The HyperLeda project en route to the astronomical virtual observatory
NASA Astrophysics Data System (ADS)
Golev, V.; Georgiev, V.; Prugniel, Ph.
2002-07-01
HyperLeda (Hyper-Linked Extragalactic Databases and Archives) is aimed to study the evolution of galaxies, their kinematics and stellar populations and the structure of Local Universe. HyperLeda is involved in catalogue and software production, data-mining and massive data processing. The products are serviced to the community through web mirrors. The development of HyperLeda is distributed between different sites and is based on the background experience of the LEDA and Hypercat databases. The HyperLeda project is focused both on the European iAstro colaboration and as a unique database for studies of the physics of the extragalactic objects.
An automated BPM characterization system for LEDA
NASA Astrophysics Data System (ADS)
Shurter, R. B.; Gilpatrick, J. D.; Ledford, J.; O'Hara, J.; Power, J.
1998-12-01
An automated and highly accurate system for "mapping" 5 cm-diameter beam position monitors (BPMs) used in the Low Energy Demonstrator Accelerator (LEDA) at Los Alamos is described. Two-dimensional data is accumulated from the four micro-stripline electrodes in the probe by sweeping an antenna driven at the LEDA bunching frequency of 350 MHz in discrete steps across the aperture. These data are then used to determine the centroid, first- and third-order sensitivities of the BPM. These probe response coefficients are then embedded in the LEDA control system database to provide normalized beam position information to the operators. A short summary of previous systems we have fielded is given, along with their attributes and deficiencies that had a bearing on this latest design. Lessons learned from this system will, in turn, be used on the next mappers that are currently being designed for 15 cm and 2.5 cm BPMs.
Summary of the Normal-Conducting Accelerating Structures for LEDA and APT
NASA Astrophysics Data System (ADS)
Schneider, J. David
1998-04-01
The accelerator production of tritium (APT) plant requires a continuous (100% duty-factor), 100-mA, 1000--1700-MeV proton beam. Superconducting structures will accelerate protons above about 200 MeV, but room-temperature, normal-conducting (NC) copper structures will be used for lower energies. We will assemble the front 11-MeV portion of this NC accelerator as the low-energy demonstration accelerator (LEDA). This presentation will cover the demonstated operation of the proton injector, the design, fabrication, and tuning status of the 6.7-MeV RFQ, and the design features of the CCDTL (coupled-cavity drift-tube linac) that will accelerate protons to 100 MeV, before use of a conventional CCL (coupled-cavity linac). Several innovative features result in improved performance, ease of use, and improved reliabiltiy. The75-keV injector features a microwave ion source, dual-solenoid transport, and has no electronics at high potential. Its demonstrated high efficiency (less than 800 Watts), excellent proton fraction (>90%), high current (>110 mA), and reliability make it attractive for several other high-current applications. The 6.7-MeV, 350-MHz RFQ is an 8-meter-long, brazed-copper structure with hundreds of cooling channels that carry away the 1.3 MW of waste heat. During beam operation, only the cooling-water temperature is adjustable to maintain structure resonance. LEDA's 700-MHz CCDTL structure is new, combining features of the conventional DTL and CCL structures. All focus magnets are external to the copper accelerating cavities, each of which contains either one or two drift tubes. A `hot model' will validate fabrication, cooling, tuning, and coupling techniques. The LEDA facility is being upgraded with 15 MW of power and cooling utiliites, to support seven 1-MW cw RF systems needed to power all structures. The first few of these 1.3 MW 350-MHz systems are operational, and extensive testing was completed on the critical RF windows. Updates will be given on the development of vacuum, diagnostic, control, and cooling systems, as well as transport lines and beam stops. The unique and very compact, thin-walled beam stop is surrounded by an integral water shield for the prompt neutrons.
NASA Astrophysics Data System (ADS)
Price, D. C.; Greenhill, L. J.; Fialkov, A.; Bernardi, G.; Garsden, H.; Barsdell, B. R.; Kocz, J.; Anderson, M. M.; Bourke, S. A.; Craig, J.; Dexter, M. R.; Dowell, J.; Eastwood, M. W.; Eftekhari, T.; Ellingson, S. W.; Hallinan, G.; Hartman, J. M.; Kimberk, R.; Lazio, T. Joseph W.; Leiker, S.; MacMahon, D.; Monroe, R.; Schinzel, F.; Taylor, G. B.; Tong, E.; Werthimer, D.; Woody, D. P.
2018-05-01
The Large-Aperture Experiment to Detect the Dark Age (LEDA) was designed to detect the predicted O(100) mK sky-averaged absorption of the Cosmic Microwave Background by Hydrogen in the neutral pre- and intergalactic medium just after the cosmological Dark Age. The spectral signature would be associated with emergence of a diffuse Lyα background from starlight during `Cosmic Dawn'. Recently, Bowman et al. (2018) have reported detection of this predicted absorption feature, with an unexpectedly large amplitude of 530 mK, centered at 78 MHz. Verification of this result by an independent experiment, such as LEDA, is pressing. In this paper, we detail design and characterization of the LEDA radiometer systems, and a first-generation pipeline that instantiates a signal path model. Sited at the Owens Valley Radio Observatory Long Wavelength Array, LEDA systems include the station correlator, five well-separated redundant dual polarization radiometers and backend electronics. The radiometers deliver a 30-85 MHz band (16 < z < 34) and operate as part of the larger interferometric array, for purposes ultimately of in situ calibration. Here, we report on the LEDA system design, calibration approach, and progress in characterization as of January 2016. The LEDA systems are currently being modified to improve performance near 78 MHz in order to verify the purported absorption feature.
Accelerators for Fusion Materials Testing
NASA Astrophysics Data System (ADS)
Knaster, Juan; Okumura, Yoshikazu
Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.
Accelerators for Fusion Materials Testing
NASA Astrophysics Data System (ADS)
Knaster, Juan; Okumura, Yoshikazu
Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.
Malaria Genome Sequencing Project
2004-01-01
BEHNAM JOANA JENKINS, CHELTON CARTY, HEATHER JENKINS, JENNIFER CHAUDHARY, ABHILASHA JIANG, LINGXIA CHEN, DAN JONES, KRISTINE CHEN, MINGHUA KALB, ERICA... JENNIFER SILVA, JOANA MOAZZEZ, AZITA SITZ, JEFF MOFFAT, KELLY SKOVORODNEV, NELSON, KEITH ALEXANDER NENE, VISHVANATH SMIRNOVA, TATYANA NORCUTT, KARA...Shallom*, Susan E. van Aken*, Steven B. Riedmuller*, Tamara V. Feldblyum*, Jennifer L Cho*t, John Quackenbush*, Martha Sedegah§, Azadeh Shoalbl*, Leda M
The 3XMM spectral fit database
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Corral, A.; Watson, M.; Carrera, F.; Webb, N.; Rosen, S.
2016-06-01
I will present the XMMFITCAT database which is a spectral fit inventory of the sources in the 3XMM catalogue. Spectra are available by the XMM/SSC for all 3XMM sources which have more than 50 background subtracted counts per module. This work is funded in the framework of the ESA Prodex project. The 3XMM catalog currently covers 877 sq. degrees and contains about 400,000 unique sources. Spectra are available for over 120,000 sources. Spectral fist have been performed with various spectral models. The results are available in the web page http://xraygroup.astro.noa.gr/ and also at the University of Leicester LEDAS database webpage ledas-www.star.le.ac.uk/. The database description as well as some science results in the joint area with SDSS are presented in two recent papers: Corral et al. 2015, A&A, 576, 61 and Corral et al. 2014, A&A, 569, 71. At least for extragalactic sources, the spectral fits will acquire added value when photometric redshifts become available. In the framework of a new Prodex project we have been funded to derive photometric redshifts for the 3XMM sources using machine learning techniques. I will present the techniques as well as the optical near-IR databases that will be used.
Butterflies: Photonic Crystals on the Wing
2007-03-22
Coliadinae), Eronia leda, Colotis danae, and Pieris rapae rapae (all Pierinae), respectively. The left and right column of the photographs are taken...phylogenetic tree: Colias electo belongs to the Coliadinae, Eronia leda and Colotis danae belong to the Colotis group, and Pieris rapae rapae to the Pierini...the droplet is brought into contact with a piece of wing (here of a large white, Pieris brassicae). 3 Fig. 4. Electron microscopic photographs
A Hybrid Lifetime Extended Directional Approach for WBANs
Li, Changle; Yuan, Xiaoming; Yang, Li; Song, Yueyang
2015-01-01
Wireless Body Area Networks (WBANs) can provide real-time and reliable health monitoring, attributing to the human-centered and sensor interoperability properties. WBANs have become a key component of the ubiquitous eHealth (electronic health) revolution that prospers on the basis of information and communication technologies. The prime consideration in WBAN is how to maximize the network lifetime with battery-powered sensor nodes in energy constraint. Novel solutions in Medium Access Control (MAC) protocols are imperative to satisfy the particular BAN scenario and the need of excellent energy efficiency in healthcare applications. In this paper, we propose a hybrid Lifetime Extended Directional Approach (LEDA) MAC protocol based on IEEE 802.15.6 to reduce energy consumption and prolong network lifetime. The LEDA MAC protocol takes full advantages of directional superiority in energy saving that employs multi-beam directional mode in Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) and single-beam directional mode in Time Division Multiple Access (TDMA) for alternative in data reservation and transmission according to the traffic varieties. Moreover, the impacts of some inherent problems of directional antennas such as deafness and hidden terminal problem can be decreased owing to that all nodes generate individual beam according to user priorities designated. Furthermore, LEDA MAC employs a Dynamic Polled Allocation Period (DPAP) for burst data transmissions to increase the network reliability and adaptability. Extensive analysis and simulation results show that the proposed LEDA MAC protocol achieves extended network lifetime with improved performance compared with IEEE 802.15.6. PMID:26556357
Long-range (fractal) correlations in the LEDA database.
NASA Astrophysics Data System (ADS)
di Nella, H.; Montuori, M.; Paturel, G.; Pietronero, L.; Sylos Labini, F.
1996-04-01
All the recent redshift surveys show highly irregular patterns of galaxies on scales of hundreds of megaparsecs such as chains, walls and cells. One of the most powerful catalog of galaxies is represented by the LEDA database that contains more than 36,000 galaxies with redshift. We study the correlation properties of such a sample finding that galaxy distribution shows well defined fractal nature up to R_S_~150h^-1^Mpc with fractal dimension D~2. We test the consistency of these results versus the incompleteness in the sample.
Li, Xue; Lu, Wei; Hu, Guyue; Wang, Xiao Chan; Zhang, Yu; Sun, Guo Xiang; Fang, Zhichao
2016-12-01
The winter in the Yangtze River Delta area of China involves more than 1 month of continuous low temperature and poor light (CLTL) weather conditions, which impacts horticultural production in an unheated greenhouse; however, few greenhouses in this area are currently equipped with a heating device. The low-cost and long-living light-emitting diode (LED) was used as an artificial light source to explore the effects of supplementary lighting during the dark period in CLTL winter on the vegetative characteristics, early yield, and physiology of flowering for pepper plants grown in a greenhouse without heating. Two LED lighting sets were employed with different light source to provide 65 μmol m -2 s -1 at night: (1) LED-A: red LEDs (R, peak wavelength 660 nm) and blue LEDs (B, peak wavelength 460 nm) with an R:B ratio of 6:3; and (2) LED-B: R and B LEDs at an R:B ratio of 8:1. Plants growth parameters and chlorophyll fluorescence characteristics were compared between lighting treatments and the control group. Plants' yield and photosynthesis ability were improved by LED-A. Pepper grown under the LED-A1 strategy showed a 303.3 % greater fresh weight of fruits and a 501.3 % greater dry mass compared with the control group. Plant leaves under LED-A1 showed maximum efficiency of the light quantum yield of PSII, electron transfer rate, and the proportion of the open fraction of PSII centers, with values 113.70, 114.34, and 211.65 % higher than those of the control group, respectively, and showed the lowest rate constant of thermal energy dissipation of all groups. LED-B was beneficial to the plant height and stems diameter of the pepper plants more than LED-A. These results can serve as a guide for environment control and for realizing low energy consumption for products grown in a greenhouse in the winter in Southern China.
Hubble's makes a double galaxy gaze
2017-12-08
Some astronomical objects have endearing or quirky nicknames, inspired by mythology or their own appearance. Take, for example, the constellation of Orion (The Hunter), the Sombrero Galaxy, the Horsehead Nebula, or even the Milky Way. However, the vast majority of cosmic objects appear in astronomical catalogs and are given rather less poetic names based on the order of their discovery. Two galaxies are clearly visible in this Hubble image, the larger of which is NGC 4424. This galaxy is cataloged in the New General Catalog of Nebulae and Clusters of Stars (NGC), which was compiled in 1888. The NGC is one of the largest astronomical catalogs, which is why so many Hubble Pictures of the Week feature NGC objects. In total there are 7,840 entries in the catalog and they are also generally the larger, brighter, and more eye-catching objects in the night sky, and hence the ones more easily spotted by early stargazers. The smaller, flatter, bright galaxy sitting just below NGC 4424 is named LEDA 213994. The Lyon-Meudon Extragalactic Database (LEDA) is far more modern than the NGC and contains millions of objects. Many NGC objects still go by their initial names simply because they were christened within the NGC first. However, since astronomers can't resist a good acronym and “Leda” is more appealing than “the LMED,” the smaller galaxy is called "Leda." Leda was a princess in Ancient Greek mythology. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Neonatal medicine in ancient art.
Yurdakök, Murat
2010-01-01
There are a limited number of artistic objects from ancient times with particular importance in neonatal medicine. The best examples are figurines from ancient Egypt of Isis nursing Horus, showing the importance of breastfeeding. The earliest images of the human fetus were made by the Olmecs in Mexico around 1200- 400 BCE. One of the earliest representations of congenital anomalies is a figurine of diencephalic twins thought to be the goddess of Anatolia, dated to around 6500 BCE. In addition to these figurines, three sets of twins in the ancient world have medical importance, and Renaissance artists often used them as a subject for their paintings: "direct suckling animals" (Romulus and Remus), "heteropaternal superfecundation" (mother: Leda, fathers: Zeus, the king of the Olympian gods, and Leda's husband, Tyndareus), and "twin-to-twin transfusion" in monozygotic twins (Jacob and Esau).
LEDA 074886: A Remarkable Rectangular-looking Galaxy
NASA Astrophysics Data System (ADS)
Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.; Lisker, Thorsten; Moore, Ben; Janz, Joachim
2012-05-01
We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of -17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R e, disk = 12'' = 1.2 kpc) for which Forbes et al. reported v rot/σ ≈ 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radii effectively experienced a dissipationless merger event resulting in this "emerald cut galaxy" having very boxy isophotes with a 4/a = -0.05 to -0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both "wet" and "dry" galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.
Spectroscopic observation of Gaia17dht and Gaia17diu by NUTS (NOT Un-biased Transient Survey)
NASA Astrophysics Data System (ADS)
Fraser, M.; Dyrbye, S.; Cappella, E.
2017-12-01
The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of Gaia17dht/SN2017izz and Gaia17diu/SN2017jdb (in host galaxies SDSS J145121.24+283521.6 and LEDA 2753585 respectively).
LEDA 074886: A REMARKABLE RECTANGULAR-LOOKING GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.
2012-05-10
We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of -17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R{sub e,disk} = 12'' = 1.2 kpc) for which Forbes et al. reported v{sub rot}/{sigma} Almost-Equal-To 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radiimore » effectively experienced a dissipationless merger event resulting in this 'emerald cut galaxy' having very boxy isophotes with a{sub 4}/a = -0.05 to -0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both 'wet' and 'dry' galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.« less
Great Mentors: Robert Jervis, Bruce Bueno de Mesquita, and Peter Katzenstein
ERIC Educational Resources Information Center
McDermott, Rose
2010-01-01
I have been extremely blessed in my life to have benefitted from some amazing mentors and friends in both psychology (most notably, Amos Tversky, Phil Zimbardo, and Leda Cosmides) and political science. Inspired by the occasion of Robert Jervis' festschrift, which importantly does not signal his imminent retirement, I was prompted to take…
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Twins; abbrev. Gem, gen. Geminorum; area 514 sq. deg.) A northern zodiacal constellation which lies between Auriga and Canis Minor, and culminates at midnight in early January. It represents Castor and Pollux, the twin sons of Leda, Queen of Sparta, in Greek mythology, whose brotherly love was rewarded by a place among the stars. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) ...
Leda and the Swan--and other myths about rape.
Norfolk, Guy A
2011-07-01
In his David Jenkins Memorial Lecture, Dr Norfolk discusses rape and some of the myths that surround the topic, exploring the research evidence about conviction rates, false allegations, clinician gender preferences of rape victims and the role of sexual assault referral centres in service delivery. Copyright © 2011 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal
Kaurov, Alexander A.; Gnedin, Nickolay Y.
2016-06-20
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc –1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less
Cosmic Reionization On Computers. Mean and Fluctuating Redshifted 21 cm Signal
NASA Astrophysics Data System (ADS)
Kaurov, Alexander A.; Gnedin, Nickolay Y.
2016-06-01
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ˜ 10-15 only extends to < {{Δ }}{T}B> ˜ -25 {{mK}}, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%-50% at scales k ˜ 0.1-1h Mpc-1. This scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.
Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A.; Gnedin, Nickolay Y.
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc –1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less
Score Normalization for Keyword Search
2016-06-23
Anahtar Sözcük Arama için Skor Düzgeleme Score Normalization for Keyword Search Leda Sarı, Murat Saraçlar Elektrik ve Elektronik Mühendisliği Bölümü...skor düzgeleme. Abstract—In this work, keyword search (KWS) is based on a symbolic index that uses posteriorgram representation of the speech data...For each query, sum-to-one normalization or keyword specific thresholding is applied to the search results. The effect of these methods on the proposed
VizieR Online Data Catalog: Luminous persistent sources in nearby galaxies search (Ofek, 2017)
NASA Astrophysics Data System (ADS)
Ofek, E. O.
2018-04-01
I compiled a catalog of nearby galaxies within 108Mpc. The catalog is based on combining the HyperLEDA galaxies (Paturel+ 2003, VII/238 ; Makarov+ 2014A&A...570A..13M) with the NASA Extragalactic Database (NED) redshifts, and the Sloan Digital Sky Survey (SDSS; York+ 2000AJ....120.1579Y ; see V/147) galaxies with known redshifts. Both catalogs are restricted to the FIRST radio survey footprint (Becker+ 1995ApJ...450..559B ; see VIII/92). (1 data file).
VizieR Online Data Catalog: Galaxies in Hercules-Bootes region (Karachentsev+, 2017)
NASA Astrophysics Data System (ADS)
Karachentsev, I. D.; Kashibadze, O. G.; Karachentseva, V. E.
2017-04-01
The table contains original observational data on 412 galaxies in the Hercules-Bootes region with radial velocities of VLG<2500km/s. The main source of data is the NASA Extragalactic Database (NED) with additions from the HyperLEDA Database. Each object with a radial velocity estimate was visually inspected, and a large number of false "galaxies" with radial velocities of around zero was discarded. For many galaxies, we have refined the morphological types and integral B-magnitudes. The resulting sample includes 181 galaxies with individual distance estimates. (1 data file).
NASA Astrophysics Data System (ADS)
Graham, Alister W.; Janz, Joachim; Penny, Samantha J.; Chilingarian, Igor V.; Ciambur, Bogdan C.; Forbes, Duncan A.; Davies, Roger L.
2017-05-01
Selected from a sample of nine, isolated, dwarf early-type galaxies (ETGs) with the same range of kinematic properties as dwarf ETGs in clusters, we use LEDA 2108986 (CG 611) to address the nature versus nurture debate regarding the formation of dwarf ETGs. The presence of faint disk structures and rotation within some cluster dwarf ETGs has often been heralded as evidence that they were once late-type spiral or dwarf irregular galaxies prior to experiencing a cluster-induced transformation into an ETG. However, CG 611 also contains significant stellar rotation (≈20 km s-1) over its inner half-light radius ({R}{{e},{maj}}=0.71 kpc), and its stellar structure and kinematics resemble those of cluster ETGs. In addition to hosting a faint young nuclear spiral within a possible intermediate-scale stellar disk, CG 611 has accreted an intermediate-scale, counter-rotating gas disk. It is therefore apparent that dwarf ETGs can be built by accretion events, as opposed to disk-stripping scenarios. We go on to discuss how both dwarf and ordinary ETGs with intermediate-scale disks, whether under (de)construction or not, are not fully represented by the kinematic scaling {S}0.5=\\sqrt{0.5 {V}{rot}2+{σ }2}, and we also introduce a modified spin-ellipticity diagram λ (R)-ɛ (R) with the potential to track galaxies with such disks.
MASTER-SAAO: contradictory SN and flaring OT
NASA Astrophysics Data System (ADS)
Balanutsa, P.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Kuznetsov, A.; Kornilov, V.; Gress, O.; Pogrosheva, T.; Shumkov, V.; Vladimirov, V.; Vlasenko, D.; Kuvshinov, D.; Gabovich, A.
2017-07-01
MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 03h 42m 50.70s , -01d 52m 28s.7 on 2017-07-01.1753UT with unfiltered (6 images), that contradicts to Ia type detected in ATEL #10240 , ATEL #10225 for ATLAS17dcl ( http://www.supernova.thistlethwaites.com/sn2017/sndate.html ). It is in 8.4"W,20"S of PGC135685 with Btc=15.13, Vgsr=2773 http://leda.univ-lyon1.fr/ledacat.cgi?PGC135685 Spectral observations are required.
The Louisiana Accelerated Schools Project First Year Evaluation Report.
ERIC Educational Resources Information Center
St. John, Edward P.; And Others
The Louisiana Accelerated Schools Project (LASP) is a statewide network of schools that are changing from the traditional mode of schooling for at-risk students, which stresses remediation, to one of acceleration, which stresses accelerated learning for all students. The accelerated schools process provides a systematic approach to the…
US Particle Accelerators at Age 50.
ERIC Educational Resources Information Center
Wilson, R. R.
1981-01-01
Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)
Accelerator science and technology in Europe 2008-2017
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-10-01
European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, EuCARD and EuCARD Projects is evidently creating a new quality in the European Accelerator Research. It is consolidating the technical and research communities in a new way, completely different than the traditional ones, for example via the periodic topical conferences.
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-10-01
Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the realization of CARE (Coordinated Accelerator R&D), EuCARD (European Coordination of Accelerator R&D) and during the national annual review meeting of the TIARA - Test Infrastructure of European Research Area in Accelerator R&D. The European projects on accelerator technology started in 2003 with CARE. TIARA is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of CARE, EuCARD and especially TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society. CARE, EuCARD and TIARA activities integrated the European accelerator community in a very effective way. These projects are expected very much to be continued.
The Accelerated Schools Movement: Expansion and Support through Accelerated Schools Centers.
ERIC Educational Resources Information Center
Brunner, Ilse; And Others
From 1987 to 1995, the Accelerated Schools Project moved from a two-school pilot project to a national movement of over 700 schools in 35 states. This paper examines how the Accelerated Schools Centers have helped the expansion of the accelerated schools movement by recruiting and supporting schools in their regions, and how their institutional…
1987-01-01
DESIGNS FOR THE ACCELERATED CAT -ASVAB * PROJECT Peter H. Stoloff DTIC’- , " SELECTE -NOV 2 3 987 A Division of Hudson Institute CENTER FOR NAVAL ANALYSES...65153M C0031 SI TITLE (Include Security Classification) Equivalent-Groups Versus Single-Group Equating Designs For The Accelerated CAT -ASVAB Project...GROUP ACAP (Accelerated CAT -ASVAB Program), Aptitude tests, ASVAB (Armed 05 10 Services Vocational Aptitude Battery), CAT (Computerized Adaptive Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, Panagiotis; /Fermilab; Cary, John
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less
Accelerated testing for studying pavement design and performance (FY 2002) : research summary.
DOT National Transportation Integrated Search
2004-01-01
This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing : Laboratory at Kansas State University. The project was selected and funded by the : Midwest States Accelerated Testing Pooled Fund Program, which includes Iowa, Ka...
Accelerator and Fusion Research Division. Annual report, October 1978-September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)
Evidence for an elastic projection mechanism in the chameleon tongue.
de Groot, Jurriaan H.; van Leeuwen, Johan L.
2004-01-01
To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s(-2). At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to power tongue projection directly during the actual fast projection of the tongue. However, high-speed recordings of Chamaeleo melleri and C. pardalis reveal that peak powers of 3000 W kg(-1) are necessary to generate the observed accelerations, which exceed the accelerator muscle's capacity by at least five- to 10-fold. Extrinsic structures might power projection via the tongue skeleton. High-speed fluoroscopy suggests that they contribute less than 10% of the required peak instantaneous power. Thus, the projection power must be generated predominantly within the tongue, and an energy-storage-and-release mechanism must be at work. The key structure in the projection mechanism is probably a cylindrical connective-tissue layer, which surrounds the entoglossal process and was previously suggested to act as lubricating tissue. This tissue layer comprises at least 10 sheaths that envelop the entoglossal process. The outer portion connects anteriorly to the accelerator muscle and the inner portion to the retractor structures. The sheaths contain helical arrays of collagen fibres. Prior to projection, the sheaths are longitudinally loaded by the combined radial contraction and hydrostatic lengthening of the accelerator muscle, at an estimated mean power of 144 W kg(-1) in C. melleri. Tongue projection is triggered as the accelerator muscle and the loaded portions of the sheaths start to slide over the tip of the entoglossal process. The springs relax radially while pushing off the rounded tip of the entoglossal process, making the elastic energy stored in the helical fibres available for a simultaneous forward acceleration of the tongue pad, accelerator muscle and retractor structures. The energy release continues as the multilayered spring slides over the tip of the smooth and lubricated entoglossal process. This sliding-spring theory predicts that the sheaths deliver most of the instantaneous power required for tongue projection. The release power of the sliding tubular springs exceeds the work rate of the accelerator muscle by at least a factor of 10 because the elastic-energy release occurs much faster than the loading process. Thus, we have identified a unique catapult mechanism that is very different from standard engineering designs. Our morphological and kinematic observations, as well as the available literature data, are consistent with the proposed mechanism of tongue projection, although experimental tests of the sheath strain and the lubrication of the entoglossal process are currently beyond our technical scope. PMID:15209111
Evidence for an elastic projection mechanism in the chameleon tongue.
de Groot, Jurriaan H; van Leeuwen, Johan L
2004-04-07
To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s(-2). At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to power tongue projection directly during the actual fast projection of the tongue. However, high-speed recordings of Chamaeleo melleri and C. pardalis reveal that peak powers of 3000 W kg(-1) are necessary to generate the observed accelerations, which exceed the accelerator muscle's capacity by at least five- to 10-fold. Extrinsic structures might power projection via the tongue skeleton. High-speed fluoroscopy suggests that they contribute less than 10% of the required peak instantaneous power. Thus, the projection power must be generated predominantly within the tongue, and an energy-storage-and-release mechanism must be at work. The key structure in the projection mechanism is probably a cylindrical connective-tissue layer, which surrounds the entoglossal process and was previously suggested to act as lubricating tissue. This tissue layer comprises at least 10 sheaths that envelop the entoglossal process. The outer portion connects anteriorly to the accelerator muscle and the inner portion to the retractor structures. The sheaths contain helical arrays of collagen fibres. Prior to projection, the sheaths are longitudinally loaded by the combined radial contraction and hydrostatic lengthening of the accelerator muscle, at an estimated mean power of 144 W kg(-1) in C. melleri. Tongue projection is triggered as the accelerator muscle and the loaded portions of the sheaths start to slide over the tip of the entoglossal process. The springs relax radially while pushing off the rounded tip of the entoglossal process, making the elastic energy stored in the helical fibres available for a simultaneous forward acceleration of the tongue pad, accelerator muscle and retractor structures. The energy release continues as the multilayered spring slides over the tip of the smooth and lubricated entoglossal process. This sliding-spring theory predicts that the sheaths deliver most of the instantaneous power required for tongue projection. The release power of the sliding tubular springs exceeds the work rate of the accelerator muscle by at least a factor of 10 because the elastic-energy release occurs much faster than the loading process. Thus, we have identified a unique catapult mechanism that is very different from standard engineering designs. Our morphological and kinematic observations, as well as the available literature data, are consistent with the proposed mechanism of tongue projection, although experimental tests of the sheath strain and the lubrication of the entoglossal process are currently beyond our technical scope.
Advanced accelerator and mm-wave structure research at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Evgenya Ivanovna
2016-06-22
This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.
Marshak Lectureship: The Turkish Accelerator Center, TAC
NASA Astrophysics Data System (ADS)
Yavas, Omer
2012-02-01
The Turkish Accelerator Center (TAC) project is comprised of five different electron and proton accelerator complexes, to be built over 15 years, with a phased approach. The Turkish Government funds the project. Currently there are 23 Universities in Turkey associated with the TAC project. The current funded project, which is to run until 2013 aims *To establish a superconducting linac based infra-red free electron laser and Bremsstrahlung Facility (TARLA) at the Golbasi Campus of Ankara University, *To establish the Institute of Accelerator Technologies in Ankara University, and *To complete the Technical Design Report of TAC. The proposed facilities are a 3^rd generation Synchrotron Radiation facility, SASE-FEL facility, a GeV scale Proton Accelerator facility and an electron-positron collider as a super charm factory. In this talk, an overview on the general status and road map of TAC project will be given. National and regional importance of TAC will be expressed and the structure of national and internatonal collaborations will be explained.
Thomas Edison Accelerated Elementary School.
ERIC Educational Resources Information Center
Levin, Henry M.; Chasin, Gene
This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…
DOT National Transportation Integrated Search
2004-08-01
This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing Laboratory at Kansas : State University. The project was selected and funded by the Midwest Accelerated Testing Pooled Fund Program , : which includes Iowa, Kansas, ...
DOT National Transportation Integrated Search
2004-05-01
The purpose of this document is to provide to Caltrans' employees, as well as external partners, some valuable tools that can be used to help accelerate project delivery. This document contains a compilation of all the Department's recent acceleratio...
Accelerating separable footprint (SF) forward and back projection on GPU
NASA Astrophysics Data System (ADS)
Xie, Xiaobin; McGaffin, Madison G.; Long, Yong; Fessler, Jeffrey A.; Wen, Minhua; Lin, James
2017-03-01
Statistical image reconstruction (SIR) methods for X-ray CT can improve image quality and reduce radiation dosages over conventional reconstruction methods, such as filtered back projection (FBP). However, SIR methods require much longer computation time. The separable footprint (SF) forward and back projection technique simplifies the calculation of intersecting volumes of image voxels and finite-size beams in a way that is both accurate and efficient for parallel implementation. We propose a new method to accelerate the SF forward and back projection on GPU with NVIDIA's CUDA environment. For the forward projection, we parallelize over all detector cells. For the back projection, we parallelize over all 3D image voxels. The simulation results show that the proposed method is faster than the acceleration method of the SF projectors proposed by Wu and Fessler.13 We further accelerate the proposed method using multiple GPUs. The results show that the computation time is reduced approximately proportional to the number of GPUs.
Accelerated Districts--The Next Step. A Summary of Research and Design.
ERIC Educational Resources Information Center
Driver, Cyrus; And Others
The National Center for the Accelerated Schools Project at Stanford University has recognized that district-level change is necessary if changes at accelerated schools are to gain permanence and become widespread. The Center has therefore initiated a research and development project to design a set of models on which districts can reconstitute…
Accelerating the Learning of At-Risk Students: An Evaluation of Project ACCEL.
ERIC Educational Resources Information Center
Ramaswami, Soundaram
Project Accelerated Curriculum Classes Emphasizing Learning (ACCEL) was implemented by the Newark School District (New Jersey) in the 1989-90 school year in response to the ineffective practice of retaining underachieving students. The innovative approach of accelerated learning was made available to retained sixth and seventh grade students.…
TAC Proton Accelerator Facility: The Status and Road Map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algin, E.; Akkus, B.; Caliskan, A.
2011-06-28
Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.
Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O
2014-06-01
The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnal, P.; Féral, B.; Kershaw, K.
Particle accelerator projects share many characteristics with industrial projects. However, experience has shown that best practice of industrial project management is not always well suited to particle accelerator projects. Major differences include the number and complexity of technologies involved, the importance of collaborative work, development phases that can last more than a decade, and the importance of telerobotics and remote handling to address future preventive and corrective maintenance requirements due to induced radioactivity, to cite just a few. The openSE framework it is a systems engineering and project management framework specifically designed for scientific facilities’ systems and equipment studies andmore » development projects. Best practices in project management, in systems and requirements engineering, in telerobotics and remote handling and in radiation safety management were used as sources of inspiration, together with analysis of current practices surveyed at CERN, GSI and ESS.« less
The algorithm for duration acceleration of repetitive projects considering the learning effect
NASA Astrophysics Data System (ADS)
Chen, Hongtao; Wang, Keke; Du, Yang; Wang, Liwan
2018-03-01
Repetitive project optimization problem is common in project scheduling. Repetitive Scheduling Method (RSM) has many irreplaceable advantages in the field of repetitive projects. As the same or similar work is repeated, the proficiency of workers will be correspondingly low to high, and workers will gain experience and improve the efficiency of operations. This is learning effect. Learning effect is one of the important factors affecting the optimization results in repetitive project scheduling. This paper analyzes the influence of the learning effect on the controlling path in RSM from two aspects: one is that the learning effect changes the controlling path, the other is that the learning effect doesn't change the controlling path. This paper proposes corresponding methods to accelerate duration for different types of critical activities and proposes the algorithm for duration acceleration based on the learning effect in RSM. And the paper chooses graphical method to identity activities' types and considers the impacts of the learning effect on duration. The method meets the requirement of duration while ensuring the lowest acceleration cost. A concrete bridge construction project is given to verify the effectiveness of the method. The results of this study will help project managers understand the impacts of the learning effect on repetitive projects, and use the learning effect to optimize project scheduling.
Community Project for Accelerator Science and Simulation (ComPASS) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, John R.; Cowan, Benjamin M.; Veitzer, S. A.
2016-03-04
Tech-X participated across the full range of ComPASS activities, with efforts in the Energy Frontier primarily through modeling of laser plasma accelerators and dielectric laser acceleration, in the Intensity Frontier primarily through electron cloud modeling, and in Uncertainty Quantification being applied to dielectric laser acceleration. In the following we present the progress and status of our activities for the entire period of the ComPASS project for the different areas of Energy Frontier, Intensity Frontier and Uncertainty Quantification.
High Intensity Proton Accelerator Project in Japan (J-PARC).
Tanaka, Shun-ichi
2005-01-01
The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.
Acceleration lane design for higher truck volumes.
DOT National Transportation Integrated Search
2008-12-09
The research project examined attributes associated with tractor-trailer trucks accelerating on freeway entry ramps and : entering the main traffic lanes. Data for this project were collected at five commercial vehicle weigh stations in : Arkansas an...
Accelerator Technology Division annual report, FY 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-06-01
This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.
Modeling the Acceleration of Global Surface Temperture
NASA Astrophysics Data System (ADS)
Jones, B.
2017-12-01
A mathematical projection focusing on the changing rate of acceleration of Global Surface Temperatures. Using historical trajectory and informed expert near-term prediction, it is possible to extend this further forward drawing a reference arc of acceleration. Presented here is an example of this technique based on data found in the Summary of Findings of A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011 and that same team's stated prediction to 2050. With this, we can project a curve showing future acceleration: Decade (midpoint) Change in Global Land Temp Degrees C Known Slope Projected Trend 1755 0.000 1955 0.600 0.0030 2005 1.500 0.0051 2045 3.000 0.0375 2095 5.485 0.0497 2145 8.895 0.0682 2195 13.488 0.0919 Observations: Slopes are getting steeper and doing so faster in an "acceleration of the acceleration" or an "arc of acceleration". This is consistent with the non-linear accelerating feedback loops of global warming. Such projected temperatures threaten human civilization and human life. This `thumbnail' projection is consistent with the other long term predictions based on anthropogenic greenhouse gases. This projection is low when compared to those whose forecasts include greenhouse gases released from thawing permafrost and clathrate hydrates. A reference line: This curve should be considered a point of reference. In the near term and absent significant drawdown of greenhouse gases, my "bet" for this AGU session is that future temperatures will generally be above this reference curve. For example, the decade ending 2020 - more than 1.9C and the decade ending 2030 - more than 2.3C - again measured from the 1750 start point. *Caveat: The long term curve and prediction assumes that mankind does not move quickly away from high cost fossil fuels and does not invent, mobilize and take actions drawing down greenhouse gases. Those seeking a comprehensive action plan are directed to drawdown.org
EuCARD2: enhanced accelerator research and development in Europe
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-10-01
Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.
NASA Astrophysics Data System (ADS)
Helbig, Doris; Moebius, Anne; Simon, Jan C.; Paasch, Uwe
2010-05-01
Nonablative thermal laser therapy with a 1540-nm laser induces controlled, spatially determined thermal damage, allowing subsequent collagen remodeling while preserving the epidermis. A photorejuvenation effect using nonthermal nonablative stimulation of cells with low energy and narrow band light has been termed photomodulation. Light emitting diodes (LEDs) are narrow band emitters that lead to photomodulation via stimulation of mitochondrial cell organelles. In a previous study, we demonstrated in a human skin explant model that heat shock protein 70 (HSP70) plays a pivotal role in the initiation of skin remodeling after ablative fractional photothermolysis. To test its importance in nonablative laser therapy and photomodulation, the spatio-temporal expression of HSP70 is investigated in response to a 1540-nm laser treatment and six different LED therapies. An Er:glass laser is used with a 1-Hz repetition rate, 30-J/cm2 fluence, and a hand piece with a 2-mm spot size. Nonthermal nonablative treatment is performed using two LED (LEDA SCR red light: 635 nm, 40 to 120 W/cm2, 40 to 120 J/cm2 LEDA SCR yellow light: 585 nm, 16 to 35 W/cm2, 20 to 100 J/cm2 spot size 16×10 cm). Immediate responses as well as responses 1, 3, or 7 days postprocedure are studied; untreated skin explants serve as control. Immunohistochemical investigation (HSP70) is performed in all native, nontreated, and Er:glass laser- or LED-treated samples (n=175). Nonablative laser therapy leads to a clear time-dependent induction of epidermally expressed HSP70, peaking between one to three days post-treatment. In contrast, none of the various LED treatments up-regulated the HSP70 expression in our skin explant model. HSP70 is up-regulated by nonablative but thermal laser devices, but does not seem to play a significant role in the induction of skin remodeling induced by photomodulation. The maximum of HSP70 expression is reached later after Er:glass laser intervention compared to ablative fractional (AFP) treatment.
The status and road map of Turkish Accelerator Center (TAC)
NASA Astrophysics Data System (ADS)
Yavaş, Ö.
2012-02-01
Turkish Accelerator Center (TAC) project is supported by the State Planning Organization (SPO) of Turkey and coordinated by Ankara University. After having completed the Feasibility Report (FR) in 2000 and the Conceptual Design Report (CDR) in 2005, third phase of the project started in 2006 as an inter-universities project including ten Turkish Universities with the support of SPO. Third phase of the project has two main scientific goals: to prepare the Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility, named as Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) as a first step. The facility is planned to be completed in 2015 and will be based on 15-40 MeV superconducting linac. In this paper, main aims, national and regional importance, main parts main parameters, status and road map of Turkish Accelerator Center will be presented.
Does technology acceleration equate to mask cost acceleration?
NASA Astrophysics Data System (ADS)
Trybula, Walter J.; Grenon, Brian J.
2003-06-01
The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.
ERIC Educational Resources Information Center
Finnan, Christine; Davis, Sara Calhoun
This paper describes efforts to design an evaluation system that has as its primary objective helping schools effect positive change through the Accelerated Schools Project. Three characteristics were deemed essential: (1) that the evaluation be useful and meaningful; (2) that it be sensitive to local conditions; and (3) that evaluations of…
ERIC Educational Resources Information Center
GIBSON, ARTHUR R.; STEPHANS, THOMAS M.
ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…
Project acceleration : making the leap from pilot to commercialization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borneo, Daniel R.
2010-05-01
Since the energy storage technology market is in a relatively emergent phase, narrowing the gap between pilot project status and commercialization is fundamental to the accelerating of this innovative market space. This session will explore regional market design factors to facilitate the storage enterprise. You will also hear about: quantifying transmission and generation efficiency enhancements; resource planning for storage; and assessing market mechanisms to accelerate storage adoption regionally.
MicroBooNE project team recognized by Department of Energy | News
Financial Officer Finance Section Office of the Chief Operating Officer Facilities Engineering Services Accelerator Division Accelerator Physics Center Office of the Chief Safety Officer Environment, Safety, Health and Quality Section Office of the Chief Project Officer Office of Project Support Services Office of
DOT National Transportation Integrated Search
1998-08-01
The report describes the first testing series, Phase, of the first project, Experiment 1, with the Louisiana Transportation Research Center Accelerated Loading Facility. The background to the project is described and details of the trial pavements si...
Overview of graduate training program of John Adams Institute for Accelerator Science
NASA Astrophysics Data System (ADS)
Seryi, Andrei
The John Adams Institute for Accelerator Science is a center of excellence in the UK for advanced and novel accelerator technology, providing expertise, research, development and training in accelerator techniques, and promoting advanced accelerator applications in science and society. We work in JAI on design of novel light sources upgrades of 3-rd generation and novel FELs, on plasma acceleration and its application to industrial and medical fields, on novel energy recovery compact linacs and advanced beam diagnostics, and many other projects. The JAI is based on three universities - University of Oxford, Imperial College London and Royal Holloway University of London. Every year 6 to 10 accelerators science experts, trained via research on cutting edge projects, defend their PhD thesis in JAI partner universities. In this presentation we will overview the research and in particular the highly successful graduate training program in JAI.
The GALAXIE all-optical FEL project
NASA Astrophysics Data System (ADS)
Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; Tantawi, S.; Valloni, A.; Yakimenko, V.; Xu, G.
2012-12-01
We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 μm laser development, ultra-high brighness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.
EuCARD 2010: European coordination of accelerator research and development
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2010-09-01
Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.
The Accelerated Schools Project: Pope Elementary School, 1993-94.
ERIC Educational Resources Information Center
Windward Oahu School District, Kailu, HI.
This report describes the first year of implementation of the 5-year Accelerated Schools Project (ASP) at Blanche Pope Elementary School in rural Oahu (Hawaii). ASP trains school staff and community members to transform governance, curriculum, and instruction in schools serving predominantly at-risk and minority, low-achieving students. In…
Accelerated Cure Project for Multiple Sclerosis
... main content Accelerating research toward a cure for multiple sclerosis Toggle navigation Search form Search Connect Volunteer Donate ... is to accelerate efforts toward a cure for multiple sclerosis by rapidly advancing research that determines its causes ...
Accelerated Test Method for Corrosion Protective Coatings Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Calle, Luz
2015-01-01
This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.
Effective correlator for RadioAstron project
NASA Astrophysics Data System (ADS)
Sergeev, Sergey
This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, P.; /Fermilab; Cary, J.
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Brian James; Yin, Lin; Stark, David James
This proposal sought of order 1M core-hours of Institutional Computing time intended to enable computing by a new LANL Postdoc (David Stark) working under LDRD ER project 20160472ER (PI: Lin Yin) on laser-ion acceleration. The project was “off-cycle,” initiating in June of 2016 with a postdoc hire.
Lightcurves of nine asteroids, with pole and sense of rotation of 42 Isis
NASA Astrophysics Data System (ADS)
Denchev, P.; Magnusson, P.; Donchev, Z.
1998-02-01
The results of photometric observations of 9 asteroids collected from 1991 to 1997 are presented. The observations have been conducted at Belogradchik and Rozhen observatories, Bulgaria. For 42 Isis a spin pole determination has been performed: we derive a retrograde sense of rotation, a sidereal period of 0.5665417 ± 0.0000005 days and two solutions for the spin vector: ( P1: λ0 = 288° ± 5°, β0 = -16° ± 2°; P2: λ0 = 117° ± 8°, β0 = -5° ± 4°). The rotational period of 266 Aline is estimated to be 12.3±0.1 h. Composite lightcurves have been obtained for four objects (21 Lutetia, 24 Themis, 42 Isis and 266 Aline). Other lightcurves have been obtained for the asteroids 27 Euterpe, 38 Leda, 70 Panopaea, 173 Ino and 218 Bianca.
Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazadevich, G.; Johnson, R.; Neubauer, M.
Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verifiedmore » with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.« less
Financial Officer Finance Section Office of the Chief Operating Officer Facilities Engineering Services Accelerator Division Accelerator Physics Center Office of the Chief Safety Officer Environment, Safety, Health and Quality Section Office of the Chief Project Officer Office of Project Support Services Office of
Osaka Symposium and New Accelerator Projects in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jie
1997-04-25
The purpose of this presentation was to participate as an invited speaker at the XV RCNP Osaka International Symposium on Multi-GeV High-Performance Accelerators and Related Technology to collaborate with Kyoto University on laser cooling and beam crystallization projects and to give seminars in Beijing and Shanghai on the Relativistic Heavy Ion Collider.
2010-04-29
Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to
Accelerated pavement testing of low-volume paved roads with geocell reinforcement.
DOT National Transportation Integrated Search
2015-03-01
The Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the highway : departments of Kansas, Iowa, Missouri, and New York, has supported an accelerated pavement testing (APT) project : to study the rehabilitation of low-volum...
Accelerated testing for studying pavement design and performance (FY 2003) : research summary.
DOT National Transportation Integrated Search
2008-01-01
The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...
Endocannabinoid signaling in hypothalamic circuits regulates arousal from general anesthesia in mice
Zhong, Haixing; Tong, Li; Gu, Ning; Gao, Fang; Lu, Yacheng; Liu, Jingjing; Li, Xin; Bergeron, Richard; Pomeranz, Lisa E.; Wang, Feng; Luo, Chun-Xia; Ren, Yan; Wu, Sheng-Xi; Xie, Zhongcong; Xu, Lin; Li, Jinlian; Dong, Hailong; Xiong, Lize
2017-01-01
Consciousness can be defined by two major attributes: awareness of environment and self, and arousal, which reflects the level of awareness. The return of arousal after general anesthesia presents an experimental tool for probing the neural mechanisms that control consciousness. Here we have identified that systemic or intracerebral injection of the cannabinoid CB1 receptor (CB1R) antagonist AM281 into the dorsomedial nucleus of the hypothalamus (DMH) — but not the adjacent perifornical area (Pef) or the ventrolateral preoptic nucleus of the hypothalamus (VLPO) — accelerates arousal in mice recovering from general anesthesia. Anesthetics selectively activated endocannabinoid (eCB) signaling at DMH glutamatergic but not GABAergic synapses, leading to suppression of both glutamatergic DMH-Pef and GABAergic DMH-VLPO projections. Deletion of CB1R from widespread cerebral cortical or prefrontal cortical (PFC) glutamatergic neurons, including those innervating the DMH, mimicked the arousal-accelerating effects of AM281. In contrast, CB1R deletion from brain GABAergic neurons or hypothalamic glutamatergic neurons did not affect recovery time from anesthesia. Inactivation of PFC-DMH, DMH-VLPO, or DMH-Pef projections blocked AM281-accelerated arousal, whereas activation of these projections mimicked the effects of AM281. We propose that decreased eCB signaling at glutamatergic terminals of the PFC-DMH projection accelerates arousal from general anesthesia through enhancement of the excitatory DMH-Pef projection, the inhibitory DMH-VLPO projection, or both. PMID:28463228
NASA Astrophysics Data System (ADS)
Kotchetkov, Dmitri
2017-01-01
Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.
The GALAXIE all-optical FEL project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenzweig, J. B.; Arab, E.; Andonian, G.
2012-12-21
We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-highmore » brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.« less
DOT National Transportation Integrated Search
2015-03-01
The Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed : by the highway departments of Kansas, Iowa, Missouri, and New York, has : supported an accelerated pavement testing (APT) project to study the rehabilitation : of low-vol...
DOT National Transportation Integrated Search
2014-08-01
Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the : highway departments of Kansas, Iowa, and Missouri, has supported an accelerated : pavement testing (APT) project to validate several models incorporated in the NCHRP :...
DOT National Transportation Integrated Search
2014-08-01
The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway : departments of Kansas, Iowa, and Missouri, has supported an accelerated pavement testing (APT) project to : validate several models incorporated in the NCH...
An Evaluation of the English Language Skills Acceleration Project, FY 1974.
ERIC Educational Resources Information Center
Trust Territory of the Pacific Islands
An evaluation of the English Language Skills Acceleration Project, a program used in ninth-grade reading instruction in two high schools in the Marshall Islands, is provided in this report. Included are a description of the program and its activities, a discussion and comparison of test results, an evaluation of the behavioral objectives with…
Buy or sell used musical instruments | News
Financial Officer Finance Section Office of the Chief Operating Officer Facilities Engineering Services Accelerator Division Accelerator Physics Center Office of the Chief Safety Officer Environment, Safety, Health and Quality Section Office of the Chief Project Officer Office of Project Support Services Office of
David Toback re-elected CDF co-spokesperson | News
Financial Officer Finance Section Office of the Chief Operating Officer Facilities Engineering Services Accelerator Division Accelerator Physics Center Office of the Chief Safety Officer Environment, Safety, Health and Quality Section Office of the Chief Project Officer Office of Project Support Services Office of
Source of polarised deuterons. (JINR accelerator complex)
NASA Astrophysics Data System (ADS)
Fimushkin, V. V.; Belov, A. S.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu. V.; Shimanskiy, S. S.; Vadeev, V. P.
2008-08-01
The proposed project assumes the development of a universal high-intensity source of polarized deuterons (protons) using a charge-exchange plasma ionizer. The design output current of the source will be up to 10mA for ↑ D+(↑ H+) and polarization will be up to 90% of the maximal vector (±1) and tensor (+1,-2) polarization. The project is based on the equipment which was supplied within the framework of an agreement between JINR and IUCF (Bloomington, USA). The project will be realized in close cooperation with INR (Moscow, Russia). The source will be installed in the linac hall (LU-20) and polarization of beams will be measured at the output of LU-20. The main purpose of the project is to increase the intensity of the accelerated polarized beams at the JINR Accelerator Complex up to 1010 d/pulse. Calculations and first accelerator runs have shown that the depolarization resonances are absent for the deuteron beam in the entire energy range of the NUCLOTRON. The source could be transformed into a source of polarized negative ions if necessary. The period of reliable operation without participation of the personnel should be within 1000 hours. The project should be implemented within two to two and a half years from the start of funding.
Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J
2011-12-01
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.
From Nigel Lockyer: Five things you should know | News
Financial Officer Finance Section Office of the Chief Operating Officer Facilities Engineering Services Accelerator Division Accelerator Physics Center Office of the Chief Safety Officer Environment, Safety, Health and Quality Section Office of the Chief Project Officer Office of Project Support Services Office of
Implementing Accelerated Schools in New Orleans: The Satellite Center Project as an Agent of Change.
ERIC Educational Resources Information Center
Miron, Louis F.; And Others
An overview is provided of the Accelerated Schools Project (ASP) as implemented in one urban elementary school in New Orleans, emphasizing the role of the University of New Orleans Satellite Center. The present student population of the school studied is 405 students in grades pre-kindergarten through six. The ASP is a non-traditional strategy for…
Code of Federal Regulations, 2011 CFR
2011-01-01
... accelerating a project loan, the Agency will consider the possibility that the borrower is forcing an... will accelerate the loan unless the Agency decides other enforcement measures are more appropriate. (1... and rental assistance. (3) The Agency will not accept partial payment of an accelerated loan unless...
Code of Federal Regulations, 2013 CFR
2013-01-01
... accelerating a project loan, the Agency will consider the possibility that the borrower is forcing an... will accelerate the loan unless the Agency decides other enforcement measures are more appropriate. (1... and rental assistance. (3) The Agency will not accept partial payment of an accelerated loan unless...
Code of Federal Regulations, 2014 CFR
2014-01-01
... accelerating a project loan, the Agency will consider the possibility that the borrower is forcing an... will accelerate the loan unless the Agency decides other enforcement measures are more appropriate. (1... and rental assistance. (3) The Agency will not accept partial payment of an accelerated loan unless...
Code of Federal Regulations, 2012 CFR
2012-01-01
... accelerating a project loan, the Agency will consider the possibility that the borrower is forcing an... will accelerate the loan unless the Agency decides other enforcement measures are more appropriate. (1... and rental assistance. (3) The Agency will not accept partial payment of an accelerated loan unless...
X-43C Flight Demonstrator Project Overview
NASA Technical Reports Server (NTRS)
Moses, Paul L.
2003-01-01
The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.
DOT National Transportation Integrated Search
2008-01-01
The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway departments : of Missouri, Iowa, Kansas and Nebraska, has supported an accelerated pavement testing (APT) project to compare : the performance of stabilized ...
The South African isotope facility project
NASA Astrophysics Data System (ADS)
Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.
2018-05-01
The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.
NASA Technical Reports Server (NTRS)
Perkins, D. H.
1986-01-01
Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.
Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byer, Robert L.
2013-11-07
The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.
Industrialization of Superconducting RF Accelerator Technology
NASA Astrophysics Data System (ADS)
Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter
2012-01-01
Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project currently being designed by the international collaboration GDE (`global design effort'). If the ILC will be built, about 18,000 SRF cavities need to be manufactured worldwide within about five years. The industrialization of SRF accelerator technology is analyzed and reviewed in this article in view of the main accelerator projects of the last two to three decades.
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Baugher, Charles R.; Delombard, Richard
1990-01-01
In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.
Pulsed electron accelerator for radiation technologies in the enviromental applications
NASA Astrophysics Data System (ADS)
Korenev, Sergey
1997-05-01
The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.
Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E
2011-12-01
We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Snapshot of Philadelphia's Accelerated Schools
ERIC Educational Resources Information Center
Edmunds, Kimberly; Fonseca, Ean
2011-01-01
This snapshot is a guide to the School District of Philadelphia's (the District's) 13 accelerated high schools in the 2010-11 school year. The accelerated high schools were the result of a partnership between the District and Project U-Turn, a city-wide coalition dedicated to reducing student drop-out and increasing graduation rates and readiness…
Accelerator & Fusion Research Division 1991 summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.
Accelerator Fusion Research Division 1991 summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkner, Klaus H.
1991-12-01
This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.
Fermilab History and Archives Project | Home
Fermilab History and Archives Project Fermilab History and Archives Project Fermi National Accelerator Laboratory Home About the Archives History & Archives Online Request Contact Us Site Index SEARCH the site: History & Archives Project Fermilab History and Archives Project The History of
NASA Astrophysics Data System (ADS)
Choudhury, Madhurima; Datta, Abhirup
2018-05-01
Observations of HI 21cm transition line is a promising probe into the Dark Ages and Epoch-of-Reionization. Detection of this redshifted 21cm signal is one of the key science goal for several upcoming low-frequency radio telescopes like HERA, SKA and DARE. Other global signal experiments include EDGES, LEDA, BIGHORNS, SCI-HI, SARAS. One of the major challenges for the detection of this signal is the accuracy of the foreground source removal. Several novel techniques have been explored already to remove bright foregrounds from both interferometric as well as total power experiments. Here, we present preliminary results from our investigation on application of ANN to detect 21cm global signal amidst bright galactic foreground. Following the formalism of representing the global 21cm signal by 'tanh' model, this study finds that the global 21cm signal parameters can be accurately determined even in the presence of bright foregrounds represented by 3rd order log-polynomial or higher.
A theory of germinal center B cell selection, division, and exit.
Meyer-Hermann, Michael; Mohr, Elodie; Pelletier, Nadége; Zhang, Yang; Victora, Gabriel D; Toellner, Kai-Michael
2012-07-26
High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
While the LHC is currently the highest energy particle accelerator ever built, nothing is forever. In this video, Fermilab’s Dr. Don Lincoln discusses a new particle accelerator currently under discussion. This accelerator will dwarf the LHC, fully 60 miles around and will accelerate protons to seven times higher energy. The project is merely in the discussion stages and it is a staggering endeavor, but it is the next natural step in our millennium long journey to understand the universe.
Accelerated roadbuilding on the north umpquaan economic analysis.
Brian R. Payne
1972-01-01
This study evaluates the economic desirability of accelerated roadbuilding for access to old-growth timber on a unit of the Umpqua National Forest in Oregon. As of 1966, four accelerated roadbuilding alternatives were found economically inferior to the then current rate of construction. Only in the case of substantial, continuing inflation were projected rates of...
Accelerating bridge construction to minimize traffic disruption : research spotlight.
DOT National Transportation Integrated Search
2013-12-01
Since 2008, MDOT has been using accelerated bridge construction, which utilizes prefabricated components and structural placements, to minimize traffic disruptions during bridge replacement or rehabilitation. A recent project provided MDOT with a new...
Report of the Fermilab ILC Citizens' Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations.more » While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.« less
NASA Technical Reports Server (NTRS)
Delombard, Richard; Finley, Brian D.
1991-01-01
The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.
Nikazad, T; Davidi, R; Herman, G. T.
2013-01-01
We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data. PMID:23440911
Nikazad, T; Davidi, R; Herman, G T
2012-03-01
We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.
Low Level RF Control for the PIP-II Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.; Cullerton, E.
The PIP-II accelerator is a proposed upgrade to the Fermilab accelerator complex that will replace the existing, 400 MeV room temperature LINAC with an 800 MeV superconducting LINAC. Part of this upgrade includes a new injection scheme into the booster that levies tight requirements on the LLRF control system for the cavities. In this paper we discuss the challenges of the PIP-II accelerator and the present status of the LLRF system for this project.
All-Optical Quasi-Phase Matching for Laser Electron Acceleration
2016-06-01
T E C H N IC A L R E P O R T DTRA-TR-16-65 All-Optical Quasi -Phase Matching for Laser Electron Acceleration Distribution Statement A...outcomes of the project “All-Optical Quasi - Phase Matching for Laser Electron Acceleration”, a project awarded to the Pennsylvania State University by the...can be used to simultaneously extend the accel- eration distance beyond several Rayleigh ranges and to achieve quasi -phase matching between the laser
Regionally Aligned Forces: Concept Viability and Implementation
2015-03-01
forced the Army to accelerate cuts scheduled to occur by the end of FY15.5 While acceleration provides short term savings, projected cuts will affect...Concept Viability and Implementation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...mitigate the effects of reduced budgets, the Army will continue to reduce its overall end strength. Reduction initiatives will require the force to be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Michael R.
2006-11-16
Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.
Accelerated aging of concrete : a literature review
DOT National Transportation Integrated Search
2002-02-01
This report provides a review of the literature on accelerated aging of concrete. It was undertaken, as part of a research project : on predicting the long-term environmental performance of Portland cement concrete (PCC) pavements containing coal fly...
"DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitner, M.; Leitner, D.; Lemut, A.
2009-05-28
The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV tomore » 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.« less
Proceedings of: 2005 Particle Acceleration Confence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Stuart
2006-01-01
The 21st Particle Accelerator Conference, PAC05, took place at the Knoxville Convention Center (KCC) from Monday through Friday, May 16-20, 2005. Sponsored by the American Physical Society (APS), the Institute of Electrics and Electronics Engineers (IEEE) with its subdivision of Nuclear and Plasma Sciences Society (NPSS), the conference was hosted by the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) Project and Thomas Jefferson National Accelerator Facility (JLab). The conference was chaired by Norbert Holtkamp, and the Local Organizing Committee was made up of staff from the ORNL SNS Project under the chairmanship of Stuart Henderson. The conference welcomedmore » over 1400 delegates from the United States, Europe, Asia, the Middle East, South America and from as far away as Australia. Almost 1400 papers where processed during the conference and will be published on the Joint Accelerator Conferences Website (JACoW) page.« less
Project oriented klystron developments in Japan, China and India
NASA Astrophysics Data System (ADS)
Fukuda, Shigeki
2017-12-01
Modern accelerators are based on the rf technology and the klystron is the one of key components. Some special accelerator projects require their specified klystrons i.e., project-oriented klystrons. In this paper, project-oriented klystron developments for a decade in Japan are described. Related projects are ILC, cERL and SKEKB. Usually klystron is very expensive but has a finite life and needs to procure again. Trial to introduce the compatible tubes and have a competitive tender to reduce the cost is described. At the same time, since an efficiency improvement is one of the recent trend, such an attempt is also presented. International klystron collaboration among the Asian countries has been performed for a long time. In this paper, collaboration with China and India is introduced. Since topics are covered mainly author's experience, related counties described are limited.
DOT National Transportation Integrated Search
2018-02-01
This report documents the Missouri Department of Transportation (MoDOT) demonstration grant award for field demonstration projects using intelligent compaction (IC) and infrared scanning (IR) (also called paver-mounted thermal profiles PMTP in the AA...
Accelerated Schools Centers: How To Address Challenges to Institutionalization and Growth.
ERIC Educational Resources Information Center
Meza, James, Jr.
The Accelerated Schools Project (ASP) at the University of New Orleans (UNO) was established in spring 1990, funded by a 3-year grant from Chevron. Beginning with 1 pilot school in 1991, the UNO Accelerated Schools Center has expanded to 36 schools representing 19 school districts in Louisiana and 3 schools from the Memphis City Schools district.…
Cyclotrons and FFAG Accelerators as Drivers for ADS
Calabretta, Luciano; Méot, François
2015-01-01
Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.
DOT National Transportation Integrated Search
1971-01-01
Concomitant with the Research Council's studies of accelerated curing for strength testing, Subcommittee II-i of ASTM Committee C-9 was developing and refining accelerated methods for standardization. This development included a cooperative testing p...
Rare isotope accelerator project in Korea and its application to high energy density sciences
NASA Astrophysics Data System (ADS)
Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.
2014-01-01
As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.
Review of EuCARD project on accelerator infrastructure in Europe
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-01-01
The aim of big infrastructural and research programs (like pan-European Framework Programs) and individual projects realized inside these programs in Europe is to structure the European Research Area - ERA in this way as to be competitive with the leaders of the world. One of this projects in EuCARD (European Coordination of Accelerator Research and Development) with the aim to structure and modernize accelerator, (including accelerators for big free electron laser machines) research infrastructure. This article presents the periodic development of EuCARD which took place between the annual meeting, April 2012 in Warsaw and SC meeting in Uppsala, December 2012. The background of all these efforts are achievements of the LHC machine and associated detectors in the race for new physics. The LHC machine works in the regime of p-p, Pb-p, Pb-Pb (protons and lead ions). Recently, a discovery by the LHC of Higgs like boson, has started vivid debates on the further potential of this machine and the future. The periodic EuCARD conference, workshop and meetings concern building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The aim of the discussion is not only summarize the current status but make plans and prepare practically to building new infrastructures. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. Accelerator technology is intensely developed in all developed nations and regions of the world. The EuCARD project contains a lot of subjects related directly and indirectly to photon physics and photonics, as well as optoelectronics, electronics and integration of these with large research infrastructure.
Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy; Chen, Wei; Richards, William Davidson; Dacek, Stephen; Cholia, Shreyas; Gunter, Dan; Skinner, David; Ceder, Gerbrand; Persson, Kristin A.
2013-07-01
Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ``rapid-prototyping'' of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.
NASA Astrophysics Data System (ADS)
Howard, T. A.; Nandy, D.; Koepke, A. C.
2008-01-01
One of the main sources of uncertainty in quantifying the kinematic properties of coronal mass ejections (CMEs) using coronagraphs is the fact that coronagraph images are projected into the sky plane, resulting in measurements which can differ significantly from their actual values. By identifying solar surface source regions of CMEs using X-ray and Hα flare and disappearing filament data, and through considerations of CME trajectories in three-dimensional (3-D) geometry, we have devised a methodology to correct for the projection effect. We outline this method here. The methodology was automated and applied to over 10,000 CMEs in the Coordinated Data Analysis Workshop (CDAW) (SOHO Large Angle Spectroscopic Coronagraph) catalog spanning 1996-2005, in which we could associate 1961 CMEs with an appropriate surface event. In the latter subset, deprojected speeds, accelerations, and launch angles were determined to study CME kinematics. Our analysis of this subset of events reconfirms some important trends, notably that previously uncovered solar cycle variation of CME properties are preserved, CMEs with greater width have higher speeds, and slower CMEs tend to accelerate while faster CMEs tend to decelerate. This points out that statistical trends in CME properties, recovered from plane-of-sky measurements, may be preserved even in the face of more sophisticated 3-D measurements from spacecrafts such as STEREO, if CME trajectories are predominantly radial. However, our results also show that the magnitude of corrected measurements can differ significantly from the projected plane-of-sky measurements on a case-by-case basis and that acceleration is more sensitive to the deprojection process than speed. Average corrected speed and acceleration tend to be a factor of 1.7 and 4.4 higher than their projected values, with mean corrected speed and acceleration magnitudes being on the order of 1000 km/s and 50 m/s2, respectively. We conclude that while using the plane-of-sky measurements may be suitable for studies of general trends in a large sample of events, correcting for projection effects is mandatory for those investigations which rely on a numerically precise determination of the properties of individual CMEs.
Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downer, Michael C.
2014-04-30
Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (suchmore » as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects – e.g. laser-driven filaments in air and glass – and reported in Optics Letters in 2013 and Nature Communications in 2014. Their output is a multi-frame movie rather than a snapshot. Continuing research is aimed at applying these tomographic methods directly to evolving laser-driven plasma accelerator structures in our laboratory, then, once perfected, to exporting them to plasma-based accelerator laboratories around the world as standard in-line metrology instruments.« less
Production of Copper-Plated Beamline Bellows and Spools for LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Katherine M.; Carpenter, Brian C.; Daly, Ed
The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab) and Fermi National Accelerator Laboratory (FNAL), are participating in this project. The 1.3-GHz cryomodules for this project consist of eight cavities separated by bellows (expansion joints) and spools (tube sections), which are copper plated for RF conduction. JLab is responsible for procurement of these bellows and spools, which are delivered to JLab and FNAL for assembly into cryomodules. Achieving accelerator-grade copper plating is always amore » challenge and requires careful specification of requirements and application of quality control processes. Due to the demanding technical requirements of this part, JLab implemented procurement strategies to make the process more efficient as well as provide process redundancy. This paper discusses the manufacturing challenges that were encountered and resolved, as well as the strategies that were employed to minimize the impact of any technical issues.« less
Measuring the Accelerations of Water Megamasers in Active Galaxy J0437+2456
NASA Astrophysics Data System (ADS)
Turner, Jeremy; Jeremy Turner
2018-01-01
The Megamaser Cosmology Project is measuring the Hubble constant using observations of 22 GHz water megamasers in the accretion disks of active galaxies within the Hubble flow. This approach uses the dynamics of the megamaser disks to determine their physical sizes and thereby find the angular-diameter distances to galaxies without relying on the cosmic distance ladder. We present Green Bank Telescope observations and analysis of the maser disk in the galaxy J0437+2456, which encircles a 2.9×106 M⊙ supermassive black hole. With spectral monitoring observations spanning over four years, we measure the centripetal acceleration of each individual maser component by tracking its velocity drift over time. These accelerations will be used in later work to model the maser disk and determine the distance to the galaxy. Our acceleration measurements use an iterative least squares fitting technique. For the systemic maser features, we find a mean acceleration of 1.87 ± 0.47 km/s/yr. This project was completed as part of the NSF REU program at NRAO.
NASA Astrophysics Data System (ADS)
Sledneva, A. S.; Kobets, V. V.
2017-06-01
The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.
GPU-accelerated iterative reconstruction for limited-data tomography in CBCT systems.
de Molina, Claudia; Serrano, Estefania; Garcia-Blas, Javier; Carretero, Jesus; Desco, Manuel; Abella, Monica
2018-05-15
Standard cone-beam computed tomography (CBCT) involves the acquisition of at least 360 projections rotating through 360 degrees. Nevertheless, there are cases in which only a few projections can be taken in a limited angular span, such as during surgery, where rotation of the source-detector pair is limited to less than 180 degrees. Reconstruction of limited data with the conventional method proposed by Feldkamp, Davis and Kress (FDK) results in severe artifacts. Iterative methods may compensate for the lack of data by including additional prior information, although they imply a high computational burden and memory consumption. We present an accelerated implementation of an iterative method for CBCT following the Split Bregman formulation, which reduces computational time through GPU-accelerated kernels. The implementation enables the reconstruction of large volumes (>1024 3 pixels) using partitioning strategies in forward- and back-projection operations. We evaluated the algorithm on small-animal data for different scenarios with different numbers of projections, angular span, and projection size. Reconstruction time varied linearly with the number of projections and quadratically with projection size but remained almost unchanged with angular span. Forward- and back-projection operations represent 60% of the total computational burden. Efficient implementation using parallel processing and large-memory management strategies together with GPU kernels enables the use of advanced reconstruction approaches which are needed in limited-data scenarios. Our GPU implementation showed a significant time reduction (up to 48 ×) compared to a CPU-only implementation, resulting in a total reconstruction time from several hours to few minutes.
Neuromuscular Control of Rapid Linear Accelerations in Fish
2016-06-22
2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Tufts University Research... Control of Rapid Linear Accelerations in Fish Report Title In this project, we measured muscle activity, body movements, and flow patterns during linear
United States and Russian Cooperation on Issues of Nuclear Nonproliferation
2005-06-01
Reactors ( RERTR ) This project works with Russia to facilitate conversion of its research and test reactors from highly enriched uranium (HEU) fuel...reactor fuel purchase, accelerated RERTR activities, and accelerated Material Conversion and Consolidation implementation. 89 j. Fissile Materials
DOT National Transportation Integrated Search
2014-03-01
This report describes a research project to investigate accelerated aging protocols for fiber-reinforced : polymer (FRP) reinforcement of concrete. This research was conducted in three stages. In the first : stage, various spectroscopic techniques we...
DOT National Transportation Integrated Search
2014-05-01
The overall objective of this research study is to evaluate the structural performance and loadcarrying : capacity of bonded concrete overlay pavement structures through accelerated pavement : testing and document the experience of mix design and con...
DOT National Transportation Integrated Search
2017-11-01
This document serves as the final report on the construction and opening of the Roundabout Project in London, Kentucky (Kentucky Item Number 11904.1). This project (hereafter referred to as the London Roundabout) was constructed on the authority o...
Lin, Yen Ting; Chylek, Lily A; Lemons, Nathan W; Hlavacek, William S
2018-06-21
The chemical kinetics of many complex systems can be concisely represented by reaction rules, which can be used to generate reaction events via a kinetic Monte Carlo method that has been termed network-free simulation. Here, we demonstrate accelerated network-free simulation through a novel approach to equation-free computation. In this process, variables are introduced that approximately capture system state. Derivatives of these variables are estimated using short bursts of exact stochastic simulation and finite differencing. The variables are then projected forward in time via a numerical integration scheme, after which a new exact stochastic simulation is initialized and the whole process repeats. The projection step increases efficiency by bypassing the firing of numerous individual reaction events. As we show, the projected variables may be defined as populations of building blocks of chemical species. The maximal number of connected molecules included in these building blocks determines the degree of approximation. Equation-free acceleration of network-free simulation is found to be both accurate and efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivoli, A.
The U.S. Particle Physics Project Prioritization Panel (P5) report encouraged the realization of Fermilab's Proton Improvement Plan II (PIP-II) to support future neutrino programs in the United States. PIP-II aims at enhancing the capabilities of the Fermilab existing accelerator complex while simultaneously providing a flexible platform for its future upgrades. The central part of PIP-II project is the construction of a new 800 MeV H- Superconducting (SC) Linac together with upgrades of the Booster and Main Injector synchrotrons. New transfer lines will also be needed to deliver beam to the down-stream accelerators and facilities. In this paper we present themore » recent development of the design of the transfer lines discussing the principles that guided their design, the constraints and requirements imposed by the existing accelerator complex and the following modifications implemented to comply with a better understanding of the limitations and further requirements that emerged during the development of the project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chuan S.; Shao, Xi
2016-06-14
The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks onmore » our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.« less
Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryne, Robert D.
2006-08-10
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less
NASA Astrophysics Data System (ADS)
Ryne, Robert D.
2006-09-01
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza; Evans, John W.
2014-01-01
For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.
Pulsed-focusing recirculating linacs for muon acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland
2014-12-31
Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.« less
DOT National Transportation Integrated Search
2001-11-01
This report describes the test results of the first project at the Louisiana Transportation Research Center's Accelerated Loading Facility (ALF). In 1995, 9 test lanes were constructed at the Louisiana Pavement Research Facility in Port Allen. These ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upchurch, J.L.
In order to better meet the challenges associated with downsizing and because of the ongoing need to control costs and accelerate project development many companies are trying new and different strategies in managing projects. For the Seastar Project, Phillips adopted a total team approach. The goal of this approach was to develop a win/win attitude for all of the personnel (Phillips, Engineering Contractor and Equipment Vendors) involved in the project. By bringing all the personnel together and focusing on project success it was thought that costs could be better controlled and that the development schedule could be accelerated. The Seastarmore » Project is a two well subsea development located in Garden Banks Blocks 70 and 71 approximately 120 miles south of Cameron Louisiana. Phillips took over operatorship in 1992 and drilled Garden Banks Block 71 No. 2, which discovered 349 feet of net gas pay in April 1993. Following a successful drill stem test on GB 71 No. 2, drilling was started on an appraisal well and work began on a feasibility study to define development options.« less
A 5MV Tandetron to Universidad Autonoma de Madrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tengblad, Olof
1999-11-16
A 5MV Tandetron accelerator is being projected for the Center of Material Analysis of the Universidad Autonoma de Madrid. The accelerator will be dedicated to Material Science but it meant to be open to all fields of science and industry that can profit from this kind of installations. Estimated construction time and delivery of the accelerator implies that the first experiments can be performed in the spring 2001.
24 CFR 241.860 - Commissioner's right to require acceleration.
Code of Federal Regulations, 2010 CFR
2010-04-01
... AUTHORITIES SUPPLEMENTARY FINANCING FOR INSURED PROJECT MORTGAGES Contract Rights and Obligations-Multifamily Projects Without a HUD-Insured or HUD-Held Mortgage Rights and Duties of Lender Under the Contract of...
Accelerated Learning: Undergraduate Research Experiences at the Texas A&M Cyclotron Institute
NASA Astrophysics Data System (ADS)
Yennello, S. J.
The Texas A&M Cyclotron Institute (TAMU CI) has had an NSF funded Research Experiences for Undergraduates program since 2004. Each summer about a dozen students from across the country join us for the 10-week program. They are each imbedded in one of the research groups of the TAMU CI and given their own research project. While the main focus of their effort is their individual research project, we also have other activities to broaden their experience. For instance, one of those activities has been involvement in a dedicated group experiment. Because not every experimental group will run during those 10 weeks and the fact that some of the students are in theory research groups, a group research experience allows everyone to actually be involved in an experiment using the accelerator. In stark contrast to the REU students' very focused experience during the summer, Texas A&M undergraduates can be involved in research projects at the Cyclotron throughout the year, often for multiple years. This extended exposure enables Texas A&M students to have a learning experience that cannot be duplicated without a local accelerator. The motivation for the REU program was to share this accelerator experience with students who do not have that opportunity at their home institution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uyttenhove, W.; Baeten, P.; Ban, G.
The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate on-line reactivity monitoring and subcriticality level determination in Accelerator Driven Systems. Therefore the VENUS reactor at SCK.CEN in Mol (Belgium) was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of the on-linemore » subcriticality monitoring methodology. Moreover a benchmarking tool is required for nuclear data research and code validation. In this paper the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the rod drop technique and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uyttenhove, W.; Baeten, P.; Kochetkov, A.
The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate online reactivity monitoring and subcriticality level determination in accelerator driven systems (ADS). Therefore, the VENUS reactor at SCK.CEN in Mol, Belgium, was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS. The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of themore » online subcriticality monitoring methodology. Moreover, a benchmarking tool is required for nuclear data research and code validation. In this paper, the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the positive period method and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)« less
Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.
Minsky, D M; Kreiner, A J
2014-06-01
Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.
Superconducting Magnets for Particle Accelerators
Bottura, Luca; Gourlay, Stephen A.; Yamamoto, Akira; ...
2015-11-10
In this study, we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.
Superconducting Magnets for Particle Accelerators
NASA Astrophysics Data System (ADS)
Bottura, Luca; Gourlay, Stephen A.; Yamamoto, Akira; Zlobin, Alexander V.
2016-04-01
In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.
Laser wakefield accelerated electron beam monitoring and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koga, J. K.; Mori, M.; Kotaki, H.
2016-03-25
We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10 m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.
77 FR 12371 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... applicable conventions under the accelerated cost recovery system. DATES: Written comments should be received... INFORMATION: Title: Applicable Conventions Under the Accelerated Cost Recovery System. OMB Number: 1545-1146...-profit organizations, and farms. Estimated Number of Respondents: 700. Estimated Time per Respondent: 6...
Why the chameleon has spiral-shaped muscle fibres in its tongue
Leeuwen, J. L. van
1997-01-01
The intralingual accelerator muscle is the primary actuator for the remarkable ballistic tongue projection of the chameleon. At rest, this muscle envelopes the elongated entoglossal process, a cylindrically shaped bone with a tapering distal end. During tongue projection, the accelerator muscle elongates and slides forward along the entoglossal process until the entire muscle extends beyond the distal end of the process. The accelerator muscle fibres are arranged in transverse planes (small deviations are possible), and form (hitherto unexplained) spiral-shaped arcs from the peripheral to the internal boundary. To initiate tongue projection, the muscle fibres probably generate a high intramuscular pressure. The resulting negative pressure gradient (from base to tip) causes the muscle to elongate and to accelerate forward. Effective forward sliding is made possible by a lubricant and a relatively low normal stress exerted on the proximal cylindrical part of the entoglossal process. A relatively high normal stress is, however, probably required for an effective acceleration of muscle tissue over the tapered end of the process. For optimal performance, the fast extension movement should occur without significant (energy absorbing) torsional motion of the tongue. In addition, the tongue extension movement is aided by a close packing of the muscles fibres (required for a high power density) and a uniform strain and work output in every cross-section of the muscle. A quantitative model of the accelerator muscle was developed that predicts internal muscle fibre arrangements based on the functional requirements above and the physical principle of mechanical stability. The curved shapes and orientations of the muscle fibres typically found in the accelerator muscle were accurately predicted by the model. Furthermore, the model predicts that the reduction of the entoglossal radius towards the tip (and thus the internal radius of the muscle) tends to increase the normal stress on the entoglossal bone.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
...; Buck Mountain Vegetation and Fuel Management Project EIS AGENCY: Forest Service, USDA. ACTION: Notice... the Buck Mountain Vegetation and Fuel Management Project to accelerate late-successional forest... project design features have been identified. Late-Successional Reserve Management Silvicultural...
ERIC Educational Resources Information Center
MASON, EVELYN P.
PROJECT "CATCH-UP" WAS DESIGNED TO GIVE CULTURALLY DISADVANTAGED 13 AND 14 YEAR OLDS A SUMMER PROGRAM OF ACADEMIC REMEDIATION, ACCELERATION, AND GENERAL CULTURAL ENRICHMENT. 49 YOUNGSTERS FROM THE PROJECT WERE USED IN THIS STUDY TO MEASURE PROJECT PARTICIPANTS' ATTITUDES TOWARD THEMSELVES AND TO EVALUATE DIFFERENTIAL RESPONSES TO THE PROJECT AND…
Plasma formed ion beam projection lithography system
Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran
2002-01-01
A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.
Nuclotron-Based Ion Collider Facility (nica)
NASA Astrophysics Data System (ADS)
Meshkov, I.; Sissakian, A.; Sorin, A.
2008-09-01
The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).
75 FR 38187 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... the Accelerated Cost Recovery System (Sec. 1.168(i)-1). DATES: Written comments should be received on... . SUPPLEMENTARY INFORMATION: Title: General Asset Accounts under the Accelerated Cost Recovery System. OMB Number... approved collection. Affected Public: Business or other for-profit organizations and Farms. Estimated...
DOT National Transportation Integrated Search
2009-01-01
Vol. 1-1: In July 2006, construction began on an accelerated bridge project in Boone County, Iowa that was composed of precast substructure : elements and an innovative, precast deck panel system. The superstructure system consisted of full-depth dec...
Heavy Ion Acceleration at J-PARC
NASA Astrophysics Data System (ADS)
SATO, Susumu
2018-02-01
J-PARC, the Japan Proton Accelerator Research Complex, is an accelerator, which provides a high-intensity proton beam. Recently as a very attractive project, the acceleration of heavy ions produced by supplementary ion sources, called J-PARC-HI, is seriously contemplated by domestic as well as international communities. The planned facility would accelerate heavy ions up to U92+ with a beam energy 20 AGeV ( of 6.2 AGeV). The highlight of the J-PARC-HI project is its very high beam rate up to 1011 Hz, which will enable the study of very rare events. Taking advantage of this high intensity, J-PARC-HI will carry out frontier studies of new and rare observables in this energy region: (i) nuclear medium modification of chiral property of vector mesons through low-mass di-lepton signal, (ii) QCD critical pointcharacterization through event-by-event fluctuation signals of particle production, (iii) systematic measurements related to the equation of state through collective flow signal or two-particle momentum correlation signal, or (iv) the search of hyper nuclei with multi strangeness including or exceeding S = 3. The current plan of J-PARC-HI aims to carrying out the first experimental measurements in 2025.
Holifield Heavy-Ion Research Facility at Oak Ridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, C.M.
1977-01-01
A new heavy-ion accelerator facility is now under construction at the Oak Ridge National Laboratory. A brief description of the scope and schedule of this project is given, and the new large tandem accelerator, which will be a major element of the facility is discussed in some detail. Several studies which have been made or are in progress in Oak Ridge in preparation for operation of the tandem accelerator are briefly described.
NASA Astrophysics Data System (ADS)
Howell, M.; DeGraff, B.; Galambos, J.; Kim, S.-H.
2017-12-01
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) is preparing for the Proton Power Upgrade (PPU) project to increase the output energy of the accelerator from 1.0 GeV to 1.3 GeV. As part of this project with the combination of increasing the output energy and beam current, the beam power capability will be doubled from 1.4MW to 2.8MW. In this project, seven new high beta cryomodules housing 28 superconducting niobium cavities will be added to the LINAC tunnel. Lessons learned from over ten years of operation will be incorporated into the new cryomodule and cavity design. The design and the fabrication of these cryomodules and how these will be integrated into the existing accelerator will be detailed in this paper.
Stephens, Martin L.; Barrow, Craig; Andersen, Melvin E.; Boekelheide, Kim; Carmichael, Paul L.; Holsapple, Michael P.; Lafranconi, Mark
2012-01-01
The U.S. National Research Council (NRC) report on “Toxicity Testing in the 21st century” calls for a fundamental shift in the way that chemicals are tested for human health effects and evaluated in risk assessments. The new approach would move toward in vitro methods, typically using human cells in a high-throughput context. The in vitro methods would be designed to detect significant perturbations to “toxicity pathways,” i.e., key biological pathways that, when sufficiently perturbed, lead to adverse health outcomes. To explore progress on the report’s implementation, the Human Toxicology Project Consortium hosted a workshop on 9–10 November 2010 in Washington, DC. The Consortium is a coalition of several corporations, a research institute, and a non-governmental organization dedicated to accelerating the implementation of 21st-century Toxicology as aligned with the NRC vision. The goal of the workshop was to identify practical and scientific ways to accelerate implementation of the NRC vision. The workshop format consisted of plenary presentations, breakout group discussions, and concluding commentaries. The program faculty was drawn from industry, academia, government, and public interest organizations. Most presentations summarized ongoing efforts to modernize toxicology testing and approaches, each with some overlap with the NRC vision. In light of these efforts, the workshop identified recommendations for accelerating implementation of the NRC vision, including greater strategic coordination and planning across projects (facilitated by a steering group), the development of projects that test the proof of concept for implementation of the NRC vision, and greater outreach and communication across stakeholder communities. PMID:21948868
Astronomical Surveys, Catalogs, Databases, and Archives
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2016-06-01
All-sky and large-area astronomical surveys and their cataloged data over the whole range of electromagnetic spectrum are reviewed, from γ-ray to radio, such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and II based catalogues (APM, MAPS, USNO, GSC) in optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio and many others, as well as most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS) and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). Most important astronomical databases and archives are reviewed as well, including Wide-Field Plate DataBase (WFPDB), ESO, HEASARC, IRSA and MAST archives, CDS SIMBAD, VizieR and Aladin, NED and HyperLEDA extragalactic databases, ADS and astro-ph services. They are powerful sources for many-sided efficient research using Virtual Observatory tools. Using and analysis of Big Data accumulated in astronomy lead to many new discoveries.
Gas-drag-assisted capture of Himalia's family
NASA Astrophysics Data System (ADS)
Ćuk, Matija; Burns, Joseph A.
2004-02-01
To elucidate the capture of Jupiter's outer moons, we reverse-evolve satellites from their present orbits to their original heliocentric paths in the presence of Jupiter's primordial circumplanetary disk (Lubow et al., 1999, Astrophys. J. 526, 1001-1012; Canup and Ward, 2003, Astron. J. 124, 3404-3423). Our orbital histories use a symplectic integrator that allows dissipation. We assume that the present satellites Himalia, Elara, Lysithea, Leda, and S/2000 J11 are collisional fragments of a single parent. Our simulations show that this "prograde-cluster progenitor" (PCP) could be derived from objects with heliocentric orbits like those of the Hilda asteroid group. We show analytically that this capture is energetically possible. We also compare the spectroscopic characteristics of the prograde cluster members (Grav et al., 2003, Icarus, submitted for publication) with those of the Hildas, and conclude that the surface color of the prograde-cluster progenitor is consistent with an origin within the Hilda group. Accordingly, gas drag in the primordial jovian nebula is found to offer a plausible explanation for the origin of the prograde cluster. A similar capture mechanism is proposed for Saturn's Phoebe.
DOT National Transportation Integrated Search
2008-12-01
PROBLEM: The full-scale accelerated pavement testing (APT) provides a unique tool for pavement : engineers to directly collect pavement performance and failure data under heavy : wheel loading. However, running a full-scale APT experiment is very exp...
DOT National Transportation Integrated Search
2014-07-01
The purpose of this report is to document Accelerated Bridge Construction (ABC) techniques on IBRD : (Innovative Bridge Research and Development) project 102470 for the construction of Bridge N-16-Q : on State Highway 69 over Turkey Creek. The constr...
Development of advanced technological systems for accelerator transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.
1995-10-01
A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Rongli; Freyberger, Arne P.; Legg, Robert A.
Several new accelerator projects are adopting superconducting accelerator technology. When accelerating cavities maintain high RF gradients, field emission, the emission of electrons from cavity walls, can occur and may impact operational cavity gradient, radiological environment via activated components, and reliability. In this talk, we will discuss instrumented measurements of field emission from the two 1.1 GeV superconducting continuous wave (CW) linacs in CEBAF. The goal is to improve the understanding of field emission sources originating from cryomodule production, installation and operation. Such basic knowledge is needed in guiding field emission control, mitigation, and reduction toward high gradient and reliable operationmore » of superconducting accelerators.« less
Neural processing of gravity information
NASA Technical Reports Server (NTRS)
Schor, Robert H.
1992-01-01
The goal of this project was to use the linear acceleration capabilities of the NASA Vestibular Research Facility (VRF) at Ames Research Center to directly examine encoding of linear accelerations in the vestibular system of the cat. Most previous studies, including my own, have utilized tilt stimuli, which at very low frequencies (e.g., 'static tilt') can be considered a reasonably pure linear acceleration (e.g., 'down'); however, higher frequencies of tilt, necessary for understanding the dynamic processing of linear acceleration information, necessarily involves rotations which can stimulate the semicircular canals. The VRF, particularly the Long Linear Sled, has promise to provide controlled pure linear accelerations at a variety of stimulus frequencies, with no confounding angular motion.
A New Active Space Radiation Instruments for the International Space Station, A-DREAMS
NASA Astrophysics Data System (ADS)
Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Kobayashi, Shingo
For future space experiments in the International Space Station (ISS) or other satellites, radiation detectors, A-DREAMS (Active Dosimeter for Radiation Environment and Astronautic Monitoring in Space), using single or multiple silicon semi-conductor detectors have been developed. The first version of the detectors were produced and calibrated with particle accelerators. National Institute of Radiological Sciences has a medical heavy ion accelerator (HIMAC) for cancer therapy and a cyclotron accelerator. The detector was irradiated with high energy heavy ions and protons in HIMAC and the cyclotron and calibrated the energy resolution and linearity for deposited energies of these particles. We are planned to be going to use the new instrument in an international project, the new MATROSHKA experiment which is directed by members in the Institute of Bio-Medical Problem (IBMP) in Russia and German Space Center (DLR) in Germany. In the project, the dose distribution in human torso phantom will be investigated for several months in the ISS. For the project, a new type of the instruments is under development in NIRS and the current situation will be reported in this paper.
Effect of climate change on sowing and harvest dates of spring barley and maize in Poland
NASA Astrophysics Data System (ADS)
Marcinkowski, Paweł; Piniewski, Mikołaj
2018-04-01
Climate change and projected temperature increase is recognised to have significant impact on agricultural production and crop phenology. This study evaluated the climate change impact on sowing and harvest dates of spring barley and maize in the boundaries of two largest catchments in Poland - the Vistula and the Odra. For this purpose, an agro-hydrological Soil and Water Assessment Tool has been used, driven by climate forcing data provided within the Coordinated Downscaling Experiment - European Domain experiment projected to the year 2100 under two representative concentration pathways: 4.5 and 8.5. The projected warmer climate significantly affected the potential scheduling of agricultural practices, accelerating the occurrence of sowing and harvest dates. The rate of acceleration was dependent on the time horizon and representative concentration pathways scenario. In general, the rate of sowing/harvest advance was accelerating in time and, also from representative concentration pathways 4.5 to 8.5, reaching 23 days for spring barley and 30 days for maize (ensemble mean for the far future under representative concentration pathways 8.5).
Lessons learned on the Ground Test Accelerator control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, A.J.; Weiss, R.E.
1994-09-01
When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks tomore » deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.« less
Report on all ARRA Funded Technical Work
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2013-10-05
The main focus of this American Recovery and Reinvestment Act of 2009 (ARRA) funded project was to design an energy efficient carbon capture and storage (CCS) process using the Recipients membrane system for H{sub 2} separation and CO{sub 2} capture. In the ARRA-funded project, the Recipient accelerated development and scale-up of ongoing hydrogen membrane technology research and development (R&D). Specifically, this project focused on accelerating the current R&D work scope of the base program-funded project, involving lab scale tests, detail design of a 250 lb/day H{sub 2} process development unit (PDU), and scale-up of membrane tube and coating manufacturing. Thismore » project scope included the site selection and a Front End Engineering Design (FEED) study of a nominally 4 to 10 ton-per-day (TPD) Pre-Commercial Module (PCM) hydrogen separation membrane system. Process models and techno-economic analysis were updated to include studies on integration of this technology into an Integrated Gasification Combined Cycle (IGCC) power generation system with CCS.« less
Jefferson Lab 12 GEV Cebaf Upgrade
NASA Astrophysics Data System (ADS)
Rode, C. H.
2010-04-01
The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.
South Bay Salt Pond Restoration Project: Planning Phase at Southern Eden Landing
This project will complete the design and permits to restore 1,300 acres of tidal wetlands, provide 3.5 miles shoreline protection, and accelerate wetlands restoration at the Eden Landing Ecological Reserve.
A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source
NASA Astrophysics Data System (ADS)
Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu
At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferdinand, Robin; Beauvais, Pierre-Yves
High Power Proton Accelerators (HPPAs) are studied for several projects based on high-flux neutron sources driven by proton or deuteron beams. Since the front end is considered as the most critical part of such accelerators, the two French national research agencies CEA and CNRS decided to collaborate in 1997 to study and build a High-Intensity Proton Injector (IPHI). The main objective of this project is to master the complex technologies used and the concepts of manufacturing and controlling the HPPAs. Recently, a collaboration agreement was signed with CERN and led to some evolutions in the design and in the schedule.more » The IPHI design current was maintained at 100 mA in Continuous Wave mode. This choice should allow to produce a high reliability beam at reduced intensity (typically 30 mA) tending to fulfill the Accelerator Driven System requirements. The output energy of the Radio Frequency Quadrupole (RFQ), was reduced from 5 to 3 MeV, allowing then the adjunction and the test, in pulsed operation of a chopper line developed by CERN for the Superconducting Proton Linac (SPL). In a final step, the IPHI RFQ and the chopper line should become parts of the SPL injector. In this paper, the IPHI project and the recent evolutions are reported together with the construction and operation schedule.« less
Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.
Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J
2011-12-01
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.
High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel
Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase variation of input signals due to application of developed power feeding scheme. Traveling wave excitation, adjustment and detection were successfully tested. Auxiliary equipment required for high power test such as the tuner, power and measure couplers, holding plates for VTS at Fermilab were developed and successfully tested. Both TW SRF cavities were fabricated by AES, Inc. without stiffening ribs before this company closed their production facility. Currently Roark EB welding company is finishing now welding process of the cavity for the high power testing at Fermilab VTS. Successful demonstration of high gradients in the 3-cell cavity along with studies of traveling wave excitation and tuning issues is leading to successful development of superconducting traveling wave technology for ILC applications and other future high energy SC accelerators.« less
Minority Achievement Gaps in STEM: Findings of a Longitudinal Study of Project Excite
ERIC Educational Resources Information Center
Olszewski-Kubilius, Paula; Steenbergen-Hu, Saiying; Thomson, Dana; Rosen, Rhoda
2017-01-01
This longitudinal study examined the outcomes of Project Excite on reducing minority students' achievement gaps in STEM over 14 years. Project Excite was designed to provide intensive supplemental enrichment and accelerated programming for high-potential, underrepresented minority students from third through eighth grades to better prepare them…
India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India - the U.S.-India Energy Dialogue - the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National Institute for Solar Energy (NISE). This fact sheet overviews the updated maps and data, which help identify high-quality solar energy projects. This can help accelerate the deployment of solar energy in India.
India Solar Resource Data: Enhanced Data for Accelerated Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India - the U.S.-India Energy Dialogue - the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National Institute for Solar Energy (NISE). This fact sheet overviews the updated maps and data, which help identify high-quality solar energy projects. This can help accelerate the deployment of solar energy in India.
On the Possibility of Acceleration of Polarized Protons in the Synchrotron Nuclotron
NASA Astrophysics Data System (ADS)
Shatunov, Yu. M.; Koop, I. A.; Otboev, A. V.; Mane, S. P.; Shatunov, P. Yu.
2018-05-01
One of the main tasks of the NICA project is to produce colliding beams of polarized protons. It is planned to accelerate polarized protons from the source to the maximum energy in the existing proton synchrotron. We consider all depolarizing spin resonances in the Nuclotron and propose methods to overcome them.
Accelerated Schools in Action: Lessons from the Field.
ERIC Educational Resources Information Center
Finnan, Christine, Ed.; And Others
This book provides insights into one of the nation's largest and most comprehensive school-restructuring movements, the Accelerated Schools Project. Since its inception in 1986, the focus of the movement has been on transforming schools with students at risk of dropping out into schools with high expectations of all students. This is accomplished,…
2007-06-15
technology prize competitions have been used since the 18th century to spur innovation and advance the development of complex and slowly maturing disruptive ... technologies The Defense Advanced Research Projects Agency (DARPA) has used advanced technology competitions in 2004 and 2005 to rapidly accelerate the
Accelerated Schools as Professional Learning Communities.
ERIC Educational Resources Information Center
Biddle, Julie K.
The goal of the Accelerated Schools Project (ASP) is to develop schools in which all children achieve at high levels and all members of the school community engage in developing and fulfilling the school's vision. But to fully implement the ASP model, a school must become a learning community that stresses relationships, shared values, and a…
NASA Technical Reports Server (NTRS)
Douglas, Freddie, III
2004-01-01
The accelerated Leadership Option (ALO) combines business management and systems engineering studies at the Massachusetts Institute of Technology (MIT) culminating in a Master of Science degree, with a one year developmental assignment. The program accelerates the development process of exceptionally promising project leaders to positions of increased responsibility. Participants are selected because of technical expertise and proven leadership abilities.
Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji
2014-01-01
Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Eldridge, J. T.; Ferebee, R. C.; Lassiter, J. O.; Redmon, J. W., Jr.
1998-01-01
As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous investigations such as protein crystal growth, combustion, and fluid mechanics experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. These experiments are most sensitive to low-frequency accelerations and can tolerate much higher accelerations at higher frequency. However, the anticipated acceleration environment on ISS significantly exceeds the required acceleration level. The ubiquity and difficulty in characterization of the disturbance sources precludes source isolation, requiring vibration isolation to attenuate the anticipated disturbances to an acceptable level. This memorandum reports the results of research in active control methods for microgravity vibration isolation.
ELIMED: a new hadron therapy concept based on laser driven ion beams
NASA Astrophysics Data System (ADS)
Cirrone, Giuseppe A. P.; Margarone, Daniele; Maggiore, Mario; Anzalone, Antonello; Borghesi, Marco; Jia, S. Bijan; Bulanov, Stepan S.; Bulanov, Sergei; Carpinelli, Massimo; Cavallaro, Salvatore; Cutroneo, Mariapompea; Cuttone, Giacomo; Favetta, Marco; Gammino, Santo; Klimo, Ondrej; Manti, Lorenzo; Korn, Georg; La Malfa, Giuseppe; Limpouch, Jiri; Musumarra, Agatino; Petrovic, Ivan; Prokupek, Jan; Psikal, Jan; Ristic-Fira, Aleksandra; Renis, Marcella; Romano, Francesco P.; Romano, Francesco; Schettino, Giuseppe; Schillaci, Francesco; Scuderi, Valentina; Stancampiano, Concetta; Tramontana, Antonella; Ter-Avetisyan, Sargis; Tomasello, Barbara; Torrisi, Lorenzo; Tudisco, Salvo; Velyhan, Andriy
2013-05-01
Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility.
NASA Technical Reports Server (NTRS)
Moses, Paul L.
2003-01-01
X-43C Project is a hypersonic flight demonstration being executed as a collaboration between the National Aeronautics and Space Administration (NASA) and the United States Air Force (USAF). X-43C will expand the hypersonic flight envelope for air breathing engines beyond the history making efforts of the Hyper-X Program (X-43A). X-43C will demonstrate sustained accelerating flight during three flight tests of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs are to be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA s Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center over water off the coast of California in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration ( 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavyweight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 ( 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides background for NASA s current hypersonic flight demonstration efforts.
Purdue University National Biomedical Tracer Facility: Project definition phase. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, M.A.
The proposed National Biomedical Tracer Facility (NBTF) will house a high-current accelerator dedicated to production of short-lived radionuclides for biomedical and scientific research. The NBTF will play a vital role in repairing and maintaining the United States` research infrastructure for generation of essential accelerator-based radioisotopes. If properly designed and managed, the NBTF should also achieve international recognition as a Center-of-Excellence for research on radioisotope production methods and for associated education and training. The current report documents the results of a DOE-funded NBTF Project Definition Phase study carried out to better define the technical feasibility and projected costs of establishing andmore » operating the NBTF. This report provides an overview of recommended Facility Design and Specifications, including Accelerator Design, Building Design, and the associated Construction Cost Estimates and Schedule. It is recommended that the NBTF be established as an integrated, comprehensive facility for meeting the diverse production, research, and educational missions set forth in previous documents. Based on an analysis of the projected production demands that will be placed on the NBTF, it appears that a 70 MeV, 1 mA, negative ion cyclotron will offer a good balance between production capabilities and the costs of accelerator purchase and operation. A preliminary architectural plan is presented for a facility designed specifically to fulfill the functions of the NBTF in a cost-effective manner. This report also presents a detailed analysis of the Required Federal State, and Local Permits that may be needed to establish the NBTF, along with schedules and cost estimates for obtaining these permits. The Handling, Storage, and Disposal of Radioactive Waste will pose some significant challenges in the operation of the NBTF, but at this stage of planning the associated problems do not appear to be prohibitive.« less
Summary Status of the Space Acceleration Measurement System (SAMS), September 1993
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1993-01-01
The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.
Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2000-01-01
This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.
A pervasive parallel framework for visualization: final report for FWP 10-014707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.
2014-01-01
We are on the threshold of a transformative change in the basic architecture of highperformance computing. The use of accelerator processors, characterized by large core counts, shared but asymmetrical memory, and heavy thread loading, is quickly becoming the norm in high performance computing. These accelerators represent significant challenges in updating our existing base of software. An intrinsic problem with this transition is a fundamental programming shift from message passing processes to much more fine thread scheduling with memory sharing. Another problem is the lack of stability in accelerator implementation; processor and compiler technology is currently changing rapidly. This report documentsmore » the results of our three-year ASCR project to address these challenges. Our project includes the development of the Dax toolkit, which contains the beginnings of new algorithms for a new generation of computers and the underlying infrastructure to rapidly prototype and build further algorithms as necessary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katayama, T.
On the basis of the achievement of the accelerator studies at present TARN, it is decided to construct the new ring TARN II which will be operated as an accumulator, accelerator, cooler and stretcher. It has the maximum magnetic rigidity of 7 Txm corresponding to the proton energy 1.3 GeV and the ring diameter is around 23 m. Light and heavy ions from the SF cyclotron will be injected and accelerated to the working energy where the ring will be operated as a desired mode, for example a cooler ring mode. At the cooler ring operation, the strong cooling devicesmore » such as stochastic and electron beam coolings will work together with the internal gas jet target for the precise nuclear experiments. TARN II is currently under the contruction with the schedule of completion in 1986. In this paper general features of the project are presented.« less
MATWIN: bridging the gap between academic research and industry.
Reiffers, Josy; Robert, Lucia
2015-09-16
MATWIN (Maturation and Accelerating Translation With INdustry) is part of the nationwide effort to support cancer innovation. This unique program is willing to support innovative research projects providing tools, resources, and staff dedicated to project leaders wishing to optimize the industrial attractiveness of their project. The overall objective is clear: fight cancer always more effectively.
A new method of measuring gravitational acceleration in an undergraduate laboratory program
NASA Astrophysics Data System (ADS)
Wang, Qiaochu; Wang, Chang; Xiao, Yunhuan; Schulte, Jurgen; Shi, Qingfan
2018-01-01
This paper presents a high accuracy method to measure gravitational acceleration in an undergraduate laboratory program. The experiment is based on water in a cylindrical vessel rotating about its vertical axis at a constant speed. The water surface forms a paraboloid whose focal length is related to rotational period and gravitational acceleration. This experimental setup avoids classical source errors in determining the local value of gravitational acceleration, so prevalent in the common simple pendulum and inclined plane experiments. The presented method combines multiple physics concepts such as kinematics, classical mechanics and geometric optics, offering the opportunity for lateral as well as project-based learning.
PRISM software—Processing and review interface for strong-motion data
Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter
2017-11-28
Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.
Andersson, Leif; Archibald, Alan L; Bottema, Cynthia D; Brauning, Rudiger; Burgess, Shane C; Burt, Dave W; Casas, Eduardo; Cheng, Hans H; Clarke, Laura; Couldrey, Christine; Dalrymple, Brian P; Elsik, Christine G; Foissac, Sylvain; Giuffra, Elisabetta; Groenen, Martien A; Hayes, Ben J; Huang, LuSheng S; Khatib, Hassan; Kijas, James W; Kim, Heebal; Lunney, Joan K; McCarthy, Fiona M; McEwan, John C; Moore, Stephen; Nanduri, Bindu; Notredame, Cedric; Palti, Yniv; Plastow, Graham S; Reecy, James M; Rohrer, Gary A; Sarropoulou, Elena; Schmidt, Carl J; Silverstein, Jeffrey; Tellam, Ross L; Tixier-Boichard, Michele; Tosser-Klopp, Gwenola; Tuggle, Christopher K; Vilkki, Johanna; White, Stephen N; Zhao, Shuhong; Zhou, Huaijun
2015-03-25
We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.
Early strength prediction of concrete based on accelerated curing methods : final report.
DOT National Transportation Integrated Search
1995-12-01
Concrete mix designs and components may currently be changed during the course of a project. The possible negative effects of such changes on concrete strength, are not determined under the current plant control/project control process. Also, the cur...
USDA-ARS?s Scientific Manuscript database
We describe the organization of a nascent international effort - the "Functional Annotation of ANimal Genomes" project - whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species....
Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.
Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A
2009-07-01
In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.
Evaluation of proton cross-sections for radiation sources in the proton accelerator
NASA Astrophysics Data System (ADS)
Cho, Young-Sik; Lee, Cheol-Woo; Lee, Young-Ouk
2007-08-01
Proton Engineering Frontier Project (PEFP) is currently building a proton accelerator in Korea which consists of a proton linear accelerator with 100 MeV of energy, 20 mA of current and various particle beam facilities. The final goal of this project consists of the production of 1 GeV proton beams, which will be used for various medical and industrial applications as well as for research in basic and applied sciences. Carbon and copper in the proton accelerator for PEPP, through activation, become radionuclides such as 7Be and 64Cu. Copper is a major element of the accelerator components and the carbon is planned to be used as a target material of the beam dump. A recent survey showed that the currently available cross-sections create a large difference from the experimental data in the production of some residual nuclides by the proton-induced reactions for carbon and copper. To more accurately estimate the production of radioactive nuclides in the accelerator, proton cross-sections for carbon and copper are evaluated. The TALYS code was used for the evaluation of the cross-sections for the proton-induced reactions. To obtain the cross-sections which best fits the experimental data, optical model parameters for the neutron, proton and other complex particles such as the deuteron and alpha were successively adjusted. The evaluated cross-sections in this study are compared with the measurements and other evaluations .
Navigating Uncharted Waters: An Accelerated Content-Based English for Academic Purposes Program
ERIC Educational Resources Information Center
Hernandez, Kelly; Thomas, Michelle; Schuemann, Cynthia
2012-01-01
In 2008, Miami Dade College received a $1.9 million Title V grant from the US Department of Education to develop an Accelerated Content-Based English for Academic Purposes (EAP) track called Project ACE for ESL students. The ACE curriculum is anchored by the principles of flexibility, contextualization, and faculty buy-in--critical matters given…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Mark
Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiationmore » techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes, and experimental area and infrastructure.« less
ADC interface for data server with data preselection for luminosity detector in AIDA-2020 project
NASA Astrophysics Data System (ADS)
Daniluk, W.; Dziedzic, B.; Korcyl, G.; Wojtoń, T.; Zawiejski, L.
2017-08-01
Main aim of the AIDA-2020 project is development of detectors for future accelerators. In FCAL Colaboration we are working on forward subdetectors for ILC and CLIC accelerators. My team is developing prototype module which receives data from ADC, provides the data preselection, and transmits them as packages to the data server for further their analysis. Common prototype is based on AC701 evaluation board which contains Artix-7 FPGA and is equipped with SMA connectors for gigabit transceivers and ethernet connector. In my talk I will describe architecture of the device and current state of module development.
The Spallation Neutron Source (SNS) project accelerator systems
NASA Astrophysics Data System (ADS)
Holmes, Jeffrey A.; Alonso, Jose R.
1999-06-01
The SNS will be the world's leading accelerator-based neutron-scattering research facility when it begins operation in 2005. By delivering 1-MW of beam power to a heavy-metal target in short (<1 μs) bursts of 1-GeV protons, the SNS will provide intense neutron beams with flux levels at least a factor of five over present spallation sources. A multi-laboratory (LBNL, LANL, BNL, ANL and ORNL) collaboration, led by Oak Ridge National Laboratory, has developed a reference design that addresses the challenging technology issues associated with this project. This paper discusses the requirements, issues, and constraints that led to the present design choices.
Point-source stochastic-method simulations of ground motions for the PEER NGA-East Project
Boore, David
2015-01-01
Ground-motions for the PEER NGA-East project were simulated using a point-source stochastic method. The simulated motions are provided for distances between of 0 and 1200 km, M from 4 to 8, and 25 ground-motion intensity measures: peak ground velocity (PGV), peak ground acceleration (PGA), and 5%-damped pseudoabsolute response spectral acceleration (PSA) for 23 periods ranging from 0.01 s to 10.0 s. Tables of motions are provided for each of six attenuation models. The attenuation-model-dependent stress parameters used in the stochastic-method simulations were derived from inversion of PSA data from eight earthquakes in eastern North America.
Overview of Progress on the LANSCE Accelerator and Target Facilities Improvement Program
NASA Astrophysics Data System (ADS)
Macek, R. J.; Brun, T.; Donahue, J. B.; Fitzgerald, D. H.
1997-05-01
Three projects to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center have been initiated since 1994. The LANSCE Reliability Improvement Project was separated into two phases. Phase I, completed in 1995, was targeted at near-term improvements to beam availability that could be completed in a year. Phase II, now underway, consists of two projects: 1) converting the beam injection into the Proton Storage Ring (PSR) from the present two-step process H^- to H^0 to H^+) to direct injection of H^- beam in one step (H^- to H^+), and 2) an upgrade of the spallation neutron production target which will reduce the target change-out time from about a year to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current from the present 70 μA at 20 Hz to 200 μA at 30 Hz, plus implementing seven new neutron scattering instruments. Objectives, plans, results and progress to date will be summarized.
Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira
2015-12-01
The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Status Report on the Development of Research Campaigns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.
2013-06-30
Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specificmore » scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.« less
OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery
Perryman, Alexander L.; Horta Andrade, Carolina
2016-01-01
The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses. PMID:27764115
Chen, Qi; Chen, Quan; Luo, Xiaobing
2014-09-01
In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r(2) = 0.954) and testing duration can be shortened.
OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery.
Ekins, Sean; Perryman, Alexander L; Horta Andrade, Carolina
2016-10-01
The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses.
Fast, Accurate and Shift-Varying Line Projections for Iterative Reconstruction Using the GPU
Pratx, Guillem; Chinn, Garry; Olcott, Peter D.; Levin, Craig S.
2013-01-01
List-mode processing provides an efficient way to deal with sparse projections in iterative image reconstruction for emission tomography. An issue often reported is the tremendous amount of computation required by such algorithm. Each recorded event requires several back- and forward line projections. We investigated the use of the programmable graphics processing unit (GPU) to accelerate the line-projection operations and implement fully-3D list-mode ordered-subsets expectation-maximization for positron emission tomography (PET). We designed a reconstruction approach that incorporates resolution kernels, which model the spatially-varying physical processes associated with photon emission, transport and detection. Our development is particularly suitable for applications where the projection data is sparse, such as high-resolution, dynamic, and time-of-flight PET reconstruction. The GPU approach runs more than 50 times faster than an equivalent CPU implementation while image quality and accuracy are virtually identical. This paper describes in details how the GPU can be used to accelerate the line projection operations, even when the lines-of-response have arbitrary endpoint locations and shift-varying resolution kernels are used. A quantitative evaluation is included to validate the correctness of this new approach. PMID:19244015
Geospace exploration project: Arase (ERG)
NASA Astrophysics Data System (ADS)
Miyoshi, Y.; Kasaba, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Matsumoto, H.; Higashio, N.; Mitani, T.; Kasahara, S.; Yokota, S.; Wang, S.; Kazama, Y.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Katoh, Y.; Shiokawa, K.; Seki, K.; Fujimoto, M.; Ono, T.; ERG project Group
2017-06-01
The ERG (Exploration of energization and Radiation in Geospace) is Japanese geospace exploration project. The project focuses on relativistic electron acceleration mechanism of the outer belt and dynamics of space storms in the context of the cross-energy coupling via wave-particle interactions. The project consists of the satellite observation team, the ground-based network observation team, and integrated-data analysis/simulation team. The satellite was launched on December 20 2016 and has been nicknamed, “Arase”. This paper describes overview of the project and future plan for observations.
Facilitating Cognitive Development.
ERIC Educational Resources Information Center
Schwebel, Milton
1985-01-01
Human cognition research is shifting away from the importance of IQ and is emphasizing the stimulation and acceleration of a child's mental development. The emerging field of instructional psychology is trying to facilitate cognitive development. Current experimental programs--a university-school project in Belgium and a family project in…
77 FR 31839 - Wind and Water Power Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology development and market acceleration and deployment projects from the Program's research and development...
The Talent Search Model: Implications for Secondary School Reform.
ERIC Educational Resources Information Center
VanTassel-Baska, Joyce
1985-01-01
The Midwest Talent Search Project is an effort to identify and provide an appropriate accelerated curriculum for gifted secondary school students in the midwest. Many aspects of the project are discussed here, including testing, programming, benefits, and implications for curriculum reform. (Author/MCG)
Progress of the Felsenkeller Shallow-Underground Accelerator for Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Bemmerer, D.; Cavanna, F.; Cowan, T. E.; Grieger, M.; Hensel, T.; Junghans, A. R.; Ludwig, F.; Müller, S. E.; Rimarzig, B.; Reinicke, S.; Schulz, S.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M. P.; Wagner, A.; Wagner, L.; Zuber, K.
Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 µA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.
Summary Report for the C50 Cryomodule Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drury, Michael; Davis, G; Fischer, John
2011-03-01
The Thomas Jefferson National Accelerator Facility has recently completed the C50 cryomodule refurbishment project. The goal of this project was to enable robust 6 GeV, 5 pass operation of the Continuous Electron Beam Accelerator Facility (CEBAF). The scope of the project included removal, refurbishment and reinstallation of ten CEBAF cryomodules at a rate of three per year. The refurbishment process included reprocessing of SRF cavities to eliminate field emission and to increase the nominal gradient from the original 5 MV/m to 12.5 MV/m. New 'dogleg' couplers were installed between the cavity and helium vessel flanges to intercept secondary electrons thatmore » produce arcing in the fundamental Power Coupler (FPC). Other changes included new ceramic RF windows for the air to vacuum interface of the FPC and improvements to the mechanical tuner. Damaged or worn components were replaced as well. All ten of the refurbished cryomodules are now installed in CEBAF and are currently operational. This paper will summarize the performance of the cryomodules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho
2016-02-15
A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, developmentmore » of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.; Li, G., E-mail: gli@clemson.edu
2014-08-28
An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as amore » function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.« less
Future HEP Accelerators: The US Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Pushpalatha; Shiltsev, Vladimir
2015-11-02
Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less
NASA Astrophysics Data System (ADS)
Malandraki, Olga; Klein, Karl-Ludwig; Vainio, Rami; Agueda, Neus; Nunez, Marlon; Heber, Bernd; Buetikofer, Rolf; Sarlanis, Christos; Crosby, Norma
2017-04-01
High-energy solar energetic particles (SEPs) emitted from the Sun are a major space weather hazard motivating the development of predictive capabilities. In this work, the current state of knowledge on the origin and forecasting of SEP events will be reviewed. Subsequently, we will present the EU HORIZON2020 HESPERIA (High Energy Solar Particle Events foRecastIng and Analysis) project, its structure, its main scientific objectives and forecasting operational tools, as well as the added value to SEP research both from the observational as well as the SEP modelling perspective. The project addresses through multi-frequency observations and simulations the chain of processes from particle acceleration in the corona, particle transport in the magnetically complex corona and interplanetary space to the detection near 1 AU. Furthermore, publicly available software to invert neutron monitor observations of relativistic SEPs to physical parameters that can be compared with space-borne measurements at lower energies is provided for the first time by HESPERIA. In order to achieve these goals, HESPERIA is exploiting already available large datasets stored in databases such as the neutron monitor database (NMDB) and SEPServer that were developed under EU FP7 projects from 2008 to 2013. Forecasting results of the two novel SEP operational forecasting tools published via the consortium server of 'HESPERIA' will be presented, as well as some scientific key results on the acceleration, transport and impact on Earth of high-energy particles. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.
What Program Managers Need to Know: A New Book to Accelerate Acquisition Competence
2015-02-01
FEB 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE What Program Managers Need to Know: A New Book to...Accelerate Acquisition Competence 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...ANSI Std Z39-18 What Program Managers Need to Know A New Book to Accelerate Acquisition Competence Col. William T. Cooley n Brian C. Ruhm Cooley is
Parasitic modes removal out of operating mode neighbourhood in the DAW accelerating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, V.G.; Belugin, V.M.; Esin, S.K.
1983-08-01
The disk and washer (DAW) accelerating structure finds its use in a number of new projects (PIGMI, SNQ etc ). It composes the main part of the accelerating structure of the meson factory now under construction in the Institute for Nuclear Research (INR), Moscow. It is known that the parasitic modes with azimuthal field variations exist at the operating mode region. In this report different methods of the parasitic modes frequency shift are considered. The main attention is given to the resonant methods, which are the most efficient.
The Effects of Math Acceleration in Middle School at the High School Level
ERIC Educational Resources Information Center
Dossenbach, Chris Payton
2017-01-01
The purpose of this mixed-methods capstone is to investigate the effectiveness of the math acceleration initiative that began in the studied school district in 2009 and the impact the initiative has had on mathematics enrollment at the high school level. This research project followed cohorts of students during the 2012-2013 and 2013-2014 school…
Configuration Manual Polarized Proton Collider at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, I.; Allgower, C.; Bai, M.
2006-01-01
In this report we present our design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. We provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.
Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells
NASA Technical Reports Server (NTRS)
Goodman, L. A.
1976-01-01
The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.
Start-to-end simulations for beam dynamics in the injector system of the KHIMA heavy ion accelerator
NASA Astrophysics Data System (ADS)
Lee, Yumi; Kim, Eun-San; Kim, Chanmi; Bahng, Jungbae; Li, Zhihui; Hahn, Garam
2017-07-01
The Korea Heavy Ion Medical Accelerator (KHIMA) project has been developed for cancer therapy. The injector system consists of a low energy beam transport (LEBT) line, a radio-frequency quadrupole, a drift tube linac with two tanks, and a medium energy beam transport (MEBT) line with a charge stripper section. The injector system transports and accelerates the 12C4+ beam that is produced from electron cyclotron resonance ion source up to 7 MeV/u, respectively. The 12C6+ beam, which is transformed by a charge stripper from the 12C4+ beam, is injected into a synchrotron and accelerated up to 430 MeV/u. The lattice for the injector system was designed to optimize the beam parameters and to meet beam requirements for the synchrotron. We performed start-to-end simulations from the LEBT line to the MEBT line to confirm that the required design goals of the beam and injector system were met. Our simulation results indicate that our design achieves the required performance and a good transmission efficiency of 90%. We present the lattice design and beam dynamics for the injector system in the KHIMA project.
USDA-ARS?s Scientific Manuscript database
To meet growing global demands for high value protein from milk and meat, rates of genetic gain in domestic cattle must be accelerated. At the same time, animal health and welfare must be considered. The 1000 bull genomes project supports these goals by providing annotated sequence variants and ge...
Dissemination and support of ARGUS for accelerator applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Mirror symmetric optics design for charge-stripping section in Rare Isotope Science Project
NASA Astrophysics Data System (ADS)
Kim, Hye-Jin; Kim, Hyung-Jin; Jeon, Dong-O.; Hwang, Ji-Gwang; Kim, Eun-San
2013-12-01
The main aim of the Rare Isotope Science Project is to construct a high power heavy-ion accelerator based on the superconducting linear accelerator (SCL). The heavy ion accelerator is a key research facility that will allow ground-breaking research into numerous facets of basic science, such as nuclear physics, astrophysics, atomic physics, life science, medicine and material science. The machine will provide a beam power of 400 kW with a 238U79+ beam of 8 pμA and 200 MeV/u. One of the critical components in the SCL is the charge stripper between the two segments, SCL1 and SCL2, of the SCL. The charge stripper removes electrons from the ion beams to enhance the acceleration efficiency in the subsequent SCL2. To improve the efficiency of acceleration and power in SCL2, the optimal energy of stripped ions in a solid carbon foil stripper was estimated using the code LISE++. The thickness of the solid carbon foil was 300 μg/m2. The charge stripping efficiency of the solid carbon stripper in the present study was approximately 87%. For charge selection from the ions produced by the solid carbon stripper, a dispersive section is needed down-stream of the foil. The designed optics for the dispersive section is based on the mirror-symmetric optics to minimize the effect of high-order aberrations.
Accelerometer Data Analysis and Presentation Techniques
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy
1997-01-01
The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Joshua
2015-01-01
While working at Sandia National Laboratories as a graduate intern from September 2014 to January 2015, most of my time was spent on two projects. The first project involved designing a test fixture for circuit boards used in a recording device. The test fixture was needed to decrease test set up time. The second project was to use optimization techniques to determine the optimal G-Switch for given acceleration profiles.
NASA Astrophysics Data System (ADS)
O'Brien, Ricky T.; Cooper, Benjamin J.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.
2014-02-01
Four dimensional cone beam computed tomography (4DCBCT) images suffer from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, respiratory motion guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG-4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient’s respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 min acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quantified streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-off image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C-arm cone beam computed tomography systems, with an acceleration up to 200°/s2, a velocity up to 100°/s and the acquisition of 80 projections per second, allow the image acquisition time to be reduced to below 60 s. We have made considerable progress towards realizing a system to reduce projection clustering in conventional 4DCBCT imaging and hence reduce the imaging dose to the patient.
Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J
2017-01-01
Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.
Cosmic Visions Dark Energy: Small Projects Portfolio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Kyle; Frieman, Josh; Heitmann, Katrin
Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3)more » lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.« less
Grid Standards and Codes | Grid Modernization | NREL
simulations that take advantage of advanced concepts such as hardware-in-the-loop testing. Such methods of methods and solutions. Projects Accelerating Systems Integration Standards Sharp increases in goal of this project is to develop streamlined and accurate methods for New York utilities to determine
Project Physics Text 1, Concepts of Motion.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Fundamental concepts of motion are presented in this first unit of the Project Physics textbook. Descriptions of motion are made in connection with speeds, accelerations, and their graphical representation. Free-fall bodies are analyzed by using Aristotle's theory and Galileo's work. Dynamics aspects are discussed with a background of mass, force,…
Project Physics Tests 1, Concepts of Motion.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…
Photovoltaic Lifetime Project | Photovoltaic Research | NREL
PV & Solar Resource Testing Accelerated Testing & Analysis Systems Engineering Project Sandia National Laboratories' PV Performance Modeling Collaborative website. Jinko Solar. PV systems mounted on the ground. Jinko Solar PV Lifetime installation at NREL. need-alt Light-induced degradation
A Project-Based Course on Newton's Laws for Talented Junior High-School Students
ERIC Educational Resources Information Center
Langbeheim, Elon
2015-01-01
Research has shown that project-based learning promotes student interest in science and improves understanding of scientific content. Fostering student motivation is particularly important in accelerated science and technology programmes for talented students, which are often demanding and time-consuming. Current texts provide little guidance on…
AN EARLY SCHOOL ADMISSION PORJECT. PROGRESS REPORT 1962-1963.
ERIC Educational Resources Information Center
Baltimore City Public Schools, MD.
"PROJECT HELP" REPRESENTS AN EDUCATIONAL PROGRAM DESIGNED TO ENRICH THE LIVES OR 4- AND 5-YEAR-OLD CULTURALLY DEPRIVED CHILDREN. IT IS A RESEARCH PROJECT DESIGNED TO DISCOVER WAYS TO ACCELERATE THE ACHIEVEMENT OF CHILDREN LIMITED IN THEIR DEVELOPMENT BY ENVIRONMENTAL FACTORS BEYOND THEIR CONTROL, TO INCREASE PARENTAL UNDERSTANDING AND…
DOT National Transportation Integrated Search
2011-01-01
This report presents the mitigation strategies and demonstration/pilot projects that are recommended to enhance performance and reduce the occurrence of pavements exhibiting accelerated aging or deterioration. The report is grouped into two parts, fo...
Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho
2016-02-01
The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.
Development of a moderator system for the High Brilliance Neutron Source project
NASA Astrophysics Data System (ADS)
Dabruck, J. P.; Cronert, T.; Rücker, U.; Bessler, Y.; Klaus, M.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.
2016-11-01
The project for an accelerator based high brilliance neutron source HBS driven by Forschungszentrum Jülich forsees the use of the nuclear Be(p,n) or Be(d,n) reaction with accelerated particles in the lower MeV energy range. The lower neutron production compared to spallation has to be compensated by improving the neutron extraction process and optimizing the brilliance. Design and optimiziation of the moderator system are conducted with MCNP and will be validated with measurements at the AKR-2 training reactor by means of a prototype assembly where, e.g., the effect of different liquid H2 ortho/para ratios will be investigated and controlled in realtime via online heat capacity measurements.
SAMS Acceleration Measurements on Mir from May 1997 to June 1998 (NASA Increments 5, 6, and 7)
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1999-01-01
During NASA Increments 5, 6, and 7 (May 1997 to June 1998), about eight gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station Mir. The data were recorded on twenty-seven optical disks which were returned to Earth on Orbiter missions STS-86, STS-89, and STS-91. During these increments, SAMS data were collected in the Priroda module to support various microgravity experiments. This report points out some of the salient features of the microgravity acceleration environment to which the experiments were exposed. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous Mir increment summary reports prepared by the Principal Investigator Microgravity Services project.
Hubble peeks at a spiral galaxy
2015-07-10
This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disk-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. Image credit: ESA/Hubble & NASA, Acknowledgement: Flickr user C. Claude NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2015-07-06
This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disc-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. This instrument has delivered some of the sharpest views of the Universe so far achieved by mankind. This image covers only a tiny patch of sky — about the size of a one cent euro coin held 100 metres away! A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by flickr user c.claude.
Summary Status of the Space Acceleration Measurement System (SAMS), September 1993
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1994-01-01
The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.
Assembly and commissioning of a new SRF cryomodule for the ATLAS intensity upgrade
NASA Astrophysics Data System (ADS)
Conway, Z. A.; Barcikowski, A.; Cherry, G. L.; Fischer, R. L.; Fuerst, J. D.; Jansma, W. G.; Gerbick, S. M.; Kedzie, M. J.; Kelly, M. P.; Kim, S. H.; MacDonald, S. W. T.; Murphy, R. C.; Ostroumov, P. N.; Reid, T. C.; Shepard, K. W.
2014-01-01
The Argonne National Laboratory Physics Division is in the final stages of a major upgrade to the Argonne Tandem Linear Accelerator System national user facility, referred to as the intensity upgrade. The intensity upgrade project will substantially increase beam currents for experimenters working with the existing ATLAS stable and in-flight rare isotope beams and for the neutron-rich beams from the Californium Rare Isotope Breeder Upgrade. This project includes the replacement of three existing cryomodules, containing 18 superconducting accelerator cavities and 9 superconducting solenoids, with a single cryomodule with seven SC 72.75 MHz accelerator cavities optimized for ion velocities of 7.7% the speed of light and 4 SC solenoids all operating at 4.5 K. This presentation will report: how we minimized the heat load into the 4 K and 80 K coolant streams feeding the cryomodule, a comparison of the calculated and measured static heat loads at 80 K and the mechanical design of the vacuum vessel.
Design of a low-cost, compact SRF accelerator for flue gas and wastewater treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciovati, Gianluigi
2016-04-01
Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222439. The proposed project consists of the design of a novel superconducting continuous-wave accelerator capable of providing a beam current of ~1 A at an energy of 1-2 MeV for the treatment of flue gases and wastewater streams. The novel approach consists on studying the feasibility of using a single-cell Nb cavity coated with a thin Nb3Sn layer of the inner surface and conductively cooled by to 4.2 K by cryocoolers inside a compact cryomodule. Themore » proposed study will include beam transport simulations, thermal and mechanical engineering analysis of the cryomodule and a cost analysis for both the fabrications costs and the operational and maintenance costs of such accelerator. The outcome of the project will be a report summarizing the analysis and results from the design study.« less
Research and development for electropolishing of Nb for ILC accelerator cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Michael J.
The objectives of this project are to 1, Expand the scientific and technological understanding of the effect of post-treatment (electropolish, buffered chemical polish, low-temperature baking) on the surface of niobium; 2, Relate the knowledge to the performance of niobium superconducting radiofrequency accelerator cavities; and, 3, Thereby design and demonstrate an electropolish process that can be applied to complete cavities.
1989-12-01
project nor affect significantly the projects econmic efficiency. These effects are described in the Feasibility Report, EIS/EIR and suportin...modifications beca necesary. To insure the econmic efficiency of the project using the accelerated rise rate in NRc Case III, the Regional Project was...is a str econmic candidate. 23 Table 14 RICtOALL P3ECr ECONaMEC FEABILIY WI H SEA LEVEL RISE (1988 Price Level) Oticon 3 Historical NRC Project
Accelerator boom hones China's engineering expertise
NASA Astrophysics Data System (ADS)
Normile, Dennis
2018-02-01
In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.
Analysis of lead-acid battery accelerated testing data
NASA Astrophysics Data System (ADS)
Clifford, J. E.; Thomas, R. E.
1983-06-01
Battelle conducted an independent review and analysis of the accelerated test procedures and test data obtained by Exide in the 3 year Phase 1 program to develop advanced lead acid batteries for utility load leveling. Of special importance is the extensive data obtained in deep discharge cycling tests on 60 cells at elevated temperatures over a 2-1/2 year period. The principal uncertainty in estimating cell life relates to projecting cycle life data at elevated temperature to the lower operating temperatures. The accelerated positive grid corrosion test involving continuous overcharge at 500C provided some indication of the degree of grid corrosion that might be tolerable before failure. The accelerated positive material shedding test was not examined in any detail. Recommendations are made for additional studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plettner, T.; Byer, R.L.; Smith, T.I.
2006-02-17
We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transitionmore » radiation process. experiment as the Laser Electron Accelerator Project (LEAP).« less
NASA Astrophysics Data System (ADS)
Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.
1996-12-01
The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and Radiochemical Studies on the Transmutation of Nuclei Using Relativistic Heavy Ions * Experimental and Theoretical Study of Radionuclide Production on the Electronuclear Plant Target and Construction Materials Irradiated by 1.5 GeV and 130 MeV Protons * Neutronics and Power Deposition Parameters of the Targets Proposed in the ISTC Project 17 * Multicycle Irradiation of Plutonium in Solid Fuel Heavy-Water Blanket of ADS * Compound Neutron Valve of Accelerator-Driven System Sectioned Blanket * Subcritical Channel-Type Reactor for Weapon Plutonium Utilization * Accelerator Driven Molten-Fluoride Reactor with Modular Heat Exchangers on PB-BI Eutectic * A New Conception of High Power Ion Linac for ADTT * Pions and Accelerator-Driven Transmutation of Nuclear Waste? * V. Problems and Perspectives * Accelerator-Driven Transmutation Technologies for Resolution of Long-Term Nuclear Waste Concerns * Closing the Nuclear Fuel-Cycle and Moving Toward a Sustainable Energy Development * Workshop Summary * List of Participants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, H
This paper discusses the ISABELLE project, which has the objective of constructing a high-energy proton colliding beam facility at Brookhaven National Laboratory. The major technical features of the intersecting storage accelerators with their projected performance are described. Application of over 1000 superconducting magnets in the two rings represents the salient characteristic of the machine. The status of the entire project, the technical progress made so far, and difficulties encountered are reviewed.
Review and Implementation of Technology for Solid Radioactive Waste Volume Reduction
1999-10-15
were shifted to Project 1.1 for spent nuclear fuel cask development to accelerate that project. Those funds should be repaid to Project 1.3 in the... transported between the shipyards such as Nerpa, and other intermediate storage sites such as Gremikha and Andreeva Bay. At these sites the largest...waste source and allow pretreatment unit operations using commercially available technologies of contaminant assaying, cutting/shearing, sorting
Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak
1998-01-01
The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction Control System (VRCS) reboost, venting operations, Flight Control System (FCS) checkout, rack excitation, operation of the Life Sciences Laboratory Equipment Refrigerator/Freezer (LSLE R/F), operation of the JSC Projects Centrifuge, crew sleep, and attitude changes. The low-gravity environment related to these activities is discussed in the summary report.
Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae
RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement ofmore » the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.« less
Aartsen, Wendy; Peeters, Paul; Wagers, Scott; Williams-Jones, Bryn
2018-01-01
Projects in public-private partnerships, such as the Innovative Medicines Initiative (IMI), produce data services and platforms (digital assets) to help support the use of medical research data and IT tools. Maintaining these assets beyond the funding period of a project can be a challenge. The reason for that is the need to develop a business model that integrates the perspectives of all different stakeholders involved in the project, and these digital assets might not necessarily be addressing a problem for which there is an addressable market of paying customers. In this manuscript, we review four IMI projects and the digital assets they produced as a means of illustrating the challenges in making digital assets sustainable and the lessons learned. To progress digital assets beyond proof-of-concept into widely adopted tools, there is a need for continuation of multi-stakeholder support tailored to these assets. This would be best done by implementing a structure similar to the accelerators that are in place to help transform startup businesses into growing and thriving businesses. The aim of this article is to highlight the risk of digital asset loss and to provoke discussion on the concept of developing an "accelerator" for digital assets from public-private partnership research projects to increase the chance that digital assets will be sustained and continue to add value long after a project has ended.
Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet
NASA Astrophysics Data System (ADS)
Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard
2016-10-01
We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.
Distribution uniformity of laser-accelerated proton beams
NASA Astrophysics Data System (ADS)
Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing
2017-09-01
Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)
DOT National Transportation Integrated Search
2014-05-01
This report summarizes the work conducted on Project 0-6682 up to August 31, 2013. The report is : organized in five chapters corresponding to separate tasks in the project work plan, as follows: : Chapter 1 presents the summary of the findings f...
Project Success Environment: A Positive Contingency Program for Elementary Teachers Management.
ERIC Educational Resources Information Center
Thompson, Marion; And Others
The third year of the project, funded under Elementary Secondary Education Act Title III, was essentially a replication of Year Two. Second Year results indicated that the success technique had provided inner-city teachers with both an effective classroom management system, and an effective program for the acceleration of academic performance.…
A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with t...
Project A+ Elementary Technology Demonstration Schools 1990-91. The First Year.
ERIC Educational Resources Information Center
Marable, Paula; Frazer, Linda
Project A+ Elementary Technology Demonstration Schools is a program made possible through grants from IBM (International Business Machines Corporation) and Apple, Inc. The primary purpose of the program is to demonstrate the educational effectiveness of technology in accelerating the learning of low achieving at-risk students and enhancing the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User`s Guide that documents the use of the code for all users. To release the code and the User`s Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Performances of the Alpha-X RF gun on the PHIL accelerator at LAL
NASA Astrophysics Data System (ADS)
Vinatier, T.; Bruni, C.; Roux, R.; Brossard, J.; Chancé, S.; Cayla, J. N.; Chaumat, V.; Xu, G.; Monard, H.
2015-10-01
The Alpha-X RF-gun was designed to produce an ultra-short (<100 fs rms), 100 pC and 6.3 MeV electron beam with a normalized rms transverse emittance of 1π mm mrad for a gun peak accelerating field of 100 MV/m. Such beams will be required by the Alpha-X project, which aims to study a laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.
A coarse-grid projection method for accelerating incompressible flow computations
NASA Astrophysics Data System (ADS)
San, Omer; Staples, Anne E.
2013-01-01
We present a coarse-grid projection (CGP) method for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. The CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. After solving the Poisson equation on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. A particular version of the method is applied here to the vorticity-stream function, primitive variable, and vorticity-velocity formulations of incompressible Navier-Stokes equations. We compute several benchmark flow problems on two-dimensional Cartesian and non-Cartesian grids, as well as a three-dimensional flow problem. The method is found to accelerate these computations while retaining a level of accuracy close to that of the fine resolution field, which is significantly better than the accuracy obtained for a similar computation performed solely using a coarse grid. A linear acceleration rate is obtained for all the cases we consider due to the linear-cost elliptic Poisson solver used, with reduction factors in computational time between 2 and 42. The computational savings are larger when a suboptimal Poisson solver is used. We also find that the computational savings increase with increasing distortion ratio on non-Cartesian grids, making the CGP method a useful tool for accelerating generalized curvilinear incompressible flow solvers.
Cryogenics for high-energy particle accelerators: highlights from the first fifty years
NASA Astrophysics Data System (ADS)
Lebrun, Ph
2017-02-01
Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.
NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT
NASA Astrophysics Data System (ADS)
Sohlberg, A.; Watabe, H.; Iida, H.
2008-07-01
Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.
NASA Astrophysics Data System (ADS)
Bemmerer, Daniel; Cowan, Thomas E.; Grieger, Marcel; Hammer, Sebastian; Hensel, Thomas; Junghans, Arnd R.; Koppitz, Martina; Ludwig, Felix; Müller, Stefan E.; Rimarzig, Bernd; Reinicke, Stefan; Schwengner, Ronald; Stöckel, Klaus; Szücs, Tamás; Takács, Marcell P.; Turkat, Steffen; Wagner, Andreas; Wagner, Louis; Zuber, Kai
2018-05-01
Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. The present contribution reviews the status of the project for a higher-energy underground accelerator in Felsenkeller, Germany. Results from γ-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory. Two tunnels of the Felsenkeller site have recently been refurbished for the installation of a 5MV high-current Pelletron accelerator. Civil construction work has completed in March 2018. The accelerator will provide intense, 50 μA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.
Apparatus and method for the acceleration of projectiles to hypervelocities
Hertzberg, Abraham; Bruckner, Adam P.; Bogdanoff, David W.
1990-01-01
A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.
ERIC Educational Resources Information Center
Therrien, Mona; Calder, Beth L.; Castonguay, Zakkary J.
2018-01-01
Students in the Didactic Program in Dietetics (DPD) at the University of Maine were exposed to the cheese-making process, within a lab setting of two hours, utilizing an accelerated recipe for a Queso Fresco-style cheese. The purpose of this project was to provide students with a novel, hands-on learning experience, which covered concepts of…
SLAC Linac Preparations for FACET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, R.; Bentson, L.; Kharakh, D.
The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.
Test of the Equivalence Principle in an Einstein Elevator
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.
2002-01-01
The scientific goal of the experiment is to test the equality of gravitational and inertial mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate of fall of bodies from the composition of the falling body. The measurement is accomplished by measuring the relative displacement (or equivalently acceleration) of two falling bodies of different materials which are the proof masses of a differential accelerometer. The goal of the experiment is to measure the Eotvos ratio delta-g/g (differential acceleration/common acceleration) with an accuracy goal of a few parts in 10(exp 15). The estimated accuracy is about two orders of magnitude better than the present state of the art. The experiment is a null experiment in which a result different from zero will indicate a violation of the Equivalence Principle. The main goal of the study to be carried out under this grant is the flight definition of the experiment and bread boarding of critical components of the experiment that will enable us to be ready for the following phases of the project. The project involves an international cooperation in which the responsibility of the US side is the flight definition of the experimental facility while the responsibility of the non-US partners is the flight definition and laboratory prototyping of the differential acceleration detector. In summary, the experiment to be designed is for taking differential acceleration measurements with a high-sensitivity detector (the sensor) during free fall conditions lasting up to 30 s in a disturbance-free acceleration environment. The experiment strategy consists in letting the sensor free fall inside a few meters long (in the vertical direction) evacuated capsule that is falling simultaneously in the rarefied atmosphere after release from a helium balloon flying at a stratospheric altitude.
Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Elizabeth
This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companiesmore » interact and use their machines to reduce energy consumption.« less
Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan
2016-02-01
A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.
NASA Astrophysics Data System (ADS)
Vittone, Ettore; Breese, Mark; Simon, Aliz
2016-04-01
Within the International Atomic Energy Agency (IAEA) Department of Nuclear Sciences and Applications, activities are carried out to assist and advise IAEA Member States in assessing their needs for capacity building, research and development in nuclear sciences. Support is also provided to Member States' activities geared towards deriving benefits in fields such as (i) advanced materials for nuclear applications, (ii) application of accelerators and associated instrumentation, and (iii) nuclear, atomic and molecular data. One of the means that the IAEA uses to deliver its programme is Coordinated Research Projects (CRPs) which are very effective in stimulating international research and scientific interaction among the Member States.
Accelerating the Rate of Astronomical Discovery
NASA Astrophysics Data System (ADS)
Norris, Ray P. Ruggles, Clive L. N.
2010-05-01
Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress - paradigmatic, technological, organisational, and political - examining each issue both from modern and historical perspectives, and drawing lessons to guide future progress. A number of issues were identified which potentially regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.
SpS5: Accelerating the Rate of Astronomical Discovery
NASA Astrophysics Data System (ADS)
Norris, Ray P.
2010-11-01
Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress: paradigmatic, technological, organizational, and political. It examined each issue both from modern and historical perspectives, and drew lessons to guide future progress. A number of issues were identified which may regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.
Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY
NASA Astrophysics Data System (ADS)
Nergiz, Z.; Aksoy, A.
2015-06-01
The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)
Public policy issues. A Southern California Gas Company project SAGE report
NASA Technical Reports Server (NTRS)
Barbieri, R. H.; Hirsberg, A. S.
1978-01-01
The use of solar energy to stretch our supplies of fossil fuels was investigated. Project SAGE (semi-automated ground environment) addresses itself to one application of this goal, solar assistance in central water heating systems for multifamily projects. Public policy issues that affect the rate of adoption of solar energy systems were investigated and policy actions were offered to accelerate the adoption of SAGE and other solar energy systems.
Towards SDS (Strategic Defense System) Testing and Evaluation: A collection of Relevant Topics
1989-07-01
the proof of the next. 89 The Piton project is the first instance of stacking.two verified components. In 1985 Warren...Accelerated? In the long term, a vast amount of work needs to be done. Below are some miscellaneous, fairly near term projects which would seem to provide...and predictions for the current project . It provides a quantitative analysis of the environment and a model of the
Proc. of the workshop on pushing the limits of RF superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K-J., Eyberger, C., editors
2005-04-13
For three days in late September last year, some sixty experts in RF superconductivity from around the world came together at Argonne to discuss how to push the limits of RF superconductivity for particle accelerators. It was an intense workshop with in-depth presentations and ample discussions. There was added excitement due to the fact that, a few days before the workshop, the International Technology Recommendation Panel had decided in favor of superconducting technology for the International Linear Collider (ILC), the next major high-energy physics accelerator project. Superconducting RF technology is also important for other large accelerator projects that are eithermore » imminent or under active discussion at this time, such as the Rare Isotope Accelerator (RIA) for nuclear physics, energy recovery linacs (ERLs), and x-ray free-electron lasers. For these accelerators, the capability in maximum accelerating gradient and/or the Q value is essential to limit the length and/or operating cost of the accelerators. The technological progress of superconducting accelerators during the past two decades has been truly remarkable, both in low-frequency structures for acceleration of protons and ions as well as in high-frequency structures for electrons. The requirements of future accelerators demand an even higher level of performance. The topics of this workshop are therefore highly relevant and timely. The presentations given at the workshop contained authoritative reviews of the current state of the art as well as some original materials that previously had not been widely circulated. We therefore felt strongly that these materials should be put together in the form of a workshop proceeding. The outcome is this report, which consists of two parts: first, a collection of the scholarly papers prepared by some of the participants and second, copies of the viewgraphs of all presentations. The presentation viewgraphs, in full color, are also available from the Workshop Presentations link on the workshop's web page at http://www.aps.anl.gov/conferences/RFSCLimits/. I would like to thank all of the participants for their lively contributions to the workshop and to these proceedings, and Helen Edwards and Hasan Padamsee for their help in developing the workshop program. I also thank Cathy Eyberger, Kelly Jaje, and Renee Lanham for working very hard to take care of the administrative details, in particular Cathy for editing this report.« less
PIMS Data Storage, Access, and Neural Network Processing
NASA Technical Reports Server (NTRS)
McPherson, Kevin M.; Moskowitz, Milton E.
1998-01-01
The Principal Investigator Microgravity Services (PIMS) project at NASA's Lewis Research Center has supported microgravity science Principal Investigator's (PIs) by processing, analyzing, and storing the acceleration environment data recorded on the NASA Space Shuttles and the Russian Mir space station. The acceleration data recorded in support of the microgravity science investigated on these platforms has been generated in discrete blocks totaling approximately 48 gigabytes for the Orbiter missions and 50 gigabytes for the Mir increments. Based on the anticipated volume of acceleration data resulting from continuous or nearly continuous operations, the International Space Station (ISS) presents a unique set of challenges regarding the storage of and access to microgravity acceleration environment data. This paper presents potential microgravity environment data storage, access, and analysis concepts for the ISS era.
Wilson, Sarah Jane; Rhemtulla, Jeanine M
2016-01-01
Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.
NASA Technical Reports Server (NTRS)
Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin
2004-01-01
This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.
SuperB Progress Report for Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagini, M.E.; Boni, R.; Boscolo, M.
2012-02-14
This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around themore » world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.« less
C IV BROAD ABSORPTION LINE ACCELERATION IN SLOAN DIGITAL SKY SURVEY QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grier, C. J.; Brandt, W. N.; Trump, J. R.
2016-06-20
We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows amore » velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.« less
Generation of annular, high-charge electron beams at the Argonne wakefield accelerator
NASA Astrophysics Data System (ADS)
Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.
2012-12-01
We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.
NASA Astrophysics Data System (ADS)
Kolesnikov, V. I.
2017-06-01
The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.
Accelerator structure and beam transport system for the KEK photon factory injector
NASA Astrophysics Data System (ADS)
Sato, Isamu
1980-11-01
The injector is a 2.5 GeV electron linac which serves multiple purposes, being not only the injector for the various storage rings of the Photon Factory but also for the next planned project, the TRISTAN RING, and also as an intense electron or γ-ray source for research on phenomena in widely diverse scientific fields. The accelerator structure and beam transport system for the linac were designed with the greatest care in order to avoid beam blow-up difficulties, and also to be as suitable as possible to enable the economical mass production of the accelerator guides and focusing magnets.
Magnetosphere-Ionosphere Coupling in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, David
2004-01-01
The visual light display at high latitudes referred to as the aurora fascinates casual observers and researchers alike. The natural question is what causes the aurora? We know that energized electrons streaming along the Earth's ambient magnetic field and colliding with atmospheric particles produce aurora. We do not know for certain, however, how these electrons are accelerated to high energies primarily in the field-aligned direction toward the Earth, or what the drivers of this acceleration are. As such, the goal of this Guest Investigator research project was to examine the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region.
NASA Astrophysics Data System (ADS)
Cauquil, Jean-Marc; Seguineau, Cédric; Vasse, Christophe; Raynal, Gaetan; Benschop, Tonny
2018-05-01
The cooler reliability is a major performance requested by the customers, especially for 24h/24h applications, which are a growing market. Thales has built a reliability policy based on accelerate ageing and tests to establish a robust knowledge on acceleration factors. The current trend seems to prove that the RM2 mean time to failure is now higher than 30,000hr. Even with accelerate ageing; the reliability growth becomes hardly manageable for such large figures. The paper focuses on these figures and comments the robustness of such a method when projections over 30,000hr of MTTF are needed.
Leaping into the Unknown: Developing Thinking in the Primary Science Classroom
ERIC Educational Resources Information Center
Serret, Natasha
2004-01-01
The original project, the foundation for all subsequent work, was set up in 1981 by Michael Shayer, with Philip Adey and Carolyn Yates, and became known as CASE @ KS3 (Adey and Shayer, 1994). CASE stands for Cognitive Acceleration through Science Education. The original CASE project drew on Piaget's work on the stage theory of cognitive…
ViPiA: A Project for European Entrepreneurship
ERIC Educational Resources Information Center
Folinas, Dimitris; Manthou, Vicky; Vlachopoulou, Maro
2006-01-01
The Virtual Pre-Incubator Accelerator (ViPiA) is a two-year project funded by the European Commission. The main goal of the programme is to create a training package for would-be entrepreneurs to assist them in developing their new venture concepts to a level at which they become attractive to potential investors. This paper describes and…
NASA EEE Parts and Advanced Interconnect Program (AIP)
NASA Technical Reports Server (NTRS)
Gindorf, T.; Garrison, A.
1996-01-01
none given From Program Objectives: I. Accelerate the readiness of new technologies through development of validation, assessment and test method/tools II. Provide NASA Projects infusion paths for emerging technologies III. Provide NASA Projects technology selection, application and validation guidelines for harware and processes IV. Disseminate quality assurance, reliability, validation, tools and availability information to the NASA community.
2001-05-10
NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project funded by the Science Mission Directorate ; potential use is propulsion for deep space science missions
1989-03-01
on reverse If neceasary and Identify by block number) FIELD GROUP SUB-GROUP CAT -ASVAB, testing, computerized adaptive testing, Armed Service Vocational...129 John J. Pass, Navy Personnel Research and Development Center Accelerated CAT -ASVAB Project...133 William A. Sands, Navy Personnel Research and DevelopmerLt Center Accelerated CAT -ASVAB Program Psychometric Accomplishments
Experiments assigned to determine the acceleration of 8000kN shear laboratory model elements
NASA Astrophysics Data System (ADS)
Budiul Berghian, A.; Vasiu, T.; Abrudean, C.
2017-01-01
In this paper presents an experimental kinetics study by measuring accelerations using a bi-axial accelerometer constructed in the basis of a miniature integrated circuit, included in the class of micro-electrical and mechanical systems - MMA6261Q on the experimental installation reduced to the 1:5 dividing rule by comparison with the shear existent in exploitation, conceived and projected at the Faculty of Engineering in Hunedoara.
R&D status of linear collider technology at KEK
NASA Astrophysics Data System (ADS)
Urakawa, Junji
1992-02-01
This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.
TM 4: Beam through the Main Linac Cryomodule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A.
2017-06-14
On May 15th 2017, the CBETA project reached the major funding milestone, “Beam through the MLC.” For this test, the team had to successfully accelerate the electron beam to 6 MeV in the Injector Cryomodule (ICM), and then to a final energy of 12 MeV in the Main Linac Cryomodule (MLC). The MLC contains six superconducting accelerating cavities; for this initial test only a single cavity was powered.
NASA Astrophysics Data System (ADS)
Bader, D. C.
2015-12-01
The Accelerated Climate Modeling for Energy (ACME) Project is concluding its first year. Supported by the Office of Science in the U.S. Department of Energy (DOE), its vision is to be "an ongoing, state-of-the-science Earth system modeling, modeling simulation and prediction project that optimizes the use of DOE laboratory resources to meet the science needs of the nation and the mission needs of DOE." Included in the "laboratory resources," is a large investment in computational, network and information technologies that will be utilized to both build better and more accurate climate models and broadly disseminate the data they generate. Current model diagnostic analysis and data dissemination technologies will not scale to the size of the simulations and the complexity of the models envisioned by ACME and other top tier international modeling centers. In this talk, the ACME Workflow component plans to meet these future needs will be described and early implementation examples will be highlighted.
Ha, S; Matej, S; Ispiryan, M; Mueller, K
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
NASA Astrophysics Data System (ADS)
Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
The ISOLDE facility and the HIE-HISOLDE project: Recent highlights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borge, M. J. G.
2014-07-23
The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of themore » facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.« less
GeNN: a code generation framework for accelerated brain simulations
NASA Astrophysics Data System (ADS)
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations.
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-07
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369
Negative ion source development at the cooler synchrotron COSY/Jülich
NASA Astrophysics Data System (ADS)
Felden, O.; Gebel, R.; Maier, R.; Prasuhn, D.
2013-02-01
The Nuclear Physics Institute at the Forschungszentrum Jülich, a member of the Helmholtz Association, conducts experimental and theoretical basic research in the field of hadron, particle, and nuclear physics. It operates the cooler synchrotron COSY, an accelerator and storage ring, which provides unpolarized and polarized proton and deuteron beams with beam momenta of up to 3.7 GeV/c. Main activities of the accelerator division are the design and construction of the high energy storage ring HESR, a synchrotron and part of the international FAIR project, and the operation and development of COSY with injector cyclotron and ion sources. Filament driven volume sources and a charge exchange colliding beams source, based on a nuclear polarized atomic beam source, provide unpolarized and polarized H- or D- routinely for more than 6500 hours/year. Within the Helmholtz Association's initiative Accelerator Research and Development, ARD, the existing sources at COSY, as well as new sources for future programs, are investigated and developed. The paper reports about these plans, improved pulsed beams from the volume sources and the preparation of a source for the ELENA project at CERN.
Design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project
NASA Astrophysics Data System (ADS)
Shu, D.; Shvyd'ko, Y.; Amann, J.; Emma, P.; Stoupin, S.; Quintana, J.
2013-03-01
As the result of collaborations between the Advanced Photon Source (APS), Argonne National Laboratory, and the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory, we have designed and constructed a diamond crystal monochromator for the LCLS hard x-ray self-seeding project. The novel monochromator is ultrahigh-vacuum compatible to meet the LCLS linear accelerator vacuum environmental requirement. A special graphite holder was designed for strain-free mount of the 110-μm thin synthetic diamond crystal plate provided by Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM). An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the thin-film diamond holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Optical encoders, limit switches, and hardware stops are established in the mechanism to ensure system reliability and to meet the accelerator personal and equipment safety interlock requirements. Molybdenum shields are installed in the monochromator to protect the encoders and associated electronics from radiation damage. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.
Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution
NASA Technical Reports Server (NTRS)
McPherson, Kevin
1999-01-01
Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.
The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.
Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics
NASA Astrophysics Data System (ADS)
Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.
2015-05-01
Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.
Acceleration in U.S. Mean Sea Level? A New Insight using Improved Tools
NASA Astrophysics Data System (ADS)
Watson, Phil J.
2016-08-01
The detection of acceleration in mean sea level around the data-rich margins of the United States has been a keen endeavour of sea-level researchers following the seminal work of Bruce Douglas in 1992. Over the past decade, such investigations have taken on greater prominence given mean sea level remains a key proxy by which to measure a changing climate system. The physics-based climate projection models are forecasting that the current global average rate of mean sea-level rise (≈3 mm/y) might climb to rates in the range of 10020 mm/y by 2100. Most research in this area has centred on reconciling current rates of rise with the significant accelerations required to meet the forecast projections of climate models. The analysis in this paper is based on a recently developed analytical package titled "msltrend," specifically designed to enhance estimates of trend, real-time velocity and acceleration in the relative mean sea-level signal derived from long annual average ocean-water-level time series. Key findings are that at the 95% confidence level, no consistent or substantial evidence (yet) exists that recent rates of rise are higher or abnormal in the context of the historical records available for the United States, nor does any evidence exist that geocentric rates of rise are above the global average. It is likely that a further 20 years of data will identify whether recent increases east of Galveston and along the east coast are evidence of the onset of climate change induced acceleration.
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-07-01
The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less
FFAGs: Front-end for neutrino factories and medical accelerators
NASA Astrophysics Data System (ADS)
Mori, Yoshiharu
The idea of Fixed Field Alternating Gradient (FFAG) accelerator was originated by different people and groups in the early 1950s. It was independently introduced by Ohkawa [Ohkawa (1953)], Symon et al. [Symon et al. (1956)], and Kolomensky [Kolomensky and Lebedev (1966)] when the strong Alternate Gradient (AG) focusing and the phase stability schemes were applied to particle acceleration. The first FFAG electron model was developed in the MURA accelerator project led by Kerst and Cole in the late 1950s. Since then, they have fabricated several electron models in the early 1960s [Symon et al. (1956)]. However, the studies did not lead to a single practical FFAG accelerator for the following 50 years. Because of the difficulties of treating non-linear magnetic field and RF acceleration for non-relativistic particles, the proton FFAG, especially, was not accomplished until recently. In 2000, the FFAG concept was revived with the world's first proton FFAG (POP) which was developed at KEK [Aiba (2000); Mori (1999)]. Since then, in many places [Berg (2004); Johnstone et al. (2004); Mori (2011); Ruggiero (2004); Trbojevic (2004)], FFAGs have been developed and constructed...
The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation
Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian
2014-01-01
Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333
The impact of accelerating faster than exponential population growth on genetic variation.
Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian
2014-03-01
Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.
Using a 400 kV Van de Graaff accelerator to teach physics at West Point
NASA Astrophysics Data System (ADS)
Marble, D. K.; Bruch, S. E.; Lainis, T.
1997-02-01
A small accelerator visitation laboratory is being built at the United States Military Academy using two 400 kV Van de Graaff accelerators. This laboratory will provide quality teaching experiments and increased research opportunities for both faculty and cadets as well as enhancing the department's ability to teach across the curriculum by using nuclear techniques to solve problems in environmental engineering, material science, archeology, art, etc. This training enhances a students ability to enter non-traditional fields that are becoming a large part of the physics job market. Furthermore, a small accelerator visitation laboratory for high school students can stimulate student interest in science and provide an effective means of communicating the scientific method to a general audience. A discussion of the USMA facility, class experiments and student research projects will be presented.
NASA Technical Reports Server (NTRS)
Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio
1998-01-01
Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.
Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less
1995-10-20
A Great Blue Heron seems oblivious to the tremendous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia (STS-73) soars skyward from Launch Pad 39B. Columbia's seven member crew's mission included continuing experimentation in the Marshall managed payloads including the United States Microgravity Laboratory 2 (USML-2) and the keel-mounted accelerometer that characterizes the very low frequency acceleration environment of the orbiter payload bay during space flight, known as the Orbital Acceleration Research Experiment (OARE).
Accelerating the deployment of energy efficient and renewable energy technologies in South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shickman, Kurt
Purpose of the project was to accelerate the deployment of energy efficient and renewable energy technologies in South Africa. Activities were undertaken to reduce barriers to deployment by improving product awareness for the South African market; market and policy intelligence for U.S. manufacturers; product/service availability; local technical capacity at the workforce, policymaker and expert levels; and ease of conducting business for these technologies/services in the South African market.
NASA Astrophysics Data System (ADS)
Li, Dongdong; Peng, Xi; Peng, Yulian; Zhang, Liping; Chen, Xingyu; Zhuang, Jingli; Zhao, Fang; Yang, Xiangbo; Deng, Dongmei
2017-12-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, and 11775083), the Funds from CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, and the Innovation Project of Graduate School of South China Normal University (Grant No. 2016lkxm64).
Global effects of accelerated tariff liberalization in the forest products sector to 2010.
Shushuai Zhu; Joseph Buongiorno; David J. Brooks
2002-01-01
This study projects the effects of tariff elimination on the world sector. Projections were done for two scenarios: (1) progressive tariff elimination according to the schedule agreed to under the current General Agreement on Tariff or Trade (GATT) and (2) complete elimination of tariff on wood products as proposed within the Asia-Pacific Economic Cooperation (APEC)...
Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project
NASA Astrophysics Data System (ADS)
Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration
2017-10-01
The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r<1 cm, and tstable >20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.
Position and Acceleration for Airborne Gravity; the Impact of IMU Data
NASA Astrophysics Data System (ADS)
Preaux, S. A.; Diehl, T. M.; Holmes, S. A.; Weil, C.
2012-12-01
Accurate measurements in airborne gravimetry require high quality position and acceleration information in order to remove the effects of aircraft motion from the gravimeter signal. This study examines the impact of including Inertial Measurement Unit (IMU) data in position and acceleration determination for high altitude gravimetry as part of NGS's GRAV-D project. Processing with the IMU data provides a higher rate position solution that includes aircraft attitude information. The IMU can also be a source for velocity and acceleration information but these must be used with care as they contain the aircraft motion and the gravity signal. Results from the GRAV-D project's 2008 survey season in Alaska are used as a test case for this study. The use of a tightly coupled IMU+GPS solution reduced the survey RMS and standard deviation with respect to EGM08 by an average of 0.23 mGal per data track and improved the correlation between the data tracks and EGM08 by 0.04%. While these improvements appear small they represent approximately 10% of the discrepancy. Turbulent tracks showed the biggest improvement with localized improvements larger than 5 mGal in some cases. The measured gravity processed with either a GPS only position solution or a tightly coupled GPS+IMU position solution compared with EGM08 for one data track from the GRAV-D AK08 survey.
Keehan, Sean P; Cuckler, Gigi A; Sisko, Andrea M; Madison, Andrew J; Smith, Sheila D; Lizonitz, Joseph M; Poisal, John A; Wolfe, Christian J
2012-07-01
For 2011-13, US health spending is projected to grow at 4.0 percent, on average--slightly above the historically low growth rate of 3.8 percent in 2009. Preliminary data suggest that growth in consumers' use of health services remained slow in 2011, and this pattern is expected to continue this year and next. In 2014, health spending growth is expected to accelerate to 7.4 percent as the major coverage expansions from the Affordable Care Act begin. For 2011 through 2021, national health spending is projected to grow at an average rate of 5.7 percent annually, which would be 0.9 percentage point faster than the expected annual increase in the gross domestic product during this period. By 2021, federal, state, and local government health care spending is projected to be nearly 50 percent of national health expenditures, up from 46 percent in 2011, with federal spending accounting for about two-thirds of the total government share. Rising government spending on health care is expected to be driven by faster growth in Medicare enrollment, expanded Medicaid coverage, and the introduction of premium and cost-sharing subsidies for health insurance exchange plans.
Prospects for Accelerator Technology
NASA Astrophysics Data System (ADS)
Todd, Alan
2011-02-01
Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.
Observing the Sun in hard X-rays using grazing incidence optics: the FOXSI and HEROES projects
NASA Astrophysics Data System (ADS)
Christe, Steven; Glesener, Lindsay; Krucker, Sam; Shih, Albert Y.; Gaskin, Jessica; Wilson, Colleen
2014-06-01
Solar flares accelerate particles up to high energies through various acceleration mechanisms which are not currently understood. Hard X-rays are the most direct diagnostic of flare-accelerated electrons. However past and current hard x-ray observation lack the sensitivity and dynamic range necessary to observe the faint signature of accelerated electrons in the acceleration region, the solar corona. These limitations can be easily overcome through the use of HXR focusing optics coupled with solid state pixelated detectors. We present results from the recent flights of two sub-orbital payloads that have applied grazing incidence HXR optics to solar observations. FOXSI, short for Focusing Optics X-Ray Solar Imager, was launched on a sounding rocket in November 2012 from White Sanda and observed a solar flare. HEROES, short for High Energy Replicated Optics to Explore the Sun, observed the sun for 7 hours from a high altitude balloon on September 21, 2013. We present recent results as well as the capabilities of a possible future satellite mission
Delivering Sound Energy along an Arbitrary Convex Trajectory
Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian
2014-01-01
Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory. PMID:25316353
SLAC modulator system improvements and reliability results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, A.R.
1998-06-01
In 1995, an improvement project was completed on the 244 klystron modulators in the linear accelerator. The modulator system has been previously described. This article offers project details and their resulting effect on modulator and component reliability. Prior to the project, the authors had collected four operating cycles (1991 through 1995) of MTTF data. In this discussion, the '91 data will be excluded since the modulators operated at 60 Hz. The five periods following the '91 run were reviewed due to the common repetition rate at 120 Hz.
Acceleration Environment of the International Space Station
NASA Technical Reports Server (NTRS)
McPherson, Kevin; Kelly, Eric; Keller, Jennifer
2009-01-01
Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.
Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.
1997-01-01
The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations are under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Varun
This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs.more » We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.« less
Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
Kaminer, Ido; Nemirovsky, Jonathan; Segev, Mordechai
2012-08-13
We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.
Beam Dynamics Considerations in Electron Ion Colliders
NASA Astrophysics Data System (ADS)
Krafft, Geoffrey
2015-04-01
The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.
Investigating the origins of the Irregular satellites using Cladistics
NASA Astrophysics Data System (ADS)
Holt, Timothy; Horner, Jonti; Tylor, Christopher; Nesvorny, David; Brown, Adrian; Carter, Brad
2017-10-01
The irregular satellites of Jupiter and Saturn are thought to be objects captured during a period of instability in the early solar system. However, the precise origins of these small bodies remain elusive. We use cladistics, a technique traditionally used by biologists, to help constrain the origins of these bodies. Our research contributes to a growing body of work that uses cladistics in astronomy, collectively called astrocladistics. We present one of the first instances of cladistics being used in a planetary science context. The analysis uses physical and compositional characteristics of three prograde Jovian irregular satellites (Themisto, Leda & Himalia), five retrograde Jovian irregular satellites (Ananke, Carme, Pasiphae, Sinope & Callirrhoe), along with Phoebe, a retrograde irregular satellite of Saturn, and several other regular Jovian and Saturnian satellites. Each of these members are representatives of their respective taxonomic groups. The irregular satellites are compared with other well-studied solar system bodies, including satellites, terrestrial planets, main belt asteroids, comets, and minor planets. We find that the Jovian irregular satellites cluster with asteroids and Ceres. The Saturnian satellites studied here are found to form an association with the comets, adding to the narrative of exchange between the outer solar system and Saturnian orbital space. Both of these results demonstrate the utility of cladistics as an analysis tool for the planetary sciences.
Effect of LED light stimulation on sleep latency in night shift people
NASA Astrophysics Data System (ADS)
Wu, Jih-Huah; Chang, Yang-Chyuan; Chiu, Hui-Ling; Fang, Wei; Shan, Yi-Chia; Chen, Ming-Jie; Chang, Yu-Ting
2014-05-01
Sleep problems are getting worse and worse in modern world. They have a severe impact on psychological and physical health, as well as social performances. From our previous study, the brainwave α rhythm, θ wave and β wave were affected by radiating the palm of the subjects with low-level laser array. In addition, from other study, the LED array stimulator (LEDAS) also has the similar effects. In the present study, LED light was used to radiate the left palm of the subjects too, and the effects were assessed with the multiple sleep latency test (MSLT) and heart-rate variability (HRV) analysis. The results revealed that it doesn't have significant meaning between these two groups. However, the tendency of the sleep latency (SL) in the LED group was shorter than that in the control group. In addition, the autonomic nervous system (ANS) analysis showed that the sympathetic nervous system was getting larger in the LED group than that in the control group, and total ANS activity were mainly getting larger in the LED group. We infer that this LED stimulation could reduce SL and balance ANS activity of the night-shift people. In the future, the further study will be conducted on normal subjects.
A galactic cloak for an exploding star
2015-02-23
The galaxy pictured here is NGC 4424, located in the constellation of Virgo. It is not visible with the naked eye but has been captured here with the NASA/ESA Hubble Space Telescope. Although it may not be obvious from this image, NGC 4424 is in fact a spiral galaxy. In this image it is seen more or less edge on, but from above you would be able to see the arms of the galaxy wrapping around its centre to give the characteristic spiral form . In 2012 astronomers observed a supernova in NGC 4424 — a violent explosion marking the end of a star’s life. During a supernova explosion, a single star can often outshine an entire galaxy. However, the supernova in NGC 4424, dubbed SN 2012cg, cannot be seen here as the image was taken ten years prior to the explosion. Along the central region of the galaxy, clouds of dust block the light from distant stars and create dark patches. To the left of NGC 4424 there are two bright objects in the frame. The brightest is another, smaller galaxy known as LEDA 213994 and the object closer to NGC 4424 is an anonymous star in our Milky Way. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Gilles Chapdelaine.
Construction machine control guidance implementation strategy.
DOT National Transportation Integrated Search
2010-07-01
Machine Controlled Guidance (MCG) technology may be used in roadway and bridge construction to improve construction efficiencies, potentially resulting in reduced project costs and accelerated schedules. The technology utilizes a Global Positioning S...
Nemeth, Lynne S; Wessell, Andrea M; Jenkins, Ruth G; Nietert, Paul J; Liszka, Heather A; Ornstein, Steven M
2007-01-01
This research describes implementation strategies used by primary care practices using electronic medical records in a national quality improvement demonstration project, Accelerating Translation of Research into Practice, conducted within the Practice Partner Research Network. Qualitative methods enabled identification of strategies to improve 36 quality indicators. Quantitative survey results provide mean scores reflecting the integration of these strategies by practices. Nursing staff plays important roles to facilitate quality improvement within collaborative primary care practices.
The New Big Science at the NSLS
NASA Astrophysics Data System (ADS)
Crease, Robert
2016-03-01
The term ``New Big Science'' refers to a phase shift in the kind of large-scale science that was carried out throughout the U.S. National Laboratory system, when large-scale materials science accelerators rather than high-energy physics accelerators became marquee projects at most major basic research laboratories in the post-Cold War era, accompanied by important changes in the character and culture of the research ecosystem at these laboratories. This talk explores some aspects of this phase shift at BNL's National Synchrotron Light Source.
Status of the LCLS-II Accelerating Cavity Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Ed; Marhauser, Frank; Fitzpatrick, Jarrod A.
Cavity serial production for the LCLS-II 4 GeV CM SRF linac has started. A quantity of 266 accelerating cavities has been ordered from two industrial vendors. Jefferson Laboratory leads the cavity procurement activities for the project and has successfully transferred the Nitrogen-Doping process to the industrial partners in the initial phase, which is now being applied for the production cavities. We report on the results from vendor qualification and the status of the cavity production for LCLS-II.
Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zhijie
The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.
2008-12-01
pod at increasing angles of attack. An overall vertical acceleration maximum of 7.5 g RMS occurred while in a transonic wind-up turn at 15,000 ft and...landings, level accelerations, and specific maneuver blocks of varying sideslip, load factor, and angle of attack (AOA). The flight conditions...0g 10s maximum Angle of Attack (deg) ±1 ±1 16 Table A1: Data Bands and Tolerances for the Vibroacoustic Tests Table A2 summarizes the conditions
Incineration of nuclear waste by accelerator
NASA Astrophysics Data System (ADS)
Martino, J.; Fioni, G.; Leray, S.
1998-10-01
An important international effort is devoted to find a suitable solution to incinerate radioactive nuclear waste issued from conventional power plants and from nuclear disarmament. Practically all innovative projects consist of a sub critical system driven by an external neutron source obtained by spallation induced by a high intensity proton accelerator irradiating a heavy target. New nuclear data measurements are necessary for the realization of these systems, in particular a good knowledge of the spallation process and of the neutron cross sections for transuranic elements are essential.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi; Hixon, Duane
1993-01-01
The work done under this project was documented in detail as the Ph. D. dissertation of Dr. Duane Hixon. The objectives of the research project were evaluation of the generalized minimum residual method (GMRES) as a tool for accelerating 2-D and 3-D unsteady flows and evaluation of the suitability of the GMRES algorithm for unsteady flows, computed on parallel computer architectures.
Pedal error crashes : traffic tech.
DOT National Transportation Integrated Search
2012-04-01
This project examined the prevalence of crashes in which the : driver pressed the accelerator pedal when he or she intended : to press the brake pedal, and the characteristics associated with : these crashes. : Technical literature published between ...
Bond of Field-Cast Grouts to Precast Concrete Elements
DOT National Transportation Integrated Search
2017-01-01
The performance of connections between prefabricated concrete elements constructed using field-cast cementitious grouts and groutlike materials is becoming a focus area for accelerated bridge construction (ABC) projects. These connections are require...
Concentrating Solar Power Projects - Solar Electric Generating Station IV |
of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo from a ) type power purchase agreement to Southern California Edison Incentives: Accelerated depreciation
NASA Astrophysics Data System (ADS)
Lang, C.; Fettweis, X.; Erpicum, M.
2015-01-01
We have performed future projections of the climate and surface mass balance (SMB) of Svalbard with the MAR regional climate model forced by the MIROC5 global model, following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of the melt around 2050, with a larger melt increase in the south compared to the north of the archipelago and the ice caps. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a strong winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. At the end of the century (2070-2099 mean), SMB is projected to be negative over the entire Svalbard and, by 2085, all glaciated regions of Svalbard are predicted to undergo net ablation, meaning that, under the RCP8.5 scenario, all the glaciers and ice caps are predicted to start their irreversible retreat before the end of the 21st century.
Software package for modeling spin-orbit motion in storage rings
NASA Astrophysics Data System (ADS)
Zyuzin, D. V.
2015-12-01
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.
Design of Octupole Channel for Integrable Optics Test Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo
We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements onmore » maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.« less
Stochastic acceleration of electrons from multiple uncorrelated plasma waves
NASA Astrophysics Data System (ADS)
Gee, David; Michel, Pierre; Wurtele, Jonathan
2017-10-01
One-dimensional theory puts a strict limit on the maximum energy attainable by an electron trapped and accelerated by an electron plasma wave (EPW). However, experimental measurements of hot electron distributions accelerated by stimulated Raman scattering (SRS) in ICF experiments typically show a thermal distribution with temperatures of the order of the kinetic energy of the resonant EPW's (Thot mvp2 , where vp is the phase velocity of the EPW's driven by SRS) and no clear cutoff at high energies. In this project, we are investigating conditions under which electrons can be stochastically accelerated by multiple uncorrelated EPW's, such as those generated by incoherent laser speckles in large laser spots like the ones used on NIF ( mm-size), and reproduce distributions similar to those observed in experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator
NASA Astrophysics Data System (ADS)
Roberts, Andrew D.
2011-06-01
There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here on the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.
Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Andrew D.
2011-06-01
There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here onmore » the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.« less
Perturbations for transient acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S., E-mail: win_unac@hotmail.com, E-mail: hipolito@ceunes.ufes.br, E-mail: winfried.zimdahl@pq.cnpq.br
2012-04-01
According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested againstmore » the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick
This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less
Collaborative Student Leadership Conference.
Ward, Susan L; LaFramboise, Louise M; Cosimano, Amy J
2016-01-01
In April 2008, the New Careers in Nursing (NCIN) Program launched a collaborative initiative between the American Association of Colleges of Nursing and the Robert Wood Johnson Foundation. One of the main goals of this initiative was to provide leadership development through structured activities for NCIN scholars. In order to meet this goal, 3 participating NCIN schools came together to plan and conduct a collaborative student-focused, scholar-led leadership conference for accelerated nursing students. Admittedly, collaboration among institutions of higher education is sometimes not a standard practice. Although sharing the common goal of preparing future nurses to provide high-quality care, many schools of nursing often compete for scarce resources including recruitment of faculty and students, securing clinical placements, and new graduates and alumni compete for jobs. However, there are advantages to sharing financial and intellectual resources in order to ensure a richer educational experience for NCIN scholars and for all accelerated nursing students. Using the Robert Wood Johnson Foundation monies awarded for our Legacy Project, 3 NCIN program liaisons overseeing accelerated nursing programs in Nebraska met to discuss the advantages and disadvantages related to planning and conducting a collaborative student leadership activity for NCIN scholars and their peer-accelerated nursing students. The program liaisons wanted to establish common goals for the endeavor and ensure the use of approaches that would foster leadership development of the NCIN scholars and establish mechanisms by which the group would create a collaborative environment. Although the 3 collaborating colleges were and continue to be competitors for prospective accelerated students, the benefit of collaborating on a joint leadership development project for the NCIN scholars and their peers was clear. Program liaisons recognized that this opportunity would strengthen leadership development and provide relevant experience for the NCIN scholars and result in a conference for other accelerated nursing students. Copyright © 2016. Published by Elsevier Inc.
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; ...
2017-02-21
This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less
NASA Astrophysics Data System (ADS)
Aguirre, J.; Ramirez-Guzman, L.; Leonardo Suárez, M.; Quintanar, L.
2017-12-01
On September 19, 2017, a normal fault earthquake of magnitude Mw 7.1 occurred 120 km from Mexico City. The quake generated large accelerations, more than 200 cm/s*s at least in two stations in Mexico City, where there was extensive damage. The damage pattern, which includes more than 40 building collapses, differs from the one induced by the 1985 Michoacan earthquake. While the observed accelerations in stations located in the Hill and Transition zones are the largest ever recorded, in the Lake zone the intensities were lower than those recorded in 1985. Even though the proximity of the epicenter could partially explain the accelerations, other factors need to be explored to understand the nuances of the ground motion. Unlike 1985, there is a substantially larger number of acceleration records in Mexico City, operated and maintained by different institutions. In this paper, we present the analysis of acceleration records and 3D numerical simulations to understand if effects such as focusing and directionality participate in the amplified motion. Finally, transfer functions between Lake and Hill zones and response and design spectral values are analyzed in regions where the building code requirements were exceeded. Acknowledgments: Records used in this research are obtained, processed and maintained by the National Autonomous University of Mexico through the Seismic Instrumentation Unit of the Institute of Engineering and the National Seismological Service of the Institute of Geophysics. The Centro de Intrumentacion y Registro Sismico A.C. (CIRES) kindly provided their records. This Project was funded in part by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.
NASA Astrophysics Data System (ADS)
Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli
2011-06-01
The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the Country.
Development of a 20 MeV Dielectric-Loaded Test Accelerator
NASA Astrophysics Data System (ADS)
Gold, Steven H.; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Jing, Chunguang; Long, Jidong; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Fliflet, Arne W.; Lombardi, Marcie; Lewis, David
2006-11-01
This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a ˜250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to ˜8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.
NASA Astrophysics Data System (ADS)
Lang, C.; Fettweis, X.; Erpicum, M.
2015-05-01
We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.
GPU-based Branchless Distance-Driven Projection and Backprojection
Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong
2017-01-01
Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm. PMID:29333480
GPU-based Branchless Distance-Driven Projection and Backprojection.
Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong
2017-12-01
Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm.
Preparing for Harvesting Radioisotopes from FRIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peaslee, Graham F.; Lapi, Suzanne E.
2015-02-02
The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In themore » standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.« less
Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)
NASA Technical Reports Server (NTRS)
Herring, Rodney; Tryggvason, Bjarni; Duval, Walter
1998-01-01
Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.
A coarse-grid projection method for accelerating incompressible flow computations
NASA Astrophysics Data System (ADS)
San, Omer; Staples, Anne
2011-11-01
We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.
Pang, Wai-Man; Qin, Jing; Lu, Yuqiang; Xie, Yongming; Chui, Chee-Kong; Heng, Pheng-Ann
2011-03-01
To accelerate the simultaneous algebraic reconstruction technique (SART) with motion compensation for speedy and quality computed tomography reconstruction by exploiting CUDA-enabled GPU. Two core techniques are proposed to fit SART into the CUDA architecture: (1) a ray-driven projection along with hardware trilinear interpolation, and (2) a voxel-driven back-projection that can avoid redundant computation by combining CUDA shared memory. We utilize the independence of each ray and voxel on both techniques to design CUDA kernel to represent a ray in the projection and a voxel in the back-projection respectively. Thus, significant parallelization and performance boost can be achieved. For motion compensation, we rectify each ray's direction during the projection and back-projection stages based on a known motion vector field. Extensive experiments demonstrate the proposed techniques can provide faster reconstruction without compromising image quality. The process rate is nearly 100 projections s (-1), and it is about 150 times faster than a CPU-based SART. The reconstructed image is compared against ground truth visually and quantitatively by peak signal-to-noise ratio (PSNR) and line profiles. We further evaluate the reconstruction quality using quantitative metrics such as signal-to-noise ratio (SNR) and mean-square-error (MSE). All these reveal that satisfactory results are achieved. The effects of major parameters such as ray sampling interval and relaxation parameter are also investigated by a series of experiments. A simulated dataset is used for testing the effectiveness of our motion compensation technique. The results demonstrate our reconstructed volume can eliminate undesirable artifacts like blurring. Our proposed method has potential to realize instantaneous presentation of 3D CT volume to physicians once the projection data are acquired.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2018-02-01
To advance the concept of smart structures in large systems, such as wind turbines (WTs), it is desirable to be able to detect structural damage early while using minimal instrumentation. Data-driven vibration-based damage detection methods can be competitive in that respect because global vibrational responses encompass the entire structure. Multivariate damage sensitive features (DSFs) extracted from acceleration responses enable to detect changes in a structure via statistical methods. However, even though such DSFs contain information about the structural state, they may not be optimised for the damage detection task. This paper addresses the shortcoming by exploring a DSF projection technique specialised for statistical structural damage detection. High dimensional initial DSFs are projected onto a low-dimensional space for improved damage detection performance and simultaneous computational burden reduction. The technique is based on sequential projection pursuit where the projection vectors are optimised one by one using an advanced evolutionary strategy. The approach is applied to laboratory experiments with a small-scale WT blade under wind-like excitations. Autocorrelation function coefficients calculated from acceleration signals are employed as DSFs. The optimal numbers of projection vectors are identified with the help of a fast forward selection procedure. To benchmark the proposed method, selections of original DSFs as well as principal component analysis scores from these features are additionally investigated. The optimised DSFs are tested for damage detection on previously unseen data from the healthy state and a wide range of damage scenarios. It is demonstrated that using selected subsets of the initial and transformed DSFs improves damage detectability compared to the full set of features. Furthermore, superior results can be achieved by projecting autocorrelation coefficients onto just a single optimised projection vector.
Brown dwarf science at Project 1640: the case of HD 19467 B
NASA Astrophysics Data System (ADS)
Aguilar, Jonathan; Crepp, Justin R.; Rice, Emily L.; Pueyo, Laurent; Veicht, Aaron; Nilsson, Ricky; Oppenheimer, Rebecca; Hinkley, Sasha; Brenner, Douglas; Vasisht, Gautam; Cady, Eric; Beichman, Charles A.; Hillenbrand, Lynne; Lockhart, Thomas; Matthews, Christopher T.; Roberts, Lewis C.; Sivaramakrishnan, Anand; Soummer, Remi; Zhai, Chengxing; Giorla, Paige
2015-01-01
Project 1640 is an extreme-AO, coronagraphic, hyperspectral direct-imaging instrument designed to characterize substellar companions in the giant planet to brown dwarf mass regime. It also plays an important role in the TRENDS survey, which targets solar-type stars with Doppler accelerations known to be caused by brown dwarf-sized companions. A recent highlight from TRENDS is HD 19467 B -- this is currently the only directly-imaged benchmark T dwarf known to induce a measurable Doppler acceleration around its host. J- and H-band spectra taken by the Project 1640 integral field spectrograph were fitted against SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models. Spectral typing classified HD 19467 B as a T5.5±1 brown dwarf with an effective temperature of Teff = 978+20-43 K. The new spectrum helps resolve a previous disagreement about the system age, helping constrain the range of allowed masses for the companion. We expect that new data from the ongoing TRENDS survey will help improve our understanding of brown dwarf atmospheres in high mass ratio systems.
Andreani, C.; Anderson, I. S.; Carpenter, J. M.; ...
2014-12-24
In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less
Design and commissioning of a 16.1 MHz multiharmonic buncher for the reaccelerator at NSCL
NASA Astrophysics Data System (ADS)
Alt, Daniel Maloney
The ReAccelerator (ReA) linear accelerator facility at the National Superconducting Cyclotron Laboratory is a unique resource for the nuclear physics community. The particle fragmentation beam production technique, combined with the ability to stop and then reaccelerate the beam to energies of astrophysical interest, give experimenters an unprecedented range of rare isotopes at energies of nuclear and astrophysical interest. The ReAccelerator also functions as a testbed for technology to be incorporated in the upcoming Facility for Rare Isotope Beams linear accelerator, which will eventually in turn become the beam source for ReA. This prototype nature of the ReAccelerator, however, dictated some design choices which have resulted in a final beam with a time structure that is less than ideal for certain classes of experiments. The cavities and RFQ used in ReA have an operating frequency of 80.5 MHz, which corresponds to a separation between particle bunches at the detectors of 12.4 ns. While this separation is acceptable for many experiments, sensitive time of flight measurements require a greater separation between pulses. As nuclear physics experiments rely on statistics, a solution to increasing bunch separation without simply discarding a large fraction of the beam particles was desired. This document describes the design and construction of such a device, a 16.1 MHz multiharmonic buncher. The first chapter provides backgound information on the NSCL and ReA, and some basic concepts in accelerator physics to lay the groundwork for the project.Next, more specifics are provided on the time structure of accelerated beams, and the experimental motivation for greater separation. The third chapter outlines the basic principles of multiharmonic bunching. In order to evaluate the feasibility of any buncher design, the exact acceptance of the Radiofrequency Quadrupole (RFQ) of the ReAccelerator needed to be empirically measured. Chapter 4 describes the results of that measurement. Chapter 5 outlines the simulations and calculations that went into the design choices for this particular buncher, incorporating the results of the RFQ measurements. The next two chapters describe the construction, installation, and testing of the device, and give experimental results. Finally, Chapter 8 summarizes the project and the final steps which need to be undertaken to make the device a simple to use asset for future experimentalists at ReA.
The Particle Accelerator Simulation Code PyORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M
2015-01-01
The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less
Machining and brazing of accelerating RF cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghodke, S.R.; Barnwal, Rajesh; Mondal, Jayant, E-mail: ghodke_barc@yahoo.co.in
2014-07-01
BARC has developed 2856 MHz accelerating cavities for 6 MeV, 9 MeV and 10 MeV RF Linac. New vendors are developed for mass production of accelerating cavity for future projects. New vendors are developing for diamond turning machining, cleaning and brazing processes. Fabrication involved material testing, CNC diamond turning of cavity, cavity cleaning and brazing. Before and after brazing resonance frequency (RF) of cavity was checked with vector network analyser (VNA). A power feed test setup is also fabricated to test power feed cavity before brazing. This test setup will be used to find out assembly performance of power feedmore » cavity and its coupler. This paper discusses about nano machining, cleaning and brazing processes of RF cavities. (author)« less
Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
1995-10-01
This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory Editing and changes to the authors` contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on nine presentations: ``The Energy Exchange and Efficiency Consideration in Klystrons``, ``Some Properties of Microwave RF Sources for Future Colliders + Overview of Microwave Generation Activity at the University of Maryland``, ``Field Quality Improvements in Superconducting Magnets for RHIC``, ``Hadronic B-Physics``, ``Spiking Pulses from Free Electron Lasers: Observations and Computational Models``, ``Crystalline Beams inmore » Circular Accelerators``, ``Accumulator Ring for AGS & Recent AGS Performance``, ``RHIC Project Machine Status``, and ``Gamma-Gamma Colliders.``« less
The Focusing Optics Solar X-ray Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.
2010-05-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics X-ray Solar Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi
2009-08-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics Solar X-ray Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.
2009-12-01
The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
ERIC Educational Resources Information Center
Zhang, Xuesong; Dorn, Bradley
2012-01-01
Agile development has received increasing interest both in industry and academia due to its benefits in developing software quickly, meeting customer needs, and keeping pace with the rapidly changing requirements. However, agile practices and scrum in particular have been mainly tested in mid- to large-size projects. In this paper, we present…
ERIC Educational Resources Information Center
Grantee Submission, 2015
2015-01-01
The Schools to Watch: School Transformation Network Project is a whole school reform model designed to improve the educational practices, experiences, and outcomes of low-performing middle-grades schools. Developed by the National Forum to Accelerate Middle-Grades Reform, the four-year project was funded in 2010 by a U.S. Department of Education…
Integrating Telepresence Robots Into Nursing Simulation.
Rudolph, Alexandra; Vaughn, Jacqueline; Crego, Nancy; Hueckel, Remi; Kuszajewski, Michele; Molloy, Margory; Brisson, Raymond; Shaw, Ryan J
This article provides an overview of the use of telepresence robots in clinical practice and describes an evaluation of an educational project in which distance-based nurse practitioner students used telepresence robots in clinical simulations with on-campus Accelerated Bachelor of Science in Nursing students. The results of this project suggest that the incorporation of telepresence in simulation is an effective method to promote engagement, satisfaction, and self-confidence in learning.
dV/dt - Accelerating the Rate of Progress towards Extreme Scale Collaborative Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livny, Miron
This report introduces publications that report the results of a project that aimed to design a computational framework that enables computational experimentation at scale while supporting the model of “submit locally, compute globally”. The project focuses on estimating application resource needs, finding the appropriate computing resources, acquiring those resources,deploying the applications and data on the resources, managing applications and resources during run.
Metadata Guidelines for Digital Moving Images (Revised)
2001-06-19
Examples: See section on use of the 246 field for additional title examples drawn from MBRS, LC. Abang Ramadan and the Malaysian elephant satellite...the Malaysian elephant satellite projectØh[videorecording]/ØcSmithsonian Institution, National Zoo. 245 00 ØaVirtual surgeryØh[videorecording...Describes project to track populations of Malaysian elephants. 520 8/ ØaMusical film on accelerating science at FermiLab. 520 8/ ØaDescribes
NASA Astrophysics Data System (ADS)
Kobinata, Hideo; Yamashita, Hiroshi; Nomura, Eiichi; Nakajima, Ken; Kuroki, Yukinori
1998-12-01
A new method for proximity effect correction, suitable for large-field electron-beam (EB) projection lithography with high accelerating voltage, such as SCALPEL and PREVAIL in the case where a stencil mask is used, is discussed. In this lithography, a large-field is exposed by the same dose, and thus, the dose modification method, which is used in the variable-shaped beam and the cell projection methods, cannot be used in this case. In this study, we report on development of a new proximity effect correction method which uses a pattern modified stencil mask suitable for high accelerating voltage and large-field EB projection lithography. In order to obtain the mask bias value, we have investigated linewidth reduction, due to the proximity effect, in the peripheral memory cell area, and found that it could be expressed by a simple function and all the correction parameters were easily determined from only the mask pattern data. The proximity effect for the peripheral array pattern could also be corrected by considering the pattern density. Calculated linewidth deviation was 3% or less for a 0.07-µm-L/S memory cell pattern and 5% or less for a 0.14-µm-line and 0.42-µm-space peripheral array pattern, simultaneously.
International Interdisciplinary Research Institute Project in Senegal
NASA Astrophysics Data System (ADS)
Gueye, Paul
2010-02-01
The project of an interdisciplinary research institute in Senegal was initiated in 1993 in Senegal (West Africa) and became a template for a similar project in the US in 1999. Since then, numerous meetings and presentations have been held at various national and international institutions, workshops and conferences. The current development of this partnership includes drafts for a full design of all systems at each facility, as well as the physics, applied health and educational programs to be implemented. The Senegal facility was conceived for scientific capacity building and equally to act as a focal point aimed at using the local scientific expertise. An anticipated outcome would be a contribution to the reduction of an ever-growing brain drain process suffered by the country, and the African continent in general. The development of the project led also to a strong African orientation of the facility: built for international collaboration, it is to be a pan-African endeavor and to serve primarily African countries. The facility received a presidential approval in a 2003 meeting and will develop an interdisciplinary program centered on a strong materials science research which will also allow for the establishment of an advanced analytical (physical chemistry) laboratory. A central part of the facility will be linked to state-of-the art accelerator mass spectrometry, cyclotron and low energy electromagnetic accelerator systems. )
KAHVE Laboratory RF circulator and transmission line project
NASA Astrophysics Data System (ADS)
Cetinkaya, Hakan; ćaǧlar, Aslıhan; ćiçek, Cihan; Özbey, Aydın; Sunar, Ezgi; Türemen, Görkem; Yıldız, Hüseyin; Yüncü, Alperen; Özcan, Erkcan; Ünel, Gökhan; Yaman, Fatih
2018-02-01
An 800 MHz RF circulator and transmission line project has recently started at the newly commissioned Kandilli Detector, Accelerator and Instrumentation (KAHVE) Laboratory at the Boğaziçi University. The aims are to design, build and construct an RF circulator and transmission line in Turkey for high power and high frequency applications. The project consists of 8 transmission line elements: 800 MHz RF generator with 60 kW power (klystron), klystron to waveguide converter, waveguides, E and H bends, 3-port circulator and waveguide to coaxial converter to transmit RF power to a pillbox RF cavity. Design studies and details of the ongoing project will be presented.
The new 6 MV multi-nuclide AMS facility at the University of Tsukuba
NASA Astrophysics Data System (ADS)
Sasa, Kimikazu; Takahashi, Tsutomu; Matsumura, Masumi; Matsunaka, Tetsuya; Satou, Yukihiko; Izumi, Daiki; Sueki, Keisuke
2015-10-01
The former accelerator mass spectrometry (AMS) system installed on the 12UD Pelletron tandem accelerator at the University of Tsukuba was completely destroyed by the Great East Japan Earthquake on 11 March 2011. A replacement has been designed and constructed at the university as part of the post-quake reconstruction project. It consists of a 6 MV Pelletron tandem accelerator, two multiple cathode AMS ion sources (MC-SNICSs), and a rare-particle detection system. The 6 MV Pelletron tandem accelerator will be applied not only to AMS, but also to areas such as nanotechnology, ion beam analysis, heavy ion irradiation, and nuclear physics. The rare-particle detection system will be capable of measuring environmental levels of long-lived radioisotopes of 10Be, 14C, 26Al, 36Cl, 41Ca, and 129I. It is also expected to measure other radioisotopes such as 32Si and 90Sr. The 6 MV Pelletron tandem accelerator was installed in the spring of 2014 at the University of Tsukuba. Routine beam delivery and AMS experiments will start in 2015.
The HL-LHC Accelerator Physics Challenges
NASA Astrophysics Data System (ADS)
Fartoukh, S.; Zimmermann, F.
The conceptual baseline of the HL-LHC project is reviewed, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.
Greater Yellowstone regional traveler and weather information system evaluation plan
DOT National Transportation Integrated Search
2002-04-19
The ITS Integration Program is being conducted to accelerate the integration and interoperability of intelligent transportation systems in metropolitan and rural areas. Projects approved for funding have been assessed as supporting the improvements o...
Durability assessment of prefabricated bridge elements and systems : [research summary].
DOT National Transportation Integrated Search
2015-08-01
Many states have instituted Prefabricated Bridge Elements and Systems : (PBES) and Accelerated Bridge Construction (ABC) projects to decrease : onsite construction time, work zone and user costs, and increase safety : factors; however, the quality an...
Durability assessment of recycled concrete aggregates for use in new concrete.
DOT National Transportation Integrated Search
2012-06-01
The primary goal of this research project was to investigate the long-term durability of concrete incorporating : recycled concrete aggregate (RCA) through accelerated laboratory testing. Overall it was found that modifications to : standard aggregat...
Concentrating Solar Power Projects - Solar Electric Generating Station V |
of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo of the Standard Offer 2 (SO-2) type power purchase agreement to Southern California Edison Incentives: Accelerated
Accelerated bridge construction and structural move : workshop.
DOT National Transportation Integrated Search
2014-03-01
The Michigan Department of Transportation (MDOT) is committed to provide the highest level of safety and : mobility during each step of a projects development and delivery. To fulfil the above commitment, MDOT : embraces technology and uses innova...
Four-body trajectory optimization
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1974-01-01
A comprehensive optimization program has been developed for computing fuel-optimal trajectories between the earth and a point in the sun-earth-moon system. It presents methods for generating fuel optimal two-impulse trajectories which may originate at the earth or a point in space and fuel optimal three-impulse trajectories between two points in space. The extrapolation of the state vector and the computation of the state transition matrix are accomplished by the Stumpff-Weiss method. The cost and constraint gradients are computed analytically in terms of the terminal state and the state transition matrix. The 4-body Lambert problem is solved by using the Newton-Raphson method. An accelerated gradient projection method is used to optimize a 2-impulse trajectory with terminal constraint. The Davidon's Variance Method is used both in the accelerated gradient projection method and the outer loop of a 3-impulse trajectory optimization problem.
Femtosecond Electron and Photon Pulses Facility in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimjaem, S.; Thongbai, C.; Jinamoon, V.
Femtosecond electron and photon pulses facility has been established as SURIYA project at the Fast Neutron Research Facility (FNRF). Femtosecond electron bunches can be generated from a system consisting of an RF gun with a thermionic cathode, an alpha magnet as an magnetic bunch compressor, and a linear accelerator as a post acceleration section. Femtosecond electron pulses can be used directly or used as a source to produce equally short electromagnetic (EM) radiation pulses via certain kind of radiation production processes. At SURIYA project, we are interested especially in production of radiation in Far-infrared (FIR) regime. At these wavelengths, themore » radiation from femtosecond electron pulses is emitted coherently resulting in high intensity radiation. Overview of the facility, the generation of femtosecond electron bunches, the theoretical background of coherent transition radiation and the recent experimental results will be presented and discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Park, Gunn Tae; Joo, Jongdae; Yao, Zhongyuan
2017-10-01
A f = 162 . 5 MHz superconducting half-wave resonator (HWR) with β = 0 . 12 is one of the four superconducting cavities being developed for the heavy ion linac of the Rare Isotope Science Project (RISP). The linac will accelerate various ions ranging from proton to uranium with beam power of about 400 kW. In particular, the HWR's will accelerate the ion beam in low-medium energy range, i.e., from 1.6 to 18 MeV for the case of uranium. In this paper, we describe design, fabrication, surface treatment, and vertical test of the 1st prototype of the cavity in detail. We also discuss some issues on the performance enhancement of the cavity. The Q0 values at 2 K surpassed the target performance, Q0 = 1 . 1 × 109 at Eacc = 6 . 3 MV / m.
Medium Duty Electric Vehicle Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, Robin J. D.
2015-05-31
The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs ofmore » a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.« less
Accelerator driven reactors and nuclear waste management projects in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janouch, Frantisek; Mach, Rostislav; Institute of Nuclear Physics, Rez near Prague
1995-09-15
The Czech Republic is almost the only country in the central Europe which continues with the construction of nuclear power reactors. Its small territory and dense population causes public worries concerning the disposal of the spent nuclear fuel. The Czech nuclear scientists and the power companies and the nuclear industries are therefore looking for alterative solutions. The Los Alamos ATW project had received a positive response in the Czech mass-media and even in the industrial and governmental quarters. The recent scientific symposium ''Accelerator driven reactors and nuclear waste management'' convened at the Liblice castle near Prague, 27-29.6. 1994 and sponsoredmore » by the Czech Energy Company CEZ, reviewed the competencies and experimental basis in the Czech republic and made the first attempt to formulate the national approach and to establish international collaboration in this area.« less
Accelerator driven reactors and nuclear waste management projects in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janouch, F.; Mach, R.
1995-10-01
The Czech Republic is almost the only country in the central Europe which continues with the construction of nuclear power reactors. Its small territory and dense population causes public worries concerning the disposal of the spent nuclear fuel. The Czech nuclear scientists and the power companies and the nuclear industries are therefore looking for alternative solutions. The Los Alamos ATW project had received a positive response in the Czech mass-media and even in the industrial and governmental quarters. The recent scientific symposium {open_quotes}Accelerator driven reactors and nuclear waste management{close_quotes} convened at the Liblice castle near Prague, 27-29. 6. 1994 andmore » sponsored by the Czech Energy Company CEZ, reviewed the competencies and experimental basis in the Czech republic and made the first attempt to formulate the national approach and to establish international collaboration in this area.« less
LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN
NASA Astrophysics Data System (ADS)
Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor
2017-12-01
The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.
Applications of High Intensity Proton Accelerators
NASA Astrophysics Data System (ADS)
Raja, Rajendran; Mishra, Shekhar
2010-06-01
Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.
An overview of beam diagnostic and control systems for 50 MeV AREAL Linac
NASA Astrophysics Data System (ADS)
Sargsyan, A. A.; Amatuni, G. A.; Sahakyan, V. V.; Zanyan, G. S.; Martirosyan, N. W.; Vardanyan, V. V.; Grigoryan, B. A.
2017-03-01
Advanced Research Electron Accelerator Laboratory (AREAL) is an electron linear accelerator project with a laser driven RF gun being constructed at CANDLE Synchrotron Research Institute. After the successful operation of the gun section at 5 MeV, a program of facility energy enhancement up to 50 MeV is launched. In this paper the current status of existing diagnostic and control systems, as well as the results of electron beam parameter measurements are presented. The approaches of intended diagnostic and control systems for the upgrade program are also described.
1961-01-01
As presented by Gerhard Heller of Marshall Space Flight Center's Research Projects Division in 1961, this chart illustrates three basic types of electric propulsion systems then under consideration by NASA. The ion engine (top) utilized cesium atoms ionized by hot tungsten and accelerated by an electrostatic field to produce thrust. The arc engine (middle) achieved propulsion by heating a propellant with an electric arc and then producing an expansion of the hot gas or plasma in a convergent-divergent duct. The electromagnetic, or MFD engine (bottom) manipulated strong magnetic fields to interact with a plasma and produce acceleration.
Grid Modernization Laboratory Consortium - Testing and Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin; Skare, Paul; Pratt, Rob
This paper highlights some of the unique testing capabilities and projects being performed at several national laboratories as part of the U. S. Department of Energy Grid Modernization Laboratory Consortium. As part of this effort, the Grid Modernization Laboratory Consortium Testing Network isbeing developed to accelerate grid modernization by enablingaccess to a comprehensive testing infrastructure and creating a repository of validated models and simulation tools that will be publicly available. This work is key to accelerating thedevelopment, validation, standardization, adoption, and deployment of new grid technologies to help meet U. S. energy goals.
Future long-baseline neutrino oscillations: View from Asia
NASA Astrophysics Data System (ADS)
Hayato, Yoshinari
2015-07-01
Accelerator based long-baseline neutrino oscillation experiments have been playing important roles in revealing the nature of neutrinos. However, it turned out that the current experiments are not sufficient to study two major remaining problems, the CP violation in the lepton sector and the mass hierarchy of neutrinos. Therefore, several new experiments have been proposed. Among of them, two accelerator based long-baseline neutrino oscillation experiments, the J-PARC neutrino beam and Hyper-Kamiokande, and MOMENT, have been proposed in Asia. These two projects are reviewed in this article.
NASA Technical Reports Server (NTRS)
Kolyer, J. M.; Mann, N. R.
1977-01-01
Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.
NASA Technical Reports Server (NTRS)
Kolyer, J. M.; Mann, N. R.
1978-01-01
Inherent weatherability is controlled by the three weather factors common to all exposure sites: insolation, temperature, and humidity. Emphasis was focused on the transparent encapsulant portion of miniature solar cell arrays by eliminating weathering effects on the substrate and circuitry (which are also parts of the encapsulant system). The most extensive data were for yellowing, which were measured conveniently and precisely. Considerable data also were obtained on tensile strength. Changes in these two properties after outdoor exposure were predicted very well from accelerated exposure data.
Compendium of Information for Interpreting the Microgravity Environment of the Orbiter Spacecraft
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1996-01-01
Science experiments are routinely conducted on the NASA shuttle orbiter vehicles. Primarily, these experiments are operated on such missions to take advantage of the microgravity (low-level acceleration) environment conditions during on-orbit operations. Supporting accelerometer instruments are operated with the experiments to measure the microgravity acceleration environment in which the science experiments were operated. Tne Principal Investigator Microgravity Services (PIMS) Project at NASA Lewis Research Center interprets these microgravity acceleration data and prepares mission summary reports to aid the principal investigators of the scientific experiments in understanding the microgravity environment. Much of the information about the orbiter vehicle and the microgravity environment remains the same for each mission. Rather than repeat that information in each mission summary report, reference information is presented in this report to assist users in understanding the microgravity-acceleration data. The characteristics of the microgravity acceleration environment are first presented. The methods of measurement and common instruments used on orbiter missions are described. The coordinate systems utilized in the orbiter and accelerometers are described. Some of the orbiter attitudes utilized in microgravity related missions are illustrated. Methods of data processing are described and illustrated. The interpretation of the microgravity acceleration data is included with an explanation of common disturbance sources. Instructions to access some of the acceleration data and a description of the orbiter thrusters are explained in the appendixes. A microgravity environment bibliography is also included.
Kole, J S; Beekman, F J
2006-02-21
Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.
Vacuum Brazing of Accelerator Components
NASA Astrophysics Data System (ADS)
Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.
2012-11-01
Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland
Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients canmore » be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A 1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.« less
History of Significant Vehicle and Fuel Introductions in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirk, Matthew; Alleman, Teresa; Melendez, Margo
This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy (DOE)-sponsored multi-agency project initiated to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development is designed to deliver maximum energy savings, emissions reduction, and on-road performance.
Accelerated Simulation of Kinetic Transport Using Variational Principles and Sparsity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caflisch, Russel
This project is centered on the development and application of techniques of sparsity and compressed sensing for variational principles, PDEs and physics problems, in particular for kinetic transport. This included derivation of sparse modes for elliptic and parabolic problems coming from variational principles. The research results of this project are on methods for sparsity in differential equations and their applications and on application of sparsity ideas to kinetic transport of plasmas.
Towards Modernizing the Electrical Grid
2011-05-01
Project is building four t t b t th t illpro o ype ro o s a w someday operate on extraterrestrial surfaces. The project coordinates four NASA ...Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a...Rivers’s PBRT (Proton Beam Radiation Therapy) system zaps tumors with accelerated protons. The treatment must be continuous for 30-40 days; downtime
Oak Ridge National Laboratory REVIEW, Vol. 25, Nos. 3 and 4, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, C.
1992-01-01
The titles in the table of contents from this journal are: Wartime Laboratory; High-flux Years; Accelerating Projects; Olympian Feats; Balancing Act; Responding to Social Needs; Energy Technologies; Diversity and Sharing; Global Outreach; Epilogue
Intelligent Compaction and Infrared Scanning Field Projects with Consulting Support
DOT National Transportation Integrated Search
2018-02-01
The Missouri Department of Transportation (MoDOT) was awarded a grant from the FHWA Accelerated Innovation Deployment (AID) program, in 2016. MoDOT provided the required matching funds to support this Intelligent Compaction (IC) and Infrared Scanning...
Roller Compacted Concrete over Soil Cement under Accelerated Loading : Research Project Capsule
DOT National Transportation Integrated Search
2012-09-01
Roller compacted concrete (RCC) is a stiff , zero-slump concrete mixture placed with modifi ed : asphalt paving equipment and compacted by vibratory rollers. Properly designed RCC mixes : can achieve outstanding compressive strengths similar to those...
Response of Antarctic ice shelf melt to SAM trend and possible feedbacks with the ice-dynamics
NASA Astrophysics Data System (ADS)
Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert; Spence, Paul; Cornford, Stephen L.; Le Sommer, Julien; Durand, Gaël
2017-04-01
The observed positive trend in the Southern Annular Mode (SAM) may warm the Southern Ocean sub-surface through decreased Ekman downward pumping. Subsequent change in ice-shelves melt has been suggested to trigger glacier acceleration in West Antarctica. Here we use a regional ocean model configuration of the Amundsen Sea that includes interactive ice-shelf cavities. Our results show that the inclusion of ice-shelves changes the ocean response to the projected SAM trend, i.e. it typically inhibits a part of the SAM-induced subsurface warming. Heat budget analysis has been used to propose responsible mechanisms. Regarding Thwaites and Pine Island, sub ice-shelf melt increases above 400m by approximately 40% for Thwaites and 10% for Pine Island and decreases by up to 10% below in response to ocean temperature changes driven by the projected SAM trend. The melt sensitivity to poleward shifting winds is nonetheless small compared to the sensitivity to an ice-sheet instability, i.e. to a projected change in the shape of ice-shelf cavities. For instance, the sub ice-shelf melt are doubled near the grounding line of some glaciers in response to the largest grounding line retreat projected for 2100. Large increase in basal melt close to the grounding line could largely impact instability and glacier acceleration. Our work suggests the need for including ice shelves into ocean models, and to couple ocean models to ice-sheet models in climate projections.
Biased optimal guidance for a bank-to-turn missile
NASA Astrophysics Data System (ADS)
Stallard, D. V.
A practical terminal-phase guidance law for controlling the pitch acceleration and roll rate of a bank-to-turn missile with zero autopilot lags was derived and tested, so as to minimize squared miss distance without requiring overly large commands. An acceleration bias is introduced to prevent excessive roll commands due to noise. The Separation Theorem is invoked and the guidance (control) law is derived by applying optimal control theory, linearizing the nonlinear plant equation around the present missile orientation, and obtaining a closed-form solution. The optimal pitch-acceleration and roll-rate commands are respectively proportional to two components of the projected, constant-bias, miss distance, with a resemblance to earlier derivations and proportional navigation. Simulaiation results and other related work confirm the suitability of the guidance law.
An Accelerator Neutron Source for BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, Thomas, E
2006-03-14
The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability,more » and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.« less
Power Supplies for High Energy Particle Accelerators
NASA Astrophysics Data System (ADS)
Dey, Pranab Kumar
2016-06-01
The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.
NASA Astrophysics Data System (ADS)
Shao, L.; Cline, D.; Ding, X.; Ho, Y. K.; Kong, Q.; Xu, J. J.; Pogorelsky, I.; Yakimenko, V.; Kusche, K.
2013-02-01
This paper presents the pre-experiment plan and prediction of the first stage of vacuum laser acceleration (VLA) collaborating by UCLA, Fudan University and ATF-BNL. This first stage experiment is a proof-of-principle to support our previously posted novel VLA theory. Simulations show that based on ATF's current experimental conditions the electron beam with initial energy of 15 MeV can get net energy gain from an intense CO2 laser beam. The difference in electron beam energy spread is observable by the ATF beam line diagnostics system. Further, this energy spread expansion effect increases along with an increase in laser intensity. The proposal has been approved by the ATF committee and the experiment will be our next project.
NASA Astrophysics Data System (ADS)
Uzdensky, Dmitri
Relativistic astrophysical plasma environments routinely produce intense high-energy emission, which is often observed to be nonthermal and rapidly flaring. The recently discovered gamma-ray (> 100 MeV) flares in Crab Pulsar Wind Nebula (PWN) provide a quintessential illustration of this, but other notable examples include relativistic active galactic nuclei (AGN) jets, including blazars, and Gamma-ray Bursts (GRBs). Understanding the processes responsible for the very efficient and rapid relativistic particle acceleration and subsequent emission that occurs in these sources poses a strong challenge to modern high-energy astrophysics, especially in light of the necessity to overcome radiation reaction during the acceleration process. Magnetic reconnection and collisionless shocks have been invoked as possible mechanisms. However, the inferred extreme particle acceleration requires the presence of coherent electric-field structures. How such large-scale accelerating structures (such as reconnecting current sheets) can spontaneously arise in turbulent astrophysical environments still remains a mystery. The proposed project will conduct a first-principles computational and theoretical study of kinetic turbulence in relativistic collisionless plasmas with a special focus on nonthermal particle acceleration and radiation emission. The main computational tool employed in this study will be the relativistic radiative particle-in-cell (PIC) code Zeltron, developed by the team members at the Univ. of Colorado. This code has a unique capability to self-consistently include the synchrotron and inverse-Compton radiation reaction force on the relativistic particles, while simultaneously computing the resulting observable radiative signatures. This proposal envisions performing massively parallel, large-scale three-dimensional simulations of driven and decaying kinetic turbulence in physical regimes relevant to real astrophysical systems (such as the Crab PWN), including the radiation reaction effects. In addition to measuring the general fluid-level statistical properties of kinetic turbulence (e.g., the turbulent spectrum in the inertial and sub-inertial range), as well as the overall energy dissipation and particle acceleration, the proposed study will also investigate their intermittency and time variability, resulting in direction- and time-resolved emitted photon spectra and direction- and energy-resolved light curves, which can then be compared with observations. To gain deeper physical insight into the intermittent particle acceleration processes in turbulent astrophysical environments, the project will also identify and analyze statistically the current sheets, shocks, and other relevant localized particle-acceleration structures found in the simulations. In particular, it will assess whether relativistic kinetic turbulence in PWN can self-consistently generate such structures that are long and strong enough to accelerate large numbers of particles to the PeV energies required to explain the Crab gamma-ray flares, and where and under what conditions such acceleration can occur. The results of this research will also advance our understanding the origin of ultra-rapid TeV flares in blazar jets and will have important implications for GRB prompt emission, as well as AGN radio-lobes and radiatively-inefficient accretion flows, such as the flow onto the supermassive black hole at our Galactic Center.
Controllability in Multi-Stage Laser Ion Acceleration
NASA Astrophysics Data System (ADS)
Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.
2015-11-01
The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.
NASA Astrophysics Data System (ADS)
Liang, S.; Hurteau, M. D.
2016-12-01
The interaction of warmer, drier climate and increasing large wildfires, coupled with increasing fire severity resulting from fire-exclusion are anticipated to undermine forest carbon (C) stock stability and C sink strength in the Sierra Nevada forests. Treatments, including thinning and prescribed burning, to reduce biomass and restore forest structure have proven effective at reducing fire severity and lessening C loss when treated stands are burned by wildfire. However, the current pace and scale of treatment implementation is limited, especially given recent increases in area burned by wildfire. In this study, we used a forest landscape model (LANDIS-II) to evaluate the role of implementation timing of large-scale fuel reduction treatments in influencing forest C stock and fluxes of Sierra Nevada forests with projected climate and larger wildfires. We ran 90-year simulations using climate and wildfire projections from three general circulation models driven by the A2 emission scenario. We simulated two different treatment implementation scenarios: a `distributed' (treatments implemented throughout the simulation) and an `accelerated' (treatments implemented during the first half century) scenario. We found that across the study area, accelerated implementation had 0.6-10.4 Mg ha-1 higher late-century aboveground biomass (AGB) and 1.0-2.2 g C m-2 yr-1 higher mean C sink strength than the distributed scenario, depending on specific climate-wildfire projections. Cumulative wildfire emissions over the simulation period were 0.7-3.9 Mg C ha-1 higher for distributed implementation relative to accelerated implementation. However, simulations with both implementation practices have considerably higher AGB and C sink strength as well as lower wildfire emission than simulations in the absence of fuel reduction treatments. The results demonstrate the potential for implementing large-scale fuel reduction treatments to enhance forest C stock stability and C sink strength under projected climate-wildfire interactions. Given climate and wildfire would become more stressful since the mid-century, a forward management action would grant us more C benefits.
Warp-X: A new exascale computing platform for beam–plasma simulations
Vay, J. -L.; Almgren, A.; Bell, J.; ...
2018-01-31
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
Software package for modeling spin–orbit motion in storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de
2015-12-15
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less
NASA Astrophysics Data System (ADS)
Audebert, P.
2007-11-01
In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications. These sources have exceptional properties, i.e. high brightness and high spectral cut-off, high directionality and laminarity, short burst duration. We have shown that for proton energies >10 MeV, the transverse and longitudinal emittance are respectively <0.004 mm-mrad and <10-4 eV-s, i.e. at least 100-fold and may be as much as 10^4-fold better than conventional accelerators beams. Thanks to these properties, these sources allow for example point-projection radiography with unprecedented resolution. We will show example of such time and space-resolved radiography of fast evolving fields, either of associated with the expansion of a plasma in vacuum [*] or with the propagation of a ICF-relevant laser beam in an underdense plasma. These proton sources also open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications.
Warp-X: A new exascale computing platform for beam–plasma simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J. -L.; Almgren, A.; Bell, J.
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
Compensation Techniques in Accelerator Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayed, Hisham Kamal
2011-05-01
Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Twomore » problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.« less
Can Accelerators Meet the Medical Isotopes Needs of the World?
NASA Astrophysics Data System (ADS)
Ruth, Thomas
2011-10-01
Over 80% of all Nuclear Medicine procedures make use of the radionuclide Tc-99 for SPECT imaging of heart disease, cancer and other disorders. Historically TC-99 has been produced from a generator through the decay of Mo-99 where the Mo-99 is a fission product of U-235. Five reactors around the world supply the market. However, these reactors are aging (many over 50 years old) and governments are reluctant to replace them. Therefore researchers have turned to accelerators as a potential source of this important radionuclide. In Canada the government has funded research project for two accelerator approaches: Mo-100(gamma,n)Mo-99 and Mo-100(p,2n)Tc-99m where the photons are generated from the conversion of high powered electrons into Bremsstrahlung radiation and the protons generated in low energy cyclotrons (15-25 MeV). The goal of these project is to provide the Government with sufficient information so that an informed decision can be made with respect to future supplies of medical isotopes for Canada. International interest has been expressed by the IAEA as a way to allow Member States with existing cyclotron programs to take advantage of the direct production route. This talk will describe the challenges with the approaches and the progress to date.
Accelerated Compressed Sensing Based CT Image Reconstruction.
Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C
2015-01-01
In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.
Accelerated Compressed Sensing Based CT Image Reconstruction
Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.
2015-01-01
In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. James Clayton, Ph.D., Varian Medical Systems-Security & Inspection Products; Dr. Emma Regentova, Ph.D, University of Nevada Las Vegas; Dr. Evangelos Yfantis, Ph.D., University of Nevada, Las Vegas
The UNLV Research Foundation, as the primary award recipient, teamed with Varian Medical Systems-Security & Inspection Products and the University of Nevada Las Vegas (UNLV) for the purpose of conducting research and engineering related to a "next-generation" mega-voltage imaging (MVCI) system for inspection of cargo in large containers. The procurement and build-out of hardware for the MVCI project has been completed. The K-9 linear accelerator and an optimized X-ray detection system capable of efficiently detecting X-rays emitted from the accelerator after they have passed through the device is under test. The Office of Science financial assistance award has made possiblemore » the development of a system utilizing a technology which will have a profound positive impact on the security of U.S. seaports. The proposed project will ultimately result in critical research and development advances for the "next-generation" Linatron X-ray accelerator technology, thereby providing a safe, reliable and efficient fixed and mobile cargo inspection system, which will very significantly increase the fraction of cargo containers undergoing reliable inspection as the enter U.S. ports. Both NNSA/NA-22 and the Department of Homeland Security's Domestic Nuclear Detection Office are collaborating with UNLV and its team to make this technology available as soon as possible.« less
Managing environmental issues during international electric power project development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, H.W.
1998-07-01
Responsible international project developers most often view environmental matters with quite mixed emotions. Those with whom Dynalytics has worked would certainly never contemplate jeopardizing the health of anyone in the world. But while they want their projects realized, and are willing to implement reasonable requirements, they are often asked to do more than is appropriate, more than is technologically possible, and more than is financially possible. The paper discusses the following: who is in charge of environmental matters; whose environmental standards apply; the role of technology; accelerating timetables and reducing costs; documentation and applications; and post-construction requirements.
Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Brian; Burman, Kari; Davidson, Carolyn
2015-06-30
Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.
Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
2002-01-01
This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.
1952-06-01
September and five men during the month ~of November. AFSWP supplemented the personnel available at the Laboratory by de- tailing six Naval officers...two Air Force of ficers and cmcivilian szleatist to the group. The total field party of tve~tyzeight, men co : -231- .. ..- _ M pi PROJECT 1.1 of nine...ten days prior to the under- ’ound Ehot and remained until three days after the underground shot. These men handled the bracing of the instrument
Turbine Based Combined/Combination Cycle/RTA Project Overview
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.; Quigley, Brian F.
2000-01-01
This viewgraph presentation gives an overview of the Revolutionary Turbine Accelerator (RTA) program. Details are given on the Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO) aircraft, and the technological challenges associated with the RTA, SSTO, and TSTO.
Proposed Projects and Experiments Fermilab's Tevatron Questions for the Universe Theory Computing High Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library Visual Media Services Timeline History High-Energy Physics Accelerator Science in Medicine Follow
Schutte-Lanz airship projects after the war
NASA Technical Reports Server (NTRS)
Weiss, Georg
1925-01-01
The stressing of an airship depends on three nonuniformly distributed forces: air forces; the distribution of acceleration forces; and how the air pressure is distributed on the hull. This report examines the stresses and comes to conclusions on the size of airships.
Application of laser speckle to randomized numerical linear algebra
NASA Astrophysics Data System (ADS)
Valley, George C.; Shaw, Thomas J.; Stapleton, Andrew D.; Scofield, Adam C.; Sefler, George A.; Johannson, Leif
2018-02-01
We propose and simulate integrated optical devices for accelerating numerical linear algebra (NLA) calculations. Data is modulated on chirped optical pulses and these propagate through a multimode waveguide where speckle provides the random projections needed for NLA dimensionality reduction.
Ground vibration investigation at highway construction sites : final report.
DOT National Transportation Integrated Search
1975-06-01
The purpose of this study was to measure vibration magnitudes on construction projects in terms of particle velocity rather than particle displacement or acceleration. Peak particle velocity was chosen as the best means of measurement after the U.S. ...
DOT National Transportation Integrated Search
2015-08-01
Advancements and increased use of accelerated bridge construction (ABC) : often result in the use of newly developed, or modified, technologies and/or : construction techniques that are sometimes untested in this new application. : For designers and ...
The US Spallation Neutron Source Project
NASA Astrophysics Data System (ADS)
Olsen, David K.
1997-10-01
Slow neutrons, with wavelengths between a few tenths to a few tens of angstroms, are an important probe for condensed-matter physics and are produced with either fission reactors or accelerator-based spallation sources. The Spallation Neutron Source (SNS) is a collaborative project between DOE National Laboratories including LBNL, LANL, BNL, ANL and ORNL to build the next research neutron source in the US. This source will be sited at ORNL and is being designed to serve the needs of the neutron science community well into the next century. The SNS consists of a 1.1-mA H- front end and a 1.0-GeV high-intensity pulsed proton linac. The 1-ms pulses from the linac will be compressed in a 221-m-circumference accumulator ring to produce 600-ns pulses at a 60-Hz rate. This accelerator system will produce spallation neutrons from a 1.0-MW liquid Hg target for a broad spectrum of neutron scattering research with an initial target hall containing 18 instruments. The baseline conceptual design, critical issues, upgrade possibilities, and the collaborative arrangement will be discussed. It is expected that SNS construction will commence in FY99 and, following a seven year project, start operation in 2006.
A coarse-grid-projection acceleration method for finite-element incompressible flow computations
NASA Astrophysics Data System (ADS)
Kashefi, Ali; Staples, Anne; FiN Lab Team
2015-11-01
Coarse grid projection (CGP) methodology provides a framework for accelerating computations by performing some part of the computation on a coarsened grid. We apply the CGP to pressure projection methods for finite element-based incompressible flow simulations. Based on it, the predicted velocity field data is restricted to a coarsened grid, the pressure is determined by solving the Poisson equation on the coarse grid, and the resulting data are prolonged to the preset fine grid. The contributions of the CGP method to the pressure correction technique are twofold: first, it substantially lessens the computational cost devoted to the Poisson equation, which is the most time-consuming part of the simulation process. Second, it preserves the accuracy of the velocity field. The velocity and pressure spaces are approximated by Galerkin spectral element using piecewise linear basis functions. A restriction operator is designed so that fine data are directly injected into the coarse grid. The Laplacian and divergence matrices are driven by taking inner products of coarse grid shape functions. Linear interpolation is implemented to construct a prolongation operator. A study of the data accuracy and the CPU time for the CGP-based versus non-CGP computations is presented. Laboratory for Fluid Dynamics in Nature.
The founding of CEBAF, 1979 to 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Westfall
1995-02-01
In early 1979 a group of physicists assembled at the University of Virginia (UVa) for a conference entitled ''Future Possibilities for Electron Accelerators.'' In the audience sat an organizer of the conference, UVa professor James McCarthy. While listening to talks by Gregory Loew of the Stanford Linear Accelerator Center (SLAC) and Roger Servranckx of the University of Saskatchewan, McCarthy got very excited. Both discussed new approaches to producing an almost continuous stream of electrons with improved designs for pulse stretcher rings that could be built within a reasonable budget. McCarthy saw the possibility of realizing a dream. This dream hadmore » its origins in the 1950s, when Robert Hofstadter, McCarthy's thesis advisor, made groundbreaking discoveries at Stanford's High Energy Physics Laboratory (HEPL) about the internal structure of nuclei and nucleons. For these experiments Hofstadter used Mark III, the most advanced in a series of electron accelerators designed by William Hansen, who pioneered methods of high frequency acceleration of electrons. The work by Hofstadter and Hansen led to two productive lines of inquiry. One group of researchers studied particle production using electrons at higher energies, which led to the construction in the 1960s of SLAC at Stanford. Another group of researchers, which included McCarthy, investigated nuclear structure with more modest increases in energy accompanied by increases in the duty factor of the electron beam. This line of inquiry, electro-nuclear physics, led in the 1960s and 1970s to a succession of accelerators, including a $7.2 million high duty factor 400 MeV linear accelerator (linac) completed in 1972 at the Bates Laboratory at the Massachusetts Institute of Technology (Bates-MIT), and ambitious attempts to develop untried technologies to further boost energy and duty factor, most notably the effort to develop superconducting radiofrequency (srf) accelerating technology at HEPL. By 1979 electro-nuclear physics had attracted a considerable following. The growing electro-nuclear physics community was eager to find a scheme to permit virtually continuous acceleration, which would greatly improve the capability of performing coincidence experiments. In the words of the UVa conference proceedings, this experimental capability promised to open entire new areas of nuclear physics. Convinced that he could be the one to design the necessary groundbreaking machine after hearing the ideas of Loew and Servranckx, McCarthy began gathering a small accelerator building team. Against all odds, McCarthy's pipe dream resulted in the construction of a major accelerator laboratory, the Continuous Electron Beam Accelerator Facility (CEBAF). The founding of CEBAF is a tale of luck, perseverance, the triumph of flexible amateurism over rigid professionalism, and ironically, the potential of amateurs when supported by a thoroughly professional international network with well-defined methods for organizing and building accelerators. The CEBAF tale also has a surprise ending, for at the last minute, McCarthy's pipe dream was radically transformed by Hermann Grunder, who would direct the construction of the project. The twists and turns of this tale reveal many lessons about what aids and what detracts from the success of a large, federally sponsored scientific project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A., E-mail: anastasio@wustl.edu
Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that ismore » solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.« less
Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A
2016-04-01
The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.
Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A.
2016-01-01
Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets. PMID:27036582
NASA Astrophysics Data System (ADS)
Dálya, G.; Galgóczi, G.; Dobos, L.; Frei, Z.; Heng, I. S.; Macas, R.; Messenger, C.; Raffai, P.; de Souza, R. S.
2018-06-01
We introduce a value-added full-sky catalogue of galaxies, named as Galaxy List for the Advanced Detector Era, or GLADE. The purpose of this catalogue is to (i) help identifications of host candidates for gravitational-wave events, (ii) support target selections for electromagnetic follow-up observations of gravitational-wave candidates, (iii) provide input data on the matter distribution of the local universe for astrophysical or cosmological simulations, and (iv) help identifications of host candidates for poorly localised electromagnetic transients, such as gamma-ray bursts observed with the InterPlanetary Network. Both being potential hosts of astrophysical sources of gravitational waves, GLADE includes inactive and active galaxies as well. GLADE was constructed by cross-matching and combining data from five separate (but not independent) astronomical catalogues: GWGC, 2MPZ, 2MASS XSC, HyperLEDA and SDSS-DR12Q. GLADE is complete up to d_L=37^{+3}_{-4} Mpc in terms of the cumulative B-band luminosity of galaxies within luminosity distance dL, and contains all of the brightest galaxies giving half of the total B-band luminosity up to dL = 91 Mpc. As B-band luminosity is expected to be a tracer of binary neutron star mergers (currently the prime targets of joint GW+EM detections), our completeness measures can be used as estimations of completeness for containing all binary neutron star merger hosts in the local universe.
Multi-Mode Cavity Accelerator Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yong; Hirshfield, Jay Leonard
2016-11-10
This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less
NASA Astrophysics Data System (ADS)
Minea, R.; Oproiu, C.; Pascanu, S.; Matei, C.; Ferdes, O.
1996-06-01
The potential of ionizing radiation treatment for food preservation, shelf-life extension, control of microbial load and reduction of pathogenic microorganism was demonstrated. The irradiations were performed under normal conditions on the Institute of Physics and Technology for Radiation Device's linear electron accelerator, which has the following parameters: 5 μA mean beam current, 6 MeV electron mean energy, pulse period 3.5 μs and dose rates between 100-1500 Gy/min. This research project was aimed at assuring the consumer's acceptance for radiation-treated food and to obtain a significant reduction of food losses. We also propose a promising solution for the radiation processing of some bulk food products at the place of storage, consisting of a mobile electron accelerator. The main characteristics of the mobile electron accelerator are: electron energy 3 to 5 MeV, maximum beam power 5 kW, vertical electron beam; irradiation is possible both with electron beams and with bremsstrahlung. The results of our preliminary research lead to the conclusion that electron-beam irradiation and the use of electron accelerators is a promising solution for food preservation and food safety. Interesting future applications are outlined.
Neutrino Physics with Accelerator Driven Subcritical Reactors
NASA Astrophysics Data System (ADS)
Ciuffoli, Emilio
2017-09-01
Accelerator Driven Subcritical System (ADS) reactors are being developed around the world, to produce energy and, at the same time, to provide an efficient way to dispose of and to recycle nuclear waste. Used nuclear fuel, by itself, cannot sustain a chain reaction; however in ADS reactors the additional neutrons which are required will be supplied by a high-intensity accelerator. This accelerator will produce, as a by-product, a large quantity of {\\bar{ν }}μ via muon Decay At Rest (µDAR). Using liquid scintillators, it will be possible to to measure the CP-violating phase δCP and to look for experimental signs of the presence of sterile neutrinos in the appearance channel, testing the LSND and MiniBooNE anomalies. Even in the first stage of the project, when the beam energy will be lower, it will be possible to produce {\\bar{ν }}e via Isotope Decay At Rest (IsoDAR), which can be used to provide competitive bounds on sterile neutrinos in the disappearance channel. I will consider several experimental setups in which the antineutrinos are created using accelerators that will be constructed as part of the China-ADS program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, John
This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of thismore » vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.« less
Zehra, Rabail; Abbasi, Amir Ali
2018-03-01
Empirical assessments of human accelerated noncoding DNA frgaments have delineated presence of many cis-regulatory elements. Enhancers make up an important category of such accelerated cis-regulatory elements that efficiently control the spatiotemporal expression of many developmental genes. Establishing plausible reasons for accelerated enhancer sequence divergence in Homo sapiens has been termed significant in various previously published studies. This acceleration by including closely related primates and archaic human data has the potential to open up evolutionary avenues for deducing present-day brain structure. This study relied on empirically confirmed brain exclusive enhancers to avoid any misjudgments about their regulatory status and categorized among them a subset of enhancers with an exceptionally accelerated rate of lineage specific divergence in humans. In this assorted set, 13 distinct transcription factor binding sites were located that possessed unique existence in humans. Three of 13 such sites belonging to transcription factors SOX2, RUNX1/3, and FOS/JUND possessed single nucleotide variants that made them unique to H. sapiens upon comparisons with Neandertal and Denisovan orthologous sequences. These variants modifying the binding sites in modern human lineage were further substantiated as single nucleotide polymorphisms via exploiting 1000 Genomes Project Phase3 data. Long range haplotype based tests laid out evidence of positive selection to be governing in African population on two of the modern human motif modifying alleles with strongest results for SOX2 binding site. In sum, our study acknowledges acceleration in noncoding regulatory landscape of the genome and highlights functional parts within it to have undergone accelerated divergence in present-day human population.
Mohammed, Shafiu; Dong, Hengjin
2012-03-07
Developing countries are devising various strategies and mechanisms to accelerate their speed towards the Millennium Development Goals (MDGs) by 2015. In Nigeria, different approaches have been used to address the tackling of health-related MDGs. One creative approach has been the implementation of the NHIS Maternal and Child Health (NHIS-MCH) Project. The project aims to speed up the achievement of MDGs 4 and 5 (reducing child mortality and improving maternal health) in the country. Little is known about the NHIS-MCH Project's design and health insurance coverage activities. Project planning and monitoring could be hampered by lack of technical and managerial skills of health insurance most especially at middle and local levels. Challenging debates continue to emanate on the project's sustainability.
Improving linear accelerator service response with a real- time electronic event reporting system.
Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L
2014-09-08
To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.
Focal spot motion of linear accelerators and its effect on portal image analysis.
Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel
2003-06-01
The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned approximately 0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motionwas estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spotmotion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate.
Engaging Clinical Nurses in Quality Improvement Projects.
Moore, Susan; Stichler, Jaynelle F
2015-10-01
Clinical nurses have the knowledge and expertise required to provide efficient and proficient patient care. Time and knowledge deficits can prevent nurses from developing and implementing quality improvement or evidence-based practice projects. This article reviews a process for professional development of clinical nurses that helped them to define, implement, and analyze quality improvement or evidence-based practice projects. The purpose of this project was to educate advanced clinical nurses to manage a change project from inception to completion, using the Six Sigma DMAIC (Define, Measure, Analyze, Improve, Control) Change Acceleration Process as a framework. One-to-one mentoring and didactic in-services advanced the knowledge, appreciation, and practice of advanced practice clinicians who completed multiple change projects. The projects facilitated clinical practice changes, with improved patient outcomes; a unit cultural shift, with appreciation of quality improvement and evidence-based projects; and engagement with colleagues. Project outcomes were displayed in poster presentations at a hospital exposition for knowledge dissemination. Copyright 2015, SLACK Incorporated.
ERIC Educational Resources Information Center
IDRA Newsletter, 1995
1995-01-01
This theme issue contains six articles on improving math and science education for minority group students, particularly language-minority students. "Accelerating Content Area Gains for English Language Learners" (Laura Chris Green) describes the Young Scientists Acquiring English project, which seeks to improve the content-area…
Laboratory investigation of grouted coupler connection details for ABC bridge projects.
DOT National Transportation Integrated Search
2015-08-01
With an ever increasing desire to utilize accelerated bridge construction (ABC) techniques, it is becoming critical that bridge : designers and contractors have confidence in typical details. The Keg Creek Bridge on US 6 in Iowa was a recent ABC exam...
METRICS OF PERFORMANCE FOR THE SABRE MICROCOSM STUDY (ABSTRACT ONLY)
The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, a laboratory microcosm study was conducted to provide...
DOT National Transportation Integrated Search
2016-09-01
In this project, researchers developed and performed field validation of a wireless structural sensing system for a variety of bridge response measurements, including strain, acceleration, and displacement. The research team used the wireless strain ...
CHARACTERIZING THE MICROBIAL COMMUNITY IN SABRE MICROCOSM STUDIES (ABSTRACT ONLY)
The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, laboratory microcosm and column studies were conducte...
Nguyen, Van-Giang; Lee, Soo-Jin
2016-07-01
Iterative reconstruction from Compton scattered data is known to be computationally more challenging than that from conventional line-projection based emission data in that the gamma rays that undergo Compton scattering are modeled as conic projections rather than line projections. In conventional tomographic reconstruction, to parallelize the projection and backprojection operations using the graphics processing unit (GPU), approximated methods that use an unmatched pair of ray-tracing forward projector and voxel-driven backprojector have been widely used. In this work, we propose a new GPU-accelerated method for Compton camera reconstruction which is more accurate by using exactly matched pair of projector and backprojector. To calculate conic forward projection, we first sample the cone surface into conic rays and accumulate the intersecting chord lengths of the conic rays passing through voxels using a fast ray-tracing method (RTM). For conic backprojection, to obtain the true adjoint of the conic forward projection, while retaining the computational efficiency of the GPU, we use a voxel-driven RTM which is essentially the same as the standard RTM used for the conic forward projector. Our simulation results show that, while the new method is about 3 times slower than the approximated method, it is still about 16 times faster than the CPU-based method without any loss of accuracy. The net conclusion is that our proposed method is guaranteed to retain the reconstruction accuracy regardless of the number of iterations by providing a perfectly matched projector-backprojector pair, which makes iterative reconstruction methods for Compton imaging faster and more accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Recent Developments at the Accelerator Laboratory in Jyvaeskylae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trzaska, Wladyslaw Henryk
Recent developments at the Accelerator Laboratory in Jyvaeskylae are described. In addition to the existing K = 130 a new cyclotron has been added. It is capable of producing of high current proton and deuteron beams at 30 and 15 MeV correspondingly. It should be fully operational in 2010. A new development in Jyvaeskylae is the growing commitment to astroparticle physics. Jyvaeskylae took the main scientific responsibility for a new cosmic-ray experiment EMMA and has joined the LAGUNA project working on the design of the next generation of very large volume detectors for underground observatories.
Microelectromechanical safing and arming apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, David R; Hoke, Darren A; Weichman, Louis S
2006-05-30
A two-stage acceleration sensing apparatus is disclosed which has applications for use in a fuze assembly for a projected munition. The apparatus, which can be formed by bulk micromachining or LIGA, can sense acceleration components along two orthogonal directions to enable movement of a shuttle from an "as-fabricated" position to a final position and locking of the shuttle in the final position. With the shuttle moved to the final position, the apparatus can perform one or more functions including completing an explosive train or an electrical switch closure, or allowing a light beam to be transmitted through the device.
Microelectromechanical safing and arming apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, David R; Hoke, Darren A; Weichman, Louis S
2008-06-10
A two-stage acceleration sensing apparatus is disclosed which has applications for use in a fuze assembly for a projected munition. The apparatus, which can be formed by bulk micromachining or LIGA, can sense acceleration components along two orthogonal directions to enable movement of a shuttle from an "as-fabricated" position to a final position and locking of the shuttle in the final position. With the shuttle moved to the final position, the apparatus can perform one or more functions including completing an explosive train or an electrical switch closure, or allowing a light beam to be transmitted through the device.
Schubert Review 2017 2-page summary of AmBe project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, A.
2017-04-04
Accelerator-based neutron sources to replace Americium Beryllium (AmBe) radiological sources used for oil well logging are needed for safety and security purposes. DT neutron generators have successfully been used in the past for some measurements, but are less sensitive to rock porosity than the AmBe spectrum is. Additionally, the well-logging industry has decades of data calibrated to the AmBe neutron spectrum. Ideally, if this industry were required to use an accelerator source, they would like a similar neutron spectrum to the AmBe source, with a yield of at least 1×10 7 n/s.
Final Report: System Reliability Model for Solid-State Lighting (SSL) Luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. Lynn
2017-05-31
The primary objectives of this project was to develop and validate reliability models and accelerated stress testing (AST) methodologies for predicting the lifetime of integrated SSL luminaires. This study examined the likely failure modes for SSL luminaires including abrupt failure, excessive lumen depreciation, unacceptable color shifts, and increased power consumption. Data on the relative distribution of these failure modes were acquired through extensive accelerated stress tests and combined with industry data and other source of information on LED lighting. This data was compiled and utilized to build models of the aging behavior of key luminaire optical and electrical components.