Science.gov

Sample records for accelerator grid erosion

  1. Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1996-01-01

    Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.

  2. Charge-exchange erosion studies of accelerator grids in ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    A particle simulation model is developed to study the charge-exchange grid erosion in ion thrusters for both ground-based and space-based operations. Because the neutral gas downstream from the accelerator grid is different for space and ground operation conditions, the charge-exchange erosion processes are also different. Based on an assumption of now electric potential hill downstream from the ion thruster, the calculations show that the accelerator grid erosion rate for space-based operating conditions should be significantly less than experimentally observed erosion rates from the ground-based tests conducted at NASA Lewis Research Center (LeRC) and NASA Jet Propulsion Laboratory (JPL). To resolve this erosion issue completely, we believe that it is necessary to accurately measure the entire electric potential field downstream from the thruster.

  3. Further study of the effect of the downstream plasma condition on accelerator grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1992-01-01

    Further numerical results are presented of earlier particle-in-cell/Monte Carlo calculations of accelerator grid erosion in an ion thruster. A comparison between numerical and experimental results suggests that the accelerator grid impingement is primarily due to ions created far downstream from the accelerator grid. In particular, for the same experimental conditions as those of Monheiser and Wilbur at Colorado State University, it is found that a downstream plasma density of 2 x 10 exp 14/cu m is required to give the same ratio of accelerator grid impingement current to beam current (5 percent). For this condition, a potential hill is found in the downstream region of 2.5 V.

  4. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  5. Actinides, accelerators and erosion

    NASA Astrophysics Data System (ADS)

    Tims, S. G.; Fifield, L. K.

    2012-10-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  6. Grid Erosion Modeling of the NEXT Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Ernhoff, Jerold W.; Boyd, Iain D.; Soulas, George (Technical Monitor)

    2003-01-01

    Results from several different computational studies of the NEXT ion thruster optics are presented. A study of the effect of beam voltage on accelerator grid aperture wall erosion shows a non-monotonic, complex behavior. Comparison to experimental performance data indicates improvements in simulation of the accelerator grid current, as well as very good agreement with other quantities. Also examined is the effect of ion optics choice on the thruster life, showing that TAG optics provide better margin against electron backstreaming than NSTAR optics. The model is used to predict the change in performance with increasing accelerator grid voltage, showing that although the current collected on the accel grid downstream face increases, the erosion rate decreases. A study is presented for varying doubly-ionized Xenon current fraction. The results show that performance data is not extremely sensitive to the current fraction.

  7. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  8. Assessment of Spectroscopic, Real-time Ion Thruster Grid Erosion-rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2000-01-01

    The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.

  9. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  10. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were tested on five different 30-cm diameter bombardment thrustors to evaluate the effects of grid geometry variations on thrustor discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole-diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. Also investigated were the effects on discharge chamber performance of main magnetic field changes, magnetic baffle current cathode pole piece length and cathode position.

  11. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were treated on five different 30 cm diameter bombardment thrusters to evaluate the effects of grid geometry variations on thruster discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. The effects on discharge chamber performance of main magnetic field changes, magnetic baffle current, cathode pole piece length and cathode position were also investigated.

  12. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  13. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  14. Ecological site-based assessments of wind and water erosion: Informing accelerated soil erosion management in rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper explores how soil erosion assessments structured across ecological sites can inform systems for managing accelerated soil erosion in rangelands. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wi...

  15. Beam Head Erosion in Self-Ionized Plasma Wakefield Accelerators

    SciTech Connect

    Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2008-01-28

    In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon--beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by {beta}*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

  16. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  17. Ecological-site based assessments of wind and water erosion: informing management of accelerated soil erosion in rangelands

    NASA Astrophysics Data System (ADS)

    Webb, N.; Herrick, J.; Duniway, M.

    2013-12-01

    This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil

  18. Evidence of accelerated erosion along the upper Texas coast

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.; Anderson, J. B.

    2011-12-01

    The Gulf of Mexico coast is especially vulnerable to rapid coastal changes. The recent acceleration in the rate of sea-level rise and continued steady rate of hurricane impacts is expected to elicit dramatic effects on barrier islands. Galveston Island (GI), located along the upper Texas coast, is ideally suited to quantify the relative influence of sea-level rise and hurricane impacts on the erosion of a barrier island through time due to its low elevation, dense core coverage and radiocarbon constraints on barrier evolution, and more than four decades of shoreline change monitoring. GI formed ~5,500 yr B.P., and has been eroding naturally for the past ~1,800 yr B.P. Sand eroded from GI is transported via longshore currents and deposited directly into the San Luis Pass Tidal Delta complex (SLPTDC). No other known sand sources exist for the SLPTDC, and very little sediment bypass occurs to the west. Therefore, we can examine the erosional history of GI through time by quantifying sediment fluxes into the SLPTDC, in addition to quantifying offshore and backshore sand fluxes due to cyclone impacts. Although many tidal inlets along the Gulf of Mexico have been anthropogenically modified, the SLPTDC has remained natural, thereby allowing a unique opportunity to conduct this study. The SLPTDC formed ~2,100 yr B.P., roughly the same time when erosion along GI began, and corresponds to the time when the rate of sea-level rise decelerated from ~2.0 mm/yr to ~0.60 mm/yr. It has been sequestering sediment relatively continuously throughout its history. In the last 200 years, the sand flux into the SLPTDC has more than doubled relative to the first two millennia. As this material is sourced from GI, this suggests that erosion of the barrier has accelerated in the last ~200 years. Additionally, GI's offshore (seaward of the shoreface) and backshore sand flux due to hurricane impacts have been minor contributors to the erosion of GI. This analysis suggests that the recent

  19. Worldwide acceleration of mountain erosion under a cooling climate.

    PubMed

    Herman, Frédéric; Seward, Diane; Valla, Pierre G; Carter, Andrew; Kohn, Barry; Willett, Sean D; Ehlers, Todd A

    2013-12-19

    Climate influences the erosion processes acting at the Earth's surface. However, the effect of cooling during the Late Cenozoic era, including the onset of Pliocene-Pleistocene Northern Hemisphere glaciation (about two to three million years ago), on global erosion rates remains unclear. The uncertainty arises mainly from a lack of consensus on the use of the sedimentary record as a proxy for erosion and the difficulty of isolating the respective contributions of tectonics and climate to erosion. Here we compile 18,000 bedrock thermochronometric ages from around the world and use a formal inversion procedure to estimate temporal and spatial variations in erosion rates. This allows for the quantification of erosion for the source areas that ultimately produce the sediment record on a timescale of millions of years. We find that mountain erosion rates have increased since about six million years ago and most rapidly since two million years ago. The increase of erosion rates is observed at all latitudes, but is most pronounced in glaciated mountain ranges, indicating that glacial processes played an important part. Because mountains represent a considerable fraction of the global production of sediments, our results imply an increase in sediment flux at a global scale that coincides closely with enhanced cooling during the Pliocene and Pleistocene epochs.

  20. Multiple-grid acceleration of Lax-Wendroff algorithms

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1982-01-01

    A technique for accelerating the convergence of a one-step Lax-Wendroff method to a steady-state solution is discussed and its applicability extended to the more general class of two-step Lax-Wendroff methods. Several two-step methods which lead to quite efficient multiple grid algorithms are discussed. Computational results are presented using the full two dimensional Euler equations for both subcritical and shocked supercritical flows. Extensions and generalizations are mentioned.

  1. High performance auxiliary-propulsion ion thruster with ion-machined accelerator grid

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Banks, B. A.

    1975-01-01

    An improvement in thruster performance was achieved by reducing the diameter of the accelerator grid holes. The smaller accelerator grid holes resulted in a reduction in neutral mercury atoms escaping the discharge chamber, which in turn enhanced the discharge propellant utilization from approximately 68 percent to 92 percent. The accelerator grids were fabricated by ion machining with an 8-centimeter-diameter thruster, and the screen grid holes individually focused ion beamlets onto the blank accelerator grid. The resulting accelerator grid holes are less than 1.12 millimeters in diameter, while previously used accelerator grids had hole diameters of 1.69 millimeters. The thruster could be operated with the small-hole accelerator grid at neutralizer potential.

  2. Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion is the detachment of soil particles and transportation to another location. Wind erosion occurs when wind speed exceeds a critical threshold level, and loose soil particles or soil particles removed by abrasion then move in one of three ways: creep, saltation, and suspension. Erosion by wate...

  3. Application of ERTS-1 multispectral imagery to monitoring the present episode of accelerated erosion in southern Arizona

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Cooley, M. E.

    1973-01-01

    An episode of accelerated arroyo-cutting and sheet erosion commenced about 1890 in southern Arizona, following several thousand years of generally sluggish erosion. For a 17,000-square-mile study area, ERTS-1 images, supplemented by ultrahigh-altitude (U-2 and RB-57) airphotos, are proving effective for producing the first comprehensive maps showing the distribution and seriousness of the post-1890 erosion features, for monitoring new erosion changes, and for assessing the effectiveness of ameliorative measures. Such data are essential for understanding and controlling the accelerated erosion, a key environmental problem in this region.

  4. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  5. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  6. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back

  7. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon

  8. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C

  9. Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.

  10. Electron Backstreaming Mitigation via a Magnetic Grid

    NASA Technical Reports Server (NTRS)

    Foster, John F.; Roman, Robert F.; Soulas, George C.; Patterson, Michael J.

    2002-01-01

    Electron backstreaming due to accelerator grid hole enlargement has been identified as a failure mechanism that will limit ion thruster service lifetime. Over extended periods of time as accelerator grid apertures enlarge due to erosion, ion thrusters are required to operate at increasingly higher accelerator grid voltages in order to prevent electron backstreaming. These higher voltages give rise to higher grid erosion rates, which in turn accelerates aperture enlargement. Presented here is an approach to mitigate the backflow of electrons into the engine by using a transverse magnetic field.

  11. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles. PMID:26932019

  12. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  13. Erosion of metals and carbon based materials during disruptions — simulation experiments in plasma accelerators

    NASA Astrophysics Data System (ADS)

    Linke, J.; Barabash, V. R.; Bolt, H.; Gervash, A.; Mazul, I.; Ovchinnikov, I.; Rödig, M.

    1994-09-01

    The material erosion during disruption events will have significant impact of the lifetime of the plasma-facing components in future thermonuclear fusion reactors. At deposited energy densities of up to 10 7 J m -2 the resulting material erosion can reach values of several hundred microns per event. Under favourable conditions a cloud of the ablation vapor forms in front of the plasma-facing component which shields part of the incident energy flux. To verify this effect experimentally in disruption simulation tests fusion-relevant conditions can be met best in so-called plasma accelerators. In the VIKA device ITER relevant energy densities have been applied with pulse durations of several ten μs; typical beam diameters are in the order of 2 cm. Nevertheless, rather effective shielding phenomena could be demonstrated using test specimens made from metals and carbon-based materials. Beside profilometry and weight loss measurements for the determination of the material erosion a variety of post-mortem analyses (e.g. scanning electron microscopy, energy dispersive X-ray analysis, metallography) have been applied to investigate resolidification processes in the melt layer and structural changes of the eroded surface.

  14. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    SciTech Connect

    Hirsch, Brian; Burman, Kari; Davidson, Carolyn; Elchinger, Michael; Hardison, R.; Karsiwulan, D.; Castermans, B.

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  15. Sensitivity of mountain ecosystems to human-accelerated soil erosion. Contrasting geomorphic response between tropical and semi-arid ecosystems.

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Bellin, Nicolas; Schoonejans, Jerome; Molina, Armando; Kubik, Peter W.

    2014-05-01

    Tropical Andes where the share of natural erosion in the modern erosion rate is minimal for most disturbed sites. When pooling pre- and post-disturbance erosion data from both sites, it becomes evident that the human acceleration of erosion is significantly related to vegetation disturbance. It may therefore be expected that the potential for erosion regulation is larger in well-vegetated ecosystem where strong differences may exist in vegetation cover between human disturbed and undisturbed or restored sites.

  16. Time-scale bias in evidence for anthropogenic acceleration of soil erosion and floodplain accretion

    NASA Astrophysics Data System (ADS)

    Willenbring, J. K.; Hoffmann, T.; Sadler, P.; Kaplan, J. O.; Chiverrell, R. C.; Erkens, G.; von Blanckenburg, F.

    2014-12-01

    The claim that humans modify the landscape more dramatically than any previous geological agent has impacts for river restoration, conservation and models of both nutrient- and carbon-cycling. This view of extreme sediment mobilization driven by human activities is largely based on data, which unfortunately are measured over discrepant timescales that can introduce bias. Comparing denudation rates discerned from cosmogenic nuclides as 'baseline' or 'natural' rates with continent-scale sediment export rates over modern timescales reveals that most cosmogenic nuclide-based erosion rates are faster than human-impacted rates of sediment yield [1]. One explanation for relatively low recent continental sediment yields is that the eroded sediment may be accumulating and stored for an uncertain duration in swelling floodplains and deltas. We present a global compilation of Holocene floodplain accumulation rates. Rates measured over the last ~100 years are faster than those averaged over ~1000 years, which in turn are faster than those for the last ~10000 years. Floodplain sediment accumulation measurements, however, are taken at discreet cores or bank exposures, and this introduces both temporal and spatial bias. Vertical accumulation rates are calculated by dividing thickness of sediment by the time-span of accumulation for discrete packages of sediment. Thus, time integrates from the present to a past datum provided by 14C measurements for buried organics (or other chronological tools). We argue that the pattern of rate increase in sedimentation over time is related to infilling behavior of all floodplains and not specifically tied to the supply of (anthropogenic) sediment. The apparent acceleration in sedimentation rates appears globally synchronous over 8000-year timescales, despite diachronous human and land use histories. Moreover, some rate acceleration pre-dates significant human land use. When the effect/bias of averaging time is accounted for, recent accumulation

  17. Effect of electrode erosion on the properties of plasma in high-power rail-gun accelerators of macroscopic bodies

    SciTech Connect

    Tsvetkov, I.V.

    1993-10-01

    Results are presented from an analytical and numerical study of the effect of electrode erosion on the properties of an arc plasma for high-power (up to 10 GW) high-current (up to 1 MA) pulsed ultra-high-pressure discharges (thousands of atmospheres) in the tube of a rail-gun accelerator of macroscopic bodies. Calculations have been performed for a closed mathematical model which adjust the time dependence of a full-scale accelerating system (current and voltage in the electrical system, velocity of the accelerated body) and the process of erosion of the tube walls to the behavior of the plasma arc [density n = (1-5){center_dot}10{sup 20} cm{sup {minus}3}, temperature T = 10-50 kK]. 11 refs., 5 figs.

  18. Optimization of electrostatic dual-grid beam-deflection system

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Lathem, W. C.; Power, J. L.; Banks, B. A.

    1972-01-01

    Tests were performed to minimize accelerator grid erosion of a 5-cm diameter Kaufman ion thruster due to direct beam impingement. Several different screen hole diameters, pillow-shape-square screen holes, and dished screen grids were tried. The optimization was accomplished by copper plating the accelerator grid before testing each grid configuration on a thruster for a 2-hour run. The thruster beam sputtered copper and molybdenum from the accelerator grid where the beam impinged. The observed erosion patterns and measured accelerator currents were used to determine how to modify the accelerator system. The lowest erosion was obtained for a 50-percent open area pillow-shape-square-aperture screen grid, dished 0.043 centimeter convex toward the accelerator grid, which was positioned with the center of the screen grid 0.084 centimeter from the accelerator grid. During this investigation the accelerator current was reduced from 120 to 55 microamperes and was also more uniformly distributed over the area of the accelerator grid.

  19. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    PubMed

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion.

  20. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    PubMed

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion. PMID:27220096

  1. Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence.

    PubMed

    Ayyalasomayajula, S; Gylfason, A; Collins, L R; Bodenschatz, E; Warhaft, Z

    2006-10-01

    We describe Lagrangian measurements of water droplets in grid generated wind tunnel turbulence at a Taylor Reynolds number of R(lambda)=250 and an average Stokes number (St) of approximately 0.1. The inertial particles are tracked by a high speed camera moving along the side of the tunnel at the mean flow speed. The standardized acceleration probability density functions of the particles have spread exponential tails that are narrower than those of a fluid particles (St approximately 0) and there is a decrease in the acceleration variance with increasing Stokes number. A simple vortex model shows that the inertial particles selectively sample the fluid field and are less likely to experience regions of the fluid undergoing the largest accelerations. Recent direct numerical simulations compare favorably with these first measurements of Lagrangian statistics of inertial particles in highly turbulent flows.

  2. GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua

    2016-10-01

    A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.

  3. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  4. A spatial dynamic framework for landscape-scale assessment of accelerated wind erosion in Australian rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An estimated 110 Mt of dust is eroded by wind from the Australian land surface each year, most of which originates from the arid and semi-arid areas. Livestock production is a major activity in these areas and can increase their susceptibility to wind erosion by further reducing vegetation cover and...

  5. Carbon and macronutrient loss during accelerated erosion under different tillage and residue management systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of tillage and crop residue removal on erosion and associated macronutrient fluxes on erodible soils subjected to a high intensity simulated rain event (70 mm/h) were investigated in an experimental watershed in Ohio, USA. A set of plots which constitute two experiments at this site were...

  6. Climate change and Late Pliocene acceleration of erosion in the Himalaya

    NASA Astrophysics Data System (ADS)

    Huntington, Katharine W.; Blythe, Ann E.; Hodges, Kip V.

    2006-11-01

    Studies of active mountain ranges suggest that atmospheric and geodynamic processes may be strongly coupled through erosion - a hypothesis that has led to a debate over the relative importance of climate and far-field tectonic forcing in influencing erosion. We addressed this debate by developing the detailed long-term erosional history of a transect in the central Annapurna Range of Nepal for comparison with the climate and tectonic forcing histories of the region. Patterns of apatite fission-track and muscovite 40Ar/39Ar apparent ages with elevation indicate a five-fold increase in apparent erosion rate between 2.5 and 0.9 Ma ago. The time frame for this change corresponds to that of global climate destabilization associated with the onset of Northern Hemisphere glaciation and an intensification of the Asian monsoon. There is no evidence for important changes in the far-field tectonics of the Himalayan-Tibetan orogenic system over that interval, suggesting a largely climatic driver for enhanced erosion at the Himalayan range front.

  7. Hillslope-channel coupling in a steep Hawaiian catchment accelerates erosion rates over 100-fold

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Hanshaw, M. N.; Rosener, M.; Schmidt, K. M.; Brooks, B. A.; Tribble, G.; Jacobi, J.

    2009-12-01

    In tropical watersheds, hillslope changes are producing increasing amounts of fine sediment that can be quickly carried to reefs by channels. Suspended sediment concentrations off the reefs of Molokai, Hawaii, chronically exceed a toxic level of 10 mg/L, threatening reef ecosystems. We hypothesize that historic conversion of watersheds from soil creep to overland flow erosion increased both magnitude and frequency of sediment flooding adjacent reefs. We combined surficial and ecological mapping, hillslope and stream gages, and novel sensors to locate, quantify and model the generation of fine sediments polluting the Molokai reef. Ecological and geomorphic mapping from LiDAR and multi-spectral imagery located a subset of overland flow areas with vegetation cover below a threshold value preventing erosion. Here, feral goat grazing exposed cohesive volcanic soils whose low matrix hydraulic conductivities (1-20 mm/hour) promote Horton overland flow erosion. We instrumented steep, barren hillslopes with soil moisture sensors, overland flow meters, Parshall flumes, ISCO sediment samplers, and a rain gage and conducted repeat Tripod LiDAR and infiltration tests. To characterize soil resistance here and elsewhere to overland flow erosion, we deployed a Cohesive Strength Meter (CSM) to simulate the stresses of flowing water. At the 13.5 km 2 watershed mouth we used a USGS stream gage and ISCO sediment sampler to estimate total load. Over 2 years, storms triggered overland flow during rainfall intensities above 10-15 mm/hr. Overland flow meters indicate such flows can be up to 3 cm deep, with a tendency to deepen downslope. CSM tests indicate that these depths are insufficient to erode soils where vegetation is dense, but far above threshold values of 2-3 mm depth for bare soil erosion. Sediment ratings curves for both hillslope and downstream catchment gages show strong clock-wise hysteresis during the first intense storms in the Fall, becoming linear later in the rainy

  8. OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery

    PubMed Central

    Perryman, Alexander L.; Horta Andrade, Carolina

    2016-01-01

    The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses. PMID:27764115

  9. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  10. Erosion of composite resins.

    PubMed

    Powers, J M; Fan, P L

    1980-05-01

    The surface degradation of composite resins caused by accelerated aging was studied. Accelerated aging for 900 hours caused erosion of the resin matrices and exposure of filler particles. Differences in surface profiles after aging suggest that the materials eroded at different rates. Accelerated aging may model erosive wear of composites.

  11. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  12. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  13. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings. PMID:26932032

  14. Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Aanesland, A.

    2014-11-01

    We propose an alternative method to accelerate ions in classical gridded ion thrusters and ion sources such that co-extracted electrons from the source may provide beam space charge neutralization. In this way there is no need for an additional electron neutralizer. The method consists of applying RF voltage to a two-grid acceleration system via a blocking capacitor. Due to the unequal effective area of the two grids in contact with the plasma, a dc self-bias is formed, rectifying the applied RF voltage. As a result, ions are continuously accelerated within the grid system while electrons are emitted in brief instants within the RF period when the RF space charge sheath collapses. This paper presents the first experimental results and a proof-of-principle. Experiments are carried out using the Neptune thruster prototype which is a gridded Inductively Coupled Plasma (ICP) source operated at 4 MHz, attached to a larger beam propagation chamber. The RF power supply is used both for the ICP discharge (plasma generation) and powering the acceleration grids via a capacitor for ion acceleration and electron extraction without any dc power supplies. The ion and electron energies, particle flux and densities are measured using retarding field energy analyzers (RFEA), Langmuir probes and a large beam target. The system operates in Argon and N2. The dc self-bias is found to be generated within the gridded extraction system in all the range of operating conditions. Broad quasi-neutral ion-electron beams are measured in the downstream chamber with energies up to 400 eV. The beams from the RF acceleration method are compared with classical dc acceleration with an additional external electron neutralizer. It is found that the two acceleration techniques provide similar performance, but the ion energy distribution function from RF acceleration is broader, while the floating potential of the beam is lower than for the dc accelerated beam.

  15. Accelerated beach erosion in the south Atlantic coastal zone: is mitigation of artificially renourished beaches in SE Florida a rational practice or folly

    SciTech Connect

    Finkl, C.W. Jr.; Matlack, P.A.

    1985-01-01

    The natural erosion of sandy beaches is a world wide problem that is often exacerbated by the structural controls that are designed to mitigate shoreline recession. As seen elsewhere, the deployment of groins and other erosion-control structures has met meager success along the Atlantic coast of south Florida. Artificial renourishment, placement of sand on the beach from land or offshore borrows, is a relatively new nonstructural attempt to reduce shoreline retreat. Our study of sandy shores lying downdrift of jettied inlets identifies restricted sand bypassing that results in classical shoreline offsets. Many of the beaches that were previously renourished are again classified, by the Corps of Engineers, as critically eroded and local governments are now requesting additional rounds of renourishment. Attempts to stabilize renourished shores by planting dune grass, beach scraping, and scarp reduction, as in the Port Everglades area, have failed. Sediment loss at the John U. Lloyd Beach since 1976, for example, is in excess of 500,000 m/sup 3/. In this area, erosion is accelerated and chronic. The severity of localized erosion is highlighted here by assuming a worst case scenario without renourishment or structural control. Hurricane-induced storm surge and overwash could, before renourishment is attempted in 1986 or 1987, cut through the barrier even sooner. Such a breach would expose the port facilities to direct effects of the sea. Joint studies by geoscientists and planners are needed to determine whether continued renourishment of eroded beaches in developed areas is essential, practical, or even advisable.

  16. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  17. Convergence acceleration of implicit schemes in the presence of high aspect ratio grid cells

    NASA Technical Reports Server (NTRS)

    Buelow, B. E. O.; Venkateswaran, S.; Merkle, C. L.

    1993-01-01

    The performance of Navier-Stokes codes are influenced by several phenomena. For example, the robustness of the code may be compromised by the lack of grid resolution, by a need for more precise initial conditions or because all or part of the flowfield lies outside the flow regime in which the algorithm converges efficiently. A primary example of the latter effect is the presence of extended low Mach number and/or low Reynolds number regions which cause convergence deterioration of time marching algorithms. Recent research into this problem by several workers including the present authors has largely negated this difficulty through the introduction of time-derivative preconditioning. In the present paper, we employ the preconditioned algorithm to address convergence difficulties arising from sensitivity to grid stretching and high aspect ratio grid cells. Strong grid stretching is particularly characteristic of turbulent flow calculations where the grid must be refined very tightly in the dimension normal to the wall, without a similar refinement in the tangential direction. High aspect ratio grid cells also arise in problems that involve high aspect ratio domains such as combustor coolant channels. In both situations, the high aspect ratio cells can lead to extreme deterioration in convergence. It is the purpose of the present paper to address the reasons for this adverse response to grid stretching and to suggest methods for enhancing convergence under such circumstances. Numerical algorithms typically possess a maximum allowable or optimum value for the time step size, expressed in non-dimensional terms as a CFL number or vonNeumann number (VNN). In the presence of high aspect ratio cells, the smallest dimension of the grid cell controls the time step size causing it to be extremely small, which in turn results in the deterioration of convergence behavior. For explicit schemes, this time step limitation cannot be exceeded without violating stability restrictions

  18. Beam optics in a MeV-class multi-aperture multi-grid accelerator for the ITER neutral beam injector.

    PubMed

    Kashiwagi, M; Taniguchi, M; Umeda, N; de Esch, H P L; Grisham, L R; Boilson, D; Hemsworth, R S; Tanaka, M; Tobari, H; Watanabe, K; Inoue, T

    2012-02-01

    In a multi-aperture multi-grid accelerator of the ITER neutral beam injector, the beamlets are deflected due to space charge repulsion between beamlets and beam groups, and also due to magnetic field. Moreover, the beamlet deflection is influenced by electric field distortion generated by grid support structure. Such complicated beamlet deflections and the compensations have been examined utilizing a three-dimensional beam analysis. The space charge repulsion and the influence by the grid support structure were studied in a 1∕4 model of the accelerator including 320 beamlets. Beamlet deflection due to the magnetic field was studied by a single beamlet model. As the results, compensation methods of the beamlet deflection were designed, so as to utilize a metal bar (so-called field shaping plate) of 1 mm thick beneath the electron suppression grid (ESG), and an aperture offset of 1 mm in the ESG.

  19. Internal erosion rates of a 10-kW xenon ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1988-01-01

    A 30 cm diameter divergent magnetic field ion thruster, developed for mercury operation at 2.7 kW, was modified and operated with xenon propellant at a power level of 10 kW for 567 h to evaluate thruster performance and lifetime. The major differences between this thruster and its baseline configuration were elimination of the three mercury vaporizers, use of a main discharge cathode with a larger orifice, reduction in discharge baffle diameter, and use of an ion accelerating system with larger acceleration grid holes. Grid thickness measurement uncertainties, combined with estimates of the effects of reactive residual facility background gases gave a minimum screen grid lifetime of 7000 h. Discharge cathode orifice erosion rates were measured with three different cathodes with different initial orifice diameters. Three potential problems were identified during the wear test: the upstream side of the discharge baffle eroded at an unacceptable rate; two of the main cathode tubes experienced oxidation, deformation, and failure; and the accelerator grid impingement current was more than an order of magnitude higher than that of the baseline mercury thruster. The charge exchange ion erosion was not quantified in this test. There were no measurable changes in the accelerator grid thickness or the accelerator grid hole diameters.

  20. Ion beamlet steering for two-grid electrostatic thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Homa, J. M.

    1984-01-01

    An experimental study of ion beamlet steering in which the direction of beamlets emitted from a two grid aperture system is controlled by relative translation of the grids, is described. The results can be used to design electrostatic accelerating devices for which the direction and focus of emerging beamlets are important. Deflection and divergence angle data are presented for two grid systems as a function of the relative lateral displacement of the holes in these grids. At large displacements, accelerator grid impingements become excessive and this determines the maximum allowable displacement and as a result the useful range of beamlet deflection. Beamlet deflection is shown to vary linearly with grid offset angle over this range. The divergence of the beamlets is found to be unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished grid ion thruster are examined to determine the effects of thermally induced grid distortion and prescribed offsets of grid hole centerlines on the characteristics of the emerging beamlets. The results are used to determine the region on the grid surface where ion beamlet deflections exceed the useful range. Over this region high accelerator grid impingement currents and rapid grid erosion are predicted.

  1. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor.

    PubMed

    Singh, M J; De Esch, H P L

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  2. Accelerated relative sea-level rise and rapid coastal erosion: Testing a causal relationship for the Louisiana barrier islands

    USGS Publications Warehouse

    List, J.H.; Sallenger, A.H., Jr.; Hansen, M.E.; Jaffe, B.E.

    1997-01-01

    The role of relative sea-level rise as a cause for the rapid erosion of Louisiana's barrier island coast is investigated through a numerical implementation of a modified Bruun rule that accounts for the low percentage of sand-sized sediment in the eroding Louisiana shoreface. Shore-normal profiles from 150 km of coastline west of the Mississippi delta are derived from bathymetric surveys conducted during the 1880s. 1930s and 1980s. An RMS difference criterion is employed to test whether an equilibrium profile form is maintained between survey years. Only about half the studied profiles meet the equilibrium Criterion this represents a significant limitation on the potential applicability of the Bruun rule. The profiles meeting the equilibrium criterion, along with measured rates of relative sea-level rise, are used to hindcast shoreline retreat rates at 37 locations within the study area. Modeled and observed shoreline retreat rates show no significant correlation. Thus in terms of the Bruun approach relative sea-level rise has no power for hindcasting (and presumably forecasting) rates of coastal erosion for the Louisiana barrier islands.

  3. George E. Pake Prize Lecture: Crystalline Silicon Photovoltaics: Accelerating to Grid Parity

    NASA Astrophysics Data System (ADS)

    Pinto, Mark

    2013-03-01

    Lost in recent headlines about solar company failures, reduced government support and depressed stock valuations is the fact that photovoltaic (PV) systems continue to be installed at an extremely healthy rate - a ten-fold increase between 2007 and 2012, to a cumulative 100GWp of installations worldwide. The primary factor behind this remarkable growth has been cost reduction at the installed system level afforded by manufacturing and technology improvements to the crystalline silicon (c-Si) PV cell. In fact in the past 2 years, c-Si module cost learning curves have accelerated over their historical norms as a function of both volume and time, and as a result c-Si PV has reached parity with conventional forms of electricity in 20 + countries worldwide. In this presentation future c-Si technology paths will be reviewed along with market implications, leading to the projection that between 2015 and 2020, c-Si based PV electricity will be cost-effectively delivered to >95% of the world's population.

  4. Grid-based algorithm to search critical points, in the electron density, accelerated by graphics processing units.

    PubMed

    Hernández-Esparza, Raymundo; Mejía-Chica, Sol-Milena; Zapata-Escobar, Andy D; Guevara-García, Alfredo; Martínez-Melchor, Apolinar; Hernández-Pérez, Julio-M; Vargas, Rubicelia; Garza, Jorge

    2014-12-01

    Using a grid-based method to search the critical points in electron density, we show how to accelerate such a method with graphics processing units (GPUs). When the GPU implementation is contrasted with that used on central processing units (CPUs), we found a large difference between the time elapsed by both implementations: the smallest time is observed when GPUs are used. We tested two GPUs, one related with video games and other used for high-performance computing (HPC). By the side of the CPUs, two processors were tested, one used in common personal computers and other used for HPC, both of last generation. Although our parallel algorithm scales quite well on CPUs, the same implementation on GPUs runs around 10× faster than 16 CPUs, with any of the tested GPUs and CPUs. We have found what one GPU dedicated for video games can be used without any problem for our application, delivering a remarkable performance, in fact; this GPU competes against one HPC GPU, in particular when single-precision is used. PMID:25345784

  5. More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs

    PubMed Central

    Gai, Jiading; Obeid, Nady; Holtrop, Joseph L.; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P.; Hwu, Wen-mei W.; Liang, Zhi-Pei; Sutton, Bradley P.

    2013-01-01

    Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203

  6. More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs.

    PubMed

    Gai, Jiading; Obeid, Nady; Holtrop, Joseph L; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P; Hwu, Wen-Mei W; Liang, Zhi-Pei; Sutton, Bradley P

    2013-05-01

    Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203

  7. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhao, Bo; Wang, Chong; Qiu, Feng; Wang, Rongfei; Yang, Yu

    2016-11-01

    Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  8. Flow Accelerated Erosion-Corrosion (FAC) considerations for secondary side piping in the AP1000{sup R} nuclear power plant design

    SciTech Connect

    Vanderhoff, J. F.; Rao, G. V.; Stein, A.

    2012-07-01

    The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Due to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)

  9. Global peat erosion risk assessment for the 21st Century

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Irvine, Brian; Holden, Joseph

    2015-04-01

    Many peatlands across the world are suffering from degradation and erosion exacerbated by human influences. Blanket peat erosion has adverse impacts on terrestrial and aquatic habitats, reservoir capacity and water quality, and also leads to accelerated carbon release. Bioclimatic modelling suggests that some areas, which are currently suitable for active peat growth, may be no longer under a climate supporting the accumulation of peat by the end of the century. Peat erosion in these marginal regions is thus more likely. A recently developed blanket peat erosion model, PESERA-PEAT, was established through significantly modifying the grid version of the Pan-European Soil Erosion Assessment model (PESERA-GRID) to explicitly include the freeze-thaw and desiccation processes, which appear to be the crucial drivers of peat erosion, and typical land management practices in blanket peatlands such as artificial drainage, grazing and managed burning. Freeze-thaw and desiccation are estimated based on climate (i.e. temperature) and soil moisture conditions. Land management practices interact with hydrology, erosion and vegetation growth via their influence on vegetation cover, biomass and soil moisture condition. The model has been demonstrated to be robust for blanket peat erosion modelling with riverine sediment flux data in the UK. In this paper, the PESERA-PEAT model is applied to investigate the impact of environmental change on the blanket peat erosion at a global scale. Climatic scenarios to the end of 21st Century were derived, as part of the QUEST-GSI initiative, from the outputs of seven global climate models: CGCM3 and CCCMA (Canada); CSIRO Mark III (Australia); IPSL (France); ECHAM5 (Germany); CCSM (US National Centre for Atmospheric Research (NCAR)); HadCM3 and HadGEM1 (UK). Land management practice such as artificial drainage is considered to examine if it is possible to buffer the impact of climate change on erosion through managing blanket peatlands in

  10. Irrigation: Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  11. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  12. Time-Dependent Erosion of Ion Optics

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.

    2008-01-01

    The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.

  13. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  14. Thread Group Multithreading: Accelerating the Computation of an Agent-Based Power System Modeling and Simulation Tool -- C GridLAB-D

    SciTech Connect

    Jin, Shuangshuang; Chassin, David P.

    2014-01-06

    GridLAB-DTM is an open source next generation agent-based smart-grid simulator that provides unprecedented capability to model the performance of smart grid technologies. Over the past few years, GridLAB-D has been used to conduct important analyses of smart grid concepts, but it is still quite limited by its computational performance. In order to break through the performance bottleneck to meet the need for large scale power grid simulations, we develop a thread group mechanism to implement highly granular multithreaded computation in GridLAB-D. We achieve close to linear speedups on multithreading version compared against the single-thread version of the same code running on general purpose multi-core commodity for a benchmark simple house model. The performance of the multithreading code shows favorable scalability properties and resource utilization, and much shorter execution time for large-scale power grid simulations.

  15. Coprates Erosion

    NASA Technical Reports Server (NTRS)

    2006-01-01

    4 June 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered, light-toned, sedimentary rocks that have been exposed by erosion in Coprates Chasma, one of the many chasms which comprise the Valles Marineris trough system on Mars.

    Location near: 13.1oS, 65.0oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  16. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  17. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  18. Carbon/Carbon Grids For Ion Sources

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.

    1995-01-01

    Ion-extraction grids made of carbon/carbon composites used in spacecraft ion engines and industrial ion sources in place of molybdenum grids. In principle, carbon/carbon grids offer greater extraction efficiency and longer life. Grid fabricated by mechanical drilling, laser drilling, or electrical-discharge machining of array of holes in sheet of carbon/carbon. Advantages; better alignment and slower erosion.

  19. Ion beamlet vectoring by grid translation

    NASA Technical Reports Server (NTRS)

    Homa, J. M.; Wilbur, P. J.

    1982-01-01

    Ion beamlet vectoring is investigated by collecting deflection and divergence angle data for two-grid systems as a function of the relative displacement of these grids. Results show that at large displacements, accelerator grid impingement becomes a limiting factor and this determines the useful range of beamlet deflection. Beamlet deflection was shown to vary linearly with grid offset angle over this range. Values of deflection-to-offset angle ratio and useful range of deflection are presented as functions of grid-hole geometries, perveance levels, and accelerating voltages. It is found that the divergence of the beamlets is unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished-grid ion thruster are examined to determine where over the grid surface the grid offsets exceed the useful range, which indicates the regions on the surface where high accelerator grid impingment is probably occurring.

  20. Sea level anomalies exacerbate beach erosion

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Ethan J.; Rodriguez, Antonio B.; Fegley, Stephen R.; Luettich, Richard A.

    2014-07-01

    Sea level anomalies are intra-seasonal increases in water level forced by meteorological and oceanographic processes unrelated to storms. The effects of sea level anomalies on beach morphology are unknown but important to constrain because these events have been recognized over large stretches of continental margins. Here, we present beach erosion measurements along Onslow Beach, a barrier island on the U.S. East Coast, in response to a year with frequent sea level anomalies and no major storms. The anomalies enabled extensive erosion, which was similar and in most places greater than the erosion that occurred during a year with a hurricane. These results highlight the importance of sea level anomalies in facilitating coastal erosion and advocate for their inclusion in beach-erosion models and management plans. Sea level anomalies amplify the erosive effects of accelerated sea level rise and changes in storminess associated with global climate change.

  1. An evaluation of soil erosion hazard: A case study in Southern Africa using geomatics technologies

    NASA Astrophysics Data System (ADS)

    Eiswerth, Barbara Alice

    Accelerated soil erosion in Malawi, Southern Africa, increasingly threatens agricultural productivity, given current and projected population growth trends. Previous attempts to document soil erosion potential have had limited success, lacking appropriate information and diagnostic tools. This study utilized geomatics technologies and the latest available information from topography, soils, climate, vegetation, and land use of a watershed in southern Malawi. The Soil Loss Estimation Model for Southern Africa (SLEMSA), developed for conditions in Zimbabwe, was evaluated and used to create a soil erosion hazard map for the watershed under Malawi conditions. The SLEMSA sub-models of cover, soil loss, and topography were computed from energy interception, rainfall energy, and soil erodibility, and slope length and steepness, respectively. Geomatics technologies including remote sensing and Geographic Information Systems (GIS) provided the tools with which land cover/land use, a digital elevation model, and slope length and steepness were extracted and integrated with rainfall and soils spatial information. Geomatics technologies enable rapid update of the model as new and better data sets become available. Sensitivity analyses of the SLEMSA model revealed that rainfall energy and slope steepness have the greatest influence on soil erosion hazard estimates in this watershed. Energy interception was intermediate in sensitivity level, whereas slope length and soil erodibility ranked lowest. Energy interception and soil erodibility were shown by parameter behavior analysis to behave in a linear fashion with respect to soil erosion hazard, whereas rainfall energy, slope steepness, and slope length exhibit non-linear behavior. When SLEMSA input parameters and results were compared to alternative methods of soil erosion assessment, such as drainage density and drainage texture, the model provided more spatially explicit information using 30 meter grid cells. Results of this

  2. Soil Erosion and Agricultural Sustainability

    NASA Astrophysics Data System (ADS)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  3. Erosion Effects

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The impact crater in this THEMIS image is a model illustration to the effects of erosion on Mars. The degraded crater rim and several landslides observed in crater walls is evidence to the mass wasting of materials. Layering in crater walls also suggests the presence of materials that erode at varying rates.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 31.6, Longitude 44.3 East (315.7 West). 19 meter/pixel resolution.

  4. Radial Erosion

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The ejecta surrounding the crater (off image to the left) in this image has undergone significant erosion by the wind. The wind has stripped the surface features from the ejecta and has started to winnow away the ejecta blanket. Near the margin of the ejecta the wind is eroding along a radial pattern -- taking advantage of radial emplacement. Note the steep margin of the ejecta blanket. Most, if not all, of the fine ejecta material has been removed and the wind in now working on the more massive continuous ejecta blanket.

    Image information: VIS instrument. Latitude 12.5, Longitude 197.4 East (162.6 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Diamond: An erosion resistant aerospace material

    SciTech Connect

    Jilbert, G.H.; Pickles, C.S.J.; Coad, E.J.

    1995-12-31

    Chemical Vapour Deposited (CVD) diamond growth technology has improved to the point where complete diamond infrared domes are now a possibility. However there are still considerable barriers to be overcome to ensure that the erosion resistance of the synthetic material is comparable to that of natural diamond. The Cavendish laboratory uses two systems to assess the erosion resistance of materials. The sand erosion rig uses compressed air to accelerate 300-600 {mu}m sand particles to velocities up to ca. 250 m s{sup -1}. The rain erosion resistance of a sample is evaluated using high velocity jets designed to simulate the effects of spherical raindrop impact. Both techniques have revealed the unique erosion characteristics of CVD diamond.

  6. Geomorphic considerations for erosion prediction

    USGS Publications Warehouse

    Osterkamp, W.R.; Toy, T.J.

    1997-01-01

    Current soil-erosion prediction technology addresses processes of rainsplash, overland-flow sediment transport, and rill erosion in small watersheds. The effects of factors determining sediment yield from larger-scale drainage basins, in which sediment movement is controlled by the combined small-scale processes and a complex set of channel and other basin-scale sediment-delivery processes, such as soil creep, bioturbation, and accelerated erosion due to denudation of vegetation, have been poorly evaluated. General suggestions are provided for the development of erosion-prediction technology at the geomorphic or drainage-basin scale based on the separation of sediment-yield data for channel and geomorphic processes from those of field-scale soil loss. An emerging technology must consider: (1) the effects on sediment yield of climate, geology and soils, topography, biotic interactions with other soil processes, and land-use practices; (2) all processes of sediment delivery to a channel system; and (3) the general tendency in most drainage basins for progressively greater sediment storage in the downstream direction.

  7. Constructing the ASCI computational grid

    SciTech Connect

    BEIRIGER,JUDY I.; BIVENS,HUGH P.; HUMPHREYS,STEVEN L.; JOHNSON,WILBUR R.; RHEA,RONALD E.

    2000-06-01

    The Accelerated Strategic Computing Initiative (ASCI) computational grid is being constructed to interconnect the high performance computing resources of the nuclear weapons complex. The grid will simplify access to the diverse computing, storage, network, and visualization resources, and will enable the coordinated use of shared resources regardless of location. To match existing hardware platforms, required security services, and current simulation practices, the Globus MetaComputing Toolkit was selected to provide core grid services. The ASCI grid extends Globus functionality by operating as an independent grid, incorporating Kerberos-based security, interfacing to Sandia's Cplant{trademark},and extending job monitoring services. To fully meet ASCI's needs, the architecture layers distributed work management and criteria-driven resource selection services on top of Globus. These services simplify the grid interface by allowing users to simply request ''run code X anywhere''. This paper describes the initial design and prototype of the ASCI grid.

  8. Internal erosion and impact of erosion resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two most common causes of earthen embankment and levee failure are embankment overtopping and internal erosion. Internal erosion occurs when water flows through a cavity, crack, and/or other opening within the embankment. These openings may be a result of inadequate compaction during construct...

  9. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  10. Emergency wind erosion control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...

  11. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  12. Rainfall erosivity in New Zealand

    NASA Astrophysics Data System (ADS)

    Klik, Andreas; Haas, Kathrin; Dvorackova, Anna; Fuller, Ian

    2014-05-01

    Rainfall and its kinetic energy expressed by the rainfall erosivity is the main driver of soil erosion processes by water. The Rainfall-Runoff Erosivity Factor (R) of the Revised Universal Soil Loss Equation is one oft he most widely used parameters describing rainfall erosivity. This factor includes the cumulative effects of the many moderate-sized storms as well as the effects oft he occasional severe ones: R quantifies the effect of raindrop impact and reflects the amopunt and rate of runoff associated with the rain. New Zealand is geologically young and not comparable with any other country in the world. Inordinately high rainfall and strong prevailing winds are New Zealand's dominant climatic features. Annual rainfall up to 15000 mm, steep slopes, small catchments and earthquakes are the perfect basis for a high rate of natural and accelerated erosion. Due to the multifacted landscape of New Zealand its location as island between the Pacific and the Tasmanian Sea there is a high gradient in precipitation between North and South Island as well as between West and East Coast. The objective of this study was to determine the R-factor for the different climatic regions in New Zealand, in order to create a rainfall erosivity map. We used rainfall data (breakpoint data in 10-min intervals) from 34 gauging stations for the calcuation of the rainfall erosivity. 15 stations were located on the North Island and 19 stations on the South Island. From these stations, a total of 397 station years with 12710 rainstorms were analyzed. The kinetic energy for each rainfall event was calculated based on the equation by Brown and Foster (1987), using the breakpoint precipitation data for each storm. On average, a mean annual precipitation of 1357 mm was obtained from the 15 observed stations on the North Island. Rainfall distribution throughout the year is relatively even with 22-24% of annual rainfall occurring in spring , fall and winter and 31% in summer. On the South Island

  13. Empirical laws of particle extraction from single-grid source of bipolar ion-electron flow

    NASA Astrophysics Data System (ADS)

    Dudin, S. V.; Rafalskyi, D. V.

    2012-11-01

    The present research is devoted to the problem of extraction grid choice for a single-grid source of bipolar ion-electron flow. The paper contains detailed reference information on ion and electron extraction characteristics of 10 different grids with broad range of parameters: aperture width (0.09-0.6 mm), grid transparency (0.19-0.51), thickness (0.036-0.5 mm), and with different aperture geometry. The grids with square, circular, and slit apertures were made with different technologies: laser cutting, welding, weaving, and electrolytic erosion. The general regularities of the ion and electron extraction from the single-grid source are experimentally researched for the cases of dc and RF extraction grid biasing. A conclusion has been made that the maximum extracted ion current at low ion energy (0-200 eV) does not significantly vary for all the grids and does not exceed half of the primary ion current from plasma multiplied by the optical grid transparency. The low-energy limit of efficient ion extraction has been discovered which cannot be overcome by the aperture narrowing. A conclusion is made that the RF extraction mode is superior for all the researched grids since it is characterized by higher extracted ion current at any acceleration voltage for any grid with much more simple and smooth extraction curves behavior in comparison to the dc case as well as absence of arcing, jumps, and hysteresis of the measured curves at any RF voltages. The unique ability of the RF biased single-grid source of simultaneous ion/electron emission has been studied. The measured maximal attainable ion beam current compensation ratio is always sufficiently higher than 1 and typically varies in the range 2-6. The results obtained in the present paper demonstrate prospective of the single-grid source in space thruster applications and in modern technologies, particularly for ion beam processing of wide bandgap semiconductor devices such as GaN and SiC transistors due to inherent

  14. Empirical laws of particle extraction from single-grid source of bipolar ion-electron flow

    SciTech Connect

    Dudin, S. V.; Rafalskyi, D. V.

    2012-11-15

    The present research is devoted to the problem of extraction grid choice for a single-grid source of bipolar ion-electron flow. The paper contains detailed reference information on ion and electron extraction characteristics of 10 different grids with broad range of parameters: aperture width (0.09-0.6 mm), grid transparency (0.19-0.51), thickness (0.036-0.5 mm), and with different aperture geometry. The grids with square, circular, and slit apertures were made with different technologies: laser cutting, welding, weaving, and electrolytic erosion. The general regularities of the ion and electron extraction from the single-grid source are experimentally researched for the cases of dc and RF extraction grid biasing. A conclusion has been made that the maximum extracted ion current at low ion energy (0-200 eV) does not significantly vary for all the grids and does not exceed half of the primary ion current from plasma multiplied by the optical grid transparency. The low-energy limit of efficient ion extraction has been discovered which cannot be overcome by the aperture narrowing. A conclusion is made that the RF extraction mode is superior for all the researched grids since it is characterized by higher extracted ion current at any acceleration voltage for any grid with much more simple and smooth extraction curves behavior in comparison to the dc case as well as absence of arcing, jumps, and hysteresis of the measured curves at any RF voltages. The unique ability of the RF biased single-grid source of simultaneous ion/electron emission has been studied. The measured maximal attainable ion beam current compensation ratio is always sufficiently higher than 1 and typically varies in the range 2-6. The results obtained in the present paper demonstrate prospective of the single-grid source in space thruster applications and in modern technologies, particularly for ion beam processing of wide bandgap semiconductor devices such as GaN and SiC transistors due to inherent

  15. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  16. Soil erosion in developing countries: A politicoeconomic explanation

    NASA Astrophysics Data System (ADS)

    Thapa, Gopal B.; Weber, Karl E.

    1991-07-01

    Soil erosion is accelerating in developing countries of Asia, Africa, and Latin America. It has threatened the livelihood of millions of peasants, for agriculture is their economic mainstay. A probe into the forces causing erosion reveals that the elite’s resolve to accumulate ever more wealth and to maintain, consolidate, or expand their sociopolitical power and the necessity of the poor to fulfill their requirements of food, fuelwood, and fodder are the two major factors accelerating soil erosion. Unless the vast masses of poor people are integrated into the national mainstream through the implementation of equitable and redistributive development policies, it is impossible to control the accelerating rate of soil erosion and thus to achieve the objective of sustainable development.

  17. Redistribution of soil biota by rainfall erosion

    NASA Astrophysics Data System (ADS)

    Baxter, Craig; Rowan, John; McKenzie, Blair; Neilson, Roy

    2013-04-01

    Soil is central to the provision of multiple ecosystem services that sustain life through a myriad of chemical, physical and biological processes. One of the greatest threats to soil is erosion, a natural process accelerated by human activities. Elevated erosion rates are common in agro-ecosystems causing both direct physical impacts (e.g. soil loss), and indirect biogeochemical consequences, which ultimately leads to impaired ecosystem functioning. The consequences of erosion on soil biota have hitherto been ignored, yet biota have fundamental roles in the provision of soil ecosystem services. To our knowledge few studies have addressed the gap between erosion and impacts on soil biota. Here we use soil nematodes as a model organism for assessing erosion impacts on soil (micro) fauna in temperate agro-ecosystems. Soil nematodes are ubiquitous, abundant, are represented at all levels in soil food webs and can be categorised into a range of trophic or functional groups. To quantify transport of nematodes and gain a better understanding of erosive mechanisms responsible, we measured their export from small erosion plots (0.0625m2) under a fixed-intensity design rainstorm (6mm min-1 duration: 3 min) over six slope angles (4° - 24°) and three soil texture classes (sandy silt, silty sand, silt). Runoff and eroded sediment were collected for each plot (four replicate runs), and a suite of biological and physico-chemical parameters measured. Results confirmed that, similar to soil particles, nematodes were exported at rates influenced by slope angle and soil texture. These experiments, linked with field and catchment-scale equivalents, are designed to elucidate the links between soil erosion and provision of ecosystem services and to inform biodiversity-sensitive soil and water conservation practices.

  18. Saliva and dental erosion

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  19. Introduction to tillage erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage as a source of erosion Tillage erosion is the downslope movement of soil by tillage. During tillage, soil is lifted and gravity moves soil downslope. Soil movement by tillage increases with slope steepness. However, net soil transport by tillage is determined by the change in slope. Soil mov...

  20. Erosion of a geopolymer.

    SciTech Connect

    Goretta, K. C.; Chen, N.; Routbort, J. L.; Lukey, G. C.; van Deventer, J. S. J.

    2002-07-02

    Solid-particle erosion studies were conducted on a representative geopolymer. The test conditions were normal impact of 390-{micro}m angular Al{sub 2}O{sub 3} erodent particles moving at 50, 70, or 100 m/s. Steady-state erosion rates were obtained and the material-loss mechanism was studied by scanning electron microscopy. The geopolymer responded as a classic brittle material. Elastic-plastic indentation events led to formation of brittle cleavage cracks that resulted in spallation of material. The erosion rate was proportional to erodent velocity to the 2.3 power. The erosion rate and mechanism for the geopolymer were nearly identical to what has been observed for erosion of Si single crystals.

  1. Erosion in America

    SciTech Connect

    Not Available

    1984-03-23

    The US loses about five billion tons of soil a year from erosion, and scientists estimate that from 20 to 50% of world cropland suffers from excessive erosion. The effect of erosion is a loss in both land and water productivity. When combined with the problems of overpopulation, overgrazing, and deforestation, the environmental impacts are very serious. There are some signs that countries are beginning to adopt conservation tilling techniques, but even cooperative government programs in the US such as the 1983 Payment-in-Kind (PIK) program have had only partial success because of expanded production on marginal farmlands. 20 reference 5 figures.

  2. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  3. Grid Computing

    NASA Astrophysics Data System (ADS)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  4. Head erosion with emittance growth in PWFA

    SciTech Connect

    Li, S. Z.; Adli, E.; England, R. J.; Frederico, J.; Gessner, S. J.; Hogan, M. J.; Litos, M. D.; Walz, D. R.; Muggli, P.; An, W.; Clayton, C. E.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W.; Vafaei, N.

    2012-12-21

    Head erosion is one of the limiting factors in plasma wakefield acceleration (PWFA). We present a study of head erosion with emittance growth in field-ionized plasma from the PWFA experiments performed at the FACET user facility at SLAC. At FACET, a 20.3 GeV bunch with 1.8 Multiplication-Sign 10{sup 10} electrons is optimized in beam transverse size and combined with a high density lithium plasma for beam-driven plasma wakefield acceleration experiments. A target foil is inserted upstream of the plasma source to increase the bunch emittance through multiple scattering. Its effect on beamplasma interaction is observed with an energy spectrometer after a vertical bend magnet. Results from the first experiments show that increasing the emittance has suppressed vapor field-ionization and plasma wakefields excitation. Plans for the future are presented.

  5. Variables in turbine erosion

    NASA Technical Reports Server (NTRS)

    Baughman, J. R.; Spies, R.

    1970-01-01

    Study of impact erosion in the operation of turbomachinery is undertaken to predict the results for particular designs. The test program investigates the effects of turbine stator blade shape, rotor blade shape, and variations in test conditions.

  6. Dental Erosion in Industry

    PubMed Central

    Cate, H. J. Ten Bruggen

    1968-01-01

    Five hundred and fifty-five acid workers were examined between March 1962 and October 1964. One hundred and seventy-six (31·7%) were affected by industrial dental erosion at the first examinations. In 33 cases (6·0%) the dentine was affected. During the period of the survey, 66 (20·4%) of 324 workers examined more than once showed evidence that erosion was progressing. The prevalence and incidence of erosion were highest among battery formation workers, lower among picklers, and least among other processes covered by the survey. The age of workers did not appear to influence their susceptibility to erosion. The habit of working with the lips slightly parted had little effect. Erosion superimposed upon attrition predisposed to more severe loss of tooth structure than either operating alone. Little inconvenience or functional disability was suffered by acid workers due to erosion. Twenty-seven (23·7%) of 114 erosions were considered to be disfiguring. Regular dental treatment was sought less by acid workers than by controls, and the oral hygiene of the latter was superior. There was no evidence to show any difference between caries experience among acid workers and controls. Calculus and periodontal disease were more prevalent among acid workers than among controls, but it was not possible to attribute this to the working environment. Black staining in iron picklers was considered to be due to the working environment. The use of closed acid containers or lip extraction on open acid vats prevented significant atmospheric contamination and diminished the prevalence of erosion. The use of wall fans and detergent foaming agents was helpful. Images PMID:5723349

  7. Biological soil crusts in subtropical China and their influence on initial soil erosion

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Kühn, Peter; Scholten, Thomas

    2014-05-01

    Soil is one of the most valuable resources we have on our planet. The erosion of this resource is a major environmental problem, in particular in subtropical China where high rainfall intensity causes severe and continuous soil losses. One of the main mechanisms controlling soil erosion is surface coverage, typically by vegetation, litter, stones and biological soil crusts (BSCs). BSCs play significant functional roles in soil systems, such as accelerating soil formation, changing water and nutrient cycling rates, enhancing soil stability and thus preventing erosion by wind or water. In initial ecosystems, cyanobacteria, algae, fungi, mosses and lichens are the first organisms to colonize the substrate; they form a biological crust within the first millimetres of the surface. BSCs and their effect on erosion are rarely mentioned in literature and most of the work done focussed on arid and semi-arid environments. This study aims to investigate the role of BSCs controlling the amount of runoff generated and sediment detached during soil erosion events in an initial ecosystem in subtropical China. The study took place on a deforested experimental site (BEF China) near Xingangshan, Jiangxi Province, PR China. We used a total number of 350 runoff plots (ROP, 40cmx40cm) to measure sediment discharge and surface runoff. BSC cover in each ROP was determined photogrammetrically in 4 time steps (autumn 2011, spring 2012, summer 2012 and summer 2013). Perpendicular images were taken and then processed to measure the coverage of BSCs using a 1 cm² digital grid overlay. Additionally BSCs were sampled in the field and identified by their taxonomy. In our ROPs we found 65 different moos, algae and lichen species, as well as cyanobacteria's. Mean BSC cover per ROP in 2013 was 17 % with a maximum of 62 % and a minimum of 0 %. Compared to stone cover with 3 %, our findings highlight the role of BSC in soil erosion processes. The total BSC covered area is slightly decreasing since

  8. Grid reliability

    NASA Astrophysics Data System (ADS)

    Saiz, P.; Andreeva, J.; Cirstoiu, C.; Gaidioz, B.; Herrala, J.; Maguire, E. J.; Maier, G.; Rocha, R.

    2008-07-01

    Thanks to the Grid, users have access to computing resources distributed all over the world. The Grid hides the complexity and the differences of its heterogeneous components. In such a distributed system, it is clearly very important that errors are detected as soon as possible, and that the procedure to solve them is well established. We focused on two of its main elements: the workload and the data management systems. We developed an application to investigate the efficiency of the different centres. Furthermore, our system can be used to categorize the most common error messages, and control their time evolution.

  9. Bank Erosion in a Peatland Forest Ditch

    NASA Astrophysics Data System (ADS)

    Stenberg, Leena; Finér, Leena; Nieminen, Mika; Sarkkola, Sakari; Koivusalo, Harri

    2013-04-01

    Peatlands have been drained for forestry extensively in Finland since 1950's, but nowadays the drainage is shifted from the initial ditching to the ditch network maintenance, which refers to the cleaning of existing ditches and to the digging of complementary ditches in the drained areas. Ditch maintenance operations lead to sediment load that is considered to be among the most harmful environmental effects of forestry. Excess sediment loads cause adverse effects to the receiving waters and their ecosystems in terms of increased turbidity, which reduces primary production, and siltation, which ruins the spawning grounds of fish. To understand the underlying mechanisms behind the sediment load at the source areas, a field experiment was conducted for studying the bank erosion of a newly cleaned ditch. That was done on a shallow peated area with fine textured mineral subsoil (sandy loam) since such areas are assessed to have the greatest risk for sediment load generation. Bank erosion was quantified by using a pin meter, and its suitability for detecting microtopographic changes of ditch side wall in drained peatland conditions was evaluated. Artificial irrigation was applied in the vicinity of a ditch to generate a seepage face that speeds up the erosion process. The ditch bank microtopography was measured five times for a four meter long section of the ditch by using a large set of pin meter measurements. The measurements from the different times were spatially interpolated over 2 x 2 cm grid using ordinary kriging and erosion and deposition were estimated as the difference in the grid surface between the measurement times. The results revealed that bank erosion occurred soon after the ditch was cleaned, but the eroded material was deposited on the lower bank areas and at the bottom of the ditch where it is potentially transported further during peak discharge events. Pin meter proved to be suitable for measuring bank erosion of peatland forest ditch, although the

  10. Concentrated flow erosion processes under planned fire

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Noske, Phil; Van Der Sant, Rene; Lane, Patrick; Sheridan, Gary

    2016-04-01

    The role of wildfire in accelerating erosion rates for a certain period after fire has been well documented. Much less information is available on the erosion rates and processes after planned fires that typically burn at much lower intensity. Observational evidence, and some studies in southern and southeastern Australia suggest that erosion after planned fire can be significant if rainfall intensities exceed critical intensities and durations. Understanding erosion processes and rates under these event conditions is of critical importance for planning of burn locations away from critical human assets such as water supplies and infrastructure. We conducted concentrated flow experiments with the purpose to understand what critical conditions are required for significant erosion to occur on planned burn hillslopes. Concentrated flow runon was applied on pre-wetted, unbounded plots of 10 m at rates of 0.5, 1, 1.5 and 2 L/s, with three replicates for each rates applied at 1m distance of each other. The experiments were carried out at three sites within one burn perimeter with different burn severities ranging from low to high, with two replicates at each site. Runon was applied until an apparent steady state in runoff was reached at the lower plot boundary, which was typically between 0.7 and 2.5 minutes. The experiments were filmed and erosion depth was measured by survey methods at 1m intervals. Soil surface properties, including potential sediment trapping objects were measured and surveyed near the plots. We found that fire severity increased plot scale average erosion depth significantly even as experiments were typically much shorter on the high severity plots. Unit stream power was a good predictor for average erosion depth. Uncontrolled for variations in soil surface properties explained process behaviour: finer, ash rich surface material was much less likely to be trapped by fallen, charred branches and litter than coarser, ash-depleted material. Furthermore

  11. Particulate erosion mechanisms

    NASA Technical Reports Server (NTRS)

    Veerabhadrarao, P.; Buckley, D. H.

    1983-01-01

    Particulate damage and erosion of ductile metals are today plaguing design and field engineers in diverse fields of engineering and technology. It was found that too many models and theories were proposed leading to much speculation from debris analysis and failure mechanism postulations. Most theories of solid particle erosion are based on material removal models which do not fully represent the actual physical processes of material removal. The various mechanisms proposed thus far are: melting, low-cycle fatigue, extrusion, delamination, shear localization, adhesive material transfer, etc. The experimental data on different materials highlighting the observed failure modes of the deformation and cutting wear processes using optical and scanning electron microscopy are presented. The most important mechanisms proved from the experimental observations of the specimens exposed to both spherical and angular particles are addressed, and the validity of the earlier theories discussed. Both the initial stages of damage and advanced stages of erosion were studied to gain a fundamental understanding of the process.

  12. Erosion of composite ceramics

    SciTech Connect

    Routbort, J.L.

    1992-08-01

    The theoretical basis to describe solid-particle erosion of monolithic ceramics is well developed. In many cases, the models can account for the impact velocity, impact angle and erodent-size dependencies of the steady-state erosion rate. In addition, the models account for effects of materials parameters such as fracture toughness and hardness. Steady-state erosion measurements on a wide variety of composite ceramics, including SiC whisker-reinforced Al[sub 2]O[sub 3], Si[sub 3]N[sub 4] containing Si[sub 3]N[sub 4] or SiC whiskers, Y[sub 2]O[sub 3]-stabilized ZrO[sub 2] reinforced with SiC whiskers, and duplex-microstructure Si[sub 3]N[sub 4] have been reported. The theories developed for monolithic ceramics are, however, less successful in describing the results for composites.

  13. Erosion of composite ceramics

    SciTech Connect

    Routbort, J.L.

    1992-08-01

    The theoretical basis to describe solid-particle erosion of monolithic ceramics is well developed. In many cases, the models can account for the impact velocity, impact angle and erodent-size dependencies of the steady-state erosion rate. In addition, the models account for effects of materials parameters such as fracture toughness and hardness. Steady-state erosion measurements on a wide variety of composite ceramics, including SiC whisker-reinforced Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4} containing Si{sub 3}N{sub 4} or SiC whiskers, Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} reinforced with SiC whiskers, and duplex-microstructure Si{sub 3}N{sub 4} have been reported. The theories developed for monolithic ceramics are, however, less successful in describing the results for composites.

  14. Wind Erosion in Tithonium

    NASA Technical Reports Server (NTRS)

    2005-01-01

    30 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows wind-eroded sedimentary rocks in Tithonium Chasma, one of the troughs of the Valles Marineris system. The winds responsible for the majority of the erosion blew from the northeast (upper right), creating yardangs (wind erosion ridges) with their tapered ends pointing downwind.

    Location near: 4.6oS, 88.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  15. Soil erosion in Iran: Issues and solutions

    NASA Astrophysics Data System (ADS)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot

  16. Erosion of polyurethane insulation.

    NASA Technical Reports Server (NTRS)

    Kraus, S.

    1973-01-01

    Detailed description of the test program in which erosion of the spray foam insulation used in the S-II stage of the Saturn-V Apollo launch vehicle was investigated. The behavior of the spray foam was investigated at the elevated temperature and static pressure appropriate to the S-II stage environment, but in the absence of the aerodynamic shear stress.

  17. Soil Erosion by Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by water, the wearing away of the earth's surface by the forces of water and gravity, consists of rock or soil particle dislodgement, entrainment, transport, and deposition. This sequence of events occurs over a wide range of temporal and spatial scales, from raindrop splash moving par...

  18. Erosion-Corrosion Property of CeO2-Modified HVOF WC-Co Coating

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Hang, Zongqiu; Chen, Hui; Ceng, Shengbo; Gou, Guoqing; Wang, Xiaomin; Tu, Mingjing; Wu, Xiangyang

    2016-04-01

    Rare-earth elements have been widely used in materials manufacturing to improve hardness and toughness. In this work, conventional, nanostructured, and CeO2-modified WC-12Co powders were sprayed using high-velocity oxygen flame spraying. The erosion-corrosion behavior and interaction of erosion and corrosion of the coatings in 3.5 wt.% NaCl solution were investigated. In situ observation was employed to analyze the failure mechanism. The results showed that the CeO2-modified WC-12Co coating possessed the best erosion-corrosion resistance, while the lowest corrosion resistance was exhibited by the conventional WC-12Co coating. The results also suggested that the erosion-corrosion mechanism in the three coatings was dominated by corrosion-accelerated erosion. However, the extent of acceleration of erosion by corrosion differed.

  19. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-01

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years.

  20. Erosion by an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N.; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y. Y.; Avouac, Jean-Philippe; Cox, Simon C.

    2015-10-01

    Assessing the impact of glaciation on Earth’s surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years.

  1. Safe Grid

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  2. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  3. Discussion of internal erosion modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal erosion is one common mode of dam failure. Internal erosion occurs when water flows through a cavity, crack, and/or other continuous opening within the embankment, detaching material. The detachment of material (erosion) results in expansion of the continuous flow path, increased discharg...

  4. The pellicle and erosion.

    PubMed

    Hannig, Matthias; Hannig, Christian

    2014-01-01

    All tooth surfaces exposed to the oral environment are naturally coated by the acquired salivary pellicle. The pellicle is composed of adsorbed macromolecular components from saliva, gingival crevicular fluid, blood, bacteria, mucosa and diet. The pellicle (formed in situ/in vivo) functions as a semipermeable network of adsorbed salivary macromolecules and provides partial protection against acidic challenges; however, it cannot completely prevent demineralization of the tooth surface. The physiological pellicle reduces calcium and phosphate release from the enamel, and much less from the dentinal surface. With high probability, calcium- and phosphate-binding peptides and proteins adsorbed in the basal pellicle layer are of main relevance for the erosion-reducing effects of the natural salivary pellicle. Improvement of the pellicle's protective properties by dietary components (e.g. polyphenolic agents) might be a promising erosion-preventive approach that, however, needs validation by in situ experiments.

  5. Active Anti-erosion Protection Strategy in Tamarisk (Tamarix aphylla)

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Yin, Wei; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2013-12-01

    Plants have numerous active protection strategies for adapting to complex and severe environments. These strategies provide endless inspiration for extending the service life of materials and machines. Tamarisk (Tamarix aphylla), a tree that thrives in raging sandstorm regions, has adapted to blustery conditions by evolving extremely effective and robust erosion resistant characteristics. However, the relationships among its surface cracks, internal histology and biomechanics, such as cracks, rings, cells, elasticity modulus and growth stress, which account for its erosion resistance, remain unclear. This present study reveals that the directionally eccentric growth rings of tamarisk, which are attributed to reduced stress and accelerated cell division, promote the formation of surface cracks. The windward rings are more extensive than the leeward side rings. The windward surfaces are more prone to cracks, which improves erosion resistance. Our data provide insight into the active protection strategy of the tamarisk against wind-sand erosion.

  6. Active Anti-erosion Protection Strategy in Tamarisk (Tamarix aphylla)

    PubMed Central

    Han, Zhiwu; Yin, Wei; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2013-01-01

    Plants have numerous active protection strategies for adapting to complex and severe environments. These strategies provide endless inspiration for extending the service life of materials and machines. Tamarisk (Tamarix aphylla), a tree that thrives in raging sandstorm regions, has adapted to blustery conditions by evolving extremely effective and robust erosion resistant characteristics. However, the relationships among its surface cracks, internal histology and biomechanics, such as cracks, rings, cells, elasticity modulus and growth stress, which account for its erosion resistance, remain unclear. This present study reveals that the directionally eccentric growth rings of tamarisk, which are attributed to reduced stress and accelerated cell division, promote the formation of surface cracks. The windward rings are more extensive than the leeward side rings. The windward surfaces are more prone to cracks, which improves erosion resistance. Our data provide insight into the active protection strategy of the tamarisk against wind–sand erosion. PMID:24305989

  7. Active anti-erosion protection strategy in tamarisk (Tamarix aphylla).

    PubMed

    Han, Zhiwu; Yin, Wei; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2013-01-01

    Plants have numerous active protection strategies for adapting to complex and severe environments. These strategies provide endless inspiration for extending the service life of materials and machines. Tamarisk (Tamarix aphylla), a tree that thrives in raging sandstorm regions, has adapted to blustery conditions by evolving extremely effective and robust erosion resistant characteristics. However, the relationships among its surface cracks, internal histology and biomechanics, such as cracks, rings, cells, elasticity modulus and growth stress, which account for its erosion resistance, remain unclear. This present study reveals that the directionally eccentric growth rings of tamarisk, which are attributed to reduced stress and accelerated cell division, promote the formation of surface cracks. The windward rings are more extensive than the leeward side rings. The windward surfaces are more prone to cracks, which improves erosion resistance. Our data provide insight into the active protection strategy of the tamarisk against wind-sand erosion. PMID:24305989

  8. Active anti-erosion protection strategy in tamarisk (Tamarix aphylla).

    PubMed

    Han, Zhiwu; Yin, Wei; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2013-12-05

    Plants have numerous active protection strategies for adapting to complex and severe environments. These strategies provide endless inspiration for extending the service life of materials and machines. Tamarisk (Tamarix aphylla), a tree that thrives in raging sandstorm regions, has adapted to blustery conditions by evolving extremely effective and robust erosion resistant characteristics. However, the relationships among its surface cracks, internal histology and biomechanics, such as cracks, rings, cells, elasticity modulus and growth stress, which account for its erosion resistance, remain unclear. This present study reveals that the directionally eccentric growth rings of tamarisk, which are attributed to reduced stress and accelerated cell division, promote the formation of surface cracks. The windward rings are more extensive than the leeward side rings. The windward surfaces are more prone to cracks, which improves erosion resistance. Our data provide insight into the active protection strategy of the tamarisk against wind-sand erosion.

  9. Time dependence of solid-particle impingement erosion of an aluminum alloy

    NASA Technical Reports Server (NTRS)

    Veerabhadrarao, P.; Buckley, D. H.

    1983-01-01

    Erosion studies were conducted on 6061-T6511 aluminum alloy by using jet impingement of glass beads and crushed glass particles to investigate the influence of exposure time on volume loss rate at different pressures. The results indicate a direct relationship between erosion-versus-time curves and pitmorphology (width, depth, and width-depth ratio)-versus-time curves for both glass forms. Extensive erosion data from the literature were analyzed to find the variations of erosion-rate-versus-time curves with respect to the type of device, the size and shape of erodent particles, the abrasive charge, the impact velocity, etc. Analysis of the experimental data, obtained with two forms of glass, resulted in three types of erosion-rate-versus-time curves: (1) curves with incubation, acceleration, and steadystate periods (type 1); (2) curves with incubation, acceleration, decleration, and steady-state periods (type 3); and (3) curves with incubation, acceleration, peak rate, and deceleration periods (type 4). The type 4 curve is a less frequently seen curve and was not reported in the literature. Analysis of extensive literature data generally indicated three types of erosion-rate-versus-time curves. Two types (types 1 and 3) were observed in the present study; the third type involves incubation (and deposition), acceleration, and steady-state periods (type 2). Examination of the extensive literature data indicated that it is absolutely necessary to consider the corresponding stages or periods of erosion in correlating and characterizing erosion resistance of a wide spectrum of ductile materials.

  10. Modeling Wind Erosion Intermittency

    NASA Astrophysics Data System (ADS)

    Dupont, S.

    2015-12-01

    To improve dust emission schemes in large scale transport models, we developed the first physically-based model simulating the full erosion process in a turbulent flow by resolving explicitly saltating particle trajectories and dust suspension, in presence of vegetation. The large-eddy simulation technic is used here to simulate the turbulent flow, allowing to solve explicitly the main wind gusts near the surface and so the intermittency of the erosion process. The model appeared able to reproduce the saltation intermittency as visualized through the presence of blowing sand structures near the surface, known as aeolian streamers observed on beaches during windy days. In presence of vegetation, the model further allowed us to investigate the sensitivity of sand erosion to the arrangement and morphology of plants (shrubs versus trees). More recently, we further used the model to reanalyze the dependence of the size distribution of the dust flux to the wind speed for idealized erosion events starting from an air free of dust. We found that the suspension of small dust (around 1 μm) can be a long nonstationary process (several hours depending on the wind intensity) due to the low deposition velocity of this particle size range. This leads to a continuous enrichment of the near-surface dust flux in small particles, enrichment that is enhanced with wind intensity, independently of the possible role of saltators. The model also showed that the size distribution and magnitude of dust fluxes at a few meters height differ from those of the emitted flux at the surface as particles start to be sorted through the deposition process within the saltation layer. This last result should be considered when evaluating or calibrating "physically based" dust emission schemes against measured near-surface turbulent diffusive dust fluxes.

  11. Fuzzy Representation of Soil Erosion

    NASA Astrophysics Data System (ADS)

    Komaki, Ch. B.; Kainz, W.; Alavi Panah, S. K.; Matinfar, H. R.

    2009-04-01

    Fuzzy representation is a productive method to explain the natural processes so that it is near to linguistic form and it is also applicable to estimate the environmental processes in where the uncertainty in information is high. As models proposed to estimate soil erosion also have uncertainties and fuzzy inference system is more flexible in describing the relationship between soil erosion and other factor, especially in managing data and model uncertainties. in the research, it is used simplified model of revised Universal Soil Loss Equation (RUSLE) to estimate soil erosion in dry lands of Kashan area in Central Iran . Then to discover the systematic (IF-Then) rules in soil erosion process, we used inductive reasoning method to discover rules of the causing agents of erosion such as rainfall erosivity, topography factors, soil erodibility , then highly supported rules converted to fuzzy rules. It is resulted that the application of fuzzy inference system for erosion evaluation is applicable in regional level.

  12. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  13. Soil erosion in the Swiss midlands: Results of a 10-year field survey

    NASA Astrophysics Data System (ADS)

    Prasuhn, Volker

    2011-03-01

    Long-term field monitoring of soil erosion by water was conducted on arable land in the Swiss midlands. All visible erosion features in 203 fields were continuously mapped and quantified over 10 years. The eroded soil volume associated with linear erosion features was calculated by measuring the length and cross-sectional area in rills at representative positions and the extent of interrill erosion was estimated. Averaged across the 10 study years, just under one-third (32.2%) of the fields exhibited erosion. With 0.75 t ha -1 yr -1 (mean) and 0.56 t ha -1 yr -1 (median), the average annual soil loss of the region was relatively small. The year-to-year variation in soil loss of the region was great and ranged from 0.16 to 1.83 t ha -1 yr -1. The maximum annual soil erosion in a single field was 96 t yr -1 or 58 t ha -1 yr -1, thus demonstrating that only a few erosion events on a few fields may decisively contribute to the total extent of soil erosion in a region. Linear and interrill erosion accounted for 75% and 25% of total soil loss, respectively. Wheel tracks, furrows, headlands, and slope depressions were important on-site accelerators of erosion. Run-on from adjacent upslope areas was an important trigger of erosion. Of the soil moved by erosion, 52% was deposited within the field of origin. A high proportion (72%) of the linear erosion features caused off-site damage. Part of the total eroded soil (20%) was transported into water, thereby contributing to their contamination. The long-term field assessment of soil erosion helps to fill existing knowledge gaps concerning temporal and spatial variability of soil erosion on arable land, the extent and severity of soil erosion and its sources and causes, as well as subsequent off-site damage.

  14. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  15. Modeling fluvial erosion on regional to continental scales

    NASA Technical Reports Server (NTRS)

    Howard, Alan D.; Dietrich, William E.; Seidl, Michele A.

    1994-01-01

    The fluvial system is a major concern in modeling landform evolution in response to tectonic deformation. Three stream bed types (bedrock, coarse-bed alluvial, and fine-bed alluvial) differ in factors controlling their occurrence and evolution and in appropriate modeling approaches. Spatial and temporal transitions among bed types occur in response to changes in sediment characteristics and tectonic deformation. Erosion in bedrock channels depends upon the ability to scour or pluck bed material; this detachment capacity is often a power function of drainage area and gradient. Exposure of bedrock in channel beds, due to rapid downcutting or resistant rock, slows the response of headwater catchments to downstream baselevel changes. Sediment routing through alluvial channels must account for supply from slope erosion, transport rates, abrasion, and sorting. In regional landform modeling, implicit rate laws must be developed for sediment production from erosion of sub-grid-scale slopes and small channels.

  16. A Study of Cavitation Erosion

    SciTech Connect

    Hiromu Isaka; Masatsugu Tsutsumi; Tadashi Shiraishi; Hiroyuki Kobayashi

    2002-07-01

    The authors performed experimental study for the purpose of the following two items from a viewpoint of cavitation erosion of a cylindrical orifice in view of a problem at the letdown orifice in PWR (Pressurized Water Reactor). 1. To get the critical cavitation parameter of the cylindrical orifice to establish the design criteria for prevention of cavitation erosion, and 2. to ascertain the erosion rate in such an eventuality that the cavitation erosion occurs with the orifice made of stainless steel with precipitation hardening (17-4-Cu hardening type stainless steel), so that we confirm the appropriateness of the design criteria. Regarding the 1. item, we carried out the cavitation tests to get the critical cavitation parameters inside and downstream of the orifice. The test results showed that the cavitation parameter at inception is independent of the length or the diameter of the orifice. Moreover, the design criteria of cavitation erosion of cylindrical orifices have been established. Regarding the 2. item, we tested the erosion rate under high-pressure conditions. The cavitation erosion actually occurred in the cylindrical orifice at the tests that was strongly resemble to the erosion occurred at the plant. It will be seldom to reproduce resemble cavitation erosion in a cylindrical orifice with the hard material used at plants. We could establish the criteria for preventing the cavitation erosion from the test results. (authors)

  17. Climatic controls on the pace of glacier erosion

    NASA Astrophysics Data System (ADS)

    Koppes, Michele; Hallet, Bernard; Rignot, Eric; Mouginot, Jeremie; Wellner, Julia; Love, Katherine

    2016-04-01

    Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, suggesting that modern erosion rates exceed orogenic rates by 2-3 orders of magnitude. These modern rates are presumed to be due to dynamic acceleration of the ice masses during deglaciation and retreat. Recent numerical models have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple quantitative index that relates erosion rate to ice dynamics and to climate. To provide such an index, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes. Holding tectonic history, bedrock lithology and glacier hypsometries relatively constant across a latitudinal transect from Patagonia to the Antarctic Peninsula, we find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 for temperate tidewater glaciers to 0.01-<0.1 mm yr-1 for polar outlet glaciers, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theory. The general relationship between ice dynamics and erosion suggests that the erosion rate scales non-linearly with basal sliding speed, with an exponent n ≈ 2-2.62. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar ice discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold

  18. Rainfall and Erosion Response Following a Southern California Wildfire

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, P. M.; Robichaud, P. R.; Brown, R. E.

    2011-12-01

    Wildfire renders landscapes susceptible to flooding and accelerated surface erosion. Consumption of the vegetation canopy and the litter or duff layer removes resistances to the agents of erosion. Moreover, changes in soil properties can restrict infiltration, increasing the effectiveness of the driving forces of rainsplash and surface runoff. However, it is unclear whether surface erosion varies linearly with rainfall amounts and intensities or if thresholds exist beyond which erosion increases in a different trajectory. The Santiago Fire burned over 11000 ha in northeastern Orange County, California in October 2007. The burn area consists of a deeply dissected mountain block underlain by sedimentary and metamorphic rocks that produce erosive soils. Regional erosion and sediment transport is triggered by winter cyclonic storms. Recording raingages were deployed across a vertical gradient within the burned area and silt fences were constructed to monitor hillslope erosion. During the study period initial storms were characterized by moderate rainfall (amounts less than 25 mm with peak 10-minute intensities of less than 10 mm per hr). Surface erosion was concomitantly minor, less than 0.4 Mg per ha. However, an unusual thunderstorm in late May 2008 produced spatially variable rainfall and consequent surface erosion across the study area. The raingage at a lower elevation site measured 41.4 mm of rain for this storm with a peak 10-minute intensity of 81 mm per hr. The silt fences were overtopped, yielding a minimum value of 18.5 Mg per ha. In contrast, the raingage at an upper elevation site recorded 19.6 mm of rain with a peak 10-minute intensity of 50 mm per hr. Surface erosion in the higher elevation sites was negligible (0.1 Mg per ha). Subsequently, individual storms exceeded 100 mm of rainfall but peak 10-minute intensities never approached those of the May thunderstorm. Erosion was moderate (mostly less than 5 Mg per ha), albeit influenced by the presence of

  19. Wind Erosion in Aeolis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    09 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the effects of severe wind erosion of layered sedimentary rock in the Aeolis region of Mars. The sharp ridges formed by wind movement from the lower left (southwest) toward top/upper right (northeast) are known as yardangs. The dark patches in the lower half of the image are sand dunes. This scene is located near 5.0oS, 203.7oW, and covers an area about 3 km (1.9 mi) across. Sunlight illuminates the terrain from the left/upper left.

  20. South Polar Erosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of erosion acting upon a layer of material in the south polar region of Mars. The elliptical pit in the lower left corner of the image was once buried beneath this eroding layer, as well. The processes that eroded the material, and the composition of the material, are unknown. The image is located near 80.7oS, 300.9oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates this scene from the top.

  1. Synergistic erosion/corrosion of superalloys in PFB coal combustor effluent

    NASA Technical Reports Server (NTRS)

    Benford, S. M.; Zellars, G. R.; Lowell, C. E.

    1981-01-01

    Two Ni-based superalloys were exposed to the high velocity effluent of a pressurized fluidized bed coal combustor. Targets were 15 cm diameter rotors operating at 40,000 rpm and small flat plate specimens. Above an erosion rate threshold, the targets were eroded to bare metal. The presence of accelerated oxidation at lower erosion rates suggests erosion/corrosion synergism. Various mechanisms which may contribute to the observed oxide growth enhancement include erosive removal of protective oxide layers, oxide and subsurface cracking, and chemical interaction with sulfur in the gas and deposits through damaged surface layers.

  2. Viewpoint: Sustainability of pinon-juniper ecosystems - A unifying perspective of soil erosion thresholds

    USGS Publications Warehouse

    Davenport, D.W.; Breshears, D.D.; Wilcox, B.P.; Allen, C.D.

    1998-01-01

    Many pinon-juniper ecosystem in the western U.S. are subject to accelerated erosion while others are undergoing little or no erosion. Controversy has developed over whether invading or encroaching pinon and juniper species are inherently harmful to rangeland ecosystems. We developed a conceptual model of soil erosion in pinon-jumper ecosystems that is consistent with both sides of the controversy and suggests that the diverse perspectives on this issue arise from threshold effects operating under very different site conditions. Soil erosion rate can be viewed as a function of (1) site erosion potential (SEP), determined by climate, geomorphology and soil erodibility; and (2) ground cover. Site erosion potential and cove act synergistically to determine soil erosion rates, as evident even from simple USLE predictions of erosion. In pinon-juniper ecosystem with high SEP, the erosion rate is highly sensitive to ground cover and can cross a threshold so that erosion increases dramatically in response to a small decrease in cover. The sensitivity of erosion rate to SEP and cover can be visualized as a cusp catastrophe surface on which changes may occur rapidly and irreversibly. The mechanisms associated with a rapid shift from low to high erosion rate can be illustrated using percolation theory to incorporate spatial, temporal, and scale-dependent patterns of water storage capacity on a hillslope. Percolation theory demonstrates how hillslope runoff can undergo a threshold response to a minor change in storage capacity. Our conceptual model suggests that pinion and juniper contribute to accelerated erosion only under a limited range of site conditions which, however, may exist over large areas.

  3. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  4. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  5. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  6. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  7. Impact of tillage erosion on water erosion in a hilly landscape.

    PubMed

    Wang, Y; Zhang, J H; Zhang, Z H; Jia, L Z

    2016-05-01

    in sloping fields, accelerating water erosion. PMID:26896581

  8. Impact of tillage erosion on water erosion in a hilly landscape.

    PubMed

    Wang, Y; Zhang, J H; Zhang, Z H; Jia, L Z

    2016-05-01

    in sloping fields, accelerating water erosion.

  9. Unstructured grid methods for compressible flows

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.; Peiro, J.

    1992-01-01

    The implementation of the finite element method on unstructured triangular grids is described and the development of centered finite element schemes for the solution of the compressible Euler equation on general triangular and tetrahedral grids is discussed. Explicit and implicit Lax-Wendroff type methods and a method based upon the use of explicit multistep timestepping are considered. In the latter case, the convergence behavior of the method is accelerated by the incorporation of a fully unstructured multigrid procedure. The advancing front method for generating unstructured grids of triangles and tetrahedra is described and the application of adaptive mesh techniques to both steady and transient flow analysis is illustrated.

  10. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  11. Accelerated Thermal Cycling and Failure Mechanisms

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    1999-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies.

  12. Microstructural influence on erosion behaviour of thermal spray coatings

    SciTech Connect

    Matthews, S.J.; James, B.J. . E-mail: b.james@auckland.ac.nz; Hyland, M.M.

    2007-01-15

    The influence of structure on erosion performance of thermally sprayed Cr{sub 3}C{sub 2}-NiCr coatings under industrial turbine conditions has been investigated. Thermal spraying of these materials results in substantial variation in composition and microstructure due to exposure of the coating powders to the high temperature accelerating gas. Coatings were characterised using Back Scatter Electron imaging in conjunction with X-ray diffraction which showed carbide dissolution into the matrix of varying extent depending on deposition technique. Heat treatment at 900 deg. C caused carbide precipitation and matrix refinement. Erosion testing of as-sprayed and heat treated coatings was conducted at ambient and elevated temperature. Single impacts were characterised using Scanning Electron Microscopy in order to determine the erosion mechanism. At ambient temperature the single impacts caused a brittle response with both carbide grains and matrix being cleaved by the erodent particle. Brittle cracks surrounded each impact and intersected with splat boundaries leading to a significant contribution to erosion rate from splat structure. Following heat treatment the erosion response of the coatings was more ductile with mounds of plastically deformed material surrounding each impact, this significantly reduced erosion rate.

  13. Anthropogenic perturbation of the global carbon cycle as a result of agricultural carbon erosion and burial

    NASA Astrophysics Data System (ADS)

    Wang, Zhengang; Govers, Gerard; Kaplan, Jed; Hoffmann, Thomas; Doetterl, Sebastian; Six, Johan; Van Oost, Kristof

    2016-04-01

    Changes in terrestrial carbon storage exert a strong control over atmospheric CO2 concentrations but the underlying mechanisms are not fully constrained. Anthropogenic land cover change is considered to represent an important carbon loss mechanism, but current assessments do not consider the associated acceleration of carbon erosion and burial in sediments. We evaluated the role of anthropogenic soil erosion and the resulting carbon fluxes between land and atmosphere from the onset of agriculture to the present day. We show, here, that agricultural erosion induced a significant cumulative net uptake of 198±57 Pg carbon on terrestrial ecosystems. This erosion-induced soil carbon sink is estimated to have offset 74±21% of carbon emissions. Since 1850, erosion fluxes have increased 3-fold. As a result, the erosion and lateral transfer of organic carbon in relation to human activities is an important driver of the global carbon cycle at millennial timescales.

  14. Modelling soil erosion at European scale: towards harmonization and reproducibility

    NASA Astrophysics Data System (ADS)

    Bosco, C.; de Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P.

    2015-02-01

    Soil erosion by water is one of the most widespread forms of soil degradation. The loss of soil as a result of erosion can lead to decline in organic matter and nutrient contents, breakdown of soil structure and reduction of the water-holding capacity. Measuring soil loss across the whole landscape is impractical and thus research is needed to improve methods of estimating soil erosion with computational modelling, upon which integrated assessment and mitigation strategies may be based. Despite the efforts, the prediction value of existing models is still limited, especially at regional and continental scale, because a systematic knowledge of local climatological and soil parameters is often unavailable. A new approach for modelling soil erosion at regional scale is here proposed. It is based on the joint use of low-data-demanding models and innovative techniques for better estimating model inputs. The proposed modelling architecture has at its basis the semantic array programming paradigm and a strong effort towards computational reproducibility. An extended version of the Revised Universal Soil Loss Equation (RUSLE) has been implemented merging different empirical rainfall-erosivity equations within a climatic ensemble model and adding a new factor for a better consideration of soil stoniness within the model. Pan-European soil erosion rates by water have been estimated through the use of publicly available data sets and locally reliable empirical relationships. The accuracy of the results is corroborated by a visual plausibility check (63% of a random sample of grid cells are accurate, 83% at least moderately accurate, bootstrap p ≤ 0.05). A comparison with country-level statistics of pre-existing European soil erosion maps is also provided.

  15. Modelling soil erosion at European scale: towards harmonization and reproducibility

    NASA Astrophysics Data System (ADS)

    Bosco, C.; de Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P.

    2014-04-01

    Soil erosion by water is one of the most widespread forms of soil degradation. The loss of soil as a result of erosion can lead to decline in organic matter and nutrient contents, breakdown of soil structure and reduction of the water holding capacity. Measuring soil loss across the whole landscape is impractical and thus research is needed to improve methods of estimating soil erosion with computational modelling, upon which integrated assessment and mitigation strategies may be based. Despite the efforts, the prediction value of existing models is still limited, especially at regional and continental scale. A new approach for modelling soil erosion at large spatial scale is here proposed. It is based on the joint use of low data demanding models and innovative techniques for better estimating model inputs. The proposed modelling architecture has at its basis the semantic array programming paradigm and a strong effort towards computational reproducibility. An extended version of the Revised Universal Soil Loss Equation (RUSLE) has been implemented merging different empirical rainfall-erosivity equations within a climatic ensemble model and adding a new factor for a better consideration of soil stoniness within the model. Pan-European soil erosion rates by water have been estimated through the use of publicly available datasets and locally reliable empirical relationships. The accuracy of the results is corroborated by a visual plausibility check (63% of a random sample of grid cells are accurate, 83% at least moderately accurate, bootstrap p ≤ 0.05). A comparison with country level statistics of pre-existing European maps of soil erosion by water is also provided.

  16. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    PubMed

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123

  17. Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.

    2003-04-01

    In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).

  18. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  19. Rainfall erosion model

    NASA Astrophysics Data System (ADS)

    Sukhanovskii, Yu. P.

    2010-09-01

    A model describing rainfall erosion over the course of a long time period is proposed. The model includes: (1) a new equation of detachment of soil particles by water flows based on the Mirtskhulava equation; (2) a new equation for the transport capacity of the flow based on a modified Bagnold equation, which is used in the AGNPS model; (3) modified SCS runoff equation; (4) probability distributions for rainfall. The proposed equations agree satisfactorily with the data of on-site observations of the Moldova and Nizhnedevitsk water-balance stations. The Monte Carlo method is used for numerical modeling of random variables. The results of modeling agree satisfactorily with empirical equations developed for conditions in Russia and the United States. The effect of climatic conditions on the dependence of longtime average annual soil loss on various factors is analyzed. Minimum information is used for assigning the initial data.

  20. Model of beam head erosion

    SciTech Connect

    Lee, E.P.

    1980-08-08

    An analytical model of beam head dynamics is presented, leading to an estimate of the erosion rate due to the combined effects of Ohmic dissipation and scattering. Agreement with the results of a computer simulation and detailed one-dimensional computations is good in all respects except for the scaling of the erosion rate with net current.

  1. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  2. Thermal erosion of a permafrost coastline: Improving process-based models using time-lapse photography

    USGS Publications Warehouse

    Wobus, C.; Anderson, R.; Overeem, I.; Matell, N.; Clow, G.; Urban, F.

    2011-01-01

    Coastal erosion rates locally exceeding 30 m y-1 have been documented along Alaska's Beaufort Sea coastline, and a number of studies suggest that these erosion rates have accelerated as a result of climate change. However, a lack of direct observational evidence has limited our progress in quantifying the specific processes that connect climate change to coastal erosion rates in the Arctic. In particular, while longer ice-free periods are likely to lead to both warmer surface waters and longer fetch, the relative roles of thermal and mechanical (wave) erosion in driving coastal retreat have not been comprehensively quantified. We focus on a permafrost coastline in the northern National Petroleum Reserve-Alaska (NPR-A), where coastal erosion rates have averaged 10-15 m y-1 over two years of direct monitoring. We take advantage of these extraordinary rates of coastal erosion to observe and quantify coastal erosion directly via time-lapse photography in combination with meteorological observations. Our observations indicate that the erosion of these bluffs is largely thermally driven, but that surface winds play a crucial role in exposing the frozen bluffs to the radiatively warmed seawater that drives melting of interstitial ice. To first order, erosion in this setting can be modeled using formulations developed to describe iceberg deterioration in the open ocean. These simple models provide a conceptual framework for evaluating how climate-induced changes in thermal and wave energy might influence future erosion rates in this setting.

  3. Reduction of erosion in elbows due to flow modifications: Final report, Phase 1. [Elbows

    SciTech Connect

    Johnson, E.K.; Means, K.H.; Eyler, R.L.; Holtzworth, J.D.

    1987-11-01

    The objective of this project is to investigate the concept of flow-field modification as a method for reducing erosion in bends (elbows) used in pneumatic transport systems. Flow field modifications were primarily accomplished by injecting air at selected locations within the bends. Part I of this project shows the feasibility of the concept. Part II of this project will include further experiments and analysis, leading to a design methodology for incorporating this concept into piping systems. This report represents the final report for Part I of this project. This report contains a survey of the literature dealing with the erosion in bends (elbows) and the fundamental subjects of erosion and two-phase, gas-solids, flow. Based on this literature survey, a pneumatic transport test loop was constructed. Several bend designs were tested, using sand, under a variety of operating conditions. The results of this exploratory effort indicate that modifying the flow field in a bend with jets may: (1) decrease erosion; (2) change the erosion pattern with the same amount of erosion; or (3) significantly increase the erosion process. Data indicate that the erosion rate may be reduced by low-velocity jets for high phase-density flow. Apparently the interaction of jets with dilute phase-density flow tends to accelerate the erosion process. It is recommended that the project be continued in order to more fully understand the process and its capabilities to solve the difficult technical problem of erosion in bends (elbows).

  4. Reduction of Gun Erosion and Correlation of Gun Erosion Measurements

    NASA Technical Reports Server (NTRS)

    Bogdanoff, Dave; Wercinski, Paul (Technical Monitor)

    1997-01-01

    Gun barrel erosion is serious problem with two-stage light gas guns. Excessive barrel erosion can lead to poor or failed launches and frequent barrel changes, with the corresponding down time. Also, excessive barrel erosion can limit the maximum velocity obtainable by loading down the hydrogen working gas with eroded barrel material. Guided by a CFD code, the operating conditions of the Ames 0.5-inch gun were modified to reduce barrel erosion. The changes implemented included: (1) reduction in the piston mass, powder mass and hydrogen fill pressure; and (2) reduction in pump tube volume, while maintaining hydrogen mass. The latter change was found, in particular, to greatly reduce barrel erosion. For muzzle velocity ranges of 6.1 - 6.9 km/sec, the barrel erosion was reduced by a factor of 10. Even for the higher muzzle velocity range of 7.0 - 8.2 km/sec, the barrel erosion was reduced by a factor of 4. Gun erosion data from the Ames 0.5-inch, 1.0-inch, and 1.5-inch guns operated over a wide variety of launch conditions was examined and it was found that this data could be correlated using four different parameters: normalized powder charge energy, normalized hydrogen energy density, normalized pump tube volume and barrel diameter. The development of the correlation and the steps used to collapse the experimental data are presented. Over a certain parameter range in the correlation developed, the barrel erosion per shot is found to increase very rapidly. The correlation should prove useful in the selection of gun operating conditions and the design of new guns. Representative shapes of eroded gun barrels are also presented.

  5. On the geoethical implications of wind erosion

    NASA Astrophysics Data System (ADS)

    Károly, Tatárvári

    2016-04-01

    precipitation changes, this also increases the occurrence of bush-fires, and the growing extent of uncovered soil surface shall intensify wind erosion as well accelerating the negative effects described above. Who will be held responsible for this? Who should bear the larger cost of production in agriculture that is caused by the cost of research necessary to uncover the methods of prevention of irreversible damages caused in nature and environment? Because the field of research requires an interdisciplinary approach, research and innovation requires huge funds, the different approaches to the problem in every single field, and different reasoning methods represent a hurdle as well. In search for possible solutions it is necessary that political decision-makers adopt regulations which have solid scientific fundamentals, and also the cooperation of mankind active in science and economy is crucial. This is the only way of finding sustainable and long term solutions to the problem.

  6. Modeling of gun barrel surface erosion: Historic perspective

    SciTech Connect

    Buckingham, A.C.

    1996-08-01

    Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given to cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.

  7. Amplified Erosion above Waterfalls and Oversteepened Bedrock Reaches

    NASA Astrophysics Data System (ADS)

    Haviv, I.; Enzel, Y.; Whipple, K. X.; Zilberman, E.; Stone, J.; Matmon, A.; Fifield, K. L.

    2005-12-01

    Although waterfalls are abundant along steep bedrock channels, none of the conventional erosion laws can predict incision at the lip of a waterfall where flow is non-uniform and bed slope can be vertical. Considering the expected increase in flow velocity and shear stress at the lip of a vertical waterfall we determine erosion amplification at a waterfall lip as: Elip/Enormal= (1+0.4/Fr2)3n, where Fr is the Froude number and n ranges between 0.5-1.7. This amplification expression suggests that erosion at the lip could be as much as 2-5 times higher than normally expected in a setting with identical hydraulic geometry. It also demonstrates that a freefall is expected to amplify upstream incision rates even when the flow approaching the waterfall is highly supercritical. Utilizing this erosion amplification expression in numerical simulations in conjunction with a standard detachment-limited incision model we demonstrate its impact on reach-scale morphology above waterfalls. These simulations indicate that amplified erosion at the lip of a waterfall can trigger the formation of an oversteepened reach whose length is longer than the flow acceleration zone, provided incision velocity (Vi) at the edge of the flow acceleration zone is higher than the retreat velocity of the waterfall face. Such an oversteepened reach is expected to be more pronounced when Vi increases with increasing slope. The simulations also suggest that oversteepening can eventually lead to quasi steady-state gradients upstream from a waterfall provided Vi decreases with increasing slope. Flow acceleration above waterfalls can thus account, at least partially, for oversteepened bedrock reaches that are prevalent above waterfalls. Such reaches have been reported for the escarpments of southeast Australia, western Dead Sea, and at Niagara Falls. Using the cosmogenic isotope 36Cl we demonstrate that Vi upstream of a waterfall at the Dead Sea western escarpment is high enough for freefall

  8. Parallel grid population

    SciTech Connect

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  9. Cavitation erosion size scale effects

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1984-01-01

    Size scaling in cavitation erosion is a major problem confronting the design engineers of modern high speed machinery. An overview and erosion data analysis presented in this paper indicate that the size scale exponent n in the erosion rate relationship as a function of the size or diameter can vary from 1.7 to 4.9 depending on the type of device used. There is, however, a general agreement as to the values of n if the correlations are made with constant cavitation number.

  10. High Voltage TAL Erosion Characterization

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.

    2003-01-01

    Extended operation of a D-80 anode layer thruster at high voltage was investigated. The thruster was operated for 1200 hours at 700 Volts and 4 Amperes. Laser profilometry was employed to quantify the erosion of the thruster's graphite guard rings and electrodes at 0, 300, 600, 900, and 1200 hours. Thruster performance and electrical characteristics were monitored over the duration of the investigation. The guard rings exhibited asymmetric erosion that was greatest in the region of the cathode. Erosion of the guard rings exposed the magnet poles between 600 to 900 hours of operation.

  11. Scientific Grid computing.

    PubMed

    Coveney, Peter V

    2005-08-15

    We introduce a definition of Grid computing which is adhered to throughout this Theme Issue. We compare the evolution of the World Wide Web with current aspirations for Grid computing and indicate areas that need further research and development before a generally usable Grid infrastructure becomes available. We discuss work that has been done in order to make scientific Grid computing a viable proposition, including the building of Grids, middleware developments, computational steering and visualization. We review science that has been enabled by contemporary computational Grids, and associated progress made through the widening availability of high performance computing.

  12. Erosion-resistant composite material

    DOEpatents

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  13. Carbon Erosion in the Great Karoo Region of South Africa

    NASA Astrophysics Data System (ADS)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Foster, Ian; Boardman, John; Meadows, Mike; Kuhn, Nikolaus

    2015-04-01

    Work undertaken in the seasonally arid upland areas of the Great Karoo region of South Africa has established a link between land degradation and overgrazing which began in the second half of the 18th century when European farmers first settled the area. Ongoing land use change and shifting rainfall patterns resulted in the development of badlands on foot slopes of upland areas, and gully systems on valley bottoms. As a consequence of agricultural intensification and overgrazing, accompanied by a higher water demand, many small reservoirs were constructed, most of which are now in-filled with sediment. The deposited material serves as an environmental archive by which land use change over the last 100 years can be analysed, but with a particular focus on erosion and deposition of soil-associated carbon (C). It is assumed that erosion caused an initial flush of carbon rich soil which was subsequently buried and stored off-site. Despite this assumption, however the net-effect of erosion on carbon dioxide emissions is still unknown. In this project, preliminary results are presented from an investigation to determine whether land degradation in the Karoo has resulted in a shift from a net sink of C to a net source of C. Firstly, a high resolution digital elevation model was generated and erosion modelling was then employed to create an erosion risk map showing areas most prone to erosion. Information from the model output then served as the basis for ground-truthing and on-site erosion mapping. Secondly, sediment deposits from silted reservoirs were analysed for varying physicochemical parameters, in order to reconstruct spatial patterns of erosion and deposition. Analysis of total carbon (TC) content revealed a sharp decrease with decreasing depth. This provisionally suggests that land degradation during and after post-European settlement probably led to accelerated erosion of the relatively fertile surface soils. This presumably resulted in the rapid in-filling of

  14. Erosion and Wind Deposition

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 22 April 2003

    Streamlined buttes and mesas are left as remnants of an erosive wind that has carried away sediments and even the rim of a small crater. Two wind directions are apparent in the buttes and mesas that cross each other at 90 degrees. Small dark dunes wind their way between the remnant towers, indicating that the work of the wind is an ongoing process.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 5.3, Longitude 350.1 East (9.9 West). 19 meter/pixel resolution.

  15. Transient simulation of ram accelerator flowfields

    NASA Astrophysics Data System (ADS)

    Drabczuk, Randall P.; Rolader, G.; Dash, S.; Sinha, N.; York, B.

    1993-01-01

    This paper describes the development of an advanced computational fluid dynamic (CFD) simulation capability in support of the USAF Armament Directorate ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, and high pressure thermo-chemistry. Selected ram accelerator simulations are presented that serve to exhibit the CRAFT code capabilities and identify some of the principle research/design Issues.

  16. Transient simulation of ram accelerator flowfields

    NASA Astrophysics Data System (ADS)

    Sinha, N.; York, B. J.; Dash, S. M.; Drabczuk, R.; Rolader, G. E.

    1992-10-01

    This paper describes the development of an advanced computational fluid dynamic (CFD) simulation capability in support of the U.S. Air Force Armament Directorate's ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, high pressure thermochemistry, etc. Selected ram accelerator simulations are presented which serve to exhibit the CRAFT code's capabilities and identify some of the principal research/design issues.

  17. Rainfall profile characteristics in erosive and not-erosive events

    NASA Astrophysics Data System (ADS)

    Todisco, Francesca

    2014-05-01

    In a storm the rainfall rate shows fluctuations with showers, low rain periods or rainless periods that follow one another at short or long time intervals. The intra-storm rainfall variations and event profile have been proved to have an important influence and exert a fundamental control in many field and research areas among which in runoff generation and soil erosion (Dunkerley, 2012; Frauenfeld and Truman, 2004; Mermut et al., 1997; Parsons and Stone 2006; Ran et al, 2012; Watung et al. 1996;). In particular the possibility to incorporate into simulated rain events pre-determined intensity variations, have recently driven more investigation on the effect of further intra-storm properties on the hydrograph and on the soil loss dynamic such as the position among the rainfall of the maximum rainfall intensity and of the rainless intervals (Dunkerley, 2008, 2012; El-Jabi and Sarraf, 1991; Parsons and Stone 2006; Ran et al, 2012). The objective of this paper is to derive the statistical expressions for the time distribution of erosive and not-erosive rainfalls and to describe the rainfall factors that influence the time distribution characteristics and that characterize an erosive event compared to a not erosive event. The analysis is based on the database of the experimental site of Masse (Central Italy): event soil loss and runoff volume from bare plot and climatic data, at 5 min time interval for the 5-years period 2008-2012 (Bagarello et al., 2011, Todisco et al., 2012). A total of 228 rainfall events were used in which the rainfall exceed 1 mm, 60 of which erosive. The soil is a Typic Haplustept (Soil Survey Staff, 2006) with a silty-clay-loam texture. The runs theory (Yevjevich, 1967) were applied to the rainfall events hyetograph to select the heavier ones named storms. The sequential periods with rainfall intensity above a threshold are defined as heavy intensity in series and called runs. All the rainfall events characterized by at least one run were

  18. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.

    1993-01-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. Direct measurements of rate of soil loss using the SEDIMENT (Soil Erosion DIrect measureMENT) technique, indicated high and varying rates of soil loss among the sites since tree establishment. Erosion estimates from the USLE and SEDIMENT methods suggest that erosion rates have been severe in the past, but because significant amounts of soil have already been eroded, and the surface is now armored by rock debris, present erosion rates are lower. Indicators of accelerated erosion were still present on all sites, however, suggesting that the USLE underestimated erosion within the study area.

  19. Erosion by an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric; Beyssac, Olivier; Lane, Stuart; Brughelli, Mattia; Leprince, Sebastien; Brun, Fanny

    2015-04-01

    Most mountain ranges on Earth owe their morphology to the action of glaciers and icecaps over the last few million years. Our current understanding of how glaciers have modified mountainous landforms has mainly been driven through landscape evolution models. These have included an array of erosion laws and mainly progressed through the implementation of various levels of sophistication regarding ice dynamics, subglacial hydrology or thermodynamics of water flow. However, the complex nature of the erosion processes involved and the difficulty of directly examining the ice-bedrock interface of contemporary glaciers has precluded the establishment of a prevailing erosion theory. Here we quantify the spatial variations in ice sliding velocity and erosion rate of a fast-flowing Alpine glacier in New Zealand during a 5-month period. By combining high resolution 3D measurements of surface velocity from optical satellite imagery with the quantification of both the production and provenance of sediments by the glacier, we show that erosion rates are proportional to sliding velocity raised to a power of about two. This result is consistent with abrasion theory. Given that the ice sliding velocity is a nonlinear function of ice thickness and ice surface slope, the response of glacial erosion to precipitation changes is highly nonlinear. Finally, our ability to constrain the glacial abrasion law present opportunities to further examine the interaction between glaciation and mountain evolution.

  20. Assessment of soil erosion sensitivity and post-timber-harvesting erosion response in a mountain environment of Central Italy

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasquale; Schütt, Brigitta

    2014-01-01

    This study aimed to assess the effects of forest management on the occurrence of accelerated soil erosion by water. The study site is located in a mountainous area of the Italian Central Apennines. Here, forest harvesting is a widespread forestry activity and is mainly performed on the moderate to steep slopes of the highlands. Through modeling operations based on data on soil properties and direct monitoring of changes in the post-forest-harvesting soil surface level at the hillslope scale, we show that the observed site became prone to soil erosion after human intervention. Indeed, the measured mean soil erosion rate of 49 t ha- 1 yr- 1 for the harvested watershed is about 21 times higher than the rate measured in its neighboring undisturbed forested watershed (2.3 t ha- 1 yr- 1). The erosive response is greatly aggravated by exposing the just-harvested forest, with very limited herbaceous plant cover, to the aggressive attack of the heaviest annual rainfall without adopting any conservation practices. The erosivity of the storms during the first four months of field measurements was 1571 MJ mm h- 1 ha- 1 in total (i.e., from September to December 2008). At the end of the experiment (16 months), 18.8%, 26.1% and 55.1% of the erosion monitoring sites in the harvested watershed recorded variations equal or greater than 0-5, 5-10 and > 10 mm, respectively. This study also provides a quantification of Italian forestland surfaces with the same pedo-lithological characteristics exploited for wood supply. Within a period of ten years (2002-2011), about 9891 ha of coppice forest changes were identified and their potential soil erosion rates modeled.

  1. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  2. Modelling soil erosion and associated sediment yield for small headwater catchments of the Daugava spillway valley, Latvia

    NASA Astrophysics Data System (ADS)

    Soms, Juris

    2015-04-01

    The accelerated soil erosion by water and associated fine sediment transfer in river catchments has various negative environmental as well as economic implications in many EU countries. Hence, the scientific community had recognized and ranked soil erosion among other environmental problems. Moreover, these matters might worsen in the near future in the countries of the Baltic Region, e.g. Latvia considering the predicted climate changes - more precisely, the increase in precipitation and shortening of return periods of extreme rainfall events, which in their turn will enable formation of surface runoff, erosion and increase of sediment delivery to receiving streams. Thereby it is essential to carry out studies focused on these issues in order to obtain reliable data in terms of both scientific and applied aims, e.g. environmental protection and sustainable management of soils as well as water resources. During the past decades, many of such studies of soil erosion had focused on the application of modelling techniques implemented in a GIS environment, allowing indirectly to estimate the potential soil losses and to quantify related sediment yield. According to research results published in the scientific literature, this approach currently is widely used all over the world, and most of these studies are based on the USLE model and its revised and modified versions. Considering that, the aim of this research was to estimate soil erosion rates and sediment transport under different hydro-climatic conditions in south-eastern Latvia by application of GIS-based modelling. For research purposes, empirical RUSLE model and ArcGIS software were applied, and five headwater catchments were chosen as model territories. The selected catchments with different land use are located in the Daugava spillway valley, which belongs to the upper Daugava River drainage basin. Considering lithological diversity of Quaternary deposits, a variety of soils can be identified, i.e., Stagnic

  3. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  4. Dynamic Power Grid Simulation

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  5. Predicting Wind Erosion: WEQ/WEPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion is a serious problem in many parts of the world. Since the dust bowl days of the “Dirty Thirties,” numerous studies to understand the mechanics of the wind erosion process, identify major factors influencing wind erosion, and develop wind erosion control methods led to the development ...

  6. Terrestrial Laser Scanning for Measuring Stream Bank Erosion within Legacy Sediments: Data Processing and Analysis Methods

    NASA Astrophysics Data System (ADS)

    Starek, M. J.; Mitasova, H.; Wegmann, K. W.

    2011-12-01

    Land clearing for agricultural purposes following European settlement of America resulted in upland erosion rates 50-400 times above long-term geologic rates in much of the North Carolina Piedmont region. A considerable amount of the eroded sediment was subsequently aggraded on floodplains and impounded in the slackwater ponds behind milldams. This trapped "legacy" sediment is commonly mistaken for natural floodplain deposition and has remained largely unrecognized as a potential source of accelerated sediment erosion contributing to modern water quality impairment. In this study, terrestrial laser scanning (TLS) is utilized to monitor stream bank evolution along a reach that has breached a former millpond. Due to the unique surface geometry and orientation of the stream bank, vegetation occlusion, and true 3D structure of the point cloud, a systematic data processing approach is implemented to compute the change in sediment volume between repeat TLS surveys. The processing approach consists of the following four steps: 1) segmentation of the stream bank point cloud; 2) transformation of the point cloud such that the xy plane is parallel to the trend of the bank; 3) filter vegetation by selecting local lowest point within a grid cell; 4) smooth high frequency noise 5) generate bare earth digital elevation model (DEM). From the DEMs, change in volume was quantified for a 13 m x 3.5 m section of the stream bank providing an estimate on erosion rates and slumping between surveys. The major mechanisms for the observed changes are freeze-thaw events and fluvial entrainment. To evaluate the surface evolution between the distinct sedimentary layers (legacy vs non-legacy) that comprise the stream bank, elevation change is modeled as a continuous trivariate function z = f(x,y,t) where x,y is horizontal location, t is time, and z is a first-surface referenced elevation. Hence, z=0 for all x,y at t=0, time of first survey. The filtered, transformed, and first

  7. IPG Power Grid Overview

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas

    2003-01-01

    This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.

  8. CRC handbook of coastal processes and erosion

    SciTech Connect

    Komar, P.D.

    1983-01-01

    This text includes the following contents: Beach Processes - Erosion - An Introduction. Edge Waves and the Configuration of the Shoreline. Morphodynamics of Beaches and Surf Zones in Australia. The Erosion of Siletz Spit, Oregon. Barrier Islands. Patterns and Prediction of Shoreline Change. Models for Beach Profile Response. Erosion on the Great Lakes Due to Changes in the Water Level. Coastal Erosion in Response to the Construction of Jetties and Breakwaters. Computer Models of Shoreline Changes. Principles of Beach Nourishment. Processes of Sea Cliff and Platform Erosion. Beach Processes and Sea Cliff Erosion in San Diego County, California. Erosion of the United States Shoreline. Index.

  9. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  10. Effect of current ripple on cathode erosion in 30 kWe class arcjets

    NASA Technical Reports Server (NTRS)

    Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.

    1991-01-01

    An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.

  11. Effects of uranium development on erosion and associated sedimentation in southern San Juan Basin, New Mexico

    USGS Publications Warehouse

    Cooley, Maurice E.

    1979-01-01

    A reconnaissance was made of some of the effects of uranium development on erosion and associated sedimentation in the southern San Juan Basin, where uranium development is concentrated. In general, the effects of exploration on erosion are minor, although erosion may be accelerated by the building of access roads, by activities at the drilling sites, and by close concentration of drilling sites. Areas where the greatest effects on erosion and sedimentation from mining and milling operations have occurred are: (1) in the immediate vicinity of mines and mills, (2) near waste piles, and (3) in stream channels where modifications, such as changes in depth have been caused by discharge of excess mine and mill water. Collapse of tailings piles could result in localized but excessive erosion and sedimentation.

  12. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    PubMed

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area.

  13. Tolerable soil erosion in Europe

    NASA Astrophysics Data System (ADS)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  14. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    PubMed

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  15. The CMS integration grid testbed

    SciTech Connect

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  16. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  17. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  18. Runoff and erosion from a rapidly eroding pinyon-juniper hillslope

    SciTech Connect

    Wilcox, B.P.; Davenport, D. W.; Pitlick, J.; Allen, C.D.

    1996-02-01

    The dramatic acceleration of erosion associated with the expansion of pinyon-juniper woodlands over the past 100 years has been a widely recognized but poorly understood phenomenon. A more complete understanding will come only through long-term observations of erosion and related factors. To this end, we are conducting a study of a small (1-ha) catchment in a rapidly eroding pinyon-juniper woodland. Since July 1993, we have been collecting data on runoff, erosion, and weather conditions in the catchment, as well as on the topography, soils, and vegetation. Our preliminary results suggest that (1) the catchment is currently in a cycle of accelerated erosion that began concomitant with a shift from ponderosa pine forest to pinyon-juniper woodland that was initiated by a prolonged drought; (2) the intercanopy soils cannot be sustained at the current erosion rates and will be mostly stripped away in about a century; (3) large summer thunderstorms are the most important agents of erosion (4) erosion increases dramatically as the scale increases; (5) runoff makes up <10% of the water budget.

  19. Processes of barrier island erosion

    SciTech Connect

    Sallenger, A.H. Jr. ); Williams, S.J. )

    1989-09-01

    During 1986, the US Geological Survey and the Louisiana Geological Survey began a 5-year study of the processes causing the extreme rates (up to 20 m/year) of erosion of Louisiana's barrier islands. These processes must be better understood in order to predict future erosion and to assess management and erosion mitigation plans. The study is divided into three parts: the geologic development of barrier islands, the critical processes leading to erosion, and applications of results. This paper provides an overview of the part of the study on critical processes. The process part includes modeling erosion of the barrier islands due to sea level rise, the net loss of sand offshore, gradients in longshore transport, and overwash. Evidence indicates that the low-lying barrier beaches on much of the Louisiana coast do not approach an equilibrium configuration. These beaches, which, in many places, are not protected by dunes, are overwashed even during moderate storms and apparently are not evolving to a configuration that limits overwash. As a result, even with stable sea level, the beaches will continue to overwash and migrate landward during storms. Commonly used methods of modeling beach response to rising sea level assume beaches approach an equilibrium configuration, hence applying these methods to coastal Louisiana is problematical.

  20. [Tooth erosion - a multidisciplinary approach].

    PubMed

    Strużycka, Izabela; Rusyan, Ewa; Bogusławska-Kapała, Agnieszka

    2016-02-01

    During the last decades, an increasingly greater interest in dental erosion has been observed in clinical dental practice, in dental public health and in dental research because prevalence of erosive tooth wear is still increasing especially in young age group of population. Erosive tooth wear is a multifactorial etiology process characterized by progressive loss of hard dental tissue. It is defined as the exogenous and/or endogenous acids dissolution of the dental tissue, without bacterial involvement. In the development of dental erosive wear, interactions are required which include chemical, biological, behavioral, diet, time, socioeconomic, knowledge, education, and general health factors. Examples of risk groups could be patients with eating disorders, like anorexia nervosa or bulimia nervosa, gastroesophageal reflux disease, chronic alcohol abuse or dependence. Special nutrition habits groups with high consumption of soft or sport drinks, special diets like vegetarian, vegan or raw food diet, the regular intake of drugs, medications and food supplements can also increase the risk for dental erosion. Comprehensive knowledge of the different risk and protective factors is a perquisite for initiating adequate preventive measures.

  1. [Tooth erosion - a multidisciplinary approach].

    PubMed

    Strużycka, Izabela; Rusyan, Ewa; Bogusławska-Kapała, Agnieszka

    2016-02-01

    During the last decades, an increasingly greater interest in dental erosion has been observed in clinical dental practice, in dental public health and in dental research because prevalence of erosive tooth wear is still increasing especially in young age group of population. Erosive tooth wear is a multifactorial etiology process characterized by progressive loss of hard dental tissue. It is defined as the exogenous and/or endogenous acids dissolution of the dental tissue, without bacterial involvement. In the development of dental erosive wear, interactions are required which include chemical, biological, behavioral, diet, time, socioeconomic, knowledge, education, and general health factors. Examples of risk groups could be patients with eating disorders, like anorexia nervosa or bulimia nervosa, gastroesophageal reflux disease, chronic alcohol abuse or dependence. Special nutrition habits groups with high consumption of soft or sport drinks, special diets like vegetarian, vegan or raw food diet, the regular intake of drugs, medications and food supplements can also increase the risk for dental erosion. Comprehensive knowledge of the different risk and protective factors is a perquisite for initiating adequate preventive measures. PMID:27000809

  2. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  3. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  4. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.; Grove, J. R.; Couperthwaite, J. S.; Leeks, G. J. L.

    1999-05-01

    Few studies have considered downstream changes in bank erosion rates and variability along single river systems. This paper reports some preliminary results of an intensive and direct field monitoring exercise of bank erosion rates on 11 sites along 130 km of the 3315 km2 Swale-Ouse river system in northern England over a 14·5 month period. Data were collected at active sites using grid networks of erosion pins read at c. 18-30 day intervals and bank-line resurveys. Erosion rates were relatively high for a river of this scale: spatially averaged bank erosion magnitudes over the 14·5 months varied from 82·7 mm to 440·1 mm, although at one highly mobile reach retreat of 1760 mm was recorded over 4 months. Bank erosion rates tended to peak in mid-basin, possibly because of an optimum combination there of high stream powers and erodible bank materials, as predicted theoretically by Lawler (1992, 1995). The piedmont (upland-lowland transition) zone was especially active. Graphical erosion representations for specific periods, however, showed that bank retreat was often highly localized within individual sites. Strong seasonal variations in erosion rate were also observed with a significant winter (December-March) peak. A novel finding, however, was the apparent downstream increase in the length of the erosion season, with measurable retreat occurring at the lower sites from September to July. This is interpreted as a reflection of a richer mix of bank erosion processes at the downstream sites, where mass failure, fluid entrainment and weathering processes are all active, with each process group having its own, but overlapping, temporal (seasonal) domain.

  5. Exploring the relationship between gully erosion and rainfall erosivity

    NASA Astrophysics Data System (ADS)

    Campo, Miguel; Casalí, Javier; Giménez, Rafael

    2016-04-01

    Rainfall erosivity plays and important role in gully erosion. However, there are few studies that explore this relationship. The main purpose of this work is to analyse the link between observed gully erosion rates and rainfall erosivity. However, in order to get a suitable and comparable set of daily rainfall erosivity data, we firstly evaluate the performance of several daily rainfall erosivity models to estimate the daily accumulated RUSLE EI30 index. One 300 ha watershed (El Cantalar) located in Navarre (Spain) was selected to carry out field studies. A meteorological station located 10 km appart from the experimental site provided daily precipitation records since 1930 to 2009 and also 10min records since 1991 to 2009. In this watershed a total of 35 gully headcuts developed in cohesive soil were monitored. Aerial photographic stereo-pairs covering the study area were used for the survey. These were taken in five different years and at different spatial scales each time: 1956 (1: 34,000), 1967 (1:17,500), 1982 (1:13,500), 2003 (1:20,000) and 2006 (1:2000). Manual restitution of photographs was carried out. 1m resolution DEMs were obtained by triangular interpolation (Triangular Irregular Network) and then used to characterize gully headcuts. Moreover, from the aerial photos and the DEMs, ortho-photographs with a final resolution of 0.40 m were created. The geocoding of the scenes had a Root Mean Square error of less than 0.5 m both in planimetry and altimetry. Furthermore, using the DEMs and the ortho-photographs, volumetric headcut retreat rates for each period were calculated as the product of the lineal retreat and a representative section of the headcut. Daily accumulated RUSLE EI30 index was calculated in a conventional way from records of precipitation every 10 minutes for the period 1991-2009; these results were used as reference data. In addition, for the same period, this index was estimated with daily precipitation records through several models

  6. Interfacial Instability during Granular Erosion

    NASA Astrophysics Data System (ADS)

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-01

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  7. Composite Erosion by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2006-01-01

    Composite degradation is evaluated by computational simulation when the erosion degradation occurs on a ply-by-ply basis and the degrading medium (device) is normal to the ply. The computational simulation is performed by a multi factor interaction model and by a multi scale and multi physics available computer code. The erosion process degrades both the fiber and the matrix simultaneously in the same slice (ply). Both the fiber volume ratio and the matrix volume ratio approach zero while the void volume ratio increases as the ply degrades. The multi factor interaction model simulates the erosion degradation, provided that the exponents and factor ratios are selected judiciously. Results obtained by the computational composite mechanics show that most composite characterization properties degrade monotonically and approach "zero" as the ply degrades completely.

  8. Interfacial Instability during Granular Erosion.

    PubMed

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-12

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results. PMID:26919014

  9. LOUISIANA BARRIER ISLAND EROSION STUDY.

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Penland, Shea; Williams, S. Jeffress; Suter, John R.

    1987-01-01

    During 1986, the U. S. Geological Survey and the Louisiana Geological Survey began a five-year cooperative study focused on the processes which cause erosion of barrier islands. These processes must be understood in order to predict future erosion and to better manage our coastal resources. The study area includes the Louisiana barrier islands which serve to protect 41% of the nation's wetlands. These islands are eroding faster than any other barrier islands in the United States, in places greater than 20 m/yr. The study is divided into three parts: geological development of barrier islands, quantitative processes of barrier island erosion and applications of results. The study focuses on barrier islands in Louisiana although many of the results are applicable nationwide.

  10. Contrasting Modern and 10Be- derived erosion rates for the Southern Betic Cordillera, Spain

    NASA Astrophysics Data System (ADS)

    Bellin, N.; Vanacker, V.; Kubik, P.

    2012-04-01

    In Europe, Southeast Spain was identified as one of the regions with major treat of desertification in the context of future land use and climate change. During the last years, significant progress has been made to understand spatial patterns of modern erosion rates in these semi-arid degraded environments. Numerous European projects have contributed to the collection of modern erosion data at different spatial scales for Southeast Spain. However, these data are rarely analysed in the context of long-term changes in vegetation, climate and human occupation. In this paper, we present Modern and Holocene denudation rates for small river basins (1 to 10 km2) located in the Spanish Betic Cordillera. Long-term erosion data were derived from cosmogenic nuclide analyses of river-borne sediment. Modern erosion data were quantified through analysis of sediment deposition volumes behind check dams, and represent average erosion rates over the last 10 to 40 years. Modern erosion rates are surprisingly low (mean erosion rate = 0.048 mm y-1; n=36). They indicate that the steep, sparsely vegetated hillslopes in the Betic Cordillera cannot directly be associated with high erosion rates. 10Be -derived erosion rates integrate over the last 37500 to 3500 years, and are roughly of the same magnitude. They range from 0.013 to 0.243 mm y-1 (mean denudation rate = 0.062 mm y-1 ± 0.054; n=20). Our data suggest that the modern erosion rates are similar to the long-term erosion rates in this area. This result is in contrast with the numerous reports on human-accelerated modern erosion rates for Southeast Spain. Interestingly, our new data on long-term erosion rates show a clear spatial pattern, with higher erosion rates in the Sierra Cabrera and lower erosion rates in Sierra de las Estancias, and Sierra Torrecilla. Preliminary geomorphometric analyses suggest that the spatial variation that we observe in long-term erosion rates is related to the gradient in uplift rates of the Betic

  11. Grid enabled Service Support Environment - SSE Grid

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Paepen, Martine

    2010-05-01

    The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more

  12. Rainfall erosivity in Central Chile

    NASA Astrophysics Data System (ADS)

    Bonilla, Carlos A.; Vidal, Karim L.

    2011-11-01

    SummaryOne of the most widely used indicators of potential water erosion risk is the rainfall-runoff erosivity factor ( R) of the Revised Universal Soil Loss Equation (RUSLE). R is traditionally determined by calculating a long-term average of the annual sum of the product of a storm's kinetic energy ( E) and its maximum 30-min intensity ( I30), known as the EI30. The original method used to calculate EI30 requires pluviograph records for at most 30-min time intervals. Such high resolution data is difficult to obtain in many parts of the world, and processing it is laborious and time-consuming. In Chile, even though there is a well-distributed rain gauge network, there is no systematic characterization of the territory in terms of rainfall erosivity. This study presents a rainfall erosivity map for most of the cultivated land in the country. R values were calculated by the prescribed method for 16 stations with continuous graphical record rain gauges in Central Chile. The stations were distributed along 800 km (north-south), and spanned a precipitation gradient of 140-2200 mm yr -1. More than 270 years of data were used, and 5400 storms were analyzed. Additionally, 241 spatially distributed R values were generated by using an empirical procedure based on annual rainfall. Point estimates generated by both methods were interpolated by using kriging to create a map of rainfall erosivity for Central Chile. The results show that the empirical procedure used in this study predicted the annual rainfall erosivity well (model efficiency = 0.88). Also, an increment in the rainfall erosivities was found as a result of the rainfall depths, a regional feature determined by elevation and increasing with latitude from north to south. R values in the study area range from 90 MJ mm ha -1 h -1 yr -1 in the north up to 7375 MJ mm ha -1 h -1 yr -1 in the southern area, at the foothills of the Andes Mountains. Although the map and the estimates could be improved in the future by

  13. Soil erosion and causative factors at Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  14. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  15. sup 10 Be study of rapid erosion in Taiwan

    SciTech Connect

    Chenfeng You; Juchin Chen National Taiwan Univ., Taipei ); Typhoon Lee; Jason Jiunsan Shen ); Brown, L. )

    1988-11-01

    Cosmogenic {sup 10}Be was measured using accelerator mass spectrometry in soils and sediments to study the erosion of Taiwan, which has the highest denudation rate in the world. The river sediments in Taiwan have very low {sup 10}Be concentrations, around 5 million atoms per gram, about 1/45 the world wide average. This is the direct consequence of its high sediment yield of ore than 1,000 mg/cm{sup 2}/yr, 70 times the world average. Combining these values the authors found that, for Taiwan as a whole, the {sup 10}Be output to the sea only slightly exceeds the input from the rain, a situation typical of many areas around the world. Therefore, even in this example of extremely rapid erosion, {sup 10}Be seems to remain a useful indicator for erosion status. The total {sup 10}Be inventory found in a soil profile from a geologically stable area is at least 18% of the maximum possible inventory. The minimum age thus estimated for the soil is 0.11 Ma, in reasonable agreement with estimates from other means. The maximum erosion rate for this area thus estimated is at most 0.14 mg/cm{sup 2}/yr, four orders of magnitude slower than the average value observed for Taiwan. They also demonstrate that the shelf sediments around Taiwan have received the admixing of a {sup 10}be rich component from the ocean and would give a poor estimate for material eroded from Taiwan.

  16. Human-induced C erosion and burial across spatial and temporal scales. (Invited)

    NASA Astrophysics Data System (ADS)

    van oost, K.

    2013-12-01

    Anthropogenic land cover change and soil erosion are tightly coupled: accelerated erosion and deposition of soil are inevitable consequences of the removal of vegetative cover and increased exposure of the soil surface to erosion. A significant portion of the earth surface has now been disturbed and this has locally accelerated erosion 10- to 100-fold. Although there is now growing awareness that the erosion-induced C flux may be an important factor determining global and regional net terrestrial ecosystem C balances, the significance of this disturbance for the past, present and future C cycle remains uncertain. In this paper, we argue that the significance for both past and present C budgets remains poorly quantified due to uncertainty about the contribution of biotic versus erosion-induced C fluxes because of their intrinsically different space and time scales. Carbon erosion research in agro-ecosystems has traditionally focused on short-term processes, i.e. single events to a few decades and longer-term observations of C and sediment dynamics are therefore rare. Likewise, C cycling is typically studied at the profile-scale while erosion processes operate over various spatial scales and whole-watershed approaches are therefore needed. We address this issue here by synthesizing 3 case studies where we report results of a measurement campaign to characterize the erosional control on vertical carbon fluxes from degraded land. First, using signatures in soil sedimentary archives, we integrate the effects of accelerated C erosion across point, hillslope and catchment scale for a temperate river catchment over the period of agriculture to demonstrate that accounting for the non-steady-state C dynamics in geomorphic active systems is pertinent to understand both past and future anthropogenic global change. Secondly, we report year-round soil respiration measurements with high temporal resolution along an erosion gradient on cultivated sloping land in the Chinese Loess

  17. Solar cell grid patterns

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Berman, P. A. (Inventor)

    1976-01-01

    A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.

  18. Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low-temperature thermochronometry

    NASA Astrophysics Data System (ADS)

    Duvall, Alison R.; Clark, Marin K.; Avdeev, Boris; Farley, Kenneth A.; Chen, Zhengwei

    2012-06-01

    New detrital low-temperature thermochronometry provides estimates of long-term erosion rates and the timing of initiation of river incision from across the interior of the Tibetan Plateau. We use the erosion history of this region to evaluate proposed models of orogenic development as well as regional climatic events. Erosion histories of the externally drained portion of the east-central Tibetan Plateau are recorded in modern river sands from major rivers across a transect that spans >750 km and covers a region with no published thermochronometric ages. Individual grains from eight catchments were analyzed for apatite (U-Th)/He and fission track thermochronometry. A wide distribution in ages that, in most cases, spans the entire Cenozoic and Late Mesozoic eras requires a long period of slow or no erosion with a relative increase in erosion rate toward the present. We apply a recently developed methodology for inversion of detrital thermochronometric data for three specified erosion scenarios: constant erosion rate, two-stage erosion history, and three-stage erosion history. Modeling results suggest that rates increase by at least an order of magnitude between 11 and 4 Ma following a period of slow erosion across the studied catchments. Synchroneity in accelerated erosion across the whole of the Tibetan Plateau rather than a spatial or temporal progression challenges the widely held notion that the plateau evolved as a steep, northward-propagating topographic front, or that south to north precipitation gradients exert a primary control on erosion rates. Instead, we suggest that accelerated river incision late in the orogen's history relates to regional-scale uplift that occurred in concert with eastern expansion of the plateau.

  19. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  20. Tillage erosion: Description and process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage erosion is the downslope displacement of soil through the action of tillage. Evidence of the mass downslope movement of soil by tillage has been present for years. Soil movement by tillage is a function of slope gradient and characteristics of the tillage operation, including the tillage fre...

  1. Erosion by Wind: Field Measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion and deposition results when wind moves soil from a bare susceptible surface to another location downwind. Although placement of permanent vertical references such as pins or rods has been used to measure soil redistribution, it is more commonly measured by capturing sediment moving dur...

  2. Soil erosion by water - model concepts and application

    NASA Astrophysics Data System (ADS)

    Schmidt, Juergen

    2010-05-01

    approaches will be discussed taking account of the models WEPP, EUROSEM, IISEM and EROSION 3D. In order to provide a better representation of spatially heterogeneous catchments in terms of landuse, soil, slope, and rainfall most of recently developed models operate on a grid-cell basis or other kinds of sub-units, each having uniform characteristics. These so-called "Distributed Models" accepts inputs from raster based geographic information system (GIS). The cell-based structure of the models also allows to generate drainage paths by which water and sediment can be routed from the top to the bottom of the respective watershed. One of the open problems in soil erosion modelling refers to the spontaneous generation of erosion rills without the need for pre-existing morphological contours. A promising approach to handle this problem was realized first in the RILLGROW model, which uses a cellular automaton system in order to generate realistic rill patterns. With respect to the above mentioned models selected applications will be presented and discussed regarding their usability for soil and water conservation purposes.

  3. Designing a national soil erosion monitoring network for England and Wales

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Rawlins, Barry; Anderson, Karen; Evans, Martin; Farrow, Luke; Glendell, Miriam; James, Mike; Rickson, Jane; Quine, Timothy; Quinton, John; Brazier, Richard

    2014-05-01

    Although soil erosion is recognised as a significant threat to sustainable land use and may be a priority for action in any forthcoming EU Soil Framework Directive, those responsible for setting national policy with respect to erosion are constrained by a lack of robust, representative, data at large spatial scales. This reflects the process-orientated nature of much soil erosion research. Recognising this limitation, The UK Department for Environment, Food and Rural Affairs (Defra) established a project to pilot a cost-effective framework for monitoring of soil erosion in England and Wales (E&W). The pilot will compare different soil erosion monitoring methods at a site scale and provide statistical information for the final design of the full national monitoring network that will: provide unbiased estimates of the spatial mean of soil erosion rate across E&W (tonnes ha-1 yr-1) for each of three land-use classes - arable and horticultural grassland upland and semi-natural habitats quantify the uncertainty of these estimates with confidence intervals. Probability (design-based) sampling provides most efficient unbiased estimates of spatial means. In this study, a 16 hectare area (a square of 400 x 400 m) positioned at the centre of a 1-km grid cell, selected at random from mapped land use across E&W, provided the sampling support for measurement of erosion rates, with at least 94% of the support area corresponding to the target land use classes. Very small or zero erosion rates likely to be encountered at many sites reduce the sampling efficiency and make it difficult to compare different methods of soil erosion monitoring. Therefore, to increase the proportion of samples with larger erosion rates without biasing our estimates, we increased the inclusion probability density in areas where the erosion rate is likely to be large by using stratified random sampling. First, each sampling domain (land use class in E&W) was divided into strata; e.g. two sub

  4. Challenges facing production grids

    SciTech Connect

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  5. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  6. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  7. A unified relation for cavitation erosion

    NASA Technical Reports Server (NTRS)

    Veerabhadra Rao, P.; Buckley, D. H.; Matsumura, M.

    1984-01-01

    A power-law relationship between the average erosion rate and cumulative erosion is presented. Data analyses from Venturi, magnetostriction, and liquid-impingement devices conform to this unified relation. A normalization technique is also suggested for prediction purposes.

  8. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution.

    PubMed

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-05-01

    The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the 'four per mil' initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km(2) resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha(-1) yr(-1), although some hot-spot areas showed eroded SOC >0.45 Mg C ha(-1) yr(-1). In comparison with a baseline without erosion, the model suggested an erosion-induced sink of atmospheric C consistent with previous empirical-based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of -2.28 and +0.79 Tg yr(-1) of CO2 eq, respectively, depending on the value for the short-term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.

  9. Development of a coupled soil erosion and large-scale hydrology modeling system

    NASA Astrophysics Data System (ADS)

    Mao, Dazhi; Cherkauer, Keith A.; Flanagan, Dennis C.

    2010-08-01

    Soil erosion models are usually limited in their application to the field scale; however, the management of land resources requires information at the regional scale. Large-scale physically based land surface schemes (LSS) provide estimates of regional scale hydrologic processes that contribute to erosion. If scaling issues are adequately addressed, coupling an LSS to a physically based erosion model can provide a tool to study the regional impact of soil erosion. A coupling scheme was developed using the Variable Infiltration Capacity (VIC) model to produce hydrologic inputs for the stand-alone Water Erosion Prediction Project-Hillslope Erosion (WEPP-HE) program, accounting for both temporal and spatial scaling issues. Precipitation events were disaggregated from daily to hourly and used with the VIC model to generate hydrologic fluxes. Slope profiles were downscaled from 30 arc second to 30 m hillslopes. Additionally, soil texture and erodibility were adjusted with simplified assumptions based on the full WEPP model. Soil erosion at the large scale was represented on a VIC model grid cell basis by applying WEPP-HE to subsamples of 30 m hillslopes. On an average annual basis, results showed that the coupled model was comparable with full WEPP model predictions. On an event basis, the coupled model system captured more small erosion events, with erodibility adjustments of the same magnitude as from the full WEPP model simulations. Differences in results can be attributed to discrepancies in hydrologic data calculations and simplified assumptions in vegetation and soil erodibility. Overall, the coupled model demonstrated the feasibility of erosion prediction for large river basins.

  10. Soil Erosion. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  11. Soil erosion dynamics response to landscape pattern.

    PubMed

    Ouyang, Wei; Skidmore, Andrew K; Hao, Fanghua; Wang, Tiejun

    2010-02-15

    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate assessment, from 1977 to 2006, of erosion in the upper watershed of the Yellow River. At same time, the impacts of land use and landscape service features on soil erosion load were assessed. A series of supervised land use classifications of Landsat images characterized variations in land use and landscape patterns over three decades. The SWAT database was constructed with soil properties, climate and elevation data. Using water flow and sand density data as parameters, regional soil erosion load was simulated. A numerical statistical model was used to relate soil erosion to land use and landscape. The results indicated that decadal decrease of grassland areas did not pose a significant threat to soil erosion, while the continual increase of bare land, water area and farmland increased soil erosion. Regional landscape variation also had a strong relationship with erosion. Patch level landscape analyses demonstrated that larger water area led to more soil erosion. The patch correlation indicated that contagious grassland patches reduced soil erosion yield. The increased grassland patches led to more patch edges, in turn increasing the sediment transportation from the patch edges. The findings increase understanding of the temporal variation in soil erosion processes, which is the basis for preventing local pollution.

  12. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  13. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  14. Soil erosion-vegetation interactions in Mediterranean-dry reclaimed mining slopes

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Merino-Martín, Luis; Espigares, Tíscar; Nicolau, José M.

    2014-05-01

    Mining reclamation in Mediterranean-dry environments represents a complex task. Reclaimed mining slopes are particularly vulnerable to the effects of accelerated soil erosion processes, especially when these processes lead to the formation of rill networks. On the other hand, encouraging early vegetation establishment is perceived as indispensable to reduce the risk of degradation in these man-made ecosystems. This study shows a synthesis of soil erosion-vegetation research conducted in reclaimed mining slopes at El Moral field site (Teruel coalfield, central-east Spain). Our results highlight the role of rill erosion processes in the development of reclaimed ecosystems. Runoff routing is conditioned by the development of rill networks, maximizing the loss of water resources at the slope scale by surface runoff and altering the spatial distribution of soil moisture. As a result, the availability of water resources for plant growth is drastically reduced, affecting vegetation development. Conversely, vegetation exerts a strong effect on soil erosion: erosion rates rapidly decrease with vegetation cover and no significant rill erosion is usually observed after a particular cover threshold is reached. These interactive two-way vegetation-soil erosion relationships are further studied using a novel modeling approach that focuses on stability analysis of water-limited reclaimed slopes. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. This stability-analysis also facilitates the determination of threshold values for both vegetation cover and rill erosion that drive the long-term reclamation results, assisting the identification of critical situations that require specific human

  15. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  16. Internet 2 Access Grid.

    ERIC Educational Resources Information Center

    Simco, Greg

    2002-01-01

    Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)

  17. Security for grids

    SciTech Connect

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  18. Data Grid Implementations

    SciTech Connect

    Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster

    2002-02-27

    Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.

  19. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  20. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  1. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  2. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  3. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  4. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  5. Transforming Power Grid Operations

    SciTech Connect

    Huang, Zhenyu; Guttromson, Ross T.; Nieplocha, Jarek; Pratt, Robert G.

    2007-04-15

    While computation is used to plan, monitor, and control power grids, some of the computational technologies now used are more than a hundred years old, and the complex interactions of power grid components impede real-time operations. Thus it is hard to speed up “state estimation,” the procedure used to estimate the status of the power grid from measured input. State estimation is the core of grid operations, including contingency analysis, automatic generation control, and optimal power flow. How fast state estimation and contingency analysis are conducted (currently about every 5 minutes) needs to be increased radically so the analysis of contingencies is comprehensive and is conducted in real time. Further, traditional state estimation is based on a power flow model and only provides a static snapshot—a tiny piece of the state of a large-scale dynamic machine. Bringing dynamic aspects into real-time grid operations poses an even bigger challenge. Working with the latest, most advanced computing techniques and hardware, researchers at Pacific Northwest National Laboratory (PNNL) intend to transform grid operations by increasing computational speed and improving accuracy. Traditional power grid computation is conducted on single PC hardware platforms. This article shows how traditional power grid computation can be reformulated to take advantage of advanced computing techniques and be converted to high-performance computing platforms (e.g., PC clusters, reconfigurable hardware, scalable multicore shared memory computers, or multithreaded architectures). The improved performance is expected to have a huge impact on how power grids are operated and managed and ultimately will lead to more reliability and better asset utilization to the power industry. New computational capabilities will be tested and demonstrated on the comprehensive grid operations platform in the Electricity Infrastructure Operations Center, which is a newly commissioned PNNL facility for

  6. Splash erosion. A bibliometric Review

    NASA Astrophysics Data System (ADS)

    Fernández Raga, M. B.

    2012-04-01

    Ellison (1944) developed the splash board as a system for measuring splash erosion that was both cheap and reliable. Bollinne (1975), Morgan (1978, 1981). Mutchler (1967) described another different type of splash detectors according to whether they were passive or could register data. In the study mentioned above these authors included bottles, funnels, glasses, photography, markers. After that several devices has been made up like the splash sampler (Leguedois et al., 2005), soil tray (Van Dijk et al., 2002), splash funnel (Terry, 1989) and several rain cups (Fernandez-Raga et al., 2010; Molina and Llinares, 1996; Torri et al., 1987). Splash erosion research has materialized in the form of a number of papers published in international journals. The database of bibliographic references employed has been one of the most prestigious ones: theWeb of Science (ISI). The search was carried out on January 27th 2012. Among the 3x10^8 scholarly documents included in the Science Citation Index Expanded (SCI-EXPANDED) 1899 to present , the searching engine located 439 containing the word "splash erosion*", where the asterisk acts as a wildcard for any letter or group of letters. Of these, 383 were classified as articles, 87 as proceeding papers, 5 as editorial material, 2 as notes and 1 as correction. These documents have been published in 163 different journals, although four are particularly recurrent: Earth surface processes and Landforms, Catena, Soil Science Society of America Journal and Hydrological processes, with 41, 35, 35 and 26 published documents respectively. A geographic analysis of these articles has been carried out in an attempt to determine in what parts of the world research projects were making use of splash erosion. The results are that anglo-saxon countries, as USA, England and Australia dominate, particularly USA, with 130 articles. China and Japan are large communities of researches too, and some Central European countries as Belgium, France Germany

  7. "Kicking Up Some Dust": An Experimental Investigation Relating Lunar Dust Erosive Wear to Solar Power Loss

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2013-01-01

    The exhaust from retrograde rockets fired by spacecraft landing on the Moon can accelerate lunar dust particles to high velocities. Information obtained from NASA's Apollo 12 mission confirmed that these high-speed dust particles can erode nearby structures. This erosive wear damage can affect the performance of optical components such as solar concentrators. Solar concentrators are objects which collect sunlight over large areas and focus the light into smaller areas for purposes such as heating and energy production. In this work, laboratory-scale solar concentrators were constructed and subjected to erosive wear by the JSC-1AF lunar dust simulant. The concentrators were focused on a photovoltaic cell and the degradation in electrical power due to the erosive wear was measured. It was observed that even moderate exposure to erosive wear from lunar dust simulant resulted in a 40 percent reduction in power production from the solar concentrators.

  8. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) satellite data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Ridd, Merrill K.

    1991-01-01

    The sensitivity of Landsat TM data for detecting soil erosion within pinyon-juniper woodlands, and the potential of the spectral data for assigning the universal soil loss equation (USLE) crop managemnent (C) factor to varying cover types within the woodlands are assessed. Results show greatly accelerated rates of soil erosion on pinyon-juniper sites. Percent cover by pinyon-juniper, total soil-loss, and total nonliving ground cover accounted for nearly 70 percent of the variability in TM channels 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion than the biotic and abiotic field variables. Satellite data were more sensitive to vegetation variation than the USLE C factor, and USLE was found to be a poor predictor of soil loss on pinyon-juniper sites. A new string-to-ground soil erosion prediction technique is introduced.

  9. Sputtering Erosion Measurement on Boron Nitride as a Hall Thruster Material

    NASA Technical Reports Server (NTRS)

    Britton, Melissa; Waters, Deborah; Messer, Russell; Sechkar, Edward; Banks, Bruce

    2002-01-01

    The durability of a high-powered Hall thruster may be limited by the sputter erosion resistance of its components. During normal operation, a small fraction of the accelerated ions will impact the interior of the main discharge channel, causing its gradual erosion. A laboratory experiment was conducted to simulate the sputter erosion of a Hall thruster. Tests of sputter etch rate were carried out using 300 to 1000 eV Xenon ions impinging on boron nitride substrates with angles of attack ranging from 30 to 75 degrees from horizontal. The erosion rates varied from 3.41 to 14.37 Angstroms/[sec(mA/sq cm)] and were found to depend on the ion energy and angle of attack, which is consistent with the behavior of other materials.

  10. Identification of vulnerable areas to soil erosion risk in India using GIS methods

    NASA Astrophysics Data System (ADS)

    Biswas, H.; Raizada, A.; Mandal, D.; Kumar, S.; Srinivas, S.; Mishra, P. K.

    2015-06-01

    This paper attempts to provide information for policy makers and soil conservation planners in the form of district-wise soil erosion risk (SER) maps prepared for the state of Telengana, India. The SER values for each district were computed by extracting the information on grid-wise soil erosion and soil loss tolerance limit values existing on the country-scale in a GIS environment. The objectives of the study were to (i) identify the areas of the state with high erosion risk, and (ii) identify areas with urgent needs of conservation measures. The results reveal that around 69% of the state has negligible risk of soil erosion above the tolerance limits, and does not call for immediate soil conservation measures. The remaining area (2.17M ha) requires conservation planning. Four districts, viz. Adilabad, Warangal, Khammam and Karimnagar are the most risk prone with more than one-fourth of their total geographical areas showing net positive SER values. In order to obtain a clearer picture and categorize the districts based on their extent of vulnerability, the Weighted Erosion Risk values were computed. Adilabad, Warangal and Khammam were identified as the worst-affected districts in terms of soil erosion and therefore need immediate attention for natural resource conservation.

  11. New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Finnegan, Noah J.; Scheingross, Joel S.; Sklar, Leonard S.

    2015-09-01

    River incision into bedrock drives the topographic evolution of mountainous terrain and may link climate, tectonics, and topography over geologic time scales. Despite its importance, the mechanics of bedrock erosion are not well understood because channel form, river hydraulics, sediment transport, and erosion mechanics coevolve over relatively long time scales that prevent direct observations, and because erosive events occur intermittently and are difficult and dangerous to measure. Herein we synthesize how flume experiments using erodible bedrock simulants are filling these knowledge gaps by effectively accelerating the pace of landscape evolution under reduced scale in the laboratory. We also build on this work by providing new theory for rock resistance to abrasion, thresholds for plucking by vertical entrainment, sliding and toppling, and by assessing bedrock-analog materials. Bedrock erosion experiments in the last 15 years reveal that the efficiency of rock abrasion scales inversely with the square of rock tensile strength, sediment supply has a dominant control over bed roughness and abrasion rates, suspended sediment is an efficient agent of erosion, and feedbacks with channel form and roughness strongly influence erosion rates. Erodibility comparisons across rock, concrete, ice, and foam indicate that, for a given tensile strength, abrasion rates are insensitive to elasticity. The few experiments that have been conducted on erosion by plucking highlight the importance of block protrusion height above the river bed, and the dominance of block sliding and toppling at knickpoints. These observations are consistent with new theory for the threshold Shields stress to initiate plucking, which also suggests that erosion rates in sliding- and toppling-dominated rivers are likely transport limited. Major knowledge gaps remain in the processes of erosion via plucking of bedrock blocks where joints are not river-bed parallel; waterfall erosion by toppling and

  12. Erosive burning of solid propellants

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1993-01-01

    Presented here is a review of the experimental and modeling work concerning erosive burning of solid propellants (augmentation of burning rate by flow of product gases across a burning surface). A brief introduction describes the motor design problems caused by this phenomenon, particularly for low port/throat area ratio motors and nozzleless motors. Various experimental techniques for measuring crossflow sensitivity of solid propellant burning rates are described, with the conclusion that accurate simulation of the flow, including upstream flow development, in actual motors is important since the degree of erosive burning depends not only on local mean crossflow velocity and propellant nature, but also upon this upstream development. In the modeling area, a brief review of simplified models and correlating equations is presented, followed by a description of more complex numerical analysis models. Both composite and double-base propellant models are reviewed. A second generation composite model is shown to give good agreement with data obtained in a series of tests in which composite propellant composition and heterogeneity (particle size distribution) were systematically varied. Finally, the use of numerical models for the development of erosive burning correlations is described, and a brief discussion of scaling is presented.

  13. Robotic weld overlay coatings for erosion control

    NASA Astrophysics Data System (ADS)

    Levin, B. F.; Dupont, J. N.; Marder, A. R.

    1994-01-01

    Research is being conducted to develop criteria for selecting weld overlay coatings for erosion mitigation in circulated fluidized beds. Twelve weld overlay alloys were deposited on 1018 steel substrates using plasma arc welding. Ten samples from each coating were prepared for erosion testing. All selected coatings were erosion tested at 400C and their erosion resistance and microstructure evaluated. Steady state erosion rates were similar for several weld overlay coatings (Ultimet, Inconel-625, Iron-Aluminide, 316L SS, and High Chromium Cast Iron) and were considerably lower than the remaining coating evaluated. These coatings had different base (Co, Fe, Ni-base). No correlations were found between room temperature microhardness of the weld overlay coatings and their erosion resistance at elevated temperature, although this criteria is often thought to be an indicator of erosion resistance. It was suggested that the coatings that showed similar erosion rates may have similar mechanical properties such as fracture strength, toughness and work hardening rates at this temperature. During the past quarter, Iron-Aluminide, Inconel-625, and 316L SS coatings were selected for more detailed investigations based upon the preliminary erosion test results. Microhardness tests were performed on eroded samples to determine the size of the work hardened zone and change in coatings hardness due to erosion. The work hardened zone was correlated with erosion resistance of the coatings. Additional Iron-Aluminide, Inconel-625, and 316L SS coatings were deposited on 1018 steel substrates.

  14. Estimating rangeland runoff, soil erosion, and salt mobility and transport processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 55% of sediment and salts entering the Colorado River are derived from accelerated soil erosion from federal rangelands with damages estimated to be $385 million per year. About 55% of the loading is derived from rangelands. This suggests a significant potential to reduce dissolved-solids loa...

  15. Faster GPU-based convolutional gridding via thread coarsening

    NASA Astrophysics Data System (ADS)

    Merry, B.

    2016-07-01

    Convolutional gridding is a processor-intensive step in interferometric imaging. While it is possible to use graphics processing units (GPUs) to accelerate this operation, existing methods use only a fraction of the available flops. We apply thread coarsening to improve the efficiency of an existing algorithm, and observe performance gains of up to 3.2 × for single-polarization gridding and 1.9 × for quad-polarization gridding on a GeForce GTX 980, and smaller but still significant gains on a Radeon R9 290X.

  16. Direct Replacement of Arbitrary Grid-Overlapping by Non-Structured Grid

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1994-01-01

    A new approach that uses nonstructured mesh to replace the arbitrarily overlapped structured regions of embedded grids is presented. The present methodology uses the Chimera composite overlapping mesh system so that the physical domain of the flowfield is subdivided into regions which can accommodate easily-generated grid for complex configuration. In addition, a Delaunay triangulation technique generates nonstructured triangular mesh which wraps over the interconnecting region of embedded grids. It is designed that the present approach, termed DRAGON grid, has three important advantages: eliminating some difficulties of the Chimera scheme, such as the orphan points and/or bad quality of interpolation stencils; making grid communication in a fully conservative way; and implementation into three dimensions is straightforward. A computer code based on a time accurate, finite volume, high resolution scheme for solving the compressible Navier-Stokes equations has been further developed to include both the Chimera overset grid and the nonstructured mesh schemes. For steady state problems, the local time stepping accelerates convergence based on a Courant - Friedrichs - Leury (CFL) number near the local stability limit. Numerical tests on representative steady and unsteady supersonic inviscid flows with strong shock waves are demonstrated.

  17. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    NASA Astrophysics Data System (ADS)

    Skov, Daniel; Egholm, David

    2015-04-01

    Surface erosion and sediment production accelerated dramatically in most parts of the world as the climate cooled in the Late Cenozoic, (e.g. Molnar, Annu. Rev. Earth Planet. Sci. 32, 2004). In many high mountain ranges, glaciers emerged for the first time during the Quaternary, and they represent a likely explanation for the accelerated erosion in such places. Still, observations and measurements point to increases in erosion rate also in landscapes where erosion is driven mainly by fluvial processes (e.g. Lease and Ehlers, Science 341, 2013). Why fluvial incision responds to climate change remains enigmatic, in particular because the obvious links to variations in precipitation, and hence water flux, are not generally supported by erosion rate measures (Stock et al., GSA Bulletin 117, 2005). This study explores potential links between accelerating rates of river incision and sediment production on hillslopes that surround the channel network. Hillslope soil production and soil transport are processes that are likely to respond to decreasing temperatures, because the density of vegetation and for example the occurrence of frost influence rates of weathering and sediment flow. We perform computational landscape evolution experiments where a sediment-flux-dependent model for fluvial incision (e.g. Sklar and Dietrich, Geology 29, 2001) is coupled to models for sediment production and transport on hillslopes. The resulting coupled landscape dynamics is of a highly nonlinear nature, where even small changes in hillslope sediment production far up in a drainage network propagate all the way through the downstream fluvial system. Dependent on the total sediment load, the fluvial system may respond with increased incision that steepens the hillslopes and starts a positive feedback loop that accelerates overall erosion.

  18. When erosion ruins the chronology

    NASA Astrophysics Data System (ADS)

    Wolters, Steffen; Enters, Dirk; Blume, Katharina; Lücke, Andreas

    2016-04-01

    Human land-use has considerably shaped the landscape of north-western Germany over the past millennia. Deforestation and agriculture created a predominantly open scenery preserved until today with only a few remnants of former landscape elements such as woodlands, peat bogs, heath lands and lakes. Here we present a multi-proxy approach including sedimentological and geochemical parameters (e. g. element concentrations and stable isotopes) as well as biological proxies (pollen, macro fossils and diatoms) combined with an archaeological site analysis to investigate the effects of prehistoric land-use on lake systems and their catchment areas with a special focus on changes of the water quality, e. g. eutrophication and acidification and its natural regeneration during phases of weaker land-use impact. The study reveals a millenia-long history of erosion processes caused by successive selective woodland clearances starting in Neolithic Times. The geochemical evidence of soil erosion is recorded by distinct peaks of the terrigenic elements K and Ti. However, due to (1) the low sensitivy of the XRF scanner for Si and (2) the prevalence of diatom related biogenic silicon XRF-scanning of highly organic lake sediments fails to reflect the actual sand input caused by erosion. Particularly single quartz grains are not detected in the organic sediment matrix. Therefore we make successful use of mineral grain analysis which previously has only been applied to record aeolian input in bogs. K and Ti concentrations are not correlated with the content of mineral grains which suggest two different erosion processes. Our efforts to construct robust age-depth relationships based on AMS 14C-dates of terrestrial plant macrofossils reveal a specific dating issue of northwest German lakes. Especially in younger sediments we observe 14C-dates which are on the one hand too old and on the other hand among themselves roughly contemporaneous. We explain this feature with the extensive bog

  19. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  20. Three-dimensional modeling of bank erosion and morphological changes in the Shishou bend of the middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Jia, Dongdong; Shao, Xuejun; Wang, Hong; Zhou, Gang

    2010-03-01

    This paper presents a three-dimensional (3-D) numerical model to simulate morphological changes in alluvial channels due to bank erosion. A method for the simulation of bank erosion is established. This is incorporated into a 3-D mathematical model for turbulent flow and non-uniform, non-equilibrium sediment transport. This model is applied to simulate morphological changes in the Shishou bend of the middle Yangtze River in China, where serious bank erosions occurred during the last two decades. The double-layer sediment structure of the riverbank on the middle Yangtze River is taken into account in the bank erosion module. Both cohesive and non-cohesive bank material in the different layers are considered. The bank erosion module also includes other factors affecting the rate of bank erosion, such as the longitudinal length of failed bank, the thickness of each layer in the double-layer structure, and the erosion-resisting effect of cohesive material from the top layer of failed bank. A locally-adaptive grid system is proposed to efficiently simulate the lateral migration of alluvial channel due to bank erosion. The predictive capability of the 3-D model is examined by laboratory data. Simulated processes of bank erosion agree with field observations in the Shishou bend during the period of October 1996-October 1998, and the bank erosion module plays a significant role in simulating morphological changes of the study reach. In addition, the equivalent channel-forming discharge, which is defined as a constant discharge that can create the same amount of bank erosion in an alluvial channel as that created by natural runoff processes during the same period of time, is proposed to improve calculation efficiency for feasibility studies.

  1. Atomic oxygen beam source for erosion simulation

    NASA Technical Reports Server (NTRS)

    Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1990-01-01

    A device for production of low-energy (5-10 eV) neutral atomic beams for surface modification studies, which recreates the flux of atomic oxygen in LEO, is described. The beam is produced by acceleration of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface, retaining a large fraction of their incident kinetic energy, forming a beam of atoms. The device is based on a magnetically confined (3-4 kG) coaxial plasma source and the atom energy can be varied by adjusting the bias voltage. The source provides a neutral flux of roughly 5 x 10 to the 16th/sq cm/s at a distance of 10 cm and a fluence of roughly 10 to the 21st/sq cm in five hours. The source has been characterized with plasma diagnostics and by measuring the energy of an atomic argon beam using a mass spectrometer. Samples of carbon film, carbon-based paint, Kapton, Mylar, and Teflon exposed to atomic O beams show erosion quite similar to those observed in orbit on the Space Shuttle.

  2. Atomic oxygen beam source for erosion simulation

    NASA Technical Reports Server (NTRS)

    Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.; Vaughn, J. A.

    1991-01-01

    A device for the production of low energy (3 to 10 eV) neutral atomic beams for surface modification studies is described that reproduces the flux of atomic oxygen in low Earth orbit. The beam is produced by the acceleration of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface, retaining some fraction of their incident kinetic energy, forming a beam of atoms. The plasma is generated by a coaxial RF exciter which produces a magnetically-confined (4 kG) plasma column. At the end of the column, ions fall through the sheath to the plate, whose bias relative to the plasma can be varied to adjust the beam energy. The source provides a neutral flux approximately equal to 5 x 10(exp 16)/sq cm at a distance of 9 cm and a fluence approximately equal to 10(exp 20)/sq cm in five hours. The composition and energy of inert gas beams was diagnosed using a mass spectometer/energy analyzer. The energy spectra of the beams demonstrate energies in the range 5 to 15 eV, and qualitatively show expected dependences upon incident and reflecting atom species and potential drop. Samples of carbon film, carbon-based paint, Kapton, mylar, and teflon exposed to atomic O beams show erosion quite similar to that observed in orbit on the space shuttle.

  3. The open science grid

    SciTech Connect

    Pordes, R.; /Fermilab

    2004-12-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.

  4. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  5. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  6. Is grid therapy useful for all tumors and every grid block design?

    PubMed

    Gholami, Somayeh; Nedaie, Hassan Ali; Longo, Francesco; Ay, Mohammad Reza; Wright, Stacey; Meigooni, Ali S

    2016-01-01

    Grid therapy is a treatment technique that has been introduced for patients with advanced bulky tumors. The purpose of this study is to investigate the effect of the radiation sensitivity of the tumors and the design of the grid blocks on the clinical response of grid therapy. The Monte Carlo simulation technique is used to determine the dose distribution through a grid block that was used for a Varian 2100C linear accelerator. From the simulated dose profiles, the therapeutic ratio (TR) and the equivalent uniform dose (EUD) for different types of tumors with respect to their radiation sensitivities were calculated. These calculations were performed using the linear quadratic (LQ) and the Hug-Kellerer (H-K) models. The results of these calculations have been validated by comparison with the clinical responses of 232 patients from different publications, who were treated with grid therapy. These published results for different tumor types were used to examine the correlation between tumor radiosensitivity and the clinical response of grid therapy. Moreover, the influence of grid design on their clinical responses was investigated by using Monte Carlo simulations of grid blocks with different hole diameters and different center-to-center spacing. The results of the theoretical models and clinical data indicated higher clinical responses for the grid therapy on the patients with more radioresistant tumors. The differences between TR values for radioresistant cells and radiosensitive cells at 20 Gy and 10 Gy doses were up to 50% and 30%, respectively. Interestingly, the differences between the TR values with LQ model and H-K model were less than 4%. Moreover, the results from the Monte Carlo studies showed that grid blocks with a hole diameters of 1.0 cm and 1.25 cm may lead to about 19% higher TR relative to the grids with hole diameters smaller than 1.0 cm or larger than 1.25 cm (with 95% confidence interval). In sum-mary, the results of this study indicate that grid

  7. Validating and improving interrill erosion equations.

    PubMed

    Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi

    2014-01-01

    Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h(-1)) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of -0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations.

  8. Grid Computing Education Support

    SciTech Connect

    Steven Crumb

    2008-01-15

    The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.

  9. Space Development Grid Portal

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2004-01-01

    This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.

  10. Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Belnap, J.; Bala, Chaudhary V.; Johnson, N.C.

    2008-01-01

    Soil erosion and subsequent degradation has been a contributor to societal collapse in the past and is one of the major expressions of desertification in arid regions. The revised universal soil loss equation (RUSLE) models soil lost to water erosion as a function of climate erosivity (the degree to which rainfall can result in erosion), topography, soil erodibility, and land use/management. The soil erodibility factor (K) is primarily based upon inherent soil properties (those which change slowly or not at all) such as soil texture and organic matter content, while the cover/management factor (C) is based on several parameters including biological soil crust (BSC) cover. We examined the effect of two more precise indicators of BSC development, chlorophyll a and exopolysaccharides (EPS), upon soil stability, which is closely inversely related to soil loss in an erosion event. To examine the relative influence of these elements of the C factor to the K factor, we conducted our investigation across eight strongly differing soils in the 0.8 million ha Grand Staircase-Escalante National Monument. We found that within every soil group, chlorophyll a was a moderate to excellent predictor of soil stability (R2 = 0.21-0.75), and consistently better than EPS. Using a simple structural equation model, we explained over half of the variance in soil stability and determined that the direct effect of chlorophyll a was 3?? more important than soil group in determining soil stability. Our results suggest that, holding the intensity of erosive forces constant, the acceleration or reduction of soil erosion in arid landscapes will primarily be an outcome of management practices. This is because the factor which is most influential to soil erosion, BSC development, is also among the most manageable, implying that water erosion in drylands has a solution. ?? 2008 Elsevier Ltd.

  11. Implementing Production Grids

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Ziobarth, John (Technical Monitor)

    2002-01-01

    We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.

  12. Grid in Geosciences

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Schwichtenberg, Horst

    2010-05-01

    The worldwide Earth science community covers a mosaic of disciplines and players such as academia, industry, national surveys, international organizations, and so forth. It provides a scientific basis for addressing societal issues, which require that the Earth science community utilize massive amounts of data, both in real and remote time. This data is usually distributed among many different organizations and data centers. These facts, the utilization of massive, distributed data amounts, explain the interest of the Earth science community for Grid technology, also noticeable by the variety of applications ported and tools developed. In parallel to the participation in EGEE, other projects involving ES disciplines were or have been carried out as related projects to EGEE (Enabling Grids for E-sciencE) such as CYCLOPS, SEEGrid, EELA2, EUASIA or outside e.g., in the framework of WGISS/CEOS. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity were deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. Examples are in hydrology for flood or Black Sea Catchment monitoring, and in fire monitoring. Meteorological, pollution and climate applications are based on meteorological models ported on Grid such as MM5 (Mesoscale Model), WRF (Weather Research and Forecasting), RAMS (Regional Atmospheric Modeling System) or CAM (Community Atmosphere Model). Seismological applications on Grid are numerous in locations where their occurrence is important and computer resources too small; then interfaces and gateways have been developed to facilitate the access to data and specific software and avoid work duplication. A portal has been deployed for commercial seismological software, Geocluster, for academic users. In this presentation examples of such applications will

  13. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  14. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  15. Using Grid Benchmarks for Dynamic Scheduling of Grid Applications

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert

    2003-01-01

    Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.

  16. Erosive Wear Characterization of Materials for Lunar Construction

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2012-01-01

    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  17. Beyond grid security

    NASA Astrophysics Data System (ADS)

    Hoeft, B.; Epting, U.; Koenig, T.

    2008-07-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.

  18. "Christmas eye". Acute corneal erosion.

    PubMed

    Colvin, C S

    1979-12-15

    The term "Christmas eye" is one I have coined to describe a type of acute corneal erosion which seems to occur only between late November and mid January, in country areas of New South Wales. Since 1970, I have seen 20 cases, all monocular, in people from an area bounded by Wellington, Mudgee, Grenfell, Cowra and Young. Twelve patients were adult males, three were adult females, and there were five children (one female, four male). The incidence varies; six cases presented in 1976, and none in 1978.

  19. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  20. The Integrated Soil Erosion Risk Management Model of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, M. A.; Stoetter, J.; Sartohadi, J.; Christanto, N.

    2009-04-01

    tolerable soil erosion rate, the soil erosion management will be applied base on cost and benefit analysis. The soil erosion management measures will conduct as decision maker of defining the best alternative soil conservation method in a certain area. Besides the engineering and theoretical methods, the local wisdom also will be taken into account in defining the alternative manners of soil erosion management. As a prototype, this integrated model will be generated and simulated in Serayu Watershed, Central Java, since this area has a serious issue in soil erosion problem mainly in the upper stream area (Dieng area). The extraordinary monoculture plantation (potatoes) and very intensive soil tillage without proper soil conservation method has accelerated the soil erosion and depleted the soil fertility. Based on the potatoes productivity data (kg/ha) from 1997-2007 showed that there was a declining trend line, approximately minus 8,2% every year. On the other hand the fertilizer and pesticide consumption in agricultural land are significantly increasing every year. In the same time, the high erosion rate causes serious sedimentation problem in lower stream. Those conditions can be used as study case in determining the element at risk of soil erosion and calculation method for the total soil erosion cost (on-site and off-site effect). Moreover, The Serayu Watershed consists of complex landforms which might have variation of soil erosion tolerable rate. In the future, this integrated model can obtain valuable basis data of the soil erosion hazard in spatial and temporal information including its total cost, the sustainability time of certain land or agriculture area, also the consequences price of applying certain agriculture or soil management. Since this model give result explicitly in spatial and temporal, this model can be used by the local authority to run the land use scenario in term of soil erosion impact before applied them in the real condition. In practice, such

  1. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  2. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  3. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  4. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  5. The Benefits of Grid Networks

    ERIC Educational Resources Information Center

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  6. Computer Code Generates Homotopic Grids

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1992-01-01

    HOMAR is computer code using homotopic procedure to produce two-dimensional grids in cross-sectional planes, which grids then stacked to produce quasi-three-dimensional grid systems for aerospace configurations. Program produces grids for use in both Euler and Navier-Stokes computation of flows. Written in FORTRAN 77.

  7. Accelerator target

    DOEpatents

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  8. Accelerator target

    DOEpatents

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  9. Life Verification of the T5 Ion Extraction Grids for the GOCE Application

    NASA Astrophysics Data System (ADS)

    Edwards, C. H.; Potts, M.; Rogers, D.

    2004-10-01

    The Gravity Field and Ocean Explorer (GOCE) is a mission for implementation in the 'Earth Explorer' line of ESA-Earth observation missions. The objective of the mission is to produce high-accuracy, high resolution, global measurements of the Earth's gravity field. During measurements an ion thruster system, based on the QinetiQ T5 thruster, will be used to provide drag free control of the satellite. To achieve the mission requirements the thruster system must be capable of continuous throttling over the thrust range 1 ° 20 mN at a resolution of 12 μN. The thruster lifetime requirement has been verified based on a 5000 hour endurance test, performed under flight representative throttling conditions, supported by extensive grid erosion modelling. Physical measurements of grid erosion were made during the endurance test at 500 hours, 1700 hours, and 5000 hours, and the results from these measurements have been used to validate the lifetime modelling. This paper will describe the endurance test, and will report the grid erosion measurement results. The grid erosion model will also be detailed, along with the results of the lifetime modelling and validation.

  10. Cavitation erosion - scale effect and model investigations

    NASA Astrophysics Data System (ADS)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  11. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  12. Effective spatially fractionated GRID radiation treatment planning for a passive grid block

    PubMed Central

    Mohiuddin, M; Devic, S; Moftah, B

    2015-01-01

    Objective: To commission a grid block for spatially fractionated grid radiation therapy (SFGRT) treatments and describe its clinical implementation and verification through the record and verify (R&V) system. Methods: SFGRT was developed as a treatment modality for bulky tumours that cannot be easily controlled with conventionally fractionated radiation. Treatment is delivered in the form of open–closed areas. Currently, SFGRT is performed by either using a commercially available grid block or a multileaf collimator (MLC) of a linear accelerator. In this work, 6-MV photon beam was used to study dosimetric characteristics of the grid block. We inserted the grid block into a commercially available treatment planning system (TPS), and the feasibility of delivering such treatment plans on a linear accelerator using a R&V system was verified. Dose measurements were performed using a miniature PinPointTM ion chamber (PTW, Freiburg, Germany) in a water phantom and radiochromic film within solid water slabs. PinPoint ion chamber was used to measure the output factors, percentage depth dose (PDD) curves and beam profiles at two depths, depth of maximum dose (zmax) and 10 cm. Film sheets were used to measure dose profiles at zmax and 10-cm depth. Results: The largest observed percentage difference between output factors for the grid block technique calculated by the TPS and measured with the PinPoint ion chamber was 3.6% for the 5 × 5-cm2 field size. Relatively significant discrepancies between measured and calculated PDD values appear only in the build-up region, which was found to amount to <4%, while a good agreement (differences <2%) at depths beyond zmax was observed. Dose verification comparisons performed between calculated and measured dose distributions were in clinically acceptable agreements. When comparing the MLC-based with the grid block technique, the advantage of treating large tumours with a single field reduces treatment time by at least 3–5

  13. Aeolian Induced Erosion and Particle Entrainment

    NASA Technical Reports Server (NTRS)

    Saint, Brandon

    2007-01-01

    The Granular Physics Department at The Kennedy Space Center is addressing the problem of erosion on the lunar surface. The early stages of research required an instrument that would produce erosion at a specific rate with a specific sample variation. This paper focuses on the development and experimental procedures to measure and record erosion rates. This was done with the construction of an open air wind tunnel, and examining the relationship between airflow and particle motion.

  14. Recurrent corneal erosion: clinical features.

    PubMed

    Hope-Ross, M W; Chell, P B; Kervick, G N; McDonnell, P J

    1994-01-01

    The clinical features of a group of 30 patients with recalcitrant recurrent corneal erosions (i.e. those who failed to respond to conventional therapy) were evaluated. Associated ocular and facial abnormalities were documented. Meibomian gland dysfunction was present in all patients as manifest by dropout and inspissation of the meibomian glands, reduced tear film break-up time and debris in the tear film. Dropout of meibomian glands was present in 25 (83%) patients and was maximum in the medial half of the lid in 21 (84%) of these 25 patients. Tear film break-up time was reduced in all patients, being instant in 7 (23%), between 1 and 5 seconds in 22 (74%) and between 10 and 15 seconds in 1 (3%) patient. Superficial corneal abnormalities were present in 28 (93%) patients as manifest by maps, dots and fingerprints. Facial abnormalities such as telangiectasia, rhinophyma and acne rosacea were present in 22 (73%) patients. The findings of our study suggest an association between recalcitrant recurrent corneal erosions and meibomian gland dysfunction.

  15. GridLAB-D/SG

    SciTech Connect

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  16. Comparison of erosion and channel characteristics

    USGS Publications Warehouse

    Parker, Gene W.

    1998-01-01

    Erosion was observed at 33 percent of 22,495 bridge sites in nine States. Among sites with erosion, 56 percent were associated with skewed flows, curved channels, or a combination of these two conditions, and at 18 percent of the sites, channels were straight with steep bank angles. The remaining 26 percent are sites with observable erosion at piers or abutments on straight channels. Comparison of the sites with erosion to channel bed-material indicate that 44 percent of the single-span sites had gravel-size or smaller bed material and 70 percent of the multiple-span sites had gravel-size or smaller bed material.

  17. Modeling aeolian erosion in presence of vegetation

    NASA Astrophysics Data System (ADS)

    Dupont, S.; Bergametti, G.; Simoëns, S.

    2014-02-01

    Semiarid landscapes are characterized by vegetated surfaces. Understanding the impact of vegetation on aeolian soil erosion is important for reducing soil erosion or limiting crop damage through abrasion or burial. In the present study, a saltation model fully coupled with a large-eddy simulation airflow model is extended to vegetated landscapes. From this model, the sensitivity of sand erosion to different arrangements and type of plants (shrub versus tree) representative of semiarid landscapes is investigated and the wind erosion reduction induced by plants is quantified. We show that saltation processes over vegetated surfaces have a limited impact on the mean wind statistics, the momentum extracted from the flow by saltating particles being negligible compared to that extracted by plants. Simulated sand erosion patterns resulting from plant distribution, i.e., accumulation and erosion areas, appear qualitatively consistent with previous observations. It is shown that sand erosion reduction depends not only on vegetation cover but also on plant morphology and plant distribution relative to the mean wind direction. A simple shear stress partitioning approach applied in shrub cases gives similar trends of sand erosion reduction as the present model following wind direction and vegetation cover. However, the magnitude of the reduction appears significantly different from one approach to another. Although shrubs trap saltating particles, trees appear more efficient than shrubs to reduce sand erosion. This is explained by the large-scale sheltering effect of trees compared to the local shrub one.

  18. Robotic weld overlay coatings for erosion control

    NASA Astrophysics Data System (ADS)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  19. Robotic weld overlay coatings for erosion control

    SciTech Connect

    Not Available

    1994-11-01

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB`s.

  20. High temperature erosion of nickel alloys

    SciTech Connect

    Zhou, J.

    1995-12-31

    High temperature erosion behavior was studied on three commercial nickel alloys, Inconel 718, Inconel 601 and Inconel X-750, using a vertical sand-blast type of erosion test rig. Effect of temperature on erosion was investigated by varying test temperature in six steps from ambient up to 800 C. Other erosion variables investigated included impingement angle, changed from 10{degree} to 90{degree}, and impingement velocity, covered a range of 40 to 90 m/s. Extensive studies on erosion surface morphological features were done on eroded or eroded-corroded specimen surfaces using scanning electron microscopy. Thermogravimetric analysis and scratch test revealed corrosion rate, characteristics of oxide scale formed at high temperature, and some effects of corrosion on erosion. It was found that variation of erosion rate with temperature was directly related to temperature-dependent mechanical property changes of the materials. The mechanisms of the high-temperature erosion were analyzed based on test results. It was observed that erosion was dominant in temperature range up to 800 C, while corrosion played increased roles in upper portion of the temperature range tested.

  1. Can Clouds replace Grids? Will Clouds replace Grids?

    NASA Astrophysics Data System (ADS)

    Shiers, J. D.

    2010-04-01

    The world's largest scientific machine - comprising dual 27km circular proton accelerators cooled to 1.9oK and located some 100m underground - currently relies on major production Grid infrastructures for the offline computing needs of the 4 main experiments that will take data at this facility. After many years of sometimes difficult preparation the computing service has been declared "open" and ready to meet the challenges that will come shortly when the machine restarts in 2009. But the service is not without its problems: reliability - as seen by the experiments, as opposed to that measured by the official tools - still needs to be significantly improved. Prolonged downtimes or degradations of major services or even complete sites are still too common and the operational and coordination effort to keep the overall service running is probably not sustainable at this level. Recently "Cloud Computing" - in terms of pay-per-use fabric provisioning - has emerged as a potentially viable alternative but with rather different strengths and no doubt weaknesses too. Based on the concrete needs of the LHC experiments - where the total data volume that will be acquired over the full lifetime of the project, including the additional data copies that are required by the Computing Models of the experiments, approaches 1 Exabyte - we analyze the pros and cons of Grids versus Clouds. This analysis covers not only technical issues - such as those related to demanding database and data management needs - but also sociological aspects, which cannot be ignored, neither in terms of funding nor in the wider context of the essential but often overlooked role of science in society, education and economy.

  2. Application of remote sensing to estimating soil erosion potential

    NASA Technical Reports Server (NTRS)

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  3. Time-Series Analysis of Coastal Erosion in the Sundarbans Mangrove

    NASA Astrophysics Data System (ADS)

    Mahmudur Rahman, M.

    2012-07-01

    Mangrove forests are fragile coastal ecosystems and could be one of the most vulnerable ecosystems to global climate change and sea-level rise. These forests are formed in the fringe of land and ocean and characterized by the regular inundation of tidal water. Because of the changes in sea-level and dynamic energy system in the transition zone between land and sea due to climate change, erosion in different coastal zones of the world could be accelerated. The objective of this study is to find out the nature and pattern of erosion that can threaten mangrove forest ecosystems. The study area is located in Sundarbans mangrove, the largest continuous mangrove forest in the world. The study utilized time-series data of Landsat Multi-spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) during 1970s to 2010s. Time-series change analysis was done along the selected transect lines. The erosion rates in the Sundarbans Mangrove are variable and it is very difficult to get a conclusive result from the analysis of those points whether the erosion rate has been accelerated in the recent past. The average rates of erosion for the eastern and western parts are 14 m/year and 15 m/year respectively obtained form the ten selected transect lines. It is unclear that how much coastal erosion is linked to the global warming and sea-level rise or whether any other associated factors such as geological and anthropogenic induced land subsidence, changes in sediment supply or other local factors are driving these changes. Further studies should be conducted in different mangrove ecosystems of the world to explore whether similar patterns of coastal erosion are visible there.

  4. Legacy of human-induced C erosion and burial on soil–atmosphere C exchange

    PubMed Central

    Van Oost, Kristof; Verstraeten, Gert; Doetterl, Sebastian; Notebaert, Bastiaan; Wiaux, François; Broothaerts, Nils; Six, Johan

    2012-01-01

    Carbon exchange associated with accelerated erosion following land cover change is an important component of the global C cycle. In current assessments, however, this component is not accounted for. Here, we integrate the effects of accelerated C erosion across point, hillslope, and catchment scale for the 780-km2 Dijle River catchment over the period 4000 B.C. to A.D. 2000 to demonstrate that accelerated erosion results in a net C sink. We found this long-term C sink to be equivalent to 43% of the eroded C and to have offset 39% (17–66%) of the C emissions due to anthropogenic land cover change since the advent of agriculture. Nevertheless, the erosion-induced C sink strength is limited by a significant loss of buried C in terrestrial depositional stores, which lagged the burial. The time lag between burial and subsequent loss at this study site implies that the C buried in eroded terrestrial deposits during the agricultural expansion of the last 150 y cannot be assumed to be inert to further destabilization, and indeed might become a significant C source. Our analysis exemplifies that accounting for the non–steady-state C dynamics in geomorphic active systems is pertinent to understanding both past and future anthropogenic global change. PMID:23134723

  5. Complex Volume Grid Generation Through the Use of Grid Reusability

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.

  6. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    PubMed

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.

  7. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    PubMed

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased. PMID:23803847

  8. Effects of common beverages on the development of cervical erosion lesions.

    PubMed

    Bassiouny, Mohamed A

    2009-01-01

    Dental erosion is a demineralization process that affects hard dental tissues (such as enamel and dentin), independent of any microbial action. This study evaluated certain common beverages and their abilities to initiate cervical erosion lesions. The progression of these lesions was monitored in an accelerated test condition over the duration of 20 weeks. Morphotopographic and radiographic profile assessments of the disassociated human teeth in vitro illustrated the differences of each tested fluid's potential to cause erosion. The outcome of the erosion process was found to be acidic fluid-specific. Unlike caries, which progresses in a triangulated fashion, the erosion lesions in enamel and dentin both appeared to progress in a pattern characterized by incremental decalcification in a parallel plane. The disparity between the changes of the radiographic and photographic images of the involved tissues (enamel and dentin) reflected the differences in terms of the inorganic and organic contents of each one. Close examination of the dynamic changes in the cervical region of the disassociated human teeth revealed the mechanism of cervical erosion lesion formation that was a coincidental finding of this study's results.

  9. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  10. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  11. NREL Smart Grid Projects

    SciTech Connect

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  12. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  13. Monthly Rainfall Erosivity Assessment for Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  14. Modern Grid Initiative Distribution Taxonomy Final Report

    SciTech Connect

    Schneider, Kevin P.; Chen, Yousu; Chassin, David P.; Pratt, Robert G.; Engel, David W.; Thompson, Sandra E.

    2008-11-01

    This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies is the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The

  15. Forecast of muddy floods using high-resolution radar precipitation forcasting data and erosion modelling

    NASA Astrophysics Data System (ADS)

    Hänsel, Phoebe; Schindewolf, Marcus; Schmidt, Jürgen

    2016-04-01

    In the federal province of Saxony, Eastern Germany, almost 60 % of the agricultural land is endangered by erosion processes, mainly caused by heavy rainfall events. Beside the primary impact of soil loss and decreasing soil fertility, erosion can cause significant effects if transported sediments are entering downslope settlements, infrastructure or traffic routes. Available radar precipitation data are closing the gap between the conventional rainfall point measurements and enable the nationwide rainfall distribution with high spatial and temporal resolution. By means of the radar precipitation data of the German Weather Service (DWD), high-resolution radar-based rainfall data totals up to 5 minute time steps are possible. The radar data are visualised in a grid-based hourly precipitation map. In particular, the daily and hourly precipitation maps help to identify regions with heavy rainfall and possible erosion events. In case of an erosion event on agricultural land, these areas are mapped with an unmanned airborne vehicle (UAV). The camera-equipped UAV delivers high-resolution images of the erosion event, that allow the generation of high-resolution orthophotos. By the application of the high-resolution radar precipitation data as an input for the process-based soil loss and deposition model EROSION 3D, these images are for validation purposes. Future research is focused on large scale soil erosion modelling with the help of the radar forecasting product and an automatic identification of sediment pass over points. The study will end up with an user friendly muddy flood warning tool, which allows the local authorities to initiate immediate measures in order to prevent severe damages in settlements, infrastructure or traffic routes.

  16. Fusion Data Grid Service

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  17. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  18. Some practical examples of cavitation erosion and their prevention

    NASA Technical Reports Server (NTRS)

    Conn, A. F.

    1974-01-01

    The problem of failures caused by cavitation erosion are discussed. The concepts of intensity of erosion, erosion strength, and the time dependence of erosion rate are analyzed. The relation of these parameters to system variables such as pressure and velocity, and to the properties of materials are investigated. Using several examples of actual cavitation erosion, methods of prevention and their limitations are examined.

  19. GridPV Toolbox

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  20. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  1. Rainfall erosivity in Brazil: A Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we review the erosivity studies conducted in Brazil to verify the quality and representativeness of the results generated and to provide a greater understanding of the rainfall erosivity (R-factor) in Brazil. We searched the ISI Web of Science, Scopus, SciELO, and Google Scholar datab...

  2. Progress and problems in erosion prediction

    NASA Technical Reports Server (NTRS)

    Heymann, F. J.

    1974-01-01

    Methods for predicting erosion resulting from repeated localized impulsive loadings, such a impacts from droplets or in cavitation flow from microjets and bubbles, are examined. The parameters which determine the adequacy of a component to resist the loads put upon it are identified. The development of erosion rate models is discussed. The expected accuracy of the prediction and the sources of error are analyzed.

  3. Erosion-Resistant Water-Blast Nozzle

    NASA Technical Reports Server (NTRS)

    Roberts, Marion L.; Rice, R. M.; Cosby, S. A.

    1988-01-01

    Design of nozzle reduces erosion of orifice by turbulent high-pressure water flowing through it. Improved performance and resistance to erosion achieved by giving interior nozzle surface long, gradual convergence before exit orifice abrupt divergence after orifice and by machining surface to smooth finish.

  4. Wind erosion potential following application of biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of biosolids to agricultural land has the potential to improve soil health and crop production. These benefits could also possibly reduce the threat of wind erosion in arid and semiarid regions. Therefore, we assessed the impact of biosolids on wind erosion of agricultural land at Li...

  5. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1984-08-16

    This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.

  6. Past, Present, Future Erosion at Locke Island

    SciTech Connect

    Bjornstad, Bruce N.

    2006-08-08

    This report describes and documents the erosion that has occurred along the northeast side of Locke Island over the last 10 to 20 years. The principal cause of this erosion is the massive Locke Island landslide complex opposite the Columbia River along the White Bluffs, which constricts the flow of the river and deflects the river's thalweg southward against the island.

  7. Potential for seepage erosion of landslide dam

    USGS Publications Warehouse

    Meyer, W.; Schuster, R.L.; Sabol, M.A.

    1994-01-01

    The failure potential of the debris-avalanche dam at Castle Lake near Mount St. Helens, Washington, by three processes of seepage erosion (1) Heave; (2) piping; and (3) internal erosion, is examined. Results indicated that the dam is stable against piping but potentially locally unstable against heave. -from Authors

  8. Tools for Ephemeral Gully Erosion Process Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Techniques to quantify ephemeral gully erosion have been identified by USDA Natural Resources Conservation Service (NRCS) as one of gaps in current erosion assessment tools. One reason that may have contributed to this technology gap is the difficulty to quantify changes in channel geometry to asses...

  9. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  10. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  11. Essential Grid Workflow Monitoring Elements

    SciTech Connect

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  12. Distributed Accounting on the Grid

    NASA Technical Reports Server (NTRS)

    Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.

    2001-01-01

    By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.

  13. Erosion testing of hard materials and coatings

    SciTech Connect

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  14. Etiology and pathogenesis of dental erosion.

    PubMed

    Kanzow, Philipp; Wegehaupt, Florian J; Attin, Thomas; Wiegand, Annette

    2016-04-01

    The condition of dental erosion is defined as acid-related loss of tooth structure which does not involve microorganisms. Depending on the origin of the acid, extrinsic (usually caused by acids in food) and intrinsic (caused by endogenous acid) erosion can be distinguished. The presence and severity of erosive defects depend on various parameters such as nutrition, saliva, general diseases, and mechanical stress by abrasion and attrition. As an example, dietary habits which involve frequent intake of acidic food and beverages, occupational acid exposure, as well as certain drugs or diseases that affect saliva flow rate are accompanied by an increased risk of erosive dental hard tissue defects. By a thorough clinical examination and an accurate anamnesis, various erosion-related risk factors can be identified and strategies to reduce or eliminate these factors be identified. PMID:27022647

  15. Modelling rainfall erosion resulting from climate change

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  16. Weld overlay coatings for erosion control

    SciTech Connect

    Levin, B.; DuPont, J.N.; Marder, A.R.

    1993-03-03

    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  17. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  18. Assessment of soil erosion under woodlands using USLE in China

    NASA Astrophysics Data System (ADS)

    Zhang, Changshun; Xie, Gaodi; Liu, Chunlan; Lu, Chunxia

    2011-06-01

    Universal Soil Loss Equation (USLE), originally developed by the USDA for agricultural lands and then used throughout the world, was applied in mountainous forest terrain in China. The woodland area was divide into 100 m × 100 m grid cells. The ArcInfo 9.2 GIS software provided spatial input data was used to predict the spatial distribution of the average annual soil loss on grid basis. The average rainfall erositivity factor ( R) for national woodlands was found to be 21-1798 MJ·mm·ha-1·h-1·a-1. The soil erodibility factor ( K) with a magnitude of 0.043 t·ha·h· ha-1·MJ-1·mm-1 is the highest for Chinese woodland. Most of the slope length factors ( LS) were less than 5 for the national woodland. The highest and lowest values of cover and management factor ( C) were found out to be 0.0068 and 0.2550 respectively for coniferous woodland and orchard woodland. The value of conservation factor ( P) was assigned to be 1 for Chinese woodlands because of scarcity of conversation practice data at the national scale. The average annual soil loss of the national woodland areas was 3.82 t·km-2·a-1. About 99.89% of Chinese woodland area was found out to be under slight erosion class, whereas it only resulted in about 41.97% of soil loss under woodland area, and 58.03% of soil loss occurred under high erosion potential zone, namely more than 5 t·ha-1·a-1. Therefore, those zones need immediate attention from soil conservation point of view. The results here are consistent with many domestic and oversea previous researches under mountainous forests or hilly catchments, thus we showed that the USLE can be applied to estimations of soil erosion for Chinese woodlands at the national scale.

  19. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known

  20. Unlocking the smart grid

    SciTech Connect

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  1. APEC Smart Grid Initiative

    SciTech Connect

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  2. NSTAR Smart Grid Pilot

    SciTech Connect

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  3. The surveillance error grid.

    PubMed

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  4. Post-fire Erosion and Recovery in Chaparral Steeplands, Southern California

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, P. M.

    2007-12-01

    In fire-prone southern California chaparral environments, wildfire is a significant disturbance event. It incinerates vegetation, alters soil properties, and renders the landscape susceptible to the agents of erosion. Accelerated erosion can cause site degradation, can extirpate refugia populations of endangered species, and can harm human communities at the wildland/urban interface. The San Dimas Experimental Forest (SDEF) is a nearly 7000 ha research preserve located in the San Gabriel Mountains. Native vegetation in the SDEF consists primarily of mixed chaparral. Management treatments following a wildfire in 1960 involved the vegetation type-conversion of some native chaparral watersheds to a mixture of perennial grasses. In 1994, a study was initiated to quantify sediment fluxes through several small (1-3 ha) headwater catchments in the SDEF under both brush and grass vegetation. Several of these watersheds burned in a prescribed fire in May 2001. The remainder burned in a wildfire in September 2002. These burns provided a unique opportunity to quantify post-fire erosion on the same sites for which there were extensive pre- fire measurements. Hillslope erosion was sampled using sheet metal collector traps with a 30 cm aperture. Seventy-five traps were placed on unbounded plots scattered throughout each of four watersheds. Sediment yield was measured behind earthen dams in 17 small watersheds. A centrally located raingage recorded precipitation amounts and intensities. During this study period, the SDEF experienced both the wettest (2005) and driest (2007) years in its 74-year history. The values for the 15-minute maximum rainfall intensity show no relation to annual erosion (hillslope or small watershed) for either vegetation type before or after fire. Both hillslope erosion and small watershed sediment yield display remarkably similar patterns of post-fire erosion response: a one to two order of magnitude increase in first-year erosion followed by a relatively

  5. Soil erosion and the global carbon budget.

    PubMed

    Lal, R

    2003-07-01

    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of

  6. Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry.

    PubMed

    Shuster, David L; Ehlers, Todd A; Rusmoren, Margaret E; Farley, Kenneth A

    2005-12-01

    Alpine glaciation and river incision control the topography of mountain ranges, but their relative contributions have been debated for years. Apatite 4He/3He thermochronometry tightly constrains the timing and rate of glacial erosion within one of the largest valleys in the southern Coast Mountains of British Columbia, Canada. Five proximate samples require accelerated denudation of the Klinaklini Valley initiating 1.8 +/- 0.2 million years ago (Ma). At least 2 kilometers of overlying rock were removed from the valley at >/=5 millimeters per year, indicating that glacial valley deepening proceeded >/=6 times as fast as erosion rates before approximately 1.8 Ma. This intense erosion may be related to a global transition to enhanced climate instability approximately 1.9 Ma.

  7. Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Lashkov, V. A.; Valiev, R. Z.; Bondarenko, A. S.

    2016-09-01

    This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.

  8. Erosion-driven environmental degradation in Tigray, Ethiopia

    NASA Astrophysics Data System (ADS)

    Strong, N.; Willenbring, J.; Terwilliger, V. J.

    2009-12-01

    The Tigray Plateau of Northern Ethiopia is a key region for the study of relationships between climate, land use and the rise and fall of complex societies. Tigray has been the home to a succession of highly developed and powerful kingdoms and has a long history of agriculture, dating back to ~ 6,000 yrs BP. Unfortunately its mountainous topography makes the region particularly susceptible to accelerated erosion and mass wasting from intense land use practices and its location along the ITCZ and the East African rift system make the area prone to climatic changes. Today, after 6,000 years of agriculture, of which the last ~3,000 years have involved intense land use, the once fertile Tigray region is now highly degraded with frequent famine and some of the highest rates of soil erosion in the world. We find, based on a comparison of background (long-term) and anthropogenic short-term time-averaged erosion rates that deforestation and a transition to cropland farming likely increased rates of localized upstream erosion and downstream deposition by up to an order of magnitude greater than the natural background rates. We define three distinct periods of note in terms of rates and patterns of Holocene erosion and deposition in the east Tigray Plateau of Ethiopia. First, we take note of the depositional record and paleo-flaural reconstructions of a time of regional climate change yet little landuse change in Ethiopia, 7,500 - 6,000 cal yr BP (Late Prehistory and the beginning of the migration of peoples out of the Sahara and into Sudan and the highlands of Ethiopia). Second, we look at the stratigraphic record of the beginning of intense landuse and cultivation in the gently sloping lowland areas, 3200 -2300 Cal yrs BP (Pre-Aksumite period and the establishment of the first large centralized government in the upper Highlands). Third, we identify from the geological record a period of deforestation and farming of higher elevation, steep sloped hillsides and terraces 2300

  9. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  10. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  11. Modeling the Economics of Beach Nourishment Decisions in Response to Coastal Erosion

    NASA Astrophysics Data System (ADS)

    Ware, M.; Ashton, A. D.; Hoagland, P.; Jin, D.; Kite-Powell, H.; Lorenzo-Trueba, J.

    2012-12-01

    Beaches are constantly moving and changing. The dynamic transformations of beaches are mostly the result of the erosion of sand, which can occur through movements alongshore caused by waves, movements off-shore due to storms, or submersion due to sea-level rise. Predicted climate change impacts include potential changes in storminess and accelerated sea-level rise, which will lead to increased coastal erosion. At the same time, the number of people residing in coastal communities is increasing. The risks from eroding beaches (increased coastal flooding, damage to infrastructure, and displaced residents) are therefore increasing in number and scale; and coastal residents are taking actions to protect their homes. One such action is beach nourishment, where sand is added to a resident's property in order to widen the beach. We have developed an economic model of beach nourishment decision-making to investigate the relationship between the optimal volume and timing of beach nourishment and factors such as property value, erosion rate, and initial beach width. In this model, waterfront property owners nourish a beach when the losses in net rental income exceed the costs incurred from nourishing the beach. (Rental income is a function of property value, which in turn depends upon the width of the beach.) It is assumed that erosion and sea-level rise are related. We examine different nourishment scenarios, including one-time nourishment in the first year; constant annual nourishment; and a myopic decision process in which the homeowner nourishes the beach if property losses from erosion over the next five years are expected to exceed the cost of nourishment. One-time nourishment delays property flooding for both constant and accelerating sea level rise; however, this delay is more substantial under constant sea level rise. With continual nourishment, the beach can be maintained under constant sea-level rise, provided that the erosion rate is comparable to the additional

  12. Repeated erosion of cohesive sediments with biofilms

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Mariotti, G.; Fagherazzi, S.

    2014-04-01

    This study aims to explore the interplay between biofilms and erodability of cohesive sediments. Erosion experiments were run in four laboratory annular flumes with natural sediments. After each erosion the sediment was allowed to settle, mimicking intermittent physical processes like tidal currents and waves. The time between consecutive erosion events ranged from 1 to 12 days. Turbidity of the water column caused by sediment resuspension was used to determine the erodability of the sediments with respect to small and moderate shear stresses. Erodability was also compared on the basis of the presence of benthic biofilms, which were quantified using a Pulse-Amplitude Modulation (PAM) Underwater Fluorometer. We found that frequent erosion lead to the establishment of a weak biofilm, which reduced sediment erosion at small shear stresses (around 0.1 Pa). If prolonged periods without erosion were present, the biofilm fully established, resulting in lower erosion at moderate shear stresses (around 0.4 Pa). We conclude that an unstructured extracellular polymeric substances (EPS) matrix always affect sediment erodability at low shear stresses, while only a fully developed biofilm mat can reduce sediment erodability at moderate shear stresses.

  13. Erosion and stability of a mine soil

    SciTech Connect

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-06-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes.

  14. Soft drinks and in vitro dental erosion.

    PubMed

    Gravelle, Brent L; Hagen Ii, Ted W; Mayhew, Susan L; Crumpton, Brooks; Sanders, Tyler; Horne, Victoria

    2015-01-01

    The purpose of this investigation was to determine to what extent the in vitro exposure of healthy teeth to various commonly consumed carbonated soft drinks may precipitate dental erosion. Forty-two healthy, extracted, previously unerupted human molars were weighed prior to, during, and after suspension in various sugared and diet or zero-calorie carbonated beverages for 20 days; the specimens were stored at room temperature while being stirred at 275 rpm. The percentage decrease in tooth weight from before to after exposure represented the weight loss due to enamel erosion; values in the experimental groups varied from 3.22% to 44.52% after 20 days' exposure. Data were subjected to analysis of variance and post hoc Scheffe testing at a level of α = 0.05. Nonsugared drinks (diet and zero-calorie) as a whole were more erosive than sugared beverages. A significant positive correlation was found between the amount of titratable acid and percentage of tooth erosion, while a significant negative correlation was revealed between the beverage pH and percentage of tooth erosion. No significant correlations were found between calcium or phosphate ion concentrations and the amount of erosion. It appears that enamel erosion is dependent on not only the beverage flow rate, pH, and amount of titratable acid, but also whether the soft drink is of the diet or zero-calorie variety, which reflects the type of artificial sweetener present.

  15. Coupled wellbore erosion and stability analysis

    NASA Astrophysics Data System (ADS)

    Stavropoulou, M.; Papanastasiou, P.; Vardoulakis, I.

    1998-09-01

    This paper extends earlier work on sand erosion and presents an attempt to couple sand erosion to mechanical damage of rock around a wellbore. Porosity which evolves in time and space as surface erosion progresses, is chosen as the coupling parameter. Both rock elasticity and strength (cohesion) are assumed to depend on porosity in such a way that the material becomes weaker with increasing porosity. The mathematical model, consists of erosion equations, mixture flow equations and stress equilibrium equations, is solved numerically by Galerkin finite element method. Numerical results suggest that erosion, resulting in sand production, is high close to the free surface. Erosion is accompained by changes in porosity and a significant permeability increase. Erosion in the vicinity of the wellbore induces alterations in the mechanical behaviour of the medium. Weakening of rock stiffness leads to severe alteration of both effective stresses and pore pressure near the cavity. Since cohesion decreases with increasing porosity, one can also identify the time instant at which rock mechanical failure starts.

  16. Deposition, erosion, and bathymetric change in South San Francisco Bay: 1858-1983

    USGS Publications Warehouse

    Foxgrover, Amy C.; Higgins, Shawn A.; Ingraca, Melissa K.; Jaffe, Bruce E.; Smith, Richard E.

    2004-01-01

    Since the California Gold Rush of 1849, sediment deposition, erosion, and the bathymetry of South San Francisco Bay have been altered by both natural processes and human activities. Historical hydrographic surveys can be used to assess how this system has evolved over the past 150 years. The National Ocean Service (NOS) (formerly the United States Coast and Geodetic Survey (USCGS), collected five hydrographic surveys of South San Francisco Bay from 1858 to 1983. Analysis of these surveys enables us to reconstruct the surface of the bay floor for each time period and quantify spatial and temporal changes in deposition, erosion, and bathymetry. The creation of accurate bathymetric models involves many steps. Sounding data was obtained from the original USCGS and NOS hydrographic sheets and were supplemented with hand drawn depth contours. Shorelines and marsh areas were obtained from topographic sheets. The digitized soundings and shorelines were entered into a Geographic Information System (GIS), and georeferenced to a common horizontal datum. Using surface modeling software, bathymetric grids with a horizontal resolution of 50 m were developed for each of the five hydrographic surveys. Prior to conducting analyses of sediment deposition and erosion, we converted all of the grids to a common vertical datum and made adjustments to correct for land subsidence that occurred from 1934 to 1967. Deposition and erosion that occurred during consecutive periods was then computed by differencing the corrected grids. From these maps of deposition and erosion, we calculated volumes and rates of net sediment change in the bay. South San Francisco Bay has lost approximately 90 x 106 m3 of sediment from 1858 to 1983; however within this timeframe there have been periods of both deposition and erosion. During the most recent period, from 1956 to 1983, sediment loss approached 3 x 106 m3/yr. One of the most striking changes that occurred from 1858 to 1983 was the conversion of more

  17. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  18. Spectral methods on arbitrary grids

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David

    1995-01-01

    Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.

  19. Grid Interaction Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  20. Erosion Rates of Volcanic-ash Derived Soils in the Blue Mountains of Eastern Oregon, USA: A Comparison Across Sales in Space and Time.

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Clifton, C. F.; Harris, R. M.; Ritchie, J. C.

    2007-12-01

    We examined present day rates of erosion in the Blue Mountains of eastern Oregon to quantify background erosion rates to provide standards for assessing possible accelerated rates of erosion resulting from wild fire or from land-management activities such as prescribed fire. The Skookum Creek watersheds, where stream discharge and sediment yield have been recorded continuously since the watersheds were gauged in 1992, provided a watershed-scale estimate of erosion rates. We installed hillslope erosion plots on north- and south- facing slopes within the watersheds in 2002 and collected data for three years to estimate short-term, hillslope- scale erosion rates. We also collected soil samples and analyzed them for 137Cs to get a 40-yr time- integrated estimate of hillslope erosion rates. Our results showed large differences between whole-watershed sediment yields and hillslope erosion rates measured from plots, suggesting that episodic processes dominated sediment production and transport and therefore controlled watershed-scale sediment budgets. At the hillslope-scale, short-term erosion resulted primarily from digging by small mammals and trampling by elk. Visual observations at the plots suggested that annual down-slope sediment movement was usually less than one meter. There were no significant difference among slope positions, but erosion rates were significantly higher on south-facing aspects and positively correlated to the amount of bare ground. In contrast, the 137Cs data suggested that erosion rates differed with slope position. Higher erosion rates were measured in toe- and mid-slope positions, with little erosion occurring on upper slopes and ridge tops. We examine these results in light of the present-day pattern of surface soils resulting from redistribution of volcanic ash from upper- slope to lower-slope positions and the effects of disturbance, including wildfire and the preferential grazing of riparian and lower-slope positions by domestic livestock.

  1. Effectiveness assessment of soil conservation measures in reducing soil erosion in Baiquan County of Northeastern China by using (137)Cs techniques.

    PubMed

    Zhang, Qing-Wen; Li, Yong

    2014-05-01

    Accelerated soil erosion is considered as a major land degradation process resulting in increased sediment production and sediment-associated nutrient inputs to the rivers. Over the last decade, several soil conservation programs for erosion control have been conducted throughout Northeastern China. Reliable information on soil erosion rates is an essential prerequisite to assess the effectiveness of soil conservation measures. A study was carried out in Baiquan County of Northeastern China to assess the effectiveness of soil conservation measures in reducing soil erosion using the (137)Cs tracer technique and related techniques. This study reports the use of (137)Cs measurements to quantify medium-term soil erosion rates in traditional slope farmland, contour cropping farmland and terrace farmland in the Dingjiagou catchment and the Xingsheng catchment of Baiquan County. The (137)Cs reference inventory of 2532 ± 670 Bq m(-2) was determined. Based on the principle of the (137)Cs tracer technique, soil erosion rates were estimated. The results showed that severe erosion on traditional slope farmland is the dominant soil erosion process in the area. The terrace measure reduced soil erosion rates by 16% for the entire slope. Typical net soil erosion rates are estimated to be 28.97 Mg per hectare per year for traditional slope farmland and 25.04 Mg per hectare per year for terrace farmland in the Dingjiagou catchment. In contrast to traditional slope farmland with a soil erosion rate of 34.65 Mg per hectare per year, contour cultivation reduced the soil erosion rate by 53% resulting in a soil erosion rate of 22.58 Mg per hectare per year in the Xingsheng catchment. These results indicated that soil losses can be controlled by changing tillage practices from the traditional slope farmland cultivation to the terrace or contour cultivation.

  2. Chevrons formation in laminar erosion

    NASA Astrophysics Data System (ADS)

    Devauchelle, Olivier; Josserand, Christophe; Lagree, Pierre-Yves; Zaleski, Stephane; Nguyen, Khanh-Dang; Malverti, Luce; Lajeunesse, Eric

    2007-11-01

    When eroded by laminar free-surface flows, granular substrates may generate a rich variety of natural patterns. Among them are dunes, similar to the ones observed by Charru and Hinch in a Couette cell (Charru F, Hinch EJ ; Ripple formation on a particle bed sheared by a viscous liquid. Part 1. Steady flow ; JOURNAL OF FLUID MECHANICS 550: 111-121 MAR 10 2006). Chevron-shaped instabilities as those found on the sea-shore, can also be observed, sometimes in competition against dunes formation. These were first pointed out by Daerr et al. when pulling a plate covered with granular material out of a bath of water (Daerr A, Lee P, Lanuza J, et al. ; Erosion patterns in a sediment layer ; PHYSICAL REVIEW E 67 (6): Art. No. 065201 Part 2 JUN 2003). Both instabilities can grow in laminar open-channel flows, an experimental set-up which is more easily controlled. The mechanisms leading to the formation of these patterns are investigated and compared. Whereas dunes formation requires vertical inertia effects, we show that chevrons may result from the non-linear evolution of bars instability, which may grow even in purely viscous flows.

  3. Erosion damage in glass and alumina

    SciTech Connect

    Ritter, J.E.; Strzepa, P.; Jakus, K.; Rosenfeld, L.; Buckman, K.J.

    1984-08-14

    The effect of room-temperature erosion on material removal from and strength properties of soda-lime glass and sintered alumina was determined. The results were compared to the elastic/plastic indentation fracture model. The dependence of erosion rate and strength of soda-lime glass on the kinetic energy of the impacting particles was in good agreement with predictions. The lack of agreement between theory and experiment for sintered alumina was attributed to microstructural aspects of the erosion damage that are not modeled by indentation fracture.

  4. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  5. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  6. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau.

    PubMed

    Munson, Seth M; Belnap, Jayne; Okin, Gregory S

    2011-03-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  7. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    USGS Publications Warehouse

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  8. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    PubMed Central

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces. PMID:21368143

  9. Consideration of some fundamental erosion processes encountered in hypervelocity electromagnetic propulsion

    SciTech Connect

    Buckingham, A.C.; Hawke, R.S.

    1982-09-30

    Experimental and theoretical research has been conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams have been launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressures in the tens of megabars range are obtained for high pressure equation-of-state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The heating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined. It is found that while frictional heating and consequent sliding contact erosion are minor contributors to the overall erosion process, the same cannot be said for plasma impingement, penetration, and almost simultaneous induction current (Joule) heating.

  10. LATE CENOZOIC INCREASE IN ACCUMULATION RATES OF TERRESTRIAL SEDIMENT: How Might Climate Change Have Affected Erosion Rates?

    NASA Astrophysics Data System (ADS)

    Molnar, Peter

    2004-05-01

    Accumulation rates of terrestrial sediment have increased in the past few million years both on and adjacent to continents, although not everywhere. Apparently, erosion has increased in elevated terrain regardless of when last tectonically active or what the present-day climate. In many regions, sediment coarsened abruptly in late Pliocene time. Sparser data suggest increased sedimentation rates at 15 Ma, approximately when oxygen isotopes in benthic foraminifera imply high-latitude cooling. If climate change effected accelerated erosion, understanding how it did so remains the challenge. Some obvious candidates, such as lowered sea level leading to erosion of continental shelves or increased glaciation, account for increased sedimentation in some, but not all, areas. Perhaps stable climates that varied slowly allowed geomorphic processes to maintain a state of equilibrium with little erosion until 34 Ma, when large oscillations in climate with periods of 20,00040,000 years developed and denied the landscape the chance to reach equilibrium.

  11. Short and long term effects of bioturbation on soil erosion, water resources and soil development in an arid environment

    NASA Astrophysics Data System (ADS)

    Yair, A.

    1995-09-01

    The importance of vegetal cover on soil erosion processes has been recognized for a long time. However, the short and long term effects of faunal activity on soil erosion and soil development had been largely overlooked by geomorphologists. The study of runoff and erosion processes in the Negev desert indicated pronounced systematic differences in sediment concentration and soil erosion rates between rocky and colluvial surfaces. Erosion rates were always higher on the former than on the latter. Field observations drew attention to an intense burrowing and digging activity conducted mainly by Isopods and Porcupines. The monitoring of this activity, based on a grid system, which consists of rows 5 m wide, lasted ten consecutive years. Data obtained suggest the existence of a strong link between the spatial pattern of bioturbation and that of soil erosion. The study also examines, through feedback processes, the regulatory role of bioturbation on the spatial distribution of water availability; soil moisture and soil forming processes. Due to bioturbation two distinct environments were recognised. The rocky environment which is characterized by a positive feedback with a high water availability and low soil salinity; and the soil covered areas where a negative feedback results in low water availability and a high soil salinity.

  12. Short and long term effects of bioturbation on soil erosion and soil development in a rocky arid area

    NASA Astrophysics Data System (ADS)

    Yair, Aaron

    2014-05-01

    Short and long term effects of faunal activity on soil erosion and soil development had been largely overlooked by geomorphologists; especially in arid rocky area. A study of hillslope runoff and erosion processes in the Negev desert indicated systematic in sediment concentrations and erosion rates between rocky and colluvial surfaces. Erosion rates were always higher on the former than on the latter. Field observations drew attention to an intense burrowing and digging activity conducted by Isopods and Porcupines. The monitoring of this activity, based on a grid system,lasted ten years. Data obtained suggest a strong link between the spatial pattern of bioturbation and that of soil erosion. The study also examined the regulatory role of the spatial distribution of soil moisture on the biological activity and its long term effect on soil forming processes. TWo different environments have been recognized. The upper, rocky, hillslope areas are characterized by a positive feedback. High runoff and erosion rates remove salt from the soil, limiting salt accumulation. T the same time the colluvial slope section absorbs, at most rainstorms, all runoff generated over the upper rocky sections leading, over time, to soil salinization

  13. Short and Long Term Effects of Bioturbation on Soil Erosion and Soil Developmemt in an Arid Rocky Area

    NASA Astrophysics Data System (ADS)

    Yair, A.

    2014-12-01

    Short and long term effects of faunal activity on soil ersion and soil development had been largely overlooked by geomorphologists; especially in rocky arid areas. A study of hiillslope runoff and erosion processes, coducted in the Negev desert, indicated systematic differences in sediment concentration and erosion rates between rocky and colluvial surfaces.. Field observations drew attention to intense burrowing and digging activity of Porcupines and Isopods. Erosion rates were always higher over the rocky than over the colluvial areas. The monitoring of this activity, based on a grid system which consists of rows 5m wide, lasted ten years. Data obtained suggest a link between the spatial pattern of bioturbation and that of soil erosion. The study also examines, through feebback processes , the vregulatory role of bioturbation on soil erosion and soil forming processes. Due to bioturbation two distinct envirobments were recognized.The rocky, upper hilllsope areas, are characterized by a positive feedback process. High runoff and erosion rates remove salt from the soil, preventing thus salt accumulation. At the same time the colluviual slope sections absorb, at most storms, all runoff over the upper rocky slope sectioins leading, over time, tooil salinization

  14. Anthropogenic control on geomorphic process rates: can we slow down the erosion rates? (Geomorphology Outstanding Young Scientist Award & Penck Lecture)

    NASA Astrophysics Data System (ADS)

    Vanacker, V.

    2012-04-01

    The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.

  15. Erosion resistance of irrigated soils in the republic of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Babaev, M. P.; Gurbanov, E. A.

    2010-12-01

    It was found that the average size of water-stable aggregates in irrigated soils varies in the range 0.23-2.0 mm, and the eroding flow velocity is 0.03-0.12 m/s. A five-point scale was used for assessing erosion resistance, predicting irrigation erosion, and developing erosion control measures on irrigated soils. According to this system, gray-brown soils and light sierozems were classified as the least erosion-resistant, sierozemic and meadow-sierozemic soils as low erosion-resistant, gray-cinnamonic soils as moderately erosion-resistant, mountain gray-cinnamonic soils as highly erosion-resistant, and steppe mountain cinnamonic soils as very highly erosion-resistant ones. The determination of the erosion resistance of soils is of great importance for assessing the erosion-resistance potential of irrigated areas and developing erosion control measures.

  16. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  17. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  18. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  19. A 2500 year record of natural and anthropogenic soil erosion in South Greenland

    NASA Astrophysics Data System (ADS)

    Massa, Charly; Bichet, Vincent; Gauthier, Émilie; Perren, Bianca B.; Mathieu, Olivier; Petit, Christophe; Monna, Fabrice; Giraudeau, Jacques; Losno, Rémi; Richard, Hervé

    2012-01-01

    The environmental impact of the Norse landnám (colonization) in Greenland has been studied extensively. But to date, no study has quantified the soil erosion that Norse agricultural practices are believed to have caused. To resolve this problem, a high resolution sedimentary record from Lake Igaliku in South Greenland is used to quantitatively reconstruct 2500 years of soil erosion driven by climate and historical land use. An accurate chronology, established on 18 AMS 14C, and 210Pb and 137Cs dates, allows for the estimation of detritic fluxes and their uncertainties. Land clearance and the introduction of grazing livestock by the Norse around 1010 AD caused an acceleration of soil erosion up to ˜8 mm century -1 in 1180 AD which is two-fold higher than the natural pre- landnám background. From 1335 AD to the end of the Norse Eastern Settlement (in the mid-fifteenth century), the vegetation began to recover from initial disturbance and soil erosion decreased. After an initial phase of modern sheep breeding similar to the medieval one, the mechanization of agriculture in the 1980s caused an unprecedented soil erosion rate of up to ˜21 mm century -1, five times the pre-anthropogenic levels. Independently, a suite of biological and geochemical proxies (including Ti and diatom concentrations, C:N ratio, δ13C and δ15N of organic matter) confirm that the medieval and modern anthropogenic erosion far exceeds any natural erosion over the last 2500 years. Our findings question the veracity of the catastrophic scenario of overgrazing and land degradation considered to have been the major factor responsible for Norse settlement demise. They also shed light on the sustainability of modern practices and their consequences for the future of agriculture in Greenland.

  20. Decomposition and humification of soil organic carbon after land use change on erosion prone slopes

    NASA Astrophysics Data System (ADS)

    Häring, Volker; Fischer, Holger; Cadisch, Georg; Stahr, Karl

    2014-05-01

    Soil organic carbon decline after land use change from forest to maize usually lead to soil degradation and elevated CO2 emissions. However, limited knowledge is available on the interactions between rates of SOC change and soil erosion and how SOC dynamics vary with soil depth and clay contents. The 13C isotope based CIDE approach (Carbon Input, Decomposition and Erosion) was developed to determine SOC dynamics on erosion prone slopes. The aims of the present study were: (1) to test the applicability of the CIDE approach to determine rates of decomposition and SOC input under particular considerations of concurrent erosion events on three soil types (Alisol, Luvisol, Vertisol), (2) to adapt the CIDE approach to deeper soil layers (10-20 and 20-30 cm) and (3) to determine the variation of decomposition and SOC input with soil depth and soil texture. SOC dynamics were determined for bulk soil and physically separated SOC fractions along three chronosequences after land use change from forest to maize (up to 21 years) in northwestern Vietnam. Consideration of the effects of soil erosion on SOC dynamics by the CIDE approach yielded a higher total SOC loss (6 to 32%), a lower decomposition (13 to 40%) and a lower SOC input (14 to 31%) relative to the values derived from a commonly applied 13C isotope based mass balance approach. Comparison of decomposition between depth layers revealed that tillage accelerated decomposition in the plough layer (0-10 cm), accounting for 3 to 34% of total decomposition. With increasing clay contents SOC input increased. In addition, decomposition increased with increasing clay contents, too, being attributed to decomposition of exposed labile SOC which was attached to clay particles in the sand sized stable aggregate fraction. This study suggests that in situ SOC dynamics on erosion prone slopes are commonly misrepresented by erosion unadjusted approaches.

  1. Plasma nitriding using high H2 content gas mixtures for a cavitation erosion resistant steel

    NASA Astrophysics Data System (ADS)

    Allenstein, A. N.; Lepienski, C. M.; Buschinelli, A. J. A.; Brunatto, S. F.

    2013-07-01

    Plasma nitriding using high H2 content gas mixtures in CA-6NM martensitic stainless steel was studied in the present work. Nitriding was performed in H2 + N2 gas mixtures for 5, 10 and 20% N2, in volume, at 773 K (500 °C), during 2 h. Changes in the surface morphology and nitrided layer constitution were characterized by SEM, XRD, roughness analysis, and nanoindentation technique. Cavitation erosion behavior of the nitrided samples was also investigated by means of a 20 kHz ultrasonic vibrator. The study was emphasized for the three first cavitation stages (incubation, acceleration, and maximum erosion rate stage) of the cumulative erosion-time curve. Results indicate that the gas mixture nitrogen content strongly influences the phases' formation and its distribution on the nitrided layer. Better cavitation erosion resistance which was attributed to the finer and more homogeneous distribution of the nitrided layer phases was verified for samples treated at 5% N2. Otherwise, worse cavitation erosion behavior for samples nitrided at 20% N2 is supposed to be due to the formation of multiphase compound layer constituted by Fe4N + Fe2-3N + CrN, which can infer residual stress in treated surface.

  2. A compact railgun accelerator for millimeter-sized dielectric solid armatures

    NASA Astrophysics Data System (ADS)

    Zhukov, B. G.; Kurakin, R. O.; Sakharov, V. A.; Bobashev, S. V.; Ponyaev, S. A.; Reznikov, B. I.; Rozov, S. I.

    2013-06-01

    Millimeter-sized dielectric solid armatures have been accelerated in a compact railgun system. It is shown that application of an external pulsed magnetic field can solve the problem of catastrophic erosion of electrodes at the initial stage and accelerate small armatures up to a velocity of about 6 km/s.

  3. TRMM Gridded Text Products

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2007-01-01

    NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.

  4. Thermal Plasma Flow During Plasmaspheric Erosion

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2006-01-01

    Our picture of plasmaspheric erosion is dominated by a simple model of corotational and enhanced convective motion and by many decades of plasmapause boundary measurement. Observational evidence for the plasma motion that lowers the outer plasmaspheric boundary has largely been unavailable. A new analysis technique for the IMAGE Mission extreme ultraviolet imager (EUV) instrument now offers to reveal motion in the plasmaspheric boundary layer as enhanced global and meso-scale convection penetrates the quite-time plasmasphere. IMAGE EUV provides good global coverage of the striking plasmaspheric erosion that took place on July 10,2000. During this erosion event divergent flows in the vicinity of the plasmapause and centered initially near 2 hours MLT have been found. Over a period of about 1 hour the center of divergent flow drifts dawnward to almost 4 hours MLT. Plasma flows during this storm and others imaged by IMAGE EUV will be discussed along with their implication for the process of plasmaspheric erosion.

  5. The role of fluoride in erosion therapy.

    PubMed

    Huysmans, Marie-Charlotte; Young, Alix; Ganss, Carolina

    2014-01-01

    The role of fluoride in erosion therapy has long been questioned. However, recent research has yielded positive results. In this chapter, an overview of the literature is provided regarding the application of fluorides in the prevention and treatment of erosion and erosive wear. The results are presented and discussed for different fluoride sources such as monovalent and polyvalent fluorides, and for different vehicles such as toothpastes, solutions and rinses, as well as varnishes and gels. It is concluded that fluoride applications are very likely to be of use in the preventive treatment of erosive wear. Most promising are high-concentration, acidic formulations and the polyvalent fluoride sources, with the best evidence available for stannous fluoride. However, the evidence base for clinical effectiveness is still small.

  6. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  7. Coastal erosion in Sicily: geomorphologic impact and mitigation (Italy)

    NASA Astrophysics Data System (ADS)

    Liguori, V.; Manno, G.

    2009-04-01

    coastal units, in low-coastline and mountainous, with average rates of 29%. The main methods available today for the protection of coastlines in Sicily, are falling in the first approximation in hard (structural), and soft and soft, based not only on nutrition artificial beaches but also on interventions with low environmental impact as the reduction of losses sediments. The right approach is not only in stabilizing the various shores, but also in not induce or accelerate the erosion of the adjacent areas. Indeed this impact accompanies almost all the hard interventions achieved in past years. It is essential to carry out a verification of the effectiveness of the defence of the coast from erosion and structural interventions of nourishment in terms of impact on coastal marine and coastal environment. We started a series of experimental analysis based on the application of new techniques for relief based on remote sensing as the major techniques performed with satellite radar (SAR), measurements morph-altitude high resolution made with the laser system by plane (LIDAR) and precise measurements on the behaviour of works and river mouths with intelligences cameras. The most dominant climate change involve the precipitation and temperature. Temperature is particularly important in snow-dominated basins and in coastal areas, the latter due to the impact of temperature on sea level. Moreover we must say that (as mentioned in 4th Report IPCC) the shores are projected to be exposed to increasing risks, including coastal erosion, due to climate change and sea level rise. Infrastructure in coastal areas is vulnerable to damage from sea-level rise, flooding, and other storms. This effect will be exacerbated by increasing human-induced pressures on coastal areas. Keywords: erosion, shores, coastal defend, monitoring.

  8. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel

    NASA Astrophysics Data System (ADS)

    Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.

    2015-11-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm2 and 809 Ω.cm2, respectively.

  9. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel

    PubMed Central

    Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.

    2015-01-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm2 and 809 Ω.cm2, respectively. PMID:26561231

  10. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel.

    PubMed

    Naz, M Y; Ismail, N I; Sulaiman, S A; Shukrullah, S

    2015-11-12

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.

  11. Progress in Grid Generation: From Chimera to DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  12. Erosion patterns on dissolving blocks

    NASA Astrophysics Data System (ADS)

    Courrech du Pont, Sylvain; Cohen, Caroline; Derr, Julien; Berhanu, Michael

    2016-04-01

    Patterns in nature are shaped under water flows and wind action, and the understanding of their morphodynamics goes through the identification of the physical mechanisms at play. When a dissoluble body is exposed to a water flow, typical patterns with scallop-like shapes may appear [1,2]. These shapes are observed on the walls of underground rivers or icebergs. We experimentally study the erosion of dissolving bodies made of salt, caramel or ice into water solutions without external flow. The dissolving mixture, which is created at the solid/liquid interface, undergoes a buoyancy-driven instability comparable to a Rayleigh-Bénard instability so that the dissolving front destabilizes into filaments. This mechanism yields to spatial variations of solute concentration and to differential dissolution of the dissolving block. We first observe longitudinal stripes with a well defined wavelength, which evolve towards chevrons and scallops that interact and move again the dissolving current. Thanks to a careful analysis of the competing physical mechanisms, we propose scaling laws, which account for the characteristic lengths and times of the early regime in experiments. The long-term evolution of patterns is understood qualitatively. A close related mechanism has been proposed to explain structures observed on the basal boundary of ice cover on brakish lakes [3] and we suggest that our experiments are analogous and explain the scallop-like patterns on iceberg walls. [1] P. Meakin and B. Jamtveit, Geological pattern formation by growth and dissolution in aqueous systems, Proc. R. Soc. A 466, 659-694 (2010). [2] P.N. Blumberg and R.L. Curl, Experimental and theoretical studies of dissolution roughness, J. Fluid Mech. 65, 735-751 (1974). [3] L. Solari and G. Parker, Morphodynamic modelling of the basal boundary of ice cover on brakish lakes, J.G.R. 118, 1432-1442 (2013).

  13. Basic investigation of turbine erosion phenomena

    NASA Technical Reports Server (NTRS)

    Pouchot, W. D.; Kothmann, R. E.; Fentress, W. K.; Heymann, F. J.; Varljen, T. C.; Chi, J. W. H.; Milton, J. D.; Glassmire, C. M.; Kyslinger, J. A.; Desai, K. A.

    1971-01-01

    An analytical-empirical model is presented of turbine erosion that fits and explains experience in both steam and metal vapor turbines. Because of the complexities involved in analyzing turbine problems, in a pure scientific sense, it is obvious that this goal can be only partially realized. Therefore, emphasis is placed on providing a useful model for preliminary erosion estimates for given configurations, fluids, and flow conditions.

  14. Airphoto analysis of erosion control practices

    NASA Technical Reports Server (NTRS)

    Morgan, K. M.; Morris-Jones, D. R.; Lee, G. B.; Kiefer, R. W.

    1980-01-01

    The Universal Soil Loss Equation (USLE) is a widely accepted tool for erosion prediction and conservation planning. In this study, airphoto analysis of color and color infrared 70 mm photography at a scale of 1:60,000 was used to determine the erosion control practice factor in the USLE. Information about contour tillage, contour strip cropping, and grass waterways was obtained from aerial photography for Pheasant Branch Creek watershed in Dane County, Wisconsin.

  15. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, John E.; Dinsmore, Stanley R.; Chandler, Edward W.

    1986-01-01

    A four-port disc valve for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of .alpha. silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions.

  16. Assessing wind erosion in South Tunisia

    NASA Astrophysics Data System (ADS)

    Taieb Labiadh, Mohamed; Bouet, Christel; Bergametti, Gilles; Rajot, Jean Louis; Laurent, Benoit; Marticorena, Béatrice

    2013-04-01

    Wind erosion in arid and semi-arid regions of South Tunisia is the main process of land degradation because the precipitations in these areas are low (below 200 mm) and the soils are shallow and sandy, that is to say the easiest to erode [Chepil, 1951]. Even sporadic, precipitations are sufficient to allow vegetation and agriculture (crops and livestock farming) to develop in these regions. In natural conditions, the perennial vegetation cover (even low) protects soils against wind erosion and surface crusting contributes to the stability of the non-vegetated areas by increasing soil cohesion. The use of these natural surfaces for agricultural purposes disturbs this equilibrium and favours wind erosion (i) by lowering/suppressing the vegetal cover, and (ii) by destroying soil crusts, by tillage or by livestock grazing and trampling. In South Tunisia, the use of modern ploughing techniques, replacing the traditional ones, has led to an increase in wind erosion. As an example, the increasing use of the one-way disc plough instead of the traditional tiller plough has had important consequences on the land degradation by modifying soil structure and the characteristics of soil surfaces. The measurements of the wind erosion fluxes acquired by Labiadh et al. [2013] in a field of South Tunisia ploughed using different tillage tools (mouldboard, tillage, disc) exhibited differences in the wind erosion fluxes of about a factor 4 between disc and tiller and of an order of magnitude between disc and mouldboard. There is a lack of quantitative estimates of this phenomenon at the regional scale. The aim of this work is to develop and validate a numerical model that will allow wind erosion quantification in South Tunisia. Once validated, the methodology and the model could be used to quantify wind erosion in other semi-arid cultivated regions of the world.

  17. Scaled Lunar Module Jet Erosion Experiments

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Scholl, Harland F.

    1966-01-01

    An experimental research program was conducted on the erosion of particulate surfaces by a jet exhaust. These experiments were scaled to represent the lunar module (LM) during landing. A conical cold-gas nozzle simulating the lunar module nozzle was utilized. The investigation was conducted within a large vacuum chamber by using gravel or glass beads as a simulated soil. The effects of thrust, descent speed, nozzle terminal height, particle size on crater size, and visibility during jet erosion were determined.

  18. Enhancing control of grid distribution in algebraic grid generation

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I.-P.; Roelke, R. J.

    1992-01-01

    Three techniques are presented to enhance the control of grid-point distribution for a class of algebraic grid generation methods known as the two-, four- and six-boundary methods. First, multidimensional stretching functions are presented, and a technique is devised to construct them based on the desired distribution of grid points along certain boundaries. Second, a normalization procedure is proposed which allows more effective control over orthogonality of grid lines at boundaries and curvature of grid lines near boundaries. And third, interpolating functions based on tension splines are introduced to control curvature of grid lines in the interior of the spatial domain. In addition to these three techniques, consistency conditions are derived which must be satisfied by all user-specified data employed in the grid generation process to control grid-point distribution. The usefulness of the techniques developed in this study was demonstrated by using them in conjunction with the two- and four-boundary methods to generate several grid systems, including a three-dimensional grid system in the coolant passage of a radial turbine blade with serpentine channels and pin fins.

  19. Utilizing of magnetic parameters for evaluation of soil erosion rates on two different agricultural sites

    NASA Astrophysics Data System (ADS)

    Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.

    2015-12-01

    Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  20. GridTool: A surface modeling and grid generation tool

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1995-01-01

    GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.

  1. Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology using nematodes as a model organism

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.

    2013-11-01

    Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g.~economic, environmental and social). Global intensification of agroecosystems is a recognised major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Transport and redistribution of biota by soil erosion has hitherto been ignored and thus is poorly understood. With the move to sustainable intensification this is a key knowledge gap that needs to be addressed. Here we highlight the erosion-energy and effective-erosion-depth continuum in soils, differentiating between different forms of soil erosion, and argue that nematodes are an appropriate model taxa to investigate impacts of erosion on soil biota across scales. We review the different known mechanisms of soil erosion that impact on soil biota in general, and nematodes in particular, and highlight the few detailed studies, primarily from tropical regions, that have considered soil biota. Based on the limited literature and using nematodes as a model organism we outline future research priorities to initially address the important interrelationships between soil erosion processes and soil biota.

  2. Smart Grid Risk Management

    NASA Astrophysics Data System (ADS)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  3. Production of BaBar Skimmed Analysis Datasets Using the Grid

    SciTech Connect

    Brew, C.A.J.; Wilson, F.F.; Castelli, G.; Adye, T.; Roethel, W.; Luppi, E.; Andreotti, D.; Smith, D.; Khan, A.; Barrett, M.; Barlow, R.; Bailey, D.; /Manchester U.

    2011-11-10

    The BABAR Collaboration, based at Stanford Linear Accelerator Center (SLAC), Stanford, US, has been performing physics reconstruction, simulation studies and data analysis for 8 years using a number of compute farms around the world. Recent developments in Grid technologies could provide a way to manage the distributed resources in a single coherent structure. We describe enhancements to the BABAR experiment's distributed skimmed dataset production system to make use of European Grid resources and present the results with regard to BABAR's latest cycle of skimmed dataset production. We compare the benefits of a local and Grid-based systems, the ease with which the system is managed and the challenges of integrating the Grid with legacy software. We compare job success rates and manageability issues between Grid and non-Grid production.

  4. Raytracing Dynamic Scenes on the GPU Using Grids.

    PubMed

    Guntury, S; Narayanan, P J

    2012-01-01

    Raytracing dynamic scenes at interactive rates have received a lot of attention recently. We present a few strategies for high performance raytracing on a commodity GPU. The construction of grids needs sorting, which is fast on today's GPUs. The grid is thus the acceleration structure of choice for dynamic scenes as per-frame rebuilding is required. We advocate the use of appropriate data structures for each stage of raytracing, resulting in multiple structure building per frame. A perspective grid built for the camera achieves perfect coherence for primary rays. A perspective grid built with respect to each light source provides the best performance for shadow rays. Spherical grids handle lights positioned inside the model space and handle spotlights. Uniform grids are best for reflection and refraction rays with little coherence. We propose an Enforced Coherence method to bring coherence to them by rearranging the ray to voxel mapping using sorting. This gives the best performance on GPUs with only user-managed caches. We also propose a simple, Independent Voxel Walk method, which performs best by taking advantage of the L1 and L2 caches on recent GPUs. We achieve over 10 fps of total rendering on the Conference model with one light source and one reflection bounce, while rebuilding the data structure for each stage. Ideas presented here are likely to give high performance on the future GPUs as well as other manycore architectures. PMID:21383409

  5. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    PubMed

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  6. AnnAGNPS Ephemeral Gully Erosion Simulation Technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheet and rill erosion conservation management technologies, such as the Revised Universal Soil Loss Equation (RUSLE), have provided valuable tools in reducing cropland erosion, but have not considered the impact of ephemeral gully erosion. Tillage-induced ephemeral gully erosion has been shown to ...

  7. Grid crusher apparatus and method

    SciTech Connect

    McDaniels, J.D. Jr.

    1994-01-11

    A grid crusher apparatus and method are provided for a nuclear fuel rod consolidation system. Spacer grids are crushed within a basket which is then placed in a storage canister. The grid crusher apparatus has a ram assembly and a basket driving mechanism. The ram assembly has a sleeve ram and a central ram. The sleeve ram surrounds the central ram which is longitudinally movable within the sleeve ram. The central ram protrudes from the sleeve ram at a ram contact end and is retractable upon application of a preselected force to the central ram so that the central ram is flush with the sleeve ram at the ram contact end. The basket driving mechanism is configured to move the basket containing a spacer grid towards the ram contact end so that the spacer grid is crushed within the basket. The spacer grid is crushed by the combination of successive forces from the central ram and the sleeve ram, respectively. Essentially, the central portion of the spacer grid is crushed first, and then the remaining outer portion of the spacer grid is crushed to complete the crushing action of the spacer grid. The foregoing process is repeated for other spacer grids until the basket reaches a predetermined allowable capacity, and then the basket is stored in a storage canister. 11 figs.

  8. Forests and Soil Erosion across Europe

    NASA Astrophysics Data System (ADS)

    Bathurst, J. C.

    2012-04-01

    Land use and climate change threaten the ability of Europe's forests to provide a vital service in limiting soil erosion, e.g. from forest fires and landslides. However, our ability to define the threat and to propose mitigation measures suffers from two deficiencies concerning the forest/erosion interface: 1) While there have been a considerable number of field studies of the relationship between forest cover and erosion in different parts of Europe, the data sets are scattered among research groups and a range of literature outlets. There is no comprehensive overview of the forest/erosion interface at the European scale, essential for considering regional variations and investigating the effects of future changes in land use and climate. 2) Compared with forest/water studies, we have a poorer quantitative appreciation of forest/erosion interactions. In the forest/water area it is possible to make quantitative statements such as that a 20% change in forest cover across a river catchment is needed for the effect on annual water yield to be measurable or that a forested catchment in upland UK has an annual water yield around 15% lower than an otherwise comparable grassland catchment. Comparable statements are not yet possible for forest/erosion interactions and there are uncertainties in the mathematical representation of forest/erosion interactions which limit our ability to make predictions, for example of the impact of forest loss in a given area. This presentation therefore considers the next step in improving our predictive capability. It proposes the integration of existing research and data to construct the "big picture" across Europe, i.e. erosion rates and sediment yields associated with forest cover and its loss in a range of erosion regimes (e.g. post-forest fire erosion or post-logging landslides). This would provide a basis for generalizations at the European scale. However, such an overview would not form a predictive capability. Therefore it is also

  9. Evaluating the Information Power Grid using the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    VanderWijngaartm Rob F.; Frumkin, Michael A.

    2004-01-01

    The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.

  10. Effect of dilute acid on the accelerated weathering of wood

    SciTech Connect

    Williams, R.S.

    1988-02-01

    Western red cedar (Thuja plicata) specimens were soaked in acid solutions to determine the effect of acid conditions (such as low pH fog) on the weathering of wood. Daily 1-hour soaking in dilute sulfurous, sulfuric, or nitric acid (pH 2.0, 2.5, 3.0, 3.5, or 4.0) increased the rate of accelerated (xenon arc) weathering of the specimens compared to controls soaked in distilled/deionized water. Weathering was manifested as the erosion rate of the wood surface and was determined gravimetrically be fitting the weight loss over time to a linear model. This method detected significant differences between acid-treated specimens and untreated controls within 300 hours of accelerated weathering. The erosion rate was dependent on the acid type and pH. Sulfurous acid treatment caused the fastest rate of erosion, followed by sulfuric then nitric acid. None of the acids affected the erosion rate at pH 3.5 or above. Below this threshold, the rate of erosion increased as the hydrogen ion concentration increased. Sugar analysis of residues from the acids and the distilled water used to soak the wood indicated acid-dependent degradation of polysaccharides.

  11. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data

    NASA Astrophysics Data System (ADS)

    Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; Klik, A.; Kwaad, F. J. P. M.; Raclot, D.; Ionita, I.; Rejman, J.; Rousseva, S.; Muxart, T.; Roxo, M. J.; Dostal, T.

    2010-10-01

    An extensive database of short to medium-term erosion rates as measured on erosion plots in Europe under natural rainfall was compiled from the literature. Statistical analysis confirmed the dominant influence of land use and cover on soil erosion rates. Sheet and rill erosion rates are highest on bare soil; vineyards show the second highest soil losses, followed by other arable lands (spring crops, orchards and winter crops). A land with a permanent vegetation cover (shrubs, grassland and forest) is characterised by soil losses which are generally more than an order of magnitude lower than those on arable land. Disturbance of permanent vegetation by fire leads to momentarily higher erosion rates but rates are still lower than those measured on arable land. We also noticed important regional differences in erosion rates. Erosion rates are generally much lower in the Mediterranean as compared to other areas in Europe; this is mainly attributed to the high soil stoniness in the Mediterranean. Measured erosion rates on arable and bare land were related to topography (slope steepness and length) and soil texture, while this was not the case for plots with a permanent land cover. We attribute this to a fundamental difference in runoff generation and sediment transfer according to land cover types. On the basis of these results we calculated mean sheet and rill erosion rates for the European area covered by the CORINE database: estimated rill and interrill erosion rates are ca. 1.2 t ha - 1 year - 1 for the whole CORINE area and ca. 3.6 t ha - 1 year - 1 for arable land. These estimates are much lower than some earlier estimates which were based on the erroneous extrapolation of small datasets. High erosion rates occur in areas dominated by vineyards, the hilly loess areas in West and Central Europe and the agricultural areas located in the piedmont areas of the major European mountain ranges.

  12. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  13. Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds

    NASA Astrophysics Data System (ADS)

    Shi, Z. H.; Ai, L.; Li, X.; Huang, X. D.; Wu, G. L.; Liao, W.

    2013-08-01

    There are strong ties between land cover patterns and soil erosion and sediment yield in watersheds. The spatial configuration of land cover has recently become an important aspect of the study of geomorphological processes related to erosion within watersheds. Many studies have used multivariate regression techniques to explore the response of soil erosion and sediment yield to land cover patterns in watersheds. However, many landscape metrics are highly correlated and may result in redundancy, which violates the assumptions of a traditional least-squares approach, thus leading to singular solutions or otherwise biased parameter estimates and confidence intervals. Here, we investigated the landscape patterns within watersheds in the Upper Du River watershed (8973 km2) in China and examined how the spatial patterns of land cover are related to the soil erosion and sediment yield of watersheds using hydrological modeling and partial least-squares regression (PLSR). The results indicate that the watershed soil erosion and sediment yield are closely associated with the land cover patterns. At the landscape level, landscape characteristics, such as Shannon’s diversity index (SHDI), aggregation index (AI), largest patch index (LPI), contagion (CONTAG), and patch cohesion index (COHESION), were identified as the primary metrics controlling the watershed soil erosion and sediment yield. The landscape characteristics in watersheds could account for as much as 65% and 74% of the variation in soil erosion and sediment yield, respectively. Greater interspersion and an increased number of patch land cover types may significantly accelerate soil erosion and increase sediment export. PLSR can be used to simply determine the relationships between land-cover patterns and watershed soil erosion and sediment yield, providing quantitative information to allow decision makers to make better choices regarding landscape planning. With readily available remote sensing data and rapid

  14. The Volume Grid Manipulator (VGM): A Grid Reusability Tool

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.

  15. GridPP: the UK grid for particle physics.

    PubMed

    Britton, D; Cass, A J; Clarke, P E L; Coles, J; Colling, D J; Doyle, A T; Geddes, N I; Gordon, J C; Jones, R W L; Kelsey, D P; Lloyd, S L; Middleton, R P; Patrick, G N; Sansum, R A; Pearce, S E

    2009-06-28

    The start-up of the Large Hadron Collider (LHC) at CERN, Geneva, presents a huge challenge in processing and analysing the vast amounts of scientific data that will be produced. The architecture of the worldwide grid that will handle 15 PB of particle physics data annually from this machine is based on a hierarchical tiered structure. We describe the development of the UK component (GridPP) of this grid from a prototype system to a full exploitation grid for real data analysis. This includes the physical infrastructure, the deployment of middleware, operational experience and the initial exploitation by the major LHC experiments. PMID:19451101

  16. GridPP: the UK grid for particle physics.

    PubMed

    Britton, D; Cass, A J; Clarke, P E L; Coles, J; Colling, D J; Doyle, A T; Geddes, N I; Gordon, J C; Jones, R W L; Kelsey, D P; Lloyd, S L; Middleton, R P; Patrick, G N; Sansum, R A; Pearce, S E

    2009-06-28

    The start-up of the Large Hadron Collider (LHC) at CERN, Geneva, presents a huge challenge in processing and analysing the vast amounts of scientific data that will be produced. The architecture of the worldwide grid that will handle 15 PB of particle physics data annually from this machine is based on a hierarchical tiered structure. We describe the development of the UK component (GridPP) of this grid from a prototype system to a full exploitation grid for real data analysis. This includes the physical infrastructure, the deployment of middleware, operational experience and the initial exploitation by the major LHC experiments.

  17. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  18. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  19. TASMANIAN Sparse Grids Module

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  20. INSIGHTS INTO PREVENTIVE MEASURES FOR DENTAL EROSION

    PubMed Central

    Magalhães, Ana Carolina; Wiegand, Annette; Rios, Daniela; Honório, Heitor Marques; Buzalaf, Marília Afonso Rabelo

    2009-01-01

    Dental erosion is defined as the loss of tooth substance by acid exposure not involving bacteria. The etiology of erosion is related to different behavioral, biological and chemical factors. Based on an overview of the current literature, this paper presents a summary of the preventive strategies relevant for patients suffering from dental erosion. Behavioral factors, such as special drinking habits, unhealthy lifestyle factors or occupational acid exposure, might modify the extent of dental erosion. Thus, preventive strategies have to include measures to reduce the frequency and duration of acid exposure as well as adequate oral hygiene measures, as it is known that eroded surfaces are more susceptible to abrasion. Biological factors, such as saliva or acquired pellicle, act protectively against erosive demineralization. Therefore, the production of saliva should be enhanced, especially in patients with hyposalivation or xerostomia. With regard to chemical factors, the modification of acidic solutions with ions, especially calcium, was shown to reduce the demineralization, but the efficacy depends on the other chemical factors, such as the type of acid. To enhance the remineralization of eroded surfaces and to prevent further progression of dental wear, high-concentrated fluoride applications are recommended. Currently, little information is available about the efficacy of other preventive strategies, such as calcium and laser application, as well as the use of matrix metalloproteinase inhibitors. Further studies considering these factors are required. In conclusion, preventive strategies for patients suffering from erosion are mainly obtained from in vitro and in situ studies and include dietary counseling, stimulation of salivary flow, optimization of fluoride regimens, modification of erosive beverages and adequate oral hygiene measures. PMID:19274390

  1. Hydro-abrasive erosion: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Winkler, K.

    2014-03-01

    The number of hydro power plants with hydro-abrasive erosion is increasing worldwide. An overall approach is needed to minimize the impact of this phenomenon. Already at the start of the planning phase an evaluation should be done to quantify the erosion and the impact on the operation. For this, the influencing parameters and their impact on the erosion have to be known. The necessary information for the evaluation comprises among others the future design, the particle parameters of the water, which will pass the turbine, and the power plant owner's framework for the future operation like availability or maximum allowable efficiency loss, before an overhaul needs to be done. Based on this evaluation of the erosion, an optimised solution can then be found, by analysing all measures in relation to investments, energy production and maintenance costs as decision parameters. Often a more erosion-resistant design, instead of choosing the turbine design with the highest efficiency, will lead to higher revenue. The paper will discuss the influencing parameters on hydro-abrasive erosion and the problems to acquire this information. There are different optimisation possibilities, which will be shown in different case studies. One key aspect to reduce the erosion and prolong the operation time of the components is to coat all relevant parts. But it is very important that this decision is taken early in the design stage, as the design has to be adapted to the requirements of the coating process. The quality of coatings and their impact on the operation will be discussed in detail in the paper as due to the non-availability of standards many questions arise in projects.

  2. Merging field survey and LiDAR technology for the analysis of debris-flow erosion

    NASA Astrophysics Data System (ADS)

    Bertoldi, G.; Reginato, M.; D'Agostino, V.

    2012-04-01

    Hazardous debris flows are usually triggered by rainfall or snowmelt on steep mountainside and might increase due to an erosive self-feeding from channel bed and banks. While trigger and deposition mechanisms might be more directly investigated in terms of sediment volumes in play, channel network erosions are quantitatively more complex particularly if a continuous detailed trend of the phenomenon is researched. In fact, data on debris-flow channel erosion are quite rare and often contradictory. In the last decade the increase of remotely sensed technologies such laser scanners has improved the quality and the detail of terrain information, thus providing a suitable tool for earth surface processes analysis. In this work the topic of debris-flow erosion has been analyzed through intensive field surveys and high resolution topography (before and after event) of two adjacent catchments, where an extreme rainfall event was recorded. Debris flows occurred on the 15th of August 2010 in the 'Rio Val Molinara' and 'Rio Val del Lago' torrents (Baselga di Pinè, Trento, Italy) seriously damaging the village of Campolongo. Event magnitudes were estimated equal to 40.000 and 10.000 m3 respectively and were almost completely generated by channel and bank erosion. The two catchments have a drainage area of about 1 km2 and are characterized by porphyritic lithology and a dominant cover of conifer forest. Both basins were considered as sediment supply limited before the event and this evaluation was corroborated by more than 150 years of inactivity resulting from historical sources. Field surveys have been carried out in summer 2011, providing geomorphic estimation of type of process (debris flow/debris flood), removed volumes, post-event sediment availability, local peak discharges and flow velocities of 150 homogeneous reaches subdivided into 200 cross sections. Field data were then compared with pre and post-event using high resolution DTMs (1 m grid cell size) derived from

  3. The EUAsiaGrid Project

    NASA Astrophysics Data System (ADS)

    Paganoni, Marco

    The EUAsiaGrid proposal contributes to the aims of the Research Infrastructures part of the EU Seventh Framework Programme (FP7) by promoting interoperation between the European and the Asian-Pacific Grids. The project, with a total number of 15 partners coordinated by INFN, started on April 1st 2008. It will disseminate the knowledge about the EGEE Grid infrastructure, organize specific training events and support applications both within the scientific communities with an already long experience in the Computing Grids (High Energy Physics, Computational Chemistry, Bioinformatics and Biomedics) and in the most recent ones (Social Sciences, Disaster Mitigation, Cultural Heritage). Ultimately the EUAsiaGrid project will pave the way towards a common e-Infrastructure with the European and the Asian Grids.

  4. Prepares Overset Grids for Processing

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less

  5. Prepares Overset Grids for Processing

    SciTech Connect

    Barnette, Daniel W.

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically load balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.

  6. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known

  7. Internal erosion during soil pipe flow: Role in gully erosion and hillslope instability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many field observations have lead to speculation on the role of piping in embankment failures, landslides, and gully erosion. However, there has not been a consensus on the subsurface flow and erosion processes involved and inconsistent use of terms have exasperated the problem. One such piping proc...

  8. On unstructured grids and solvers

    NASA Technical Reports Server (NTRS)

    Barth, T. J.

    1990-01-01

    The fundamentals and the state-of-the-art technology for unstructured grids and solvers are highlighted. Algorithms and techniques pertinent to mesh generation are discussed. It is shown that grid generation and grid manipulation schemes rely on fast multidimensional searching. Flow solution techniques for the Euler equations, which can be derived from the integral form of the equations are discussed. Sample calculations are also provided.

  9. Results from the Southeast Oahu, Hawaii, Shoreline Erosion Study Utilizing the PX and PXT Shoreline Erosion Rate Methods

    NASA Astrophysics Data System (ADS)

    Romine, B. M.; Genz, A.; Fletcher, C. H.; Frazer, L. N.; Barbee, M. M.; Lim, S.; Dyer, M.

    2007-12-01

    It is imperative that coastal erosion studies produce valid erosion rates and erosion hazard predictions to aid in the development of public policy and protect coastal resources. Currently, the Single-Transect method is the most common shoreline change model, which calculates a rate at each shore-normal transect without regard to influences of data from adjacent transects along a beach. Improving on Single-Transect, the University of Hawaii Coastal Geology Group has developed the PX (Polynomial in distance X) and PXT (Polynomial in distance X and Time) shoreline change rate calculation methods, which model all the shoreline positions within a beach simultaneously using polynomial techniques. PX is a special case of PXT that models shoreline change rates spatially along a beach. PXT not only models the shoreline change spatially, but it lets the rate change with time (acceleration). This is an important advance, as beaches may not erode or accrete at a constant (linear) rate. A linear sum of basis functions characterizes the shoreline change rate for both PX and PXT. These methods are an improvement on previous methods as they produce more meaningful, i.e., statistically significant rates and erosion hazard predictions. We use an information criterion (gMDL) to (1) identify the number of coefficients of the basis functions that are needed to describe shoreline change in PX and PXT, and (2) compare different methods to determine which method best describes shoreline change. The southeast coastline of Oahu, Hawaii, features a range of beach morphologies and littoral dynamics well suited for further testing of the PX and PXT shoreline change rate calculation methods. The PX and PXT methods find significant rates for 70% of the study area versus 28% significant rates with the Single-Transect method. In companion with the work presented by Ayesha Genz on the PX and PXT rate methods, we present results from the Southeast Oahu Shoreline Study as a demonstration of the

  10. Does the electric power grid need a room temperature superconductor?

    NASA Astrophysics Data System (ADS)

    Malozemoff, A. P.

    2013-11-01

    Superconductivity can revolutionize electric power grids, for example with high power underground cables to open urban power bottlenecks and fault current limiters to solve growing fault currents problems. Technology based on high temperature superconductor (HTS) wire is beginning to meet these critical needs. Wire performance is continually improving. For example, American Superconductor has recently demonstrated long wires with up to 500 A/cm-width at 77 K, almost doubling its previous production performance. But refrigeration, even at 77 K, is a complication, driving interest in discovering room temperature superconductors (RTS). Unfortunately, short coherence lengths and accelerated flux creep will make RTS applications unlikely. Existing HTS technology, in fact, offers a good compromise of relatively high operating temperature but not so high as to incur coherence-length and flux-creep limitations. So - no, power grids do not need RTS; existing HTS wire is proving to be what grids really need.

  11. Vegetation effects on soil water erosion rates and nutrient losses at Santa Catarina highlands, south Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.

    2009-04-01

    Water erosion involves three main processes: detachment, transport and deposition of soil particles. The main factors affecting water erosion are rainfall, soil, topography, soil management and land cover and use. Soil erosion potential is increased if the soil has no or very little vegetative cover of plants and/or crop residues, whereas plant and residue cover substantially decrease rates of soil erosion. Plant and residue cover protects the soil from raindrop impact and splash, tends to slow down the movement of surface runoff and allows excess surface water to infiltrate. Moreover, plant and residue cover improve soil physical, chemical and biological properties. Soils with improved structure have a greater resistance to erosion. By contrast, accelerated soil erosion is accentuated by deforestation, biomass burning, plowing and disking, cultivation of open-row crops, etc. The erosion-reducing effectiveness of plant and/or residue covers depends on the type, extent and quantity of cover. Vegetation and residue combinations that completely cover the soil are the most efficient in controlling soil. Partially incorporated residues and residual roots are also important, as these provide channels that allow surface water to move into the soil. The effectiveness of any crop, management system or protective cover also depends on how much protection is available at various periods during the year, relative to the amount of erosive rainfall that falls during these periods. Most of the erosion on annual row crop land can be reduced by leaving a residue cover greater after harvest and over the winter months, or by inter-seeding a forage crop. Soil erosion potential is also affected by tillage operations and tillage system. Conservation tillage reduces water erosion in relation to conventional tillage by increasing soil cover and soil surface roughness. Here, we review the effect of vegetation on soil erosion in the Santa Catarina highlands, south of Brazil, under

  12. Constraints on the glacial erosion rule

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric

    2016-04-01

    It is thought that glaciers erode their underlying bedrock mainly through abrasion and quarrying. Theories predict erosion to be proportional to ice-sliding velocity raised to some power: ˙e = Kguls (1) where ė is the erosion rate, and Kg a proportionality constant and l an exponent. By implementing such a rule in numerical models, it has been possible to reproduce typical glacial landscape features, such as U-shape valleys, hanging valleys, glacial cirques or fjords. Although there have been great advances in the level of sophistication of these models, for example through the inclusion of high-order ice dynamics and subglacial hydrology, the proportionality constant, and the exponent have remained poorly constrained parameters. Recently, two independent studies in the Antarctic Peninsula and Patagonian Andes (Koppes et al., 2015) and the Franz Josef Glacier, New Zealand (Herman et al., 2015) simultaneously collected erosion rate and ice velocity data to find that erosion depends non-linearly on sliding velocity, and that the exponent on velocity is about 2. Such a nonlinear rule is appealing because it may, in part, explain the observed variations in erosion rates globally. Furthermore, an exponent about 2 closely matches theoretical predictions for abrasion. Although it is tempting to argue that abrasion is the dominant process for fast flowing glaciers like the Franz Josef Glacier, there is a clear need for more data and better quantification for the role of quarrying. Both studies also led to very similar values for the proportionality constant Kg. These new results therefore imply that glacial erosion processes might be better constrained than previously thought. Given that glacial velocity can nowadays be measured and modeled at an unprecedented resolution, it may potentially become possible to use glacial erosion models in a predictive manner. Herman, F. et al. "Erosion by an Alpine glacier." Science 350.6257 (2015): 193-195. Koppes, M. et al. "Observed

  13. Potential for monitoring soil erosion features and soil erosion modeling components from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Langran, K. J.

    1983-01-01

    Accurate estimates of soil erosion and its effects on soil productivity are essential in agricultural decision making and planning from the field scale to the national level. Erosion models have been primarily developed for designing erosion control systems, predicting sediment yield for reservoir design, predicting sediment transport, and simulating water quality. New models proposed are more comprehensive in that the necessary components (hydrology, erosion-sedimentation, nutrient cycling, tillage, etc.) are linked in a model appropriate for studying the erosion-productivity problem. Recent developments in remote sensing systems, such as Landsat Thematic Mapper, Shuttle Imaging Radar (SIR-B), etc., can contribute significantly to the future development and operational use of these models.

  14. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a

  15. Modeling overland flow-driven erosion across a watershed DEM using the Landlab modeling framework.

    NASA Astrophysics Data System (ADS)

    Adams, J. M.; Gasparini, N. M.; Tucker, G. E.; Hobley, D. E. J.; Hutton, E. W. H.; Nudurupati, S. S.; Istanbulluoglu, E.

    2015-12-01

    Many traditional landscape evolution models assume steady-state hydrology when computing discharge, and generally route flow in a single direction, along the path of steepest descent. Previous work has demonstrated that, for larger watersheds or short-duration storms, hydrologic steady-state may not be achieved. In semiarid regions, often dominated by convective summertime storms, landscapes are likely heavily influenced by these short-duration but high-intensity periods of rainfall. To capture these geomorphically significant bursts of rain, a new overland flow method has been implemented in the Landlab modeling framework. This overland flow method routes a hydrograph across a landscape, and allows flow to travel in multiple directions out of a given grid node. This study compares traditional steady-state flow routing and incision methods to the new, hydrograph-driven overland flow and erosion model in Landlab. We propose that for short-duration, high-intensity precipitation events, steady-state, single-direction flow routing models will significantly overestimate discharge and erosion when compared with non-steady, multiple flow direction model solutions. To test this hypothesis, discharge and erosion are modeled using both steady-state and hydrograph methods. A stochastic storm generator is used to generate short-duration, high-intensity precipitation intervals, which drive modeled discharge and erosion across a watershed imported from a digital elevation model, highlighting Landlab's robust raster-gridding library and watershed modeling capabilities. For each storm event in this analysis, peak discharge at the outlet, incision rate at the outlet, as well as total discharge and erosion depth are compared between methods. Additionally, these results are organized by storm duration and intensity to understand how erosion rates scale with precipitation between both flow routing methods. Results show that in many cases traditional steady-state methods overestimate

  16. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  17. Grid Task Execution

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2007-01-01

    IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

  18. Cenozoic ice volume and margin erosion

    SciTech Connect

    Miller, K.C.; Fairbanks, R.G.; Mountain, G.S.

    1985-01-01

    Cenozoic benthic foraminiferal oxygen isotopic data indicates that the world was glaciated in the early Oligocene, middle Oligocene, latest Oligocene, and middle Miocene to Recent, but are insufficient to resolve if the world was ice free at other times. The authors relate Oligocene and younger intervals of ice growth to continental margin erosional events. Relationships between eustasy and continental margin sedimentation are controversial. Coastal onlap is indirectly linked with rising sea level, occurring either when subsidence exceeds the rate of sea level fall or during sea-level rise. Although chronostratigraphic breaks are often local in origin, inter-regional unconformities result from eustatic lowerings. Strong evidence for eustatic lowerings is provided by the incision of canyons on margins. Chronostratigraphic breaks and canyons have noted on the US and Irish margins near the lower/upper Oligocene and middle/upper Miocene boundaries. These periods of margin erosion are temporally linked with oxygen isotopic evidence for ice growth, with erosion correlating with the greatest rate of ice growth. If the Eocene was ice free, there may have been mechanistic differences between Eocene erosion and Oligocene to Recent glacio-eustatic erosion. The authors present seismic stratigraphic evidence from the New Jersey margin that indicates contrasting styles of margin erosion between the Lower Tertiary and Upper Tertiary.

  19. The effect of enamel proteins on erosion

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Carvalho, T. S.; Lussi, A.

    2015-10-01

    Enamel proteins form a scaffold for growing hydroxyapatite crystals during enamel formation. They are then almost completely degraded during enamel maturation, resulting in a protein content of only 1% (w/v) in mature enamel. Nevertheless, this small amount of remaining proteins has important effects on the mechanical and structural properties of enamel and on the electrostatic properties of its surface. To analyze how enamel proteins affect tooth erosion, human enamel specimens were deproteinated. Surface microhardness (SMH), surface reflection intensity (SRI) and calcium release of both deproteinated and control specimens were monitored while continuously eroding them. The deproteination itself already reduced the initial SMH and SRI of the enamel significantly (p < 0.001 and p < 0.01). During the course of erosion, the progression of all three evaluated parameters differed significantly between the two groups (p < 0.001 for each). The deproteinated enamel lost its SMH and SRI faster, and released more calcium than the control group, but these differences were only significant at later stages of erosion, where not only surface softening but surface loss can be observed. We conclude that enamel proteins have a significant effect on erosion, protecting the enamel and slowing down the progression of erosion when irreversible surface loss starts to occur.

  20. The effect of enamel proteins on erosion

    PubMed Central

    Baumann, T.; Carvalho, T. S.; Lussi, A.

    2015-01-01

    Enamel proteins form a scaffold for growing hydroxyapatite crystals during enamel formation. They are then almost completely degraded during enamel maturation, resulting in a protein content of only 1% (w/v) in mature enamel. Nevertheless, this small amount of remaining proteins has important effects on the mechanical and structural properties of enamel and on the electrostatic properties of its surface. To analyze how enamel proteins affect tooth erosion, human enamel specimens were deproteinated. Surface microhardness (SMH), surface reflection intensity (SRI) and calcium release of both deproteinated and control specimens were monitored while continuously eroding them. The deproteination itself already reduced the initial SMH and SRI of the enamel significantly (p < 0.001 and p < 0.01). During the course of erosion, the progression of all three evaluated parameters differed significantly between the two groups (p < 0.001 for each). The deproteinated enamel lost its SMH and SRI faster, and released more calcium than the control group, but these differences were only significant at later stages of erosion, where not only surface softening but surface loss can be observed. We conclude that enamel proteins have a significant effect on erosion, protecting the enamel and slowing down the progression of erosion when irreversible surface loss starts to occur. PMID:26468660

  1. Cluster growth modeling of plateau erosion

    NASA Technical Reports Server (NTRS)

    Stark, Colin P.

    1994-01-01

    The pattern of erosion of a plateau along an escarpment may be modeled usng cluster growth techniques, recently popularized in models of drainage network evolution. If erosion on the scarp takes place in discrete events at rates subject to local substrate strength, the whole range of behavior is described by a combination of three cluster growth mechanisms: invasion percolation, Eden growth and diffusion-limited aggregation (DLA). These model the relative importance of preexisting substrate strength, background weathering, and seepage weathering and erosion respectively. The rate of seepage processes is determined by the efflux of groundwater at the plateau margin, which in turn is determined by the pressure field in the plateau aquifer. If this process acted alone, it would produce erosion patterns in the form of Laplacian fractals, with groundwater recharge from a distant source, or Poissionian fractals, with groundwater recharge uniform over the plateau. DLA is used to mimic the Laplacian or Poissonian potential field and the corresponding seepage growth process. The scaling structure of clusters grown by pure DLA, invasion percolation, or Eden growth is well known; this study presents a model which combines all three growth mechanisms for the first time. Mixed growth processes create clusters with different scaling properties and morphologies over distinct length scale ranges, and this is demonstrable in natural examples of plateau erosion.

  2. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  3. Solid particle erosion of polymers and composites

    NASA Astrophysics Data System (ADS)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.

  4. Modelling erosion on a daily basis

    NASA Astrophysics Data System (ADS)

    Pikha Shrestha, Dhruba; Jetten, Victor

    2016-04-01

    Effect of soil erosion causing negative impact on ecosystem services and food security is well known. To assess annual erosion rates various empirical models have been extensively used in all the climatic regions. While these models are simple to operate and do not require lot of input data, the effect of extreme rain is not taken into account in the annual estimations. For analysing the effects of extreme rain the event- based models become handy. These models can simulate detail erosional processes including particle detachment, transportation and deposition of sediments during a storm. But they are not applicable for estimating annual erosion rates. Moreover storm event data may not be available everywhere which prohibits their extensive use. In this paper we describe a method by adapting the revised MMF model to assess erosion on daily basis so that the effects of extreme rains are taken into account. We couple it to a simple surface soil moisture balance on a daily basis and include estimation of daily vegetation cover changes. Annual soil loss is calculated by adding daily erosion rates. We compare the obtained results with that obtained from applying the revised MMF model in a case study in the Mamora plateau in northwest Morocco which is affected by severe gully formation. The results show clearly the effects of exceptional rain in erosional processes which cannot be captured in an annual model.

  5. Etiology of dental erosion--intrinsic factors.

    PubMed

    Scheutzel, P

    1996-04-01

    Dental erosion due to intrinsic factors is caused by gastric acid reaching the oral cavity and the teeth as a result of vomiting or gastroesophageal reflux. Since clinical manifestation of dental erosion does not occur until gastric acid has acted on the dental hard tissues regularly over a period of several years, dental erosion caused by intrinsic factors has been observed only in those diseases which are associated with chronic vomiting or persistent gastroesophageal reflux over a long period. Examples of such conditions include disorders of the upper alimentary tract, specific metabolic and endocrine disorders, cases of medication side-effects and drug abuse, and certain psychosomatic disorders, e.g. stress-induced psychosomatic vomiting, anorexia and bulimia nervosa or rumination. Based on a review of the medical and dental literature, the main symptoms of all disorders which must be taken into account as possible intrinsic etiological factors of dental erosion are thoroughly discussed with respect to the clinical picture, prevalence and risk of erosion.

  6. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  7. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  8. From the grid to the smart grid, topologically

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  9. Evaluation of cesium-137 conversion models and parameter sensitivity for erosion estimation.

    PubMed

    John Zhang, X C; Zhang, G H; Wei, X; Guan, Y H

    2015-05-01

    The Cs technique has been widely used to provide soil redistribution estimates since the 1970s. However, most Cs-conversion models remain theoretical and largely unvalidated. Our objectives were to validate the four widely used conversion models, examine model parameter sensitivity, and evaluate the potential of using kriging to improve soil redistribution estimation. Soil loss was measured from a 1.6-ha plot since 1978. Winter wheat ( L.) was grown primarily under conventional tillage. Soil samples in a 10-m grid were taken from the plot to estimate the Cs inventory. Soil redistribution rates were estimated using four models and were further interpolated using ordinary kriging. The parameter sensitivity analyses at the 95% confidence limits showed that reference inventory had the most impact on estimated water erosion, followed by particle size correction for erosion and tillage depth, with minimal impacts from mass depth, bulk density, and particle size correction for deposition. Compared with the measured water erosion, the relative errors of the mean net water erosion estimates across the entire plot without and with kriging were 28 and -17% for the proportional model (PM), 141 and 106% for the simplified mass balance model, 133 and 100% for the improved mass balance model (MBM2), and 109% for the extended MBM2 with tillage erosion (MBM3). Results indicated that the PM performed better than the mass balance models under the study conditions and that kriging improved mean soil redistribution estimates. However, the full potential of the MBM2 and MBM3 needs to be further evaluated under conditions where loss of newly deposited Cs exists.

  10. The Influence of Ephemeral Beaches on Alongshore Variability of Hard-rock Cliff Erosion

    NASA Astrophysics Data System (ADS)

    Vann Jones, E. C.; Rosser, N. J.; Brain, M.; Varley, S. J.

    2015-12-01

    The role of abrasion of rock cliffs is typically considered in the long-term presence of a beach. During monthly monitoring of hard rock cliff erosion along the North Yorkshire coast, UK, we have observed a number of small ephemeral beaches of highly variable duration and extent. The erosive significance of the temporary presence of sediment at the cliffs is unknown and we set out to examine whether observed alongshore variability in erosion can be linked to the presence of ephemeral beaches. We explore the temporal and spatial variability in sediment deposition and transport along a low-sediment rock coast foreshore, the controlling marine conditions and the effects on cliff erosion. We focus on a 500 m wide embayment set into 70 m high hard rock cliffs consisting of horizontally bedded Jurassic mudstone, shale, siltstone and sandstone. The bay has a wide, shallow gradient foreshore up to 300 m wide with highly variable topography. With the exception of an ephemeral beach (of widths up to approximately 150 m alongshore and 10 m cross-shore) the rock foreshore is typically sand-free, with failed material from the cliffs quickly removed from the cliff toe by the sea leaving only boulders. The high tidal range (6 m) and storm wave environment of the North Sea result in variable marine conditions at the site. We use magnetic sand tracers and a grid of foreshore and cliff face magnets to examine the sand transport across the foreshore and to identify the vertical extent of cliff face impacted by sand. We monitor the driving marine conditions on the foreshore using a network of current meters and wave pressure sensors. Erosion of the cliff face across the whole bay is monitored at high-resolution using terrestrial laser scanning to examine the spatial distribution of abrasion and the influence of the ephemeral beach.

  11. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  12. Prediction of cavitation erosion for marine applications

    NASA Astrophysics Data System (ADS)

    Maquil, T.; Yakubov, S.; Rung, T.

    2015-12-01

    The paper presents the development of a cavitation erosion prediction method. The approach is tailored to marine applications and embedded into a VoF-based procedure for the simulation of turbulent flows. Supplementary to the frequently employed Euler-Euler models, Euler-Lagrange approaches are employed to simulate cavitation. The study aims to convey the merits of an Euler-Lagrange approach for erosion simulations. Accordingly, the erosion model is able to separate different damage mechanisms, e.g. micro-jets, single and collective bubble collapse, and also quantifies their contribution to the total damage. Emphasis is devoted to the prediction of the cavitation extend, the influence of compressible effects and the performance of the material damage model in practical applications. Examples included refer to 2D validation test cases and reveal a fair predictive accuracy.

  13. [Is Dutch swimming pool water erosive?].

    PubMed

    Lokin, P A; Huysmans, M C

    2004-01-01

    Etiological factors in the development of dental erosion are usually listed as dietary acids, for instance in soft drinks and fruit juices, and intrinsic acid exposure due to gastro-intestinal disease or frequent vomiting. Quite often the list of causes in reviews and textbooks also includes frequent swimming. This paper evaluates the evidence behind this erosion etiology. The main disinfection techniques using gas chlorination and sodium hypochlorite are described, and their relative risk for development of low pH water is discussed. In the Netherlands only the relatively safe sodium hypochlorite method is used, and the quality of the water in public swimming pools is monitored monthly by independent test laboratories. Data for 2001 from such a test laboratory show that the percentage of low-pH results is very low (0.14%). It is concluded that the risk of dental erosion from frequent swimming in acidic pool water is probably negligible in the Netherlands.

  14. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  15. Degradation of structural ceramics by erosion

    SciTech Connect

    Routbort, J.L.

    1994-12-01

    Materials wastage by solid-particle erosion can be severe and can limit lifetimes. This paper will review the theoretical description of solid-particle erosion in brittle materials, which is well-developed for monolithic ceramics. The models can usually account for effects from the principal projectile properties of size, impact velocity, and impact angle. Materials parameters such as fracture toughness and hardness can be included. Steady-state erosion measurements on a wide variety of ceramics, ranging from Si single crystals to SiC-whisker-reinforced Al{sub 2}O{sub 3}, are reviewed and compared with the models. It is believed that R-curve behavior and/or particle fragmentation is responsible for discrepancies between theory and experimental results for composite ceramics. In addition, the theories make no attempt to describe threshold or incubation effects.

  16. NAS Grid Benchmarks: A Tool for Grid Space Exploration

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.

  17. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    PubMed

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans. PMID:26699461

  18. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    PubMed Central

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans. PMID:26699461

  19. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    PubMed

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  20. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    USGS Publications Warehouse

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  1. Changes in forcing factors affecting coastal and shallow water erosion in the future Arctic climate change projections.

    NASA Astrophysics Data System (ADS)

    Dobrynin, Mikhail; Razumov, Sergey; Brovkin, Victor; Ilyina, Tatiana; Grigoriev, Mikhail

    2016-04-01

    Driving factors of seabed and coastal erosion in the Arctic can be classified as thermal and mechanical. Thermal factors such as air and ocean temperatures affect the seabed and coastal ground temperatures. Mechanical factors such as ocean currents and surface gravity waves contribute to the seabed and costal erosion due to shear stress. Due to polar amplification, the Arctic experiences strong increase in air and water temperature, sea-ice loss and changes in the ocean and atmospheric circulation, temperature and wind distribution. These climatic changes lead to changes in factors driving seabed and coastal erosion, which is expected to accelerate in the shallow Arctic regions such as the Laptev sea and East Siberian sea. In these regions, the coastal line to a large extent consists of frozen rocks, sediments and organic soils including ground ice. The increase of erosion rate of the coastal line will increase the release of organic and inorganic matter from thawed permafrost. Dynamics of thermal and mechanical drivers of seabed and coastal erosion in the present and future climate change (RCP8.5 scenario) simulated by the CMIP5 version of the MPI Earth system model and wave model WAM will be presented. Special attention will be given to changes in the air temperature, wind dynamics and development of new waves system in the ``ice-free'' Arctic and its role in the seabed and coastal erosion.

  2. Erosion Patterns in Elkhorn Slough, Central California

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Garcia-Garcia, A.; Shipton, G.; Eby, R.; Unkeles, H.

    2014-12-01

    The Elkhorn Slough in central California has gone through periods of erosion and high energy currents in the 1870s and periods of more deposition and lower energy in the 1920s-1940s. Since the construction of jetties at Moss Landing Harbor in the 1940s, the harbor mouth has dramatically increased tidal currents and with them, the patterns of erosion. Current strong tidal incursion (particularly ebb tides) has changed this environment into a very erosive one, transforming the mud banks and channel floor quickly. In order to evaluate the erosion processes in the Slough's underwater sediments we conducted two seismic surveys in 2012 and 2014. The EdgeTech SB-424 full-spectrum sub-bottom CHIRP profiler, was used with a default pulse which generates a sweep frequency of 4 kHz - 24 kHz for 10 ms, and a vertical resolution of 0.4 m. This system performed ideally in this shallow environment. The chirp lines show channels that abrade layers of older sediment, and areas with a very highly reflective seafloor reflector that we interpret as coarse sediments. This erosive process is extremely pronounced near the ocean (in the western end) and in the middle of the channel. Comparison of the sedimentation at the mouth and farther inland suggests that the velocity of water is significantly greater at the mouth. We discuss the patterns of sedimentation/erosion in the mouth of the slough and away from the ocean. We also discuss the differences in two years' time and if there is any evidence of changes in the geological processes. If current patterns continue, more and more of the slough will be weathered away, thus affecting the numerous species that currently live in it. Funding provided by the Office of Naval Research.

  3. Soil erosion survey using remote sensing images

    NASA Astrophysics Data System (ADS)

    Jakab, Gergely; Kertész, Ádám; Madarász, Balázs; Pálinkás, Melinda; Tóth, Adrienn

    2016-04-01

    Soil erosion is one of the most effective soil degradation processes reducing crop production on arable fields significantly. It also leads to serious environmental hazards such as eutrophication, mud and flesh floods. Beyond the processes there is an urgent need to survey and descript the current degree of erosion of arable lands in order to provide adequate land use techniques and mitigate the harmful effects. Surveying soil erosion is a very time consuming process since soil loss and deposition take place next to each other resulting a rather diverse erosion pattern even within a plot. Remote sensing is a possible way to determine the degree of soil erosion without special efforts taken in the field. The application of images can provide high resolution erosion maps of almost any type of arable fields. The method is based on the identification of the origin of the surface soil layer, i.e. whether it represents an originally deeper laying horizon (e.g. B horizon), or the parent material. A case study was carried out on a Cambisol formed on loess parent material. The soil and the parent rock have various reflectance spectra in the visible range, so this strip was used for the investigations. For map creation "training sites" were used in ArcMap environment. The obtained results suggest that the method is highly effective and useful, however, other properties like moisture content and plant cover can limit automated application. In this case new training sites are needed. The study was supported by the National Research, Development and Innovation Office (NKFIH),), project Nr. 108755 and the support is gratefully acknowledged here. G. Jakab was supported by the János Bolyai Fellowship.

  4. Materials problems in fluidized-bed combustion systems: high-temperature erosion-corrosion by high-velocity (200ms/s) particles

    SciTech Connect

    Barkalow, R.H.; Goebel, J.A.; Pettit, F.S.

    1980-05-01

    The response of nickel- and cobalt base superalloys, aluminide coatings for these alloys, and Si/sub 3/N/sub 4/ to erosion-oxidation and erosion-hot corrosion conditions has been studied at 871/sup 0/C (1600/sup 0/F) in a high velocity gas stream 200 m/sec (656 ft/sec). The experiments were performed in a dynamic combustor (burner rig) operated on aircraft-grade jet fuel and compressed air. Erosive conditions were achieved by injecting abrasive powder into the burner rig. Alumina powders with average particle sizes of 20, 2.5, and 0.3 ..mu..m MgO were used as abrasive media. In the erosion-oxidation experiments, Si/sub 3/N/sub 4/ was much more resistant to degradation than all the metallic systems. For all the metallic systems it was found that: with 20 ..mu..m Al/sub 2/O/sub 3/ particles, material loss occurred because of mechanical erosion; with 2 ..mu..m Al/sub 2/O/sub 3/ particles, the materials degradation involved an interaction between oxidation and erosion such that the formation of Al/sub 2/O/sub 3/ scales inhibited erosion; deposition of 0.3 ..mu..m Al/sub 2/O/sub 3/ particles occurred on specimens and these particles did not establish an erosive component; and the magnitude of the erosive component increased as the hardness of the abrasive increased. Silicon nitride was much more resistant than the metallic systems in the erosion-hot corrosion test; erosion-hot corrosion using 2 ..mu..m Al/sub 2/O/sub 3/ occurred at rates greater than the sum of the rates of erosion and hot corrosion acting independent of one another; the interaction between hot corrosion and erosion was not affected by the particle hardness; and deposition of 0.3 ..mu..m Al/sub 2/O/sub 3/ during hot corrosion caused the degradation rates to decrease. The erosion-oxidation behavior of the metallic systems was consistent with the theory for ductile erosion. The synergism between erosion and hot corrosion occurs because each process establishes conditions that accelerate the other.

  5. Erosion and the rocks of Venus

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1976-01-01

    Photographs of the surface of Venus returned by the Venera 9 and 10 spacecraft have revealed the presence of smooth and angular rockline forms. Two mechanisms previously suggested (Sagan, 1975) for erosion of crater ramparts on the surface of Venus might also explain the erosion of rocks. Chemical weathering by the hydrochloric, hydrofluoric, and sulfuric acids present in the atmosphere of Venus may have been sufficient to erode angular projections of silicous rocks. Alternatively, the contours of rocks containing such low-melting materials as NaOH, KOH, HgS and KNO2 may have softened as the result of exposure to the high surface temperatures of the planet.

  6. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1986-01-07

    A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.

  7. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA )

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  8. The biogeochemical footprint of agricultural soil erosion

    NASA Astrophysics Data System (ADS)

    Govers, Gerard; Van Oost, Kristof; Wang, Zhengang

    2015-04-01

    Global biogeochemical cycles are a key component of the functioning of the Earth System: these cycles are all, to a varying extent, disturbed by human activities which not only has dramatic consequences for the global climate but also for the acidity of the world's oceans. It is only relatively recently that the role of lateral fluxes related to surface water movement and soil erosion and deposition (and the way those fluxes are modified by human action) is explicitly considered by the scientific community. In this paper we present an overview of our present-day understanding of the role of agricultural soil erosion in the global cycles of carbon, nitrogen, phosphorous and silica. We discuss the major processes through which erosion affects these global cycles and pay particular attention to the knowledge gaps that prevent us from accurately assessing the impact of soil erosion on global biogeochemical cycling at different temporal scales. Furthering our understanding (and better constraining our estimates) will require progress both in terms of model development and process understanding. Research needs can be most clearly identified with respect to soil organic carbon: (i) at present, large-scale soil erosion (and deposition) models are poorly constrained so that the amount of carbon mobilised by erosion (and its fate) cannot be accurately estimated and (ii) the fate of soil organic carbon buried by deposition or delivered to river network is poorly understood. Uncertainties for N, P and Si are larger than those for C as we have less information on the amount of these elements stored in agricultural soils and/or do not fully understand how these elements cycle through the soil/plant system. Agricultural soil erosion does not affect soil functioning through its effect on biogeochemical cycling. Erosion directly affects soil hydrological functioning and is likely to affect weathering processes and soil production. Addressing all these issues requires the

  9. The Open Science Grid

    SciTech Connect

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  10. Analysis of Actual Soil Degradation by Erosion Using Satellite Imagery and Terrain Attributes in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zizala, Daniel

    2015-04-01

    Soil water and wind erosion (possibly tillage erosion) is the most significant soil degradation factor in the Czech Republic. Moreover, this phenomenon also affects seriously quality of water sources., About 50 % of arable land are endangered by water erosion and about 10 % of arable land are endangered wind erosion in the Czech Republic. These processes have been accelerated by human activity. Specific condition of agriculture land in the Czech Republic including highland relief and particularly size of land parcel and intensification of agriculture does not enable to reduce flow of runoff water. Insufficient protection against accelerated erosion processes is related to lack of landscape and hydrographic elements and large area of agricultural plots. Currently, this issue is solved at plot scale by field investigation or at regional scale using numerical and empirical erosion models. Nevertheless, these models enable only to predict the potential of soil erosion. Large scale assessment of actual degradation level of soils is based on expert knowledge. However, there are still many uncertainties in this issue. Therefore characterization of actual degradation level of soil is required especially for assessment of long-term impact of soil erosion on soil fertility. Soil degradation by erosion can be effectively monitored or quantified by modern tools of remote sensing with variable level of detail accessible. Aims of our study is to analyse the applicability of remote sensing for monitoring of actual soil degradation by erosion. Satellite and aerial image data (multispectral and hyperspectral), terrain attributes and data from field investigation are the main source for this analyses. The first step was the delimitation of bare soils using supervised classification of the set of Landsat scenes from 2000 - 2014. The most suitable period of time for obtaining spectral image data with the lowest vegetation cover of soil was determined. The results were verified by

  11. Physicochemical effects of temperature and water chemistry on cohesive channel erosion

    NASA Astrophysics Data System (ADS)

    Wynn-Thompson, T.; Hoomehr, S.; Parks, O.; Eick, M.

    2013-12-01

    One potential unforeseen consequence urbanization and climate change is accelerated stream channel erosion due to increased stream temperatures and changes in stream chemistry, which affect the surface potential and hence the stability of soil colloids. Summer thunderstorms in urban watersheds can increase stream temperature more than 7 degC and the impact of global warming on average stream temperature is already evident in some stream systems. The goal of this research was to evaluate the impact of changes in stream chemistry commonly observed in urban watersheds, and expected to occur due to climate change, on the fluvial erosion of cohesive streambank soils. We hypothesized that increases in stream temperature and changes in stream pH and salt concentrations alter the surface potential of clay particles, affecting soil erodibility. We tested this hypothesis by measuring the erosion rate of two riparian soils dominated by different common phyllosilicate clays in a recirculating hydraulic flume. Two pH levels (6, 8), three water temperatures (10 degC, 20 degC, 30 degC), and two NaCl concentrations (5 mg/l, 5 g/l) were analyzed. Velocity profiles and the distance to the soil sample were measured using a Sontek Vectrino II acoustic Doppler profiler. Additionally, zetapotential was measured to determine if erosion rates were correlated to changes in clay surface potential due to varying water chemistry. Initial study results indicated significant increases in erosion rates for both clay types with decreasing pH and increasing water temperature; temperature effects were more significant than pH effects. Changes in erosion rates with salt concentration were only significant for the soil with montmorillonite clay. While the research is ongoing, these initial results could have wide-ranging implications for climate change and urban stormwater management. Assuming climate change will result in higher stream temperatures and lower stream pH, streambank erosion could

  12. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    NASA Astrophysics Data System (ADS)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  13. TIGER: Turbomachinery interactive grid generation

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  14. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  15. Structured and unstructured grid generation.

    PubMed

    Thompson, J F; Weatherill, N P

    1992-01-01

    Current techniques in composite-block-structured grid generation and unstructured grid generation for general 3D geometries are summarized, including both algebraic and elliptic generation procedures for the former and Delaunay tessellations for the latter. Citations of relevant theory are given. Examples of applications for several geometries are included. PMID:1424687

  16. Intelligent automated surface grid generation

    NASA Technical Reports Server (NTRS)

    Yao, Ke-Thia; Gelsey, Andrew

    1995-01-01

    The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.

  17. Grid generation using classical techniques

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1980-01-01

    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.

  18. Voltage holding study of 1 MeV accelerator for ITER neutral beam injector.

    PubMed

    Taniguchi, M; Kashiwagi, M; Umeda, N; Dairaku, M; Takemoto, J; Tobari, H; Tsuchida, K; Yamanaka, H; Watanabe, K; Kojima, A; Hanada, M; Sakamoto, K; Inoue, T

    2012-02-01

    Voltage holding test on MeV accelerator indicated that sustainable voltage was a half of that of ideal quasi-Rogowski electrode. It was suggested that the emission of the clumps is enhanced by a local electric field concentration, which leads to discharge initiation at lower voltage. To reduce the electric field concentration in the MeV accelerator, gaps between the grid supports were expanded and curvature radii at the support corners were increased. After the modifications, the accelerator succeeded in sustaining -1 MV in vacuum without beam acceleration. However, the beam energy was still limited at a level of 900 keV with a beam current density of 150 A∕m(2) (346 mA) where the 3 × 5 apertures were used. Measurement of the beam profile revealed that deflection of the H(-) ions was large and a part of the H(-) ions was intercepted at the acceleration grid. This causes high heat load on the grids and the breakdowns during beam acceleration. To suppress the direct interception, new grid system was designed with proper aperture displacement based on a 3D beam trajectory analysis. As the result, the beam deflection was compensated and the voltage holding during the beam acceleration was improved. Beam parameter of the MeV accelerator was increased to 980 keV, 185 A∕m(2) (427 mA), which is close to the requirement of ITER accelerator (1 MeV, 200 A∕m(2)).

  19. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  20. On Multigrid for Overlapping Grids

    SciTech Connect

    Henshaw, W

    2004-01-13

    The solution of elliptic partial differential equations on composite overlapping grids using multigrid is discussed. An approach is described that provides a fast and memory efficient scheme for the solution of boundary value problems in complex geometries. The key aspects of the new scheme are an automatic coarse grid generation algorithm, an adaptive smoothing technique for adjusting residuals on different component grids, and the use of local smoothing near interpolation boundaries. Other important features include optimizations for Cartesian component grids, the use of over-relaxed Red-Black smoothers and the generation of coarse grid operators through Galerkin averaging. Numerical results in two and three dimensions show that very good multigrid convergence rates can be obtained for both Dirichlet and Neumann/mixed boundary conditions. A comparison to Krylov based solvers shows that the multigrid solver can be much faster and require significantly less memory.

  1. The FRC Acceleration Space Thruster (FAST) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Houts, Mike; Slough, John; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The objective of the FRC (Field Reversed Configuration) Acceleration Space Thruster (FAST) Experiment is to investigate the use of a repetitive FRC source as a thruster, specifically for an NEP (nuclear electric propulsion) system. The Field Reversed Configuration is a plasmoid with a closed poloidal field line structure, and has been extensively studied as a fusion reactor core. An FRC thruster works by repetitively producing FRCs and accelerating them to high velocity. An FRC thruster should be capable of I(sub sp)'s in the range of 5,000 - 25,000 seconds and efficiencies in the range of 60 - 80 %. In addition, they can have thrust densities as high as 10(exp 6) N/m2, and as they are inductively formed, they do not suffer from electrode erosion. The jet-power should be scalable from the low to the high power regime. The FAST experiment consists of a theta-pinch formation chamber, followed by an acceleration stage. Initially, we will produce and accelerate single FRCs. The initial focus of the experiment will be on the ionization, formation and acceleration of a single plasmoid, so as to determine the likely efficiency and I(sub sp). Subsequently, we will modify the device for repetitive burst-mode operation (5-10 shots). A variety of diagnostics are or will be available for this work, including a HeNe interferometer, high-speed cameras, and a Thomson-scattering system. The status of the experiment will be described.

  2. Greedy replica exchange algorithm for heterogeneous computing grids.

    PubMed

    Lockhart, Christopher; O'Connor, James; Armentrout, Steven; Klimov, Dmitri K

    2015-09-01

    Replica exchange molecular dynamics (REMD) has become a valuable tool in studying complex biomolecular systems. However, its application on distributed computing grids is limited by the heterogeneity of this environment. In this study, we propose a REMD implementation referred to as greedy REMD (gREMD) suitable for computations on heterogeneous grids. To decentralize replica management, gREMD utilizes a precomputed schedule of exchange attempts between temperatures. Our comparison of gREMD against standard REMD suggests four main conclusions. First, gREMD accelerates grid REMD simulations by as much as 40 %. Second, gREMD increases CPU utilization rates in grid REMD by up to 60 %. Third, we argue that gREMD is expected to maintain approximately constant CPU utilization rates and simulation wall-clock times with the increase in the number of replicas. Finally, we show that gREMD correctly implements the REMD algorithm and reproduces the conformational ensemble of a short peptide sampled in our previous standard REMD simulations. We believe that gREMD can find its place in large-scale REMD simulations on heterogeneous computing grids. PMID:26311229

  3. Greedy replica exchange algorithm for heterogeneous computing grids.

    PubMed

    Lockhart, Christopher; O'Connor, James; Armentrout, Steven; Klimov, Dmitri K

    2015-09-01

    Replica exchange molecular dynamics (REMD) has become a valuable tool in studying complex biomolecular systems. However, its application on distributed computing grids is limited by the heterogeneity of this environment. In this study, we propose a REMD implementation referred to as greedy REMD (gREMD) suitable for computations on heterogeneous grids. To decentralize replica management, gREMD utilizes a precomputed schedule of exchange attempts between temperatures. Our comparison of gREMD against standard REMD suggests four main conclusions. First, gREMD accelerates grid REMD simulations by as much as 40 %. Second, gREMD increases CPU utilization rates in grid REMD by up to 60 %. Third, we argue that gREMD is expected to maintain approximately constant CPU utilization rates and simulation wall-clock times with the increase in the number of replicas. Finally, we show that gREMD correctly implements the REMD algorithm and reproduces the conformational ensemble of a short peptide sampled in our previous standard REMD simulations. We believe that gREMD can find its place in large-scale REMD simulations on heterogeneous computing grids.

  4. Linking rapid erosion of the Mekong River delta to human activities.

    PubMed

    Anthony, Edward J; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-01-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world's third largest delta, densely populated, considered as Southeast Asia's most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river's discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752

  5. The periglacial engine of mountain erosion - Part 2: Modelling large-scale landscape evolution

    NASA Astrophysics Data System (ADS)

    Egholm, D. L.; Andersen, J. L.; Knudsen, M. F.; Jansen, J. D.; Nielsen, S. B.

    2015-10-01

    There is growing recognition of strong periglacial control on bedrock erosion in mountain landscapes, including the shaping of low-relief surfaces at high elevations (summit flats). But, as yet, the hypothesis that frost action was crucial to the assumed Late Cenozoic rise in erosion rates remains compelling and untested. Here we present a landscape evolution model incorporating two key periglacial processes - regolith production via frost cracking and sediment transport via frost creep - which together are harnessed to variations in temperature and the evolving thickness of sediment cover. Our computational experiments time-integrate the contribution of frost action to shaping mountain topography over million-year timescales, with the primary and highly reproducible outcome being the development of flattish or gently convex summit flats. A simple scaling of temperature to marine δ18O records spanning the past 14 Myr indicates that the highest summit flats in mid- to high-latitude mountains may have formed via frost action prior to the Quaternary. We suggest that deep cooling in the Quaternary accelerated mechanical weathering globally by significantly expanding the area subject to frost. Further, the inclusion of subglacial erosion alongside periglacial processes in our computational experiments points to alpine glaciers increasing the long-term efficiency of frost-driven erosion by steepening hillslopes.

  6. Linking rapid erosion of the Mekong River delta to human activities

    NASA Astrophysics Data System (ADS)

    Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-10-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams.

  7. Linking rapid erosion of the Mekong River delta to human activities.

    PubMed

    Anthony, Edward J; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-10-08

    As international concern for the survival of deltas grows, the Mekong River delta, the world's third largest delta, densely populated, considered as Southeast Asia's most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river's discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams.

  8. Linking rapid erosion of the Mekong River delta to human activities

    PubMed Central

    Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-01-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752

  9. Extreme soil erosion events: an opportunity for promoting awareness for soil conservation

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Egozi, R.

    2012-04-01

    As the world population continues to grow, the need for food production increases, which result in larger areas under intensive agriculture activity. It is also known that intensive agriculture activity tends to accelerate soil erosion rates. The coupling of these two processes put under risk the fertile soils and the ability to maintain sustainable food production. However, the subject is still ignored by the general public and politicians, contrary to global warming and water scarcity issues. The main reason may relate to the difficulty in providing numbers for slow long term soil erosion process. This is due to measurements complexity to quantify small changes in volume, especially, when the soils are deep and frequently cultivated. On the other hand, extreme soil erosion events provide us a unique opportunity to measure soil loss rates and quantities under real conditions in which soil erosion processes are intensified. Although those events provide good imagery of the problem, it is not trivial to extract quantitative valuable information. We, the scientists from different disciplines, must join forces in order to develop tools to overcome the problem. If we able to generate more significant scientific knowledge on the phenomena, we may able to raise the general public and politicians awareness for the need to change the way we manage our land and extensively shift toward conservation practices.

  10. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  11. Drainage and leaching dynamics in a cropped hummocky soil landscape with erosion-affected pedogenesis

    NASA Astrophysics Data System (ADS)

    Gerke, Horst H.; Rieckh, Helene; Sommer, Michael

    2016-04-01

    Hummocky soil landscapes are characterized by 3D spatial patterns of soil types that result from erosion-affected pedogenesis. Due to tillage and water erosion, truncated profiles have been formed at steep and mid slopes and colluvial soils at hollows. Pedogenetic variations in soil horizons at the different hillslope positions suggested feedback effects between erosion affected soil properties, the water balances, and the crop growth and leaching rates. Water balance simulations compared uniform with hillslope position-specific crop and root growths for soils at plateau, flat mid slope, steep slope, and hollow using the Hydrus-1D program. The boundary condition data were monitored at the CarboZALF-D experimental field site, which was cropped with perennial lucerne (Medicago sativa L.) in 2013 and 2014. Crop and root growth was assumed proportional to observed leaf area index (LAI). Fluxes of dissolved organic and inorganic carbon (DOC, DIC) were obtained from simulated water fluxes and measured DOC and DIC concentrations. For the colluvic soil, the predominately upward flow led to a net input in DIC and DOC. For the truncated soils at steep slopes, a reduced crop growth caused an relative increase in drainage, suggesting an accelerated leaching, which in the long term could accelerate the soil development and more soil variations along eroding hillslopes in arable soil landscapes.

  12. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion

    NASA Astrophysics Data System (ADS)

    McClenachan, Giovanna; Turner, R. Eugene; Tweel, Andrew W.

    2013-12-01

    Oil can have long-term detrimental effects on marsh plant health, both above- and belowground. However, there are few data available that quantify the accelerated rate of erosion that oil may cause to marshes and the trajectory of change. Between November 2010 and August 2012, we collected data on shoreline erosion, soil strength, per cent cover of Spartina alterniflora, and marsh edge overhang at 30 closely spaced low oil and high oil sites in Bay Batiste, Louisiana. Surface oil samples were taken one meter into the marsh in February 2011. All high oiled sites in Bay Batiste were contaminated with Macondo 252 oil (oil from the Deepwater Horizon oil spill, 20 April-15 July 2010). The results suggest that there is a threshold where soil parameters change dramatically with a relatively small increase in oil concentration in the soil. Heavy oiling weakens the soil, creating a deeper undercut of the upper 50 cm of the marsh edge, and causing an accelerated rate of erosion that cascades along the shoreline. Our results demonstrate that it could take at least 2 yr to document the effects heavy oiling has had on the marsh shoreline. The presence of aboveground vegetation alone may not be an appropriate indicator of recovery.

  13. WSA index as an indicator of soil degradation due to erosion

    NASA Astrophysics Data System (ADS)

    Jaksik, Ondrej; Kodesova, Radka; Schmidtova, Zuzana; Kubis, Adam; Fer, Miroslav; Klement, Ales; Nikodem, Antonin

    2014-05-01

    Knowledge of spatial distribution of soil aggregate stability as an indicator of soil degradation vulnerability is required for many scientific and practical environmental studies. The goal of our study was to assess predisposition of different soil types to change aggregate stability due to erosion. Five agriculture arable lands with different soil types were chosen. The common feature of these sites is relatively large slope and thus soils are impacted by water erosion. The first studied area was in Brumovice. The original soil type was Haplic Chernozem on loess, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). A similar process has been described at other four locations Vidim, Sedlcany, Zelezna and Hostoun, where the original soil types were Haplic Luvisol on loess and Haplic Cambisol on gneiss, Haplic Cambisol on shales, and Calcaric Cambisol on marlstone, respectively. The regular and semi-regular soil sampling grids were set at all five sites. The basic soil properties were measured and stability of soil aggregates (WSA index) was evaluated. In all cases, the higher aggregates stability was observed in soils, which were not (or only slightly) affected by water erosion and at base slope and the tributary valley (eroded soil particle accumulation). The lowest aggregate stability was measured at the steepest parts. When comparing individual sites, the highest WSA index, e.g. aggregate stability, was found in Sedlcany (Cambisol). Lower WSA indexes were measured on aggregates from Hostoun (Cambisol), Zelezna (Cambisol), Vidim (Luvisol) and the lowest values were obtained in Brumovice (Chernozem). The largest WSA indexes for Cambisols in comparison to Luvisols and Chernozem could be attributed to higher organic matter content and presence of iron oxides. Slightly higher aggregate stability of Luvisols in comparison to Chernozem, could be explained by the positive influence of clay (especially in

  14. Optimizing solar-cell grid geometry

    NASA Technical Reports Server (NTRS)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  15. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.

    PubMed

    Mottyll, Stephan; Skoda, Romuald

    2016-07-01

    As a contribution to a better understanding of cavitation erosion mechanisms, a compressible inviscid finite volume flow solver with barotropic homogeneous liquid-vapor mixture cavitation model is applied to ultrasonic horn set-ups with and without stationary specimen, that exhibit attached cavitation at the horn tip. Void collapses and shock waves, which are closely related to cavitation erosion, are resolved. The computational results are compared to hydrophone, shadowgraphy and erosion test data. At the horn tip, vapor volume and topology, subharmonic oscillation frequency as well as the amplitude of propagating pressure waves are in good agreement with experimental data. For the evaluation of flow aggressiveness and the assessment of erosion sensitive wall zones, statistical analyses of wall loads and of the multiplicity of distinct collapses in wall-adjacent flow regions are applied to the horn tip and the stationary specimen. An a posteriori projection of load collectives, i.e. cumulative collapse rate vs. collapse pressure, onto a reference grid eliminates the grid dependency effectively for attached cavitation at the horn tip, whereas a significant grid dependency remains at the stationary specimen. The load collectives show an exponential decrease towards higher collapse pressures. Erosion sensitive wall zones are well predicted for both, horn tip and stationary specimen, and load profiles are in good qualitative agreement with measured topography profiles of eroded duplex stainless steel samples after long-term runs. For the considered amplitude and gap width according to ASTM G32-10 standard, the analysis of load collectives reveals that the distinctive erosive ring shape at the horn tip can be attributed to frequent breakdown and re-development of a small portion of the tip-attached cavity. This partial breakdown of the attached cavity repeats at each driving cycle and is associated with relatively moderate collapse peak pressures, whereas the

  16. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.

    PubMed

    Mottyll, Stephan; Skoda, Romuald

    2016-07-01

    As a contribution to a better understanding of cavitation erosion mechanisms, a compressible inviscid finite volume flow solver with barotropic homogeneous liquid-vapor mixture cavitation model is applied to ultrasonic horn set-ups with and without stationary specimen, that exhibit attached cavitation at the horn tip. Void collapses and shock waves, which are closely related to cavitation erosion, are resolved. The computational results are compared to hydrophone, shadowgraphy and erosion test data. At the horn tip, vapor volume and topology, subharmonic oscillation frequency as well as the amplitude of propagating pressure waves are in good agreement with experimental data. For the evaluation of flow aggressiveness and the assessment of erosion sensitive wall zones, statistical analyses of wall loads and of the multiplicity of distinct collapses in wall-adjacent flow regions are applied to the horn tip and the stationary specimen. An a posteriori projection of load collectives, i.e. cumulative collapse rate vs. collapse pressure, onto a reference grid eliminates the grid dependency effectively for attached cavitation at the horn tip, whereas a significant grid dependency remains at the stationary specimen. The load collectives show an exponential decrease towards higher collapse pressures. Erosion sensitive wall zones are well predicted for both, horn tip and stationary specimen, and load profiles are in good qualitative agreement with measured topography profiles of eroded duplex stainless steel samples after long-term runs. For the considered amplitude and gap width according to ASTM G32-10 standard, the analysis of load collectives reveals that the distinctive erosive ring shape at the horn tip can be attributed to frequent breakdown and re-development of a small portion of the tip-attached cavity. This partial breakdown of the attached cavity repeats at each driving cycle and is associated with relatively moderate collapse peak pressures, whereas the

  17. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  18. Standing crop residues and wind erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion and blinding dust storms in the Central Great Plains region still occasionally erupt. Eliminating all tillage remains the best remedy. However, farmers in the region somehow fail to remember the lessons learned in the “dirty 30’s”. They forget how devastating tillage is in disrupting t...

  19. Magnetite Nanoparticles Prepared By Spark Erosion

    NASA Astrophysics Data System (ADS)

    Maiorov, M.; Blums, E.; Kronkalns, G.; Krumina, A.; Lubane, M.

    2016-08-01

    In the present research, we study a possibility of using the electric spark erosion method as an alternative to the method of chemical co-precipitation for preparation of magnetic nanoparticles. Initiation of high frequency electric discharge between coarse iron particles under a layer of distilled water allows obtaining pure magnetite nanoparticles.

  20. NETL- Severe Environment Corrosion Erosion Facility

    SciTech Connect

    2013-09-12

    NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.