Science.gov

Sample records for accelerator neutrino experiments

  1. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  2. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  3. Nuclear effects in atmospheric and accelerator neutrino experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2010-11-24

    We have studied the nuclear medium effects in the neutrino (antineutrino) induced interactions in nuclei at intermediate energy region. We have applied this study to calculate the event rates for atmospheric and accelerator neutrino experiments. The study of the nuclear effects has been done for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  4. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  5. Present and future high-energy accelerators for neutrino experiments

    SciTech Connect

    Kourbanis, I.; /Fermilab

    2007-06-01

    There is an active neutrino program making use of the high-energy (larger than 50 GeV) accelerators both in USA at Fermilab with NuMI and at CERN in Europe with CNGS. In this paper we will review the prospects for high intensity high energy beams in those two locations during the next decade.

  6. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  7. Accelerator neutrino program at Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2010-05-01

    The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOvA. The major experiment in the beamline to DUSEL will be LBNE.

  8. Neutrino factory and beta beam: accelerator options for future neutrino experiments

    SciTech Connect

    Zisman, Michael S.

    2012-06-03

    Two accelerator options for producing intense neutrino beams a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions are described. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science.

  9. Investigation of neutrino oscillations in the T2k long-baseline accelerator experiment

    SciTech Connect

    Izmaylov, A. O. Yershov, N. V.; Kudenko, Yu. G.; Matveev, V. A.; Mineev, O. V.; Musienko, Yu. V.; Khabibulliun, M. M.; Khotjantsev, A. N.; Shaykhiev, A. T.

    2012-02-15

    High-sensitivity searches for transitions of muon neutrinos to electron neutrinos are the main task of the T2K (Tokai-to-Kamioka) second-generation long-baseline accelerator neutrino experiment. The present article is devoted to describing basic principles of T2K, surveying experimental apparatuses that it includes, and considering in detail the muon-range detector (SMRD) designed and manufactured by a group of physicists from the Institute of Nuclear Research (Russian Academy of Sciences, Moscow). The results of the first measurements with a neutrino beam are presented, and plans for the near future are discussed.

  10. NOνA Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Jediny, Filip

    2015-06-01

    The NOνA experiment is a long-baseline accelerator-based neutrino oscillation experiment. It uses the upgraded NuMI beam from Fermilab and measures electron-neutrino appearance and muon-neutrino disappearance at its far detector in Ash River, Minnesota. Goals of the experiment include measurements of θ13, mass hierarchy and the CP violating phase. NOνA has begun to take neutrino data and first neutrino candidates are observed in its detectors. This document provides an overview of the scientific reach of the experiment, the status of detector operation and physics analysis, as well as the first data.

  11. Searching for Physics beyond the Standard Model with Accelerator Neutrino Experiments

    SciTech Connect

    Louis, William C

    2008-01-01

    The MiniBooNE experiment at Fermilab was designed to test the LSND evidence for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations . The first MiniBooNE oscillation result in neutrino mode shows no significant excess of events at higher energies (E{sub {nu}} > 475 MeV), although a sizeable excess is observed at lower energies (E{sub {nu}}< 475 MeV). The lack of a significant excess at higher energies allows MiniBooNE to rule out simple 2 - {nu} oscillations as an explanation of the LSND signal. However, the low-energy excess is presently unexplained. Additional antineutrino data and NuMI data may allow the collaboration to determine whether the excess is due, for example, to a neutrino neutral-current radiative interaction or to neutrino oscillations involving sterile neutrinos. If the excess is consistent with being due to sterile neutrinos, then future experiments at FNAL (BooNE) or ORNL (OscSNS) could prove their existence.

  12. Nuclear effects in neutrino oscillation experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2011-10-06

    We have studied the nuclear medium effects in the neutrino(antineutrino) induced interactions in nuclei which are relevant for present neutrino oscillation experiments in the few GeV energy region. The study is specially focused on calculating the cross sections and the event rates for atmospheric and accelerator neutrino experiments. The nuclear effects are found to be important for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  13. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  14. Neutrino experiments: Hierarchy, CP, CPT

    NASA Astrophysics Data System (ADS)

    Gupta, Manmohan; Randhawa, Monika; Singh, Mandip

    2016-07-01

    We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.

  15. Direct Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Mertens, Susanne

    2016-05-01

    With a mass at least six orders of magnitudes smaller than the mass of an electron – but non-zero – neutrinos are a clear misfit in the Standard Model of Particle Physics. On the one hand, its tiny mass makes the neutrino one of the most interesting particles, one that might hold the key to physics beyond the Standard Model. On the other hand this minute mass leads to great challenges in its experimental determination. Three approaches are currently pursued: An indirect neutrino mass determination via cosmological observables, the search for neutrinoless double β-decay, and a direct measurement based on the kinematics of single β-decay. In this paper the latter will be discussed in detail and the status and scientific reach of the current and near-future experiments will be presented.

  16. Long Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  17. Results from Neutrino Oscillations Experiments

    SciTech Connect

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  18. Linking solar and long baseline terrestrial neutrino experiments.

    PubMed

    Akhmedov, E K; Branco, G C; Rebelo, M N

    2000-04-17

    We show that, in the framework of three light neutrino species with hierarchical masses and assuming no fine tuning between the entries of the neutrino mass matrix, one can use the solar neutrino data to obtain information on the element U(e3) of the lepton mixing matrix. Conversely, a measurement of U(e3) in atmospheric or long baseline accelerator or reactor neutrino experiments would help discriminate between possible oscillation solutions of the solar neutrino problem. PMID:11019139

  19. Non-accelerator experiments

    SciTech Connect

    Goldhaber, M.

    1986-01-01

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay.

  20. Reactor neutrino experiments: θ13 and beyond

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Wang, Wei

    2014-05-01

    We review the current-generation short-baseline reactor neutrino experiments that have firmly established the third neutrino mixing angle θ13 to be nonzero. The relative large value of θ13 (around 9°) has opened many new and exciting opportunities for future neutrino experiments. Daya Bay experiment with the first measurement of Δ m2ee is aiming for a precision measurement of this atmospheric mass-squared splitting with a comparable precision as Δ m2μ μ from accelerator muon neutrino experiments. JUNO, a next-generation reactor neutrino experiment, is targeting to determine the neutrino mass hierarchy (MH) with medium baselines ( 50 km). Beside these opportunities enabled by the large θ13, the current-generation (Daya Bay, Double Chooz, and RENO) and the next-generation (JUNO, RENO-50, and PROSPECT) reactor experiments, with their unprecedented statistics, are also leading the precision era of the three-flavor neutrino oscillation physics as well as constraining new physics beyond the neutrino Standard Model.

  1. Long-baseline neutrino oscillation experiments

    SciTech Connect

    Crane, D.; Goodman, M.

    1994-12-31

    There is no unambiguous definition for long baseline neutrino oscillation experiments. The term is generally used for accelerator neutrino oscillation experiments which are sensitive to {Delta}m{sup 2} < 1.0 eV{sup 2}, and for which the detector is not on the accelerator site. The Snowmass N2L working group met to discuss the issues facing such experiments. The Fermilab Program Advisory Committee adopted several recommendations concerning the Fermilab neutrino program at their Aspen meeting immediately prior to the Snowmass Workshop. This heightened the attention for the proposals to use Fermilab for a long-baseline neutrino experiment at the workshop. The plan for a neutrino oscillation program at Brookhaven was also thoroughly discussed. Opportunities at CERN were considered, particularly the use of detectors at the Gran Sasso laboratory. The idea to build a neutrino beam from KEK towards Superkamiokande was not discussed at the Snowmass meeting, but there has been considerable development of this idea since then. Brookhaven and KEK would use low energy neutrino beams, while FNAL and CERN would plan have medium energy beams. This report will summarize a few topics common to LBL proposals and attempt to give a snapshot of where things stand in this fast developing field.

  2. NOνA neutrino experiment status

    NASA Astrophysics Data System (ADS)

    Jediný, Filip

    2014-03-01

    The primary goal of the NOνA neutrino oscillation experiment is to study the probabilities of transformation of muonic-neutrinos into electron-neutrinos. The experiment is currently under construction and will use a 700 kW accelerator-based NuMI beam (Neutrinos at the Main Injector) and two detectors. The Near Detector (329 t at Fermi National Accelerator Laboratory, Illinois) and the Far Detector (14 kt, Ash River, Minnesota) are aligned to 14 mrad off-axis and separated by 810 km. They are made of active liquid scintillator and readout by avalanche photo-diodes. Recent results from world-wide neutrino experiments indicate that NOνA is in the position to determine the neutrino mass hierarchy as it is also searching for the first hints of CP violation in neutrino sector. The design, the goals and the current status of the NOνA experiment are presented here with the current estimates of its sensitivity to the mass hierarchy measurement.

  3. Review of Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    New generation of reactor neutrino experiments, Daya Bay and RENO, have made definitive measurements of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of electron antineutrinos. More precise measurements of the mixing angle and reactor neutrino spectra have been made and presented. A rather large value of θ13 has opened a new window to find the CP violation phase and to determine the neutrino mass hierarchy. Future reactor experiments, JUNO and RENO-50, are proposed to determine the neutrino mass hierarchy and to make highly precise measurements of θ12, Δm212, and Δm312.

  4. Double-Chooz Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Palomares, Carmen; Double Chooz Collaboration

    2011-12-01

    The Double Chooz experiment will use the electron anti-neutrinos produced by the Chooz nuclear power station to search for a non-vanishing value of the θ13 neutrino mixing angle. Double Chooz will be the first of a new generation of neutrino experiments using identical detectors at different distances from the neutrino source to reduce the systematic errors due to the uncertainties on the neutrino flux and to the detector acceptance. The far detector will be operative by the beginning of 2011. Installation of the near detector will occur in 2012.

  5. Global analyses of neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2016-07-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  6. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  7. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  8. Hadron production measurements to constrain accelerator neutrino beams

    SciTech Connect

    Korzenev, Alexander

    2015-07-15

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming x{sub F} scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments – NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) – are reviewed.

  9. Hadron production measurements to constrain accelerator neutrino beams

    NASA Astrophysics Data System (ADS)

    Korzenev, Alexander

    2015-07-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming xF scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments - NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) - are reviewed.

  10. Future short-baseline sterile neutrino searches with accelerators

    SciTech Connect

    Spitz, J.

    2015-07-15

    A number of experimental anomalies in neutrino oscillation physics point to the existence of at least one light sterile neutrino. This hypothesis can be precisely tested using neutrinos from reactors, radioactive isotopes, and particle accelerators. The focus of these proceedings is on future dedicated short-baseline sterile neutrino searches using accelerators.

  11. Neutrino physics with accelerator driven subcritical reactors

    NASA Astrophysics Data System (ADS)

    Ciuffoli, Emilio; Evslin, Jarah; Zhao, Fengyi

    2016-01-01

    Accelerator driven system (ADS) subcritical nuclear reactors are under development around the world. They will be intense sources of free, 30-55 MeV μ + decay at rest {overline{ν}}_{μ } . These ADS reactor neutrinos can provide a robust test of the LSND anomaly and a precise measurement of the leptonic CP-violating phase δ, including sign(cos(δ)). The first phase of many ADS programs includes the construction of a low energy, high intensity proton or deuteron accelerator, which can yield competitive bounds on sterile neutrinos.

  12. Neutrino Experiments at the SNS

    SciTech Connect

    Scholberg, Kate

    2009-12-17

    This talk describes planned neutrino physics experiments at the Spallation Neutron Source in Oak Ridge, Tennessee, with a focus on the proposed CLEAR (Coherent Low Energy Nuclear(A) Recoils) experiment.

  13. Accelerator/Experiment operations - FY 2006

    SciTech Connect

    Brice, S.; Conrad, J.; Denisov, D.; Ginther, G.; Holmes, S.; James, C.; Lee, W.; Louis, W.; Moore, C.; Plunkett, R.; Raja, R.; /Fermilab

    2006-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and experiment operations for FY 2006. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2006 Run II at the Tevatron Collider, the MiniBooNE experiments running in the Booster Neutrino Beam in neutrino and antineutrino modes, MINOS using the Main Injector Neutrino Beam (NuMI), and SY 120 activities.

  14. Study of accelerator neutrino detection at a spallation source

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang

    2016-06-01

    We study the detection of accelerator neutrinos produced at the China Spallation Neutron Source (CSNS). Using the code FLUKA, we have simulated the production of neutrinos in a proton beam on a tungsten target and obtained the yield efficiency, numerical flux, and average energy of different flavors of neutrinos. Furthermore, detection of these accelerator neutrinos is investigated in two reaction channels: neutrino-electron reactions and neutrino-carbon reactions. The expected numbers of different flavors of neutrinos have also been calculated. Supported by National Natural Science Foundation of China (11205185, 11175020)

  15. Future experiments with neutrino superbeams, beta-beams, and neutrino factories

    SciTech Connect

    Deborah A Harris

    2003-10-27

    This report describes the goals of the next generations of accelerator-based neutrino experiments, and the various strategies that are being considered to achieve those goals. Because these next steps in the field are significantly different from the current or previous steps, novel techniques must be considered for both the detectors and the neutrino beams themselves. We consider not only conventional neutrino beams created by decays of pions, but also those which could be made by decays of beams of relativistic isotopes (so-called ''beta-beams'') and also by decays of beams of muons (neutrino factories).

  16. Investigation of Beam Loading Effects for the Neutrino Factory Muon Accelerator

    SciTech Connect

    J. Pozimski,M. Aslaninejad,C. Bontoiu,S. Berg,Alex Bogacz

    2010-05-01

    The International design study (IDS) study showed that a Neutrino Factory [1] seems to be the most promising candidate for the next phase of high precision neutrino oscillation experiments. One part of the increased precision is due to the fact that in a Neutrino Factory the decay of muons produces a neutrino beam with narrow energy distribution and divergence. The effect of beam loading on the energy distribution of the muon beam in the Neutrino Factory decay rings has been investigated numerically. The simulations have been performed using the baseline accelerator design including cavities for different number of bunch trains and bunch train timing. A detailed analysis of the beam energy distribution expected is given together with a discussion of the energy spread produced by the gutter acceleration in the FFAG and the implications for the neutrino oscillation experiments will be presented.

  17. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  18. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  19. Review of direct neutrino mass experiments

    SciTech Connect

    Dragoun, O.

    2015-10-28

    Advantages and drawbacks of the kinematic methods of the neutrino mass determination are discussed. The meaning of the effective neutrino mass, resulting from measurements of the endpoint region of β-spectra is clarified. Current experimental constraints on the mass of active as well as sterile neutrinos are presented. Several new experiments are briefly outlined.

  20. Accelerator/Experiment Operations - FY 2010

    SciTech Connect

    Adamson, M.; Appel, J.A.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Escobar, C.; Ginther, G.; Gruenendahl, S.; Harris, D.; Henderson, S.; /Fermilab

    2010-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2010. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2010 Run II at the Tevatron Collider, the MINOS and MINER?A experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  1. Accelerator/Experiment Operations - FY 2011

    SciTech Connect

    Adamson, P.; Bernardi, G.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Ginther, G.; Gruenendahl, S.; Hahn, S.; Harris, D.; Henderson, S.

    2011-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2011. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2011 Run II at the Tevatron Collider, the MINOS and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  2. Results from T2K and accelerator oscillation experiments

    NASA Astrophysics Data System (ADS)

    Bronner, C.

    2012-08-01

    Various experiments use secondary neutrino beams produced by accelerators to study neutrino oscillations. In this article, we will review oscillation results from a number of those experiments (MINOS, OPERA), and focus more on results from T2K. This long baseline off-axis experiment uses a beam of muon neutrinos produced in J-PARC in Japan to study muon neutrino disappearance in order to measure atmospheric parameters, as well as studying electron neutrino appearance to measure the 13 mixing angle. We will present in particular very recent results of those measurements obtained by MINOS and T2K.

  3. NEUTRINO FACTORY AND BETA BEAM EXPERIMENTS AND DEVELOPMENT.

    SciTech Connect

    ALBRIGHT, C.; BERG, J.S.; FERNOW, R.; GALLARDO, J.; KAHN, S.; KIRK, H.; ET AL.

    2004-09-21

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here. There has been no corresponding activity in the U.S. on Beta Beam facility design and, given the very limited resources, there is little prospect of starting a significant U.S. Beta Beam R&D effort in the near future. However, the Beta Beam concept is interesting, and progress on its development in Europe should be followed. The Neutrino Factory R&D program has reached a critical stage in which support is required for two crucial international experiments and a third-generation international design study. If this support is forthcoming, a Neutrino Factory could be added to the Neutrino Community's road map in about a decade.

  4. Future Reactor Neutrino Experiments (RRNOLD)1

    NASA Astrophysics Data System (ADS)

    Jaffe, David E.

    The prospects for future reactor neutrino experiments that would use tens of kilotons of liquid scintillator with a ∼ 50 km baseline are discussed. These experiments are generically dubbed "RRNOLD" for Radical Reactor Neutrino Oscillation Liquid scintillator Detector experiment. Such experiments are designed to resolve the neutrino mass hierarchy and make sub-percent measurements sin2θ12, Δm232 and Δm122 . RRNOLD would also be sensitive to neutrinos from other sources and have notable sensitivity to proton decay.

  5. Accelerator/Experiment Operations - FY 2007

    SciTech Connect

    Brice, S.; Buchanan, N.; Coleman, R.; Convery, M.; Denisov, D.; Ginther, G.; Habig, A.; Holmes, S.; Kissel, W.; Lee, W.; Nakaya, T.; /Fermilab

    2007-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2007. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2007 Run II at the Tevatron Collider, the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), MINOS using the Main Injector Neutrino Beam (NuMI), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  6. Accelerator/Experiment Operations - FY 2008

    SciTech Connect

    Brice, Stephen J.; Buehler, M.; Casarsa, M.; Coleman, R.; Denisov, D.; Ginther, G.; Grinstein, S.; Habig, A.; Holmes, S.; Hylen, J.; Kissel, W.; /Fermilab

    2008-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2008. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2008 Run II at the Tevatron Collider, MINOS using the Main Injector Neutrino Beam (NuMI), the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  7. Accelerator/Experiment Operations - FY 2009

    SciTech Connect

    Andrews, M.N; Appel, J.A.; Brice, S.; Casarsa, M.; Coleman, R.; Denisov, d.; Ginther, G.; Gruenendahl, S.; Holmes, S.; Kissel, W.; Lee, W.M.; /Fermilab

    2009-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2009. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2009 Run II at the Tevatron Collider, MINOS using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  8. Accelerator/Experiment operations - FY 2004

    SciTech Connect

    Bromberg, C.; Conrad, J.; Denisov, D.; Holmes, S.; Louis, W.; Meyer, A.; Moore, Craig D.; Raja, R.; Ramberg, E.; Roser, R.; /Fermilab

    2004-12-01

    This Technical Memorandum (TM) summarizes the accelerator and experiment operations for FY 2004. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2004 Run II at the Tevatron Collider, the MiniBooNE neutrino experiment, and SY 120 activities.

  9. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  10. Review of Current and Future Neutrino Cross-Section Experiments

    SciTech Connect

    Schmitz, D.; /Fermilab

    2009-07-01

    There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision.

  11. Review of Current and Future Neutrino Cross-Section Experiments

    SciTech Connect

    Schmitz, D.

    2010-03-30

    There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision.

  12. Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment

    NASA Astrophysics Data System (ADS)

    Formaggio, J. A.; Barrett, J.

    2011-11-01

    The KArlsruhe TRItium Neutrino experiment (KATRIN) combines an ultra-luminous molecular tritium source with an integrating high-resolution spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the electron neutrino mass is 200 meV at 90% C.L. With such unprecedented resolution, the experiment is also sensitive to physics beyond the Standard Model, particularly to the existence of additional sterile neutrinos at the eV mass scale. A recent analysis of available reactor data appears to favor the existence of such a sterile neutrino with a mass splitting of | Δmsterile | 2 ⩾ 1.5eV2 and mixing strength of sin2 2θsterile = 0.17 ± 0.08 at 95% C.L. Upcoming tritium beta decay experiments should be able to rule out or confirm the presence of the new phenomenon for a substantial fraction of the allowed parameter space.

  13. Accelerator/Experiment Operations - FY 2015

    SciTech Connect

    Czarapata, P.

    2015-10-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2015 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  14. The SOX experiment in the neutrino physics

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  15. Solar neutrinos: Real-time experiments

    NASA Astrophysics Data System (ADS)

    Totsuka, Yoji

    1993-04-01

    This report outlines the principle of real-time solar neutrino detection experiments by detecting electrons with suitable target material, via Charged-Current (CC) reaction using conventional counting techniques developed in high-energy physics. Only B-8 neutrinos can be detected by minimum detectable energy of several MeV. The MSW (Mikheyev, Smirnov, Wolfenstein) effect not only distorts the energy spectrum but also induces new type of neutrinos, i.e. mu-neutrinos or tau-neutrinos. These neutrinos do not participate in the CC reaction. Therefore real-time experiment is to be sensitive to Neutral Current (NC) reactions. It is a challenge to eliminate environment background as much as possible and to lower the minimum detectable energy to several 100 keV, which will enable observation of Be-7 neutrinos. Target particles of real-time experiments currently running and under construction or planning are electron, deuteron, or argon. The relevant reactions corresponding to CC reaction and some relevant comments on the following targets are described: (1) electron target; (2) deuteron target; and (3) argon target. On-going experiment and future experiments for real-time neutron detection are also outlined.

  16. Accelerator systems and instrumentation for the NuMI neutrino beam

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert Miles

    The Neutrinos at the Main Injector (NuMI) neutrino beam facility began operating at the Fermi National Accelerator Laboratory in 2005. NuMI produces an intense, muon-neutrino beam to a number of experiments. Fore most of these experiments is MINOS---the Main Injector Neutrino Oscillation Search---that uses two neutrino detectors in the beam, one at Fermilab and one in northern Minnesota, to investigate the phenomenon of neutrino oscillations. NuMI is a conventional, horn-focused neutrino beam. It is designed to accept a 400 kW, 120 GeV proton beam from the Fermilab Main Injector accelerator. The proton beam is steered onto a target, producing a secondary beam of mesons which are focused into a long evacuated volume where they decay to muons and neutrinos. Pulsed toroidal magnets (horns) focus an adjustable meson momentum range. Design of the beamline and its components is challenged by the 400 kW average proton beam power. To achieve such high proton power, the Fermilab Main Injector (MI) must store and accelerate ˜ 4x1013 protons per acceleration cycle. This requires the MI to be loaded with 6 or more batches of protons from the 8 GeV Booster accelerator. Such multiple-batch injection involves a synchronization of the two machines not previously required by the Fermilab accelerators. In this dissertation, we investigate timing errors that can arise between the two accelerators, and a feedback system which enables multiple Booster transfers into the Main Injector without significant loss of beam. Using this method of synchronous transfer, the Main Injector has delivered as many as 3x1013 protons per pulse to the NuMI beam. The instrumentation to assess the quality of the neutrino beam includes arrays of radiation-tolerant ionization chambers downstream of the decay volume. These arrays detect the remnant hadrons and tertiary muons produced with the neutrinos. This thesis discusses measurements using the arrays, including diagnostics of potential beam errors and

  17. Report on solar neutrino experiments

    SciTech Connect

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1984-01-01

    A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

  18. Nuclear Propelled Vessels and Neutrino Oscillation Experiments

    NASA Astrophysics Data System (ADS)

    Detwiler, J.; Gratta, G.; Tolich, N.; Uchida, Y.

    2002-10-01

    We study the effect of naval nuclear reactors on the study of neutrino oscillations. We find that the presence of naval reactors at unknown locations and times may limit the accuracy of future very long baseline reactor-based neutrino oscillation experiments. At the same time, we argue that a nuclear powered surface ship such as a large Russian icebreaker may provide an ideal source for precision experiments.

  19. R&D Topics for Neutrino Factory Acceleration

    NASA Astrophysics Data System (ADS)

    Berg, J. Scott

    2008-02-01

    The muons in a neutrino factory must be accelerated from the energy of the capture, phase rotation, and cooling systems (around 120 MeV kinetic energy) to the energy of the storage ring (around 25 GeV). This is done with a sequence of accelerators of different types: a linac, one or more recirculating linear accelerators, and finally one or more fixed field alternating gradient accelerators (FFAGs). I discuss the R&D that is needed to arrive at a complete system which we can have confidence will accelerate the beam and for which we can obtain a cost estimate.

  20. Probing heavy neutrinos in the COMET experiment

    NASA Astrophysics Data System (ADS)

    Asaka, Takehiko; Watanabe, Atsushi

    2016-03-01

    We argue that the COMET experiment-a dedicated experiment for the μ -e conversion search-has a good potential to search for heavy neutrinos in the mass range 1 MeV ≲ M ≲ 100 MeV. The stopped muons captured by the target nuclei or decaying in orbit efficiently produce heavy neutrinos via the active-sterile mixing. The produced heavy neutrinos then decay to electron-positron pairs (plus an active neutrino), which charged particles hit the cylindrical drift chamber surrounding the target. If the backgrounds from gamma rays are sufficiently rejected by some method, the expected sensitivity becomes comparable to the PS191 bound when the COMET experiment achieves {˜ }10^{17} stopping muons in the target.

  1. Optimal Staging of Acceleration and Cooling in a Neutrino Factory

    NASA Astrophysics Data System (ADS)

    Johnstone, C.; Berz, M.; Makino, K.

    2005-12-01

    Schemes to produce intense sources of high-energy muons, Neutrino Factories, beta beams, and colliders, require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large initial emittances must be reduced or cooled both in size and in energy spread before the muons can be efficiently accelerated to multi-GeV energies. The acceleration stage becomes critical in formulating and optimizing muon beams; individual stages are strongly interlinked and not independent as is the case in most conventional acceleration systems. Most importantly, the degree of cooling, or cooling channel, depends on the choice of acceleration. This work discusses two basic, but different approaches to a Neutrino Factory and how the optimal strategy depends on beam parameters and method of acceleration.

  2. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Yang, Tingjun

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  3. The CAPTAIN liquid argon neutrino experiment

    DOE PAGESBeta

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  4. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  5. Electron Neutrino Appearance in the MINOS Experiment

    SciTech Connect

    Holin, Anna Maria

    2010-02-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment which sends a high intensity muon neutrino beam through two functionally identical detectors, a Near detector at the Fermi National Accelerator Laboratory in Illinois, 1km from the beam source, and a Far detector, 734km away, in the Soudan Mine in Minnesota. MINOS may be able to measure the neutrino mixing angle parameter sin213 for the rst time. Detector granularity, however, makes it very hard to distinguish any e appearance signal events characteristic of a non-zero value of θ 13 from background neutral current (NC) and short-track vμ charged current (CC) events. Also, uncertainties in the hadronic shower modeling in the kinematic region characteristic of this analysis are relatively large. A new data-driven background decomposition method designed to address those issues is developed and its results presented. By removing the long muon tracks from vμ-CC events, the Muon Removed Charge Current (MRCC) method creates independent pseudo-NC samples that can be used to correct the MINOS Monte Carlo to agree with the high-statistics Near detector data and to decompose the latter into components so as to predict the expected Far detector background. The MRCC method also provides an important cross-check in the Far detector to test the background in the signal selected region. MINOS finds a 1.0-1.5 σ ve-CC excess above background in the Far detector data, depending on method used, for a total exposure of 3.14 x 1020 protons-on-target. Interpreting this excess as signal, MINOS can set limits on sin213. Using the MRCC method, MINOS sets a limit of sin2 2 θ 13 < 0.265 at the 90% confidence limit for a CP-violating phase δ = 0.

  6. Long baseline neutrino oscillation experiment at the AGS

    NASA Astrophysics Data System (ADS)

    Beavis, D.; Carroll, A.; Chiang, I.

    1995-04-01

    The authors present a design for a multidetector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the nu(sub mu) disappearance channel and the nu(sub mu) reversible reaction nu(sub e) appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68 km from the AGS neutrino source. Observed depletion of the nu(sub mu) flux (via quasi-elastic muon neutrino events, nu(sub mu)n yields mu(-)p) in the far detectors not attended by an observed proportional increase of the nu(sub e) flux (via quasi-elastic electron neutrino events, nu(sub e)n yields e(-)p) in those detectors will be prima facie evidence for the oscillation channel nu(sub mu) reversible reaction nu(sub tau). The experiment is directed toward exploration of the region of the neutrino oscillation parameters Delta m(exp 2) and sin(exp 2) 2 theta, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy (approximately 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.

  7. Discovering New Light States at Neutrino Experiments

    SciTech Connect

    Essig, Rouven; Harnik, Roni; Kaplan, Jared; Toro, Natalia; /Stanford U., Phys. Dept.

    2011-08-11

    Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovae constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.

  8. Radiochemical Solar Neutrino Experiments - Successful and Otherwise.

    SciTech Connect

    Hahn,R.L.

    2008-05-25

    Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ({sup 37}Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ({sup 71}Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous International Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled.

  9. The Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhe

    2010-02-01

    The 3x3 PMNS leptonic mixing matrix relates the mass and flavor eigenstates of the 3 known neutrinos. The θ13 mixing angle is the last unknown mixing angle in the PMNS matrix, the parameters of which must be determined experimentally. The Daya Bay experiment will search for the ``disappearance'' of reactor anti-neutrinos from the Daya Bay and Ling Ao Nuclear Power Plants located in Daya Bay, Guangdong, China using multiple identical detectors at different baselines. The disappearance probability of reactor anti-neutrinos at short baselines of 1-2km is directly proportional to 2̂(2 θ13). The goal of the Daya Bay experiment is to reach a sensitivity of 2̂(2 θ13) = 0.01 at the 90 % C.L. The status and prospects of the experiment will be presented. )

  10. Neutrino-driven wakefield plasma accelerator

    NASA Astrophysics Data System (ADS)

    Rios, L. A.; Serbeto, A.

    2003-08-01

    Processos envolvendo neutrinos são importantes em uma grande variedade de fenômenos astrofísicos, como as explosões de supernovas. Estes objetos, assim como os pulsares e as galáxias starburst, têm sido propostos como aceleradores cósmicos de partículas de altas energias. Neste trabalho, um modelo clássico de fluidos é utilizado para estudar a interação não-linear entre um feixe de neutrinos e um plasma não-colisional relativístico de pósitrons e elétrons na presença de um campo magnético. Durante a interação, uma onda híbrida superior de grande amplitude é excitada. Para parâmetros típicos de supernovas, verificamos que partículas carregadas "capturadas" por essa onda podem ser aceleradas a altas energias. Este resultado pode ser importante no estudo de mecanismos aceleradores de partículas em ambientes astrofísicos.

  11. Status of the RENO Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Joo, K. K.; RENO Collaboration

    2012-08-01

    The Reactor Experiment for Neutrino Oscillation (RENO) is a reactor based neutrino oscillation experiment to measure the neutrino mixing angle θ13 using anti-neutrinos emitted from the Yonggwang nuclear power plant in Korea. Its thermal power output is 16.4 Gwth. The experimental setup consists of two identical 16-ton gadolinium-loaded liquid scintillator detectors. The near and far detectors are placed roughly 290 m and 1.4 km from the center of the reactor array, respectively. The near detector is constructed at underground of a 70 m high hill and the far detector at underground of a 260 m high mountain. The construction of experimental halls and access tunnels for both near and far detector sites was completed in early 2009. The experiment is planned to start data-taking from early 2011. An expected number of observed anti-neutrinos is roughly 1300 per day and 100 per day in the far and near detector, respectively. We expect that an estimated systematic uncertainty is less than 0.5%. With three years of data taken, RENO is sensitive to measure sin2(2θ13)>0.02. Sensitivity is ten times better than the current limit obtained by Chooz. In this review, current status of RENO is presented.

  12. Staging acceleration and cooling in a Neutrino Factory

    NASA Astrophysics Data System (ADS)

    Johnstone, C.; Berz, M.; Makino, K.

    2006-03-01

    All schemes to produce intense sources of high-energy muons—Neutrino factories, beta beams, Colliders—require collection, RF capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large initial emittances must be reduced or "cooled" both in size and in energy spread before the muons can be efficiently accelerated to multi-GeV energies. The acceleration stage becomes critical in formulating and optimizing muon beams; individual stages are strongly interlinked and not independent as is the case in most conventional acceleration systems. Most importantly, the degree of cooling, or cooling channel, depends on the choice of acceleration. In the current US baseline scenario, the cooling required for acceleration is about a factor of 10 in transverse emittance per plane. Longitudinal cooling is also required. In the proposed Japanese scenario, using an alternative acceleration scheme, no cooling is presumed. This work discusses two basic, but different approaches to a Neutrino Factory and how the optimal strategy depends on beam parameters and method of acceleration.

  13. A select overview of neutrino experiments

    SciTech Connect

    Stefanski, Raymond J.

    2004-11-01

    The relationship between the lepton sector and the quark sector is an interesting source of discourse in the current theoretical climate. Models that might someday supersede the Standard Model typically require quark structure, with implications for the lepton sector. This talk will explore some of the consequences of newer models, in the context of certain neutrino experiments.

  14. An overview of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Luk, Kam-Biu

    2016-07-01

    The Daya Bay Reactor Neutrino Experiment discovered an unexpectedly large neutrino oscillation related to the mixing angle θ13 in 2012. This finding paved the way to the next generation of neutrino oscillation experiments. In this article, we review the history, featured design, and scientific results of Daya Bay. Prospects of the experiment are also described.

  15. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    SciTech Connect

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been

  16. Solar neutrino experiments: recent results and future prospects

    NASA Astrophysics Data System (ADS)

    Chen, M. C.

    2011-09-01

    Recent results from the SNO and Borexino solar neutrino experiments have pushed the observation of solar neutrinos to lower energies. Borexino's measurement of the rate of 7Be solar neutrinos demonstrates that the survival probability for solar neutrinos below 1 MeV is larger than for the 8B solar neutrinos, consistent with our expectation for neutrino propagation affected by matter. On the other hand, by looking at lower energy 8B solar neutrinos, SNO (and also Borexino) do not see the predicted rise in the survival probability and there is even a hint that the survival probability drops to a lower value. Future solar neutrino experiments, in particular the SNO+ experiment, will look at this question by making precision measurements of the survival probability of the pep solar neutrinos (1.44 MeV energy).

  17. Results and Status of the T2K and NOvA long-baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Muether, Mathew

    2016-03-01

    The discovery of neutrino oscillations and the resulting implication that neutrinos have mass, recently awarded the Nobel Prize in Physics, has bolstered a world-wide effort to exploit this effect as a handle on the properties of neutrinos. In the decades since the initial discovery of neutrino oscillations, great strides have been made in understanding the nature of these elusive particles, yet important and fundamental questions remain open, such as: How are the neutrino masses ordered? And Do neutrinos and antineutrinos oscillate differently? The current generation of accelerator based long-baseline neutrino oscillation experiments, T2K in Japan and NOvA in the United States, are actively pursuing the answers to these questions. In this talk, I will review the recent results and current status of the T2K and NOvA long-baseline neutrino experiments.

  18. The International Muon Ionization Cooling Experiment: MICE and Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Freemire, Ben

    2010-03-01

    The Muon Ionization Cooling Experiment (MICE) is an accelerator and particle physics experiment aimed at demonstrating the technique of ionization cooling on a beam of muons. Ionization cooling is the process by which muons are sent through an absorbing material, thereby losing energy and decreasing their normalized emittance. The muons are then reaccelerated in the appropriate direction with radio frequency (RF) cavities. This produces an overall reduction in transverse emittance of the muon beam. Ionization cooling could be a key technique in the design of a high intensity Neutrino Factory.

  19. Report on the Brookhaven Solar Neutrino Experiment

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C. Jr.

    1976-09-22

    This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.

  20. The acceleration and storage of radioactive ions for a neutrino factory

    SciTech Connect

    B. Autin et al.

    2003-12-23

    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for {sup 6}He and 60 for {sup 18}Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.

  1. The Science and Strategy for Phasing of the Long-Baseline Neutrino Experiment

    SciTech Connect

    Diwan, Milind V.

    2012-05-22

    This note is about the principles behind a phased plan for realizing a Long-Baseline Neutrino Experiment(LBNE) in the U.S.. The most important issue that must be resolved is the direction of the first phase of the experiment. Based on both scientific and programmatic considerations, the U.S. should pursue the best option for accelerator neutrino physics, which is the longer baseline towards Homestake with an optimizedbroadband intense beam.

  2. The Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Bishai, Mary

    2007-04-01

    The 3x3 PMNS leptonic mixing matrix relates the mass and flavor eigenstates of the 3 known neutrinos. The θ13 mixing angle is the last unknown mixing angle in the PMNS matrix, the parameters of which must be determined experimentally. The goal of the Daya Bay experiment is to measure θ13 with a sensitivity in 2circ(2θ13) of 0.01. The Daya Bay experiment will search for the `disappearance' of reactor electron anti-neutrinos from the Daya Bay and Ling Ao Nuclear Power Plants located in Daya Bay, Guangdong, China using multiple identical detectors at different baselines. The status and prospects of the experiment will be presented.

  3. SIMULATION OF A WIDE-BAND LOW-ENERGY NEUTRINO BEAM FOR VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS.

    SciTech Connect

    BISHAI, M.; HEIM, J.; LEWIS, C.; MARINO, A.D.; VIREN, B.; YUMICEVA, F.

    2006-08-01

    We present simulations of a wide-band low-energy neutrino beam for a future very long baseline neutrino oscillation (VLBNO) program using the proton beam from the Main Injector (MI) proton accelerator at Fermi National Accelerator Laboratory (Fermilab). The target and horn designs previously developed for Brookhaven Laboratory's Alternating Gradient Synchrotron (AGS) VLBNO program are used without modifications. The neutrino flux distributions for various MI proton beam energies and new high-intensity neutrino beam-line designs possible at Fermilab are presented. The beam-line siting and design parameters are chosen to match the requirements of an on-axis beam from Fermilab to one of the two possible sites for the future Deep Underground Science and Engineering Laboratory (DUSEL). A preliminary estimate of the observable event rates and spectra at a detector located in DUSEL for different beam configurations has been performed. Our preliminary conclusions are that a 40-60 GeV 0.5 to 1 MW beam from the Fermilab Main Injector to a DUSEL site has the potential to reach the desired intensity for the next generation of neutrino oscillation experiments. Recent studies indicate that the Fermilab MI can reach a beam power of 0.5 MW at 60 GeV with incremental upgrades to the existing accelerator complex.

  4. Light sterile neutrinos, lepton number violating interactions and short baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; McKay, D. W.; Mocioiu, Irina; Pakvasa, Sandip

    2016-06-01

    We develop the consequences of introducing a purely leptonic, non-standard interaction (NSI) ΔL = 2, four-fermion effective Lagrangian and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) results from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford medium Energy Neutrino Experiment (KARMEN), seeking a reconciliation between the two. Both v¯e appearance from v¯μ oscillation and v¯e survival after production from NSI decay of the µ+ contribute to the expected signal. This is a unique feature of our scheme. We comment on further implications of the lepton number violating interaction and sterile neutrino-standard neutrino mixing.

  5. Search for Muon Neutrino Disappearance in a Short-Baseline Accelerator Neutrino Beam

    SciTech Connect

    Nakajima, Y.; /Kyoto U.

    2010-04-25

    We report a search for muon neutrino disappearance in the {Delta}m{sup 2} region of 0.5--40 eV{sup 2} using data from both Sci-BooNE and MiniBooNE experiments. SciBooNE data provides a constraint on the neutrino flux, so that the sensitivity to {nu}{sub {mu}} disappearance with both detectors is better than with just MiniBooNE alone. The preliminary sensitivity for a joint {nu}{sub {mu}} disappearance search is presented.

  6. Status of the KATRIN Neutrino Mass Experiment

    NASA Astrophysics Data System (ADS)

    Parno, Diana; Katrin Collaboration

    2015-04-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN), presently under construction in Germany, will probe the absolute mass scale of the neutrino through the kinematics of tritium beta decay, a nearly model-independent approach. To achieve the projected sensitivity of 0.2 eV at the 90% confidence level, KATRIN will use a windowless, gaseous tritium source and a large magnetic adiabatic collimation-electrostatic filter. The collaboration has now completed a second commissioning phase of the spectrometer and detector section, and construction of the tritium sections is proceeding well. We will report on the current status of the experiment and the outlook for data-taking with tritium. US participation in KATRIN is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  7. Status of the neutrino mass experiment KATRIN

    SciTech Connect

    Bornschein, L.; Bornschein, B.; Sturm, M.; Roellig, M.; Priester, F.

    2015-03-15

    The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRIN experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.

  8. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Evans, Justin; Whitehead, Lisa; /Brookhaven

    2010-01-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 x 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented.

  9. Status and commissioning of the Karlsruhe tritium neutrino experiment KATRIN

    NASA Astrophysics Data System (ADS)

    Thuemmler, Thomas; Katrin Collaboration

    2013-10-01

    Neutrino properties, and especially the determination of the neutrino rest mass, play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double β decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. Experiments based on single β decay investigate electrons close to their kinematic endpoint in order to determine the neutrino mass by a modelindependent method. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β spectroscopy close to the tritium endpoint with unprecedented precision and will reach a sensitivity of 200 meV/c2 (90% C.L.) on the neutrino mass.

  10. Dissipative effect in long baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Oliveira, Roberto L. N.

    2016-07-01

    The propagation of neutrinos in long baselines experiments may be influenced by dissipation effects. Using the Lindblad master equation we evolve neutrinos taking into account these dissipative effects. The MSW and the dissipative effects may change the behavior of the probabilities. In this work, we show and explain how the behavior of the probabilities can change due to the decoherence and relaxation effects acting individually with the MSW effect. A new exotic peak appears in this case and we show the difference between the decoherence and relaxation effects in the appearance of this peak. We also adapt the usual approximate expression for survival and appearance probabilities with all possible decoherence effects. We suppose the baseline of DUNE and show how each of the decoherence parameters changes the probabilities analyzing the possible modification using a numeric and an analytic approach.

  11. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  12. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  13. Accelerator R&D toward Muon Collider and Neutrino Factory

    SciTech Connect

    Shiltsev, Vladimir; /Fermilab

    2009-10-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. Such a collider can offer superb energy resolution, smaller size, and potentially cost and power consumption compared to multi-TeV e{sup +}e{sup -} linear colliders. This article briefly reviews the motivation, design and status of accelerator R&D for Muon Collider and Neutrino Factory.

  14. Accelerator R&D toward Muon Collider and Neutrino Factory

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.

    2010-12-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. Such a collider can offer superb energy resolution, smaller size, and potentially cost and power consumption compared to multi-TeV e + e - linear colliders. This article briefly reviews the motivation, design and status of accelerator R&D for Muon Collider and Neutrino Factory.

  15. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  16. A search for sterile neutrinos at the MINOS experiment

    SciTech Connect

    Pittam, Robert Neil

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory in Illinois, USA. The experiment was designed to study neutrino oscillation phenomena. The vμ beam produced by the NuMI beam facility at FNAL is used along with two functionally identical detectors. The Near Detector at FNAL and a Far Detector 735 km away in the Soudan Underground Laboratory in northern Minnesota. Comparison of the observed spectra of neutrinos at the two detectors provides the evidence for neutrino oscillations. This thesis presents work on the postulated phenomena of sterile neutrinos. Oscillations between active and sterile neutrinos will lead to a deficit in the expected rate of measured Neutral Current interactions at the Far Detector. A technique for selecting Neutral Current events utilizing an Artificial Neural Network is presented with resulting overall efficiency of 91.1% and purity of 66.0%. A method of predicting the expected Charged and Neutral Current energy spectra at the Far Detector given the data recorded at the Near Detector is presented. A model to search for oscillations between sterile and active neutrinos is developed. Sources of systematic uncertainty that can effect the results of the analysis are discussed. The analysis developed is applied to a Standard Model 3 flavour oscillation model as a cross check under the scenarios with and without ve appearance. The oscillation parameters measured by this model are Δm322 = (2.39-0.15+0.23) x 10-3 eV2 and θ23 = 0.727-0.11+0.22 for the no ve appearance result. An analysis of the resulting prediction reveals no evidence for active neutrino disappearance. The analysis is then performed using the 4 flavour neutrino oscillation model developed. Again this is done under the 2 scenarios of ve appearance and no ve appearance

  17. Solar neutrino experiments and a test for neutrino oscillations with radioactive sources

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1980-01-01

    The results of the Brookhaven solar neutrino experiment are given and compared to the most recent standard solar model calculations. The observations are about a factor of 4 below theoretical expectations. In view of the uncertainties involved in the theoretical models of the sun, the discrepancy is not considered to be evidence for neutrino oscillations. The status of the development of a gallium solar neutrino detector is described. Radiochemical neutrino detectors can be used to search for ..nu../sub e/ oscillations by using megacurie sources of monoenergetic neutrinos like /sup 65/Zn. A quantitative evaluation of possible experiments using the Brookhaven chlorine solar neutrino detector and a gallium detector is given. 6 figures, 3 tables.

  18. Implications of results of neutrino mass experiments

    SciTech Connect

    McKellar, B.H.; Garbutt, M.

    2000-10-01

    The long standing negative (mass){sup 2} anomaly encountered in attempts to measure the mass of the electron neutrino may be an indication of physics beyond the standard model. It is demonstrated that an additional charged current interaction which is not of V--A form, and which is at least an order of magnitude weaker than the standard model charged current interaction, will produce a spectrum, which, if fitted by the standard model, may give a negative value for m{sub {nu}}{sup 2}. A possible physical explanation of the time dependent effects seen by the Troitsk experiment is also provided.

  19. The MINERvA Neutrino Scattering Experiment at Fermilab

    SciTech Connect

    Schmitz, David W.

    2011-11-23

    The MINER{nu}A experiment at Fermilab is aimed at precision measurements of neutrino interactions in nuclei for energies up to a few GeV. MINER{nu}A makes use of a fine-grained, fully active detector design and a range of nuclear target materials. The experiment began taking data in the NuMI neutrino beam at Fermilab in late 2009 and will collect data in both the neutrino and antineutrino configurations of the beamline.

  20. Cosmic muon background and reactor neutrino detectors: the Angra experiment

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2008-06-01

    We discuss on the importance of appropriately taking into account the cosmic background in the design of reactor neutrino detectors. In particular, as a practical study case, we describe the Angra Project, a new reactor neutrino oscillation experiment proposed to be built in the coming years at the Brazilian nuclear power complex, located near the Angra dos Reis city. The main goal of the experiment is to measure with high precision θ13, the last unknown of the three neutrino mixing angles. The experiment will in addition explore the possibility of using neutrino detectors for purposes of safeguards and non-proliferation of nuclear weapons.

  1. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm2 about equals 1-eV2 region

    SciTech Connect

    Schmitz, David W.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm2 ~ 1 eV2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  2. Detector Development for the MARE Neutrino Experiment

    SciTech Connect

    Galeazzi, M.; Bogorin, D.; Molina, R.; Saab, T.; Ribeiro Gomes, M.

    2009-12-16

    The MARE experiment is designed to measure the mass of the neutrino with sub-eV sensitivity by measuring the beta decay of {sup 187}Re with cryogenic microcalorimeters. A preliminary analysis shows that, to achieve the necessary statistics, between 10,000 and 50,000 detectors are likely necessary. We have fabricated and characterized Iridium transition edge sensors with high reproducibility and uniformity for such a large scale experiment. We have also started a full scale simulation of the experimental setup for MARE, including thermalization in the absorber, detector response, and optimum filter analysis, to understand the issues related to reaching a sub-eV sensitivity and to optimize the design of the MARE experiment. We present our characterization of the Ir devices, including reproducibility, uniformity, and sensitivity, and we discuss the implementation and capabilities of our full scale simulation.

  3. MINER{nu}A, a Neutrino--Nucleus Interaction Experiment

    SciTech Connect

    Solano Salinas, C. J.; Chamorro, A.; Romero, C.

    2007-10-26

    With the fantastic results of KamLAND and SNO for neutrino physics, a new generation of neutrino experiments are being designed and build, specially to study the neutrino oscillations to resolve most of the incognita still we have in the neutrino physics. At FERMILAB we have the experiments MINOS and, in a near future, NO{nu}A, to study this kind of oscillations. One big problem these experiments will have is the lack of a good knowledge of the Physics of neutrino interactions with matter, and this will generate big systematic errors. MINER{nu}A, also at FERMILAB, will cover this space studying with high statistics and great precision the neutrino--nucleus interactions.

  4. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    SciTech Connect

    Blennow, Mattias

    2008-06-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.

  5. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  6. International Scoping Study of a Future Accelerator NeutrinoComplex

    SciTech Connect

    Zisman, Michael S.

    2006-06-21

    The International Scoping Study (ISS), launched at NuFact05 to evaluate the physics case for a future neutrino facility, along with options for the accelerator complex and detectors, is laying the foundations for a subsequent conceptual-design study. It is hosted by Rutherford Appleton Laboratory (RAL) and organized by the international community, with participants from Europe, Japan, and the U.S. Here we cover the work of the Accelerator Working Group. For the 4-MW proton driver, linacs, synchrotrons, and Fixed-Field Alternating Gradient (FFAG) rings are considered. For targets, issues of both liquid-metal and solid materials are examined. For beam conditioning, (phase rotation, bunching, and ionization cooling), we evaluate schemes both with and without cooling, the latter based on scaling-FFAG rings. For acceleration, we examine scaling FFAGs and hybrid systems comprising linacs, dogbone RLAs, and non-scaling FFAGs. For the decay ring, we consider racetrack and triangular shapes, the latter capable of simultaneously illuminating two different detectors at different long baselines. Comparisons are made between various technical approaches to identify optimum design choices.

  7. New results of the Borexino experiment: pp solar neutrino detection

    NASA Astrophysics Data System (ADS)

    Davini, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D'Angelo, D.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Ghiano, C.; Goretti, A.; Gromov, M.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Misiaszek, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2016-07-01

    The Borexino experiment is an ultra-pure liquid scintillator detector, running at Laboratori Nazionali del Gran Sasso (Italy). Borexino has completed the real time spectroscopy of the solar neutrinos generated in the proton-proton chain in the core of the Sun. This article reviews the Borexino experiment and the first direct measurment of pp solar neutrinos.

  8. Daya Bay Neutrino Experiment: Goal, Progress and Schedule

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Daya Bay Neutrino Experiment Collaboration

    2011-04-01

    The discovery of neutrino oscillation, as a breakthrough in particle physics, prompted the Daya Bay Neutrino Experiment, which is designed to make a precise measurement of the last unknown neutrino mixing angle theta13, with a sensitivity of 0.01 for sin2(2 * θ13), using reactor anti-neutrinos from the 17.4GW Daya Bay Nuclear Power Plant located in Shenzhen, China. This talk will introduce the goal of this experiment including an overall introduction of the selection of the site and baseline, the detector optimization, the current construction progress and the schedule for expected data taking.

  9. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  10. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect

    Adams, C.; et al.,

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  11. Electron Neutrino Appearance in the MINOS Experiment

    SciTech Connect

    Orchanian, Mhair-armen Hagop

    2012-01-01

    This thesis describes a search for ve appearance in the two-detector long-baseline MINOS neutrino experiment at Fermilab, based on a data set representing an exposure of 8.2×1020 protons on the NuMI target. The analysis detailed herein represents an increase in sensitivity to the θ13 mixing angle of approximately 25% over previous analyses, due to improvements in the event discriminant and fitting technique. Based on our observation, we constrain the value of θ13 further, finding 2 sin2θ 23 sin2θ 13< 0.12(0.20) at the 90% confidence level for δCP = 0 and the normal (inverted) neutrino mass hierarchy. The best-fit value is 2 sin2θ 23 sin2θ 13 = 0.041+0.047 -0.031(0.079+0.071 -0.053) under the same assumptions. We exclude the θ 13 = 0 hypothesis at the 89% confidence level.

  12. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect

    Coleman, Stephen James

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  13. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    SciTech Connect

    Niner, Evan David

    2015-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin213, δ , and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 X 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  14. Use of microprocessors in a neutrino experiment

    SciTech Connect

    Connolly, P.L.; Cutts, D.

    1981-01-01

    Microprocessors are a fundamental part of the neutrino detector for Experiment 734, a study of ..nu..e elastic scattering at Brookhaven National Laboratory. Four DEC LSI-11s are interfaced each to 1/4 of the detector apparatus via programmable scan controllers and to the central DEC 11-34 via separate DMA links. These microprocessors act in parallel to collect and reformat data from ..nu.. events; further, they can act independently, orchestrating an elaborate variety of calibrations asynchronously in different regions of the apparatus. Our micros have proved to be very valuable for a number of reasons. It is much easier to manage a large detector in separate pieces. Each LSI-11 can run in stand-alone mode, allowing independent installation or checkout of different parts of the detector. When operational the apparatus must be continuously calibrated; with a very large number of separate detector elements, distributed intelligence is most useful.

  15. Light sterile neutrino sensitivity of 163Ho experiments

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Giunti, C.; Zavanin, E. M.

    2016-06-01

    We explore the sensitivity of 163Ho electron capture experiments to neutrino masses in the standard framework of three-neutrino mixing and in the framework of 3+1 neutrino mixing with a sterile neutrino which mixes with the three standard active neutrinos, as indicated by the anomalies found in short-baseline neutrino oscillations experiments. We calculate the sensitivity to neutrino masses and mixing for different values of the energy resolution of the detectors, of the unresolved pileup fraction and of the total statistics of events, considering the expected values of these parameters in the two planned stages of the ECHo project (ECHo-1k and ECHo-1M). We show that an extension of the ECHo-1M experiment with the possibility to collect 1016 events will be competitive with the KATRIN experiment. This statistics will allow to explore part of the 3+1 mixing parameter space indicated by the global analysis of short-baseline neutrino oscillation experiments. In order to cover all the allowed region, a statistics of about 1017 events will be needed.

  16. Physics from solar neutrinos in dark matter direct detection experiments

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Bœhm, Céline

    2016-05-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle sin2 θ W to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos, and use these estimates to quantify errors on future measurements of the neutrino fluxes, weak mixing angle and solar observables, as well as to constrain new physics in the neutrino sector. Our analysis shows that the combined rates of solar neutrino events in second generation experiments (SuperCDMS and LZ) can yield a measurement of the pp flux to 2.5% accuracy via electron recoil, and slightly improve the 8B flux determination. Assuming a low-mass argon phase, projected tonne-scale experiments like DARWIN can reduce the uncertainty on both the pp and boron-8 neutrino fluxes to below 1%. Finally, we use current results from LUX, SuperCDMS and CDMSlite to set bounds on new interactions between neutrinos and electrons or nuclei, and show that future direct detection experiments can be used to set complementary constraints on the parameter space associated with light mediators.

  17. The Acceleration Scale, Modified Newtonian Dynamics and Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Diaferio, Antonaldo; Angus, Garry W.

    General relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the universe is dark, namely, it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^{-10} m s^{-2}. In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining MOND with hot dark matter made of sterile neutrinos seems to be able to describe most of the astrophysical phenomenology, from the power spectrum of the cosmic microwave background anisotropies to the dynamics of dwarf galaxies. Whether there exists a yet unknown covariant theory that contains general relativity and Newtonian gravity in the weak field limit and MOND as the ultra-weak field limit is still an open question.

  18. Status of the Borexino Solar Neutrino Experiment, 2006

    SciTech Connect

    McCarty, Kevin B.

    2006-11-17

    The Borexino experiment is designed to measure the flux of 7Be solar neutrinos. The experiment, having a 100-ton fiducial volume of organic liquid scintillator, should detect roughly 35 neutrinos per day in the energy range 250 - 1300 keV, a range lower than that of any previous real-time neutrino detector. Though the 862-keV 7Be neutrinos make up roughly 10% of the total solar neutrino flux, they have not previously been directly observed. Their energy is at a delicate point for confirmation of the vacuum-to-matter oscillation transition. In these proceedings, I will present the status of the Borexino experiment as of August 2006, as we prepare for final filling of the detector.

  19. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

    SciTech Connect

    Huang, Junting

    2015-05-01

    This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states ve, vμ and vτ. In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ24 in the range of 10-2 eV2 < Δm412 < 1 eV2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

  20. NOvA: Building a Next Generation Neutrino Experiment

    SciTech Connect

    Perko, John; Williams, Ron; Miller, Bill

    2013-12-05

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  1. NOvA: Building a Next Generation Neutrino Experiment

    ScienceCinema

    Perko, John; Williams, Ron; Miller, Bill;

    2014-05-30

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  2. Neutrino Oscillations with the MINOS, MINOS+, T2K, and NOvA Experiments

    SciTech Connect

    Nakaya, Tsuyoshi; Plunkett, Robert K.

    2015-07-29

    Our paper discusses results and near-term prospects of the long-baseline neutrino experiments MINOS, MONOS+, T2K and NOvA. The non-zero value of the third neutrino mixing angle θ13 allows experimental analysis in a manner which explicitly exhibits appearance and disappearance dependencies on additional parameters associated with mass-hierarchy, CP violation, and any non-maximal θ23. Our current and near-future experiments begin the era of precision accelerator long-baseline measurements and lay the framework within which future experimental results will be interpreted.

  3. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  4. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  5. Neutrino factory

    DOE PAGESBeta

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  6. Status and Plans for the Accelerator Working Group of the International Design Study of the Neutrino Factory

    SciTech Connect

    Berg, J. Scott

    2010-03-30

    The purpose of the International Design Study of the Neutrino Factory (IDS-NF) is to produce a design report for a neutrino factory in 2013. I report the status of the accelerator design and plans for future studies.

  7. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  8. Prospects for a Low Threshold Neutrino Experiment at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane

    2008-10-01

    A low-threshold neutrino scattering experiment at a high-intensity stopped-pion neutrino source has the potential to measure coherent neutral current neutrino-nucleus elastic scattering. Coherent scattering is a vital process for driving stellar explosion mechanisms which are as yet poorly understood in supernova evolution, and may provide a means to detect neutrino bursts from nearby supernova. The coherent scattering interaction rate can be very precisely calculated in the Standard Model, therefore comparison to measurements provides for another means to test the Standard Model and an opportunity to search for non-standard neutrino interactions. A promising prospect for the measurement of this process is a proposed noble-liquid-based experiment, dubbed CLEAR (Coherent Low-Energy A(Nuclear) Recoils), at the Spallation Neutron Source located at ORNL in Tennessee. This talk will describe the CLEAR proposal and its physics reach.

  9. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    SciTech Connect

    Bass, Matthew

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  10. Results from the Borexino Solar Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Calaprice, Frank; Galbiati, Cristiano; Wright, Alex; Ianni, Aldo

    2012-11-01

    Borexino is a low-background liquid scintillation detector currently acquiring solar and terrestrial neutrino data at the Gran Sasso underground laboratory in Italy. Since the start of operations in 2007, Borexino has produced measurements of 7Be, 8B, and pep solar neutrinos, as well as measurements of terrestrial and long-baseline reactor antineutrinos. The measurements were made possible by the development of low-background scintillator spectroscopy that enabled direct detection of sub-MeV solar neutrinos. The general design features of the detector are described together with current results and prospects for future measurements.

  11. Discovering the Majorana neutrino: The next generation of experiments

    SciTech Connect

    Winslow, L. A.

    2015-07-15

    The discovery of a Majorana neutrino would be revolutionary with far-reaching consequences in both particle physics and cosmology. The only feasible experiments to determine the Majorana nature of the neutrino are searches for neutrinoless double-beta decay. The next generation of double-beta decay experiments are being prepared. The general goal is to search for neutrinoless double-beta decay throughout the parameter space corresponding to the inverted hierarchy for neutrino mass. There are a several strong proposals for how to achieve this goal. The status of these efforts is reviewed.

  12. Status of the Daya Bay Reactor Neutrino Oscillation Experiment

    SciTech Connect

    Daya Bay Collaboration; Lin, Cheng-Ju Stephen

    2010-12-15

    The last unknown neutrino mixing angle theta_13 is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector. Daya Bay is a reactor neutrino oscillation experiment designed to achieve a sensitivity on the value of sin^2(2*theta_13) to better than 0.01 at 90percent CL. The experiment consists of multiple identical detectors placed underground at different baselines to minimize systematic errors and suppress cosmogenic backgrounds. With the baseline design, the expected anti-neutrino signal at the far site is about 360 events per day and at each of the near sites is about 1500 events per day. An overview and current status of the experiment will be presented.

  13. Neutrino mass ordering in future neutrinoless double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jue

    2016-06-01

    Motivated by recent intensive experimental efforts on searching for neutrinoless double beta decays, we present a detailed quantitative analysis on the prospect of resolving neutrino mass ordering in the next generation 76Ge-type experiments.

  14. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    NASA Astrophysics Data System (ADS)

    Chan, Yat-Long; Chu, M.-C.; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi

    2016-06-01

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level.

  15. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam.

    PubMed

    Abe, K; Abgrall, N; Ajima, Y; Aihara, H; Albert, J B; Andreopoulos, C; Andrieu, B; Aoki, S; Araoka, O; Argyriades, J; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Badertscher, A; Barbi, M; Barker, G J; Barr, G; Bass, M; Bay, F; Bentham, S; Berardi, V; Berger, B E; Bertram, I; Besnier, M; Beucher, J; Beznosko, D; Bhadra, S; Blaszczyk, F d M M; Blondel, A; Bojechko, C; Bouchez, J; Boyd, S B; Bravar, A; Bronner, C; Brook-Roberge, D G; Buchanan, N; Budd, H; Calvet, D; Cartwright, S L; Carver, A; Castillo, R; Catanesi, M G; Cazes, A; Cervera, A; Chavez, C; Choi, S; Christodoulou, G; Coleman, J; Coleman, W; Collazuol, G; Connolly, K; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davies, G S; Davis, S; Day, M; De Rosa, G; de André, J P A M; de Perio, P; Delbart, A; Densham, C; Di Lodovico, F; Di Luise, S; Dinh Tran, P; Dobson, J; Dore, U; Drapier, O; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Dziomba, M; Emery, S; Ereditato, A; Escudero, L; Esposito, L S; Fechner, M; Ferrero, A; Finch, A J; Frank, E; Fujii, Y; Fukuda, Y; Galymov, V; Gannaway, F C; Gaudin, A; Gendotti, A; George, M A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Goldhaber, M; Gomez-Cadenas, J J; Gonin, M; Grant, N; Grant, A; Gumplinger, P; Guzowski, P; Haesler, A; Haigh, M D; Hamano, K; Hansen, C; Hansen, D; Hara, T; Harrison, P F; Hartfiel, B; Hartz, M; Haruyama, T; Hasegawa, T; Hastings, N C; Hastings, S; Hatzikoutelis, A; Hayashi, K; Hayato, Y; Hearty, C; Helmer, R L; Henderson, R; Higashi, N; Hignight, J; Hirose, E; Holeczek, J; Horikawa, S; Hyndman, A; Ichikawa, A K; Ieki, K; Ieva, M; Iida, M; Ikeda, M; Ilic, J; Imber, J; Ishida, T; Ishihara, C; Ishii, T; Ives, S J; Iwasaki, M; Iyogi, K; Izmaylov, A; Jamieson, B; Johnson, R A; Joo, K K; Jover-Manas, G V; Jung, C K; Kaji, H; Kajita, T; Kakuno, H; Kameda, J; Kaneyuki, K; Karlen, D; Kasami, K; Kato, I; Kearns, E; Khabibullin, M; Khanam, F; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, J; Kim, J Y; Kim, S B; Kimura, N; Kirby, B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Koike, S; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kouzuma, Y; Kowalik, K; Kravtsov, V; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kulkarni, N; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lee, K P; Le, P T; Levy, J M; Licciardi, C; Lim, I T; Lindner, T; Litchfield, R P; Litos, M; Longhin, A; Lopez, G D; Loverre, P F; Ludovici, L; Lux, T; Macaire, M; Mahn, K; Makida, Y; Malek, M; Manly, S; Marchionni, A; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Maryon, T; Marzec, J; Masliah, P; Mathie, E L; Matsumura, C; Matsuoka, K; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; McLachlan, T; Messina, M; Metcalf, W; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A D; Mituka, G; Miura, M; Mizouchi, K; Monfregola, L; Moreau, F; Morgan, B; Moriyama, S; Muir, A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakai, T; Nakajima, K; Nakamoto, T; Nakamura, K; Nakayama, S; Nakaya, T; Naples, D; Navin, M L; Nelson, B; Nicholls, T C; Nishikawa, K; Nishino, H; Nowak, J A; Noy, M; Obayashi, Y; Ogitsu, T; Ohhata, H; Okamura, T; Okumura, K; Okusawa, T; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Ozaki, T; Pac, M Y; Palladino, V; Paolone, V; Paul, P; Payne, D; Pearce, G F; Perkin, J D; Pettinacci, V; Pierre, F; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Qian, W; Raaf, J L; Radicioni, E; Ratoff, P N; Raufer, T M; Ravonel, M; Raymond, M; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roney, J M; Rossi, B; Roth, S; Rubbia, A; Ruterbories, D; Sabouri, S; Sacco, R; Sakashita, K; Sánchez, F; Sarrat, A; Sasaki, K; Scholberg, K; Schwehr, J; Scott, M; Scully, D I; Seiya, Y; Sekiguchi, T; Sekiya, H; Shibata, M; Shimizu, Y; Shiozawa, M; Short, S; Siyad, M; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Stahl, A; Stamoulis, P; Steinmann, J; Still, B; Stone, J; Strabel, C; Sulak, L R; Sulej, R; Sutcliffe, P; Suzuki, A; Suzuki, K; Suzuki, S; Suzuki, S Y; Suzuki, Y; Suzuki, Y; Szeglowski, T; Szeptycka, M; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takenaga, Y; Takeuchi, Y; Tanaka, K; Tanaka, H A; Tanaka, M; Tanaka, M M; Tanimoto, N; Tashiro, K; Taylor, I; Terashima, A; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Toki, W; Tomaru, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Walding, J J; Waldron, A V; Walter, C W; Wanderer, P J; Wang, J; Ward, M A; Ward, G P; Wark, D; Wascko, M O; Weber, A; Wendell, R; West, N; Whitehead, L H; Wikström, G; Wilkes, R J; Wilking, M J; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, S; Yamada, Y; Yamamoto, A; Yamamoto, K; Yamanoi, Y; Yamaoka, H; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2011-07-22

    The T2K experiment observes indications of ν(μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3)  eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2θ(13) < 0.28(0.34) for δ(CP) = 0 and a normal (inverted) hierarchy. PMID:21866992

  16. Light dark matter detection prospects at neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kumar, Jason; Learned, John G.; Smith, Stefanie

    2009-12-01

    We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find, in particular, that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus antineutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or antineutrinos (Rμ and Rμ¯) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to neutrinos from secondary and tertiary decays as well, but will suffer from decreased detectability.

  17. Investigation of alternative mechanisms to neutrino oscillations in the MINOS experiment; Investigacao de Mecanismos Alternativos a Oscilacao de Neutrinos no Experimentos MINOS

    SciTech Connect

    de Abreu Barbosa Coelho, Joao

    2012-01-01

    The neutrino oscillation model is very successful in explaining a large variety of experiments. The model is based on the premise that the neutrinos that interact through the weak force via charged current are not mass eigenstates, but a superposition of them. In general, a quantum superposition is subject to loss of coherence, so that pure states tend toward mixed states. This type of evolution is not possible within the context of isolated quantum systems because the evolution is unitary and, therefore, is invariant under time reversal. By breaking unitarity, an arrow of time is introduced and the characteristic effect for neutrinos is a damping of oscillations. In this thesis, some phenomenological decoherence and decay models are investigated, which could be observed by MINOS, a neutrino oscillation experiment that consists of measuring the neutrino flux produced in a particle accelerator 735 km away. We analyse the disappearance of muon neutrinos in MINOS. Information from other experiments is used to constrain the number of parameters, leaving only one extra parameter in each model. We assume a power law energy dependence of the decoherence parameter. The official MINOS software and simulation are used to obtain the experiment's sensitivities to the effects of unitarity breaking considered.

  18. Latest progress from the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Daya Bay Collaboration

    2016-05-01

    Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.

  19. FXR accelerator cavity impedance experiments

    SciTech Connect

    Avalle, C.A.

    1998-01-05

    One of the goals of the present Flash X-Ray (FXR) accelerator upgrade effort [1][2] at Lawrence Livermore National Laboratory (LLNL) is to reduce the cavity transverse impedance, since it has been shown that beam stability is significantly affected by this parameter [3]. Recently, we have evaluated various techniques and cell modifications to accomplish that, both through lab measurements and computer models. A spare cell, identical in every way to cells in the accelerator, was specially modified for the experiments. The impedance measurements were done without the beam, by applying twin-wire techniques. This report describes the results of these experiments and suggests possible cell modifications to improve their performance. The techniques and modifications which are suggested might also be applicable to AHF and DARHT-2 long-pulse accelerator development.

  20. A Sterile-Neutrino Search with the MINOS Experiment

    SciTech Connect

    Rodrigues, Philip

    2010-01-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment in the the NuMI beamline at Fermilab, USA. Using a near detector at 1 km distance from the neutrino production target, and a far detector at 735 km from the target, it is designed primarily to measure the disappearance of muon neutrinos. This thesis presents an analysis using MINOS data of the possibility of oscil- lation of the neutrinos in the NuMI beam to a hypothetical sterile flavour, which would have no Standard Model couplings. Such oscillations would result in a deficit in the neutral current interaction rate in the MINOS far detector relative to the expectation derived from the near detector data. The method used to identify neutral current and charged current events in the MINOS detectors is described and a new method of predicting and fitting the far detector spectrum presented, along with the effects of systematic uncertainties on the sterile neutrino oscillation analysis. Using this analysis, the fraction fs of the disappearing neutrinos that go to steriles is constrained to be below 0.15 at the 90% confidence level in the absence of electron neutrino appearance in the NuMI beam. With electron appearance at the CHOOZ limit, fs < 0.41 at 90% C.L.

  1. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts.

    PubMed

    2012-04-19

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted. PMID:22517161

  2. Neutrino Factory Accelerator R&D: Status and Priorities

    SciTech Connect

    Zisman, Michael S.

    2005-08-23

    This paper summarizes the status of worldwide Neutrino Factory R&D efforts. Activities are categorized as simulations, component development, and system tests. An indication of R&D tasks that remain to be accomplished is also given.

  3. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W

  4. Light sterile neutrinos, spin flavor precession, and the solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Pulido, João; Picariello, Marco

    2009-04-01

    We generalize to three active flavors a previous two-flavor model for the resonant spin flavor conversion of solar neutrinos to sterile ones, a mechanism which is added to the well-known large mixing angle (LMA) one. The transition magnetic moments from the muon and tau neutrinos to the sterile play the dominant role in fixing the amount of active flavor suppression. We also show, through numerical integration of the evolution equations, that the data from all solar neutrino experiments except Borexino exhibit a clear preference for a sizable magnetic field either in the convection zone or in the core and radiation zone. This is possibly related to the fact that the data from the first set are average ones taken during a period of mostly intense solar activity, whereas in contrast Borexino data were taken during a period of quiet Sun. We argue that the solar neutrino experiments are capable of tracing the possible modulation of the solar magnetic field. Those monitoring the high-energy neutrinos, namely, the B8 flux, appear to be sensitive to a field modulation either in the convection zone or in the core and radiation zone. Those monitoring the low-energy fluxes will be sensitive to the second type of solar field profiles only. In this way Borexino alone may play an essential role, since it examines both energy sectors, although experimental redundancy from other experiments will be most important.

  5. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  6. The Borexino Solar Neutrino Experiment: Scintillator purification and surface contamination

    NASA Astrophysics Data System (ADS)

    Leung, Michael

    The Borexino Solar Neutrino Experiment will observe the monoenergetic (862 keV) 7Be neutrinos, produced in the solar reaction 7Be+e- →7 Li+nue. These neutrinos are the second most abundant species of solar neutrinos, with an expected flux at earth of 5 x 109/cm2/s. Using nu - e scattering in an aromatic liquid scintillator, Borexino will make the first real time measurement of the solar neutrino flux at energies less than 1 MeV. In addition to checking Standard Solar Model and neutrino oscillation predictions at low energies, Borexino will test the MSW vacuum-matter transition, luminosity constraint, and non-standard theories such as mass varying neutrinos. The Borexino detector will also be sensitive to supernova neutrinos, geoneutrinos, reactor neutrinos, and pep solar neutrinos. The pep measurement will tightly constrain the primary pp solar neutrino flux whose energy is below the Borexino threshold. With an expected rate of 35 events per day from solar 7Be neutrinos, the maximum tolerable background rate is one count per day. Removal of radioactive isotopes from the liquid scintillator is essential for the experiment's success and will be achieved with purification techniques including filtration, distillation, water extraction, nitrogen stripping, and silica gel adsorption. Results from small-scale purification efficiency tests are presented. Water extraction showed moderate but inadequate removal of 210Po which is a dominant background. Distillation reduced 210Po by a factor of more than 500. Online purification involves cycling over 300 m3 of scintillator from the detector though the purification plants. Flow patterns within the detector that influence the purification efficiency were determined with numerical simulations. Poor flow in the prototype Counting Test Facility showed effectively stagnant volumes within the detector. These are not present in the larger Borexino detector. Surface contamination in Borexino arises primarily from contact with

  7. Long baseline neutrino oscillation experiment at the AGS. Physics design report

    SciTech Connect

    Beavis, D.; Carroll, A.; Chiang, I.; E889 Collaboration

    1995-04-01

    The authors present a design for a multi-detector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the {nu}{sub {mu}}, disappearance channel and the {nu}{sub {mu}} {leftrightarrow} {nu}{sub e} appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68km from the AGS neutrino source. Observed depletion of the {nu}{sub {mu}} flux (via quasi-elastic muon neutrino events, {nu}{sub {mu}}n {yields} {mu}{sup {minus}}p) in the far detectors not attended by an observed proportional increase of the {nu}{sub e} flux (via quasi-elastic electron neutrino events, {nu}{sub e}n {yields} e{sup {minus}}p) in those detectors will be prima facie evidence for the oscillation channel {nu}{sub {mu}} {leftrightarrow} {nu}{sub {tau}}. The experiment is directed toward exploration of the region of the neutrino oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy ({approx} 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.

  8. Simulations of the Long Baseline Neutrino Experiment for the Sieroszowice Underground Laboratory (SUNLAB)

    NASA Astrophysics Data System (ADS)

    Harańczyk, Małgorzata

    2016-02-01

    The Sieroszowice Underground Laboratory in Poland, SUNLAB, had been studied in the years 2008-2011 within the framework of the FP7 LAGUNA design study as an option for the realization of a next generation large volume neutrino observatory in Europe. However, in order to fully understand its physics capabilities, the feasibility studies of the SUNLAB laboratory have continued after 2011, including sensitivity calculations focused on the delta CP measurement for a large LArTPC detector at a distance of 950 km from CERN in a long baseline neutrino experiment. For this purpose the neutrino beam based on the SPS proton accelerator at CERN was simulated and the LAr data used to simulate the detector response.

  9. Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Abrahão, Thamys; Minakata, Hisakazu; Nunokawa, Hiroshi; Quiroga, Alexander A.

    2015-11-01

    The experimental bound on lifetime of ν 3, the neutrino mass eigenstate with the smallest ν e component, is much weaker than those of ν 1 and ν 2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (˜50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on ν3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed χ 2 analysis that the ν 3 lifetime divided by its mass, τ 3 /m 3, can be constrained to be τ 3 /m 3 > 7 .5 (5 .5) × 10-11 s/eV at 95% (99%) C.L. by 100 kt·years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent ν 3 decay affects mass-ordering determination and precision measurements of the mixing parameters.

  10. Accelerator physics experiments at Aladdin

    SciTech Connect

    Chattopadhyay, S.; Cornacchia, M.; Jackson, A.; Zisman, M.S.

    1985-07-01

    The Aladdin accelerator is a 1 GeV synchrotron light source located at the University of Wisconsin. The results of experimental studies of the Aladdin accelerator are described. The primary purpose of the experiments reported was to investigate reported anomalies in the behavior of the linear lattice, particularly in the vertical plane. A second goal was to estimate the ring broadband impedance. Experimental observations and interpretation of the linear properties of the Aladdin ring are described, including the beta function and dispersion measurements. Two experiments are described to measure the ring impedance, the first a measurement of the parasitic mode loss, and the second a measurement of the beam transfer function. Measurements of the longitudinal and transverse emittance at 100 and 200 MeV are described and compared with predictions. 10 refs., 24 figs., 2 tabs. (LEW)

  11. OscSNS: A Precision Short-Baseline Neutrino Oscillation Experiment

    NASA Astrophysics Data System (ADS)

    Louis, William

    2012-03-01

    Short baseline neutrino experiments are consistent with neutrino oscillations at a δm^2 of approximately 1 eV^2, and world neutrino and antineutrino data fit reasonably well to a 3+2 (active+sterile) neutrino oscillation model with CP violation. The OscSNS experiment at ORNL would be able to make precision short-baseline neutrino oscillation measurements and prove that sterile neutrinos exist. The OscSNS experiment will be described and the corresponding neutrino oscillation sensitivities will be discussed.

  12. Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  13. The Borexino solar neutrino experiment and its scintillator containment vessel

    NASA Astrophysics Data System (ADS)

    Cadonati, Laura

    2001-05-01

    Thirty years ago, the first solar neutrino detector proved fusion reactions power the Sun. However, the total rate detected in this and all subsequent solar neutrino experiments is consistently two to three times lower than predicted by the Standard Solar Model. Current experiments seek to explain this ``solar neutrino puzzle'' through non-standard particle properties, like neutrino mass and flavor mixing, within the context of the MSW theory. The detection of the monoenergetic 7Be solar neutrino is the missing clue for the solution of the solar neutrino problem; this constitutes the main physics goal of Borexino, a real- time, high-statistics solar neutrino detector located under the Gran Sasso mountain, in Italy. In the first part of this thesis, I present a Monte Carlo study of the expected performance of Borexino, with simulations of the neutrino rate, the external y background and the α/β/γ activity in the scintillator. The Standard Solar Model predicts a solar neutrino rate of about 60 events/day in Borexino in the 0.25-0.8 MeV window, mostly due to 7Be neutrinos. Given the design scintillator radiopurity levels (10-16 g/g 238U and 232Th and 10-14 g/g K), Borexino will detect such a rate with a ~2.4% statistical error, after one year. In the MSW Small (Large) Angle scenario, the predicted rate of ~13 (33) events/day will be detected with 8% (4%) error. The sensitivity of Borexino to 8B and pp neutrinos and to a Galactic supernova event is also discussed. The second part of this dissertation is devoted to the liquid scintillator containment vessel, an 8.5 m diameter sphere built of bonded panels of 0.125 mm polymer film. Through an extensive materials testing program we have identified an amorphous nylon-6 film which meets all the critical requirements for the success of Borexino. I describe tests of tensile strength, measurements of 222Rn diffusion through thin nylon films and of optical clarity. I discuss how the materials' radiopurity and mechanical

  14. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  15. Measurement of electron neutrino appearance with the MINOS experiment

    SciTech Connect

    Boehm, Joshua Adam Alpern

    2009-05-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. By measuring the neutrino interactions in a detector near the neutrino source and again 735 km away from the production site, it is possible to probe the parameters governing neutrino oscillation. The majority of the vμ oscillate to vτ but a small fraction may oscillate instead to ve. This thesis presents a measurement of the ve appearance rate in the MINOS far detector using the first two years of exposure. Methods for constraining the far detector backgrounds using the near detector measurements is discussed and a technique for estimating the uncertainty on the background and signal selection are developed. A 1.6σ excess over the expected background rate is found providing a hint of ve appearance.

  16. Detector-related backgrounds in the Karlsruhe Tritium Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Leber, Michelle; Katrin Collaboration

    2011-12-01

    The Karlsruhe Tritium Neutrino Experiment, or KATRIN, is a next generation tritium beta decay experiment to directly measure neutrino mass with an expected sensitivity of 0.2 eV [KATRIN Design Report 2004 see http://www-ik.fzk.de/~katrin/]. Neutrino mass does not fit into the Standard Model, and determining this mass may set the scale of new physics. To achieve this level of sensitivity, backgrounds in the experiment must be minimized. A complete Geant4 [Agostinelli S et al. 2003 Nuclear Instr. Methods A 506 250-303 Allison J et al. 2006 IEEE Transactions on Nuclear Science53 No. 1 270-8] simulation of KATRIN's focal plane detector and surrounding region is being developed. These simulations will help guide the design and selection of shielding and detector construction materials to reduce backgrounds from cosmic rays and natural radioactivity.

  17. Optimal configurations of the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Bhattacharya, Atri; Chatterjee, Animesh; Gandhi, Raj; Marfatia, Danny; Masud, Mehedi

    2016-02-01

    We perform a comprehensive study of the ability of the Deep Underground Neutrino Experiment (DUNE) to answer outstanding questions in the neutrino sector. We consider the sensitivities to the mass hierarchy, the octant of θ23 and to CP violation using data from beam and atmospheric neutrinos. We evaluate the dependencies on the precision with which θ13 will be measured by reactor experiments, on the detector size, beam power and exposure time, on detector magnetization, and on the systematic uncertainties achievable with and without a near detector. We find that a 35 kt far detector in DUNE with a near detector will resolve the eightfold degeneracy that is intrinsic to long baseline experiments and will meet the primary goals of oscillation physics that it is designed for.

  18. Measurement of the muon beam direction and muon flux for the T2K neutrino experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Aoki, S.; Ariga, A.; Ariga, T.; Bay, F.; Bronner, C.; Ereditato, A.; Friend, M.; Hartz, M.; Hiraki, T.; Ichikawa, A. K.; Ishida, T.; Ishii, T.; Juget, F.; Kikawa, T.; Kobayashi, T.; Kubo, H.; Matsuoka, K.; Maruyama, T.; Minamino, A.; Murakami, A.; Nakadaira, T.; Nakaya, T.; Nakayoshi, K.; Otani, M.; Oyama, Y.; Patel, N.; Pistillo, C.; Sakashita, K.; Sekiguchi, T.; Suzuki, S. Y.; Tada, S.; Yamada, Y.; Yamamoto, K.; Yokoyama, M.

    2015-05-01

    The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced in conjunction with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties, measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be (4.06± 0.05± 0.10)× 10^4cm^{-2} normalized with 4× 10^{11} protons on target with 250 kA horn operation. The result is in agreement with the prediction, which is corrected based on hadron production data.

  19. Bounds on sterile neutrino parameters from reactor experiments

    NASA Astrophysics Data System (ADS)

    Bora, Kalpana

    2014-03-01

    In this work, we present a realistic analysis of the potential of the present-day reactor experiments Double Chooz, Daya Bay and RENO for probing the existence of sterile neutrinos. We present exclusion regions for sterile oscillation parameters and find that these experimental set-ups give significant bounds on the parameter Θee especially in the low sterile oscillation region 0.01 < Δm241 < 0.05 eV2. These bounds can add to our understanding of the sterile neutrino sector since there is still a tension in the allowed regions from different experiments for sterile parameters.

  20. Progress in ultra high energy neutrino experiments using radio techniques

    SciTech Connect

    Liu Jiali; Tiedt, Douglas

    2013-05-23

    Studying the source of Ultra High Energy Cosmic Ray (UHECR) can provide important clues on the understanding of UHE particle physics, astrophysics, and other extremely energetic phenomena in the universe. However, charged CR particles are deflected by magnetic fields and can not point back to the source. Furthermore, UHECR charged particles above the Greisen-Zatsepin-Kuzmin (GZK) cutoff (about 5 Multiplication-Sign 10{sup 19} eV) suffer severe energy loss due to the interaction with the Cosmic Microwave Background Radiation (CMBR). Consequently almost all the information carried by CR particles about their origin is lost. Neutrinos, which are neutral particles and have extremely weak interactions with other materials can arrive at the earth without deflection and absorption. Therefore UHE neutrinos can be traced back to the place where they are produced. Due to their weak interaction and ultra high energies (thus extremely low flux) the detection of UHE neutrinos requires a large collecting area and massive amounts of material. Cherenkov detection at radio frequency, which has long attenuation lengths and can travel freely in natural dense medium (ice, rock and salt et al), can fulfill the detection requirement. Many UHE neutrino experiments are being performed by radio techniques using natural ice, lunar, and salt as detection mediums. These experiments have obtained much data about radio production, propagation and detection, and the upper limit of UHE neutrino flux.

  1. MINERvA: A Dedicated neutrino scattering experiment at NuMI

    SciTech Connect

    McFarland, Kevin S.; /Rochester U.

    2006-05-01

    MINERvA is a dedicated neutrino cross-section experiment planned for the near detector hall of the NuMI neutrino beam at Fermilab. I summarize the detector design and physics capabilities of the experiment.

  2. Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande

    NASA Astrophysics Data System (ADS)

    Abe, K.; Aihara, H.; Andreopoulos, C.; Anghel, I.; Ariga, A.; Ariga, T.; Asfandiyarov, R.; Askins, M.; Back, J. J.; Ballett, P.; Barbi, M.; Barker, G. J.; Barr, G.; Bay, F.; Beltrame, P.; Berardi, V.; Bergevin, M.; Berkman, S.; Berry, T.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bolognesi, S.; Boyd, S. B.; Bravar, A.; Bronner, C.; Cafagna, F. S.; Carminati, G.; Cartwright, S. L.; Catanesi, M. G.; Choi, K.; Choi, J. H.; Collazuol, G.; Cowan, G.; Cremonesi, L.; Davies, G.; De Rosa, G.; Densham, C.; Detwiler, J.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Emery, S.; Ereditato, A.; Fernández, P.; Feusels, T.; Finch, A.; Fitton, M.; Friend, M.; Fujii, Y.; Fukuda, Y.; Fukuda, D.; Galymov, V.; Ganezer, K.; Gonin, M.; Gumplinger, P.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haga, Y.; Hartfiel, B.; Hartz, M.; Hayato, Y.; Hierholzer, M.; Hill, J.; Himmel, A.; Hirota, S.; Horiuchi, S.; Huang, K.; Ichikawa, A. K.; Iijima, T.; Ikeda, M.; Imber, J.; Inoue, K.; Insler, J.; Intonti, R. A.; Irvine, T.; Ishida, T.; Ishino, H.; Ishitsuka, M.; Itow, Y.; Izmaylov, A.; Jamieson, B.; Jang, H. I.; Jiang, M.; Joo, K. K.; Jung, C. K.; Kaboth, A.; Kajita, T.; Kameda, J.; Karadhzov, Y.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kim, J. Y.; Kim, S. B.; Kishimoto, Y.; Kobayashi, T.; Koga, M.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W. R.; Kudenko, Y.; Kutter, T.; Kuze, M.; Labarga, L.; Lagoda, J.; Laveder, M.; Lawe, M.; Learned, J. G.; Lim, I. T.; Lindner, T.; Longhin, A.; Ludovici, L.; Ma, W.; Magaletti, L.; Mahn, K.; Malek, M.; Mariani, C.; Marti, L.; Martin, J. F.; Martin, C.; Martins, P. P. J.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mezzetto, M.; Minakata, H.; Minamino, A.; Mine, S.; Mineev, O.; Miura, M.; Monroe, J.; Mori, T.; Moriyama, S.; Mueller, T.; Muheim, F.; Nakahata, M.; Nakamura, K.; Nakaya, T.; Nakayama, S.; Needham, M.; Nicholls, T.; Nirkko, M.; Nishimura, Y.; Noah, E.; Nowak, J.; Nunokawa, H.; O'Keeffe, H. M.; Okajima, Y.; Okumura, K.; Oser, S. M.; O'Sullivan, E.; Ovsiannikova, T.; Owen, R. A.; Oyama, Y.; Pérez, J.; Pac, M. Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Pistillo, C.; Playfer, S.; Posiadala-Zezula, M.; Poutissou, J.-M.; Quilain, B.; Quinto, M.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Redij, A.; Retiere, F.; Riccio, C.; Richard, E.; Rondio, E.; Rose, H. J.; Ross-Lonergan, M.; Rott, C.; Rountree, S. D.; Rubbia, A.; Sacco, R.; Sakuda, M.; Sanchez, M. C.; Scantamburlo, E.; Scholberg, K.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shaikhiev, A.; Shimizu, I.; Shiozawa, M.; Short, S.; Sinnis, G.; Smy, M. B.; Sobczyk, J.; Sobel, H. W.; Stewart, T.; Stone, J. L.; Suda, Y.; Suzuki, Y.; Suzuki, A. T.; Svoboda, R.; Tacik, R.; Takeda, A.; Taketa, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, H. K. M.; Tanaka, H.; Terri, R.; Thompson, L. F.; Thorpe, M.; Tobayama, S.; Tolich, N.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vagins, M. R.; Vasseur, G.; Vogelaar, R. B.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilson, J. R.; Xin, T.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Zito, M.

    2015-05-01

    Hyper-Kamiokande will be a next-generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long-baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW × 10^7s integrated proton beam power (corresponding to 1.56 × 10^{22} protons on target with a 30 GeV proton beam) to a 2.5^circ off-axis neutrino beam, it is expected that the leptonic CP phase δ _{CP} can be determined to better than 19 degrees for all possible values of δ _{CP}, and CP violation can be established with a statistical significance of more than 3 σ (5 σ) for 76{%} (58{%}) of the {δ _{CP}} parameter space. Using both ν _e appearance and ν _μ disappearance data, the expected 1σ uncertainty of sin ^2θ _{23} is 0.015(0.006) for sin ^2θ _{23}=0.5(0.45).

  3. Omnibus experiment: CPT and CP violation with sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Loo, K. K.; Novikov, N. Yu; Smirnov, M. V.; Trzaska, W. H.; Wurm, M.

    2016-05-01

    We propose to probe both the CPT and CP violation together with the search for sterile neutrinos in one do-it-all experiment. This omnibus experiment would utilize neutrino oscillometry with large scintillator detectors like LENA, JUNO or RENO-50 and manmade radioactive sources similar to the ones used by the GALLEX experiment. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the main research plan for JUNO, LENA, or RENO-50. Assuming as the starting point the values of the oscillation parameters indicated by the current global fit (in 3 active + 1 sterile scenario) and requiring at least 5 sigma confidence level, we estimate that with the proposed experiment we would be able to detect CPT mass anomalies of the order of 1% or larger.

  4. Deuterium accelerator experiments for APT.

    SciTech Connect

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  5. Neutrino physics at muon colliders

    SciTech Connect

    King, B.J.

    1998-03-01

    An overview is given of the neutrino physics potential of future muon storage rings that use muon collider technology to produce, accelerate and store large currents of muons. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring.

  6. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  7. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  8. High intensity muon beam source for neutrino beam experiments

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham

    2015-09-01

    High intensity muon beams are essential for Muon accelerators like Neutrino Factories and Muon Colliders. In this study we report on a global optimization of the muon beam production and capture based on end-to-end simulations of the Muon Front End. The study includes the pion beam production target geometry, capture field profile, and forming muon beam into microbunches for further acceleration. The interplay between the transverse and longitudinal beam dynamics during the capture and transport of muon beam is evaluated and discussed. The goal of the optimization is to provide a set of design parameters that delivers high intensity muon beam that could be fit within the acceptance of a muon beam accelerator.

  9. Neutrino oscillation physics potential of the T2K experiment

    NASA Astrophysics Data System (ADS)

    T2K Collaboration; Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; de Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2015-04-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle θ _{13} have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin ^22θ _{23}, the octant of θ _{23}, and the mass hierarchy, in addition to the measurements of δ _{CP}, sin ^2θ _{23}, and Δ m^2_{32}, for various combinations of ν-mode and bar {ν }-mode data-taking. With an exposure of 7.8× 10^{21} protons-on-target, T2K can achieve 1σ resolution of 0.050 (0.054) on sin ^2θ _{23} and 0.040 (0.045)× 10^{-3} {eV}^2 on Δ m^2_{32} for 100% (50%) neutrino beam mode running assuming sin ^2θ _{23}=0.5 and Δ m^2_{32} = 2.4× 10^{-3} eV^2. T2K will have sensitivity to the CP-violating phase δ _{CP} at 90% C.L. or better over a significant range. For example, if sin ^22θ _{23} is maximal (i.e. θ _{23}=45°) the range is -115° < δ _{CP}< -60° for normal hierarchy and +50° < δ _{CP}< +130° for inverted hierarchy. When T2K data is combined with data from the NOνA experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero δ _{CP} is substantially increased compared to if each experiment is analyzed alone.

  10. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect

    Ochoa Ricoux, Juan Pedro

    2009-01-01

    We perform a search for vμ → ve oscillations, a process which would manifest a nonzero value of the θ13 mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of ve charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in θ13. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  11. Search for Neutrino Radiation from Collapsing Stars and the Sensitivity of Experiments to the Different Types of Neutrinos

    NASA Astrophysics Data System (ADS)

    Dadykin, V. L.; Ryazhskaya, O. G.

    2013-11-01

    The experiments running to search for neutrino radiation from collapsing stars up to now traditionally take one's bearings for the detection of the ˜ ν e p -> e^ + n reaction and, accordingly, for the use of the hadrogenate targets. The observation of neutrino radiation from SN1987A showed that it is important to have in the composition of the targets beside the hadrogen also other nuclei suitable to neutrino radiation detection. In particular the presence of iron nuclei in the LSD provided for the sensational detection of νe flux at 2:52 UT on February 23 1987 when other more powerful detectors with their hadrogenate targets could not respond to this type of neutrino. The sensitivity of present searching experiments to different types of neutrino radiation from collapsing stars is discussed in the paper.

  12. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    SciTech Connect

    Park, Jaewon

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  13. Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos.

    PubMed

    Murase, Kohta; Guetta, Dafne; Ahlers, Markus

    2016-02-19

    The latest IceCube data suggest that the all-flavor cosmic neutrino flux may be as large as 10^{-7}  GeV cm^{-2} s^{-1} sr^{-1} around 30 TeV. We show that, if sources of the TeV-PeV neutrinos are transparent to γ rays with respect to two-photon annihilation, strong tensions with the isotropic diffuse γ-ray background measured by Fermi are unavoidable, independently of the production mechanism. We further show that, if the IceCube neutrinos have a photohadronic (pγ) origin, the sources are expected to be opaque to 1-100 GeV γ rays. With these general multimessenger arguments, we find that the latest data suggest a population of cosmic-ray accelerators hidden in GeV-TeV γ rays as a neutrino origin. Searches for x-ray and MeV γ-ray counterparts are encouraged, and TeV-PeV neutrinos themselves will serve as special probes of dense source environments. PMID:26943524

  14. Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Guetta, Dafne; Ahlers, Markus

    2016-02-01

    The latest IceCube data suggest that the all-flavor cosmic neutrino flux may be as large as 10-7 GeV cm-2 s-1 sr-1 around 30 TeV. We show that, if sources of the TeV-PeV neutrinos are transparent to γ rays with respect to two-photon annihilation, strong tensions with the isotropic diffuse γ -ray background measured by Fermi are unavoidable, independently of the production mechanism. We further show that, if the IceCube neutrinos have a photohadronic (p γ ) origin, the sources are expected to be opaque to 1-100 GeV γ rays. With these general multimessenger arguments, we find that the latest data suggest a population of cosmic-ray accelerators hidden in GeV-TeV γ rays as a neutrino origin. Searches for x-ray and MeV γ -ray counterparts are encouraged, and TeV-PeV neutrinos themselves will serve as special probes of dense source environments.

  15. ANTARES deep sea neutrino telescope results

    SciTech Connect

    Mangano, Salvatore; Collaboration: ANTARES Collaboration

    2014-01-01

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  16. FFAGs: Front-end for neutrino factories and medical accelerators

    NASA Astrophysics Data System (ADS)

    Mori, Yoshiharu

    The idea of Fixed Field Alternating Gradient (FFAG) accelerator was originated by different people and groups in the early 1950s. It was independently introduced by Ohkawa [Ohkawa (1953)], Symon et al. [Symon et al. (1956)], and Kolomensky [Kolomensky and Lebedev (1966)] when the strong Alternate Gradient (AG) focusing and the phase stability schemes were applied to particle acceleration. The first FFAG electron model was developed in the MURA accelerator project led by Kerst and Cole in the late 1950s. Since then, they have fabricated several electron models in the early 1960s [Symon et al. (1956)]. However, the studies did not lead to a single practical FFAG accelerator for the following 50 years. Because of the difficulties of treating non-linear magnetic field and RF acceleration for non-relativistic particles, the proton FFAG, especially, was not accomplished until recently. In 2000, the FFAG concept was revived with the world's first proton FFAG (POP) which was developed at KEK [Aiba (2000); Mori (1999)]. Since then, in many places [Berg (2004); Johnstone et al. (2004); Mori (2011); Ruggiero (2004); Trbojevic (2004)], FFAGs have been developed and constructed...

  17. Constraining the nonstandard interaction parameters in long baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Huitu, Katri; Kärkkäinen, Timo J.; Maalampi, Jukka; Vihonen, Sampsa

    2016-03-01

    In this article we investigate the prospects for probing the strength of the possible nonstandard neutrino interactions (NSI) in long baseline neutrino oscillation experiments. We find that these experiments are sensitive to NSI couplings down to the level of 0.01-0.1 depending on the oscillation channel and the baseline length, as well as on the detector's fiducial mass. We also investigate the interference of the leptonic C P angle δC P with the constraining of the NSI couplings. It is found that the interference is strong in the case of the νe↔νμ and νe↔ντ transitions but not significant in other transitions. In our numerical analysis we apply the GLoBES software and use the LBNO setup as our benchmark.

  18. The radon monitoring system in Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Leung, J. K. C.; Leung, K. Y.; Lin, Y. C.; Luk, K. B.; Pun, C. S. J.

    2016-02-01

    We developed a highly sensitive, reliable and portable automatic system (H3) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3 is able to measure radon concentration with a statistical error less than 10% in a 1-h measurement of dehumidified air (R.H. 5% at 25 °C) with radon concentration as low as 50 Bq/m3. This is achieved by using a large radon progeny collection chamber, semiconductor α-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  19. Status of the San Onofre neutrino oscillation experiment

    SciTech Connect

    Hertenberger, R.; Chen, M.; Henrikson, H.; Mascarenhas, M.

    1993-10-01

    The San Onofre experiment is designed to investigate neutrino oscillations in the parameter space suggested by the atmospheric neutrino problem. A liquid-scintillator-based 12-ton detector will be installed at 650 m from the two units of the San Onofre power reactor. For the detection of the {anti v}{sub e}-induced inverse beta decay reaction a novel four-fold coincidence method is used allowing effective suppression of background at the relatively low shallow depth of 25 mwe. We report on the experimental method and demonstrate its feasibility by presenting results from recent test experiments performed with a prototype detector in the Tendon Gallery of the San Onofre Unit 2 reactor.

  20. Meson production in photon and neutrino experiments

    SciTech Connect

    Shimony, J.S.

    1988-01-01

    The reaction {gamma}p {yields} {rho}{sup 0}{sub fast}p{pi}{sup +}{pi}{sup {minus}} has been studied with the linearly polarized 20 GeV monochromatic photon beam at the SLAC Hybrid Facility, to test the prediction of s channel helicity conservation in inelastic diffraction for t{prime} < 0.4 (GeV/c){sup 2}. In a sample of 1934 events from this reaction, the {rho}{sup 0} decay angular distributions and spin density matrix elements are consistent with s channel helicity conservation. The {pi}{sup +}{pi}{sup {minus}} mass shape displays the same skewing as seen in the reaction {gamma}p {yields} p{pi}{sup +}{pi}{sup {minus}}, and the p{pi}{sup +}{pi}{sup {minus}} mass distribution compares well and scale according to the vector dominance model with that produced in {pi}{sup {plus minus}}p {yields} p{pi}{sup +}{pi}{sup {minus}}. Coherent production of the a{sub 1} meson has been observed through the reaction {nu}Fr {yields} {mu}{sup {minus}}a{sub 1}{sup +}Fr in the Tohoku 1m freon bubble chamber hybrid system. The bubble chamber was exposed to the Fermilab wideband neutrino beam, generated by 800 GeV protons at the Tevatron. The observed rate from the final charged current sample of 1792 events was 1.1 {plus minus} 0.47%, and the a{sub 1} - W coupling is calculated to be f{sup 2}{sub a}/f{sup 2}{sub {rho}} = 5.2 {plus minus} 2.2. A comparison of the cross section and the kinematical parameters with the theoretical predictions of the vector dominance model, gives reasonable agreement with the data. A Monte-Carlo study was performed to check the possibility of detecting the radiative decay of the D*{sub s} in our bubble chamber. Using the most favorable predicted rate through the {phi} branching ratio, it was determined that three times our data sample would be needed for a one {sigma} effect above background.

  1. Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-07-01

    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric {Delta}m{sup 2} measured in the electron neutrino disappearance channel, {Delta}m{sup 2}(ee), with the one measured in the muon neutrino disappearance channel, {Delta}m{sup 2}({mu}{mu}), was proposed. If {Delta}m{sup 2}(ee) is larger (smaller) than {Delta}m{sup 2} ({mu}{mu}) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: {Delta}m{sup 2}({mu}{mu}) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and {Delta}m{sup 2}(ee) that can be envisaged using the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of ({theta}{sub 13}, {delta}) in which the mass hierarchy can be determined. If {theta}{sub 13} is relatively large, sin{sup 2} 2{theta}{sub 13} {approx}> 0.05, and both of {Delta}m{sup 2}(ee) and {Delta}m{sup 2}({mu}{mu}) can be measured with the precision of {approx} 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3{pi} {approx}< {delta} {approx}< 1.7 {pi} for the current best fit values of all the other oscillation parameters.

  2. Initial Configuration of Acceleration for the IDS-NF Neutrino Factory

    SciTech Connect

    Berg, J.S.

    2011-10-01

    The IDS-NF neutrino factory acceleration system must accelerate the muon beam coming out of cooling to a total energy of 25 GeV. The parameters of the beam being accelerated are given in Table 1. While a certain fraction of the beam will be lost early in acceleration, losses of the beam that falls within the acceptance (see Table 1) should be dominated by decay losses (as opposed to dynamic losses or losses on apertures). Decay losses will be kept small, and the cost of the machine will be reduced to the extent possible, consistent with the above requirements. There is a tradeoff between machine cost and the amount of decay losses, and a reasonable compromise will be made between them. Both muon signs will be accelerated simultaneously.

  3. Slow control systems of the Reactor Experiment for Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Jang, H. I.; Choi, W. Q.; Choi, Y.; Jang, J. S.; Jeon, E. J.; Joo, K. K.; Kim, B. R.; Kim, H. S.; Kim, J. Y.; Kim, S. B.; Kim, S. Y.; Kim, W.; Kim, Y. D.; Ko, Y. J.; Lee, J. K.; Lim, I. T.; Pac, M. Y.; Park, I. G.; Park, J. S.; Park, R. G.; Seo, H. K.; Seo, S. H.; Shin, C. D.; Siyeon, K.; Yeo, I. S.; Yu, I.

    2016-02-01

    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this paper, we report the design, hardware, operation, and performance of the slow control system.

  4. Direct neutrino mass experiments and exotic charged current interactions

    NASA Astrophysics Data System (ADS)

    Ludl, Patrick Otto; Rodejohann, Werner

    2016-06-01

    We study the effect of exotic charged current interactions on the electron energy spectrum in tritium decay, focussing on the KATRIN experiment and a possible modified setup that has access to the full spectrum. Both sub-eV and keV neutrino masses are considered. We perform a fully relativistic calculation and take all possible new interactions into account, demonstrating the possible sizable distortions in the energy spectrum.

  5. Search for muon neutrion disappearance in a short-baseline accelerator neutrino beam

    SciTech Connect

    Nakajima, Yashuhiro; /Kyoto U.

    2010-11-01

    Neutrino oscillations have been observed and confirmed at {Delta}m{sup 2} {approx} 10{sup -3} and 10{sup -5} eV{sup 2} with various experiments. While oscillations at other mass splittings are prohibited by the current standard model, the LSND experiment observed an excess of electron antineutrinos in a muon antineutrino beam, indicating a possible oscillation at {Delta}m{sup 2} {approx} 1 eV{sup 2}. To test the oscillation at {Delta}m{sup 2} {approx} 1 eV{sup 2}, we search for muon neutrino disappearance using the Fermilab Booster Neutrino beamline and two experiments, SciBooNE and MiniBooNE. The neutrino fluxes are measured in the SciBooNE and MiniBooNE detectors, located at 100 m and 540 m downstream from the neutrino production target, respectively. We collected beam data from June 2007 through August 2008 with SciBooNE, and over a five year period with MiniBooNE. A preliminary sensitivity for a joint v{sub {mu}} disappearance search is presented.

  6. Future possibilities with Fermilab neutrino beams

    SciTech Connect

    Saoulidou, Niki

    2008-01-01

    We will start with a brief overview of neutrino oscillation physics with emphasis on the remaining unanswered questions. Next, after mentioning near future reactor and accelerator experiments searching for a non zero {theta}{sub 13}, we will introduce the plans for the next generation of long-baseline accelerator neutrino oscillation experiments. We will focus on experiments utilizing powerful (0.7-2.1 MW) Fermilab neutrino beams, either existing or in the design phase.

  7. MUON ACCELERATION WITH A VERY FAST RAMPING SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.GARREN,A.A.PALMER,R.B.

    2002-07-01

    A 4600 Hz fast ramping synchrotron is explored as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice we describe. Muon survival is 83%.

  8. Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Beier, E. W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in Jan. 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical Cl-37 and Ga-71 experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  9. Experiment specific processing of residual acceleration data

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. I. D.

    1992-01-01

    To date, most Spacelab residual acceleration data collection projects have resulted in data bases that are overwhelming to the investigator of low-gravity experiments. This paper introduces a simple passive accelerometer system to measure low-frequency accelerations. Model responses for experiments using actual acceleration data are produced and correlations are made between experiment response and the accelerometer time history in order to test the idea that recorded acceleration data and experimental responses can be usefully correlated. Spacelab 3 accelerometer data are used as input to a variety of experiment models, and sensitivity limits are obtained for particular experiment classes. The modeling results are being used to create experiment-specific residual acceleration data processing schemes for interested investigators.

  10. Contribution of gallium experiments to the understanding of solar physics and neutrino physics

    SciTech Connect

    Gavrin, V. N.

    2013-10-15

    The results of gallium measurements of solar neutrino and measurements with artificial sources of neutrinos are presented. Conclusions are drawn from these results, and the potential of the SAGE experiment for studying transitions of active neutrinos to sterile states for {Delta}m{sup 2} > 0.5 eV{sup 2} and a sensitivity of a few percent to the disappearance of electron neutrinos is examined.

  11. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The space experiments with particle accelerators (SEPAC) instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  12. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    SciTech Connect

    Bari, Pasquale Di; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-04-01

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N{sub 2} dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ∼ 10{sup 10} GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m{sub 1} ≅ (1−5) × 10{sup −3} eV and m{sub 1} ≅ (0.03−0.1) eV. For m{sub 1}∼<0.01 eV the allowed region in the plane θ{sub 13}-θ{sub 23} is approximately given by θ{sub 23}∼<49°+0.65 (θ{sub 13}−5°), while the neutrinoless double beta decay effective neutrino mass falls in the range m{sub ee} = (1−3) × 10{sup −3} eV for θ{sub 13} = (6°−11.5°). For m{sub 1}∼>0.01 eV, one has quite sharply m{sub ee} ≅ m{sub 1} and an upper bound θ{sub 23}∼<46°. These constraints will be tested by low energy neutrino experiments during next years. We also find that inverted ordering (IO), though quite strongly constrained, is not completely ruled out. In particular, we find approximately θ{sub 23} ≅ 43°+12° log (0.2 eV/m{sub 1}), that will be fully tested by future experiments.

  13. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    NASA Astrophysics Data System (ADS)

    Marinelli, Antonio; Gaggero, Daniele; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-04-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than 5σ. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the astrophysical muonic neutrinos reconstructed in the Northern hemisphere. A good agreement between the expected astrophysical neutrino flux and the IceCube data is found for the full sky as well as for the Galactic plane region.

  14. Degeneracies in long-baseline neutrino experiments from nonstandard interactions

    NASA Astrophysics Data System (ADS)

    Liao, Jiajun; Marfatia, Danny; Whisnant, Kerry

    2016-05-01

    We study parameter degeneracies that can occur in long-baseline neutrino appearance experiments due to nonstandard interactions (NSI) in neutrino propagation. For a single off-diagonal NSI parameter, and neutrino and antineutrino measurements at a single L /E , there exists a continuous four-fold degeneracy (related to the mass hierarchy and θ23 octant) that renders the mass hierarchy, octant, and C P phase unknowable. Even with a combination of NO ν A and T2K data, which in principle can resolve the degeneracy, both NSI and the C P phase remain unconstrained because of experimental uncertainties. A wide-band beam experiment like DUNE will resolve this degeneracy if the nonzero off-diagonal NSI parameter is ɛe μ. If ɛe τ is nonzero, or the diagonal NSI parameter ɛe e is O (1 ), a wrong determination of the mass hierarchy and of C P violation can occur at DUNE. The octant degeneracy can be further complicated by ɛe τ, but is not affected by ɛe e.

  15. Neutrino horn power supply operational experience

    SciTech Connect

    Stillman, P.; Sandberg, J.; Carroll, A.S.; Leonhardt, W.; Monaghan, R.; Pearson, C.; Pendzich, A.; Ryan, G.; Sims, W.P.; Smith, G.A.

    1987-01-01

    The operational experiences required to run the 300 kA pulsed power supply at Brookhaven National Laboratory are given. Various interlocks and monitoring circuits are described and the impact on system reliability are discussed. The initial conditioning process of the power supply during startup is described.

  16. Monte Carlo calculations of the intrinsic detector backgrounds for the Karlsruhe Tritium Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Leber, Michelle L.

    The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to measure the absolute neutrino mass, an open question in neutrino physics. KATRIN exploits the fact that the beta-decay spectral shape near the endpoint depends on the neutrino mass. Using a gaseous tritium source and a precise electrostatic spectrometer, KATRIN will measure the integral beta-decay spectrum in a silicon detector. KATRIN strives for a sensitivity of 0.2 eV (90% CL) to the neutrino mass, ten times better than the current limit. A measurement at this level of sensitivity has broad implications for cosmology and particle physics. To maximize sensitivity to the small beta-decay signal, the KATRIN silicon detector must have minimal intrinsic backgrounds. The background goal for the detector is less than 10-3 counts per second (1 mHz) in the region of interest near the 18.6 keV signal. In this dissertation, we present estimates of the detector background rate calculated with a custom Geant4-based Monte Carlo simulation. The simulation includes a detailed description of the detector system and attributes of the intrinsic background sources, natural radioactivity and cosmic rays. We identified the largest background sources, optimized the detector region design to minimize the background rate, and performed measurements to confirm the simulation results. In particular, we have measured the radiation field from radioactivity in all objects in the detector laboratory using a germanium detector. The simulated germanium detector rate agrees within 5% of the measured rate. In addition, various calibration spectra measured with silicon and germanium detectors are within 7% of the simulated spectra. The results from our simulations indicate that we should observe a background of [2.54 +/- 0.11(stat.) +0.36-0.35 (sys.)]mHz at the nominal magnetic field of 3 T and zero post acceleration. The largest background sources are radiation from the laboratory environment and cosmic-ray photons. Utilizing 20 kV of

  17. Experiment to measure the electron neutrino mass using frozen tritium

    SciTech Connect

    Fackler, O.; Sticker, H.; Mugge, M.; White, R.M.; Woerner, R.

    1985-01-01

    We are performing an experiment to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. To make this measurement, we have built a spectrometer with a resolution of 2 eV. Our source is frozen tritium since tritium and the HeT/sup +/ daughter ion have electronic wavefunctions that can be calculated with high accuracy. We describe the experiment and discuss the excited final molecular state calculations.

  18. Results on θ13 Neutrino Oscillations from Reactor Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    2014-03-01

    Definitive measurements of the smallest neutrino mixing angle θ13 were made by Daya Bay, Double Chooz and RENO in 2012, based on the disappearance of electron antineutrinos emitted from reactors. The new generation reactor experiments have significantly improved a sensitivity for θ13 down to the sin2(2θ13)~0.01 level using two identical detectors of 10 ~ 40 tons at near (300 ~ 400 m) and far (1 ~ 2 km) locations. The θ13 measurements by the three reactor experiments are presented with their future expected sensitivities.

  19. Mass varying neutrinos, quintessence, and the accelerating expansion of the Universe

    SciTech Connect

    Chitov, Gennady Y.; August, Tyler; Natarajan, Aravind; Kahniashvili, Tina

    2011-02-15

    We analyze the mass varying neutrino scenario. We consider a minimal model of massless Dirac fermions coupled to a scalar field, mainly in the framework of finite-temperature quantum field theory. We demonstrate that the mass equation we find has nontrivial solutions only for special classes of potentials, and only within certain temperature intervals. We give most of our results for the Ratra-Peebles dark energy (DE) potential. The thermal (temporal) evolution of the model is analyzed. Following the time arrow, the stable, metastable, and unstable phases are predicted. The model predicts that the present Universe is below its critical temperature and accelerates. At the critical point, the Universe undergoes a first-order phase transition from the (meta)stable oscillatory regime to the unstable rolling regime of the DE field. This conclusion agrees with the original idea of quintessence as a force making the Universe roll towards its true vacuum with a zero {Lambda} term. The present mass varying neutrino scenario is free from the coincidence problem, since both the DE density and the neutrino mass are determined by the scale M of the potential. Choosing M{approx}10{sup -3} eV to match the present DE density, we can obtain the present neutrino mass in the range m{approx}10{sup -2}-1 eV and consistent estimates for other parameters of the Universe.

  20. Inverse Cerenkov laser acceleration experiment at ATF

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Pogorelsky, I.; Fernow, R.; Kusche, K. P.; Liu, Y.; Kimura, W. D.; Kim, G. H.; Romea, R. D.; Steinhauer, L. C.

    Inverse Cerenkov laser acceleration was demonstrated using an axicon optical system at the Brookhaven Accelerator Test Facility (ATF). The ATF S-band linac and a high power 10.6 MICROMETERSCO2 laser were used for the experiment. Experimental arrangement and the laser and the electron beams synchronization are discussed. The electrons were accelerated more than 0.7 MeV for a 34 MW CO2 laser power. More than 3.7 MeV acceleration was measured with 0.7 GW CO2 laser power, which is more than 20 times of the previous ICA experiment. The experimental results are compared with computer program TRANSPORT simulations.

  1. Solar neutrino interactions with liquid scintillators used for double beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu; Zuber, Kai

    2016-08-01

    Solar neutrinos interact within double-beta-decay (DBD) detectors and hence will contribute to backgrounds (BGs) for DBD experiments. Background contributions due to solar neutrinos are evaluated for their interactions with atomic electrons and nuclei in liquid scintillation detectors used for DBD experiments. They are shown to be serious BGs for high-sensitivity DBD experiments to search for the Majorana neutrino masses in the inverted and normal hierarchy regions.

  2. Status and Prospects for Hadron Production Experiments

    SciTech Connect

    Schroeter, Raphaeel

    2010-03-30

    The latest results from the HARP, MIPP and NA61 Hadron Production Experiments are reviewed and their implications for neutrinos physics experiments are discussed. We emphasize three neutrino sources: accelerator-based neutrino beams, advanced neutrino sources and atmospheric neutrinos. Finally, prospects from additional forthcoming hadron production measurements are presented.

  3. A Non-scaling Fixed Field Alternating Gradient Accelerator for the Final Acceleration Stage of the International Design Study of the Neutrino Factory.

    SciTech Connect

    Berg, J.S.; Aslaninejad, M.; Pasternak, J.; Witte, H.; Bliss, N. Cordwell M.; Jones, T.; Muir, A., Kelliher, D.; Machida, S.

    2011-09-04

    The International Design Study of the Neutrino Factory (IDS-NF) has recently completed its Interim Design Report (IDR), which presents our current baseline design of the neutrino factory. To increase the efficiency and reduce the cost of acceleration, the IDR design uses a linear non-scaling fixed field alternating gradient accelerator (FFAG) for its final acceleration stage. We present the current lattice design of that FFAG, including the main ring plus its injection and extraction systems. We describe parameters for the main ring magnets, kickers, and septa, as well as the power supplies for the kickers. We present a first pass at an engineering layout for the ring and its subsystems.

  4. Optimization and beam control in large-emittance accelerators: Neutrino factories;

    SciTech Connect

    Carol Johnstone

    2004-08-23

    Schemes for intense sources of high-energy muons require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large emittances must be reduced or ''cooled'' both in size and in energy spread before the muons can be efficiently accelerated. Therefore, formation of muon beams sufficiently intense to drive a Neutrino Factory or Muon Collider requires multi-stage preparation. Further, because of the large beam phase space which must be successfully controlled, accelerated, and transported, the major stages that comprise such a facility: proton driver, production, capture, phase rotation, cooling, acceleration, and storage are complex and strongly interlinked. Each of the stages must be consecutively matched and simultaneously optimized with upstream and downstream systems, meeting challenges not only technically in the optics and component design, but also in the modeling of both new and extended components. One design for transverse cooling, for example, employs meter-diameter solenoids to maintain strong focusing--300-500 mr beam divergences--across ultra-large momentum ranges, {ge} {+-}20% {delta}p/p, defying conventional approximations to the dynamics and field representation. To now, the interplay of the different systems and staging strategies has not been formally addressed. This work discusses two basic, but different approaches to a Neutrino Factory and how the staging strategy depends on beam parameters and method of acceleration.

  5. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  6. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bodnarchuk, I.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; de Lellis, G.; de Serio, M.; Del Amo Sanchez, P.; di Crescenzo, A.; di Ferdinando, D.; di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fornari, F.; Fukuda, T.; Galati, G.; Garfagnini, A.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hara, T.; Hayakawa, H.; Hollnagel, A.; Hosseini, B.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laudisio, F.; Lauria, A.; Ljubicic, A.; Longhin, A.; Loverre, P. F.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matsushita, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Miyanishi, M.; Mizutani, F.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Olchevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Paparella, L.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Schmidt-Parzefall, W.; Shakirianova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Sotnikov, A.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladymyrov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.; Opera Collaboration

    2015-09-01

    The OPERA experiment was designed to search for νμ→ντ oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ντ interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the νμ→ντ appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ντ candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of νμ→ντ oscillations in appearance mode with a significance larger than 5 σ .

  7. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment.

    PubMed

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bender, D; Bertolin, A; Bodnarchuk, I; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Büttner, B; Chernyavsky, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Del Amo Sanchez, P; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, R A; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Goldberg, J; Gornushkin, Y; Grella, G; Guler, A M; Gustavino, C; Hagner, C; Hara, T; Hayakawa, H; Hollnagel, A; Hosseini, B; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, J H; Kim, S H; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P F; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matsushita, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, M C; Morishima, K; Muciaccia, M T; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Nakatsuka, Y; Niwa, K; Ogawa, S; Olchevsky, A; Omura, T; Ozaki, K; Paoloni, A; Paparella, L; Park, B D; Park, I G; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Pistillo, C; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Schmidt-Parzefall, W; Shakirianova, I; Shchedrina, T; Sheshukov, A; Shibuya, H; Shiraishi, T; Shoziyoev, G; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, S M; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Vilain, P; Vladymyrov, M; Votano, L; Vuilleumier, J L; Wilquet, G; Wonsak, B; Yoon, C S; Zemskova, S

    2015-09-18

    The OPERA experiment was designed to search for ν_{μ}→ν_{τ} oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the ν_{μ}→ν_{τ} appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of ν_{μ}→ν_{τ} oscillations in appearance mode with a significance larger than 5σ. PMID:26430986

  8. Monte Carlo simulation of the Neutrino-4 experiment

    SciTech Connect

    Serebrov, A. P. Fomin, A. K.; Onegin, M. S.; Ivochkin, V. G.; Matrosov, L. N.

    2015-12-15

    Monte Carlo simulation of the two-section reactor antineutrino detector of the Neutrino-4 experiment is carried out. The scintillation-type detector is based on the inverse beta-decay reaction. The antineutrino is recorded by two successive signals from the positron and the neutron. The simulation of the detector sections and the active shielding is performed. As a result of the simulation, the distributions of photomultiplier signals from the positron and the neutron are obtained. The efficiency of the detector depending on the signal recording thresholds is calculated.

  9. Implications of the Recent Results of Solar Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Maris, M.; Petcov, S. T.

    2002-12-01

    Detailed predictions for the D-N asymmetry for the Super-Kamiokande and SNO experiments, as well as for the ratio of the CC and NC event rates measured by SNO, in the cases of the LMA MSW and of the LOW solutions of the solar neutrino problem, are presented. The possibilities to use the forthcoming SNO data on these two observables to discriminate between the LMA and LOW solutions and/or to further constrain the regions of the two solutions are also discussed.

  10. MUON EDM EXPERIMENT USING STAGE II OF THE NEUTRINO FACTORY.

    SciTech Connect

    FERNOW,R.C.; GALLARDO,J.C.; MORSE,W.M.; SEMERTZIDIS,Y.K.

    2002-07-01

    During the second stage of a future neutrino factory unprecedented numbers of bunched muons will become available. The cooled medium-energy muon beam could be used for a high sensitivity search for an electric dipole moment (EDM) of the muon with a sensitivity better than 10{sup -24}e {center_dot} cm. This will make the sensitivity of the EDM experiment to non-standard physics competitive and in many models more sensitive than the present limits on edms of the electron and nucleons. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring.

  11. Monte Carlo simulation of the Neutrino-4 experiment

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Fomin, A. K.; Onegin, M. S.; Ivochkin, V. G.; Matrosov, L. N.

    2015-12-01

    Monte Carlo simulation of the two-section reactor antineutrino detector of the Neutrino-4 experiment is carried out. The scintillation-type detector is based on the inverse beta-decay reaction. The antineutrino is recorded by two successive signals from the positron and the neutron. The simulation of the detector sections and the active shielding is performed. As a result of the simulation, the distributions of photomultiplier signals from the positron and the neutron are obtained. The efficiency of the detector depending on the signal recording thresholds is calculated.

  12. Recent Results from the K2K - Neutrino Oscillation Experiment

    NASA Astrophysics Data System (ADS)

    Hill, James E.

    2002-12-01

    The K2K Long-Baseline neutrino oscillation experiment has been aquiring data since mid-1999 and has analysed those up to July of 2001. Fifty-six fully contained events are observed in the fiducial volume of the far detector where 80.6-8.0+7.3 are expected based partly on measurements near the beam production point. There is virtually no background for the contained event search. The methods established in this experiment are crucial for operation of future similar experiments to probe the nature of mixing in the neutral lepton sector, a necessary step in understanding the nature of family structure and of mass itself. A brief history and a few notes about the future and direction of the field precede the description of the experiment and its results.

  13. Observing a light dark matter beam with neutrino experiments

    NASA Astrophysics Data System (ADS)

    Deniverville, Patrick; Pospelov, Maxim; Ritz, Adam

    2011-10-01

    We consider the sensitivity of fixed-target neutrino experiments at the luminosity frontier to light stable states, such as those present in models of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate via light mediators, which in turn provide an access portal for direct production in colliders or fixed targets. Indeed, this framework endows the neutrino beams produced at fixed-target facilities with a companion “dark matter beam,” which may be detected via an excess of elastic scattering events off electrons or nuclei in the (near-)detector. We study the high-luminosity proton fixed-target experiments at LSND and MiniBooNE, and determine that the ensuing sensitivity to light dark matter generally surpasses that of other direct probes. For scenarios with a kinetically-mixed U(1)' vector mediator of mass mV, we find that a large volume of parameter space is excluded for mDM˜1-5MeV, covering vector masses 2mDM≲mV≲mη and a range of kinetic mixing parameters reaching as low as κ˜10-5. The corresponding MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are thus strongly constrained.

  14. Analytical approximations for matter effects on CP violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhu, Jing-yu

    2016-07-01

    Given an accelerator-based neutrino experiment with the beam energy E ≲ 1 GeV, we expand the probabilities of ν μ → ν e and {overline{ν}}_{μ}to {overline{ν}}_e oscillations in matter in terms of two small quantities Δ21 /Δ31 and A/Δ31, where Δ 21≡ m 2 2 - m 1 2 and Δ 31≡ m 3 2 - m 1 2 are the neutrino mass-squared differences, and A measures the strength of terrestrial matter effects. Our analytical approximations are numerically more accurate than those made by Freund in this energy region, and thus they are particularly applicable for the study of leptonic CP violation in the low-energy MOMENT, ESS νSM and T2K oscillation experiments. As a by-product, the new analytical approximations help us to easily understand why the matter-corrected Jarlskog parameter tilde{J} peaks at the resonance energy E ∗ ≃ 0 .14GeV (or 0 .12 GeV) for the normal (or inverted) neutrino mass hierarchy, and how the three Dirac unitarity triangles are deformed due to the terrestrial matter contamination. We also affirm that a medium-baseline neutrino oscillation experiment with the beam energy E lying in the E ∗ ≲ E ≲ 2 E ∗ range is capable of exploring leptonic CP violation with little matter-induced suppression.

  15. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  16. Future long-baseline neutrino oscillations: View from Asia

    SciTech Connect

    Hayato, Yoshinari

    2015-07-15

    Accelerator based long-baseline neutrino oscillation experiments have been playing important roles in revealing the nature of neutrinos. However, it turned out that the current experiments are not sufficient to study two major remaining problems, the CP violation in the lepton sector and the mass hierarchy of neutrinos. Therefore, several new experiments have been proposed. Among of them, two accelerator based long-baseline neutrino oscillation experiments, the J-PARC neutrino beam and Hyper-Kamiokande, and MOMENT, have been proposed in Asia. These two projects are reviewed in this article.

  17. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  18. Status and perspectives of neutrino physics at present and future experiments

    NASA Astrophysics Data System (ADS)

    Pagliarone, Carmine Elvezio

    2016-03-01

    Neutrino Physics and Dark Matter searches play a crucial role in nowadays Particle and Astroparticle Physics. The present review paper will describe general properties of neutrinos and neutrino mass phenomenology (Dirac and Majorana masses). Space will be dedicated to the experimental attempts to answer the question of the neutrino mass hierarchy. We will give, then, a short review of the results of part of the experiments that have been running so far. We will also shortly summarize future experiments that plan to explore this very wide scientific area.

  19. Laboratory Reconnection Experiments - heating and particle acceleration

    NASA Astrophysics Data System (ADS)

    Ono, Yasushi

    Recent laboratory merging/ reconnection experiments have solved a number of key physics of magnetic reconnection: 1) reconnection heating/ acceleration, 2) fast reconnection mechanisms, 3) plasmoid reconnection, 4) non-steady reconnection and 5) non-thermal particle acceleration using new kinetic interpretations. Especially, significant ion temperatures 1.2keV were documented in the world-largest tokamak merging experiment: MAST after detailed 2D elucidation of ion and electron heating characteristics in TS-3 and 4 merging experiments. The measured 2D contours of ion and electron temperatures in TS-3, 4 and MAST reveal ion heating in the downstream by reconnection outflow and electron heating around the X-point by ohmic heating of current sheet. Their detailed heating mechanisms were further investigated by comparing those results with particle simulations developed by NIFS. The ion acceleration mechanism is mostly parallel acceleration by reconnection electric field and partly perpendicular acceleration by electrostatic potential. The fast shock and ion viscosity are the major dumping (heating) mechanisms for the accelerated ions. We successfully applied the reconnection heating - typically 10-50MW to the high-beta spherical tokamak formation and heating. This paper will review major progresses in those international and interdisciplinary merging tokamak experiments.

  20. Photon detection system designs for the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Whittington, D.

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  1. Photon Detection System Designs for the Deep Underground Neutrino Experiment

    SciTech Connect

    Whittington, Denver

    2015-11-19

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  2. REPORT OF THE US LONG BASELINE NEUTRINO EXPERIMENT STUDY.

    SciTech Connect

    BARGER,V.; FINLEY, D.; LAUGHTON, C.; PORDES, S.; MARCHIONNI, A.; RAMEIKA, R.; SAOULIDOU, N.; ZWASKA, R.; BISHAI, M.; DIWAN, M.; DIERCKXSENS, M.; KIRK, H.; KAHN, S.; SIMOS, N.; MARCIANO, W.; PARSA, Z.; VIREN, B.; ET AL.

    2007-01-01

    This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability is not likely to be challenged anywhere else in the world for at least two decades into the future. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermilab and, as the study evolved, it also provides responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the study results and conclusions are provided in this report and its appendices. A summary of the conclusions is provided in the Executive Summary.

  3. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  4. Accelerated Application Development: The ORNL Titan Experience

    SciTech Connect

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; Philip, Bobby; Sankaran, Ramanan; Tharrington, Arnold N.; Turner, John A.

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this paper we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.

  5. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGESBeta

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; et al

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  6. Inverse Cerenkov laser acceleration experiment at ATF

    SciTech Connect

    Wang, X.J.; Pogorelsky, I.; Fernow, R.; Kusche, K.P.; Liu, Y.; Kimura, W.D.; Kim, G.H.; Romea, R.D.; Steinhauer, L.C.

    1994-09-01

    Inverse Cerenkov laser acceleration was demonstrated using an axicon optical system at the Brookhaven Accelerator Test Facility (ATF). The ATF S-band linac and a high power 10.6 {mu}m CO{sub 2} laser were used for the experiment. Experimental arrangement and the laser and the electron beams synchronization are discussed. The electrons were accelerated more than 0.7 MeV for a 34 MW CO{sub 2} laser power. More than 3.7 MeV acceleration was measured with 0.7 GW CO{sub 2} laser power, which is more than 20 times of the previous ICA experiment. The experimental results are compared with computer program TRANSPORT simulations.

  7. Space experiments with particle accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The SEPAC instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam-particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  8. Neutrino-4 experiment on the search for a sterile neutrino at the SM-3 reactor

    SciTech Connect

    Serebrov, A. P. Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; and others

    2015-10-15

    In view of the possibility of the existence of a sterile neutrino, test measurements of the dependence of the reactor antineutrino flux on the distance from the reactor core has been performed on SM-2 reactor with the Neutrino-2 detector model in the range of 6–11 m. Prospects of the search for reactor antineutrinos at short distances have been discussed.

  9. Long Baseline Neutrino Experiment simulation studies on Offset of Detector and Proton Beam

    NASA Astrophysics Data System (ADS)

    Bashyal, Amit; Yu, Jaehoon; Park, Seongtae; Watson, Blake

    2014-03-01

    The Long Baseline Neutrino Experiment(LBNE), hosted by Fermilab is a world class physics program aiming to probe our understanding on neutrino physics and look for physics beyond Standard Model. While LBNE is still under development, the LBNE beam simulation group performs the simulation using the G4LBNE simulation software and packaged geometry. The simulation studies are done by shifting and offsetting several parameters (which represent the physical components of the real experiment). The results obtained were analyzed graphically and statistically. In this talk, I will explain the effect of beam offset and detector shifting on parameters like pion production in the decay pipe, intensity of neutrino flux, variation on the number of neutrinos in specific energy ranges. Simulation experiment results will help to simplify the complex nature of neutrinos itself to a small extent and the collective work from the beam simulation group can provide a raw guideline for the experiment itself in the long run.

  10. The FRC Acceleration Space Thruster (FAST) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Houts, Mike; Slough, John; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The objective of the FRC (Field Reversed Configuration) Acceleration Space Thruster (FAST) Experiment is to investigate the use of a repetitive FRC source as a thruster, specifically for an NEP (nuclear electric propulsion) system. The Field Reversed Configuration is a plasmoid with a closed poloidal field line structure, and has been extensively studied as a fusion reactor core. An FRC thruster works by repetitively producing FRCs and accelerating them to high velocity. An FRC thruster should be capable of I(sub sp)'s in the range of 5,000 - 25,000 seconds and efficiencies in the range of 60 - 80 %. In addition, they can have thrust densities as high as 10(exp 6) N/m2, and as they are inductively formed, they do not suffer from electrode erosion. The jet-power should be scalable from the low to the high power regime. The FAST experiment consists of a theta-pinch formation chamber, followed by an acceleration stage. Initially, we will produce and accelerate single FRCs. The initial focus of the experiment will be on the ionization, formation and acceleration of a single plasmoid, so as to determine the likely efficiency and I(sub sp). Subsequently, we will modify the device for repetitive burst-mode operation (5-10 shots). A variety of diagnostics are or will be available for this work, including a HeNe interferometer, high-speed cameras, and a Thomson-scattering system. The status of the experiment will be described.

  11. Looking for High Energy Astrophysical Neutrinos:. the Antares Experiment

    NASA Astrophysics Data System (ADS)

    Flaminio, Vincenzo

    2011-03-01

    Attempts to detect high energy neutrinos originating in violent Galactic or Extragalactic processes have been carried out for many years, both using the polar-cap ice and the sea as a target/detection medium. The first large detector built and operated for several years has been the AMANDA Čerenkov array, installed under about two km of ice at the South Pole. More recently a much larger detector, ICECUBE is being installed at the same location. Attempts by several groups to install similar arrays under large sea depths have been carried out following the original pioneering attempts by the DUMAND collaboration, initiated in 1990 and terminated only six years later. ANTARES has been so far the only experiment installed at large sea depths and successfully operated for several years. This report will provide a short review of the expected ν sources, of the detector characteristics, the installation operations performed, the data collected and the first results obtained.

  12. Energy reconstruction in the long-baseline neutrino experiment.

    PubMed

    Mosel, U; Lalakulich, O; Gallmeister, K

    2014-04-18

    The Long-Baseline Neutrino Experiment aims at measuring fundamental physical parameters to high precision and exploring physics beyond the standard model. Nuclear targets introduce complications towards that aim. We investigate the uncertainties in the energy reconstruction, based on quasielastic scattering relations, due to nuclear effects. The reconstructed event distributions as a function of energy tend to be smeared out and shifted by several 100 MeV in their oscillatory structure if standard event selection is used. We show that a more restrictive experimental event selection offers the possibility to reach the accuracy needed for a determination of the mass ordering and the CP-violating phase. Quasielastic-based energy reconstruction could thus be a viable alternative to the calorimetric reconstruction also at higher energies. PMID:24785030

  13. Neutrino-nucleus interactions in the T2K experiment

    SciTech Connect

    Leitner, T.; Mosel, U.

    2010-09-15

    We present a study of neutrino-nucleus interactions at the T2K experiment based on the GiBUU transport model. The aim of T2K is to measure {nu}{sub e} appearance and {theta}{sub 13}, but it will also be able to do a precise measurement of {nu}{sub {mu}}disappearance. The former requires a good understanding of {pi}{sup 0} production, while the latter is closely connected with a good understanding of quasielastic scattering. For both processes we investigate the influence of nuclear effects and particular final-state interactions on the expected event rates, taking into account the T2K detector setup.

  14. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    SciTech Connect

    Bellini, F.

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  15. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    NASA Astrophysics Data System (ADS)

    Bellini, F.

    2012-11-01

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0νββ), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0νββ search will be given as well as an overview of present status and future perpectives of experiments.

  16. The status of the solar neutrino problem and the Russian-American gallium experiment (SAGE)

    SciTech Connect

    Bowles, T.J.

    1994-04-01

    Perhaps the most outstanding discrepancy between prediction and measurements in current particle physics comes from the solar neutrino problem, in which a large deficit of high-energy solar neutrinos is observed. Many Nonstandard Solar Models have been invoked to try to reduce the predicted flux, but all have run into problems in trying to reproduce other measured parameters (e.g., the luminosity) of the Sun. Other explanations involving new physics such as neutrino decay and neutrino oscillations, etc. have also been proffered. Again, most of these explanations have been ruled out by either laboratory or astrophysical measurements. It appears that perhaps the most likely particle physics solution is that of matter enhanced neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein (MSW) oscillations. Two new radiochemical gallium experiments, which have a low enough threshold to be sensitive to the dominant flux of low-energy p-p neutrinos, now also report a deficit and also favor a particle physics solution.

  17. Studies of Near-Far Neutrino Beam Correlations for the DUNE Experiment

    NASA Astrophysics Data System (ADS)

    Bashyal, Amit; DUNE Collaboration

    2016-03-01

    In the DUNE long-baseline neutrino experiment, the Near Detector near to the beamline sees a high neutrino flux, which helps to characterize the neutrino beam. Given a prediction for the neutrino flux at the Near Detector, the unoscillated flux at the Far Detector can be predicted and a transfer matrix constructed. We present results from a beam matrix method to predict the Far Detector flux from the Near Detector flux for the DUNE beamline and studies of the sensitivity to different physics models of the flux.

  18. Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source : a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  19. Spectral function in electro-weak interactions and its impact on neutrino oscillation experiments

    SciTech Connect

    Jen, C.-M.

    2015-10-15

    Neutrino oscillation experiments have entered the high-precision era in the last few years. The oscillation parameters, as a measure of the neutrino properties, are extracted from the energy-dependent oscillation probability function. Different types of nuclear dynamics deeply influence the determination of neutrino energies in neutrino oscillation experiments. As a consequence, a comprehensive understanding of various nuclear dynamics interprets the scenario behind the neutrino interaction with nucleus and nuclei. The initial ground-state structure of the target nucleus is categorized in one typical nuclear dynamics, and its realistic description is generally referred as the spectral function (SF). Implementing the SF for each target nucleus into the GENIE neutrino event generator is the preliminary step necessary to obtain a reliable determination of the kinematics of all detectable final-products from neutrino interactions. At the intermedium-range of neutrino energies (∼ 1 GeV), the kinematic energy reconstruction is the vastly used approach and consists in identifying final-products as coming from the charged-current quasi-elastic-like (CCQE-like) neutrino interactions.

  20. Spectral function in electro-weak interactions and its impact on neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Jen, C.-M.

    2015-10-01

    Neutrino oscillation experiments have entered the high-precision era in the last few years. The oscillation parameters, as a measure of the neutrino properties, are extracted from the energy-dependent oscillation probability function. Different types of nuclear dynamics deeply influence the determination of neutrino energies in neutrino oscillation experiments. As a consequence, a comprehensive understanding of various nuclear dynamics interprets the scenario behind the neutrino interaction with nucleus and nuclei. The initial ground-state structure of the target nucleus is categorized in one typical nuclear dynamics, and its realistic description is generally referred as the spectral function (SF). Implementing the SF for each target nucleus into the GENIE neutrino event generator is the preliminary step necessary to obtain a reliable determination of the kinematics of all detectable final-products from neutrino interactions. At the intermedium-range of neutrino energies (˜ 1 GeV), the kinematic energy reconstruction is the vastly used approach and consists in identifying final-products as coming from the charged-current quasi-elastic-like (CCQE-like) neutrino interactions.

  1. Prompt neutrino results from a proton beam dump experiment

    NASA Astrophysics Data System (ADS)

    Berge, P.; Dydak, F.; Guyot, C.; Hagelberg, R.; Merlo, J. P.; Ranjard, F.; Rothberg, J.; Steinberger, J.; Taureg, H.; von Rüden, W.; Wahl, H.; Williams, R. W.; Wotschack, J.; Blümer, H.; Buchholz, P.; Duda, J.; Eisele, F.; Kleinknecht, K.; Knobloch, J.; Pollmann, D.; Pszola, B.; Renk, B.; Belusević, R.; Falkenburg, B.; Flottmann, T.; de Groot, J. G. H.; Geweniger, C.; Hepp, V.; Keilwerth, H.; Tittel, K.; Debu, P.; Para, A.; Perez, P.; Peyaud, B.; Rander, J.; Schuller, J. P.; Turlay, R.; Abramowicz, H.; Królikowski, J.

    1992-06-01

    A study of prompt neutrino events from 400 GeV protons on a beam-dump is presented. The ratio of electron- to muon-neutrino rates is 0.86±0.14, in agreement with e-μ universality. The anti-neutrino to neutrino flux ratio isbar v_μ /v_μ = 0.81 ± 0.19. The absolute rates and distributions observed are shown to be in quantitative agreement with the known properties of charmedquark production in hadron collisions.

  2. Neutrino-oscillation experiments at Brookhaven National Laboratory

    SciTech Connect

    Ahrens, L.A.; Aronson, S.A.; Connolly, P.L.; Gibbard, B.G.; Maeda, Y.; Murtagh, M.J.; Murtagh, S.J.; Terada, S.; Callas, J.; Cutts, D.

    1983-01-01

    Two groups have submitted major proposals for neutrino oscillation searches at BNL. Both are two detector experiments with a close detector at approx. = 100m and a far detector at approx. = 900m. While the details of the experiments are quite different, both groups expect to obtain nu/sub ..mu../ disappearance limits of delta m/sup 2/sin2 theta approx. = 0.1 - 0.2 for small mass difference and sin/sup 2/2 theta at the few percent level for the most sensitive delta m/sup 2/(approx. = 25eV/sup 2/). Since both detectors are designed to identify electrons as well as muons they expect to obtain significant limits on nu/sub e/ appearance (nu/sub ..mu../ ..-->.. nu/sub e/). Each has received approval for a single detector (Phase I) experiment with the two detector phase (Phase II) still pending. The present status of the single detector experiments is detailed. (WHK)

  3. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  4. Sterile Neutrino Search with MINOS

    NASA Astrophysics Data System (ADS)

    Devan, Alena V.

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Amt. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Delta m2s 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  5. Neutrino

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-04-01

    The most basic Quantum are the particles who mutual rotation, quantum is composed of basic quantum.Quantum convergence or divergence is conditional, the faster the particle rotates, the smaller the orbiting radius will be, the greater quality is, the more density will be. The orbiting radius of less than 10-15 meters in the order of convergence, convergence of neutron, proton, and then they are in the formation of the nucleus, and the convergence of quantum can make extra nuclear electron and the formation of atomic; if rotation radius is more than 10-15 meters of magnitude, the internal quantum atoms diverge to outer space in the form of electromagnetic waves. The quality of magnetic wave particle is composed of the rotation speed of the particle which is internal of the electromagnetic, it doesn't matter about the electromagnetic wave propagation velocity of particles. Neutrinos are orbiting particles, the orbiting radius is about 10-15 meters, is a special kind of radiation. Neutrino is between the virtual particles (according to modern science, the electromagnetic wave doesn't have quality) and modern scientific (the particle who has quality) special particles

  6. Diagnostics for advanced laser acceleration experiments

    SciTech Connect

    Misuri, Alessio

    2002-06-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  7. Feasibility of /sup 81/Br(nu,e/sup -/)/sup 81/Kr solar neutrino experiment

    SciTech Connect

    Hurst, G.S.; Allman, S.L.; Chen, C.H.; Kramer, S.D.; Thomson, J.O.; Cleveland, B.

    1985-05-01

    Several ingenious solutions have been offered for the solar neutrino problem - a defect in the solar model, the appearance of a new type of neutrino physics, the sun is no longer burning, etc. The range of these proffered solutions stresses the need for a new experiment to study the sun. The modern pulsed laser now makes possible a new solar neutrino test which examines an independent neutrino source in the sun. A recently proposed experiment would use the reaction /sup 81/Br(nu,e/sup -/)/sup 81/Kr to measure the flux of /sup 7/Be neutrinos from the sun. When /sup 7/Be decays by electron capture to make /sup 7/Li, a neutrino is emitted at 0.862 MeV and the flux of these on the earth is about 4 x 10/sup 9/ cm/sup -2/ s/sup -1/, according to the standard model. Therefore, an experiment based on /sup 81/Br(nu,e/sup -/)/sup 81/Kr which is sensitive to these lower energy neutrinos would be of fundamental importance. To first order, the chlorine experiment detects the /sup 8/B neutrinos while bromine detects the much more abundant /sup 7/Be neutrino source. In practice, the proposed bromine experiment would be very similar to the chlorine radiochemical experiment, except that /sup 81/Kr with a half-life of 2 x 10/sup 5/ years cannot be counted by decay methods. With an experiment of about the same volume as the chlorine experiment (380 m/sup 3/) filled with CH/sub 2/Br/sub 2/, the model predicts about 2 atoms of /sup 81/Kr per day. The bromine experiment depends entirely on the RIS method, implemented with pulsed lasers, for its success. 10 refs., 3 figs.

  8. High Temperature μSR Experiments for Accelerator Developments

    NASA Astrophysics Data System (ADS)

    Ohmori, Chihiro; Koda, Akihiro; Miyake, Yasuhiro; Nishiyama, Kusuo; Shimomura, Koichiro; Schnase, Alexander; Ezura, Eiji; Hara, Keigo; Hasegawa, Katsushi; Nomura, Masahiro; Shimada, Taihei; Takata, Koji; Tamura, Fumihiko; Toda, Makoto; Yamamoto, Masanobu; Yoshii, Masahito

    High temperature μSR is a powerful technique to study magnetic materials. In J-PARC accelerator synchrotrons, the Rapid Cycling Synchrotron (RCS) and Main Ring (MR), a unique magnetic alloy-loaded cavity is used for the beam acceleration and much higher field gradient has been achieved. Such high field gradient cavities made a compact RCS possible by reducing the length for beam acceleration. Now, further upgrades of the J-PARC, RF cavities with higher RF voltage and less power loss in the magnetic core are needed for the MR. For the improvements of the magnetic property of magnetic alloy core, the high temperature μSR (muon Spin Rotation/Relaxation) was used to investigate the crystallization process of the material. Based on the measurement results, the test production of the large ring cores of a magnetic alloy, FT3L, was tried. The FT3L is the magnetic alloy which has two times better performance than the present one, FT3M. For the FT3L production, the magnetic annealing is needed to control the easy-magnetized axis of the crystalline. After the success of the test production, a mass production was started in the industry to replace all existing cavities in the MR. The first 5-cell FT3L cavity is assembled for the bench test before the installation in the accelerator tunnel. By the new cavities, the total RF voltage of J-PARC MR will be doubled to increase the beam power for neutrino experiment. In future, the cavities will be also used for the RCS to increase the beam power beyond 1 MW.

  9. Sensitivity of low energy neutrino experiments to physics beyond the standard model

    SciTech Connect

    Barranco, J.; Miranda, O. G.; Rashba, T. I.

    2007-10-01

    We study the sensitivity of future low energy neutrino experiments to extra neutral gauge bosons, leptoquarks, and R-parity breaking interactions. We focus on future proposals to measure coherent neutrino-nuclei scattering and neutrino-electron elastic scattering. We introduce a new comparative analysis between these experiments and show that in different types of new physics it is possible to obtain competitive bounds to those of present and future collider experiments. For the cases of leptoquarks and R-parity breaking interactions we found that the expected sensitivity for most of the future low energy experimental setups is better than the current constraints.

  10. Super-NOnuA: A Long-baseline neutrino experiment with two off-axis detectors

    SciTech Connect

    Mena Requejo, Olga; Palomares-Ruiz, Sergio; Pascoli, Silvia; /CERN

    2005-04-01

    Establishing the neutrino mass hierarchy is one of the fundamental questions that will have to be addressed in the next future. Its determination could be obtained with long-baseline experiments but typically suffers from degeneracies with other neutrino parameters. We consider here the NOvA experiment configuration and propose to place a second off-axis detector, with a shorter baseline, such that, by exploiting matter effects, the type of neutrino mass hierarchy could be determined with only the neutrino run. We show that the determination of this parameter is free of degeneracies, provided the ratio L/E, where L the baseline and E is the neutrino energy, is the same for both detectors.

  11. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  12. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  13. ICFA neutrino panel report

    SciTech Connect

    Long, K.

    2015-07-15

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments. >>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  14. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, Tatsuzo

    1988-01-01

    The purpose of Space Experiments with Particle Accelerators (SEPAC) on the Atmospheric Laboratory for Applications and Science (ATLAS 1) mission, is to carry out active and interactive experiments on and in the earth's ionosphere, atmosphere, and magnetosphere. The instruments to be used are an electron beam accelerator (EBA), plasma contactor, and associated instruments the purpose of which is to perform diagnostic, monitoring, and general data taking functions. Four major classes of investigations are to be performed by SEPAC. They are: beam plasma physics, beam-atmosphere interactions, the use of modulated electron beams as transmitting antennas, and the use of electron beams for remote sensing of electric and magnetic fields. The first class consists mainly of onboard plasma physics experiments to measure the effects of phenomena in the vicinity of the shuttle. The last three are concerned with remote effects and are supported by other ATLAS 1 investigations as well as by ground-based observations.

  15. The status of the study of solar CNO neutrinos in the Borexino experiment

    SciTech Connect

    Lukyanchenko, G. A.; Collaboration: Borexino Collaboration

    2015-12-15

    Although less than 1% of solar energy is generated in the CNO cycle, it plays a critical role in astrophysics, since this cycle is the primary source of energy in certain more massive stars and at later stages of evolution of solar-type stars. Electron neutrinos are produced in the CNO cycle reactions. These neutrinos may be detected by terrestrial neutrino detectors. Various solar models with different abundances of elements heavier than helium predict different CNO neutrino fluxes. A direct measurement of the CNO neutrino flux could help distinguish between these models and solve several other astrophysical problems. No CNO neutrinos have been detected directly thus far, and the best upper limit on their flux was set in the Borexino experiment. The work on reducing the background in the region of energies of CNO neutrinos (up to 1.74 MeV) and developing novel data analysis methods is presently under way. These efforts may help detect the CNO neutrino flux in the Borexino experiment at the level predicted by solar models.

  16. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  17. Positronium signature in organic liquid scintillators for neutrino experiments

    SciTech Connect

    Franco, D.; Consolati, G.; Trezzi, D.

    2011-01-15

    Electron antineutrinos are commonly detected in liquid scintillator experiments via inverse {beta} decay by looking at the coincidence between the reaction products: neutrons and positrons. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean lifetime of a few nanoseconds. Even if the o-Ps decay is speeded up by spin-flip or pick-off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in antineutrino experiments. Reversing the problem, the o-Ps-induced time distortion represents a new signature for tagging antineutrinos in liquid scintillator. In this article, we report the results of measurements of the o-Ps formation probability and lifetime for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the article, we demonstrate that the o-Ps-induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the antineutrino detection.

  18. The detector system of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  19. Neutrino mass and mixing: from theory to experiment

    NASA Astrophysics Data System (ADS)

    King, Stephen F.; Merle, Alexander; Morisi, Stefano; Shimizu, Yusuke; Tanimoto, Morimitsu

    2014-04-01

    The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problems in high-energy physics. One possibility to address the flavour problems is by extending the standard model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups that have been used to attempt a solution for it. We review the current status of models in light of the recent measurement of the reactor angle, and we consider different model-building directions taken. The use of the flavons or multi-Higgs scalars in model building is discussed as well as the direct versus indirect approaches. We also focus on the possibility of experimentally distinguishing flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested in starting work in the field could use this text as a starting point in order to obtain a broad overview of the different subject areas.

  20. Space experiments with particle accelerators. [Spacelab

    NASA Technical Reports Server (NTRS)

    Obayashi, T.

    1981-01-01

    The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

  1. Orbital Acceleration Research Experiment: Calibration Measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1995-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three-axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass, which can resolve accelerations to the 10(sub -9) g level. The experiment also contains a full calibration station to permit in situ bias and scale-factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the Orbiter, and thus provides absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale-factor measurements have been performed on orbit. A detailed analysis of the calibration process is given, along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight-maneuver data used to validate the scale-factor measurements in the sensor's most sensitive range are also presented. Estimates on calibration uncertainties are discussed. These uncertainty estimates provides bounds on the STS-58 absolute acceleration measurements for future applications.

  2. The Opera Long Baseline Neutrino Experiment:. Status and First Results

    NASA Astrophysics Data System (ADS)

    Besnier, M.

    2009-09-01

    OPERA (Oscillation Project with Emulsion tRacking Apparatus)1 is an international collaboration (Europe-Asia). It aims to give the first direct proof of the νμ → ντ atmospheric oscillation hypothesis, by searching for a ντ appearance at Gran Sasso laboratory in a νμ beam produced at CERN 730 km away. Electronic detectors have been fully commissioned and tested with the first neutrino beam run in 2006, and the full target is expected for summer 2008. OPERA started its neutrino data taking in October 2007, and neutrino interactions have already been reconstructed in the target.

  3. Precision measurement of solar neutrino oscillation parameters by a long-baseline reactor neutrino experiment in Europe

    NASA Astrophysics Data System (ADS)

    Petcov, S. T.; Schwetz, T.

    2006-11-01

    We consider the determination of the solar neutrino oscillation parameters Δm212 and θ12 by studying oscillations of reactor anti-neutrinos emitted by nuclear power plants (located mainly in France) with a detector installed in the Frejus underground laboratory. The performances of a water Čerenkov detector of 147 kt fiducial mass doped with 0.1% of gadolinium (MEMPHYS-Gd) and of a 50 kt scale liquid scintillator detector (LENA) are compared. In both cases 3σ uncertainties below 3% on Δm212 and of about 20% on sin2θ12 can be obtained after one year of data taking. The gadolinium doped Super-Kamiokande detector (SK-Gd) in Japan can reach a similar precision if the SK/MEMPHYS fiducial mass ratio of 1 to 7 is compensated by a longer SK-Gd data taking time. Several years of reactor neutrino data collected by MEMPHYS-Gd or LENA would allow a determination of Δm212 and sin2θ12 with uncertainties of approximately 1% and 10% at 3σ, respectively. These accuracies are comparable to those that can be reached in the measurement of the atmospheric neutrino oscillation parameters Δm312 and sin2θ23 in long-baseline superbeam experiments.

  4. Measurement of low energy neutrino cross sections with the PEANUT experiment

    SciTech Connect

    Russo, A.

    2011-11-23

    The PEANUT experiment was designed to study neutrino interactions in the few GeV range using the NuMi beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a tracking device and they are interleaved with lead plates used as neutrino target. The detector is designed to reconstruct the topology of neutrino interactions at the single particle level. We present here the full reconstruction and analysis of a sample of 147 neutrino interactions occurred in the PEANUT detector and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross-section. This technique could be applied for the beam monitoring for future neutrino facilities.

  5. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  6. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  7. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  8. Study of muon neutrino and muon antineutrino disappearance with the NOvA neutrino oscillation experiment

    SciTech Connect

    Pawloski, Gregory

    2014-06-30

    The primary goal of this working group is to study the disappearance rate of νμ charged current events in order to measure the mixing angle θ23 and the magnitude of the neutrino mass square splitting Δm 232.

  9. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  10. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    SciTech Connect

    Katori, Teppei

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for vμ → ve appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (vμ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10-38 cm2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). ve appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

  11. Neutrinos from collapsars

    NASA Astrophysics Data System (ADS)

    Vieyro, F. L.; Romero, G. E.; Peres, O. L. G.

    2013-10-01

    Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims: If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods: We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results: The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions: The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.

  12. Magnetically accelerated foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, Stephan; Ford, Jessica; Martinez, David; Plechaty, Christopher; Wright, Sandra; Presura, Radu

    2008-04-01

    The interaction of shock waves with inhomogeneous media is important in many astrophysical problems, e.g. the role of shock compression in star formation. Using scaled experiments with inhomogeneous foam targets makes it possible to study relevant physics in the laboratory, to better understand the mechanisms of shock compression and to benchmark astrophysical simulation codes. Experiments with flyer-generated shock waves have been performed on the Z machine in Sandia. The Zebra accelerator at the Nevada Terawatt Facility (NTF) allows for complementary experiments with high repetition rate. First experiments on Zebra demonstrated flyer acceleration to sufficiently high velocities (around 2 km/s) and that laser shadowgraphy can image sound fronts in transparent targets. Based on this, we designed an optimized setup to improve the flyer parameters (higher speed and mass) to create shock waves in transparent media. Once x-ray backlighting with the Leopard laser at NTF is operational, we will switch to foam targets with parameters relevant for laboratory astrophysics.

  13. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  14. The LHCf experiment at the LHC accelerator

    SciTech Connect

    Bonechi, L.; Adriani, O.; Bongi, M.; D'Alessandro, R.; Papini, P.; Castellini, G.; Faus, A.; Velasco, J.; Haguenauer, M.; Itow, Y.; Mase, T.; Masuda, K.; Matsubara, Y.; Matsumoto, H.; Menjo, H.; Muraki, Y.; Sako, T.; Tanaka, K.; Watanabe, H.; Kasahara, K.

    2006-10-27

    The claimed discovery of atmospheric shower induced by cosmic-ray with energy beyond the GZK cutoff by the AGASA experiment in 1994-1995, although not confirmed by other important experiments like Fly's Eye and Hi-Res, together with the poor knowledge of the composition of cosmic rays around and beyond the Knee region, have highlighted the necessity of new experiments that should increase our present knowledge of HECR and UHECR. For this reason big efforts have been addressed to the development of new experiments, like Auger, TA and EUSO, for a systematic study of the UHE atmospheric showers with increased capabilities with respect to the previous experiments. Moreover complementary experiments should allow a precise calibration of the methods used for the reconstruction of cosmic-ray showers in atmosphere. Their aim is the measurement of quantities that are used in these procedures and that are not yet precisely known. Under this perspective the LHCf experiment is a compact experiment which has been proposed for the study of neutral pion and gamma production at high energy in proton-proton interaction in the very forward region of the LHC accelerator. It will help calibrating the algorithms that are used to reconstruct the atmospheric shower events for energy beyond the Knee. The LHCf apparatus and the results of the first beam test, held in 2004, are shortly discussed in this work.

  15. Constraining Hořava-Lifshitz gravity from neutrino speed experiments

    NASA Astrophysics Data System (ADS)

    Saridakis, Emmanuel N.

    2013-02-01

    We constrain Hořava-Lifshitz gravity using the results of the OPERA and ICARUS neutrino speed experiments, which show that neutrinos are luminal particles, as found from examining the fermion propagation in the earth's gravitational field. In particular, investigating the Dirac equation in the spherical solutions of the theory, we find that the neutrinos feel an effective metric with respect to which they might propagate superluminally. Therefore, in demanding not to have superluminal or subluminal motion we constrain the parameters of the theory. Although the excluded parameter regions are very narrow, we find that the detailed balance case lies in the excluded region.

  16. Measurement of the response of a Ga solar neutrino experiment to neutrinos from a {sup 37}Ar source

    SciTech Connect

    Abdurashitov, J.N.; Gavrin, V.N.; Girin, S.V.

    2006-04-15

    An intense source of {sup 37}Ar was produced by the (n,{alpha}) reaction on {sup 40}Ca by irradiating 330 kg of calcium oxide in the fast neutron breeder reactor at Zarechny, Russia. The {sup 37}Ar was released from the solid target by dissolution in acid, collected from this solution, purified, sealed into a small source, and brought to the Baksan Neutrino Observatory where it was used to irradiate 13 tonnes of gallium metal in the Russian-American gallium solar neutrino experiment SAGE. Ten exposures of the gallium to the source, whose initial strength was 409{+-}2kCi, were carried out during the period April to September 2004. The {sup 71}Ge produced by the reaction {sup 71}Ga({nu}{sub e},e{sup -}){sup 71}Ge was extracted, purified, and counted. The measured production rate was 11.0{sub -0.9}{sup +1.0} (stat){+-}0.6 (syst) atoms of {sup 71}Ge/d, which is 0.79{sub -0.10}{sup +0.09} of the theoretically calculated production rate. When all neutrino source experiments with gallium are considered together, there is an indication the theoretical cross section has been overestimated.

  17. Measurement of neutrino mixing angle θ13 and mass difference Δ mee2 from reactor antineutrino disappearance in the RENO experiment

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    2016-07-01

    RENO (Reactor Experiment for Neutrino Oscillation) made a definitive measurement of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of reactor electron antineutrinos. The experiment has obtained a more precise value of the mixing angle and the first result on neutrino mass difference Δ mee2 from an energy and baseline dependent reactor neutrino disappearance using ∼500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured in two identical far and near detectors, we obtain sin2 ⁡ (2θ13) = 0.082 ± 0.009 (stat .) ± 0.006 (syst .) and | Δ mee2 | = [2.62-0.23+0.21 (stat .)-0.13+0.12 (syst .) ] ×10-3 eV2. An excess of reactor antineutrinos near 5 MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A successful measurement of θ13 is also made in an IBD event sample with a delayed signal of neutron capture on hydrogen. A precise value of θ13 would provide important information on determination of the leptonic CP phase if combined with a result of an accelerator neutrino beam experiment.

  18. Choosing experiments to accelerate collective discovery

    SciTech Connect

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; Evans, James A.

    2015-11-24

    Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation would accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.

  19. Choosing experiments to accelerate collective discovery

    DOE PAGESBeta

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; Evans, James A.

    2015-11-24

    Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation wouldmore » accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.« less

  20. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, Jeremy

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  1. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, J.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  2. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  3. Neutrino Scattering Uncertainties and their Role in Long Baseline Oscillation Experiments

    SciTech Connect

    D.A. Harris; G. Blazey; Arie Bodek; D. Boehnlein; S. Boyd; William Brooks; Antje Bruell; Howard S. Budd; R. Burnstein; D. Casper; A. Chakravorty; Michael Christy; Jesse Chvojka; M.A.C. Cummings; P. deBarbaro; D. Drakoulakos; J. Dunmore; Rolf Ent; Hugh Gallagher; David Gaskell; Ronald Gilman; Charles Glashausser; Wendy Hinton; Xiaodong Jiang; T. Kafka; O. Kamaev; Cynthia Keppel; M. Kostin; Sergey Kulagin; Gerfried Kumbartzki; Steven Manly; W.A. Mann; Kevin Mcfarland-porter; Wolodymyr Melnitchouk; Jorge Morfin; D. Naples; John Nelson; Gabriel Niculescu; Maria-ioana Niculescu; W. Oliver; Michael Paolone; Emmanuel Paschos; A. Pla-Dalmau; Ronald Ransome; C. Regis; P. Rubinov; V. Rykalin; Willis Sakumoto; P. Shanahan; N. Solomey; P. Spentzouris; P. Stamoulis; G. Tzanakos; Stephen Wood; F.X. Yumiceva; B. Ziemer; M. Zois

    2004-10-01

    The field of oscillation physics is about to make an enormous leap forward in statistical precision: first through the MINOS experiment in the coming year, and later through the NOvA and T2K experiments. Because of the relatively poor understanding of neutrino interactions in the energy ranges of these experiments, there are systematics that can arise in interpreting far detector data that can be as large as or even larger than the expected statistical uncertainties. We describe how these systematic errors arise, and how specific measurements in a dedicated neutrino scattering experiment like MINERvA can reduce the cross section systematic errors to well below the statistical errors.

  4. Type IIn supernovae as sources of high energy astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Zirakashvili, V. N.; Ptuskin, V. S.

    2016-05-01

    It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration. We calculate the neutrino spectrum produced by an individual Type IIn supernova and the spectrum of neutrino background produced by IIn supernovae in the expanding Universe. We also found that the arrival direction of one Icecube neutrino candidate (track event 47) is at 1.35° from Type IIn supernova 2005bx.

  5. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.

    1982-01-01

    Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.

  6. Magnetically accelerated foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, S.; Ford, J.; Wright, S.; Martinez, D.; Plechaty, C.; Presura, R.

    2009-08-01

    Many astrophysical phenomena involve the interaction of a shock wave with an inhomogeneous background medium. Using scaled experiments with inhomogeneous foam targets makes it possible to study relevant physics in the laboratory to better understand the mechanisms of shock compression and to benchmark astrophysical simulation codes. First experiments on Zebra at the Nevada Terawatt Facility (NTF) have demonstrated flyer acceleration to sufficiently high velocities (up to 5 km/s) and that laser shadowgraphy can image sound fronts in transparent targets. Based on this, we designed an optimized setup to improve the flyer parameters (higher speed and mass) to create shock waves in transparent media. Once x-ray backlighting with the Leopard laser at NTF is operational, we will switch to foam targets with parameters relevant for laboratory astrophysics.

  7. Issues in Acceleration of A Muon Beam for a Neutrino Factory

    SciTech Connect

    J. Delayen; D. Douglas; L. Harwood; V. Lebedev; C. Leemann; L. Merminga

    2001-06-01

    We have developed a concept for acceleration of a large phase-space, pulsed muon beam from 190 MeV to 50 GeV as part of a collaborative study of the feasibility of a neutrino factory based on in-flight decay of muons. The muon beam's initial energy spread was {approximately}20% and each bunch has the physical size of a soccer ball. Production of the muons will be quite expensive, so prevention of loss due to scraping or decay is critical. The former drives the system to large apertures and the latter calls for high real-estate-average gradients. The solution to be presented utilizes a 3 GeV linac to capture the beam, a 4-pass recirculating linac to get the beam to 10 GeV, and then a 5-pass linac to get the beam to 50 GeV. Throughout the system, longitudinal dynamics issues far outweighed transverse dynamics issues. This paper focuses on the issues surrounding the choice of superconducting rf structures over copper structures.

  8. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  9. Two experiments in neutrino physics: Double beta decay of cadmium-116 and the efficiency of an argon-40 neutrino detector

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Manojeet

    1999-03-01

    This thesis contains work concerning two experiments related to searches for neutrino masses. 1. QRPA calculations of double-β-decays have not been able to reproduce data in the A = 100 system. We propose the A = 116 system-because of its smaller deformation-as a simpler system to test QRPA calculations. We performed two experiments that determine the previously unknown electron capture (EC) decay branch of 116In to be (2.27 ± 0.63) × 10- 2%, from which we deduce logft = 4.39- 0.15+0.10. We then used this EC logft value along with the well known βsp- logft values to predict the 2ν double-β decay rate of 116Cd to the g.s. and the first excited 0+ state of 116Sn. The prediction shows that the contribution to the double-β decay rate from the g.s could exceed the total decay rate indicating a cancellation of contributions from the excited states of 116In. 2. We studied β-delayed proton and γ emission from 40Ti decay. We found t1/over 2 = 53.6 ± 0.6 ms and observed 28 proton groups that we organized into a 40Ti decay with 21 branches. The reduced transition strengths of these decay branches were then used to compute the neutrino detection efficiency of the ICARUS liquid argon time-projection chamber. Our integrated GT strength is about 20% larger than the theoretical prediction. We found 40Ar(/nu,e) cross-sections (for an electron energy threshold W = 5 MeV) of (13.8 ± 0.3) × 10-43cm2, (74.0 ± 1.6) × 10- 43cm2 and (3.2 ± 0.1) × 10- 41cm2 for 8B neutrinos, hep neutrinos and supernova neutrinos characterized by a temperature of 4.5 MeV.

  10. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  11. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng; Zhou, Ye-Ling

    2014-11-01

    We discuss reactor antineutrino oscillations with non-standard interactions (NSIs) at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline) dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO) as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters. Long baseline reactor antineutrino experiments, such as KamLAND [10,11]. The aim of these experiments is to observe the slow oscillation with Δ21 and measure the corresponding oscillation parameters Δm212 and θ12. Short baseline reactor antineutrino experiments, such as Daya Bay [1-3], Double CHOOZ [4], RENO [5]. They are designed to observe the fast oscillation with Δ31 and Δ32 (or equivalently, Δee[3]) and measure the corresponding oscillation parameters Δmee2, θ13. Medium baseline reactor antineutrino experiments. They stand for the next generation experiments of reactor antineutrinos, with typical representatives of Jiangmen Underground Neutrino Observatory (JUNO) [12] and RENO-50 [13]. They can determine the neutrino mass ordering (m1experiments. High-dimensional operators originating from new physics can contribute to the neutrino oscillation in the form of non-standard interactions (NSIs) [14

  12. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  13. Limit on the electron neutrino magnetic moment from the kuo-sheng reactor neutrino experiment.

    PubMed

    Li, H B; Li, J; Wong, H T; Chang, C Y; Chen, C P; Fang, J M; Hu, C H; Kuo, W S; Lai, W P; Lee, F S; Lee, S C; Lin, S T; Luo, C S; Liu, Y; Qiu, J F; Sheng, H Y; Singh, V; Su, R F; Teng, P K; Tong, W S; Wang, S C; Xin, B; Yeh, T R; Yue, Q; Zhou, Z Y; Zhuang, B A

    2003-04-01

    A search of neutrino magnetic moment was carried out at the Kuo-Sheng Nuclear Power Station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1 kg(-1) keV(-1) day(-1) at 12-60 keV were achieved. Based on 4712 and 1250 h of reactor ON and OFF data, respectively, the limit on the neutrino magnetic moment of mu(nu;(e))<1.3x10(-10)mu(B) at 90% confidence level was derived. An indirect bound of the nu;(e) radiative lifetime of m(3)(nu)tau(nu)>2.8x10(18) eV(3) s can be inferred. PMID:12689275

  14. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.

    1994-01-01

    The scientific emphasis of this contract has been on the physics of beam ionosphere interactions, in particular, what are the plasma wave levels stimulated by the Space Experiments with Particle Accelerators (SEPAC) electron beam as it is ejected from the Electron Beam Accelerator (EBA) and passes into and through the ionosphere. There were two different phenomena expected. The first was generation of plasma waves by the interaction of the DC component of the beam with the plasma of the ionosphere, by wave particle interactions. The second was the generation of waves at the pulsing frequency of the beam (AC component). This is referred to as using the beam as a virtual antenna, because the beam of electrons is a coherent electrical current confined to move along the earth's magnetic field. As in a physical antenna, a conductor at a radio or TV station, the beam virtual antenna radiates electromagnetic waves at the frequency of the current variations. These two phenomena were investigated during the period of this contract.

  15. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    NASA Astrophysics Data System (ADS)

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-01

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference Δm2≅0.9eV2. We trace its origin to harmonic oscillations in the electron survival probability Pee as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for Δm2≅1.9eV2. We point out that the phenomenon of harmonic oscillations of Pee as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV2 to several eV2 (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  16. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    SciTech Connect

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-15

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference {delta}m{sup 2} congruent with 0.9 eV{sup 2}. We trace its origin to harmonic oscillations in the electron survival probability P{sub ee} as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for {delta}m{sup 2} congruent with 1.9 eV{sup 2}. We point out that the phenomenon of harmonic oscillations of P{sub ee} as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV{sup 2} to several eV{sup 2} (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  17. Updated results of the OPERA long baseline neutrino experiment

    NASA Astrophysics Data System (ADS)

    Chukanov, Artem; Opera Collaboration

    2012-07-01

    The OPERA neutrino detector built in the underground Gran Sasso Laboratory is designed to detect νμ → ντ oscillations in direct appearance mode. The hybrid apparatus consists of an emulsion/lead target complemented by electronic detectors. It is placed in the long-baseline CERN to Gran Sasso neutrino beam (CNGS) 730 km away from the source. The experimental setup and ancillary facilities used to extract data recorded in the emulsion will be described, with the special procedures used to locate the interactions vertices and detect short decay topologies. OPERA is taking data since 2008. A first ντ interaction candidate was already published in 2010. An improved analysis scheme associated with a more detailed simulation has been developed and new results with increased statistics will be presented.

  18. Phenomenology of future neutrino experiments with large θ13

    NASA Astrophysics Data System (ADS)

    Minakata, Hisakazu

    2013-02-01

    The question "how small is the lepton mixing angle θ13?" had a convincing answer in a surprisingly short time, θ13≃9°, a large value comparable to the Chooz limit. It defines a new epoch in the program of determining the lepton mixing parameters, opening the door to search for lepton CP violation of the Kobayashi-Maskawa-type. I discuss influences of the large value of θ13 to search for CP violation and determination of the neutrino mass hierarchy, the remaining unknowns in the standard three-flavor mixing scheme of neutrinos. I emphasize the following two points: (1) Large θ13 makes determination of the mass hierarchy easier. It stimulates to invent new ideas and necessitates quantitative reexamination of practical ways to explore it. (2) However, large θ13 does not quite make CP measurement easier so that we do need a "guaranteeing machine" to measure CP phase δ.

  19. Phenomenology of atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Fedynitch, Anatoli

    2016-04-01

    The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  20. Disk Acceleration Experiment Utilizing Minimal Material (DAXUMM)

    NASA Astrophysics Data System (ADS)

    Biss, Matthew; Lorenz, Thomas; Sutherland, Gerrit

    2015-06-01

    A venture between the US Army Research Laboratory (ARL) and Lawrence Livermore National Laboratory (LLNL) is currently underway in an effort to characterize novel energetic material performance properties using a single, high-precision, gram-range charge. A nearly all-inclusive characterization experiment is proposed by combing LLNL's disk acceleration experiment (DAX) with the ARL explosive evaluation utilizing minimal material (AXEUMM) experiment. Spherical-cap charges fitted with a flat circular metal disk are centrally initiated using an exploding bridgewire detonator while photonic doppler velocimetry is used to probe the metal disk surface velocity and measure its temporal history. The metal disk's jump-off-velocity measurement is combined with conservation equations, material Hugoniots, and select empirical relationships to determine performance properties of the detonation wave (i.e., velocity, pressure, particle velocity, and density). Using the temporal velocity history with the numerical hydrocode CTH, a determination of the energetic material's equation of state and material expansion energy is possible. Initial experimental and computational results for the plastic-bonded energetic formulation PBXN-5 are presented.

  1. Isentropic Compression Experiments on the Z Accelerator

    NASA Astrophysics Data System (ADS)

    Asay, James

    1999-06-01

    Shock compression techniques are the only viable technique for making accurate EOS measurements in the multi-Mbar pressure regime. These experiments provide specific states of pressure, volume and internal energy on the Hugoniot. In many applications, it is necessary to know the off-Hugoniot isentropic loading response of materials to ultra-high pressures. Techniques for measuring isentropic response are challenging. At low pressures, ramp wave generators are used, while at high megabar pressures, graded density impactors are employed. In these latter experiments is a small amplitude shock results in the compression isentrope centered at some initial state. A new technique that is being developed shows promise for performing isentropic experiments with smooth loading to very high pressure. This approach uses the high current densities produced with fast pulsed power accelerators to create continuous magnetic loading to a few hundred kilobars over time intervals of 100-200 ns. The resulting ramp wave propagates through a planar specimen and are measured using time-resolved VISARS. Application of the differential equations of motion over the risetime of the waves determines pressure-volume states continuously. Experiments on copper and iron, have allowed determination of the isentropic compression curve in copper and the evaluation of the kinetic properties of the alpha-epsilon phase transition in iron. In this presentation, I will review previous studies of isentropic compression, discuss the new technique using Z and the results obtained on iron and copper. A perspective on the opportunities for isentropic compression experiments to multi-Mbar pressures, will be given. * Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500.

  2. Development of Superconducting Microresonators for a Neutrino Mass Experiment

    NASA Astrophysics Data System (ADS)

    Faverzani, M.; Day, P. K.; Falferi, P.; Ferri, E.; Giachero, A.; Giordano, C.; LeDuc, H. G.; Marghesin, B.; Mezzena, R.; Nizzolo, R.; Nucciotti, A.

    2014-08-01

    The determination of the neutrino mass is still an open issue in particle physics. The calorimetric measurement of the energy released in a nuclear beta decay allows to measure all the released energy, except the fraction carried away by the neutrino: a finite neutrino mass m causes the energy spectrum to be truncated at Q m, where Q is the transition energy. The electron capture of Ho (Q 2.5 keV) results to be an ideal decay. In order to achieve enough statistics, a large number of detectors (10) is required. Superconducting microwave microresonators are detectors suitable for large-scale multiplexed frequency domain readout, with theoretical energy and time resolution of eV and s. Our aim is to develop arrays of microresonator detectors applicable to the calorimetric measurement of the energy spectra of Ho. Currently, a study aimed to the selection of the best design and material for the detectors is in progress. In this contribution, a comparison between the measurements (critical temperature, gap parameter, quasiparticle recombination time and X-ray energy spectra) made with stoichiometric, sub-stoichiometric TiN and Ti/TiN multilayer films are presented.

  3. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGESBeta

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; et al

    2016-06-10

    In muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux frommore » 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  4. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  5. Cosmology based on f(R) gravity admits 1 eV sterile neutrinos.

    PubMed

    Motohashi, Hayato; Starobinsky, Alexei A; Yokoyama, Jun'ichi

    2013-03-22

    It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity. PMID:25166788

  6. Overview of the present status and challenges of neutrino oscillation physics

    SciTech Connect

    Mocioiu, Irina

    2012-11-20

    This is an overview of the current status of neutrino oscillation physics, including atmospheric, solar, reactor and accelerator neutrino experiments. After summarizing our present understanding of all data, I discuss the open questions and how they might be addressed in the future. I also discuss how neutrinos can be used to learn about new physics and astrophysics.

  7. Comparison of integrated numerical experiments with accelerator and FEL experiments

    SciTech Connect

    Thode, L.E.; Carlsten, B.E.; Chan, K.C.D.; Cooper, R.K.; Elliott, J.C.; Gitomer, S.J.; Goldstein, J.C.; Jones, M.E.; McVey, B.D.; Schmitt, M.J.; Takeda, H.; Tokar, R.L.; Wang, T.S.; Young, L.M.

    1991-01-01

    Even at the conceptual level the strong coupling between the laser subsystem elements, such as the accelerator, wiggler, optics, and control, greatly complicates the understanding and design of an FEL. Given the requirements for a high-performance FEL, the coupling between the laser subsystems must be included in the design approach. To address the subsystem coupling the concept of an integrated numerical experiment (INEX) has been implemented. Unique features of the INEX approach are consistency and numerical equivalence of experimental diagnostic. The equivalent numerical diagnostics mitigates the major problem of misinterpretation that often occurs when theoretical and experimental data are compared. A complete INEX model has been applied to the 10{mu}m high-extraction-efficiency experiment at Los Alamos and the 0.6-{mu}m Burst Mode experiment at Boeing Aerospace. In addition, various subsets of the INEX model have been compared with a number of other experiments. Overall, the agreement between INEX and the experiments is very good. With the INEX approach, it now appears possible to design high-performance FELS for numerous applications. The first full-scale test of the INEX approach is the Los Alamos HIBAF experiment. The INEX concept, implementation, and validation with experiments are discussed. 28 refs., 13 figs., 1 tab.

  8. MOON for a next-generation neutrino-less double-beta decay experiment: Present status and perspective

    SciTech Connect

    Shima, T.; Doe, P.J.; Ejiri, H.; Elliot, S.R.; Engel, J.; Finger, M.; Finger, M.; Fushimi, K.; Gehman, V.M.; Greenfield, M.B.; Hazama, R.; /Hiroshima U. /NIRS, Chiba

    2008-01-01

    The performance of the MOON detector for a next-generation neutrino-less double-beta decay experiment was evaluated by means of the Monte Carlo method. The MOON detector was found to be a feasible solution for the future experiment to search for the Majorana neutrino mass in the range of 100-30 meV.

  9. Non-standard interactions in propagation at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar

    2016-03-01

    We study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ɛ ˜ {O} (0.05 - 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.

  10. Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment

    DOE PAGESBeta

    Coloma, Pilar

    2016-03-03

    Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~more » $$ \\mathcal{O} $$ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.« less

  11. Low energy solar neutrino experiments: The Soviet American Gallium Experiment (SAGE). Final report, August 12, 1988--October 31, 1994

    SciTech Connect

    1995-04-01

    Two {sup 71}Ga experiments are currently in operation. The first is the 60 ton Soviet American Gallium Experiment (SAGE) at Baksan, which has recently reported a signal level of 73+18/{minus}16(stat)+5/{minus}7(syst) SNU; the second is the 30 ton GALLEX experiment at Gran Sasso, which sees 87{+-}14{+-}7 SNU. Both results are consistent, and both suggest a neutrino flux level low compared to the total expected from standard solar model calculations. It is not possible, however, to make a case for flux levels lower than the p-p prediction. Assuming the experiments are correct (Neutrino source calibrations are planned for both SAGE and GALLEX in the near future.), it is not at all clear yet whether the answer lies with the neutrino physics, solar physics, or a combination of both. Nevertheless, though solar model effects cannot be ruled out, if the Homestake and Kamiokande results are taken at face value, then these two experiments alone imply that neutrino oscillations or some similar particle physics result must be present to some degree. This report reviews the SAGE experiment and recent results. Non-radiochemical experiments are also discussed, with an emphasis on the Kamiokande water Cerenkov results.

  12. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    SciTech Connect

    Morfin, J.G.; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  13. Energy deposition via magnetoplasmadynamic acceleration: I. Experiment

    NASA Astrophysics Data System (ADS)

    Gilland, James; Mikellides, Pavlos; Marriott, Darin

    2009-02-01

    The expansion of a high-temperature fusion plasma through an expanding magnetic field is a process common to most fusion propulsion concepts. The propulsive efficiency of this process has a strong bearing on the overall performance of fusion propulsion. In order to simulate the expansion of a fusion plasma, a concept has been developed in which a high velocity plasma is first stagnated in a converging magnetic field to high (100s of eV) temperatures, then expanded though a converging/diverging magnetic nozzle. As a first step in constructing this experiment, a gigawatt magnetoplasmadynamic plasma accelerator was constructed to generate the initial high velocity plasma and has been characterized. The source is powered by a 1.6 MJ, 1.6 ms pulse forming network. The device has been operated with currents up to 300 kA and power levels up to 200 MWe. These values are among the highest levels reached in an magnetoplasmadynamic thruster. The device operation has been characterized by quasi-steady voltage and current measurements for helium mass flow rates from 0.5 to 27 g s-1. Probe results for downstream plasma density and electron temperature are also presented. The source behavior is examined in terms of current theories for magnetoplasmadynamic thrusters.

  14. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  15. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  16. A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac

    NASA Astrophysics Data System (ADS)

    Baussan, E.; Blennow, M.; Bogomilov, M.; Bouquerel, E.; Caretta, O.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; Davenne, T.; Densham, C.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Fernandez Martinez, E.; Gaudiot, G.; Hall-Wilton, R.; Koutchouk, J.-P.; Lindroos, M.; Loveridge, P.; Matev, R.; McGinnis, D.; Mezzetto, M.; Miyamoto, R.; Mosca, L.; Ohlsson, T.; Öhman, H.; Osswald, F.; Peggs, S.; Poussot, P.; Ruber, R.; Tang, J. Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.; Wilcox, D.; Wildner, E.; Wurtz, J.

    2014-08-01

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden, to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few μs with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 σ significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 σ if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.

  17. Early steps towards quarks and their interactions using neutrino beams in CERN bubble chamber experiments

    NASA Astrophysics Data System (ADS)

    Perkins, Don H.

    2016-06-01

    Results from neutrino experiments at CERN in the1970's, using bubble chamber detectors filled with heavy liquids, gave early evidence for the existence of quarks and gluons as real dynamical objects. In detail, the measured moments of the non-singlet structure functions provided crucial support for the validity of the present theory of the strong inter-quark interactions, quantum chromodynamics.

  18. Prospects for reconstruction of leptonic unitarity quadrangle and neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Verma, Surender; Bhardwaj, Shankita

    2016-06-01

    After the observation of non-zero θ13 the goal has shifted to observe CP violation in the leptonic sector. Neutrino oscillation experiments can, directly, probe the Dirac CP phases. Alternatively, one can measure CP violation in the leptonic sector using Leptonic Unitarity Quadrangle (LUQ). The existence of Standard Model (SM) gauge singlets - sterile neutrinos - will provide additional sources of CP violation. We investigate the connection between neutrino survival probability and rephasing invariants of the 4 × 4 neutrino mixing matrix. In general, LUQ contain eight geometrical parameters out of which five are independent. We obtain CP asymmetry (Pνf→νf‧ -Pνbarf→νbarf‧) in terms of these independent parameters of the LUQ and search for the possibilities of extracting information on these independent geometrical parameters in short baseline (SBL) and long baseline (LBL) experiments, thus, looking for constructing LUQ and possible measurement of CP violation. We find that it is not possible to construct LUQ using data from LBL experiments because CP asymmetry is sensitive to only three of the five independent parameters of LUQ. However, for SBL experiments, CP asymmetry is found to be sensitive to all five independent parameters making it possible to construct LUQ and measure CP violation.

  19. Early steps towards quarks and their interactions using neutrino beams in CERN bubble chamber experiments

    NASA Astrophysics Data System (ADS)

    Perkins, Don H.

    2016-05-01

    Results from neutrino experiments at CERN in the1970's, using bubble chamber detectors filled with heavy liquids, gave early evidence for the existence of quarks and gluons as real dynamical objects. In detail, the measured moments of the non-singlet structure functions provided crucial support for the validity of the present theory of the strong inter-quark interactions, quantum chromodynamics.

  20. Theta13 Neutrino Experiment at the Diablo Canyon Power Plant, LBNL Engineering Summary Report

    SciTech Connect

    Oshatz, Daryl

    2004-03-12

    This summary document describes the results of conceptual design and cost estimates performed by LBNL Engineering staff between October 10, 2003 and March 12, 2004 for the proposed {theta}{sub 13} neutrino experiment at the Diablo Canyon Power Plant (DCPP). This document focuses on the detector room design concept and mechanical engineering issues associated with the neutrino detector structures. Every effort has been made not to duplicate information contained in the last LBNL Engineering Summary Report dated October 10, 2003. Only new or updated information is included in this document.

  1. Argonne plasma wake-field acceleration experiments

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Gai, W.; Konecny, R.; Norem, J.; Schoessow, P.; Simpson, J.

    1989-03-14

    Four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These wake-fields are of interest both in the laboratory, for acceleration and focusing of electrons and positrons in future linear colliders, and in nature as a possible cosmic ray acceleration mechanism. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory. Some of the topics discussed are: the Argonne Advanced Accelerator Test Facility; linear plasma wake-field theory; measurement of linear plasma wake-fields; review of nonlinear plasma wave theory; and experimental measurement of nonlinear plasma wake-fields. 25 refs., 11 figs.

  2. Effective field theory treatment of the neutrino background in direct dark matter detection experiments

    NASA Astrophysics Data System (ADS)

    Dent, James B.; Dutta, Bhaskar; Newstead, Jayden L.; Strigari, Louis E.

    2016-04-01

    Distinguishing a dark matter interaction from an astrophysical neutrino-induced interaction will be major challenge for future direct dark matter searches. In this paper, we consider this issue within nonrelativistic effective field theory (EFT), which provides a well-motivated theoretical framework for determining nuclear responses to dark matter scattering events. We analyze the nuclear energy recoil spectra from the different dark matter-nucleon EFT operators, and compare them to the nuclear recoil energy spectra that are predicted to be induced by astrophysical neutrino sources. We determine that for 11 of the 14 possible operators, the dark matter-induced recoil spectra can be cleanly distinguished from the corresponding neutrino-induced recoil spectra with moderate-size detector technologies that are now being pursued, e.g., these operators would require 0.5 tonne years to be distinguished from the neutrino background for low mass dark matter. Our results imply that in most models detectors with good energy resolution will be able to distinguish a dark matter signal from a neutrino signal, without the need for much larger detectors that must rely on additional information from timing or direction. In addition we calculate up-to-date exclusion limits in the EFT model space using data from the LUX experiment.

  3. Muon and neutrino results from KGF experiment at a depth of 7000 hg/square cm

    NASA Technical Reports Server (NTRS)

    Krishnaswamy, M. R.; Menon, M. G. K.; Mondal, N. K.; Narasimham, V. S.; Streekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S.

    1985-01-01

    The KGF nucleon decay experiment at a depth of 7000 hg/sq cm has provided valuable data on muons and neutrinos. The detector comprised of 34 crossed layers of proportional counters (cross section 10 x 10 sq cm; lengths 4m and 6m) sandwiched between 1.2 cm thick iron plates can record tracks of charged particles to an accuracy of 1 deg from tracks that traverse the whole of the detector. A special two-fold coincidence system enables the detector to record charged particles that enter at very large zenith angles. In a live time of 3.6 years about 2600 events have been recorded. These events include atmospheric muons, neutrino induced muons from rock, stopping muons, showers and events which have their production vertex inside the detectors. The results on atmospheric muons and neutrino events are presented.

  4. Report of the Solar and Atmospheric Neutrino Working Group

    SciTech Connect

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-10-22

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy {sup 8}B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure {nu}{sub e}, which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of {theta}{sub 12} and, together with other solar neutrino measurements, either a measurement of {theta}{sub 13} or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the {sup 7}Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and {sup 7}Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very

  5. Accelerator Test Facility for Muon Collider and Neutrino Factory R&d

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. This article briefly reviews the needs and possibilities for a Muon Collider beam test facility to carry out the R&D program on the collider front-end and 6D cooling demonstration experiment.

  6. Nonstandard interaction effects on neutrino parameters at medium-baseline reactor antineutrino experiments

    NASA Astrophysics Data System (ADS)

    Ohlsson, Tommy; Zhang, He; Zhou, Shun

    2014-01-01

    Precision measurements of leptonic mixing parameters and the determination of the neutrino mass hierarchy are the primary goals of the forthcoming medium-baseline reactor antineutrino experiments, such as JUNO and RENO-50. In this work, we investigate the impact of nonstandard neutrino interactions (NSIs) on the measurements of {sin2 θ12,Δm212} and {sin2 θ13,Δm312}, and on the sensitivity to the neutrino mass hierarchy, at the medium-baseline reactor experiments by assuming a typical experimental setup. It turns out that the true mixing parameter sin2 θ12 can be excluded at a more than 3σ level if the NSI parameter ɛ or ɛ is as large as 2% in the most optimistic case. However, the discovery reach of NSI effects has been found to be small, and depends crucially on the CP-violating phases. Finally, we show that NSI effects could enhance or reduce the discrimination power of the JUNO and RENO-50 experiments between the normal and inverted neutrino mass hierarchies.

  7. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  8. The development of the SNO+ experiment: Scintillator timing, pulse shape discrimination, and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Erin

    The SNO+ experiment is a multi-purpose neutrino detector which is under construction in the SNOLAB facility in Sudbury, Ontario. SNO+ will search for neutrinoless double beta decay, and will measure low energy solar neutrinos. This thesis will describe three main development activities for the SNO+ experiment: the measurement of the timing parameters for the liquid scintillator cocktail, using those timing parameters to estimate the ability of SNO+ to discriminate alpha and beta events in the detector, and a sensitivity study that examines how solar neutrino data can constrain a light sterile neutrino model. Characterizing the timing parameters of the emission light due to charged-particle excitation in the scintillator is necessary for proper reconstruction of events in the detector. Using data obtained from a bench-top setup, the timing profile was modelled as three exponential components with distinct timing coefficients. Also investigated was the feasibility of using the timing profiles as a means to separate alpha and beta excitation events in the scintillator. The bench-top study suggested that using the peak-to-total method of analyzing the timing profiles could remove >99.9% of alpha events while retaining >99.9% of beta events. The timing parameters measured in the test set-up were then implemented in a Monte Carlo code which simulated the SNO+ detector conditions. The simulation results suggested that detector effects reduce the effectiveness of discriminating between alpha and beta events using the peak-to-total method. Using a more optimal method of analyzing the timing profile differences, specifically using a Gatti filter, improved the discrimination capability back to the levels determined in the bench-top setup. One of the physics goals of SNO+ is the first precision measurement of the pep solar neutrino ux at the level of about 5 % uncertainty. A study was performed to investigate how current solar neutrino data constrains the allowed parameters of

  9. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  10. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Anže E-mail: PVMcDonald@lbl.gov E-mail: BAReid@lbl.gov E-mail: anze@bnl.gov

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  11. NEUTRINO FACTORIES - PHYSICS POTENTIALS.

    SciTech Connect

    PARSA,Z.

    2001-02-16

    The recent results from Super-Kamiokande atmospheric and solar neutrino observations opens a new era in neutrino physics and has sparked a considerable interest in the physics possibilities with a Neutrino Factory based on the muon storage ring. We present physics opportunities at a Neutrino Factory, and prospects of Neutrino oscillation experiments. Using the precisely known flavor composition of the beam, one could envision an extensive program to measure the neutrino oscillation mixing matrix, including possible CP violating effects. These and Neutrino Interaction Rates for examples of a Neutrino Factory at BNL (and FNAL) with detectors at Gran Sasso, SLAC and Sudan are also presented.

  12. Neutrino physics with dark matter experiments and the signature of new baryonic neutral currents

    SciTech Connect

    Pospelov, Maxim

    2011-10-15

    New neutrino states {nu}{sub b}, sterile under the standard model interactions, can be coupled to baryons via the isoscalar vector currents that are much stronger than the standard model weak interactions. If some fraction of solar neutrinos oscillate into {nu}{sub b} on their way to Earth, the coherently enhanced elastic {nu}{sub b}-nucleus scattering can generate a strong signal in the dark matter detectors. For the interaction strength a few hundred times stronger than the weak force, the elastic {nu}{sub b}-nucleus scattering via new baryonic currents may account for the existing anomalies in the direct detection dark matter experiments at low recoil. We point out that for solar-neutrino energies, the baryon-current-induced inelastic scattering is suppressed, so that the possible enhancement of a new force is not in conflict with signals at dedicated neutrino detectors. We check this explicitly by calculating the {nu}{sub b}-induced deuteron breakup, and the excitation of a 4.4 MeV {gamma} line in {sup 12}C. A stronger-than-weak force coupled to the baryonic current implies the existence of a new Abelian gauge group U(1){sub B} with a relatively light gauge boson.

  13. Neutrino physics with dark matter experiments and the signature of new baryonic neutral currents

    NASA Astrophysics Data System (ADS)

    Pospelov, Maxim

    2011-10-01

    New neutrino states νb, sterile under the standard model interactions, can be coupled to baryons via the isoscalar vector currents that are much stronger than the standard model weak interactions. If some fraction of solar neutrinos oscillate into νb on their way to Earth, the coherently enhanced elastic νb-nucleus scattering can generate a strong signal in the dark matter detectors. For the interaction strength a few hundred times stronger than the weak force, the elastic νb-nucleus scattering via new baryonic currents may account for the existing anomalies in the direct detection dark matter experiments at low recoil. We point out that for solar-neutrino energies, the baryon-current-induced inelastic scattering is suppressed, so that the possible enhancement of a new force is not in conflict with signals at dedicated neutrino detectors. We check this explicitly by calculating the νb-induced deuteron breakup, and the excitation of a 4.4 MeV γ line in C12. A stronger-than-weak force coupled to the baryonic current implies the existence of a new Abelian gauge group U(1)B with a relatively light gauge boson.

  14. On Determination of the Geometric Cosmological Constant from the Opera Experiment of Superluminal Neutrinos

    NASA Astrophysics Data System (ADS)

    Yan, Mu-Lin; Hu, Sen; Huang, Wei; Xiao, Neng-Chao

    The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant Λeff which is the sum of the quantum zero point energy Λdark energy and the geometric cosmological constant Λ. The OPERA experiment can be applied to determine the geometric cosmological constant Λ. It is the first study to distinguish the contributions of Λ and Λdark energy from each other by experiment. The determination is based on an explanation of the OPERA experiment in the framework of Special Relativity with de Sitter spacetime symmetry.

  15. A search for sterile neutrinos in MINOS

    SciTech Connect

    Osiecki, Thomas Henry; /Texas U.

    2007-12-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining {Delta}m{sub 23}{sup 2} and {theta}{sub 23} through the disappearance of {nu}{sub {mu}}, MINOS is able to measure {nu}{sub {mu}} {yields} {nu}{sub sterile} by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS.

  16. The Majorana Zero-Neutrino Double-Beta Decay Experiment White Paper

    SciTech Connect

    Gaitskell, R.; Barabash, A.; Konovalov, S.; Stekhanov, V.; Umatov,, V.; Brudanin, V.; Egorov, S.; Webb, J.; Miley, Harry S.; Aalseth, Craig E.; Anderson, Dale N.; Bowyer, Ted W.; Brodzinski, Ronald L.; Jordan, David B.; Kouzes, Richard T.; Smith, Leon E.; Thompson, Robert C.; Warner, Ray A.; Tornow, W.; Young, A.; Collar, J. I.; Avignone, Frank T.; Palms, John M.; Doe, P. J.; Elliott, Steven R.; Kazkaz, K.; Robertson, Hamish; Wilkerson, John

    2002-03-07

    The goal of the Majorana Experiment is to determine the effective Majorana masss of the eletron neutrino. Detection of the neutrino mass implied by oscillation results in within our grasp. This exciting physics goal is best pursued using double-beta decay of germanium because of the historical and emerging advances in eliminating competing signals from radioactive backgrounds. The Majorana Experiment will consist of a large mass of 76Ge in the form of high-resolution detectors deep underground, searching for a sharp peak at the BB endpoint. We present here an overview of the entire project in order to help put in perspective the scope, the level and technial risk, and the readiness of the Collaboration to begin the undertaking.

  17. Status of Goldstone Lunar Ultra-High Energy Neutrino Experiment (GLUE)

    NASA Astrophysics Data System (ADS)

    Gorham, Peter W.; Liewer, Kurt M.; Milincic, Radovan; Naudet, Charles J.; Saltzberg, David; Williams, Dawn

    2003-02-01

    We report on results from 80 hours of livetime with the Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE). The experiment searches for microwave pulses (width <= 10 ns) from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of up-coming ~ 100 EeV neutrinos in the lunar regolith. Triggering on a timing coincidence between the two telescopes significantly reduces the terrestrial interference background, allowing operation at the thermal noise level. No unambiguous candidates are yet seen. We report on limits implied by this non-detection, based on new Monte Carlo estimates of the efficiency.

  18. Neutrinos Matter

    NASA Astrophysics Data System (ADS)

    Freedman, Stuart

    2003-04-01

    The excitement about neutrinos is all about mass. Recent experiments have established that neutrino have mass and that the familiar weak interaction states ν_e, ν_μ, and ν_τ are not the states the quantum states with definite mass. These new discoveries require a major reassessment of the role of neutrinos in the universe and the first reformulation of the Standard Model of particle physics since the discovery of the third generation of quarks and leptons. Neutrino experiments are poised to answer many of the new questions raised by the recent discoveries. I will review the current status of the field and discuss what experiment is teaching us about neutrino mass and mixing.

  19. Cosmological bounds on tachyonic neutrinos

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.; Moss, Ian G.

    2012-05-01

    Recent time-of-flight measurements on muon neutrinos in the OPERA neutrino oscillation experiment have found anomalously short times compared to the light travel-times, corresponding to a superluminal velocity, v - 1 = 2.37 ± 0.32 × 10-5 in units where c = 1. We show that cosmological bounds rule out an explanation involving a Lorentz invariant tachyonic neutrino. At the OPERA energy scale, nucleosynthesis constraints imply v - 1 < 0.86 × 10-12 and the Cosmic Microwave Background observations imply v - 1 < 7.1 × 10-23. The CMB limit on the velocity of a tachyon with an energy of 10 MeV is stronger than the SN 1987A limit. Superluminal neutrinos that could conceivably be observed at particle accelerator energy scales would have to be associated with Lorentz symmetry violation.

  20. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  1. Accelerator Measurments of the Askaryan Effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors

    SciTech Connect

    Gorham, P.

    2004-12-15

    We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large scale ultra-high energy neutrino detectors: rock salt (halite), which occurs naturally in high purity formations containing in many cases hundreds of cubic km of water-equivalent mass. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the high degree of linear polarization and track the change of direction of the electric-field vector with azimuth around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over two orders of magnitude of UHF and microwave frequencies. We have also made the first observations of coherent transition radiation from the Askaryan charge excess, and the result agrees well with theoretical predictions. Based on these results we have performed detailed and conservative simulation of a realistic GZK neutrino telescope array within a salt-dome, and we find it capable of detecting 10 or more contained events per year from even the most conservative GZK neutrino models.

  2. Accelerator measurements of the Askaryan effect in rock salt: A roadmap toward teraton underground neutrino detectors

    SciTech Connect

    Gorham, P.W.; Guillian, E.; Milincic, R.; Miocinovic, P.; Saltzberg, D.; Williams, D.; Field, R.C.; Walz, D.

    2005-07-15

    We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large-scale ultra-high-energy neutrino detectors: rock salt (halite), which occurs naturally in high purity formations containing in many cases hundreds of km{sup 3} of water-equivalent mass. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the high degree of linear polarization and track the change of direction of the electric-field vector with azimuth around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over 2 orders of magnitude of UHF and microwave frequencies. We have also made the first observations of coherent transition radiation from the Askaryan charge excess, and the result agrees well with theoretical predictions. Based on these results we have performed a detailed and conservative simulation of a realistic GZK neutrino telescope array within a salt dome, and we find it capable of detecting 10 or more contained events per year from even the most conservative GZK neutrino models.

  3. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    SciTech Connect

    Shin, Young Min; Lumpkin, Alex H.; Thangaraj, Jayakar Charles; Thurman-Keup, Randy Michael; Shiltsev, Vladimir D.

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  4. An early neutrino experiment: how we missed quark substructure in 1963

    NASA Astrophysics Data System (ADS)

    Perkins, D. H.

    2013-12-01

    Some 50 years after the event seems to be an appropriate time at which to take a long look back at one of the early neutrino experiments at CERN. This report is principally about a failure in a 1963 bubble chamber experiment to detect substructure in the nucleon, a year before the quark concept was invented by Gell-Mann and Zweig, and some five years before the existence of quarks as real dynamical objects was definitely established in deep inelastic electron scattering experiments at Stanford.

  5. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  6. The electron accelerator for the AWAKE experiment at CERN

    NASA Astrophysics Data System (ADS)

    Pepitone, K.; Doebert, S.; Burt, G.; Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G.; Mete, O.; Verzilov, V.; Apsimon, R.

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  7. Exploring flavor-dependent long-range forces in long-baseline neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sabya Sachi; Dasgupta, Arnab; Agarwalla, Sanjib Kumar

    2015-12-01

    The Standard Model gauge group can be extended with minimal matter content by introducing anomaly free U(1) symmetry, such as L e - L μ or L e - L τ . If the neutral gauge boson corresponding to this abelian symmetry is ultra-light, then it will give rise to flavor-dependent long-range leptonic force, which can have significant impact on neutrino oscillations. For an instance, the electrons inside the Sun can generate a flavor-dependent long-range potential at the Earth surface, which can suppress the ν μ → ν e appearance probability in terrestrial experiments. The sign of this potential is opposite for anti-neutrinos, and affects the oscillations of (anti-)neutrinos in different fashion. This feature invokes fake CP-asymmetry like the SM matter effect and can severely affect the leptonic CP-violation searches in long-baseline experiments. In this paper, we study in detail the possible impacts of these long-range flavor-diagonal neutral current interactions due to L e - L μ symmetry, when (anti-)neutrinos travel from Fermilab to Homestake (1300 km) and CERN to Pyhäsalmi (2290 km) in the context of future high-precision superbeam facilities, DUNE and LBNO respectively. If there is no signal of long-range force, DUNE (LBNO) can place stringent constraint on the effective gauge coupling α eμ < 1.9 × 10-53 (7.8 × 10-54) at 90% C.L., which is almost 30 (70) times better than the existing bound from the Super-Kamiokande experiment. We also observe that if α eμ ≥ 2 × 10-52, the CP-violation discovery reach of these future facilities vanishes completely. The mass hierarchy measurement remains robust in DUNE (LBNO) if α eμ < 5 × 10-52 (10-52).

  8. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  9. Neutrino factories

    NASA Astrophysics Data System (ADS)

    Soler, F. J. P.

    2015-07-01

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ13. The accelerator facility will deliver 1021 muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δCP that a Neutrino Factory can achieve and the δCP coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  10. A study of neutrino oscillations in MINOS

    SciTech Connect

    Raufer, Tobias Martin; /Oxford U.

    2007-06-01

    MINOS is a long-baseline neutrino oscillations experiment located at Fermi National Accelerator Laboratory (FNAL), USA. It makes use of the NuMI neutrino beamline and two functionally identical detectors located at distances of {approx}1km and {approx}735km from the neutrino production target respectively. The Near Detector measures the composition and energy spectrum of the neutrino beam with high precision while the Far Detector looks for evidence of neutrino oscillations. This thesis presents work conducted in two distinct areas of the MINOS experiment: analysis of neutral current and charged current interactions. While charged current events are only sensitive to muon neutrino disappearance, neutral current events can be used to distinguish oscillations into sterile neutrinos from those involving only active neutrino species. A complete, preliminary neutral current study is performed on simulated data. This is followed by a more detailed investigation of neutral current neutrino interactions in the MINOS Near Detector. A procedure identifying neutral current interactions and rejecting backgrounds due to reconstruction failures is developed. Two distinct event classification methods are investigated. The selected neutral current events in the Near Detector are used to extract corrections to the neutral current cross-section in the MINOS Monte Carlo simulation as a function of energy. The resulting correction factors are consistent with unity. The main MINOS charged current neutrino disappearance analysis is described. We present the Monte Carlo tuning procedure, event selection, extrapolation from Near to Far Detector and fit for neutrino oscillations. Systematic errors on this measurement are evaluated and discussed in detail. The data are consistent with neutrino oscillations with the following parameters: 2.74 {sup +0.44}{sub -0.26} x 10{sup -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 23}) > 0.87 at 68% confidence level.

  11. Upper bound on neutrino mass based on T2K neutrino timing measurements

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-01-01

    The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV /c2 range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be mν2<5.6 MeV2/c4 .

  12. Search for neutrino oscillations in the MINOS experiment by using quasi-elastic interactions

    SciTech Connect

    Piteira, Rodolphe; /Paris U., VI-VII

    2005-09-01

    The enthusiasm of the scientific community for studying oscillations of neutrinos is equaled only by the mass of their detectors. The MINOS experiment determines and compares the near spectrum of muonic neutrinos from the NUMI beam to the far one, in order to measure two oscillation parameters: {Delta}m{sub 23}{sup 2} and sin{sup 2} (2{theta}{sub 23}). The spectra are obtained by analyzing the charged current interactions which difficulty lies in identifying the interactions products (e.g. muons). An alternative method identifying the traces of muons, bent by the magnetic field of the detectors, and determining their energies is presented in this manuscript. The sensitivity of the detectors is optimal for the quasi-elastic interactions, for which a selection method is proposed, to study their oscillation. Even though it reduces the statistics, such a study introduces fewer systematic errors, constituting the ideal method on the long range.

  13. Nucleon decay and atmospheric neutrinos in the Mont Blanc experiment

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bologne, G.; Campana, P.; Castagnoli, C.; Chiarella, V.; Ciocio, A.; Cundy, D. C.; Dettorepiazzoli, B.; Fiorini, E.

    1985-01-01

    In the NUSEX experiment, during 2.8 years of operation, 31 fully contained events have been collected; 3 among them are nucleon decay candidates, while the others have been attributed to upsilon interactions. Limits on nucleon lifetime and determinations of upsilon interaction rates are presented.

  14. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    SciTech Connect

    Loiacono, Laura Jean

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  15. Overview and Status of Experimental Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2002-10-01

    Seventy years after the existence of the neutrino has been postulated by Wolfgang Pauli, these elusive particles remain surrounded by mystery. One of the most fundamental questions about neutrinos is whether they have an identically vanishing mass, as assumed by the Standard Model, or not. Direct measurements have proven to be extremely difficult to perform, and have yielded so far only upper limits. However, if neutrino flavour oscillations do happen, this would automatically imply that at least one of the three neutrinos (the electron, muon or tau neutrino) must have a non-zero mass. The present experimental data indicate that both the solar and atmospheric neutrino deficits can be explained by the phenomenon of neutrino oscillations, while the positive signal reported by the accelerator-based LSND experiment remains to be verified by an independent measurement (MiniBooNE). This talk reviews the current status of the neutrino oscillations experiments, experiments which are quite likely to produce results with significant consequences for both the Standard Model and Cosmology.

  16. Summary: Neutrinos and nonaccelerator physics

    SciTech Connect

    Hoffman, C.M.

    1991-01-01

    This paper contains brief synopsis of the following major topics discussed in the neutrino and nonaccelerator parallel sessions: dark matter; neutrino oscillations at accelerators and reactors; gamma-ray astronomy; double beta decay; solar neutrinos; and the possible existence of a 17-KeV neutrino. (LSP)

  17. Estimates of effects of residual acceleration on USML-1 experiments

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    The purpose of this study effort was to develop analytical models to describe the effects of residual accelerations on the experiments to be carried on the first U.S. Microgravity Lab mission (USML-1) and to test the accuracy of these models by comparing the pre-flight predicted effects with the post-flight measured effects. After surveying the experiments to be performed on USML-1, it became evident that the anticipated residual accelerations during the USML-1 mission were well below the threshold for most of the primary experiments and all of the secondary (Glovebox) experiments and that the only set of experiments that could provide quantifiable effects, and thus provide a definitive test of the analytical models, were the three melt growth experiments using the Bridgman-Stockbarger type Crystal Growth Furnace (CGF). This class of experiments is by far the most sensitive to low level quasi-steady accelerations that are unavoidable on space craft operating in low earth orbit. Because of this, they have been the drivers for the acceleration requirements imposed on the Space Station. Therefore, it is appropriate that the models on which these requirements are based are tested experimentally. Also, since solidification proceeds directionally over a long period of time, the solidified ingot provides a more or less continuous record of the effects from acceleration disturbances.

  18. Neutrino astronomy

    SciTech Connect

    Schramm, D.N.

    1980-01-01

    Current knowledge and proposed experiments in the field of neutrino astronomy are reviewed, with particular emphasis on expected sources and existing and proposed detectors for intermediate-energy (10 to 50 MeV) and ultrahigh energy (greater than 10 GeV) neutrinos. Following a brief discussion of the counting rate obtained in the solar neutrino experiment of Davis (1978) and possible statistical sources for the discrepancy between the expected and observed rates, consideration is given to the physics of neutrino ejection in stellar gravitational collapse and sources of high-energy proton collisions giving rise to ultrahigh energy neutrinos. The capabilities of operating Cerenkov detectors at the Homestake Gold Mine, the Mt. Blanc Tunnel and in the Soviet Caucasus are considered in relation to the detection of gravitational collapse in the center of the galaxy, and it is pointed out that neutrino detectors offer a more reliable means of detecting collapses in the Galaxy than do gravitational wave detectors. The possibility of using Cerenkov detectors for ultrahigh energy neutrino detection is also indicated, and applications of large neutrino detectors such as the proposed DUMAND array to measure the lifetime of the proton are discussed.

  19. Laser Wakefield Acceleration Experiments Using HERCULES Laser

    SciTech Connect

    Matsuoka, T.; McGuffey, C.; Dollar, F.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Horovitz, Y.

    2009-07-25

    Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changing the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.

  20. Waterproofed photomultiplier tube assemblies for the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Chow, Ken; Cummings, John; Edwards, Emily; Edwards, William; Ely, Ry; Hoff, Matthew; Lebanowski, Logan; Li, Bo; Li, Piyi; Lin, Shih-Kai; Liu, Dawei; Liu, Jinchang; Luk, Kam-Biu; Miao, Jiayuan; Napolitano, Jim; Ochoa-Ricoux, Juan Pedro; Peng, Jen-Chieh; Qi, Ming; Steiner, Herbert; Stoler, Paul; Stuart, Mary; Wang, Lingyu; Yang, Changgen; Zhong, Weili

    2015-09-01

    In the Daya Bay Reactor Neutrino Experiment 960 20-cm-diameter waterproof photomultiplier tubes are used to instrument three water pools as Cherenkov detectors for detecting cosmic-ray muons. Of these 960 photomultiplier tubes, 341 are recycled from the MACRO experiment. A systematic program was undertaken to refurbish them as waterproof assemblies. In the context of passing the water leakage check, a success rate better than 97% was achieved. Details of the design, fabrication, testing, operation, and performance of these waterproofed photomultiplier-tube assemblies are presented.

  1. Neutrino refraction by the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  2. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGESBeta

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  3. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  4. Charm contribution to the atmospheric neutrino flux

    NASA Astrophysics Data System (ADS)

    Halzen, Francis; Wille, Logan

    2016-07-01

    We revisit the estimate of the charm particle contribution to the atmospheric neutrino flux that is expected to dominate at high energies because long-lived high-energy pions and kaons interact in the atmosphere before decaying into neutrinos. We focus on the production of forward charm particles which carry a large fraction of the momentum of the incident proton. In the case of strange particles, such a component is familiar from the abundant production of K+Λ pairs. These forward charm particles can dominate the high-energy atmospheric neutrino flux in underground experiments. Modern collider experiments have no coverage in the very large rapidity region where charm forward pair production dominates. Using archival accelerator data as well as IceCube measurements of atmospheric electron and muon neutrino fluxes, we obtain an upper limit on forward D¯0Λc pair production and on the associated flux of high-energy atmospheric neutrinos. We conclude that the prompt flux may dominate the much-studied central component and represent a significant contribution to the TeV atmospheric neutrino flux. Importantly, it cannot accommodate the PeV flux of high-energy cosmic neutrinos, or the excess of events observed by IceCube in the 30-200 TeV energy range indicating either structure in the flux of cosmic accelerators, or a presence of more than one component in the cosmic flux observed.

  5. Hunting for cosmic neutrinos under the deep sea: the ANTARES experiment

    NASA Astrophysics Data System (ADS)

    Flaminio, Vincenzo

    2013-06-01

    Attempts to detect high energy neutrinos originating in violent Galactic or Extragalactic processes have been carried out for many years, both using the polar-cap ice and the sea as a target/detection medium. The first large detector built and operated for several years has been the AMANDA Ĉerenkov array, installed under about two km of ice at the South Pole. More recently a much larger detector, ICECUBE has been successfully installed and operated at the same location. Attempts by several groups to install similar arrays under large sea depths have been carried out following the original pioneering attempts by the DUMAND collaboration, initiated in 1990 and terminated only six years later. ANTARES has been so far the only detector deployed at large sea depths and successfully operated for several years. It has been installed in the Mediterranean by a large international collaboration and is in operation since 2007. I describe in the following the experimental technique, the sensitivity of the experiment, the detector performance and the first results that have been obtained in the search for neutrinos from cosmic point sources and on the oscillations of atmospheric neutrinos.

  6. Charged current quasi-elastic neutrino analysis at MINERνA

    SciTech Connect

    Fiorentini, G. A.

    2015-05-15

    MINERνA (Main INjector Experiment for ν-A) is a neutrino scattering experiment in the NuMI high-intensity neutrino beam at the Fermi National Accelerator Laboratory. MINERvA was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). We present the current status of the charged current quasi-elastic scattering in plastic scintillator.

  7. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  8. Sterile Neutrinos in Cold Climates

    SciTech Connect

    Jones, Benjamin J.P.

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  9. Future Long-Baseline Neutrino Oscillations: View from North America

    SciTech Connect

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  10. Future long-baseline neutrino oscillations: View from North America

    SciTech Connect

    Wilson, Robert J.

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  11. Photo- and neutrino-induced reactions for SNe nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Shima, Tatsushi

    2014-09-01

    Neutrino-induced nuclear reactions are considered to play important roles in the dynamics of supernova explosions and in supernova nucleosynthesis. For example, neutrino-inelastic scattering off light nuclei are supposed to assist the explosion by supplying the kinetic energy to the outgoing matters. The neutrino-nucleus reactions via the neutral and charged current of the weak interaction are the key reactions in the r-process nucleosynthesis in neutrino-driven wind. To quantitatively understand those phenomena, precise data of the neutrino-nucleus reaction rates are indispensable. Recently developed secondary particle beams provide good experimental opportunities for determining the neutrino-nucleus reaction rates. A quasi-monochromatic laser Compton-scattered (LCS) photon beam is useful for studying the photonuclear reactions which are the direct analogue of the neutrino inelastic scatterings caused by the weak neutral current. On the other hand, real neutrino beams are ideal tools to directly measure the absolute neutrino-nucleus reaction rates. Another interesting probe will be the nuclear muon-capture reaction, because it can be applied for measurement of the targets with very small quantities thanks to its large capture probability. In this talk recent progress in ongoing experiments with LCS gamma-rays and muon beams will be presented. A new plan for direct measurement of the neutrino-nucleus reactions with an accelerator-driven neutrino beam will be also discussed.

  12. Future long-baseline neutrino oscillations: View from North America

    NASA Astrophysics Data System (ADS)

    Wilson, Robert J.

    2015-07-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  13. Revealing the Earth's mantle from the tallest mountains using the Jinping Neutrino Experiment.

    PubMed

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A; Xi, Yufei; McDonough, William F

    2016-01-01

    The Earth's engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth's composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth's flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle's radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle's radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection. PMID:27611737

  14. Revealing the Earth’s mantle from the tallest mountains using the Jinping Neutrino Experiment

    PubMed Central

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A.; Xi, Yufei; McDonough, William F.

    2016-01-01

    The Earth’s engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth’s composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth’s flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle’s radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle’s radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection. PMID:27611737

  15. Facilitating an accelerated experience-based co-design project.

    PubMed

    Tollyfield, Ruth

    This article describes an accelerated experience-based co-design (AEBCD) quality improvement project that was undertaken in an adult critical care setting and the facilitation of that process. In doing so the aim is to encourage other clinical settings to engage with their patients, carers and staff alike and undertake their own quality improvement project. Patient, carer and staff experience and its place in the quality sphere is outlined and the importance of capturing patient, carer and staff feedback established. Experience-based co-design (EBCD) is described along with the recently tested accelerated version of the process. An overview of the project and outline of the organisational tasks and activities undertaken by the facilitator are given. The facilitation of the process and key outcomes are discussed and reflected on. Recommendations for future undertakings of the accelerated process are given and conclusions drawn. PMID:24526020

  16. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Anderson, S. G.; Anderson, G.; Betts, S.; Fisher, S.; Tremaine, A.; Musumeci, P.

    2016-02-01

    In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200 MV /m using a 4 TW 100 fs long 800 nm Ti :Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100 fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  17. Choosing experiments to accelerate collective discovery

    PubMed Central

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.

    2015-01-01

    A scientist’s choice of research problem affects his or her personal career trajectory. Scientists’ combined choices affect the direction and efficiency of scientific discovery as a whole. In this paper, we infer preferences that shape problem selection from patterns of published findings and then quantify their efficiency. We represent research problems as links between scientific entities in a knowledge network. We then build a generative model of discovery informed by qualitative research on scientific problem selection. We map salient features from this literature to key network properties: an entity’s importance corresponds to its degree centrality, and a problem’s difficulty corresponds to the network distance it spans. Drawing on millions of papers and patents published over 30 years, we use this model to infer the typical research strategy used to explore chemical relationships in biomedicine. This strategy generates conservative research choices focused on building up knowledge around important molecules. These choices become more conservative over time. The observed strategy is efficient for initial exploration of the network and supports scientific careers that require steady output, but is inefficient for science as a whole. Through supercomputer experiments on a sample of the network, we study thousands of alternatives and identify strategies much more efficient at exploring mature knowledge networks. We find that increased risk-taking and the publication of experimental failures would substantially improve the speed of discovery. We consider institutional shifts in grant making, evaluation, and publication that would help realize these efficiencies. PMID:26554009

  18. VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS FOR PRECISE MEASURMENTS OF OSCILLATION PARAMETERS AND SEARCH FOR N MU YIELDS N EPSILON.

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; BEAVIS,D.; BRENNAN,M.; CHEN,M.C.; FERNOW,R.; ET AL

    2002-10-18

    Brookhaven National Laboratory and collaborators started a neutrino working group to identify new opportunities in the field of neutrino oscillations and explore how our laboratory facilities can be used to explore this field of research. The memo to the working group and the charge are included in Appendix I. This report is the result of the deliberations of the working group. Previously, we wrote a letter of intent to build a new high intensity neutrino beam at BNL. A new intense proton beam will be used to produce a conventional horn focused neutrino beam directed at a detector located in either the Homestake mine in Lead, South Dakota at 2540 km or the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM at 2880 km. As a continuation of the study that produced the letter of intent, this report examines several items in more detail. We mainly concentrate on the use of water Cherenltov detectors because of their size, resolution, and background rejection capability, and cost. We examine the prospects of building such a detector in the Homestake mine. The accelerator upgrade will be carried out in phases. We expect the first phase to yield a 0.4 MW proton beam and the second phase to result in a 1.0 MW beam. The details of this upgrade will be reported in a companion report. In this report we assume accelerator intensity of 1 MW for calculating event rates and spectra. We also assume a total experimental duration of 5 years with running time of 10{sup 7} seconds per year. We examine the target station and the horn produced neutrino beam with focus on two topics: target and horn design for a 1 MW beam and the broad band spectrum of neutrinos from a 28 GeV proton beam.

  19. An Experimental Program in Neutrinos, Nucleon Decay and Astroparticle Physics Enabled by the Fermilab Long-Baseline Neutrino Facility

    NASA Astrophysics Data System (ADS)

    Diwan, Milind; Elbnf Collaboration

    2015-04-01

    A Letter of Intent has been submitted by a new International Team to pursue an accelerator-based long-baseline neutrino experiment, as well as neutrino astrophysics and nucleon decay, with an approximately 40-kt (fiducial) modular liquid argon TPC (LAr-TPC) detector located deep underground and a high-resolution near detector. Several independent worldwide efforts, developed through years of detailed studies, are converging around the opportunity provided by the megawatt neutrino beam facility planned at Fermilab and by the new significant expansion with improved access at the Sanford Underground Research Facility in South Dakota, 1,300 km from Fermilab. The principle goals of this experiment are: a comprehensive investigation of neutrino oscillations to test CP violation in the lepton sector, determine the ordering of the neutrino masses, and test the three-neutrino paradigm; to perform a broad set of neutrino scattering measurements with the near detector; and to exploit the large, high-resolution, underground far detector for non-accelerator physics topics including atmospheric neutrino measurements, searches for nucleon decay, and measurement of astrophysical neutrinos especially those from a core-collapse supernova.

  20. Gaseous source of 83mKr conversion electrons for the neutrino experiment KATRIN

    NASA Astrophysics Data System (ADS)

    Vénos, D.; Slezák, M.; Dragoun, O.; Inoyatov, A.; Lebeda, O.; Pulec, Z.; Sentkerestiová, J.; Špalek, A.

    2014-12-01

    The metastable 83mKr with short half-life of 1.83 h is intended as a space distributed source of monoenergetic electrons for energy calibration and systematic studies in the Karlsruhe tritium neutrino experiment (KATRIN). The efficient production of the parent radionuclide 83Rb at cyclotron U-120M was implemented. The release of the 83mKr from zeolite (molecular sieve), in which the parent radionuclide 83Rb (T1/2 = 86.2 d) was trapped, was studied under various conditions using the gamma spectroscopy. Residual gas analysis of ultra high vacuum over the zeolite was performed as well.

  1. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    SciTech Connect

    Jung, Chang Kee; Douglas, Michaek; Hobbs, John; McGrew, Clark; Rijssenbeek, Michael

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  2. Space experiments with particle accelerators (SEPAC): Description of instrumentation

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.

    1987-01-01

    SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.

  3. Advantages of multiple detectors for the neutrino mass hierarchy determination at reactor experiments

    NASA Astrophysics Data System (ADS)

    Ciuffoli, Emilio; Evslin, Jarah; Wang, Zhimin; Yang, Changgen; Zhang, Xinmin; Zhong, Weili

    2014-04-01

    We study the advantages of a second identical detector at a medium baseline reactor neutrino experiment. A major obstruction to the determination of the neutrino mass hierarchy is the detector's unknown nonlinear energy response, which even under optimistic assumptions reduces the sensitivity to the hierarchy by about 1σ at a single detector experiment. Various energy response models are considered at one- and two-detector experiments with the same total target mass. A second detector at a sufficiently different baseline eliminates this 1σ reduction. Considering the unknown energy response, we find the sensitivity to the hierarchy at various candidate detector locations for JUNO and RENO 50. The best site for JUNO's near detector is under ZiLuoShan, 17 and 66 km from the Yangjiang and Taishan reactor complexes, respectively. We briefly describe other advantages, including a more precise determination of θ12 and the possibility of a DAEδALUS-inspired program to measure the CP-violating phase δ using a single pion source about 10 km from one detector and 20 km from the other. Two identical half-sized detectors provide a better energy resolution than a single detector, further increasing the sensitivity to the hierarchy.

  4. Measurement of the neutrino velocity with the OPERA detector in the CNGS neutrino beam

    NASA Astrophysics Data System (ADS)

    Autiero, Dario

    2012-03-01

    The OPERA neutrino experiment at the underground Gran Sasso Laboratory measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km with much higher accuracy than previous studies conducted with accelerator neutrinos. The measurement was based on high statistics data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies and limiting the overall uncertainty on the neutrinos time of flight measurement to 10 ns. The time of flight was measured by comparing the time distributions of neutrino interactions in OPERA and of protons hitting the CNGS target in 10.5 μs long extractions. The above result, indicating an early arrival time of about 60 ns of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum, was confirmed by a test performed using a beam with a short-bunch time-structure allowing to measure the neutrino time of flight at the single interaction level. The OPERA neutrino velocity measurement will be review as well as the latest developments and perspectives.

  5. Neutrinos from STORed Muons - nuSTORM

    SciTech Connect

    Bross, Alan

    2013-02-27

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly, give tantalizing hints of new physics. Models beyond the nSM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or “sterile." Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this talk, I will describe the facility, nuSTORM, and an appropriate far detector for neutrino oscillation searches at short baseline. I will present sensitivity plots that indicate that this experimental approach can provide well over 5 s confirmation or rejection of the LSND/MinBooNE results. In addition I will explain how the facility can be used to make neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments and, in general, add significantly to the study of neutrino interactions. The unique n beam available at the nuSTORM facility has the potential to be transformational in our approach to n interaction physics, offering a “n light source” to physicists from a number of disciplines. Finally, I will describe how nuSTORM can be used to facilitate accelerator R&D for future muon-based accelerator facilities.

  6. Neutrino Detectors Review

    SciTech Connect

    D'Ambrosio, Nicola

    2005-10-12

    The neutrino physics is one of the most important research field and there are several experiments made and under construction focused on it. This paper will present a review on some detectors used for Solar Neutrinos detection, Atmospheric Neutrinos detection and in Long Baseline Experiments.

  7. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  8. The new experiment WAGASCI for water to hydrocarbon neutrino cross section measurement using the J-PARC beam

    NASA Astrophysics Data System (ADS)

    Ovsiannikova, T.; Antonova, M.; Bronner, C.; Blondel, A.; Bonnemaison, A.; Cornat, R.; Cadoux, F.; Chikuma, N.; Cao, S.; Drapier, O.; Izmaylov, A.; Ichikawa, A. K.; Ferreira, O.; Favre, Y.; Gastaldi, F.; Gonin, M.; Hayashino, T.; Hosomi, F.; Hayato, Y.; Koga, T.; Kondo, K.; Kin, K.; Kudenko, Y.; Khabibullin, M.; Khotjantsev, A.; Minamino, A.; Mueller, Th A.; Mefodiev, A.; Mineev, O.; Nakamura, K.; Nakaya, T.; Noah, E.; Patel, N.; Quilain, B.; Rayner, M.; Seiya, Y.; Suvorov, S.; Yershov, N.; Yamamoto, M.; Yamamoto, K.; Yokoyama, M.

    2016-02-01

    The T2K (Tokai-to-Kamioka) is a long baseline neutrino experiment designed to study various parameters that rule neutrino oscillations, with an intense beam of muon neutrinos. A near detector complex (ND280) is used to constrain non-oscillated flux and hence to predict the expected number of events in the far detector (Super-Kamiokande). The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-canceling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new water grid and scintillator detector, WAGASCI, has been proposed. The detector will be operated at the J-PARC neutrino beam line with the main physics goal to measure the charged current neutrino cross section ratio between water and hydrocarbon with a few percent accuracy. Further physics program may include high-precision measurements of different charged current neutrino interaction channels. The concept of the new detector will be covered together with the actual construction plan.

  9. Preliminary results from the {sup 51}Cr neutrino source experiment in GALLEX

    SciTech Connect

    Hampel, W.; Heusser, G.; Kiko, J.

    1996-09-01

    The GALLEX collaboration performed a second {sup 51}Cr neutrino source experiment during fall 1995. The full results from this second source experiment will not be available before the end of 1996. Meanwhile, we present a short description and preliminary results in this informal note. The (preliminary) value of the activity obtained form direct measurements has been found equal to (68.7 {+-}0.7) PBq (with 1-sigma error). This value, which is about 10% higher than the activity of the first source, was achieved by optimizing the irradiation conditions in the Silo{acute e} reactor and doing a longer irradiation of the enriched chromium. Preliminary results show that the ratio, R, of the radiochemically determined activity from {sup 71}Ge counting (57.1 {+-} PBq) to the directly measured activity is (0.83 {+-} 0.10). The combined value of R for the two source experiments is (0.92 {+-} 0.08).

  10. Micro-Bubble Experiments at the Van de Graaff Accelerator

    SciTech Connect

    Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.; Gromov, Roman; Youker, A. J.; Makarashvili, Vakhtang; Bailey, James; Stepinski, D. C.; Chemerisov, S. D.; Vandegrift, G. F.

    2015-02-01

    In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O2 + H2) data were collected. The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.

  11. Observation of ultrahigh-energy cosmic rays and neutrinos from lunar orbit: LORD space experiment

    NASA Astrophysics Data System (ADS)

    Ryabov, Vladimir; Chechin, Valery; Gusev, German

    The problem of detecting highest-energy cosmic rays and neutrinos in the Universe is reviewed. Nowadays, there becomes clear that observation of these particles requires approaches based on novel principles. Projects based on orbital radio detectors for particles of energies above the CZK cut-off are discussed. We imply the registration of coherent Cherenkov radio emission produced by cascades of most energetic particles in radio-transparent lunar regolith. The Luna-Glob space mission proposed for launching in the near future involves the Lunar Orbital Radio Detector (LORD). The feasibility of LORD space instrument to detect radio signals from cascades initiated by ultrahigh-energy particles interacting with lunar regolith is examined. The comprehensive Monte Carlo calculations were carried out within the energy range of 10 (20) -10 (25) eV with the account for physical properties of the Moon such as its density, the lunar-regolith radiation length, the radio-wave absorption length, the refraction index, and the orbital altitude of a lunar satellite. We may expect that the LORD space experiment will surpass in its apertures and capabilities the majority of well-known current and proposed experiments dealing with the detection of both ultrahigh-energy cosmic rays and neutrinos. The design of the LORD space instrument and its scientific potentialities in registration of low-intense cosmic-ray particle fluxes above the GZK cut-off up to 10 (25) eV is discussed as well. The designed LORD module (including an antenna system, amplifiers, and a data acquisition system) now is under construction. The LORD space experiment will make it possible to obtain important information on the highest-energy particles in the Universe, to verify modern models for the origin and the propagation of ultrahigh-energy cosmic rays and neutrinos. Successful completion of the LORD experiment will permit to consider the next step of the program, namely, a multi-satellite lunar systems to

  12. The Student Course Experience among Online, Accelerated, and Traditional Courses

    ERIC Educational Resources Information Center

    Bielitz, Colleen L.

    2016-01-01

    The demand by the public for a wider variety of course formats has led to complexity in determining a course's optimal delivery format as many faculty members still believe that online and accelerated courses do not offer students an equivalent experience to traditional face to face instruction. The purpose of this quantitative, comparative study…

  13. Constant Acceleration: Experiments with a Fan-Driven Dynamics Cart.

    ERIC Educational Resources Information Center

    Morse, Robert A.

    1993-01-01

    Describes the rebuilding of a Project Physics fan cart on a PASCO dynamics cart chassis for achieving greatly reduced frictional forces. Suggests four experiments for the rebuilt cart: (1) acceleration on a level track, (2) initial negative velocity, (3) different masses and different forces, and (4) inclines. (MVL)

  14. Accelerator-based Experiments For Introductory-level Undergraduates

    SciTech Connect

    Sanders, Justin M.

    2009-03-10

    Although accelerator based experiments for undergraduates are often considered only for junior or senior physics majors, introductory students can also benefit from them. Rutherford backscattering and a {sup 12}C(p,p){sup 12}C elastic scattering resonance can be presented in ways that are well-suited for students who have taken only an introductory physics course.

  15. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    SciTech Connect

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.

  16. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    DOE PAGESBeta

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energymore » regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less

  17. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  18. Results of the SINGAP Neutral Beam Accelerator Experiment at JAEA

    NASA Astrophysics Data System (ADS)

    de Esch, H. P. L.; Svensson, L.; Inoue, T.; Taniguchi, M.; Umeda, N.; Kashiwagi, M.; Fubiani, G.

    2009-03-01

    IRFM (CEA Cadarache) and JAEA Naka have entered into a collaboration in order to test a SINGAP [1] accelerator at the JAEA Megavolt Test Facility (MTF) at Naka, Japan. Whereas at the CEA testbed the acceleration current was limited to 0.1 A, at JAEA 0.5 A is available. This allows the acceleration of 15 H- beamlets in SINGAP to be tested and a direct comparison between SINGAP and MAMuG [2] to be made. High-voltage conditioning in the SINGAP configuration has been quite slow, with 581 kV in vacuum achieved after 140 hours of conditioning. With 0.1 Pa of H2 gas present in the accelerator 787 kV could be achieved. The conditioning curve for MAMuG is 200 kV higher. SINGAP beam optics appears in agreement with calculation results. A beamlet divergence better than 5 mrad was obtained. SINGAP accelerates electrons to a higher energy than MAMuG. Measurements of the power intercepted on one of the electron dumps have been compared with EAMCC code [3] calculations. Based on the experiments described here, electron production by a SINGAP accelerator scaled up to ITER size was estimated to be too high for comfort

  19. First results of the plasma wakefield acceleration experiment at PITZ

    NASA Astrophysics Data System (ADS)

    Lishilin, O.; Gross, M.; Brinkmann, R.; Engel, J.; Grüner, F.; Koss, G.; Krasilnikov, M.; Martinez de la Ossa, A.; Mehrling, T.; Osterhoff, J.; Pathak, G.; Philipp, S.; Renier, Y.; Richter, D.; Schroeder, C.; Schütze, R.; Stephan, F.

    2016-09-01

    The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self-modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ.

  20. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  1. Some uncertainties of neutrino oscillation effect in the NOνA experiment

    NASA Astrophysics Data System (ADS)

    Kolupaeva, Lyudmila D.; Kuzmin, Konstantin S.; Petrova, Olga N.; Shandrov, Igor M.

    2016-04-01

    Uncertainties related to the effect of neutrino coherent forward scattering in Earth’s matter (MSW mechanism) and with the cross-sections of quasi-elastic (QE) neutrino scattering on nuclear targets of the NOνA detectors are studied. The NOνA sensitivity to the neutrino mass hierarchy and the CP violating phase is discussed.

  2. Measurement of Muon Neutrino Disappearance with the T2K Experiment

    NASA Astrophysics Data System (ADS)

    Wongjirad, Taritree Michael

    We describe the measurement of muon neutrino disappearance due to neutrino oscillation using the Tokai-2-Kamiokande (T2K) experiment's Run 1--4 (6.57 x 1020 POT) data set. We analyze the data using the conventional Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix for the three Standard Model neutrinos. The output of the analysis is a measurement of the parameters sin2theta23, Delta m232 for the normal hierarchy and sin2theta23, Deltam 213 for the inverted hierarchy. The best-fit oscillation parameters for the normal hierarchy are found to be. (sin2theta23, Deltam 232) = (0.514, 2.51 x 10-3 eV 2/c4). The 90% 1D confidence interval---determined for both parameters using the Feldman-Cousins procedure---is for the normal hierarchy. 0.428 < sin2theta23 < 0.598 and. 2.34 x 10-3 eV2/c4 < Deltam232 < 2.68 x 10-3 eV2/c4. For the inverted hierarchy, the best-fit oscillation parameters are. (sin2theta23, Deltam 213) = (0.511, 2.48 x 10-3 eV2/c4. The 90% 1D Feldman-Cousins confidence intervals for the inverted hierarchy are. 2.31 x 10-3 eV2/c4 < Deltam213 < 2.64 x 10-3 eV2/c4.

  3. DAEδALUS: A Phased Neutrino Physics Program Using Cyclotron Decay-at-Rest Neutrino Sources

    NASA Astrophysics Data System (ADS)

    Toups, M.

    DAEδALUS is a proposed phased neutrino physics program consisting of two flagship experiments: a search for CP violation in the neutrino sector and a definitive search for sterile neutrinos. Ultimately, DAEδALUS will comprise several accelerator-based modules located at three different distances from a single, large underground detector such as LENA, MEMPHYS, or Hyper-K. Each of these modules will employ new low cost, high power cyclotrons to produce pion decay-at-rest neutrino beams, which can be used to search for evidence of CP violation in the oscillation probability of muon antineutrinos to electron antineutrinos over baselines of ∼20 km. However, at an early phase of the program, the high power DAEδALUS injector cyclotron can also be used to produce an intense isotope decay-at-rest neutrino beam. IsoDAR is a proposed experiment, which uses a 8Li decay-at-rest neutrino beam to preform a definitive search for sterile neutrinos by installing the DAEδALUS injector cyclotron in an underground lab close to a large liquid scintillator detector such as KamLAND. IsoDAR can rule out the parameter space allowed by global fits to the Reactor, SAGE, and GALLEX anomalies at 20σ in 5 years. These two flagship searches make a compelling case for the DAEδALUS phased neutrino physics program.

  4. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    SciTech Connect

    England, R. J.; Colby, E. R.; McGuinness, C. M.; Noble, R.; Plettner, T.; Siemann, R. H.; Spencer, J. E.; Walz, D.; Ischebeck, R.; Sears, C. M. S.

    2009-01-22

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50 pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. We will describe the experimental plan and recent simulation studies of candidate fibers.

  5. The laser driven particle accelerator project: Theory and experiment

    SciTech Connect

    Plettner, T.; Byer, R.L. Smith, T.I.; Siemann, R.H. Huang, Y.C.

    1999-07-01

    A proof of principle experiment for laser driven electron acceleration from crossed laser beams in a dielectric loaded vacuum is being carried out at Stanford University. We seek to measure a maximum energy gain of about 250 keV for a 30{endash}35 MeV electron beam in one accelerator cell. We use laser pulses of a few picoseconds of duration from a regenerative Ti:sapphire laser amplifier at a wavelength of 800 nm in a laser-electron interaction distance of {approximately}1 mm. {copyright} {ital 1999 American Institute of Physics.}

  6. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    SciTech Connect

    England, R.J.; Colby, E.R.; Ischebeck, R.; McGuinness, C.M.; Noble, R.; Plettner, T.; Sears, C.M.S.; Siemann, R.H.; Spencer, J.E.; Walz, D.; /SLAC

    2011-11-21

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.

  7. Astrophysics and cosmology closing in on neutrino masses

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1990-01-01

    Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, m(nu sub mu) and m(nu sub tau), which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, m(nu sub e) can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that m(nu sub e) of about 10 to the -8th electron volts, m(nu sub mu) of about 0.001 electron volts, and m(nu sub tau) of about 10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments.

  8. Astrophysics and cosmology closing in on neutrino masses

    SciTech Connect

    Dar, A. )

    1990-12-14

    Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, m{sub {nu}{sub {mu}}} and m{sub {nu}{sub {tau}}}, which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, m{sub {nu}{sub e}}, can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that m{sub {nu}{sub e}} {approximately}10{sup {minus}8} electron volts, m{sub {nu}{sub {mu}}} {approximately}10{sup {minus}3} electron volts, and m{sub {nu}{sub {tau}}} {approximately}10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments.

  9. Astrophysics and cosmology closing in on neutrino masses.

    PubMed

    Dar, A

    1990-12-14

    Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, mv(vmicro) and mv(vtau), which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, mv(vc), can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that mv(vc) approximately 10(-8) electron volts, mv(vmicro) approximately 10(-3) electron volts, and mv(vtau) approximately 10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments. PMID:17818280

  10. Search for sterile neutrino mixing in the MINOS long baseline experiment

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barnes Jr., P.D.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, G.J.; /Fermilab /Fermilab

    2010-01-01

    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18 x 10{sup 20} protons on target in which neutrinos of energies between {approx}500 MeV and 120 GeV are produced predominantly as {nu}{sub {mu}}, the visible energy spectrum of candidate neutral-current reactions in the MINOS far-detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the {nu}{sub {mu}} flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles {theta}{sub 24} and {theta}{sub 34} are constrained to be less than 11{sup o} and 56{sup o} at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime {tau}{sub 3}/m{sub 3} > 2.1 x 10{sup -12} s/eV at 90% C.L.

  11. Long-baseline neutrino physics in the U.S

    SciTech Connect

    Kopp, Sacha E.; /Texas U.

    2006-12-01

    Long baseline neutrino oscillation physics in the U.S. is centered at the Fermi National Accelerator Laboratory (FNAL), in particular at the Neutrinos at the Main Injector (NuMI) beamline commissioned in 2004-2005. Already, the MINOS experiment has published its first results confirming the disappearance of {nu}{sub {mu}}'s across a 735 km baseline. The forthcoming NOvA experiment will search for the transition {nu}{sub {mu}} {yields} {nu}{sub e} and use this transition to understand the mass heirarchy of neutrinos. These, as well as other conceptual ideas for future experiments using the NuMI beam, will be discussed. The turn-on of the NuMI facility has been positive, with over 310 kW beam power achieved. Plans for increasing the beam intensity once the Main Injector accelerator is fully-dedicated to the neutrino program will be presented.

  12. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  13. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    SciTech Connect

    Auty, David John

    2010-03-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0%$\\bar{v}$μ, which can be separated from the vμ because the MINOS detectors are magnetized. This makes it possible to study $\\bar{v}$μ oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the $\\bar{v}$μ oscillation parameters and comparing them with those for vμ, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam $\\bar{v}$μ before. It is also possible to produce an almost pure $\\bar{v}$μ beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% $\\bar{v}$μ component of the forward horn current NuMI beam. The $\\bar{v}$μ of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3-7.6+7.6(stat.)-3.6+3.6(syst.) events. This corresponds to a 1.9 σ deficit, and a best fit value of Δ$\\bar{m}$322 = 18 x 10-3 eV2 and sin2 2$\\bar{θ}$23 = 0.55. This thesis focuses particularly on the selection of $\\bar{v}$μ events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The

  14. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters.

    PubMed

    Prasai, K; Alves, E; Bagliani, D; Basak Yanardag, S; Biasotti, M; Galeazzi, M; Gatti, F; Ribeiro Gomes, M; Rocha, J; Uprety, Y

    2013-08-01

    In a microcalorimetric neutrino mass experiment using the radioactive decay of (163)Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the (163)Ho fabrication), in the temperature range 70 mK-300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment. PMID:24007077

  15. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  16. An experiment to measure the electron neutrino mass using a cryogenic tritium source

    SciTech Connect

    Fackler, O.; Jeziorski, B.; Kolos, W.; Monkhorst, H.; Mugge, M.; Sticker, H.; Szalewicz, K.; White, R.M.; Woerner, R.

    1985-06-25

    An experiment has been performed to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations have been made for tritium and the HeT/sup +/ daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. The excited final molecular state calculations and the experimental apparatus are discussed. 4 refs., 5 figs.

  17. Prospects for detecting dark matter with neutrino telescopes in light of recent results from direct detection experiments

    SciTech Connect

    Halzen, Francis; Hooper, Dan; /Fermilab

    2005-10-01

    Direct detection dark matter experiments, lead by the CDMS collaboration, have placed increasingly stronger constraints on the cross sections for elastic scattering of WIMPs on nucleons. These results impact the prospects for the indirect detection of dark matter using neutrino telescopes. With this in mind, we revisit the prospects for detecting neutrinos produced by the annihilation of WIMPs in the Sun. We find that the latest bounds do not seriously limit the models most accessible to next generation kilometer-scale neutrino telescopes such as IceCube. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes still have the opportunity to play an important as well as complementary role in the search for particle dark matter.

  18. PARTICLES AND FIELDS: Systematic impact of spent nuclear fuel on θ13 sensitivity at reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, Feng-Peng; Tian, Xin-Chun; Zhan, Liang; Cao, Jun

    2009-09-01

    Reactor neutrino oscillation experiments, such as Daya Bay, Double Chooz and RENO are designed to determine the neutrino mixing angle θ13 with a sensitivity of 0.01-0.03 in sin2 2θ13 at 90% confidence level, an improvement over the current limit by more than one order of magnitude. The control of systematic uncertainties is critical to achieving the sin2 2θ13 sensitivity goal of these experiments. Antineutrinos emitted from spent nuclear fuel (SNF) would distort the soft part of energy spectrum and may introduce a non-negligible systematic uncertainty. In this article, a detailed calculation of SNF neutrinos is performed taking account of the operation of a typical reactor and the event rate in the detector is obtained. A further estimation shows that the event rate contribution of SNF neutrinos is less than 0.2% relative to the reactor neutrino signals. A global χ2 analysis shows that this uncertainty will degrade the θ13 sensitivity at a negligible level.

  19. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  20. Direct Neutrino Mass Searches

    NASA Astrophysics Data System (ADS)

    VanDevender, B. A.

    2009-12-01

    Neutrino flavor oscillation experiments have demonstrated that the three Standard Model neutrino flavor eigenstates are mixed with three mass eigenstates whose mass eigenvalues are nondegenerate. The oscillation experiments measure the differences between the squares of the mass eigenvalues but tell us nothing about their absolute values. The unknown absolute neutrino mass scale has important implications in particle physics and cosmology. Beta decay endpoint measurements are presented as a model-independent method to measure the absolute neutrino mass. The Karlsruhe Tritium Neutrino Experiment (KATRIN) is explored in detail.

  1. Status of the MINOS Experiment

    SciTech Connect

    Elizabeth Buckley-Geer

    2003-03-17

    We report on the status of the MINOS long baseline neutrino experiment presently under construction at the Fermi National Accelerator Laboratory and the Soudan mine. There is growing evidence that the solar neutrino and atmospheric neutrino anomalies [1] are the result of neutrino oscillations. The MINOS experiment is a long baseline neutrino oscillation experiment designed to study the region of parameter space indicated by the SuperKamiokande atmospheric neutrino results [2]. The experiment consists of two detectors, one with a mass of 980 tons located at Fermilab (the near detector) and the other of mass 5400 tons located 731 km away in the Soudan mine in northern Minnesota (the far detector). The third component is the neutrino beam which is currently under construction at Fermilab.

  2. Neutrino Physics with Opera

    NASA Astrophysics Data System (ADS)

    Bertolin, Alessandro

    2011-10-01

    Neutrino physics with the OPERA experiment will be discussed in this paper. First the OPERA physic goal will be presented. A description of the neutrino beam and of the detector will follow. The analysis of the beam induced neutrino interactions will then be presented.

  3. Absolute acceleration measurements on STS-50 from the Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1994-01-01

    Orbital Acceleration Research Experiment (OARE) data on Space Transportation System (STS)-50 have been examined in detail during a 2-day time period. Absolute acceleration levels have been derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. During the interval, the tri-axial OARE raw telemetered acceleration measurements have been filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval have been analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z-axis sensitive range scale factors were determined in a separate process using orbiter maneuvers and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter center-of-gravity, which are the aerodynamic signals along each body axis. Results indicate that there is a force being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces have been reexamined, but none produces the observed effect. Thus, it is tentatively concluded that the orbiter is creating the environment observed. At least part of this force is thought to be due to the Flash Evaporator System.

  4. Solar neutrino detection in a large volume double-phase liquid argon experiment

    NASA Astrophysics Data System (ADS)

    Franco, D.; Giganti, C.; Agnes, P.; Agostino, L.; Bottino, B.; Canci, N.; Davini, S.; De Cecco, S.; Fan, A.; Fiorillo, G.; Galbiati, C.; Goretti, A. M.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pocar, A.; Razeti, M.; Renshaw, A. L.; Rossi, B.; Rossi, N.; Suvorov, Y.; Testera, G.; Tonazzo, A.; Wang, H.; Zavatarelli, S.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ``neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  5. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  6. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travis, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.

    2006-11-27

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}z = 20 {mu}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {mu}m / OD = 325 {mu}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  7. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travis, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.

    2006-11-01

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., σz = 20 μm at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 μm / OD = 325 μm). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  8. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.; /LLNL, Livermore /UCLA /SLAC /Southern California U. /UC, Santa Barbara /Manhattan Coll., Riverdale

    2007-03-27

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  9. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Hogan, M; Ischebeck, R; Kirby, N; Siemann, R; Walz, D; Muggli, P; Scott, A; Yoder, R

    2006-08-04

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  10. TRIDAQ systems in HEP experiments at LHC accelerator

    NASA Astrophysics Data System (ADS)

    Zagozdzińska, Agnieszka; Romaniuk, Ryszard S.; Poźniak, Krzysztof T.; Zalewski, Piotr

    2013-01-01

    The paper describes Trigger and Data Acquisition (TRIDAQ) systems of accelerator experiments for High Energy Physics. The background for physics research comprises assumptions of the Standard Model theory with basic extensions. On this basis, a structure of particle detector system is described, with emphasis on the following functional blocks: Front-End Electronics, Trigger and DAQ systems. The described solutions are used in the LHC experiments: ATLAS, ALICE, CMS and LHCb. They are also used in other accelerator experiments. Data storage and processing functionality is divided into two hardware systems: Trigger and Data Acquisition, that are dependent on each other. High input data rate impose relevant choices for the architecture and parameters of both systems. The key parameters include detailed system structure and its overall latency. Trigger structure is defined by the physics requirements and the storage capability of DAQ system. Both systems are designed to achieve the highest possible space and time resolution for particle detection. Trigger references are reviewed [1-43] as well as chosen accelerator research efforts origination in this country [44-83].

  11. Hadron production measurements for neutrino physics

    SciTech Connect

    Panman, Jaap

    2008-02-21

    One of the limiting factors for the precision of neutrino oscillation experiments is the uncertainty in the composition and spectrum of the neutrino flux. Recently, dedicated hadron production experiments have been taking data and are being planned to supply measurements which can significantly reduce these uncertainties. The HARP experiment has presented results on the measurements of the double-differential production cross-section of charged pions in proton interactions with beryllium, carbon, aluminium, copper, tin, tantalum and lead targets. These results are relevant for a detailed understanding of neutrino flux in accelerator neutrino experiments K2K (p-Al data) and MiniBooNE/SciBooNE (p-Be data), for a better prediction of atmospheric neutrino fluxes (p-C, {pi}{sup +}-C and {pi}{sup -}-C data) as well as for a systematic improvement of hadron production models. The E910 experiment at BNL has recently published their p-Be data. NA49 has measured pion production spectra in p-C interactions and a new experiment, NA61, is starting to take data using essentially the same detector. NA61 plans to measure production spectra for the T2K experiment and for the calculation of extended air showers. MIPP has taken data with a copy of the NuMI target and is progressing in the analysis of these data. An upgrade of the readout of this experiment can greatly increase its potential.

  12. Pulse shape discrimination capability of metal-loaded organic liquid scintillators for a short-baseline reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Kim, B. R.; Han, B. Y.; Jeon, E. J.; Joo, K. K.; Kang, Jeongsoo; Khan, N.; Kim, H. J.; Kim, Hyunsoo; Kim, J. Y.; Siyeon, Kim; Kim, S. C.; Kim, Yeongduk; Ko, Y. J.; Lee, Jaison; Lee, Jeong-Yeon; Lee, J. Y.; Ma, K. J.; Park, Hyeonseo; Park, H. K.; Park, K. S.; Seo, K. M.; Seon, Gwang-Min; Yeo, I. S.; Yeo, K. M.

    2015-05-01

    A new short-baseline (SBL) reactor neutrino experiment is proposed to investigate a reactor anti-neutrino anomaly. A liquid scintillator (LS) is used to detect anti-neutrinos emitted from a Hanaro reactor, and the pulse shape discrimination (PSD) ability of the metal-loaded organic LSs is evaluated on small-scale laboratory samples. PSD can be affected by selecting different base solvents, and several of the LSs used two different organic base solvents, such as linear alkyl benzene and di-isopropylnaphthalene. For the metallic content, gadolinium (Gd) or lithium (6Li) was loaded into a home-made organic LS and into a commercially available liquid scintillation cocktail. A feasibility study was performed for the PSD using several different liquid scintillation cocktails. In this work, the preparation and the PSD characteristics of a promising candidate, which will be used in an above-ground environment, are summarized and presented.

  13. Development of a scintillating fiber tracking detector for the K2K neutrino oscillation experiment

    SciTech Connect

    Suzuki, Atsumu

    1998-11-09

    We are preparing a scintillating fiber tracking detector as a part of the near fine-grained detector in the K2K long baseline neutrino oscillation experiment between KEK and Super-Kamiokande. We use Kuraray SCSF-78, 0.7 mm diameter fiber with Hamamatsu IIT-CCD camera read out system. The choice of the fiber is based on a series of measurements of the light yield and aging of the candidate fibers under various conditions. It was found that SCSF-78 has enough light yield and lifetime for our purposes. We have also checked the performance of the SCIFI sheet-IIT-CCD system by source ({sup 90}Sr) and cosmic rays. The detection efficiency was found to be more than 99%. The full SCIFI detector construction is current under way.

  14. Development of a scintillating fiber tracking detector for the K2K neutrino oscillation experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsumu

    1998-11-01

    We are preparing a scintillating fiber tracking detector as a part of the near fine-grained detector in the K2K long baseline neutrino oscillation experiment between KEK and Super-Kamiokande. We use Kuraray SCSF-78, 0.7 mm diameter fiber with Hamamatsu IIT-CCD camera read out system. The choice of the fiber is based on a series of measurements of the light yield and aging of the candidate fibers under various conditions. It was found that SCSF-78 has enough light yield and lifetime for our purposes. We have also checked the performance of the SCIFI sheet-IIT-CCD system by source (90Sr) and cosmic rays. The detection efficiency was found to be more than 99%. The full SCIFI detector construction is current under way.

  15. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a experiment, resulting in a marked increase of its tension with other searches, under the standard set of phenomenological assumptions. The method is illustrated for other target materials (superheated and noble liquids). PMID:23745854

  16. Cryogenic supply for accelerators and experiments at FAIR

    SciTech Connect

    Kauschke, M.; Xiang, Y.; Schroeder, C. H.; Streicher, B.; Kollmus, H.

    2014-01-29

    In the coming years the new international accelerator facility FAIR (Facility for Antiproton and Ion Research), one of the largest research projects worldwide, will be built at GSI. In the final construction FAIR consists of synchrotrons and storage rings with up to 1,100 meters in circumference, two linear accelerators and about 3.5 kilometers beam transfer lines. The existing GSI accelerators serve as pre-accelerators. Partly the new machines will consist of superconducting magnets and therefore require a reliable supply with liquid helium. As the requirements for the magnets is depending on the machine and have a high variety, the cooling system is different for each machine; two phase cooling, forced flow cooling and bath cooling respectively. In addition the cold mass of the individual magnets varies between less than 1t up to 80t and some magnets will cause a dynamic heat load due to ramping that is higher than the static loads. The full cryogenic system will be operated above atmospheric pressure. The refrigeration and liquefaction power will be provided by two main cryogenic plants of 8 and 25 kW at 4K and two smaller plants next to the experiments.

  17. Dielectric Wakefield Accelerator Experiments at the SABER Facility

    SciTech Connect

    Kanareykin, A.; Thompson, M.C.; Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Badakov, H.; Cook, A.M.; Rosenzweig, J.B.; Tikhoplav, R.; Travish, G.; Muggli, P.; /Southern California U.

    2008-01-28

    Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC Final Focus Test Beam (FFTB), are foreseen to be produced at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of multi-GV/m in plasmas. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 um and 200 um ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in fused silica (with full data analysis still ongoing) [1]. With the construction and commissioning of the SABER facility at SLAC, new experiments would be made possible to test further aspects of DWAs including materials, tube geometrical variations, direct measurements of the Cerenkov fields, and proof of acceleration in tubes >10 cm in length. This collaboration will investigate breakdown thresholds and accelerating fields in new materials including CVD diamond. Here we describe the experimental plans, beam parameters, simulations, and progress to date as well as future prospects for machines based of DWA structures.

  18. Inverse Cerenkov laser accelerator experiment annual report. 1990 Annual report

    SciTech Connect

    Not Available

    1991-03-29

    During the past year further progress was made on preparations for the Spectra Technology, Inc. (STI) inverse Cerenkov acceleration (ICA) experiment to be performed on the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Major progress was made in the design and fabrication of the experimental apparatus. This includes the gas cell, where the ICA process occurs, and the optical system that converts the CO{sub 2} laser beam into a radially polarized beam. In terms of progress on theoretical work, the authors finished optimizing the ATF ICA design parameters using their Monte Carlo computer simulation. The optimized design predicts for the ATF conditions that over 50% energy gain should be observed. They published a paper on an improved method of performing ICA by operating near the resonance of a gas. They also began analysis of a method of accelerating particles in a vacuum using a radially polarized beam and axicon focusing. Although this new method can no longer be considered ICA, it has the potential of high acceleration gradients without the drawbacks of gas scattering and gas breakdown. Three papers were published and two conference papers were presented during 1990.

  19. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  20. The Majorana Experiment: a Straightforward Neutrino Mass Experiment Using The Double-Beta Decay of Ge-76

    SciTech Connect

    Miley, Harry S.; Y Suzuki, M Nakahata, Y Itow, M Shiozawa & Y Obayashi

    2004-08-01

    The Majorana Experiment proposes to measure the effective mass of the electron neutrino to as low as 0.02 eV using well-tested technology. A half life of about 4E27 y, corresponding to a mass range of [0.02 - 0.07] eV can be reached by operating 500 kg of germanium enriched to 86% in Ge-76 deep underground. Radiological backgrounds of cosmogenic or primordial origin will be greatly reduced by ultra-low background screening of detector, structural, and shielding materials, by chemical processing of materials, and by electronic rejection of multi-site events in the detector. Electronic background reduction is achieved with pulse shape analysis, detector segmentation, and detector-to detector coincidence rejection.

  1. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  2. Neutron Background Characterization for a Coherent Neutrino-Nucleus Scattering experiment at SNS

    NASA Astrophysics Data System (ADS)

    Gerling, Mark

    2014-03-01

    Coherent Neutrino Nucleus Scattering (CNNS) is a theoretical well-grounded, but as-yet unverified process. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) may provide an optimal platform for detection of CNNS, possibly with existing detector technology. A proto-collaboration of groups from several institutions has come together to investigate this option and propose an experiment for the first-time observation of CNNS. Currently, the largest risk to such an experiment comes from an unknown background of beam-induced high-energy neutrons that penetrate the existing SNS concrete shielding. We have deployed a neutron scatter camera at the SNS during beam operation and performed preliminary measurements of the neutron backgrounds at a promising experimental location. In order to measure neutrons as high as 100 MeV, we needed to make modifications to the neutron scatter camera and expand its capabilities beyond its standard operating range of 1-14MeV. We have identified sources of high-energy neutrons and continue to investigate other possible locations that may allow a successful CNNS experiment to go forward. The imaging capabilities of the neutron scatter camera will allow more optimal shielding designs that take into account neutron flux anisotropies at the selected experiment locations.

  3. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    SciTech Connect

    Fang, Jyan-Min

    1997-06-01

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 {mu}m CO{sub 2} laser have been carried out at Brookhaven`s Accelerator Test Facility. An energy gain of 2.5 % ({Delta}E/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator.

  4. An Experimentalist's Overview of Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  5. Background Characterization for PROSPECT: a US Short-baseline Neutrino Oscillation Experiment

    NASA Astrophysics Data System (ADS)

    Langford, Thomas

    2014-03-01

    Segmented antineutrino detectors placed near compact research reactors provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. The PROSPECT collaboration has developed a conceptual design for an experiment covering the favored reactor anomaly parameter space using two detectors located within 4-20 m of an existing reactor. Research reactors offer the benefits of compact cores, distinct reactor-off periods, and single-isotope fuel. However, they are typically located at ground level, providing little to no overburden to shield detectors. This talk will present the background requirements of the PROSPECT experiment and discuss feasibility studies that have been performed for three potential locations: NIST, INL, and ORNL. Two fast neutron detectors, a muon telescope, and HPGE and NaI gamma detectors have been deployed at the sites to measure reactor-related and cosmogenic backgrounds. The results of background measurements at each site during reactor operation and shutdown will be shown. Additionally, the planned techniques to reduce the impact of each background on the physics reach of the full experiment will also be discussed.

  6. Hypervelocity macroparticle accelerator experiments at CEM-UT

    NASA Astrophysics Data System (ADS)

    Weeks, D. A.; Weldon, W. F.; Zowarka, R. C., Jr.

    1991-01-01

    Railgun experiments designed to accelerate projectile masses of 2 to 5 g to velocities greater than 6 km/s were performed. Two parallel rail-type accelerators with 12.7-mm square bores were used for the experiments. One gun is 2 m long and has Mo rails and Al2O3 insulators. The other is 1 m long and has Mo rails and granite insulators. The greatest velocity achieved was 5.1 km/s. The following ideas to enhance performance were tested: stiff-gun structures to reduce plasma leakage and rail movement, refractory bore materials to reduce ablation and frictional losses, and prefilling the gun bore with gases to eliminate precursor arcs. After three experiments with the 2-m-long launcher at peak currents 660-780 kA, a gun barrel with 96 percent Al2O3 insulators and 99.9 percent Mo rails (hydraulically contained and preloaded) has survived with minimal damage and no degradation of seals. This launcher configuration is capable of maintaining 0.4 torr rough vacuum for over 1 h after disconnecting the roughing pump used to evacuate the gun.

  7. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  8. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

    SciTech Connect

    Serpico, Pasquale D.

    2007-04-27

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

  9. A Measurement of Electron Neutrino Appearance in the MINOS Experiment After Four Years of Data

    SciTech Connect

    Cavanaugh, Steven

    2010-05-01

    This work attempts to measure or set a limit on sin2(2θ13), the parameter which describes vμ → ve oscillations. The MINOS detectors at Fermilab are used to perform a search for the oscillations utilizing a beam of vμ neutrinos created in the NuMI beamline by the collisions of 120 GeV protons with a carbon target. These collisions create π± and K± which are focused with magnetic horns, are allowed to decay, and result in a beam of vμ in the energy range of 1 to 30 GeV. Two functionally identical steel-scintillator calorimetric detectors are utilized to measure the interactions of the generated neutrinos. A detector close to the NuMI beam, located 104 m underground and 1040 m from the target, is used to measure the properties of the neutrino beam, including the flux, composition, and energy spectrum. This information is used in part to generate a predicted spectrum of neutrinos in absence of vμ → ve oscillations in the detector located far from the target, at a distance of 705 m underground and 735.5 km from the target. An excess of predicted ve charged current events in this far detector will be interpreted as vμ → ve oscillations, and a measurement of sin2(2θ13) will be made using a Feldman-Cousins analysis. The measurement of vμ → ve requires the separation of ve candidates from background events. New reconstruction software was developed with a focus on identifying ve candidate events in order to reduce systematic errors. The event parameters measured by this software were used as an input to an artificial neutral network event discriminator. The details of this reconstruction software and the other steps of the analysis necessary to making the measurement will be discussed. This work builds on a previous measurement made with this

  10. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Nakamura, K.; Esarey, E.; Leemans, W. P.; Gonsalves, A. J.; Panasenko, D.; Toth, Cs.; Geddes, C. G. R.; Schroeder, C. B.; Lin, C.

    2009-01-22

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 {mu}m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 {mu}m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  11. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Advanced Light Source; Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2008-09-29

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filledcapillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  12. Role of ν-induced reactions on lead and iron in neutrino detectors

    NASA Astrophysics Data System (ADS)

    Kolbe, E.; Langanke, K.

    2001-02-01

    We have calculated cross sections and branching ratios for neutrino-induced reactions on 208Pb and 56Fe for various supernova and accelerator-relevant neutrino spectra. This was motivated by the facts that lead and iron will be used on the one hand as target materials in future neutrino detectors and, on the other hand, have been and are still used as shielding materials in accelerator-based experiments. In particular we study the inclusive 56Fe(νe,e-)56Co and 208Pb(νe,e-)208Bi cross sections and calculate the neutron energy spectra following the decay of the daughter nuclei. These reactions give a potential background signal in the KARMEN and LSND experiment and are discussed as a detection scheme for supernova neutrinos in the proposed OMNIS and LAND detectors. We also study the neutron emission following the neutrino-induced neutral-current excitation of 56Fe and 208Pb.

  13. Recent Results in Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard

    2011-10-01

    Solar neutrinos are an invaluable tool for studying neutrino oscillations in matter as well as probing the nuclear reactions that fuel the Sun. In this talk I will give an overview of solar neutrinos and discuss the latest results in the field. I will highlight the recent precision measurement of the ^7Be solar neutrino interaction rate with the Borexino solar neutrino detector and present the status of the analysis of pep and CNO neutrinos. I will also briefly describe future experiments and their potential to detect low energy solar neutrinos.

  14. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  15. On the Detection of the Free Neutrino

    DOE R&D Accomplishments Database

    Reines, F.; Cowan, C. L., Jr.

    1953-08-06

    The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

  16. Brief introduction of the neutrino event generators

    SciTech Connect

    Hayato, Yoshinari

    2015-05-15

    The neutrino interaction simulation programs (event generators) play an important role in the neutrino experiments. This article briefly explains what is the neutrino event generator and how it works.

  17. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  18. Results from the Cuoricino (Zero-Neutrino Double Beta) Decay Experiment

    SciTech Connect

    Arnaboldi, C; Artusa, D R; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Brofferio, C; Bucci, C; Capelli, S; Carbone, L; Cebrian, S; Clemenza, M; Cremonesi, O; Creswick, R J; de Ward, A; Didomizio, S D; Dolinski, M J; Farach, H A; Fiorini, E; Frossati, G; Giachero, A; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Maruyama, R H; McDonald, R J; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Olivieri, E; Pallavicini, M; Palmieri, E; Pasca, E; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Sangiorgio, S; Sisti, M; Smith, A R; Torres, L; Ventura, G; Vignati, M

    2007-12-20

    Recent results from the CUORICINO {sup 130}Te zero-neutrino double-beta (0v{beta}{beta}) decay experiment are reported. CUORICINO is an array of 62 tellurium oxide (TeO{sub 2}) bolometers with an active mass of 40.7 kg. It is cooled to {approx}8 mK by a dilution refrigerator shielded from environmental radioactivity and energetic neutrons. It is running in the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, Italy. These data represent 11.83 kg y or 90.77 mole-years of {sup 130}Te. No evidence for 0v{beta}{beta}-decay was observed and a limit of T{sub 1/2}{sup 0v} ({sup 130}Te) {ge} 3.0 x 10{sup 24} y (90% C.L.) is set. This corresponds to upper limits on the effective mass, , between 0.19 and 0.68eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of 0v{beta}{beta}-decay by H.V. Klapdor-Kleingrothaus and his co-workers. The experiment continues to acquire data.

  19. Solar-cycle modulation of event rates in the chlorine solar neutrino experiment

    NASA Astrophysics Data System (ADS)

    Bahcall, John N.; Press, William H.

    1991-04-01

    The time dependence of the event rates in the Homestake chlorine solar neutrino experiment are reexamined using new Ar-37 production data covering the period from late 1986 to mid-1989. The data span almost two complete solar cycles. A careful statistical analysis using nonparametric rank-order statistics is used to calculate quantitative significance levels that do not depend on experimental errors. The results show that the Ar-37 production rate in the experiment is anticorrelated with solar activity for approximately 1977-1989. The shape of the Ar-37 production rate is different from the inverted sunspot activity curve. The Ar-37 production rate is better descrbed by a skewed sawtooth function than by the sunspot number. The best-fitting sawtooth function with sunspot period has a slow rise and a rapid decline. The Ar-37 maximum occurs about 12.5 yr after the solar sunspot minimum, while minimum Ar-37 production is more nearly simultaneous with the sunspot maximum.

  20. A search for muon neutrino to electron neutrino oscillations at delta(m^2)>0.1 eV^2

    SciTech Connect

    Patterson, Ryan Benton; /Princeton U.

    2007-11-01

    The evidence is compelling that neutrinos undergo flavor change as they propagate. In recent years, experiments have observed this phenomenon of neutrino oscillations using disparate neutrino sources: the sun, fission reactors, accelerators, and secondary cosmic rays. The standard model of particle physics needs only simple extensions - neutrino masses and mixing - to accommodate all neutrino oscillation results to date, save one. The 3.8{sigma}-significant {bar {nu}}{sub e} excess reported by the LSND collaboration is consistent with {bar {nu}}{sub {mu}} {yields}{bar {nu}}{sub e} oscillations with a mass-squared splitting of {Delta}m{sup 2} {approx} 1 eV{sup 2}. This signal, which has not been independently verified, is inconsistent with other oscillation evidence unless more daring standard model extensions (e.g. sterile neutrinos) are considered.

  1. Hyper-velocity impact experiments with electrostatic dust accelerators

    NASA Astrophysics Data System (ADS)

    Mocker, Anna; Aust, Thomas; Bugiel, Sebastian; Hillier, Jonathan; Hornung, Klaus; Li, Yan-Wei; Strack, Heiko; Ralf, Srama

    2015-06-01

    Hypervelocity impacts (HVI) of micrometer-sized particles play an important role in a variety of fields such as the investigation of matter at extreme pressures and temperatures, shock waves in solid bodies, planetology and cosmic dust. The physical phenomena occurring upon impact are fragmentation and cratering, shock waves, the production of neutral and ionized gas, and light flashes. Advanced analysis techniques promise new insights into short time-scale high-pressure states of matter, requiring the production of high speed projectiles. Electrostatic accelerators act as a source of micrometer and sub-micrometer particles as projectiles for HVI experiments. This paper describes an HVI facility, capable of accelerating particles to over 100 km/s, currently located at the Max Planck Institute for Nuclear Physics in Heidelberg, together with planned improvements. The facility is about to be relocated to the University of Stuttgart. This is an opportunity to enhance the facility to meet the requirements of future experimental campaigns, necessary to better understand the micrometeoroid hypervelocity impact process and develop new in situ dust experiments. We will present the design of the new facility and the planned enhancements, including new diagnostic apparatus.

  2. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect

    Ling, Jiajie

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  3. Readout electronics validation and target detector assessment for the Neutrinos Angra experiment

    NASA Astrophysics Data System (ADS)

    Alvarenga, T. A.; Anjos, J. C.; Azzi, G.; Cerqueira, A. S.; Chimenti, P.; Costa, J. A.; Dornelas, T. I.; Farias, P. C. M. A.; Guedes, G. P.; Gonzalez, L. F. G.; Kemp, E.; Lima, H. P.; Machado, R.; Nóbrega, R. A.; Pepe, I. M.; Ribeiro, D. B. S.; Simas Filho, E. F.; Valdiviesso, G. A.; Wagner, S.

    2016-09-01

    A compact surface detector designed to identify the inverse beta decay interaction produced by anti-neutrinos coming from near operating nuclear reactors is being developed by the Neutrinos Angra Collaboration. In this document we describe and test the detector and its readout system by means of cosmic rays acquisition. In this measurement campaign, the target detector has been equipped with 16 8-in PMTs and two scintillator paddles have been used to trigger cosmic ray events. The achieved results disclosed the main operational characteristics of the Neutrinos Angra system and have been used to assess the detector and to validate its readout system.

  4. Results of ultra-low level 71ge counting for application in the Gallex-solar neutrino experiment at the Gran Sasso Underground Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Hampel, W.; Kiko, J.; Heusser, G.; Huebner, M.; Kirsten, T.; Schneider, K.; Schlotz, R.

    1985-01-01

    It has been experimentally verified that the Ultra-Low-Level Counting System for the Gallex solar neutrino experiment is capable of measuring the expected solar up silon-flux to plus or minus 12% during two years of operation.

  5. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

  6. Light sterile neutrinos: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo

    2016-07-01

    The indications in favor of the existence of light sterile neutrinos at the eV scale found in short-baseline neutrino oscillation experiments is reviewed. The future perspectives of short-baseline neutrino oscillation experiments and the connections with β-decay measurements of the neutrino masses and with neutrinoless double-β decay experiments are discussed.

  7. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  8. Neutrino Beam Simulations and Data Checks for the NOvA Experiment

    SciTech Connect

    Del Tutto, Marco

    2015-01-01

    This thesis presents a study of the NuMI beam line intended to clarify how the particle trajectories through the focusing system and consequently the neutrino event yield are affected by the variation of the Horn Currents.

  9. New limits on the ultrahigh energy cosmic neutrino flux from the ANITA experiment.

    PubMed

    Gorham, P W; Allison, P; Barwick, S W; Beatty, J J; Besson, D Z; Binns, W R; Chen, C; Chen, P; Clem, J M; Connolly, A; Dowkontt, P F; Duvernois, M A; Field, R C; Goldstein, D; Goodhue, A; Hast, C; Hebert, C L; Hoover, S; Israel, M H; Kowalski, J; Learned, J G; Liewer, K M; Link, J T; Lusczek, E; Matsuno, S; Mercurio, B C; Miki, C; Miocinović, P; Nam, J; Naudet, C J; Ng, J; Nichol, R J; Palladino, K; Reil, K; Romero-Wolf, A; Rosen, M; Ruckman, L; Saltzberg, D; Seckel, D; Varner, G S; Walz, D; Wang, Y; Wu, F

    2009-07-31

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E(nu) approximately 3 x 10(18) eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers. PMID:19792479

  10. High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment

    SciTech Connect

    IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube

    2008-02-29

    The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated into IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section.

  11. SUPERCONDUCTING COMBINED FUNCTION MAGNET SYSTEM FOR J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    OGITSU, T.; AJIMA, Y.; ANERELLA, M.; ESCALLIER, J.; GANETIS, G.; GUPTA, R.; HAGEDOM, D.; HARRISON, M.; HIGASHI, N.; IWAMOTO, Y.; ICHIKAWA, A.; JAIN, A.; KIMURA, N.; KOBAYASHI, T.; MAKIDA, Y.; MURATORE, J.; NAKAMOTO, T.; OHHATA, H.; TAKASAKI, N.; TANAKA, K.; TERASHIMA, A.; YAMOMOTO, A.; OBANA, T.; PARKER, B.; WANDERER, P.

    2004-10-03

    The J-PARC Neutrino Experiment, the construction of which starts in JFY 2004, will use a superconducting magnet system for its primary proton beam line. The system, which bends the 50 GeV 0.75 MW proton beam by about 80 degrees, consists of 28 superconducting combined function magnets. The magnets utilize single layer left/right asymmetric coils that generate a dipole field of 2.6 T and a quadrupole field of 18.6 T/m with the operation current of about 7.35 kA. The system also contains a few conduction cooled superconducting corrector magnets that serve as vertical and horizontal steering magnets. All the magnets are designed to provide a physical beam aperture of 130 mm in order to achieve a large beam acceptance. Extensive care is also required to achieve safe operation with the high power proton beam. The paper summarizes the system design as well as some safety analysis results.

  12. CONCEPT DESIGN OF THE TARGET/HORN SYSTEM FOR THE BNL NEUTRINO OSCILLATION EXPERIMENT.

    SciTech Connect

    SIMOS,N.KIRK,H.KAHN,S.CARROL,A.LUDEWIG,H.WENG,W.T.DIWAN,M.RAPARIA,D.MCDONALD,K.EVANGELAKIS,G.

    2003-05-12

    The design concept for the integration of the target and the focusing horn system for the proposed BNL neutrino oscillation experiment is described in this paper. Also presented are issues associated with the functionality and thermo-mechanical response of the selected target intercepting the 28 GeV protons of the 1 MW upgraded AGS beam, the loading and mechanical response of the focusing horn subjected to high currents and energy deposited due to beam/target interaction, the integration of the two systems, and the heat removal schemes. The proposed target intercepts the 8.9 x 10{sup 13}, 28 GeV protons with a 2.5 Hz cycle time over a spot that encloses the 3{sigma} of the beam. In the baseline. design the inner conductor of the aluminum horn encloses the target while allowing for an annular space for forced cooling. Approximately 250 kA pulse of current of 20{micro}s duration will flow through the horn at 2.5 Hz repetition rate inducing high compressive forces, vibration and heat. The paper addresses these issues of horn mechanical response, heat removal scenario, and useful life estimation including radiation damage.

  13. Development of a Photon Detection System in Liquid Argon for the Long-Baseline Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Whittington, Denver; Adams, Brice; Baptista, Brian; Baugh, Brian; Gebhard, Mark; Lang, Michael; Mufson, Stuart; Musser, James; Smith, Paul; Urheim, Jon

    2014-03-01

    The Long-Baseline Neutrino Experiment (LBNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the LBNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. The team at Indiana University is exploring a design based on acrylic waveguides coated with a wavelength-shifting compound, combined with silicon photomultipliers, to collect and record scintillation light from liquid argon. Large-scale tests of this design are being conducted at the ``TallBo'' liquid argon dewar facility at Fermilab, where performance studies with cosmic ray events are helping steer decisions for the final detector design. We present an overview of the design and function of this photon detection system and the latest results from the analysis of data collected during these tests. Photon Detector R&D Team at Indiana University.

  14. The nylon scintillator containment vessels for the Borexino solar neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cadonati, L.; Calaprice, F.; Galbiati, C.; Pocar, A.; Shutt, T.

    2014-06-01

    The neutrino event rate in the Borexino scintillator is very low ( 0.5 events per day per ton) and concentrated in an energy region well below the 2.6 MeV threshold of natural radioactivity. The intrinsic radioactive contaminants in the photomultipliers (PMTs), in the Stainless Steel Sphere, and in other detector components, play special requirements on the system required to contain the scintillator. The liquid scintillator must be shielded from the Stainless Steel Sphere and from the PMTs by a thick barrier of buffer fluid. The fluid barrier, in addition, needs to be segmented in order to contain migration of radon and daughters emanated by the Stainless Steel Sphere and by the PMTs. These requirements were met by designing and building two spherical vessel made of thin nylon film. The inner vessel contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by the second, outer nylon vessel. In addition, the two nylon vessels must satisfy stringent requirements for radioactivity and for mechanical, optical and chemical properties. This paper describes the requirements of the the nylon vessels for the Borexino experiment and offers a brief overview of the construction methods adopted to meet those requirements.

  15. Large-θ 13 perturbation theory of neutrino oscillation for long-baseline experiments

    NASA Astrophysics Data System (ADS)

    Asano, Katsuhiro; Minakata, Hisakazu

    2011-06-01

    The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ɛ ≡ ∆ m {21/2} ∆ m {31/2} ≃ 0 .03 under the 21assumption s 13 ≃ ɛ. If θ 13 is large, as suggested by a candidate ν e event at T2K as well as the recent global analyses, higher order corrections of s 13 to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking θ 13 as {s_{13}} ˜ sqrt { in } ˜eq 0.18 , which guarantees its validity in a wide range of θ 13 below the Chooz limit. We show on general ground that the correction terms must be of order ɛ2. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large θ 13 hypothesis are discussed.

  16. Bayesian approach for counting experiment statistics applied to a neutrino point source analysis

    NASA Astrophysics Data System (ADS)

    Bose, D.; Brayeur, L.; Casier, M.; de Vries, K. D.; Golup, G.; van Eijndhoven, N.

    2013-12-01

    In this paper we present a model independent analysis method following Bayesian statistics to analyse data from a generic counting experiment and apply it to the search for neutrinos from point sources. We discuss a test statistic defined following a Bayesian framework that will be used in the search for a signal. In case no signal is found, we derive an upper limit without the introduction of approximations. The Bayesian approach allows us to obtain the full probability density function for both the background and the signal rate. As such, we have direct access to any signal upper limit. The upper limit derivation directly compares with a frequentist approach and is robust in the case of low-counting observations. Furthermore, it allows also to account for previous upper limits obtained by other analyses via the concept of prior information without the need of the ad hoc application of trial factors. To investigate the validity of the presented Bayesian approach, we have applied this method to the public IceCube 40-string configuration data for 10 nearby blazars and we have obtained a flux upper limit, which is in agreement with the upper limits determined via a frequentist approach. Furthermore, the upper limit obtained compares well with the previously published result of IceCube, using the same data set.

  17. PROPOSAL FOR AN EXPERIMENT PROGRAM IN NEUTRINO PHYSICS AND PROTON DECAY IN THE HOMESTAKE LABORATORY.

    SciTech Connect

    DIWAN, M.; KETTELL, S.; LITTENBERG, W.; MARIANO, W.; PARSA, Z.; SAMIOS, N.; WHITE, S.; ET AL.

    2006-07-24

    This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant from Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit with a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL. On the other hand the beam from BNL over the larger distance will produce very large matter effects, and consequently a hint of new physics (beyond CP violation) can be better tested with that configuration. In this proposal we focus on the CP violation physics. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. This presentation is not, however, to be taken as a technical design report with the extensive documentation and contingency costs that a TDR usually entails. Nevertheless, some contingency factors have been included in the estimates given here. The essential ideas expressed here were first laid out in a letter of intent to the interim director of the Homestake Laboratory on July 26, 2001. Since that time, the prospect of a laboratory in the Homestake Mine has been realized, and the design of a long baseline neutrino experiment has been refined. The extrapolation

  18. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  19. Shedding light on LMA-dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50

    NASA Astrophysics Data System (ADS)

    Bakhti, P.; Farzan, Y.

    2014-07-01

    In the presence of Non-Standard neutral current Interactions (NSI) a new solution to solar neutrino anomaly with cos 2 θ 12 < 0 appears. We investigate how this solution can be tested by upcoming intermediate baseline reactor experiments, JUNO and RENO-50. We point out a degeneracy between the two solutions when both hierarchy and the θ 12 octant are flipped. We then comment on how this degeneracy can be partially lifted by long baseline experiments sensitive to matter effects such as the NOvA experiment.

  20. Neutrino induced events in the MINOS detectors

    SciTech Connect

    Litchfield, Reuben Phillip

    2008-01-01

    The MINOS experiment is designed to study neutrino oscillations. It uses an accelerator generated beam of neutrinos and two detectors, the smaller at a distance of 1km and the larger at 735 km. By comparing the spectrum and flavour composition of the beam at the two detectors precise determinations of the oscillation parameters are possible. This thesis concentrates on the analysis of data from the larger Far Detector. By studying the spectrum of neutral current events it is possible to look for evidence of non-interacting 'sterile' neutrinos. The thesis describes how events are selected for this analysis, and a method for discriminating between charged current and neutral current events. The systematic uncertainties resulting from these cuts are evaluated. Several techniques for using Near Detector data to eliminate systematic uncertainties in the predicted Far Detector spectrum are compared. An oscillation analysis, based on the first year of MINOS data, uses the selected events to make a measurement of f{sub s}, the fraction of unseen neutrinos that are sterile. The measured value is fs = 0.07+0.32 at 68%C.L., and is consistent with the standard three-neutrino picture, which has no sterile neutrino.

  1. Wakefield Simulations for the Laser Acceleration Experiment at SLAC

    SciTech Connect

    Ng, Johnny

    2012-04-18

    Laser-driven acceleration in dielectric photonic band gap structures can provide gradients on the order of GeV/m. The small transverse dimension of the structure, on the order of the laser wavelength, presents interesting wakefield-related issues. Higher order modes can seriously degrade beam quality, and a detailed understanding is needed to mitigate such effects. On the other hand, wakefields also provide a direct way to probe the interaction of a relativistic bunch with the synchronous modes supported by the structure. Simulation studies have been carried out as part of the effort to understand the impact on beam dynamics, and to compare with data from beam experiments designed to characterize candidate structures. In this paper, we present simulation results of wakefields excited by a sub-wavelength bunch in optical photonic band gap structures.

  2. Accelerating multidimensional NMR and MRI experiments using iterated maps

    NASA Astrophysics Data System (ADS)

    Barrett, Sean; Frey, Merideth; Sethna, Zachary; Manley, Gregory; Sengupta, Suvrajit; Zilm, Kurt; Loria, J. Patrick

    2014-03-01

    Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a `QUasi-Even Sampling, plus jiTter' (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.

  3. Accelerating multidimensional NMR and MRI experiments using iterated maps

    NASA Astrophysics Data System (ADS)

    Frey, Merideth A.; Sethna, Zachary M.; Manley, Gregory A.; Sengupta, Suvrajit; Zilm, Kurt W.; Loria, J. Patrick; Barrett, Sean E.

    2013-12-01

    Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a ‘QUasi-Even Sampling, plus jiTter' (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.

  4. From the Discovery of Radioactivity to the First Accelerator Experiments

    NASA Astrophysics Data System (ADS)

    Walter, Michael

    The chapter reviews the historical phases of cosmic ray research from the very beginning around 1900 until the 1940s when first particle accelerators replaced cosmic particles as source for elementary particle interactions. In opposite to the discovery of X-rays or the ionising α-, β- and γ-rays, it was an arduous path to the definite acceptance of the new radiation. The starting point was the explanation that air becomes conductive by the ionising radiation of radioactive elements in the surroundings. In the following years the penetration power of the radiation was studied with the result, that there seems be a component harder than the known γ-rays. Victor F. Hess did in 1912 the key experiment with a hydrogen balloon. He measured with three detectors an increase of ionisation up to altitudes of 5 300 m and discovered the extraterrestrial penetrating radiation. The next phase is characterised by W. Kolhörster's confirmation in 1914, doubts by R.A. Millikan and others as well as the spectacular re-discovery of cosmic rays by Millikan in 1926. With the invention of new detectors as the cloud chamber and the Geiger-Müller counter and of the coincidence method the properties of cosmic rays could be investigated. One of the striking results was the discovery that cosmic rays are of corpuscular nature. The broad research activities starting end of the 1920s were the begin of a scientific success story, which nobody of the early protagonists might have imagined. In 1932 C.D. Anderson discovered the antiparticle of the electron. It was the birth of elementary particle physics. Four years later the muon was discovered which was for many years wrongly assumed to be the carrier of the short range nuclear force predicted by H. Yukawa. One of the last high-lights before the particle accelerators took over this field of fundamental research was the discovery of the Yukawa particle. In photographic emulsions exposed by cosmic particles the pion was found in 1947. This

  5. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments Database

    Cooper, N. G. ed.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  6. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  7. Hadronization processes in neutrino interactions

    NASA Astrophysics Data System (ADS)

    Katori, Teppei; Mandalia, Shivesh

    2015-10-01

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  8. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  9. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  10. Nonlinear growing neutrino cosmology

    NASA Astrophysics Data System (ADS)

    Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof

    2016-03-01

    The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.

  11. Measurement of Muon Neutrino Quasielastic Scattering on Carbon

    SciTech Connect

    Aguilar-Arevalo, A. A.; Bugel, L.; Coney, L.; Conrad, J. M.; Djurcic, Z.; Mahn, K. B. M.; Monroe, J.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.; Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.; Brice, S. J.; Brown, B. C.; Finley, D. A.

    2008-01-25

    The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of {nu}{sub {mu}} CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M{sub A}{sup eff}=1.23{+-}0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon, and a Pauli-suppression parameter, {kappa}=1.019{+-}0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.

  12. Operational experience on the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Babzien, M.; Ben-Zvi, I.

    1994-09-01

    Brookhaven National Laboratory Accelerator Test Facility is a laser-electron linear accelerator complex designed to provide high brightness beams for testing of advanced acceleration concepts and high power pulsed photon sources. Results of electron beam parameters attained during the commissioning of the nominally 45 MeV energy machine are presented.

  13. NEUTRINOS OSCILLATIONS WITH LONG-BASE-LINE BEAMS:. Past, Present and very near Future

    NASA Astrophysics Data System (ADS)

    Stanco, L.

    2011-03-01

    We overview the status of the studies on neutrino oscillations with accelerators at the present running experiments. Past and present results enlighten the path towards the observation of massive neutrinos and the settling of their oscillations. The very near future may still have addiction from the outcome of the on-going experiments. OPERA is chosen as a relevant example justified by the very recent results released.

  14. Shedding light on neutrino masses with dark forces

    NASA Astrophysics Data System (ADS)

    Batell, Brian; Pospelov, Maxim; Shuve, Brian

    2016-08-01

    Heavy right-handed neutrinos, N , provide the simplest explanation for the origin of light neutrino masses and mixings. If M N is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new "dark" gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new dark force itself. We take the well-motivated example of a B - L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos ( pp → X + V B- L → X + N N ), the sensitivity reach is controlled by the square of the B - L gauge coupling. We demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.

  15. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  16. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  17. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Bray, J. D.

    2016-04-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.

  18. High Energy Neutrino Astronomy and Neutrino Telescopes

    NASA Astrophysics Data System (ADS)

    Kouchner, A.

    2015-04-01

    Neutrinos constitute a unique probe since they escape from their sources, travel undisturbed on cosmological distances and are produced in high-energy (HE) hadronic processes. In particular they would allow a direct detection and unambiguous identification of the acceleration sites of HE baryonic cosmic rays (CR), which remain unknown. Recent results from the ICECUBE collaboration present the first highly significant indication for the detection of high-energy extraterrestrial neutrinos, after several decades of instrumental efforts. We briefly report on this important results which open the route for the high-energy neutrino astronomy era. We then focus on the ANTARES detector, which despite its modest size with respect to ICECUBE is the largest deep-sea neutrino telescope in the world. The primary goal is to search for astrophysical neutrinos in the TeV-PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or Galactic sources. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide-range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported.

  19. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  20. Neutrino Factory Downstream Systems

    SciTech Connect

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.