UR) in the terahertz wavelength range is planned. To perform the detailed calculations and optimization of UR characteristics, it is necessary to know the parameters of the magnetic field generated in the wiggler. In this paper extended simulation results of wiggler magnetic field over the entire volume between the poles are presented. The obtained in the Radia simulation magnetic field is compared with the field calculated by another code, which is based on the finite element method.

  9. Plans for an ERL Test Facility at CERN

    SciTech Connect

    Jensen, Erik; Bruning, O S; Calaga, Buchi Rama Rao; Schirm, Karl-Martin; Torres-Sanchez, R; Valloni, Alessandra; Aulenbacher, Kurt; Bogacz, Slawomir; Hutton, Andrew; Klein, M

    2014-12-01

    The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and their tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.

  10. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    SciTech Connect

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  11. Upgrade of the proximity focusing RICH at Jlab

    SciTech Connect

    Cisbani, Evaristo; Colilli, Stefano; Cusanno, Francesco; Fratoni, Rolando; Frullani, Salvatore; Garibaldi, Franco; Giuliani, Fausto; Gricia, Massimo; Lucentini, Maurizio; Santavenere, Fabio; Urciuoli, Guido; Iodice, Mauro; Argentieri, A.; de Cataldo, Giacinto; De Leo, Raffaele; Lagamba, Luigi; Marrone, Stefano; Nappi, E.; Camsonne, Alexandre; Kross, Brian; Michaels, Robert; Reitz, Bodo; Segal, John; Wojtsekhowski, Bogdan; Zorn, Carl; Monno, E.; Breuer, Herbert

    2009-09-01

    The Hall A RICH at Jefferson Lab is undergoing an upgrade to adapt to the higher momentum kinematics of the neutron spin structure Transversity experiments planned to run in 2008. The JLab RICH is a proximity focusing detector using liquid C6F14 as Cherenkov radiator, a thin layer of CsI as photon converter, evaporated on segmented pad panels of a proportional chamber. The original RICH had a superior hadron identification up to 2 GeV/c with pion/kaon rejection at the level of 1:1000 at ~ similar90% intrinsic efficiency. The upgrade will extend this performance above 2.4 GeV/c by means of a larger photon detector (a multiwire-multipad proportional chamber) and a longer proximity gap which will improve the photon detection geometrical efficiency and the angular resolution, respectively.

  12. Concepts for the JLab Ampere-Class CW Cryomodule

    SciTech Connect

    R. Rimmer; E.F. Daly; W.R. Hicks; J. Henry; J. Preble; M. Stirbet; H. Wang; K.M. Wilson; G. Wu

    2005-05-01

    We describe the concepts and developments underway at JLab as part of the program to develop a new CW cryomodule capable of transporting ampere-level beam currents in a compact FEL. Requirements include real-estate gradient of at least 10 MV/m and very strong HOM damping to push BBU thresholds up by two or more orders of magnitude compared to existing designs. Cavity shape, HOM damping, power couplers, tuners etc. are being designed and optimized for this application. Cavity considerations include a large iris for beam halo, low-RF losses, HOM frequencies and Q's, low peak surface fields, field flatness and microphonics. Module considerations include high packing factor, low static heat leak, image current heating of beam-line components, cost and maintainability. This module is being developed for the next generation ERL based high power FELs but may be useful for other applications such as electron cooling, electron-ion colliders, industrial processing etc.

  13. Charmonium dissociation in matter: perspectives from CERN to Jlab

    SciTech Connect

    A. Sibirtsev

    2010-07-01

    The J/Psi-meson dissociation in nuclear matter remains one of the most surprising problems in physics. In 2000 the NA50 Collaboration at CERN reported anomalous results on J/Psi absorption that was considered as evidence of Quark-Gluon Plasma formation. On the other hand, there may be other mechanisms which produce an increase in J/Psi absorption in a hot dense medium due to the modification of the charm mesons. Our detailed calculations were one of the first indications that the CERN data can indeed be well explained by a mechanism different from QGP formation. For further clarification we proposed to study the modification of charm in nuclei through antiproton annihilation, which is now part of the PANDA project at FAIR GSI. The experiment on charmonium dissociation in nuclei is under discussion at JLab as part of its 12 GeV upgrade.

  14. Charmonium dissociation in matter: perspectives from CERN to JLab

    SciTech Connect

    Sibirtsev, A.

    2010-07-27

    The J/{Psi}-meson dissociation in nuclear matter remains one of the most surprising problems in physics. In 2000 the NA50 Collaboration at CERN reported anomalous results on J/{Psi} absorption that was considered as evidence of Quark-Gluon Plasma formation. On the other hand, there may be other mechanisms which produce an increase in J/{Psi} absorption in a hot dense medium due to the modification of the charm mesons. Our detailed calculations were one of the first indications that the CERN data can indeed be well explained by a mechanism different from QGP formation. For further clarification we proposed to study the modification of charm in nuclei through antiproton annihilation, which is now part of the PANDA project at FAIR GSI. The experiment on charmonium dissociation in nuclei is under discussion at JLab as part of its 12 GeV upgrade.

  15. Improved Performance of JLab 7-Cell Cavities by Electropolishing

    SciTech Connect

    Charles Reece, Rongli Geng, Anthony Crawford

    2009-05-01

    The great majority of experience in niobium SRF cavity processing at Jefferson Lab is with BCP etching. This has been used on CEBAF cavities and others totalling over 600 in number. With improved process quality control, field emission is now largely controlled and other factors limit performance. All of the prototype cavities developed for the 12 GeV upgrade, although meeting minimum requirements, have demonstrated a Q-drop in the 17?23 MV/m range that is not remedied by 120 C bake. Most of these cavities received >250 micron removal by BCP etch. Two of these cavities have been electropolished using the protocol under development within ILC R&D activities. The first such cavity was transformed from Q = 3×109 at 17 MV/m to quench from 1×1010 at 35 MV/m. The details of this and subsequent electropolished JLab 7-cell cavities will be reported.

  16. The Development of Biomedical Applications of Nuclear Physics Detector Technology at the Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew

    2003-10-01

    The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for the United States Department of Energy. As a user facility for physicists worldwide, its primary mission is to conduct basic nuclear physics research of the atom's nucleus at the quark level. Within the Jefferson Lab Physics Division is the Jefferson Lab Detector Group which was formed to support the design and construction of new detector systems during the construction phase of the major detector systems at Jefferson Lab and to act as technical consultants for the lab scientists and users. The Jefferson Lab Detector Group, headed by Dr. Stan Majewski, has technical capabilities in the development and use of radiation detection systems. These capabilities include expertise in nuclear particle detection through the use of gas detectors, scintillation and light guide techniques, standard and position-sensitive photomultiplier tubes (PSPMTs), fast analog readout electronics and data acquisition, and on-line image formation and analysis. In addition to providing nuclear particle detector support to the lab, the group has for several years (starting in 1996) applied these technologies to the development of novel high resolution gamma-ray imaging systems for biomedical applications and x-ray imaging techniques. The Detector Group has developed detector systems for breast cancer detection, brain cancer therapy and small animal imaging to support biomedical research. An overview will be presented of how this small nuclear physics detector research group by teaming with universities, medical facilities, industry and other national laboratories applies technology originating from basic nuclear physics research to biomedical applications.

  17. High Gradient Results of ICHIRO 9-Cell Cavity in Collaboration With KEK and Jlab

    SciTech Connect

    Furuta, F.; Konomi, T.; Saito, K.; Eremeev, G. V.; Geng, R. L.

    2011-07-01

    KEK and Jlab have continued S0-study collaboration on ICHIRO 9-cell cavities since 2008. In 2010, we have started S0 study on ICHIRO#7, full 9-cell cavity with end groups. Surface treatments and vertical tests have been repeated at Jlab. Maximum gradient of 40MV/m was achieved so far. We will describe the details of that and further plan of S0-study on ICHIRO 9-cell.

  18. Aperture Test for Internal Target Operation in the JLAB High-current ERL

    SciTech Connect

    Zhang, Shukui

    2013-06-01

    A high current beam transmission test has been successfully completed at the JLAB FEL Facility, culminating in very low-loss transmission of a high current CW beam through a small aperture. The purpose of this test was to determine if an ERL is capable of meeting the stringent requirements imposed by the use of a 1018/cm3 internal gas target proposed for the DarkLight experiment*. Minimal beamline modifications were made to create a machine configuration that is substantially different from those used in routine UV or IR FEL operation. A sustained (8 hour) high power beam run was performed, with clean transmission through a 2 mm transverse aperture of 127 mm length simulating the target configuration. A beam size of 50 um (rms) was measured near the center of the aperture. Experimental data from a week-long test run consistently exhibited beam loss of only a few ppm on the aperture while running 4.5 mA current at 100 MeV -- or nearly 0.5 MW beam power. This surpassed the users? expectation and demonstrated a unique capability of an ERL for this type of experiments. This report presents a summary of the experiment, a brief overview of our activities, and outlines future plans.

  19. INJECTION ACCELERATION AND EXTRACTION OF HIGH INTENSITY PROTON BEAM FOR THE NEUTRINO FACILITY PROJECT AT BNL.

    SciTech Connect

    Tsoupas, N; Barton, D; Ganetis, G; Jain, A; Lee, Y; Marneris, I; Meng, W; Raparia, D; Roser, T; Ruggiero, A; Tuozzolo, J; Wanderer, P; Weng, W

    2003-05-12

    The proposed ''neutrino-production'' project [1.2] to be built at the Brookhaven National Laboratory (BNL) requires that the neutrino-production target be bombarded by a high intensity proton beam-pulse of {approx} 90 x 10{sup 12} protons of 28 GeV in energy and at a rate of 2.5 Hz, resulting in a 1 MW power of proton beam deposited on the target for the production of the neutrinos. In this paper we investigate the possibility of producing this high intensity proton beam, using as the main accelerator the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL). The following aspects of the project are reported in this paper: (a) The beam injection into the AGS synchrotron of 1.2 GeV H{sup -} beam produced by a super-conducting LINAC[3]; (b) The effect of the eddy currents induced on the vacuum chamber of the circulating beam during the ''ramping'' of the main magnets of the AGS; (c) The method of the beam extraction from the AGS and the optics of the 28 GeV beam extracted from the AGS.

  20. Real time and accelerated stability studies of Tetanus toxoid manufactured in public sector facilities of Pakistan.

    PubMed

    Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem

    2013-11-01

    Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate long﷓term thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.

  1. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.

    SciTech Connect

    Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

    2009-06-09

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the

  2. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  3. The Charged Pion Polarizability Experiment at the Thomas Jefferson National Accelerator Facility: Developing Muon Chambers and Experiment Simulation

    NASA Astrophysics Data System (ADS)

    Johnston, Bobby; Miskimen, Rory; Downing, Matthew; Haughwout, Christian; Schick, Andrew; Jefferson Lab Hall D Collaboration

    2016-09-01

    The Thomas Jefferson National Accelerator Facility has proposed to make a precision measurement of the charged pion polarizability through measurements of γγ ->π+π- cross sections using the new GlueX detector. This experiment will have a large muon background which must be filtered out of the pion signal. For this issue we are developing an array of Multi-Wire Proportional Chambers (MWPCs) that will allow the pions to be identified from the muons, permitting a precise measurement of the polarizability. Small (1:8 scale) and medium (1:5 scale) sized prototypes have been constructed and tested, and a full scale prototype is currently being assembled. MWPC electronics were developed and tested to amplify the signal from the detection chamber, and were designed to interface with Jefferson Lab's existing data acquisition system. In order to construct the detectors, a class 10,000 clean room was assembled specifically for this purpose. Lastly, Geant4 software is being used to run Monte Carlo simulations of the experiment. This allows us to determine the optimal orientation and number of MWPCs needed for proper filtering which will indicate how many more MWPCs must be built before the experiment can be run. Department of Energy.

  4. Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa

    SciTech Connect

    Not Available

    1990-05-01

    The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

  5. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  6. Linac cryogenic distribution system maintenance and upgrades at JLab

    NASA Astrophysics Data System (ADS)

    Dixon, K.; Wright, M.; Ganni, V.

    2014-01-01

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm3 of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  7. Investigation of differential surface removal due to electropolishing at JLab

    SciTech Connect

    Marhauser, Frank; Folkie, James; Reece, Charles

    2015-09-01

    Surface chemistry carried out for Superconducting Radio Frequency (SRF) cavities such as Buffered Chemical Polishing (BCP) and Electropolishing (EP) aims to uniformly remove the internal surface of a cavity along the entire structure and within each cell from equator to iris in order to obtain an equally etched surface. A uniform removal, however, is not readily achievable due to the complex fluid flow and varying temperatures of the acid mixture, which can lead to differential etching. This needs to be considered when envisaging a certain surface damage removal throughout the interior. The process-specific differential etching influences the target frequency set at the manufacturing stage as well as the field flatness and length of the as-built cavity. We report on analyses of JLab's present EP system using experimental data for six nine-cell cavities that have been processed recently in the frame of the LCLS-II high-Q development plan. In conjunction with numerical simulations, the differential etching and the impact on field flatness is assessed.

  8. First Cryogenic Tests with Jlab's New Upgrade cavities

    SciTech Connect

    Peter Kneisel; Gianluigi Ciovati; Juergen Halbritter; Ganapati Rao Myneni; Jacek Sekutowicz; Genfa Wu

    2004-08-01

    Two types of 7-cell cavities have been developed for the upgrade of CEBAF to 12 GeV. The High Gradient type (HG) has been optimized with respect to the ratio of E{sub peak}/E{sub acc}. The Low Loss (LL) type has optimized shunt impedance and improved geometric factor. Each cavity type features four DESY-type coaxial Higher Order Mode (HOM) couplers and a waveguide input coupler. Design goals for these cavities have been set to E{sub acc} = 20 MV/m with an intrinsic Q{sub o} of 8 {center_dot} 10{sup 9} at 2.05 K. A niobium prototype of each cavity has been fabricated at JLab and both cavities have been evaluated at cryogenic temperatures after appropriate surface treatment. In addition, pressure sensitivity as well as Lorentz force detuning were evaluated. The damping of approximately 20 HOMs has been measured to verify the room temperature data. Several single cell cavities were tested in addition to multi cell cavities. We present in this contribution a summary of tests performed on the prototypes of the proposed cavities.

  9. Linac cryogenic distribution system maintenance and upgrades at Jlab

    SciTech Connect

    Dixon, Kelly D.; Wright, Mathew C.; Ganni, Venkatarao

    2014-01-01

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  10. Linac cryogenic distribution system maintenance and upgrades at JLab

    SciTech Connect

    Dixon, K.; Wright, M.; Ganni, V.

    2014-01-29

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  11. Electron Beam Diagnostics Of The JLAB UV FEL

    SciTech Connect

    Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David; Marchlik, Matthew; Sexton, Daniel; Tennant, Christopher

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.

  12. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  13. Deeply Virtual Compton Scattering and Meson Production at Jlab/CLAS

    SciTech Connect

    Hyon-Suk Jo

    2012-04-01

    This report reviews the recent experimental results from the CLAS collaboration (Hall B of Jefferson Lab, or JLab) on Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) and discusses their interpretation in the framework of Generalized Parton Distributions (GPDs). The impact of the experimental data on the applicability of the GPD mechanism to these exclusive reactions is discussed. Initial results obtained from JLab 6 GeV data indicate that DVCS might already be interpretable in this framework while GPD models fail to describe the exclusive meson production (DVMP) data with the GPD parameterizations presently used. An exception is the {phi} meson production for which the GPD mechanism appears to apply. The recent global analyses aiming to extract GPDs from fitting DVCS CLAS and world data are discussed. The GPD experimental program at CLAS12, planned with the upcoming 12 GeV upgrade of JLab, is briefly presented.

  14. W.K.H. Panofsky Prize in Experimental Particle Physics: The design, construction and performance of the B Factory accelerator facilities, PEP-II and KEKB

    NASA Astrophysics Data System (ADS)

    Dorfan, Jonathan

    2016-03-01

    The discovery and elucidation of CP violation in the B-meson system presented daunting challenges for the accelerator and detector facilities. This talk discusses how these challenges were met and overcome in the electron-positron colliding-beam accelerator facilities PEP-II (at SLAC) and KEKB (at KEK). The key challenge was to produce unprecedentedly large numbers of B-mesons in a geometry that provided high-statistics, low-background samples of decays to CP eigenstates. This was realized with asymmetric collisions at the Γ(4S) at peak luminosities in excess of 3 ×1033 /sq. cm/sec. Specialized optics were developed to generate efficient, low background, multi-bunch collisions in an energy-asymmetric collision geometry. Novel technologies for the RF, vacuum and feedback systems permitted the storage of multi-amp, multi-bunch beams of electrons and positrons, thereby generating high peak luminosities. Accelerator uptimes greater than 95 percent, combined with high-intensity injection systems, ensured large integrated luminosity. Both facilities rapidly attained their design specifications and ultimately far exceeded the projected performance expectations for both peak and integrated luminosity.

  15. The DarkLight Experiment at the JLab FEL

    NASA Astrophysics Data System (ADS)

    Fisher, Peter

    2013-10-01

    DarkLight will study the production of gauge bosons associated with Dark Forces theories in the scattering of 100 MeV electrons on proton a target. DarkLight is a spectrometer to measure all the final state particles in e- + p -->e- + p +e- +e+ . QED allows this process and the invariant mass distribution of the e+e- pair is a continuum from nearly zero to nearly the electron beam energy. Dark Forces theories, which allow the dark matter mass scale to be over 1 TeV, predict a gauge boson A' in the mass range of 10-1,000 MeV and decays to an electron-positron pair with an invariant mass of mA'. We aim to search for this process using the 100 MeV, 10 mA electron beam at the JLab Free Electron Laser impinging on a hydrogen target with a 1019 cm-2 density. The resulting luminosity of 6 ×1035/cm2-s gives the experiment enough sensitivity to probe A' couplings of 10-9 α . DarkLight is unique in its design to detect all four particles in the final state. The leptons will be measured in a large high-rate TPC and a silicon sensor will measure the protons. A 0.5 T solenoidal magnetic field provides the momentum resolution and focuses the copious Møller scattering background down the beam line, away from the detectors. A first beam test has shown the FEL beam is compatible with the target design and that the hall backgrounds are manageable. The experiment has been approved by Jefferson Lab for first running in 2017.

  16. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.

  17. The French accelerator mass spectrometry facility ASTER after 4 years: Status and recent developments on 36Cl and 129I

    NASA Astrophysics Data System (ADS)

    Arnold, Maurice; Aumaître, Georges; Bourlès, Didier L.; Keddadouche, Karim; Braucher, Régis; Finkel, Robert C.; Nottoli, Emmanuelle; Benedetti, Lucilla; Merchel, Silke

    2013-01-01

    Since the acceptance tests of the French 5 MV accelerator mass spectrometry facility ASTER in 2007, routine measurement conditions for the long-lived radionuclides 10Be and 26Al have been established. Yearly sample throughput as high as over 3300 unknowns has been reached for 10Be in 2010. Cross-contamination for volatile elements has been largely solved by an ion source upgrade allowing 36Cl measurements at ASTER. However, recent long-term tests using 35Cl/37Cl samples with strongly varying ratios have shown that identical targets lead to different 35Cl/37Cl results at the 2-4% level when being measured after a time gap of 24 h while the source is running other samples. Besides time dependent mass fractionation, another likely reason for this effect might be source memory, thus, asking for sophisticated measurement strategies and improved data evaluation and eventually further ion source improvement. Finally, after establishing quality assurance by cross-calibration of secondary in-house 26Al and 41Ca standards and taking part in round-robin exercises of 10Be and 36Cl, a two-step cross-calibration of secondary in-house 129I standards has been performed. The NIST 3231 standard containing 129I/127I at (0.981 ± 0.012) × 10-6 has been used for step-wise dilution with NaI to produce gram-quantities of lower-level standards for every-day use. The resulting material SM-I-9 (129I/127I: ∼1 × 10-9) has been measured vs. AgI produced using minimum chemistry from the two NIST ampoules containing a solution with a nominal ratio 129I/127I of (0.982 ± 0.012) × 10-8. In a second stage, SM-I-10 and SM-I-11 with ratios of ∼1 × 10-10 and ∼1 × 10-11, respectively, have been cross-calibrated against SM-I-9. Individual uncertainties of the traceable secondary standards are 1.3-1.4% (2σ), mainly originating from the given uncertainty of the primary NIST 3231 at the 10-8 level. The cross-contamination for iodine is in the range of 0.4-0.6% within the first 20 h of running

  18. The HKS experiment on Lambda--hypernuclear spectroscopy via electroproduction at JLab

    SciTech Connect

    Tang, Liguang; Yuan, Lulin; Acha Quimper, Armando; Ahmidouch, Abdellah; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Baker, O.; Baturin, Pavlo; Benmokhtar, Fatiha; Bosted, Peter; Carlini, Roger; Chen, X.; Christy, Michael; Cole, Leon; Danagoulian, Samuel; Daniel, AJI; Dharmawardane, Kahanawita; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gan, Liping; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Halkyard, Rebekah; Hashimoto, Osamu; Hashimoto, Osamu; Honda, D.; Horn, Tanja; Hu, Bitao; Hu, S.; Hungerford, Ed; Ispiryan, Mikayel; Johnston, Kathleen; Jones, Mark; Kalantarians, Narbe; Kaneta, M.; Kato, F.; Kato, Seigo; Kawama, Daisuke; Keppel, Cynthia; Li, Y.; Luo, Wei; Mack, David; Margaryan, Amur; Marikyan, Gagik; Maruyama, Nayuta; Matsumura, Akihiko; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Nakamura, Satoshi; Navasardyan, Tigran; Niculescu, Gabriel; Niculescu, Maria-Ioana; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Okayasu, Yuichi; Pamela, Priscilla; Perez, Naipy; Petkovic, Tomislav; Randeniya, Kapugodage; Reinhold, Joerg; Rivera Castillo, Roberto; Roche, Julie; Rodriguez, Victor; Sato, Yoshinori; Seva, Tomislav; Simicevic, Neven; Smith, Gregory; Sumihama, Mizuki; Song, Yujun; Tadevosyan, Vardan; Takahashi, Toshiyuki; Tamura, Hirokazu; Tvaskis, Vladas; Vulcan, William; Wang, B.; Wells, Stephen; Wood, Stephen; Yan, Chen; Zamkochian, S.

    2008-06-01

    The HKS (Jlab E01-011) experiment on spectroscopy of Lambda-hypernuclei using (e,e'K+) reaction was successfully carried out in 2005. This paper gives a brief description of the experiment and its technique and shows some of the preliminary spectra that are still under analysis.

  19. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  20. A 1 GeV Laser Wakefield Accelerator: Experimental Progress at the l'OASIS Facility of LBNL

    NASA Astrophysics Data System (ADS)

    Leemans, W. P.; Geddes, C. G. R.; Toth, C. S.; van Tilborg, J.; Nagler, B.; Michel, P.; Nakamura, K.; Esarey, E.; Schroeder, C. B.; Gonsalves, A.; Spence, D. J.; Hooker, S. M.; Filip, C.; Cowan, T.

    2004-11-01

    Experimental progress towards a 1 GeV laser-driven plasma-based accelerator will be discussed. The design of the 1 GeV accelerator module consists of two components: (1) an all-optical electron injector and (2) a plasma channel for laser guiding and electron acceleration to high energy via the laser wakefield acceleration (LWFA) mechanism. Experimental results on the injector development include the demonstration of laser guiding at relativistic intensities in preformed plasmas and production of quasi-monochromatic electron beams with energy around 100 MeV. Progress on guiding 100 TW laser pulses in capillary-discharge-based plasma channels will be discussed and integration of these channels with the all-optical injector will be reported.

  1. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Lizee, Arnaud

    1996-01-01

    The object of this work, started in March of 1995, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involves using a combination of 2- and 3-D numerical models, scaling analyses, 1-D models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USMP-3 spaceflight which took place earlier this year (22 Feb. - 6 Mar. 1996). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification system

  2. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    SciTech Connect

    Sairam, T. Bhatt, Pragya; Safvan, C. P.; Kumar, Ajit; Kumar, Herendra

    2015-11-15

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  3. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  4. Recent US target-physics-related research in heavy-ion inertial fusion: simulations for tamped targets and for disk experiments in accelerator test facilities

    SciTech Connect

    Mark, J.W.K.

    1982-03-22

    Calculations suggest that experiments relating to disk heating, as well as beam deposition, focusing and transport can be performed within the context of current design proposals for accelerator test-facilities. Since the test-facilities have lower ion kinetic energy and beam pulse power as compared to reactor drivers, we achieve high-beam intensities at the focal spot by using short focal distance and properly designed beam optics. In this regard, the low beam emittance of suggested multi-beam designs are very useful. Possibly even higher focal spot brightness could be obtained by plasma lenses which involve external fields on the beam which is stripped to a higher charge state by passing through a plasma cell. Preliminary results suggest that intensities approx. 10/sup 13/ - 10/sup 14/ W/cm/sup 2/ are achievable. Given these intensities, deposition experiments with heating of disks to greater than a million degrees Kelvin (100 eV) are expected.

  5. Measurement of the photon electroproduction cross section at JLAB with the goal of performing a Rosenbluth separation of the DVCS contribution

    SciTech Connect

    Jimenez-Arguello, Alejandro Marti

    2014-07-11

    The study of the inner structure of hadrons allows us to understand the nature of the interactions between partons, quarks and gluons, described by Quantum Chromodynamics. The elastic scattering reactions, which have been studied in order to measure the nucleon form factors, are included in this frame. The inelastic scattering reactions are also included in this frame, they allow us to obtain information about the nucleon structure thanks to the development of the parton distribution functions (PDFs). While through elastic scattering we can obtain information about the charge distribution of the nucleon, and hence, about the spatial distribution of the partons, through inelastic scattering we obtain information about the momentum distributions of partons, by employing the PDFs. However, we can study the exclusive inelastic scattering reactions, such as the Deeply Virtual Compton Scattering (DVCS), wich allow us to access to the spatial and momentum distributions simultaneously. This is possible thanks to the generalized parton distributions (GPDs), which allow us to correlate both types of distributions. The process known as DVCS is the easiest way to access the GPDs. This process can be expressed as the scattering of an electron by a proton by means of a virtual photon with the result of the scattered initial particles plus a real photon. We find a process competing with DVCS known as Bethe-Heitler (BH), in which the real photon is radiated by the lepton rather than the quark. Due to the small cross section of DVCS, of the order of nb, in order to conduct these kind of experiments it is necessary to make use of facilities capable of providing high beam intensities. One of these facilities is the Thomas Jefferson National Accelerator Facility , where the experiment JLab E07-007, "Complete Separation of Virtual Photon and π⁰ Electroproduction Observables of Unpolarized Protons", took place during the months of October to December of 2010. The main goal of this

  6. Analysis of induced radionuclides in low-activation concrete (limestone concrete) using the 12 GeV proton synchrotron accelerator facility at KEK.

    PubMed

    Saito, K; Tanosaki, T; Fujii, H; Miura, T

    2005-01-01

    22Na is one of the long-lived radionuclides induced in shielding concrete of a beam-line tunnel of a high-energy particle accelerator facility and poses a problem of radiation wastes at the decommissioning of the facility. In order to estimate the 22Na concentration induced in shielding concrete, chemical reagents such as NaHCO3, MgO, Al203, SiO2 and CaCO3 were irradiated at several locations in the beam-line tunnel of the 12 GeV proton synchrotron accelerator at KEK, and the 22Na concentrations induced in those chemical reagents were measured. Low-activation concrete made up of limestone aggregates was also irradiated by secondary particles in the beam-line tunnel and the long-lived radionuclide, such as 22Na, concentrations induced in the concrete were measured. It was confirmed that 22Na concentrations induced in Mg, Al, Si and Ca were lower than that in Na, and that 22Na concentrations induced in the low-activation concrete was lower than those induced in ordinary concrete made up of sandstone aggregates.

  7. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    SciTech Connect

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan; Huang, Shichun; Huang, Yulu; Wang, Haipeng; Wang, S

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.

  8. Double-spin asymmetries in electron-nucleon scattering in Halls B and C at Jlab

    SciTech Connect

    Donald Crabb

    2003-07-15

    Three experiments at JLab have measured the double polarization asymmetries in the nucleon resonance region, using polarized electron beams incident on polarized proton and deuteron targets. The analysis for the first experiment, eg1a in Hall B, is nearly finished and preliminary values of the spin structure function g1(x, Q2) and the first moment (x) have been extracted. The other two experiments, one in Hall B and one in Hall C, are still analyzing data. Some results are presented.

  9. The low Q$^2$ chicane and Compton polarimeter at the JLab EIC

    SciTech Connect

    Camsonne, Alexandre

    2016-03-01

    The JLAB EIC (JLEIC) design includes a chicane after the interaction point to detect electron associated with production of quasi-real photon at the interaction. This chicane layout can also be used for Compton polarimetry to measure the electron beam polarization. This proceeding will present the layout of the low Q^2 chicane and the implementation and current R&D; of a Compton polarimeter which would be located in the middle of this chicane.

  10. Advanced accelerator test facility-Final report for the period 9/1/2010 - 8/31/2013

    SciTech Connect

    Hirshfield, Jay

    2014-10-27

    This final report summarizes results achieved in the Beam Physics Laboratory at Yale University during the period 9/1/2010 – 8/31//2013, under DoE grant DE-FG02-07 ER 41504. During the period covered by this report, notable progress in technical consolidation of facilities in the Yale Beam Physics Laboratory has occurred; and theory, design, and fabrication for future experiments have been carried out. In the period covered by this grant, 29 scientific publications based on this work and related topics have appeared in the archival literature. Titles, authors, and citations are listed in Section V of this report.

  11. Construction of. gamma pi. /sup 0/ spectrometer and photon tagging facility at Bates Linear Accelerator. Final report, July 31, 1979-July 31, 1980

    SciTech Connect

    Booth, E.C.

    1981-08-01

    The funds provided under Contract No. DE-AC02-79ER10486 were totally expended for hardware and supplies required by two related devices at the Bates Linear Accelerator. These were a photon tagging facility and a ..gamma pi../sup 0/ spectrometer in Beam Line C of the new South Experimental Hall. Construction was begun in November of 1979 and both systems became fully operational in the summer of 1981. Preliminary data was taken in 1980 with a prototype ..gamma pi../sup 0/ spectrometer will be carried out in the fall of 1981 and spring of 1982. The photon tagging system has been used successfully to calibrate the ..gamma pi../sup 0/ spectrometer for the BU - MIT collaboration and to test a lead glass detector system for Brandeis University.

  12. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1998-01-01

    The research accomplishments summarized in this Final Report during the period from 3/95 to 3/98, which included a 12 months no-cost extension granted at the end of the nominal 2 year period of performance. The report has 5 sections, in section 1 the objectives are presented, a task description is given and the background and significance of the work is outlined. In section 2 the research accomplishments are summarized. In section 3 publications and presentations are listed. Student participation is listed in 4. The work is summarized in section 5. and references for sections 1 and 2 are supplied in section 6. The object of this work, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involved using a combination of 2- and 3-D numerical models, scaling analyses, ID models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USW-3 space flight which took place between February 22 through March 6, 199). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification

  13. FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale

    SciTech Connect

    Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

    1989-04-01

    This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H/sub 2/), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H/sub 2/ with obstacles and no transverse venting. 67 refs., 62 figs.

  14. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zou, Yubin; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator-based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8-2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8-2.0 ms, especially for materials with strong moderating capability.

  15. Improved characterization of the CR-39 efficiency for detecting DD neutrons based on data from OMEGA, NIF and the MIT HEDP Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Milanese, L. M.; Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Bionta, R.; Yeamans, C.; Hahn, K.; Jones, B.

    2016-10-01

    CR-39 nuclear track detectors are extensively used to measure fluences and spectra of charged particles produced in Inertial Confinement Fusion (ICF) implosions. An accurate determination of the CR-39 response to neutrons is important both to perform direct neutron fluence measurements and to estimate the level of neutron-induced background impacting charged-particle measurements. The CR-39 efficiency for detecting neutrons depends on several factors, including the manufacturing process of the CR-39, etching conditions and characteristics of the scanning system employed to detect the neutron-induced tracks. The CR-39 response to DD neutrons has been characterized using implosions at OMEGA and the NIF as well as a neutron generator at the MIT HEDP Accelerator Facility. A new approach provides significantly better precision than previously demonstrated in the literature. This method will be used to characterize DD fusion isotropy at the Z Facility. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF), LLNL and SNL.

  16. The André E. Lalonde AMS Laboratory - The new accelerator mass spectrometry facility at the University of Ottawa

    NASA Astrophysics Data System (ADS)

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.; Cornett, R. J.; Litherland, A. E.; Klein, M.; Mous, D. J. W.; Alary, J.-F.

    2015-10-01

    The University of Ottawa, Canada, has installed a multi-element, 3 MV tandem AMS system as the cornerstone of their new Advanced Research Complex and the principal analytical instrument of the André E. Lalonde Accelerator Mass Spectrometry Laboratory. Manufactured by High Voltage Engineering Europa B.V., the Netherlands, it is equipped with a 200 sample ion source, a high resolution, 120° injection magnet, a 90° high energy analysis magnet (mass-energy product 350 MeV-AMU), a 65°, 1.7 m radius electric analyzer and a 2 channel gas ionization detector. It is designed to analyze isotopes ranging from tritium to the actinides and to accommodate the use of fluoride target materials. This system is being extended with a second injection line, consisting of selected components from the IsoTrace Laboratory, University of Toronto. This line will contain a pre-commercial version of the Isobar Separator for Anions, manufactured by Isobarex Corp., Bolton, Ontario, Canada. This instrument uses selective ion-gas reactions in a radio-frequency quadrupole cell to attenuate both atomic and molecular isobars. This paper discusses the specifications of the new AMS equipment, reports on the acceptance test results for 10Be, 14C, 26Al and 127I and presents typical spectra for 10Be and actinide analyses.

  17. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  18. THE JLAB AMPERE-CLASS CRYOMODULE CONCEPTUAL DESIGN

    SciTech Connect

    Robert Rimmer; Edward Daly; William Hicks; James Henry; Joseph Preble; Mircea Stirbet; Haipeng Wang; Katherine Wilson; Genfa Wu; Gianluigi Ciovati; Thomas Elliott; Peter Kneisel; Stephen Manning; Robert Manus; Karl Smith; Lynn Vogel; Larry Turlington

    2006-06-26

    For the next generation of compact high-power FELs a new cryomodule is required that is capable of accelerating up to Ampere levels of beam current. Challenges include strong HOM damping, high HOM power and high fundamental-mode power (in operating scenarios without full energy recovery). For efficient use of space a high real-estate gradient is desirable and for economic operation good fundamental-mode efficiency is important. The technology must also be robust and should be based on well-proven and reliable technologies. For Ampere-class levels of beam current both halo interception and beam break-up (BBU) are important considerations. These factors tend to drive the designs to lower frequencies where the apertures are larger and the transverse impedances are lower. To achieve these goals we propose to use a compact waveguide-damped multi-cell cavity packaged in an SNS-style cryomodule.

  19. Measurements of the Helium Form Factors at JLab

    SciTech Connect

    Khrosinkova, Elena

    2007-10-26

    An experiment to measure elastic electron scattering off {sup 3}He and {sup 4}He at large momentum transfers is presented. The experiment was carried out in the Hall A Facility of Jefferson Lab. Elastic electron scattering off {sup 3}He was measured at forward and backward electron scattering angles to extract the isotope's charge and magnetic form factors. The charge form factor of {sup 4}He will be extracted from forward-angle electron scattering angle measurements. The data are expected to significantly extend and improve the existing measurements of the three- and four-body form factors. The results will be crucial for the establishment of a canonical standard model for the few-body nuclear systems and for testing predictions of quark dimensional scaling and hybrid nucleon-quark models.

  20. Development of a methodology to accelerate a spontaneous grass colonization in a tailings storage facility under semiarid mediterranean climate type

    NASA Astrophysics Data System (ADS)

    Ginocchio, Rosanna; Arellano, Eduardo; Morales-Ladron de Guevara, Arturo

    2016-04-01

    Phytostabilization of massive mine tailings (>400 he) under semiarid environments is challenging, particularly when no organic amendments are locally available and no irrigation is possible. Increasing tendency for reprocessing old tailings to recover valued metals further pioneer the need for simple but effective plant covers. The choice of plant species and form of management are thus very important. CODELCO-Chile chose the Cauquenes post-operational tailings storage facility (TFS; 700 ha), that will be reprocessed for copper and other elements in the near future, to evaluate efficacy of the phytostabilization technology under semiarid conditions in central Chile. Surface application of a polymer (Soiltac TM) has been used for wind control of tailings but phytostabilization is considered as a best cost-effective alternative. A field study was performed to define a management program to improve the establishment and cover of an annual native grass (Vulpia myuros var. megalura), a spontaneous colonizer of the TSF. Considered management factors were control of macro herbivores (with and without fence), macronutrient improvement (with and without application of N-rich foliar fertilizer), and improvement of seed retention in the substrate (with and without small-scale rugosity; with and without lived wind-breakers; with and without mechanical wind-breakers). Each treatment was replicated three times and established in 2 m x 2 m quadrats. Plant response variables were monitored after 1 and 2 grass growing seasons. Application of N-rich foliar fertilizer and any wind control mechanism for seed retention in the substrate were effective for significantly improving both grass cover and biomass production in time, irrespective of macro-herbivore control. Seed production was significantly improved when macro herbivores were excluded and was positively and significantly correlated to vegetative biomass production. When applying this management program for tailings

  1. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure – Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure – Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  2. Workshop on Physics with Neutral Kaon Beam at JLab (KL2016) Mini-Proceedings

    SciTech Connect

    Strakovsky, Igor I.; Amaryan, Moskov; Chudakov, Eugene A.; Meyer, Curtis A.; Pennington, Michael R.; Ritman, James L.

    2016-05-01

    The KL2016 Workshop is following the Letter of Intent LoI12-15-001 "Physics Opportunities with Secondary KL beam at JLab" submitted to PAC43 with the main focus on the physics of excited hyperons produced by the Kaon beam on unpolarized and polarized targets with GlueX setup in Hall D. Such studies will broaden a physics program of hadron spectroscopy extending it to the strange sector. The Workshop was organized to get a feedback from the community to strengthen physics motivation of the LoI and prepare a full proposal.

  3. Studies of the 3D Structure of the Nucleon at Jlab

    SciTech Connect

    Avakian, Harut

    2016-07-01

    Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  4. The CTEQ-JLab global analysis of large-x PDFs

    SciTech Connect

    Alberto Accardi

    2011-10-01

    I discuss several corrections to leading twist calculations of nucleon structure functions which are needed to include experimental data at large parton fractional momentum x and at low scales Q2 in global fits of parton distribution functions. In particular I discuss the results of the CTEQ-JLab global fit, and some work in progress. Topics covered include the interplay of target mass and higher-twist corrections, the importance of nuclear corrections for deuterium target data, and applications to the study of quark-hadron duality. Implications for collider physics are highlighted.

  5. Theory Support for the Excited Baryon Analysis Program at the JLAB 12 GeV Upgrade

    SciTech Connect

    Burkert, Volker; Lee, Tsung-Shung; Mokeev, Viktor; Aznauryan, Inna; Braun, Vladimir; Capstick, Simon; Cloet, Ian; Edwards, Robert; Gianinni, M.; Lin, Huey-Wen; Roberts, C.D.; Stoler, Paul; Zhao, Qiang; Zou, Bing-Song

    2009-01-01

    This document summarizes the contributions of the Electromagnetic $\\gamma_vNN^*$ Transition Form Factors workshop participants that provide theoretical support of the excited baryon program at the 12 GeV energy upgrade at JLab. The main objectives of the workshop were (a) review the status of the $\\gamma_vNN^*$ transition form factors extracted from the meson electroproduction data, (b) call for the theoretical interpretations of the extracted $N$-$N^*$ transition form factors, that enable access to the mechanisms responsible for the N* formation and to their emergence from QCD.

  6. Electroweak radiative corrections for polarized Moeller scattering at the future 11 GeV JLab experiment

    SciTech Connect

    Aleksejevs, Aleksandrs; Barkanova, Svetlana; Ilyichev, Alexander; Zykunov, Vladimir

    2010-11-01

    We perform updated and detailed calculations of the complete next-to-leading order set of electroweak radiative corrections to parity-violating e{sup -}e{sup -}{yields}e{sup -}e{sup -}({gamma}) scattering asymmetries at energies relevant for the ultraprecise Moeller experiment to be performed at JLab. Our numerical results are presented for a range of experimental cuts and the relative importance of various contributions is analyzed. We also provide very compact expressions analytically free from nonphysical parameters and show them to be valid for fast, yet accurate estimations.

  7. Exotic Mesons at JLab Before 2013? The Search for New Forms of Matter at CLAS

    SciTech Connect

    Craig Bookwalter

    2007-10-01

    A proposal to search for exotic mesons in photoproduction has been accepted for running at Thomas Jefferson National Accelerator Facility, using the CEBAF Large Acceptance Spectrometer in Hall B. This program will bolster previously-thin statistics in many photoproduction channels, primarily those with charged particles in the final state, as well as seeking to confirm earlier findings in neutral channels, if possible. The promise of the neutral 3pi channel is discussed. In addition, the experiment seeks to study the spectrum of both exotic and ordinary strangeonia. Limitations of the CLAS detector for meson spectroscopy are discussed, as well as possible solutions to minimize such limitations.

  8. Exotic Mesons at JLab Before 2013? The Search for New Forms of Matter at CLAS

    SciTech Connect

    Bookwalter, Craig

    2007-10-26

    A proposal to search for exotic mesons in photoproduction has been accepted for running at Thomas Jefferson National Accelerator Facility, using the CEBAF Large Acceptance Spectrometer in Hall B. This program will bolster previously-thin statistics in many photoproduction channels, primarily those with charged particles in the final state, as well as seeking to confirm earlier findings in neutral channels, if possible. The promise of the neutral 3{pi} channel is discussed. In addition, the experiment seeks to study the spectrum of both exotic and ordinary strangeonia. Limitations of the CLAS detector for meson spectroscopy are discussed, as well as possible solutions to minimize such limitations.

  9. Status of Hall B superconducting magnets for the CLAS12 detector at JLab

    SciTech Connect

    Quettier, L; Kashy, D; Elouadrhiri, L; Salpietro, E; Schneider, W; Small, R; Leung, E; Juang, T; McMullin, J; Taylor, C; Xu, L; Wagner, B; Wang, B; Wang, M; Zbasnik, J

    2011-12-01

    Hadron physics has been an essential part of the physics program with the CLAS detector in experimental hall B at Thomas Jefferson National Accelerator Facility (Jefferson Lab). With the 12 GeV upgrade of the CEBAF machine, hadron physics in Hall B will be extended to a new domain of higher mass resonances and the range of higher transferred momentum using up to 11 GeV electron beams and the upgraded CLAS12 detector. In this paper, status of the hall B superconducting magnets for the CLAS12 detector is presented.

  10. An Overview of Longitudinal Spin Structure Measurements from JLab

    SciTech Connect

    Sulkosky, Vincent A.

    2013-08-01

    Jefferson Lab is currently one of the facilities leading the investigation of the spin structure of the nucleon. Over the past 15 years, several high precision measurements have been completed, extending our knowledge of the polarized structure functions g{sub 1} and g{sub 2} down to Q{sup 2} = 0.02 GeV{sup 2}. In particular, the low-Q{sup 2} range ({<=} 0.1 GeV{sup 2}) from these data allows us to make a benchmark-check of Chiral Perturbation theory ({chi}PT). Previous results for the moments of the spin structure functions in this region have shown mixed agreement. For {Gamma}{sub 1}, the first moment of g{sub 1}, we find good consistency between data and theory. However, we have seen a surprisingly large discrepancy with {chi}PT calculations for the {delta}{sub LT} spin polarizability on the neutron, which is significantly less sensitive to the {Delta}-resonance contribution. These proceedings will discuss the recent experimental effort at low Q{sup 2} from Jefferson Lab, including a discussion of preliminary results on the neutron. The new results on the neutron still show a sizeable discrepancy between data and theory. However, new calculations show improved agreement with data for some observables. In addition, new proton data for g{sub 2} is also expected to help resolve the disagreement for {delta}{sub LT}.

  11. Studies of the transverse structure of the nucleon at JLab

    SciTech Connect

    Mirazita, Marco

    2014-03-01

    Since the earliest measurements in the '70, hadronic physics deals with a number of surprising phenomena that cannot be explained in the framework of perturbative QCD. Examples are the small fraction of the proton spin carried by the valence quark spins, the persistence at high energies of single spin asymmetries and azimuthal asymmetries in unpolarized processes. It is now believed that the answer to these questions may come from the transverse motion of partons inside the nucleon, which is encoded in the Transverse Momentum Dependent (TMD) Parton Distribution Functions. Among the large variety of processes that can be described in terms of TMDs, a major role is played by Semi-Inclusive Deep Inelastic Scattering (SIDIS) reactions, in which, together with the scattered electron, one or more hadrons are detected in the final state. Single and Double Spin Asymmetries are the experimental observables sensitive to TMDs. The identification of the final hadrons allows the tagging of the quark involved in the reaction at the parton level, and then the flavor separation of the relevant TMDs. SIDIS reactions are studied at Jefferson Laboratories since many years and are one of the main items in the physics program after the upgrade of the CEBAF accelerator. The large amount of new data that will be available in few years calls for the implementation of new tools, such as multidimensional analyses and refined techniques of TMDs extraction from the experimental asymmetries. In this talk, the more recent results obtained at 6 GeV will be shown and the future measurements will be discussed.

  12. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  13. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  14. Compton scattering off polarized electrons with a high-finesse Fabry-Perot Cavity at Jlab

    SciTech Connect

    Nicolas Falletto; Martial Authier; Maud Baylac; M. Boyer; Francois Bugeon; Etienne Burtin; Christian Cavata; Nathalie Colombel; G. Congretel; R. Coquillard; G. Coulloux; Bertrand Couzy; P Deck; Alain Delbart; D. Desforges; A. Donati; B. Duboue; Stephanie Escoffier; F. Farci; Bernard Frois; P Girardot; J Guillotau; C Henriot; Claude Jeanney; M Juillard; J. P. Jorda; P. Legou; David Lhuillier; Y Lussignol; Phillippe Mangeot; X. Martin; Frederic Marie; Jacques Martino; M. Maurier; Bernard Mazeau; J.F. Millot; F. Molinie; J.-P. Mols; Jean-pierre Mouly; M. Mur; Damien Neyret; T. Pedrol; Stephane Platchkov; G. Pontet; Thierry Pussieux; Yannick Queinec; Philippe Rebourgeard; J. C. Sellier; Gerard Tarte; Christian Veyssiere; Andre Zakarian; Pierre Bertin; Alain Cosquer; Jian-ping Chen; Joseph Mitchell; J.-M. Mackowski; L. Pinard

    2001-03-01

    We built and commissioned a new type of Compton polarimeter to measure the electron beam polarization at the Thomas Jefferson National Accelerator Facility (Virginia, USA). The heart of this polarimeter is a high-finesse monolithic Fabry-Perot cavity. Its purpose is to amplify a primary 300 mW laser beam in order to improve the signal to noise ratio of the polarimeter. It is the first time that a high-finesse Fabry-Perot cavity is enclosed in the vacuum of a particle accelerator to monitor the beam polarization by Compton polarimetry. The measured finesse and amplification gain of the cavity are F=26000 and G=7300. The electron beam crosses this high-power photon source at an angle of 23 mrad in the middle of the cavity where the photon beam power density is estimated to be 0.85MW/cm2. We have used this facility during the HAPPEX experiment (April-July 1999) and we give a preliminary measurement of Compton scattering asymmetry.

  15. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  16. SNEAP 80: symposium of Northeastern Accelerator personnel

    SciTech Connect

    Billen, J.H.

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  17. Final Report for "Community Petascale Project for Accelerator Science and Simulations".

    SciTech Connect

    Cary, J. R.; Bruhwiler, D. L.; Stoltz, P. H.; Cormier-Michel, E.; Cowan, B.; Schwartz, B. T.; Bell, G.; Paul, K.; Veitzer, S.

    2013-04-19

    This final report describes the work that has been accomplished over the past 5 years under the Community Petascale Project for Accelerator and Simulations (ComPASS) at Tech-X Corporation. Tech-X had been involved in the full range of ComPASS activities with simulation of laser plasma accelerator concepts, mainly in collaboration with LOASIS program at LBNL, simulation of coherent electron cooling in collaboration with BNL, modeling of electron clouds in high intensity accelerators, in collaboration with researchers at Fermilab and accurate modeling of superconducting RF cavity in collaboration with Fermilab, JLab and Cockcroft Institute in the UK.

  18. PROGRESS ON THE INTERACTION REGION DESIGN AND DETECTOR INTEGRATION AT JLAB'S MEIC

    SciTech Connect

    Morozov, Vasiliy; Brindza, Paul; Camsonne, Alexandre; Derbenev, Yaroslav; Ent, Rolf; Gaskell, David; Lin, Fanglei; Nadel-Turonski, Pawel; Ungaro, Maurizio; Zhang, Yuhong; Hyde, Charles; Park, Kijun; Sullivan, Michael; Zhao, Zhiwen

    2014-07-01

    One of the unique features of JLab's Medium-energy Electron-Ion Collider (MEIC) is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. We present an interaction region design developed with close integration of the detection and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region's modularity for ease of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary provisions for non-linear dynamical optimization.

  19. Commissioning and operational results of the 12 GeV helium compression system at Jlab

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.; Norton, Robert O.; Creel, Jonathan D.

    2015-12-01

    The new compressor system at Jefferson Lab (JLab) for the 12 GeV upgrade was commissioned in the spring of 2013 and incorporates many design changes, discussed in previous publications, to improve the operational range, efficiency, reliability and maintainability as compared to previous compressor skids used for this application. The 12 GeV helium compression system has five compressors configured with four pressure levels supporting three pressure levels in the new cold box. During compressor commissioning the compressors were operated independent of the cold box over a wide range of process conditions to verify proper performance including adequate cooling and oil removal. Isothermal and volumetric efficiencies over these process conditions for several built-involume ratios were obtained. This paper will discuss the operational envelope results and the modifications/improvements incorporated into the skids.

  20. Commissioning and operational results of the 12 GeV helium compression system at JLab

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-12-01

    The new compressor system at Jefferson Lab (JLab) for the 12 GeV upgrade was commissioned in the spring of 2013 and incorporates many design changes, discussed in previous publications, to improve the operational range, efficiency, reliability and maintainability as compared to previous compressor skids used for this application. The 12 GeV helium compression system has five compressors configured with four pressure levels supporting three pressure levels in the new cold box. During compressor commissioning the compressors were operated independent of the cold box over a wide range of process conditions to verify proper performance including adequate cooling and oil removal. Isothermal and volumetric efficiencies over these process conditions for several built-involume ratios were obtained. This paper will discuss the operational envelope results and the modifications/improvements incorporated into the skids.

  1. Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA

    SciTech Connect

    Horowitz, Charles J.; Kumar, Krishna S.; Michaels, Robert W.

    2014-02-01

    Measurement of the parity-violating electron scattering asymmetry is an established technique at Jefferson Lab and provides a new opportunity to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on ${}^{208}$Pb and ${}^{48}$Ca respectively; these are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter ${}^{48}$Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces.

  2. Electrons on the HDice target: Results and analysis of test runs at JLab in 2012

    SciTech Connect

    Lowry, Michael; Bass, Christopher; D'Angelo, Annalisa; Deur, Alexandre; Hanretty, Charles; Ho, Dao; Kageya, Tsuneo; Laine, Vivien; Peng, Peng; Sandorfi, Andrew; Wei, Xiangdong; Whisnant, Charles

    2014-06-01

    During the Jefferson Labaratory E06-101 (g14) experiment \\cite{g14} utilizing photons on solid HD and performed in Hall B, two opportunities arose for targets to be subjected to multi-GeV electron beams in week-long campaigns of dose accumulation and NMR polarization measurements. This was in preparation for conditionally approved electron experiments after the 12 GeV JLab upgrade\\cite{trans}. Besides the important thermal effects, evidence consistent with screening of the NMR and with decay of the target polarization was observed during bombardment and for a time afterwards. The solid hydrogens have been the subject of previous radiation damage studies, both for possible polarized DT fusion\\cite{Forrest97} and for production of dynamically polarized nuclear targets\\cite{Radtke04}. We synthesize all this information into an overall picture that can guide on-going development of the HDice target system for future use.

  3. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  4. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  5. Q0 Improvement of Large-Grain Multi-Cell Cavities by Using JLab's Standard ILC EP Processing

    SciTech Connect

    Geng, R. L.; Eremeev, G. V.; Kneisel, P.; Liu, K. X.; Lu, X. Y.; Zhao, K.

    2011-07-01

    As reported previously at the Berlin workshop, applying the JLab standard ILC electropolishing (EP) recipe on previously buffered chemical polishing (BCP) etched fine-grain multi-cell cavities results in improvement both in gradient and Q{sub 0}. We recently had the opportunity to experiment with two 1300 MHz 9-cell large-gain niobium cavities manufactured by JLab and Peking University. Both cavities were initially BCP etched and further processed by using JLab's standard ILC EP recipe. Due to fabrication defects, these two cavities only reached a gradient in the range of 20-30 MV/m. Interestingly both cavities demonstrated significant Q{sub 0} improvement in the gradient range of 15-20 MV/m. At 2K, a Q{sub 0} value of 2E10 is achieved at 20 MV/m. At a reduced temperature of 1.8K, a Q{sub 0} value of 3E10 is achieved at 20 MV/m. These results suggest that a possible path for obtaining higher Q{sub 0} in the medium gradient range is to use the large-grain material for cavity fabrication and EP and low temperature bake for cavity processing.

  6. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. HIGH POWER TEST OF RF SEPARATOR FOR 12 GEV UPGRADE OF CEBAF AT JLAB

    SciTech Connect

    S. Ahmed, M. Wissmann, J. Mammosser, C. Hovater, M. Spata, G. Krafft, J. Delayen

    2012-07-01

    CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, we are exploring the possibility of extension of existing normal conducting 499 MHz TEM-type rf separator cavities. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test of 4 kW confirms that the cavity meet the requirement.

  8. Pion and kaon structure functions at 12 GeV JLab and EIC

    NASA Astrophysics Data System (ADS)

    Horn, Tanja

    2017-01-01

    Pions and kaons are, along with protons and neutrons, the main building blocks of nuclear matter. They are connected to the Goldstone modes of dynamical chiral symmetry breaking, the mechanism thought to generate all hadron mass in the visible universe. The distribution of the fundamental constituents, the quarks and gluons, is expected to be different in pions, kaons, and nucleons. However, experimental data are sparse. As a result, there has been persistent doubt about the behavior of the pion's valence quark structure function at large Bjorken-x and virtually nothing is known about the contribution of gluons. A 12 GeV JLab experiment using tagged DIS may contribute to the resolution of the former. The Electron-Ion Collider with an acceptance optimized for forward physics could provide access to structure functions over a larger kinematic region. This would allow for measurements testing if the origin of mass is encoded in the differences of gluons in pions, kaons, and nucleons, and measurements testing assumptions used in the extraction of structure functions and the pion and kaon form factors. Electroweak measurements at an EIC would also potentially allow to disentangle the role of quark flavors at high x. In this talk we will discuss the prospects of such measurements. Supported in part by NSF grants PHY-1306227 and PHY-1306418.

  9. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    NASA Astrophysics Data System (ADS)

    Ganni, V.; Knudsen, P.; Dixon, K.; Norton, R.; Creel, J.; Arenius, D.

    2014-01-01

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35-55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizing and selection of its components. The cold box system is comprised of a 300-60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60-4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.

  10. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    SciTech Connect

    Pavel Evtushenko; James Coleman; Kevin Jordan; J. Michael Klopf; George Neil; Gwyn Williams

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  11. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    SciTech Connect

    Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.; Norton, Robert O.; Creel, Jonathan D.

    2014-01-01

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizing and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.

  12. The Data Quality and Analysis Status of the Proton Charge Radius (PRad) Experiment at JLab

    NASA Astrophysics Data System (ADS)

    Xiong, Weizhi; PRad Collaboration

    2017-01-01

    In order to investigate the proton radius puzzle, the PRad experiment (E12-11-106) was performed in 2016 in Hall B at Jefferson Lab. The experiment aims to extract the electric form factor of proton in an unprecedented low Q2 region (2 ×10-4 - 0 . 1(GeV / c) 2), with a sub-percent precision. The PRad experiment utilizes a non-magnetic calorimetric method with a high efficiency and high resolution calorimeter (HyCal), and two Gas Electron Multiplier (GEM) detectors. The systematic uncertainties are well controlled by two main advantages of the experiment: (1) The electron-proton (e - p) elastic scattering cross section is normalized to the well-known M øller scattering process, which is measured simultaneously during the experiment; (2) The H2 gas flow target has no cell windows at both ends, which created primary backgrounds in the previous e - p elastic scattering experiments. Thus the PRad experiment largely suppresses the two major systematic uncertainties in the previous magnetic spectrometric e - p elastic scattering experiments. In this talk, we will discuss the data quality and analysis status, and present the first preliminary results from the current analysis process. This work is supported in part by the U.S. Department of Energy under Contract No. DE-FG02-03ER41231, NSF MRI award PHY-1229153, Thomas Jefferson National Accelerator Facility and Duke University.

  13. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  14. Adsorption behavior of beryllium(II) on copper-oxide nanoparticles dispersed in water: A model for (7)Be colloid formation in the cooling water for electromagnets at high-energy accelerator facilities.

    PubMed

    Bessho, Kotaro; Kanaya, Naoki; Shimada, Saki; Katsuta, Shoichi; Monjushiro, Hideaki

    2014-01-01

    The adsorption behavior of Be(II) on CuO nanoparticles dispersed in water was studied as a model for colloid formation of radioactive (7)Be nuclides in the cooling water used for electromagnets at high-energy proton accelerator facilities. An aqueous Be(II) solution and commercially available CuO nanoparticles were mixed, and the adsorption of Be(II) on CuO was quantitatively examined. From a detailed analysis of the adsorption data measured as a function of the pH, it was confirmed that Be(II) is adsorbed on the CuO nanoparticles by complex formation with the hydroxyl groups on the CuO surface (>S-OH) according to the following equation: n > S-OH + Be(2+) ⇔ (>S-O)n Be((2-n)+) + nH(+) (n = 2, 3) S : solid surface. The surface-complexation constants corresponding to the above equilibrium, β(s,2) and β(s,3), were determined for four types of CuO nanoparticles. The β(s,2) value was almost independent of the type of nanoparticle, whereas the β(s,3) values varied with the particle size. These complexation constants successfully explain (7)Be colloid formation in the cooling water used for electromagnets at the 12-GeV proton accelerator facility.

  15. CEBAF Accelerator Achievements

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Drury, M.; Hovater, C.; Hutton, A.; Krafft, G. A.; Poelker, M.; Reece, C.; Tiefenback, M.

    2011-05-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  16. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  17. Review of ion accelerators

    SciTech Connect

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  18. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  19. Development of Advanced Beam Halo Diagnostics at the Jefferson Lab Free-Electron-Laser Facility

    SciTech Connect

    Shukui Zhang, Stephen Benson, Dave Douglas, Frederick Wilson, Hao Zhang, Anatoly Shkvarunets, Ralph Fiorito

    2011-03-01

    High average current and high brightness electron beams are needed for many applications. At the Jefferson Lab FEL facility, the search for dark matter with the FEL laser beam has produced some interesting results, and a second very promising experiment called DarkLight, using the JLab Energy-recovery-linac (ERL) machine has been put forward. Although the required beam current has been achieved on this machine, one key challenge is the management of beam halo. At the University of Md. (UMD) we have demonstrated a high dynamic range halo measurement method using a digital micro-mirror array device (DMD). A similar system has been established at the JLab FEL facility as a joint effort by UMD and JLab to measure the beam halo on the high current ERL machine. Preliminary experiments to characterize the halo were performed on the new UV FEL. In this paper, the limitations of the present system will be analyzed and a discussion of other approaches (such as an optimized coronagraph) for further extending the dynamic range will be presented. We will also discuss the possibility of performing both longitudinal and transverse (3D) halo measurements together on a single system.

  20. Timelike Compton Scattering off the nucleon: observables and experimental perspectives for JLab at 12 GeV

    SciTech Connect

    Boer, Marie

    2016-03-01

    Hard exclusive processes such as photoproduction or electroproduction of photon or meson off the nucleon provide access to the Generalized Parton Distributions (GPDs), in the regime where the scattering amplitude is factorized into a hard and a soft part. GPDs contain the correlation between the longitudinal momentum fraction and the transverse spatial densities of quarks and gluons in the nucleon. Timelike Compton Scattering (TCS) correspond to the reaction gammaN --> gamma*N --> e+e?N, where the photon is scattered off a quark. It is measured through its interference with the associated Bethe-Heitler process, which has the same final state. TCS allows to access the GPDs and test their universality by comparison to the results obtained with the DVCS process (eN --> e gamma N). Also, results obtained with TCS provide additional independent constrains to the GPDs parameterization. We will present the physical motivations for TCS, with our theoretical predictions for TCS observables and their dependencies. We calculated for JLab 12 GeV energies all the single and double beam and/or target polarization observables off the proton and off the neutron. We will also present the experimental perspectives for the next years at JLab. Two proposals were already accepted at JLab: in Hall B, with the CLAS12 spectrometer, in order to measure the unpolarized cross section and in Hall A, with the SoLID spectrometer, in order to measure the unpolarized cross section and the beam spin asymmetry at high intensity. A Letter Of Intent was also submitted in order to measure the transverse target spin asymmetries in Hall C. We will discuss the merits of this different experiments and present some of the expected results.

  1. Oak Ridge 25-MV tandem accelerator

    SciTech Connect

    Jones, C.M.

    1981-01-01

    A brief description is presented of the scope and status of the heavy ion accelerator facility, and status of the project is discussed. Initial operation of the 25 MV tandem accelerator from National Electrostatics Corporation is covered. (GHT)

  2. Electroweak radiative corrections for polarized Moller scattering at the future 11 GeV JLab experiment

    DOE PAGES

    Aleksejevs, Aleksandrs; Barkanova, Svetlana; Ilyichev, Alexander; ...

    2010-11-19

    We perform updated and detailed calculations of the complete NLO set of electroweak radiative corrections to parity violating e– e– → e– e– (γ) scattering asymmetries at energies relevant for the ultra-precise Moller experiment coming soon at JLab. Our numerical results are presented for a range of experimental cuts and relative importance of various contributions is analyzed. In addition, we also provide very compact expressions analytically free from non-physical parameters and show them to be valid for fast yet accurate estimations.

  3. Determination of the linear polarization for pseudo-scalar meson photoproduction experiments in Hall-B at JLab

    NASA Astrophysics Data System (ADS)

    Sabintsev, Arthur

    2010-02-01

    The JLab CLAS g9a experiments are double polarization measurements that have accumulated photoproduction data using a linearly polarized, tagged photons incident on a longitudinally polarized, frozen spin butanol target (FROST). Linearly polarized photons were produced via coherent bremsstrahlung from an electron beam incident on an oriented diamond crystal.footnotetextU. Timm, Fortschritte der Physik, 17, 765 (1969). The analysis of the resulting coherent peaks was used to determine photon polarization which agree with phenomenological calculations.footnotetextA. Natter, et al., Nuc. Inst Meth B 211, 465 (2003). )

  4. Electroweak radiative corrections for polarized Moller scattering at the future 11 GeV JLab experiment

    SciTech Connect

    Aleksejevs, Aleksandrs; Barkanova, Svetlana; Ilyichev, Alexander; Zykunov, Vladimir

    2010-11-19

    We perform updated and detailed calculations of the complete NLO set of electroweak radiative corrections to parity violating e e → e e (γ) scattering asymmetries at energies relevant for the ultra-precise Moller experiment coming soon at JLab. Our numerical results are presented for a range of experimental cuts and relative importance of various contributions is analyzed. In addition, we also provide very compact expressions analytically free from non-physical parameters and show them to be valid for fast yet accurate estimations.

  5. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    NASA Technical Reports Server (NTRS)

    Alexander J. Iwan D. (Principal Investigator)

    1996-01-01

    The objective of this work is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involves using a combination of 2- and 3-D numerical models, scaling analyses, ID models and the results of ground-based and low-gravity experiments. The latter are to be conducted during the MEPHISTO experiment scheduled for USMP-3 in early 1996. The models will be used to predict the response of the transport conditions and consequent solute segregation in directionally solidifying tin-bismuth melt. Real-time Seebeck voltage variations across a Sn-Bi melt during directional solidification in MEPHISTO on USMP-1 show a distinct variation which can be correlated with thruster firings. The Seebeck voltage measurement is related to the response of the instantaneous average melt composition at the melt-solid interface. This allows a direct comparison of numerical simulations with the Seebeck signals obtained on USMP-1. The effects of such accelerations on composition for a directionally solidifying Sn-Bi alloy have been simulated numerically. USMP-1 acceleration data was used to assist in our choice of acceleration magnitude and orientation. The results show good agreement with experimental observations. The USMP-3 experiments took place earlier this year (February 22 through March 6). There were several differences between the USMP-3 experiments as compared to USMP-1. Firstly a more concentrated alloy was solidified and, secondly, Primary Reaction Control System thruster burns were requested at particular times during four separate growth runs. This allowed us to monitor the response Seebeck response under well-characterized growth conditions. In addition, we carried out simulations during the experiment in order to interpret the Seebeck signal. Preliminary results are described here.

  6. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  7. Proceedings of the international workshop on hadron facility technology

    SciTech Connect

    Thiessen, H.A.

    1987-12-01

    The conference included papers on facility plans, beam dynamics, accelerator hardware, and experimental facilities. Individual abstracts were prepared for 43 papers in the conference proceedings. (LEW)

  8. Recent Advances in Plasma Acceleration

    SciTech Connect

    Hogan, Mark

    2007-03-19

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  9. A new 14 GH{sub z} electron-cyclotron-resonance ion source (ECRIS) for the heavy ion accelerator facility ATLAS

    SciTech Connect

    Schlapp, M.; Vondrasek, R.C.; Szczech, J.; Biliquist, P.J.; Pardo, R.C.; Xie, Z.Q.; Harkewicz, R.

    1997-09-01

    A new 14 GHz ECRIS has been designed and built over the last two years. The source design incorporates the latest results from ECR developments to produce intense beams of highly charged ions. An improved magnetic electron confinement is achieved from a large mirror ratio and strong hexapole field. The aluminum plasma chamber and extraction electrode as well as a biased disk on axis at the microwave injection side donate additional electrons to the plasma, making use of the large secondary electron yields from aluminum oxide. The source will be capable of ECR plasma heating using two different frequencies simultaneously to increase the electron energy gain. To be able to deliver usable intensities of the heaviest ion beams the design will also allow axial access for metal evaporation ovens and solid material. The main design goal is to produce several e{mu}A of at least {sup 238}U{sup 34+} in order to accelerate the beam to coulomb-barrier energies without further stripping. First charge state distributions for {sup 16}O and {sup 40}Ar have been measured.

  10. a Measurement of the Photon-Structure Function with Probing Q(2) = 20 GEV(2) Using the Two-Gamma Detector Facility at the Stanford Linear Accelerator Center.

    NASA Astrophysics Data System (ADS)

    Steinman, Jeffrey Samuel

    The TPC/Two-Gamma detector facility has been used to measure the photon structure function F_sp {2}{gamma}(x,Q^2) for the hadronic process e^- e^+ to e^- e^+ X in the range 8 GeV^2 < Q^2 < 55 GeV^2. The analysis used 322 multihadron events obtained from a luminosity of 69 pb ^{-1}. The data have been corrected for detector effects by two methods. Event-by-event corrections to the visible two-photon mass are made based on physical constraints. Then, an unfolding procedure is used to globally correct for detector smearing effects. The structure function is compared with two theoretical models. The Regularized QCD Model yields a fitted value for Lambda _{overline{rm MS}} = 585 + 186 - 154 MeV. The P_{t} cutoff model as prescribed by Field et al. fits the measured structure function very well using the recommended cutoff parameter t_0 = 1.5 GeV. The results of this measurement are shown to be consistent with other world measurements.

  11. Large size GEM for Super Bigbite Spectrometer (SBS) polarimeter for Hall A 12 GeV program at JLab

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo; Liyanage, Nilanga; Nelyubin, Vladimir; Saenboonruang, Kiadtisak; Sacher, Seth; Wojtsekhowski, Bogdan

    2015-05-01

    We report on the R&D effort in the design and construction of a large size Gas Electron Multiplier (GEM) for the Proton Polarimeter Back Tracker (BT) of the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab). The SBS BT GEM trackers consist of two sets of five large GEM chambers of size 60×200 cm2. The GEM chamber is a vertical stack of four GEM modules, each with an active area of 60×50 cm2. We have built and tested several prototypes and the construction of GEM modules for SBS BT is ongoing. We describe in this paper the design and construction of the GEM module prototype as well as the preliminary results on performance from tests carried out in our detector lab and during test beam at Fermi National Laboratory (Fermilab).

  12. Large size GEM for Super Bigbite Spectrometer (SBS) polarimeter for Hall A 12GeV program at JLab

    SciTech Connect

    Gnanvo, Kondo; Liyanage, Nilanga; Nelyubin, Vladimir; Saenboonruang, Kiadtisak; Sacher, Seth; Wojtsekhowski, Bogdan

    2015-05-01

    We report on the R&D effort in the design and construction of a large size GEM chamber for the Proton Polarimeter of the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab). The SBS Polarimeter trackers consist of two sets of four large chambers of size 200 cm x 60 cm2. Each chamber is a vertical stack of four GEM modules with an active area of 60 cm x 50 cm. We have built and tested several GEM modules and we describe in this paper the design and construction of the final GEM as well as the preliminary results on performances from tests carried out in our detector lab and with test beams at (Fermilab).

  13. Large size GEM for Super Bigbite Spectrometer (SBS) polarimeter for Hall A 12GeV program at JLab

    DOE PAGES

    Gnanvo, Kondo; Liyanage, Nilanga; Nelyubin, Vladimir; ...

    2015-05-01

    We report on the R&D effort in the design and construction of a large size GEM chamber for the Proton Polarimeter of the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab). The SBS Polarimeter trackers consist of two sets of four large chambers of size 200 cm x 60 cm2. Each chamber is a vertical stack of four GEM modules with an active area of 60 cm x 50 cm. We have built and tested several GEM modules and we describe in this paper the design and construction of the final GEM as well asmore » the preliminary results on performances from tests carried out in our detector lab and with test beams at (Fermilab).« less

  14. FLEXIBLE APPLICATION OF THE JLAB PANSOPHY INFORMATION SYSTEM FOR PROJECT REPORTS, PROCESS MONITORING, AND R&D SAMPLE TRACKING

    SciTech Connect

    Valerie Bookwalter; Bonnie Madre; Charles Reece

    2008-02-12

    The use and features of the JLab SRF Institute IT system Pansophy1,2 continue to expand. In support of the cryomodule rework project for CEBAF a full set of web-based travelers has been implemented and an integrated set of live summary reports has been created. A graphical user interface within the reports enables navigation to either higher-level summaries or drill-down to the original source data. In addition to collection of episodic data, Pansophy is now used to capture, coordinate, and display continuously logged process parameter that relate to technical water systems and clean room environmental conditions. In a new expansion, Pansophy is being used to collect and track process and analytical data sets associated with SRF material samples that are part of the surface creation, processing, and characterization R&D program.

  15. Confirming the potential for nucleon structure studies with neutral final states and the Neutral Particle Spectrometer at JLab Hall C

    NASA Astrophysics Data System (ADS)

    Uniyal, Rishabh; Horn, Tanja

    2017-01-01

    The two-arm combination of neutral-particle detection and a high-resolution magnetic spectrometer offers unique scientific capabilities to push the energy scale for studies of the transverse spatial and momentum structure of the nucleon through reactions with neutral particles requiring precision and high luminosity. As example, it enables precision measurements of the deeply-virtual Compton scattering cross section and the basic semi-inclusive neutral-pion cross section, which is crucial to validate a cornerstone of 3D transverse momentum imaging. This science program is enabled by a Neutral-Particle Spectrometer (NPS) and the magnetic spectrometer pair in Hall C at the 12 GeV JLab. In this talk we will discuss the experiment the NPS will be used for and its components, for instance, the crystal array and what properties are desirable from the crystals to meet the specifications of the experiments. supported in part by NSF grants PHY-1306227 and PHY-1306418.

  16. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  17. Elliptical Cavity Shape Optimization for Acceleration and HOM Damping

    SciTech Connect

    Haipeng Wang; Robert Rimmer; Genfa Wu

    2005-05-01

    We report a survey of center cell shapes developed for Superconducting Radio Frequency (SRF) multi-cell cavities for different projects. Using a set of normalized parameters, we compare the designs for different frequencies and particle velocities for the fundamental mode. Using dispersion curves of High Order Modes (HOM) (frequency verse phase advance) calculated by MAFIA for a single cell, we further optimize the cavity shape to avoid a light cone line crossing at the dangerous resonance frequencies determined by the beam bunch structure and eliminate the trapped (or high R/Q) modes with a low group velocity. We developed this formulation to optimize a 5-cell, 750MHz cavity shape, with good real-estate accelerating gradient and a strong HOM damping waveguide structure for the JLab 1MW ERL-FEL project.

  18. Facility Focus: Science Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses design and architectural features of two new science facilities at the Florida Institute of Technology in Melbourne, Florida, and a new graduate research tower the University of Wisconsin at Madison. Notes the important convenience associated with interior windows in these facilities, which allow researchers, faculty, and students to see…

  19. The JLAB Research Program with the 12 GeV Upgrade

    SciTech Connect

    Kees de Jager

    2001-05-01

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that upgrade are illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed.

  20. Computing requirements for S. S. C. accelerator design and studies

    SciTech Connect

    Dragt, A.; Talman, R.; Siemann, R.; Dell, G.F.; Leemann, B.; Leemann, C.; Nauenberg, U.; Peggs, S.; Douglas, D.

    1984-01-01

    We estimate the computational hardware resources that will be required for accelerator physics studies during the design of the Superconducting SuperCollider. It is found that both Class IV and Class VI facilities (1) will be necessary. We describe a user environment for these facilities that is desirable within the context of accelerator studies. An acquisition scenario for these facilities is presented.

  1. Accelerator structure work for NLC

    SciTech Connect

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B.; Gluckstern, R.; Ko, K.; Kroll, N. |

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  2. Future Research Program at JLab: 12 GeV and Beyond

    SciTech Connect

    Kees de Jager

    2007-09-06

    The project to upgrade the CEBAF accelerator at Jefferson Lab to 12 GeV is presented. Most of the research program supporting that upgrade, will require a highly polarized beam, as will be illustrated by a few selected examples. To carry out that research program will require an extensively upgraded instrumentation in two of the existing experimental halls and the addition of a fourth hall. The plans for a high-luminosity electron-ion collider are briefly discussed.

  3. Future Spin Physics at JLab 12 GeV and Beyond

    SciTech Connect

    Jager, Kees de

    2007-06-13

    The project to upgrade the CEBAF accelerator at Jefferson Lab to 12 GeV is presented. Most of the research program supporting that upgrade, will require a highly polarized beam, as will be illustrated by a few selected examples. To carry out that research program will require an extensively upgraded instrumentation in two of the existing experimental halls and the addition of a fourth hall. The plans for a high-luminosity electron-ion collider are briefly discussed.

  4. From quarks to nucleons: Highlights from the Research Program in Hall A at JLAB

    SciTech Connect

    Kees de Jager

    2001-02-01

    After a brief introduction to the CEBAF accelerator, several recent results of the research programs in Hall A are discussed. All of those address the transition region between the meson-baryon and quark-gluon description of nuclear matter. Finally, the plans for upgrading CEBAF to 12 GeV are presented and the instrumentation under design for Hall A to carry out that research program is discussed.

  5. Future Spin Physics at JLab: 12 GeV and Beyond

    SciTech Connect

    Kees de Jager

    2006-10-02

    The project to upgrade the CEBAF accelerator at Jefferson Lab to 12 GeV is presented. Most of the research program supporting that upgrade, will require a highly polarized beam, as will be illustrated by a few selected examples. To carry out that research program will require an extensively upgraded instrumentation in two of the existing experimental halls and the addition of a fourth hall. The plans for a high-luminosity electron-ion collider are briefly discussed.

  6. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  7. Experimental Plans to Explore Dielectric Wakefield Acceleration in the THZ Regime

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Piot, P.; Behrens, C.; Elsen, E.; Flottmann, K.; Gerth, C.; Kube, G.; Schmidt, B.; Osterhoff, J.; Stoltz, P.

    2011-09-07

    Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate the performances of a possible experiment under consideration at the FLASH facility in DESY to explore wakefield acceleration with an enhanced transformer ratio. The experiment capitalizes on a unique pulse shaping capability recently demonstrated at this facility. In addition, the facility incorporates a superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of potential dynamical effects in dielectric wakefield accelerators.

  8. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  9. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  10. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  11. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  12. Studies of semi-inclusive and hard exclusive processes at Jlab

    SciTech Connect

    Harutyun Avagyan

    2008-06-19

    The main goal of experiments proposed for the {\\tt CLAS12} detector in conjunction with the 12-GeV CEBAF accelerator is the study of the nucleon through hard exclusive, semi-inclusive, and inclusive processes. This will provide new insights into nucleon dynamics at the elementary quark and gluon level. In this contribution we provide an overview of ongoing studies of the structure of nucleon in terms of quark and gluon degrees of freedom and future physics program planned with CLAS and {\\tt CLAS12}.

  13. The ISAC post-accelerator

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Marchetto, M.

    2014-01-01

    The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

  14. Commissioning results of Nb3Sn cavity vapor diffusion deposition system at JLab

    SciTech Connect

    Eremeev, Grigory; Clemens, William A.; Macha, Kurt M.; Park, HyeKyoung; Williams, R.

    2015-09-01

    Nb3Sn as a BCS superconductor with a superconducting critical temperature higher than that of niobium offers potential benefit for SRF cavities via a lower-than-niobium surface resistance at the same temperature and frequency. A Nb3Sn vapor diffusion deposition system designed for coating of 1.5 and 1.3 GHz single-cell cavities was built and commissioned at JLab. As the part of the commissioning, RF performance at 2.0 K of a single-cell 1.5 GHz CEBAF-shaped cavity was measured before and after coating in the system. Before Nb3Sn coating the cavity had a Q0 of about 1010 and was limited by the high field Q-slope at Eacc ≅ 27 MV/m. Coated cavity exhibited the superconducting transition at about 17.9 K. The low-field quality factor was about 5∙109 at 4.3 K and 7∙109 at 2.0 K decreasing with field to about 1∙109 at Eacc ≅ 8 MV/m at both temperatures. The highest field was limited by the available RF power.

  15. Future HEP Accelerators: The US Perspective

    SciTech Connect

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  16. Overview of high-Q2 nucleon form factor program with Super BigBite Spectrometer in JLab's Hall A

    NASA Astrophysics Data System (ADS)

    Puckett, Andrew; Jefferson Lab Hall A; Super BigBite Spectrometer Collaboration

    2017-01-01

    The elastic electromagnetic form factors (EMFFs) of the nucleon describe the impact-parameter-space distributions of electric charge and magnetization in the nucleon in the infinite momentum frame. The form factors are among the simplest and most fundamental measurable dynamical quantities describing the nucleon's structure. Precision measurements of the nucleon form factors provide stringent benchmarks testing the most sophisticated theoretical models of the nucleon, as well as ab initio calculations in lattice QCD and continuum non-perturbative QCD calculations based on the Dyson-Schwinger equations. Measurements at momentum transfers Q in the few-GeV range probe the theoretically challenging region of transition between the non-perturbative and perturbative regimes of QCD. The recent upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) to a maximum electron beam energy of 11 GeV will facilitate the measurement of the nucleon helicity-conserving (F1) and helicity-flip (F2) form factors of both proton and neutron to Q2 > 10 GeV2, In this talk, I will present an overview of the Super BigBite Spectrometer, currently under construction in CEBAF's experimental Hall A, and its physics program of high-Q2 nucleon EMFF measurements. Supported by US DOE award DE-SC0014230.

  17. JLab measurement of the 4He charge form factor at large momentum transfers.

    PubMed

    Camsonne, A; Katramatou, A T; Olson, M; Sparveris, N; Acha, A; Allada, K; Anderson, B D; Arrington, J; Baldwin, A; Chen, J-P; Choi, S; Chudakov, E; Cisbani, E; Craver, B; Decowski, P; Dutta, C; Folts, E; Frullani, S; Garibaldi, F; Gilman, R; Gomez, J; Hahn, B; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Huang, J; Iodice, M; Jiang, X; Kelleher, A; Khrosinkova, E; Kievsky, A; Kuchina, E; Kumbartzki, G; Lee, B; LeRose, J J; Lindgren, R A; Lott, G; Lu, H; Marcucci, L E; Margaziotis, D J; Markowitz, P; Marrone, S; Meekins, D; Meziani, Z-E; Michaels, R; Moffit, B; Norum, B; Petratos, G G; Puckett, A; Qian, X; Rondon, O; Saha, A; Sawatzky, B; Segal, J; Shabestari, M; Shahinyan, A; Solvignon, P; Subedi, R R; Suleiman, R; Sulkosky, V; Urciuoli, G M; Viviani, M; Wang, Y; Wojtsekhowski, B B; Yan, X; Yao, H; Zhang, W-M; Zheng, X; Zhu, L

    2014-04-04

    The charge form factor of 4He has been extracted in the range 29  fm(-2) ≤ Q2 ≤ 77  fm(-2) from elastic electron scattering, detecting 4He recoil nuclei and electrons in coincidence with the high resolution spectrometers of the Hall A Facility of Jefferson Lab. The measurements have uncovered a second diffraction minimum for the form factor, which was predicted in the Q2 range of this experiment. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the few-body problem.

  18. Argonne's new Wakefield Test Facility

    SciTech Connect

    Simpson, J.D.

    1992-07-20

    The first phase of a high current, short bunch length electron beam research facility, the AWA, is near completion at Argonne. At the heart of the facility is a photocathode based electron gun and accelerating sections designed to deliver 20 MeV pulses with up to 100 nC per pulse and with pulse lengths of approximately 15 ps (fw). Using a technique similar to that originated at Argonne's AATF facility, a separate weak probe pulse can be generated and used to diagnose wake effects produced by the intense pulses. Initial planned experiments include studies of plasma wakefields and dielectric wakefield devices, and expect to demonstrate large, useful accelerating gradients (> 100 MeV/m). Later phases of the facility will increase the drive bunch energy to more than 100 MeV to enable acceleration experiments up to the GeV range. Specifications, design details, and commissioning progress are presented.

  19. Oak Ridge 25-MV tandem accelerator

    SciTech Connect

    Ziegler, N.F.; Richardson, E.G.; Mann, J.E.; Juras, R.C.; Jones, C.M.; Biggerstaff, J.A.; Benjamin, J.A.

    1981-01-01

    A new heavy-ion accelerator facility is nearing completion at the Oak Ridge National Laboratory. This paper presents a brief description of the scope and status of this project and a discussion of some aspects of the first operational experience with the 25 MV tandem accelerator which is being provided by the National Electrostatics Corporation (NEC) as a major component of the first phase of the facility.

  20. Basic concepts in plasma accelerators.

    PubMed

    Bingham, Robert

    2006-03-15

    In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse ( approximately 100 ps) modest intensity lasers (I approximately 10(14)-10(16) W cm(-2)), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1 ps) and intensities >10(18) W cm(-2), self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm(-1) have been generated with monoenergetic particle beams accelerated to about 100 MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams.

  1. Performance specifications for proton medical facility

    SciTech Connect

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R.; Kubo, H.; Verhey, L.J. |; Castro, J.R. ||

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  2. Accelerator Technology Division progress report, FY 1992

    SciTech Connect

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  3. Exotic Hybrid Meson Spectroscopy with the GlueX detector at Jlab

    SciTech Connect

    Lawrence, David W.

    2014-03-01

    The GlueX experiment is scheduled to begin taking data in 2015. The goal is to discover evidence for the existence of exotic hybrid mesons and to map out their spectrum in the light quark sector. Recent theoretical developments using Lattice QCD predict exotic hybrid states in a mass range accessible using the newly upgraded 12GeV electron accelerator at Jefferson Lab. Hybrid mesons, and in particular exotic hybrid mesons, provide the ideal laboratory for testing QCD in the confinement regime since these mesons explicitly manifest the gluonic degrees of freedom. The experiment will use 9 GeV linearly polarized photons produced via coherent bremsstrahlung to produce the exotic hybrids. The decay products will be detected in the solenoid-based GlueX detector currently under construction at Jefferson Lab. The status of the GlueX experiment including detector parameters will be presented along with theoretical motivation for the experiment.

  4. RF System Modelling for the JLab 12 GeV Upgrade and RIA

    SciTech Connect

    Alicia Hofler; Jean Delayen; J. Hovater; Stefan Simrock

    2003-10-01

    Jefferson Lab is using the MATLAB/Simulink library for RF systems developed for TTF as a tool to develop a model of its 12 GeV upgrade and the Rare Isotope Accelerator (RIA) to study the behavior and performance of the RF control system. The library includes elements describing a superconducting cavity with mechanical modes excited by Lorentz Force effects and a klystron including saturation characteristics. It can be applied to gradient and phase or in-phase and quadrature control for cavities operating in either a self-excited loop or generator driven mode. We will provide an overview of the theory behind the library components and present initial modeling results for Jefferson Lab's 12 GeV Upgrade and the RIA systems.

  5. Analyses of 476 MHz and 952 MHz Crab Cavities for JLAB Electron Ion Collider

    SciTech Connect

    Park, HyeKyoung; Castilla, Alejandro; Delayen, Jean R.; De Silva, Subashini U.; Morozov, Vasiliy

    2016-05-01

    The Center for Accelerator Science at Old Dominion University has designed, fabricated and successfully tested a crab cavity for Electron Ion Collider at Jefferson Lab (JLEIC) [1]. This proof-of-principle cavity was based on the earlier MEIC design which used 748.5 MHz RF system. The updated JLEIC (called MEIC earlier) design [2] utilizes the components from PEP-II. It results in the change on the bunch repetition rate of stored beam to 476.3 MHz. The ion ring collider will eventually require 952.6 MHz crab cavities. This paper will present the analyses of crab cavities of both 476 MHz and 952 MHz options. It compares advantages and disadvantages of the options which provide the JLEIC design team important technical information for a system down selection.

  6. Future User Facilities

    NASA Astrophysics Data System (ADS)

    Riedinger, Lee

    2002-10-01

    The southeastern part of the U.S. is blessed with an array of national user facilities that are accessible to scientists in the region. The Oak Ridge National Laboratory (ORNL) operates 17 officially designated user facilities for the Department of Energy, the Jefferson Lab operates the Continuous Electron Beam Accelerator Facility (CEBAF), and a number of universities have forefront experimental facilities that are widely accessible. The long lead time necessary to originate and construct new user facilities makes it imperative to consider the needs of the physical sciences 10 to 20 years in the future. The construction of the Spallation Neutron Source at ORNL positions the southeast to lead in neutron science. Upgrades are desired for CEBAF and the Holifield Radioactive Ion Beam Facility (ORNL). The more future possibilities are less clear, but are becoming a focus of strategic planning among the national laboratories. Possibilities may arise in the U.S. for next-generation light sources, large computational centers, advanced fusion devices, nanotechnology centers, and perhaps facilities that are not yet contemplated. A regional discussion of the needs for large-scale user facilities in the southeast is important.

  7. JLab Measurement of the 4He Charge Form Factor at Large Momentum Transfers

    SciTech Connect

    Camsonne, Alexandre; Katramatou, A. T.; Olson, M.; Sparveris, Nikolaos; Acha, Armando; Allada, Kalyan; Anderson, Bryon; Arrington, John; Baldwin, Alan; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cisbani, Evaristo; Craver, Brandon; Decowski, Piotr; Dutta, Chiranjib; Folts, Edward; Frullani, Salvatore; Garibaldi, Franco; Gilman, Ronald; Gomez, Javier; Hahn, Brian; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jian; Iodice, Mauro; Kelleher, Aidan; Khrosinkova, Elena; Kievsky, A.; Kuchina, Elena; Kumbartzki, Gerfried; Lee, Byungwuek; LeRose, John; Lindgren, Richard; Lott, Gordon; Lu, H.; Marcucci, Laura; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Norum, Blaine; Petratos, Gerassimos; Puckett, Andrew; Qian, Xin; Rondon-Aramayo, Oscar; Saha, Arunava; Sawatzky, Bradley; Segal, John; Hashemi, Mitra; Shahinyan, Albert; Solvignon-Slifer, Patricia; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Urciuoli, Guido; Viviani, Michele; Wang, Y.; Wojtsekhowski, Bogdan; Yan, X.; Yao, H.; Zhang, W. -M.; Zheng, X.; Zhu, L.

    2014-04-01

    The charge form factor of 4He has been extracted in the range 29 fm-2 <= Q2 <= 77 fm-2 from elastic electron scattering, detecting 4He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q2 range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.

  8. A Survey of Hadron Therapy Accelerator Technologies.

    SciTech Connect

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  9. 25 MV tandem accelerator at Oak Ridge

    SciTech Connect

    Jones, C.M.

    1980-01-01

    A new heavy-ion accelerator facility is under construction at the Oak Ridge National Laboratory. A brief description of the scope and status of this project is presented with emphasis on the first operational experience with the 25 MV tandem accelerator.

  10. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  11. Coherent THz Pulses from Linear Accelerators

    SciTech Connect

    G.L. Carr; H. Loos; J.B. Murphy; T. Shaftan; B. Sheehy; X.-J. Wang; W.R. McKinney; M.C. Martin; G.P. Williams; K. Jordan; G. Neil

    2003-10-01

    Coherent THz pulses are being produced at several facilities using relativistic electrons from linear accelerators. The THz pulses produced at the Brookhaven accelerator have pulse energies exceeding 50 {micro}J and reach a frequency of 2 THz. The high repetition rate of the Jefferson Lab accelerator leads to an average THz power of 20 watts. Possible uses for these high power pulses are discussed.

  12. Accelerator Technology Division progress report, FY 1993

    SciTech Connect

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-12-31

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

  13. Modeling electron cloud dynamics in high-frequency accelerators

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Stoltz, Peter H.

    2017-03-01

    The dynamics of electron cloud buildup, saturation, and dissipation represent a complex interaction between accelerator and beam parameters. In many accelerators bunch charges are large and beam frequencies are small. In this case electrons have a good probability of being accelerated to the opposite side of the beam pipe before the next bunch crossing. If the time for electrons to drift across the beam pipe is less than the time to the next bunch crossing the cloud density can build up rapidly under this scenario. However, in accelerators where buch charges are small and beam frequencies are large, electrons created by secondary electron emission will not be accelerated to the opposite wall before the next bunch crossing. In this case the time for a cloud to build up is larger, but the amount of electron cloud that exists close to the beam may be increased. In this paper, we report simulation results for modeling of electron cloud buildup and dynamics in high-frequency accelerators. We model parameters relevant to the JLab Electron-Ion Collider (JLEIC) that is currently being designed. We consider beam frequencies up to 476 MHz for a variety of different ions, from protons up to Pb (82+), and with bunch charges ranging from 4.2 × 109 (p) to 0.05 × 109 (Pb) ions per bunch, and ion energies from 100 (p) - 40 (Pb) GeV/u. We compare simulations of electron cloud buildup and dynamics for these different cases, and contrast with similar simulations of proton-driven electron cloud buildup in the Fermilab recycler under the PIP-II upgrade scenario, with a frequency of 52.8 MHz, bunch charge of 80 × 109 p/bunch, and energies ranging from 8 - 20 GeV.

  14. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  15. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  16. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  17. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  18. Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.; Norton, Robert O.; Creel, Jonathan D.

    2015-12-01

    The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6 kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.

  19. JLab E07-011: Precision measurements of g1d using ND3 and LiD

    NASA Astrophysics Data System (ADS)

    Bosted, P.

    2009-07-01

    We plan to make definitive measurements of the deuteron spin structure function g1d/F1d in the deep-inelastic kinematics accessible with a 6 GeV beam at JLab. The principal goal is to provide the low Q2 anchor points for NLO pQCD plus higher twist fits to g1d/F1d, which is particularly sensitive to ΔG(x) (the polarized gluon density of the nucleon) and the sum of up and down quark polarizations. By spanning a factor of typically two in the Q2-range at nine values of x, the new data will strongly constrain the higher twist contribution to the fits, with a corresponding reduction in the polarized PDF uncertainties. The proposed measurements, when combined with existing and planned world data at higher Q2, will provide the theoretically cleanest determination of ΔG(x) in the moderate to high x region, and will provide a necessary complement to the low x program of RHIC-spin. The experiment will use both 6LiD and ND3 as a source of polarized deuterons, with approximately equal running times for both to constrain the nuclear effects in 6LiD, the target used by the higher Q2 experiments at SLAC and CERN. Both the target and low current (nA scale) 6 GeV electron beam will be longitudinally polarized. Electrons scattered at angles from about 18° to 45° will be detected. Additional measurements at lower Q2 will be made using a 4.8 GeV beam energy.

  20. ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB

    SciTech Connect

    Kondratenko, A. M.; Kondratenko, M. A.; Morozov, Vasiliy; Derbenev, Yaroslav S.; Lin, Fanglei; Zhang, Yuhong; Filatov, Yuri

    2016-05-01

    In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, we propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.

  1. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  2. Measurements of the electric form factor of the neutron at JLab via recoil polarimetry in the reaction: d(e, e-prime n)p

    SciTech Connect

    J.M. Finn

    2004-11-01

    Preliminary results are reported for measurements of the ratio of the electric form factor to the magnetic form factor of the neutron, GEn/GMn, obtained via recoil polarimetry from the quasielastic 2H(e, e?n) 1H reaction at Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2. The measurements, conducted in Hall C of the Thomas Jefferson National Accelerator Facility, together with other recent polarization measurements, are the result of a decade long effort to establish a firm experimental database for the important, but elusive, electric form factor of the neutron.

  3. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    SciTech Connect

    Wang, Diancheng

    2013-12-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q2 values of 1.1 and 1.9 (GeV/c)2. The asymmetry at Q2=1.9 (GeV/c)2 can be used to extract the weak coupling combination 2C2u - C2d, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first APV data in the resonance region beyond the Δ (1232). They provide evidence that the quark hadron duality works for APV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.

  4. Upgrade of the Cherenkov Detector of the JLab Hall A BigBite Spectrometer

    NASA Astrophysics Data System (ADS)

    Nycz, Michael

    2015-04-01

    The BigBite Spectrometer of the Hall A Facility of Jefferson Lab will be used in the upcoming MARATHON experiment at Jefferson Lab to measure the ratio of neutron to proton F2 inelastic structure functions and the ratio of up to down, d/u, quark nucleon distributions at medium and large values of Bjorken x. In preparation for this experiment, the BigBite Cherenkov detector is being modified to increase its overall efficiency for detecting electrons. This large volume counter is based on a dual system of segmented mirrors reflecting Cherenkov radiation to twenty photomultipliers. In this talk, a description of the detector and its past performance will be presented, along with the motivations for improvements and their implementation. An update on the status of the rest of the BigBite detector package, will be also presented. Additionally, current issues related to obtaining C4 F8 O, the commonly used radiator gas, which has been phased out of production by U.S. gas producers, will be discussed. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177.

  5. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  6. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  7. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  8. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  9. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  10. Rendezvous facilities

    SciTech Connect

    Gehani, N.H.; Roome, W.D.

    1988-11-01

    The concurrent programming facilities in both Concurrent C and the Ada language are based on the rendezvous concept. Although these facilities are similar, there are substantial differences. Facilities in Concurrent C were designed keeping in perspective the concurrent programming facilities in the Ada language and their limitations. Concurrent C facilities have also been modified as a result of experience with its initial implementations. In this paper, the authors compare the concurrent programming facilities in Concurrent C and Ada, and show that it is easier to write a variety of concurrent programs in Concurrent C than in Ada.

  11. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  12. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  13. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  14. Technology of magnetically driven accelerators

    NASA Astrophysics Data System (ADS)

    Birx, D. L.; Hawkins, S. A.; Poor, S. E.; Reginato, L. L.; Rogers, D., Jr.; Smith, M. W.

    1985-03-01

    The marriage of Induction Linac technology with Nonlinar Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  15. Technology of magnetically driven accelerators

    SciTech Connect

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-10-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  16. Technology of magnetically driven accelerators

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-03-26

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability. 8 figs., 1 tab.

  17. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  18. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  19. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  20. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    DOE PAGES

    Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; ...

    2017-01-05

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currentsmore » where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.« less

  1. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    SciTech Connect

    Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; Makarov, Alexander; Tartaglia, Michael; Velev, George

    2016-12-30

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currents where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.

  2. RF Surface Impedance Characterization of Potential New Materials for SRF-based Accelerators

    SciTech Connect

    Xiao, Binping; Eremeev, Grigory V.; Reece, Charles E.; Phillips, H. Lawrence; Kelley, Michael J.

    2012-09-01

    In the development of new superconducting materials for possible use in SRF-based accelerators, it is useful to work with small candidate samples rather than complete resonant cavities. The recently commissioned Jefferson Lab RF Surface Impedance Characterization (SIC) system can presently characterize the central region of 50 mm diameter disk samples of various materials from 2 to 40 K exposed to RF magnetic fields up to 14 mT at 7.4 GHz. We report the recent measurement results of bulk Nb, thin film Nb on Cu and sapphire substrates, Nb{sub 3}Sn sample, and thin film MgB{sub 2} on sapphire substrate provided by colleagues at JLab and Temple University.

  3. FACET: SLAC___s New User Facility

    SciTech Connect

    Clarke, C.I.; Decker, F.-J.; England, R.J.; Erickson, R.A.; Hast, C.; Hogan, M.J.; Li, S.Z.; Litos, M.D.; Nosochkov, Y.; Seeman, J.T.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-05-16

    FACET (Facility for Advanced Accelerator Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. The first User Run started in spring 2012 with 20 GeV, 3 nC electron beams. The facility is designed to provide short (20 {micro}m) bunches and small (20 {micro}m wide) spot sizes, producing uniquely high power beams. FACET supports studies from many fields but in particular those of Plasma Wakefield Acceleration and Dielectric Wakefield Acceleration. The creation of drive and witness bunches and shaped bunch profiles is possible with 'Notch' Collimation. FACET is also a source of THz radiation for material studies. Positrons will be available at FACET in future user runs. We present the User Facility and the available tools and opportunities for future experiments.

  4. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  5. The ATLAS Facility at Argonne National Laboratory

    SciTech Connect

    1997-07-01

    The Argonne Tandem Linac Accelerator System (ATLAS) is a superconducting low-energy heavy ion accelerator. Its primary purpose is to provide beams for research in nuclear structure physics. This report begins with a brief history of ATLAS and then describes the current design of the facility. Also summarized are the experimental equipment and research programs. It concludes with a proposal for turning ATLAS into a radioactive beam facility.

  6. Technical design of hadron therapy facilities

    SciTech Connect

    Alonso, J.R.

    1993-08-01

    Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Loma Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

  7. Technical Design of Hadron Therapy Facilities

    SciTech Connect

    Alonso, J.R.

    1993-08-01

    Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Lorna Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

  8. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  9. A phenomenological cost model for high energy particle accelerators

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.

    2014-07-01

    Accelerator-based facilities have enabled forefront research in high-energy physics for more than half a century. The accelerator technology of colliders has progressed immensely, while beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  10. Summary Report of Working Group 1: Laser-Plasma Acceleration

    SciTech Connect

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  11. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  12. Asymptotic behavior of the deuteron form factors in the two-nucleon model and electron scattering experiments at GeV energies at JLab

    SciTech Connect

    Krutov, A. F.; Tsirova, N. A.; Troitsky, V. E.

    2008-10-15

    Using the instant form dynamics of Poincare invariant quantum mechanics and the modified relativistic impulse approximation proposed previously, we calculate asymptotic behavior of electromagnetic form factors for the deuteron considered as a two-nucleon system. We show that today, experimentation on elastic ed scattering has reached the asymptotic regime. We also estimate the possible range of momentum transfer in which the quark degrees of freedom will possibly be seen in future JLab experiments. The explicit relation between the behavior of the deuteron wave function at r=0 and the form factors asymptotic behavior is obtained, and the conditions of wave functions that give the asymptotic behavior predicted by QCD and quark counting rules are formulated.

  13. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  14. Holifield Heavy Ion Research Facility: Users handbook

    SciTech Connect

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

  15. Pentaquark Searches at Jlab

    SciTech Connect

    Rossi, Patrizia

    2007-01-01

    Since LEPS collaboration reported the first evidence for a S=+1 baryon resonance in early 2003 with a mass of 1.54 GeV, dubbed Θ+, more than ten experiments have confirmed this exotic state, among these two carried out at Jefferson Laboratory. At the same time, there are a number of experiments, mostly at high energies, that report null results. To try to clarify this situation, during the past year, The CLAS Collaboration at Jefferson Laboratory has undertaken a second generation high-statistics experimental program to search for exotics baryons. Here the preliminary results from these experiments are reported.

  16. A new small accelerator for radiocarbon dating

    SciTech Connect

    Suter, M.; Huber, R.; Jacob, S. A. W.; Synal, H.-A.; Schroeder, J. B.

    1999-06-10

    A new small and compact radiocarbon dating facility based on a 500 kV Pelletron accelerator has been built. The novel feature is that it operates with 1{sup +} ions. The interfering molecules are destroyed by collisions in the gas stripper. The results of first test measurements demonstrate that stability, background and transmission are equal to the performance of conventional AMS systems based on larger accelerators.

  17. University of Virginia Reactor Facility Decommissioning Results

    SciTech Connect

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  18. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    SciTech Connect

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; /SLAC /TechX Corp. /Fermilab

    2008-08-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

  19. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  20. Accelerator and electrodynamics capability review

    SciTech Connect

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  1. Accelerators for Inertial Fusion Energy Production

    NASA Astrophysics Data System (ADS)

    Bangerter, R. O.; Faltens, A.; Seidl, P. A.

    2014-02-01

    Since the 1970s, high energy heavy ion accelerators have been one of the leading options for imploding and igniting targets for inertial fusion energy production. Following the energy crisis of the early 1970s, a number of people in the international accelerator community enthusiastically began working on accelerators for this application. In the last decade, there has also been significant interest in using accelerators to study high energy density physics (HEDP). Nevertheless, research on heavy ion accelerators for fusion has proceeded slowly pending demonstration of target ignition using the National Ignition Facility (NIF), a laser-based facility at Lawrence Livermore National Laboratory. A recent report of the National Research Council recommends expansion of accelerator research in the US if and when the NIF achieves ignition. Fusion target physics and the economics of commercial energy production place constraints on the design of accelerators for fusion applications. From a scientific standpoint, phase space and space charge considerations lead to the most stringent constraints. Meeting these constraints almost certainly requires the use of multiple beams of heavy ions with kinetic energies > 1 GeV. These constraints also favor the use of singly charged ions. This article discusses the constraints for both fusion and HEDP, and explains how they lead to the requirements on beam parameters. RF and induction linacs are currently the leading contenders for fusion applications. We discuss the advantages and disadvantages of both options. We also discuss the principal issues that must yet be resolved.

  2. Argonne`s new Wakefield Test Facility

    SciTech Connect

    Simpson, J.D.

    1992-07-20

    The first phase of a high current, short bunch length electron beam research facility, the AWA, is near completion at Argonne. At the heart of the facility is a photocathode based electron gun and accelerating sections designed to deliver 20 MeV pulses with up to 100 nC per pulse and with pulse lengths of approximately 15 ps (fw). Using a technique similar to that originated at Argonne`s AATF facility, a separate weak probe pulse can be generated and used to diagnose wake effects produced by the intense pulses. Initial planned experiments include studies of plasma wakefields and dielectric wakefield devices, and expect to demonstrate large, useful accelerating gradients (> 100 MeV/m). Later phases of the facility will increase the drive bunch energy to more than 100 MeV to enable acceleration experiments up to the GeV range. Specifications, design details, and commissioning progress are presented.

  3. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  4. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  5. VitisGen: accelerating grape cultivar improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VitisGen is a multiple institute collaborative project funded by the USDA SCRI program, with a long term goal to accelerate grape cultivar improvement by using cutting-edge molecular marker technologies, rigorous centralized facilities to characterize traits, and molecular breeding expertise. The ge...

  6. Accelerator prospects for photon-photon physics

    SciTech Connect

    Hutton, A.

    1992-05-01

    This paper provides an overview of the accelerators in the world where two-photon physics could be carried out in the future. The list includes facilities where two-photon physics is already an integral part of the scientific program but also mentions some other machines where initiating new programs may be possible.

  7. The Two-beam accelerator

    SciTech Connect

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2..pi../3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m.

  8. Operation of the accelerator

    SciTech Connect

    Pardo, R.C.; Batzka, B.; Billquist, P.J.

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  9. Future accelerator technology

    SciTech Connect

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.

  10. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  11. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  12. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  13. Safety of Department of Energy accelerators

    SciTech Connect

    Evans, A.E.

    1994-12-31

    In keeping with the enhancement of environmental, safety, and health programs which has occurred in DOE over the past six years, a Safety Order, DOE Order 5480.25, {open_quotes}Safety of Accelertor Facilities,{close_quotes} was issued on November 3, 1992. This order applies to all DOE-owned accelerators capable of creating a radiation area except for commercial radiation-generating equipment. It is the intent of the Order to provide a level of safety comparable to that required of reactors and nuclear processing facilities, without imposing the rigidity of the DOE Nuclear Facility Safety Orders. Key requirements for each facility are: (1) a hazard classification approved by DOE; (2) a design-stage safety review of new large facilities; (3) readiness reviews before commissioning and before routine operation; (4) a safety envelope specifying limits for operation; (5) a Safety Assessment Document; and (6) a documented training program. This Order does not supersede other DOE safety requirements.

  14. The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Edward Nissen, Todd Satogata, Yuhong Zhang

    2012-07-01

    In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

  15. UCLA accelerator research and development

    SciTech Connect

    Cline, D.B.

    1992-01-01

    This progress report covers work supported by the above DOE grant over the period November 1, 1991 to July 31, 1992. The work is a program of experimental and theoretical studies in advanced particle accelerator research and development for high energy physics applications. The program features research at particle beam facilities in the United States and includes research on novel high power sources, novel focussing systems (e.g. plasma lens), beam monitors, novel high brightness, high current gun systems, and novel flavor factories in particular the {phi} Factory.

  16. Establishment of 6- to 7-MeV high-energy gamma-ray calibration fields produced using the 4-MV Van de Graaff accelerator at the Facility of Radiation Standards, Japan Atomic Energy Agency.

    PubMed

    Kowatari, Munehiko; Tanimura, Yoshihiko

    2016-03-01

    A 6- to 7-MeV high-energy gamma-ray field, produced by the nuclear reaction of (19)F(p, αγ)(16)O, has been established at the Facility of Radiation Standards (FRS) in Japan Atomic Energy Agency for calibration purposes. Basic dosimetric quantities (i.e. averaged gamma-ray energy, air-kerma-to-dose equivalent conversion coefficients and air kerma rates at the point of test) have been precisely determined through a series of measurements using the NaI(Tl) spectrometer and an ionisation chamber coupled with an appropriate build-up material. The measurements obtained comply with values recommended by the International Organization for Standardization for an 'R-F field'. The neutron contamination component for the field has also been measured by means of a conventional neutron dose equivalent meter (the so-called neutron rem-counter) and determined to be ∼ 0.5 % of the total dose equivalent.

  17. Biomedical research with heavy ions at the IMP accelerators

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    The main ion-beam acceleration facilities and research activities at the Institute of Modern Physics (IMP), Chinese Academy of Sciences are briefly introduced. Some of the biomedical research with heavy ions such as heavy-ion biological effect, basic research related to heavy-ion cancer therapy and radiation breeding at the IMP accelerators are presented.

  18. Accelerators in various sectors of the world economy

    NASA Astrophysics Data System (ADS)

    Chernyaev, A. P.; Varzar', S. M.; Borschegovskaya, P. Y.; Belousov, A. V.; Bliznyuk, U. A.

    2016-12-01

    Ionizing radiation is widely being used in medicine and agricultural and industrial sectors. Its sources are X-ray tubes, natural and manmade isotopes, and accelerators. This paper presents data on accelerator facilities operating in various sectors of the world economy.

  19. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  20. Accelerators-Limitations of Technology A Summary of the Snowmass Accelerator Working Group Reports

    NASA Astrophysics Data System (ADS)

    Tigner, Maury

    1983-04-01

    Hadron colliders and accelerators in the 20 TeV energy range turned out to be the majority interest among active members of the Accelerator Row Group. While other types of accelerator and other energy ranges were discussed, largely on the basis of work done else-where, our primary creative activities at this summer study focused on the hadron facility. Examining both the economic and accelerator physics dimensions of such a facility, we were able to give some hope to the idea that a well designed and concentrated R/D program, elaborating much further on technologies we now possess, might bring a 20 TeV facility within our national reach. The central challenges for this R/D program appear to be 1. Achievement of virtual automation of superconducting magnet, accelerator housing and other accelerator component manufacture and installation. 2. Achievement of a thorough understanding of the field vs. cost relation for superconducting magnets. 3. Achievement of a thorough understanding of the luminosity-aperture-energy relation.

  1. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find…

  2. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  3. A feasibility study of a hypersonic real-gas facility

    NASA Technical Reports Server (NTRS)

    Gully, J. H.; Driga, M. D.; Weldon, W. F.

    1987-01-01

    A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.

  4. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  5. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2016-07-12

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  6. Peak acceleration limiter

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1972-01-01

    Device is described that limits accelerations by shutting off shaker table power very rapidly in acceleration tests. Absolute value of accelerometer signal is used to trigger electronic switch which terminates test and sounds alarm.

  7. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  8. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  9. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  10. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  11. Accelerators, Colliders, and Snakes

    NASA Astrophysics Data System (ADS)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  12. ESS Accelerator Cryoplant Process Design

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Arnold, P.; Hees, W.; Hildenbeutel, J.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility being built with extensive international collaboration in Lund, Sweden. The ESS accelerator will deliver protons with 5 MW of power to the target at 2.0 GeV, with a nominal current of 62.5 mA. The superconducting part of the accelerator is about 300 meters long and contains 43 cryomodules. The ESS accelerator cryoplant (ACCP) will provide the cooling for the cryomodules and the cryogenic distribution system that delivers the helium to the cryomodules. The ACCP will cover three cryogenic circuits: Bath cooling for the cavities at 2 K, the thermal shields at around 40 K and the power couplers thermalisation with 4.5 K forced helium cooling. The open competitive bid for the ACCP took place in 2014 with Linde Kryotechnik AG being selected as the vendor. This paper summarizes the progress in the ACCP development and engineering. Current status including final cooling requirements, preliminary process design, system configuration, machine concept and layout, main parameters and features, solution for the acceptance tests, exergy analysis and efficiency is presented.

  13. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  14. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  15. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  16. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  17. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  18. Accelerators for heavy-charged-particle radiation therapy.

    PubMed

    Coutrakon, George B

    2007-08-01

    This paper focuses on current and future designs of medical hadron accelerators for treating cancers and other diseases. Presently, five vendors and several national laboratories have produced heavy-particle medical accelerators for accelerating nuclei from hydrogen (protons) up through carbon and oxygen. Particle energies are varied to control the beam penetration depth in the patient. As of the end of 2006, four hospitals and one clinic in the United States offer proton treatments; there are five more such facilities in Japan. In most cases, these facilities use accelerators designed explicitly for cancer treatments. The accelerator types are a combination of synchrotrons, cyclotrons, and linear accelerators; some carry advanced features such as respiration gating, intensity modulation, and rapid energy changes, which contribute to better dose conformity on the tumor when using heavy charged particles. Recent interest in carbon nuclei for cancer treatment has led some vendors to offer carbon-ion and proton capability in their accelerator systems, so that either ion can be used. These features are now being incorporated for medical accelerators in new facilities.

  19. NASA Dryden Flight Loads Research Facility

    NASA Technical Reports Server (NTRS)

    Sefic, W. J.

    1981-01-01

    The Dryden Flight Loads Research Facility (NASA) and the associated equipment for simulating the loading and heating of aircraft or their components are described. Particular emphasis is placed on various fail-safe devices which are built into the equipment to minimize the possibility of damage to flight vehicles. The equipment described includes the ground vibration and moment of inertia equipment, the data acquisition system, and the instrumentation available in the facility for measuring load, position, strain, temperature, and acceleration.

  20. Technology development for high power induction accelerators

    SciTech Connect

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  1. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  2. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  3. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  4. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  5. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  6. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Rosiński, M.; Jabłoński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Rączka, P.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes.

  7. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  8. JLab E07-011: Precision measurements of g{sub 1}{sup d} using ND{sub 3} and LiD

    SciTech Connect

    Bosted, P.

    2009-07-27

    We plan to make definitive measurements of the deuteron spin structure function g{sub 1}{sup d}/F{sub 1}{sup d} in the deep-inelastic kinematics accessible with a 6 GeV beam at JLab. The principal goal is to provide the low Q{sup 2} anchor points for NLO pQCD plus higher twist fits to g{sub 1}{sup d}/F{sub 1}{sup d}, which is particularly sensitive to DELTAG(x)(the polarized gluon density of the nucleon) and the sum of up and down quark polarizations. By spanning a factor of typically two in the Q{sup 2}-range at nine values of x, the new data will strongly constrain the higher twist contribution to the fits, with a corresponding reduction in the polarized PDF uncertainties. The proposed measurements, when combined with existing and planned world data at higher Q{sup 2}, will provide the theoretically cleanest determination of DELTAG(x) in the moderate to high x region, and will provide a necessary complement to the low x program of RHIC-spin.The experiment will use both {sup 6}LiD and ND{sub 3} as a source of polarized deuterons, with approximately equal running times for both to constrain the nuclear effects in {sup 6}LiD, the target used by the higher Q{sup 2} experiments at SLAC and CERN. Both the target and low current (nA scale) 6 GeV electron beam will be longitudinally polarized. Electrons scattered at angles from about 18 deg. to 45 deg. will be detected. Additional measurements at lower Q{sup 2} will be made using a 4.8 GeV beam energy.

  9. Engineering the Big Chill: The story of JLab’s Central Helium Liquefier

    SciTech Connect

    Westfall, Catherine

    2014-03-29

    This article tells the story of the Central Helium Liquefier (CHL) at the Thomas Jefferson National Accelerator Facility (JLab), one of the US National Laboratories. JLab’s successful superconducting radio frequency accelerator was only possible because a group of JLab engineers successfully tackled a complex of difficulties to build a cryogenic system that included the CHL, a task that required advancing the frontier of cryogenic technology. Ultimately, these cryogenic advances were applied far beyond JLab to the benefit of cutting-edge programs at other US national laboratories (Oak Ridge, Brookhaven, and the Facility for Rare Isotope Beams at MSU) as well as NASA. In addition, this innovation story dramatizes the sort of engineer-driven technological problem solving that allows the successful launch and operation of experimental projects. Along the way, the CHL story also provides an important addition to our understanding of the role played by engineers and industry in creating knowledge at physics laboratories.

  10. Development of the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Tatum, B.A.

    1997-08-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility`s radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date.

  11. Development of the Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Tatum, B. A.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Dowling, D. T.; Haynes, D. L.; Juras, R. C.; Meigs, M. J.; Mills, G. D.; Mosko, S. W.; Mueller, P. E.; Olsen, D. K.; Shapira, D.; Sinclair, J. W.; Carter, H. K.; Welton, R. F.; Williams, C. E.; Bailey, J. D.; Stracener, D. W.

    1997-05-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility's radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. The HRIBF was formally dedicated on December 12, 1996, and approved for high intensity operation as a National User Facility, the first of its kind in North America. This paper describes facility development to date.

  12. Summary report of working group 4: Beam-driven acceleration

    NASA Astrophysics Data System (ADS)

    Litos, M.; Jing, C.

    2017-03-01

    Despite the urgent need for a TeV-class linear collider in High-Energy Physics (HEP), a clear path to buildable and affordable accelerator technologies has yet to be realized. Clearly, the identification and advancement of next generation accelerator technologies for a linear collider have been one of the main charges since the inception of the Advanced Accelerator Concepts (AAC) workshop. The fundamental requirements of linear colliders for accelerator technologies are to demonstrate high wall-plug efficiency, high beam quality preservation, high effective gradient, scalability, etc. Within the AAC community, beam-driven wakefield acceleration schemes (the central subject of Working Group 4) are always promising and attractive approaches. Since the last AAC workshop, a few high profile experiments related to beam-driven plasma wakefield acceleration have been conducted at the SLAC National Accelerator Laboratory's FACET facility. These experiments have successfully answered questions related to obtaining high beam energy transfer efficiency, demonstrating high gradient positron acceleration, and demonstrating high quality witness beam acceleration. Research on beam-driven structure-based wakefield acceleration has also demonstrated significant results for high gradient acceleration, including longitudinal bunch shaping for high efficiency and beam breakup control. As an important application or a stepping-stone facility, beam-driven plasma or structure-based wakefield accelerators for 5th generation FEL light sources have attracted broad attention. Studies have been undertaken on various aspects, ranging from the overall parameterizations to detailed beam generation and control technologies. Other related applications, such as high power RF and THz generation, beam modulation and energy chirp compensation, are also within the scope of our Working Group. In summary, WG4 examined the advancement of beam-driven wakefield accelerators (plasma and structure-based) in

  13. Improvement Plans of Fermilab's Proton Accelerator Complex

    SciTech Connect

    Shiltsev, Vladimir

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  14. An introduction to acceleration mechanisms

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration. (LSP)

  15. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  16. Livermore Accelerator Source for Radionuclide Science (LASRS)

    SciTech Connect

    Anderson, Scott; Bleuel, Darren; Johnson, Micah; Rusnak, Brian; Soltz, Ron; Tonchev, Anton

    2016-05-05

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  17. The US Muon Accelerator Program (MAP)

    SciTech Connect

    Bross, Alan D.; /Fermilab

    2010-12-01

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  18. Downgrading Nuclear Facilities to Radiological Facilities

    SciTech Connect

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  19. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  20. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  1. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  2. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  3. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  4. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  5. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  6. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  7. The foxhole accelerating structure

    SciTech Connect

    Fernow, R.C.; Claus, J.

    1992-07-17

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons.

  8. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  9. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  10. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  11. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  12. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  13. FFAGS for rapid acceleration

    SciTech Connect

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  14. Clinical requirements and accelerator concepts for BNCT

    SciTech Connect

    Ludewigt, B.A.; Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Leung, K.N.; Reginato, L.L.; Wells, R.P.

    1997-05-01

    Accelerator-based neutron sources are an attractive alternative to nuclear reactors for providing epithermal neutron beams for Boron Neutron Capture Therapy. Based on clinical requirements and neutronics modeling the use of proton and deuteron induced reactions in {sup 7}Li and {sup 9}Be targets has been compared. Excellent epithermal neutron beams can be produced via the {sup 7}Li(p,n){sup 7}Be reaction at proton energies of {approximately}2.5 MeV. An electrostatic quadrupole accelerator and a lithium target, which can deliver and handle 2.5 MeV protons at beam currents up to 50 mA, are under development for an accelerator-based BNCT facility at the Lawrence Berkeley National Laboratory.

  15. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  16. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    The Universe is a violent place - as astronomers use increasingly sensitive means and methods to study the diverse processes out there, they become aware of the extraordinary forces acting in the space that surrounds us. With larger telescopes and ever-more sophisticated instruments, new information is gained about remote celestial objects and their behaviour. Among the most intriguing ones are the radio galaxies which emit prodiguous amounts of energy, in the form of fast-moving particles and intense electromagnetic radiation. One of these is known as 3C 445 ; it is located near the celestial equator within the zodiacal constellation Aquarius (The Waterman), at a distance of about 1 billion light-years. It most probably harbours a black hole at its centre, more massive than the one at the centre of our own galaxy, the Milky Way ( ESO PR 19/02 ). This galaxy was first observed from Cambridge (United Kingdom) in the 1950's and was listed as radio source no. 445 in the Third Cambridge Catalogue (1959), hence the name. Later observations revealed a strong outflow from this galaxy's active centre, visible on radio maps as two opposite plasma jets with strong synchrotron radiation ( [2]) originating from rapidly moving electrons in the associated magnetic field (image "a" in PR Photo 26/02 ). Now, a trio of European astronomers [1] have used two advanced instruments, ISAAC and FORS1 on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) to obtain near-infrared images of these jets (images "b" and "c" in PR Photo 26/02 ). As can be clearly seen on the radio picture of 3C 445 obtained with the NRAO Very Large Array (VLA) radio facility ("a"), the plasma jets of fast particles emanating from the galaxy ram into the surrounding intergalactic medium (mostly primordial hydrogen), thereby producing two "shocks" , both at a distance of approximately 1.5 million light-years from the central galaxy and with particularly strong synchrotron emission. With a total

  17. Scoping Inventory Calculations for the Rare Isotope Accelerator

    SciTech Connect

    Ahle, L E; Boles, J L

    2003-07-25

    This document is a report on our activities in FY03 exploring nuclear safety and hazard analysis issues relevant to the Rare Isotope Accelerator (RIA). It is not clear whether DOE will classify the RIA as an accelerator facility subject to the accelerator-specific safety requirements of DOE Order 420.2A or as a nonreactor nuclear facility subject to the requirements of 10 CFR 830. The final outcome of this issue will have significant impact on the construction and operation of the facility and the quality assurance requirements for items or services that may affect nuclear safety. The resolution of this issue will be an important earlier decision for the RIA project team and will require early consultation with the appropriate DOE authorities. For nuclear facilities, facility hazard classification depends on the inventory of releasable radionuclides; therefore, some simplistic, scoping inventory calculations for some assumed targets and beams are done to estimate the hazard category of RIA if it is declared a nuclear facility. These calculations show that for the scenarios analyzed, RIA would produce sufficient quantities of radionuclides to be classified as a Category 3 nuclear facility. Over the lifetime of RIA operations, it may be possible to build up Category 2 quantities of {sup 227}Ac and {sup 228}Th. A storage building, separate from the driver, target, and experimental buildings, used to store and isolate accumulated targets and other hardware, can mitigate the potential impact on RIA. The more onerous requirements of Category 2 facilities would only be imposed on the storage facility and not on the rest of the RIA facilities. Some of the differences in a category 2 and category 3 facility are discussed in Appendix 1.

  18. Fabrication and Testing Status of CEBAF 12 GeV Upgrade Cavities

    SciTech Connect

    Marhauser, F; Davis, G K; Forehand, D; Grenoble, C; Hogan, J; Overton, R B; Reilly, A V; Rimmer, R A; Stirbet, M

    2011-09-01

    The 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) is under way. All cavities have been built by industry and are presently undergoing post-processing and final low and high power qualification before cryomodule assembly. The status is reported including fabrication-related experiences, observations and issues throughout production, post-processing and qualification.

  19. Helicity Asymmetry Measurement for pi0 Photoproduction with FROST

    SciTech Connect

    Iwamoto, Hideko

    2011-08-15

    This thesis reports on the first helicity asymmetry measurement for single neutral pion photoproduction using the CLAS detector in Hall B at the Thomas Jefferson National Accelerator Facility (JLab). This measurement used longitudinally polarized protons and circularly polarized photons at energies between 350 MeV and 2400 MeV. The experimental results are compared to three available model calculations.

  20. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  1. Scaling FFAG accelerator for muon acceleration

    NASA Astrophysics Data System (ADS)

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-01

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  2. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  3. Accelerator Production of Isotopes for Medical Use

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2014-03-01

    The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.

  4. Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.

    2000-01-01

    NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.

  5. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  6. Accelerator Science: Why RF?

    SciTech Connect

    Lincoln, Don

    2016-12-21

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  7. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  8. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  9. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  10. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  11. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  13. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  14. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  15. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  16. Breadboard Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service

  17. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  18. Radiological safety training for accelerator facilities: DOE handbook

    SciTech Connect

    1997-03-01

    This program management guide describes the proper implementation standard for core training as outline in the DOE Radiological Control (RadCon) Manual. Its purpose is to assist DOE employees and Managing and Operating (M&O) contractors having responsibility for implementing the core training recommended by the RadCon Manual.

  19. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    SciTech Connect

    Cornacchia, M.; Humphrey, J.W.; Niederer, J.; Poole, J.H.

    1981-01-01

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario.

  20. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    SciTech Connect

    Fanelli, Cristiano V.

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will