Science.gov

Sample records for accelerator physics experiments

  1. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  2. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  3. Laser-based acceleration for nuclear physics experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Tesileanu, O.; Asavei, Th.; Dancus, I.; Gales, S.; Negoita, F.; Turcu, I. C. E.; Ursescu, D.; Zamfir, N. V.

    2016-05-01

    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments.

  4. Using a mobile phone acceleration sensor in physics experiments on free and damped harmonic oscillations

    NASA Astrophysics Data System (ADS)

    Carlos Castro-Palacio, Juan; Velázquez-Abad, Luisberis; Giménez, Marcos H.; Monsoriu, Juan A.

    2013-06-01

    We have used a mobile phone acceleration sensor, and the Accelerometer Monitor application for Android, to collect data in physics experiments on free and damped oscillations. Results for the period, frequency, spring constant, and damping constant agree very well with measurements obtained by other methods. These widely available sensors are likely to find increased use in instructional laboratories.

  5. Accelerator physics of the Stanford Linear Collider and SLC accelerator experiments towards the Next Linear Collider

    SciTech Connect

    Seeman, J.T.

    1992-06-01

    The Stanford Linear Collider (SLC) was built to collide single bunches of electrons and positrons head-on at a single interaction point with single beam energies up to 55 GeV. The small beam sizes and high currents required for high luminosity operation have significantly pushed traditional beam quality limits. The Polarized Electron Source produces about 8 {times} 10{sup 10} electrons in each of two bunches with up to 28% polarization,. The Damping Rings provide coupled invariant emittances of 1.8 {times} 10{sup {minus}5} r-m with 4.5 {times} 10{sup 10} particles per bunch. The 57 GeV Linac has successfully accelerated over 3 {times} 10{sup 10} particles with design invariant emittances of 3 {times} 10{sup {minus}5} r-m. Both longitudinal and transverse wakefields affect strongly the trajectory and emittance corrections used for operations. The Arc systems routinely transport decoupled and betatron matched beams. In the Final Focus, the beams are chromatically corrected and demagnified producing spot sizes of 2 to 3 {mu}m at the focal point. Spot sizes below 2 {mu}m have been made during special tests. Instrumentation and feedback systems are well advanced, providing continuous beam monitoring and pulse-by-pulse control. A luminosity of 1.6 {times} 10{sup 29} cm{sup {minus}2}sec{sup {minus}1} has been produced. Several experimental tests for a Next Linear Collider (NLC) are being planned or constructed using the SLC accelerator as a test facility. The Final Focus Test Beam will demagnify a flat 50 GeV electron beam to dimensions near 60 nm vertically and 900 nm horizontally. A potential Emittance Dynamics Test Area has the capability to test the acceleration and transport of very low emittance beams, the compression of bunch lengths to 50 {mu}m, the acceleration and control of multiple bunches, and the properties of wakefields in the very short bunch length regime.

  6. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  7. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  8. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    NASA Astrophysics Data System (ADS)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  9. VLHC accelerator physics

    SciTech Connect

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  10. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  11. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  12. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  13. Multi-processor developments in the United States for future high energy physics experiments and accelerators

    SciTech Connect

    Gaines, I.

    1988-03-01

    The use of multi-processors for analysis and high-level triggering in High Energy Physics experiments, pioneered by the early emulator systems, has reached maturity, in particular with the multiple microprocessor systems in use at Fermilab. It is widely acknowledged that such systems will fulfill the major portion of the computing needs of future large experiments. Recent developments at Fermilab's Advanced Computer Program will make such systems even more powerful, cost-effective, and easier to use than they are at present. The next generation of microprocessors, already available, will provide CPU power of about one VAX 780 equivalent/$300, while supporting most VMS FORTRAN extensions and large (>8MB) amounts of memory. Low cost high density mass storage devices (based on video tape cartridge technology) will allow parallel I/O to remove potential I/O bottlenecks in systems of over 1000 VAX equipment processors. New interconnection schemes and system software will allow more flexible topologies and extremely high data bandwidth, especially for on-line systems. This talk will summarize the work at the Advanced Computer Program and the rest of the US in this field. 3 refs., 4 figs.

  14. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    ) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  15. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGESBeta

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; et al

    2015-11-30

    ) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less

  16. Space experiments with particle accelerators

    SciTech Connect

    Obayashi, T.

    1981-11-01

    The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

  17. Searching for Physics beyond the Standard Model with Accelerator Neutrino Experiments

    SciTech Connect

    Louis, William C

    2008-01-01

    The MiniBooNE experiment at Fermilab was designed to test the LSND evidence for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations . The first MiniBooNE oscillation result in neutrino mode shows no significant excess of events at higher energies (E{sub {nu}} > 475 MeV), although a sizeable excess is observed at lower energies (E{sub {nu}}< 475 MeV). The lack of a significant excess at higher energies allows MiniBooNE to rule out simple 2 - {nu} oscillations as an explanation of the LSND signal. However, the low-energy excess is presently unexplained. Additional antineutrino data and NuMI data may allow the collaboration to determine whether the excess is due, for example, to a neutrino neutral-current radiative interaction or to neutrino oscillations involving sterile neutrinos. If the excess is consistent with being due to sterile neutrinos, then future experiments at FNAL (BooNE) or ORNL (OscSNS) could prove their existence.

  18. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  19. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  20. Non-accelerator experiments

    SciTech Connect

    Goldhaber, M.

    1986-01-01

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay.

  1. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  2. Accelerator science in medical physics.

    PubMed

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future.

  3. Accelerator science in medical physics

    PubMed Central

    Peach, K; Wilson, P; Jones, B

    2011-01-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future. PMID:22374548

  4. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  5. Accelerator Physics Code Web Repository

    SciTech Connect

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  6. Planning a School Physics Experiment.

    ERIC Educational Resources Information Center

    Blasiak, Wladyslaw

    1986-01-01

    Presents a model for planning the measurement of physical quantities. Provides two examples of optimizing the conditions of indirect measurement for laboratory experiments which involve measurements of acceleration due to gravity and of viscosity by means of Stokes' formula. (ML)

  7. [Accelerator physics R&D

    SciTech Connect

    Krisch, A.D.

    1994-08-22

    This report discusses the NEPTUN-A experiment that will study spin effects in violent proton-proton collisions; the Siberian snake tests at IUCF cooler ring; polarized gas jets; and polarized proton acceleration to 1 TeV at Fermilab.

  8. Accelerator physics R and D

    NASA Astrophysics Data System (ADS)

    Krisch, A. D.

    1994-08-01

    This report discusses the NEPTUN-A experiment that will study spin effects in violent proton-proton collisions; the Siberian snake tests at IUCF cooler ring; polarized gas jets; and polarized proton acceleration to 1 TeV at Fermilab.

  9. Compensation Techniques in Accelerator Physics

    SciTech Connect

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  10. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  11. Analytical tools in accelerator physics

    SciTech Connect

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  12. Results from non-accelerator experiments

    SciTech Connect

    Wilkerson, J.F.

    1992-01-01

    The diversity of non-accelerator experiments is at first look both dazzling and even daunting. However, nearly all of these experiments strive to attain the same goal, to search for new physics, beyond the current Standard Model. These measurements are also unified in the fact that their results are often dominated by systematic uncertainties. This review necessarily covers only a limited subset of non-accelerator experiments, and will concentrate on the experimental areas where there has been significant recent progress. The topics reviewed include neutrino mazes, double beta decay, solar neutrino, and long-baseline neutrino oscillation measurements.

  13. The Orbital Acceleration Research Experiment

    NASA Astrophysics Data System (ADS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  14. The Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    1986-01-01

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  15. Non-accelerator particle physics

    SciTech Connect

    Steinberg, R.I.; Lane, C.E.

    1991-09-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the {nu}IMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs.

  16. Accelerator Physics Working Group Summary

    NASA Astrophysics Data System (ADS)

    Li, D.; Uesugi, T.; Wildnerc, E.

    2010-03-01

    The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.

  17. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, Tatsuzo

    1988-01-01

    The purpose of Space Experiments with Particle Accelerators (SEPAC) on the Atmospheric Laboratory for Applications and Science (ATLAS 1) mission, is to carry out active and interactive experiments on and in the earth's ionosphere, atmosphere, and magnetosphere. The instruments to be used are an electron beam accelerator (EBA), plasma contactor, and associated instruments the purpose of which is to perform diagnostic, monitoring, and general data taking functions. Four major classes of investigations are to be performed by SEPAC. They are: beam plasma physics, beam-atmosphere interactions, the use of modulated electron beams as transmitting antennas, and the use of electron beams for remote sensing of electric and magnetic fields. The first class consists mainly of onboard plasma physics experiments to measure the effects of phenomena in the vicinity of the shuttle. The last three are concerned with remote effects and are supported by other ATLAS 1 investigations as well as by ground-based observations.

  18. Physical activities to enhance an understanding of acceleration

    NASA Astrophysics Data System (ADS)

    Lee, S. A.

    2006-03-01

    On the basis of their everyday experiences, students have developed an understanding of many of the concepts of mechanics by the time they take their first physics course. However, an accurate understanding of acceleration remains elusive. Many students have difficulties distinguishing between velocity and acceleration. In this report, a set of physical activities to highlight the differences between acceleration and velocity are described. These activities involve running and walking on sand (such as an outdoor volleyball court).

  19. Space experiments with particle accelerators. [Spacelab

    NASA Technical Reports Server (NTRS)

    Obayashi, T.

    1981-01-01

    The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

  20. Physics design for the ATA (Advanced Test Accelerator) tapered wiggler 10. 6. mu. FEL (Free-Electron Laser) amplifier experiment

    SciTech Connect

    Fawley, W.M.

    1985-05-09

    The design and construction of a high-gain, tapered wiggler 10.6 ..mu.. Free Electron Laser (FEL) amplifier to operate with the 50 MeV e-beam is underway. This report discussed the FEL simulation and the physics motivations behind the tapered wiggler design and initial experimental diagnostics.

  1. Deuterium accelerator experiments for APT.

    SciTech Connect

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  2. Theoretical problems in accelerator physics. Progress report

    SciTech Connect

    Kroll, N.M.

    1993-08-01

    This report discusses the following topics in accelerator physics: radio frequency pulse compression and power transport; computational methods for the computer analysis of microwave components; persistent wakefields associated with waveguide damping of higher order modes; and photonic band gap cavities.

  3. Physics and Accelerator Applications of RF Superconductivity

    SciTech Connect

    H. Padamsee; K. W. Shepard; Ron Sundelin

    1993-12-01

    A key component of any particle accelerator is the device that imparts energy gain to the charged particle. This is usually an electromagnetic cavity resonating at a microwave frequency, chosen between 100 and 3000 MHz. Serious attempts to utilize superconductors for accelerating cavities were initiated more than 25 years ago with the acceleration of electrons in a lead-plated resonator at Stanford University (1). The first full-scale accelerator, the Stanford SCA, was completed in 1978 at the High Energy Physics Laboratory (HEPL) (2). Over the intervening one and a half decades, superconducting cavities have become increasingly important to particle accelerators for nuclear physics and high energy physics. For continuous operation, as is required for many applications, the power dissipation in the walls of a copper structure is quite substantial, for example, 0.1 megawatts per meter of structure operating at an accelerating field of 1 million volts/meter (MV/m). since losses increase as the square of the accelerating field, copper cavities become severely uneconomical as demand for higher fields grows with the higher energies called for by experimenters to probe ever deeper into the structure of matter. Rf superconductivity has become an important technology for particle accelerators. Practical structures with attractive performance levels have been developed for a variety of applications, installed in the targeted accelerators, and operated over significant lengths of time. Substantial progress has been made in understanding field and Q limitations and in inventing cures to advance performance. The technical and economical potential of rf superconductivity makes it an important candidate for future advanced accelerators for free electron lasers, for nuclear physics, and for high energy physics, at the luminosity as well as at the energy frontiers.

  4. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  5. Computational Accelerator Physics Working Group Summary

    SciTech Connect

    Cary, John R.; Bohn, Courtlandt L.

    2004-08-27

    The working group on computational accelerator physics at the 11th Advanced Accelerator Concepts Workshop held a series of meetings during the Workshop. Verification, i.e., showing that a computational application correctly solves the assumed model, and validation, i.e., showing that the model correctly describes the modeled system, were discussed for a number of systems. In particular, the predictions of the massively parallel codes, OSIRIS and VORPAL, used for modeling advanced accelerator concepts, were compared and shown to agree, thereby establishing some verification of both codes. In addition, a number of talks on the status and frontiers of computational accelerator physics were presented, to include the modeling of ultrahigh-brightness electron photoinjectors and the physics of beam halo production. Finally, talks discussing computational needs were presented.

  6. Computational Accelerator Physics Working Group Summary

    SciTech Connect

    Cary, John R.; Bohn, Courtlandt L.

    2004-12-07

    The working group on computational accelerator physics at the 11th Advanced Accelerator Concepts Workshop held a series of meetings during the Workshop. Verification, i.e., showing that a computational application correctly solves the assumed model, and validation, i.e., showing that the model correctly describes the modeled system, were discussed for a number of systems. In particular, the predictions of the massively parallel codes, OSIRIS and VORPAL, used for modeling advanced accelerator concepts, were compared and shown to agree, thereby establishing some verification of both codes. In addition, a number of talks on the status and frontiers of computational accelerator physics were presented, to include the modeling of ultrahigh-brightness electron photoinjectors and the physics of beam halo production. Finally, talks discussing computational needs were presented.

  7. Magnetically accelerated foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, Stephan; Ford, Jessica; Martinez, David; Plechaty, Christopher; Wright, Sandra; Presura, Radu

    2008-04-01

    The interaction of shock waves with inhomogeneous media is important in many astrophysical problems, e.g. the role of shock compression in star formation. Using scaled experiments with inhomogeneous foam targets makes it possible to study relevant physics in the laboratory, to better understand the mechanisms of shock compression and to benchmark astrophysical simulation codes. Experiments with flyer-generated shock waves have been performed on the Z machine in Sandia. The Zebra accelerator at the Nevada Terawatt Facility (NTF) allows for complementary experiments with high repetition rate. First experiments on Zebra demonstrated flyer acceleration to sufficiently high velocities (around 2 km/s) and that laser shadowgraphy can image sound fronts in transparent targets. Based on this, we designed an optimized setup to improve the flyer parameters (higher speed and mass) to create shock waves in transparent media. Once x-ray backlighting with the Leopard laser at NTF is operational, we will switch to foam targets with parameters relevant for laboratory astrophysics.

  8. Classical Physics Experiments in the Amusement Park

    ERIC Educational Resources Information Center

    Bagge, Sara; Pendrill, Ann-Marie

    2002-01-01

    An amusement park is a large physics laboratory, full of rotating and accelerated coordinate systems. The forces are experienced throughout the body and can be studied with simple equipment or with electronics depending on age and experience. In this paper, we propose adaptations of classical physics experiments for use on traditional rides.…

  9. Classical physics experiments in the amusement park

    NASA Astrophysics Data System (ADS)

    Bagge, Sara; Pendrill, Ann-Marie

    2002-11-01

    An amusement park is a large physics laboratory, full of rotating and accelerated coordinate systems. The forces are experienced throughout the body and can be studied with simple equipment or with electronics depending on age and experience. In this paper, we propose adaptations of classical physics experiments for use on traditional rides.

  10. Magnetically accelerated foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, S.; Ford, J.; Wright, S.; Martinez, D.; Plechaty, C.; Presura, R.

    2009-08-01

    Many astrophysical phenomena involve the interaction of a shock wave with an inhomogeneous background medium. Using scaled experiments with inhomogeneous foam targets makes it possible to study relevant physics in the laboratory to better understand the mechanisms of shock compression and to benchmark astrophysical simulation codes. First experiments on Zebra at the Nevada Terawatt Facility (NTF) have demonstrated flyer acceleration to sufficiently high velocities (up to 5 km/s) and that laser shadowgraphy can image sound fronts in transparent targets. Based on this, we designed an optimized setup to improve the flyer parameters (higher speed and mass) to create shock waves in transparent media. Once x-ray backlighting with the Leopard laser at NTF is operational, we will switch to foam targets with parameters relevant for laboratory astrophysics.

  11. Demonstration Experiments in Physics

    ERIC Educational Resources Information Center

    Sutton, Richard M.

    2003-01-01

    This book represents a "cookbook" for teachers of physics, a book of recipes for the preparation of demonstration experiments to illustrate the principles that make the subject of physics so fascinating. Illustrations and explanations of each demonstration are done in an easy-to-understand format. Each can be adapted to be used as a demonstration…

  12. Experiment specific processing of residual acceleration data

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. I. D.

    1992-01-01

    To date, most Spacelab residual acceleration data collection projects have resulted in data bases that are overwhelming to the investigator of low-gravity experiments. This paper introduces a simple passive accelerometer system to measure low-frequency accelerations. Model responses for experiments using actual acceleration data are produced and correlations are made between experiment response and the accelerometer time history in order to test the idea that recorded acceleration data and experimental responses can be usefully correlated. Spacelab 3 accelerometer data are used as input to a variety of experiment models, and sensitivity limits are obtained for particular experiment classes. The modeling results are being used to create experiment-specific residual acceleration data processing schemes for interested investigators.

  13. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The space experiments with particle accelerators (SEPAC) instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  14. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.

    1994-01-01

    The scientific emphasis of this contract has been on the physics of beam ionosphere interactions, in particular, what are the plasma wave levels stimulated by the Space Experiments with Particle Accelerators (SEPAC) electron beam as it is ejected from the Electron Beam Accelerator (EBA) and passes into and through the ionosphere. There were two different phenomena expected. The first was generation of plasma waves by the interaction of the DC component of the beam with the plasma of the ionosphere, by wave particle interactions. The second was the generation of waves at the pulsing frequency of the beam (AC component). This is referred to as using the beam as a virtual antenna, because the beam of electrons is a coherent electrical current confined to move along the earth's magnetic field. As in a physical antenna, a conductor at a radio or TV station, the beam virtual antenna radiates electromagnetic waves at the frequency of the current variations. These two phenomena were investigated during the period of this contract.

  15. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

    SciTech Connect

    Sessler, A.M.

    1984-07-01

    High energy physics, perhaps more than any other branch of science, is driven by technology. It is not the development of theory, or consideration of what measurements to make, which are the driving elements in our science. Rather it is the development of new technology which is the pacing item. Thus it is the development of new techniques, new computers, and new materials which allows one to develop new detectors and new particle-handling devices. It is the latter, the accelerators, which are at the heart of the science. Without particle accelerators there would be, essentially, no high energy physics. In fact. the advances in high energy physics can be directly tied to the advances in particle accelerators. Looking terribly briefly, and restricting one's self to recent history, the Bevatron made possible the discovery of the anti-proton and many of the resonances, on the AGS was found the {mu}-neutrino, the J-particle and time reversal non-invariance, on Spear was found the {psi}-particle, and, within the last year the Z{sub 0} and W{sup {+-}} were seen on the CERN SPS p-{bar p} collider. Of course one could, and should, go on in much more detail with this survey, but I think there is no need. It is clear that as better acceleration techniques were developed more and more powerful machines were built which, as a result, allowed high energy physics to advance. What are these techniques? They are very sophisticated and ever-developing. The science is very extensive and many individuals devote their whole lives to accelerator physics. As high energy experimental physicists your professional lives will be dominated by the performance of 'the machine'; i.e. the accelerator. Primarily you will be frustrated by the fact that it doesn't perform better. Why not? In these lectures, six in all, you should receive some appreciation of accelerator physics. We cannot, nor do we attempt, to make you into accelerator physicists, but we do hope to give you some insight into the

  16. Inverse Cerenkov laser acceleration experiment at ATF

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Pogorelsky, I.; Fernow, R.; Kusche, K. P.; Liu, Y.; Kimura, W. D.; Kim, G. H.; Romea, R. D.; Steinhauer, L. C.

    Inverse Cerenkov laser acceleration was demonstrated using an axicon optical system at the Brookhaven Accelerator Test Facility (ATF). The ATF S-band linac and a high power 10.6 MICROMETERSCO2 laser were used for the experiment. Experimental arrangement and the laser and the electron beams synchronization are discussed. The electrons were accelerated more than 0.7 MeV for a 34 MW CO2 laser power. More than 3.7 MeV acceleration was measured with 0.7 GW CO2 laser power, which is more than 20 times of the previous ICA experiment. The experimental results are compared with computer program TRANSPORT simulations.

  17. Future flavour physics experiments

    PubMed Central

    2015-01-01

    The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543

  18. Experiments in Ice Physics.

    ERIC Educational Resources Information Center

    Martin, P. F.; And Others

    1978-01-01

    Describes experiments in ice physics that demonstrate the behavior and properties of ice. Show that ice behaves as an ionic conductor in which charge is transferred by the movement of protons, its electrical conductivity is highly temperature-dependent, and its dielectric properties show dramatic variation in the kilohertz range. (Author/GA)

  19. Game Port Physics Introductory Experiments in Linear Dynamics.

    ERIC Educational Resources Information Center

    McInerney, Michael

    1984-01-01

    Describes physics experiments (including speed, acceleration, and acceleration due to gravity) in which students write programs to obtain and manipulate experimental data using the Atari microcomputer game port. The approach emphasizes the essential physics of the experiments while affording students useful experience of automatic data collection.…

  20. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    SciTech Connect

    Shin, Young Min; Lumpkin, Alex H.; Thangaraj, Jayakar Charles; Thurman-Keup, Randy Michael; Shiltsev, Vladimir D.

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  1. Fluid Physics in a Fluctuating Acceleration Environment

    NASA Technical Reports Server (NTRS)

    Thomson, J. Ross; Drolet, Francois; Vinals, Jorge

    1996-01-01

    We summarize several aspects of an ongoing investigation of the effects that stochastic residual accelerations (g-jitter) onboard spacecraft can have on experiments conducted in a microgravity environment. The residual acceleration field is modeled as a narrow band noise, characterized by three independent parameters: intensity (g(exp 2)), dominant angular frequency Omega, and characteristic correlation time tau. Realistic values for these parameters are obtained from an analysis of acceleration data corresponding to the SL-J mission, as recorded by the SAMS instruments. We then use the model to address the random motion of a solid particle suspended in an incompressible fluid subjected to such random accelerations. As an extension, the effect of jitter on coarsening of a solid-liquid mixture is briefly discussed, and corrections to diffusion controlled coarsening evaluated. We conclude that jitter will not be significant in the experiment 'Coarsening of solid-liquid mixtures' to be conducted in microgravity. Finally, modifications to the location of onset of instability in systems driven by a random force are discussed by extending the standard reduction to the center manifold to the stochastic case. Results pertaining to time-modulated oscillatory convection are briefly discussed.

  2. Recent US target-physics-related research in heavy-ion inertial fusion: simulations for tamped targets and for disk experiments in accelerator test facilities

    SciTech Connect

    Mark, J.W.K.

    1982-03-22

    Calculations suggest that experiments relating to disk heating, as well as beam deposition, focusing and transport can be performed within the context of current design proposals for accelerator test-facilities. Since the test-facilities have lower ion kinetic energy and beam pulse power as compared to reactor drivers, we achieve high-beam intensities at the focal spot by using short focal distance and properly designed beam optics. In this regard, the low beam emittance of suggested multi-beam designs are very useful. Possibly even higher focal spot brightness could be obtained by plasma lenses which involve external fields on the beam which is stripped to a higher charge state by passing through a plasma cell. Preliminary results suggest that intensities approx. 10/sup 13/ - 10/sup 14/ W/cm/sup 2/ are achievable. Given these intensities, deposition experiments with heating of disks to greater than a million degrees Kelvin (100 eV) are expected.

  3. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    SciTech Connect

    G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti

    2011-08-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  4. Accelerator/Experiment Operations - FY 2010

    SciTech Connect

    Adamson, M.; Appel, J.A.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Escobar, C.; Ginther, G.; Gruenendahl, S.; Harris, D.; Henderson, S.; /Fermilab

    2010-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2010. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2010 Run II at the Tevatron Collider, the MINOS and MINER?A experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  5. Accelerator/Experiment Operations - FY 2011

    SciTech Connect

    Adamson, P.; Bernardi, G.; Casarsa, M.; Coleman, R.; Denisov, D.; Dixon, R.; Ginther, G.; Gruenendahl, S.; Hahn, S.; Harris, D.; Henderson, S.

    2011-11-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2011. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2011 Run II at the Tevatron Collider, the MINOS and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  6. Accelerated Application Development: The ORNL Titan Experience

    SciTech Connect

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; Philip, Bobby; Sankaran, Ramanan; Tharrington, Arnold N.; Turner, John A.

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this paper we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.

  7. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGESBeta

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; et al

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  8. Inverse Cerenkov laser acceleration experiment at ATF

    SciTech Connect

    Wang, X.J.; Pogorelsky, I.; Fernow, R.; Kusche, K.P.; Liu, Y.; Kimura, W.D.; Kim, G.H.; Romea, R.D.; Steinhauer, L.C.

    1994-09-01

    Inverse Cerenkov laser acceleration was demonstrated using an axicon optical system at the Brookhaven Accelerator Test Facility (ATF). The ATF S-band linac and a high power 10.6 {mu}m CO{sub 2} laser were used for the experiment. Experimental arrangement and the laser and the electron beams synchronization are discussed. The electrons were accelerated more than 0.7 MeV for a 34 MW CO{sub 2} laser power. More than 3.7 MeV acceleration was measured with 0.7 GW CO{sub 2} laser power, which is more than 20 times of the previous ICA experiment. The experimental results are compared with computer program TRANSPORT simulations.

  9. Space experiments with particle accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The SEPAC instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam-particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  10. Constant Acceleration: Experiments with a Fan-Driven Dynamics Cart.

    ERIC Educational Resources Information Center

    Morse, Robert A.

    1993-01-01

    Describes the rebuilding of a Project Physics fan cart on a PASCO dynamics cart chassis for achieving greatly reduced frictional forces. Suggests four experiments for the rebuilt cart: (1) acceleration on a level track, (2) initial negative velocity, (3) different masses and different forces, and (4) inclines. (MVL)

  11. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  12. The FRC Acceleration Space Thruster (FAST) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Houts, Mike; Slough, John; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The objective of the FRC (Field Reversed Configuration) Acceleration Space Thruster (FAST) Experiment is to investigate the use of a repetitive FRC source as a thruster, specifically for an NEP (nuclear electric propulsion) system. The Field Reversed Configuration is a plasmoid with a closed poloidal field line structure, and has been extensively studied as a fusion reactor core. An FRC thruster works by repetitively producing FRCs and accelerating them to high velocity. An FRC thruster should be capable of I(sub sp)'s in the range of 5,000 - 25,000 seconds and efficiencies in the range of 60 - 80 %. In addition, they can have thrust densities as high as 10(exp 6) N/m2, and as they are inductively formed, they do not suffer from electrode erosion. The jet-power should be scalable from the low to the high power regime. The FAST experiment consists of a theta-pinch formation chamber, followed by an acceleration stage. Initially, we will produce and accelerate single FRCs. The initial focus of the experiment will be on the ionization, formation and acceleration of a single plasmoid, so as to determine the likely efficiency and I(sub sp). Subsequently, we will modify the device for repetitive burst-mode operation (5-10 shots). A variety of diagnostics are or will be available for this work, including a HeNe interferometer, high-speed cameras, and a Thomson-scattering system. The status of the experiment will be described.

  13. Accelerator/Experiment Operations - FY 2008

    SciTech Connect

    Brice, Stephen J.; Buehler, M.; Casarsa, M.; Coleman, R.; Denisov, D.; Ginther, G.; Grinstein, S.; Habig, A.; Holmes, S.; Hylen, J.; Kissel, W.; /Fermilab

    2008-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2008. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2008 Run II at the Tevatron Collider, MINOS using the Main Injector Neutrino Beam (NuMI), the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  14. Accelerator/Experiment Operations - FY 2009

    SciTech Connect

    Andrews, M.N; Appel, J.A.; Brice, S.; Casarsa, M.; Coleman, R.; Denisov, d.; Ginther, G.; Gruenendahl, S.; Holmes, S.; Kissel, W.; Lee, W.M.; /Fermilab

    2009-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2009. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2009 Run II at the Tevatron Collider, MINOS using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  15. Accelerator/Experiment Operations - FY 2007

    SciTech Connect

    Brice, S.; Buchanan, N.; Coleman, R.; Convery, M.; Denisov, D.; Ginther, G.; Habig, A.; Holmes, S.; Kissel, W.; Lee, W.; Nakaya, T.; /Fermilab

    2007-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2007. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2007 Run II at the Tevatron Collider, the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), MINOS using the Main Injector Neutrino Beam (NuMI), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  16. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  17. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  18. High School Physics Teaching Experience

    ERIC Educational Resources Information Center

    Physics Teacher, 2012

    2012-01-01

    We divided our high school physics teaching experience into three groups: first year teaching physics, second or third year teaching physics, and four or more years of experience teaching physics. We did this because everything is new for teachers teaching a course for the first time. The second and third time through the course, teachers learn…

  19. Diagnostics for advanced laser acceleration experiments

    SciTech Connect

    Misuri, Alessio

    2002-06-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  20. Accelerator/Experiment operations - FY 2006

    SciTech Connect

    Brice, S.; Conrad, J.; Denisov, D.; Ginther, G.; Holmes, S.; James, C.; Lee, W.; Louis, W.; Moore, C.; Plunkett, R.; Raja, R.; /Fermilab

    2006-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and experiment operations for FY 2006. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2006 Run II at the Tevatron Collider, the MiniBooNE experiments running in the Booster Neutrino Beam in neutrino and antineutrino modes, MINOS using the Main Injector Neutrino Beam (NuMI), and SY 120 activities.

  1. Introductory Physics Experiments Using the Wiimote

    NASA Astrophysics Data System (ADS)

    Somers, William; Rooney, Frank; Ochoa, Romulo

    2009-03-01

    The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.

  2. Rare Kaon Decays, KEK experiment E391 and E14 at the Japan Physics and Accelerator Research Complex (J-PARC)

    SciTech Connect

    Wah, Yau Wai

    2012-12-06

    The goal of the J-PARC neutral kaon experiment (E14/KOTO) is to discover and measure the rate of the kaon rare decay to pi-zero and two neutrinos. This flavor changing neutral current decay proceeds through second-order weak interactions. Other, as yet undiscovered particles, which can mediate the decay could provide an enhancement (or depletion) to the branching ratio which in the Standard Model is accurately predicted within a few percent to be 2.8x10-11. The experiment is designed to observe more than 100 events at the Standard Model branching. It is a follow-up of the KEK E391a experiment and has stage-2 approval by J-PARC PAC in 2007. E14/KOTO has collaborators from Japan (Kyoto, Osaka, Yamagata, Saga), US (Arizona State, Chicago, Michigan Ann Arbor), Taiwan (National Taiwan), Korea, and Russia (Dubna). The experiment exploits the 300kW 30-50 GeV proton delivery of the J-PARC accelerator with a hermetic high acceptance detector with a fine grained Cesium Iodide (CsI) crystal calorimeter, and state of the art electronic front end and data acquisition system. With the recovery of the tsunami disaster on March 11th 2011, E14 is scheduled to start collecting data in December 2012. During the detector construction phase, Chicago focuses on the front end electronics readout of the entire detector system, particularly the CsI calorimeter. The CsI crystals together with its photomultipliers were previously used at the Fermilab KTeV experiment (E832/E799), and were loaned to E14 via this Chicago DOE support. The new readout electronics includes an innovative 10-pole pulse-shaping technique coupled with high speed digitization (14-bit 125MHz and 12-bit 500MHz). This new instrument enables us to measure both energy and timing, particularly with timing resolution better than 100 psec. Besides the cost saving by elimination of the standard time to digital converters, it is now possible to measure the momenta of the final state photons for additional background suppression

  3. Tevatron accelerator physics and operation highlights

    SciTech Connect

    Valishev, A.; /Fermilab

    2011-03-01

    The performance of the Tevatron collider demonstrated continuous growth over the course of Run II, with the peak luminosity reaching 4 x 10{sup 32} cm{sup -2} s{sup -1}, and the weekly integration rate exceeding 70 pb{sup -1}. This report presents a review of the most important advances that contributed to this performance improvement, including beam dynamics modeling, precision optics measurements and stability control, implementation of collimation during low-beta squeeze. Algorithms employed for optimization of the luminosity integration are presented and the lessons learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects.

  4. High temperature experiment for accelerator inertial fusion

    SciTech Connect

    Lee, E.P.

    1985-05-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50 to 100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy, number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse.

  5. Accelerator/Experiment Operations - FY 2015

    SciTech Connect

    Czarapata, P.

    2015-10-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2015 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  6. The FAST (FRC Acceleration Space Thruster) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  7. Orbital Acceleration Research Experiment: Calibration Measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1995-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three-axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass, which can resolve accelerations to the 10(sub -9) g level. The experiment also contains a full calibration station to permit in situ bias and scale-factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the Orbiter, and thus provides absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale-factor measurements have been performed on orbit. A detailed analysis of the calibration process is given, along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight-maneuver data used to validate the scale-factor measurements in the sensor's most sensitive range are also presented. Estimates on calibration uncertainties are discussed. These uncertainty estimates provides bounds on the STS-58 absolute acceleration measurements for future applications.

  8. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  9. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  10. The LHCf experiment at the LHC accelerator

    SciTech Connect

    Bonechi, L.; Adriani, O.; Bongi, M.; D'Alessandro, R.; Papini, P.; Castellini, G.; Faus, A.; Velasco, J.; Haguenauer, M.; Itow, Y.; Mase, T.; Masuda, K.; Matsubara, Y.; Matsumoto, H.; Menjo, H.; Muraki, Y.; Sako, T.; Tanaka, K.; Watanabe, H.; Kasahara, K.

    2006-10-27

    The claimed discovery of atmospheric shower induced by cosmic-ray with energy beyond the GZK cutoff by the AGASA experiment in 1994-1995, although not confirmed by other important experiments like Fly's Eye and Hi-Res, together with the poor knowledge of the composition of cosmic rays around and beyond the Knee region, have highlighted the necessity of new experiments that should increase our present knowledge of HECR and UHECR. For this reason big efforts have been addressed to the development of new experiments, like Auger, TA and EUSO, for a systematic study of the UHE atmospheric showers with increased capabilities with respect to the previous experiments. Moreover complementary experiments should allow a precise calibration of the methods used for the reconstruction of cosmic-ray showers in atmosphere. Their aim is the measurement of quantities that are used in these procedures and that are not yet precisely known. Under this perspective the LHCf experiment is a compact experiment which has been proposed for the study of neutral pion and gamma production at high energy in proton-proton interaction in the very forward region of the LHC accelerator. It will help calibrating the algorithms that are used to reconstruct the atmospheric shower events for energy beyond the Knee. The LHCf apparatus and the results of the first beam test, held in 2004, are shortly discussed in this work.

  11. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  12. Guide to accelerator physics program SYNCH: VAX version 1987. 2

    SciTech Connect

    Parsa, Z.; Courant, E.

    1987-01-01

    This guide is written to accommodate users of Accelerator Physics Data Base BNLDAG::DUAO:(PARSA1). It describes the contents of the on line Accelerator Physics data base DUAO:(PARSA1.SYNCH). SYNCH is a computer program used for the design and analysis of synchrotrons, storage rings and beamlines.

  13. Choosing experiments to accelerate collective discovery

    SciTech Connect

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; Evans, James A.

    2015-11-24

    Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation would accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.

  14. Choosing experiments to accelerate collective discovery

    DOE PAGESBeta

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; Evans, James A.

    2015-11-24

    Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation wouldmore » accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.« less

  15. High School Physics Teaching Experience

    NASA Astrophysics Data System (ADS)

    2012-04-01

    We divided our high school physics teaching experience into three groups: first year teaching physics, second or third year teaching physics, and four or more years of experience teaching physics. We did this because everything is new for teachers teaching a course for the first time. The second and third time through the course, teachers learn from past experiences and hone their approaches. By the time a teacher is in the fourth year of teaching a course, he or she is more comfortable with the material and better able to understand the ways in which different approaches work with different topics.

  16. CAI Physics Experiments

    ERIC Educational Resources Information Center

    Lindsay, Robert E.

    1970-01-01

    Describes a novel instructional method for physics involving the use of a computer assisted instruction system equipped with cathode-ray-tube terminals, light pen, and keyboard input. Discusses exercises with regard to content, mediation, scoring and control. Several examples of exercises are given along with results from student evaluation. (LC)

  17. The Influence of Accelerator Science on Physics Research

    NASA Astrophysics Data System (ADS)

    Haussecker, Enzo F.; Chao, Alexander W.

    2011-06-01

    We evaluate accelerator science in the context of its contributions to the physics community. We address the problem of quantifying these contributions and present a scheme for a numerical evaluation of them. We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.

  18. CEBAF: The Continuous Electron Beam Accelerator Facility and its Physics Program

    SciTech Connect

    Mougey, Jean

    1992-01-01

    With the 4 GeV Continuous Electron Beam Accelerator Facility presently under construction in Newport News, Virginia, a new domain of nuclear and subnuclear phenomena can be investigated, mainly through coincidence experiments. An overview of the characteristic features of the accelerator and associated experimental equipment is given. Some examples of the physics programs are briefly described.

  19. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.

    1982-01-01

    Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.

  20. E-157: A Plasma Wakefield Acceleration Experiment

    SciTech Connect

    Muggli, Patrick

    2000-10-20

    The E-157 plasma wakefield experiment addresses issues relevant to a meter long plasma accelerator module. In particular, a 1.4 m long plasma source has been developed for the experiment. The transverse dynamics of the beam in the plasma is studied: multiple betatron oscillations of the beam envelope, flipping of the beam tail, stability against the hose instability, emission of synchrotron radiation by the beam in the plasma. The bending of the 28.5 GeV beam at the plasma/vapor interface is observed for the first time. The longitudinal dynamics of the beam, i.e. the energy loss and gain by the electrons in the wake, is strongly affected by the oscillation of the beam tail instability.

  1. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  2. Top Quark Physics at the CDF Experiment

    SciTech Connect

    Stelzer, Bernd; Collaboration, for the CDF

    2010-07-01

    Fermilab's Tevatron accelerator is recently performing at record luminosities that enables a program systematically addressing the physics of top quarks. The CDF collaboration has analyzed up to 5 fb{sup -1} of proton anti-proton collisions from the Tevatron at a center of mass energy of 1.96 TeV. The large datasets available allow to push top quark measurements to higher and higher precision and have lead to the recent observation of electroweak single top quark production at the Tevatron. This article reviews recent results on top quark physics from the CDF experiment.

  3. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  4. Neutrino physics with accelerator driven subcritical reactors

    NASA Astrophysics Data System (ADS)

    Ciuffoli, Emilio; Evslin, Jarah; Zhao, Fengyi

    2016-01-01

    Accelerator driven system (ADS) subcritical nuclear reactors are under development around the world. They will be intense sources of free, 30-55 MeV μ + decay at rest {overline{ν}}_{μ } . These ADS reactor neutrinos can provide a robust test of the LSND anomaly and a precise measurement of the leptonic CP-violating phase δ, including sign(cos(δ)). The first phase of many ADS programs includes the construction of a low energy, high intensity proton or deuteron accelerator, which can yield competitive bounds on sterile neutrinos.

  5. Plasma gun pellet acceleration modeling and experiment

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1996-12-31

    Modifications to the electrothermal plasma gun SIRENS have been completed to allow for acceleration experiments using plastic pellets. Modifications have been implemented to the 1-D, time dependent code ODIN to include pellet friction, momentum, and kinetic energy with options of variable barrel length. The code results in the new version, POSEIDON, compare favorably with experimental data and with code results from ODIN. Predicted values show an increased pellet velocity along the barrel length, achieving 2 km/s exit velocity. Measured velocity, at three locations along the barrel length, showed good correlation with predicted values. The code has also been used to investigate the effectiveness of longer pulse length on pellet velocity using simulated ramp up and down currents with flat top, and triangular current pulses with early and late peaking. 16 refs., 5 figs.

  6. Disk Acceleration Experiment Utilizing Minimal Material (DAXUMM)

    NASA Astrophysics Data System (ADS)

    Biss, Matthew; Lorenz, Thomas; Sutherland, Gerrit

    2015-06-01

    A venture between the US Army Research Laboratory (ARL) and Lawrence Livermore National Laboratory (LLNL) is currently underway in an effort to characterize novel energetic material performance properties using a single, high-precision, gram-range charge. A nearly all-inclusive characterization experiment is proposed by combing LLNL's disk acceleration experiment (DAX) with the ARL explosive evaluation utilizing minimal material (AXEUMM) experiment. Spherical-cap charges fitted with a flat circular metal disk are centrally initiated using an exploding bridgewire detonator while photonic doppler velocimetry is used to probe the metal disk surface velocity and measure its temporal history. The metal disk's jump-off-velocity measurement is combined with conservation equations, material Hugoniots, and select empirical relationships to determine performance properties of the detonation wave (i.e., velocity, pressure, particle velocity, and density). Using the temporal velocity history with the numerical hydrocode CTH, a determination of the energetic material's equation of state and material expansion energy is possible. Initial experimental and computational results for the plastic-bonded energetic formulation PBXN-5 are presented.

  7. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  8. Fluid Physics Under a Stochastic Acceleration Field

    NASA Technical Reports Server (NTRS)

    Vinals, Jorge

    2001-01-01

    The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.

  9. Linear Collider Accelerator Physics Issues Regarding Alignment

    SciTech Connect

    Seeman, J.T.; /SLAC

    2005-08-12

    The next generation of linear colliders will require more stringent alignment tolerances than those for the SLC with regard to the accelerating structures, quadrupoles, and beam position monitors. New techniques must be developed to achieve these tolerances. A combination of mechanical-electrical and beam-based methods will likely be needed.

  10. Accelerating Innovation: How Nuclear Physics Benefits Us All

    DOE R&D Accomplishments Database

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  11. More Homespun Experiments in Physics.

    ERIC Educational Resources Information Center

    Siddons, J. C.

    1979-01-01

    Describes how some experiments in physics can be presented in class using cheap materials. How to produce an electrostatic charge using a polythene bottle and how to make a tissue paper electroscope using a tin can are among the experiments described. (HM)

  12. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  13. Accelerator physics analysis with an integrated toolkit

    SciTech Connect

    Holt, J.A.; Michelotti, L.; Satogata, T.

    1992-08-01

    Work is in progress on an integrated software toolkit for linear and nonlinear accelerator design, analysis, and simulation. As a first application, beamline'' and MXYZPTLK'' (differential algebra) class libraries, were used with an X Windows graphics library to build an user-friendly, interactive phase space tracker which, additionally, finds periodic orbits. This program was used to analyse a theoretical lattice which contains octupoles and decapoles to find the 20th order, stable and unstable periodic orbits and to explore the local phase space structure.

  14. ASP2012: Fundamental Physics and Accelerator Sciences in Africa

    NASA Astrophysics Data System (ADS)

    Darve, Christine

    2012-02-01

    Much remains to be done to improve education and scientific research in Africa. Supported by the international scientific community, our initiative has been to contribute to fostering science in sub-Saharan Africa by establishing a biennial school on fundamental subatomic physics and its applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The lectures are addressed to students or young researchers with at least a background of 4 years of university formation. The aim of the school is to develop capacity, interpret, and capitalize on the results of current and future physics experiments with particle accelerators; thereby spreading education for innovation in related applications and technologies, such as medicine and information science. Following the worldwide success of the first school edition, which gathered 65 students for 3-week in Stellenbosch (South Africa) in August 2010, the second edition will be hosted in Ghana from July 15 to August 4, 2012. The school is a non-profit organization, which provides partial or full financial support to 50 of the selected students, with priority to Sub-Saharan African students.

  15. Energy deposition via magnetoplasmadynamic acceleration: I. Experiment

    NASA Astrophysics Data System (ADS)

    Gilland, James; Mikellides, Pavlos; Marriott, Darin

    2009-02-01

    The expansion of a high-temperature fusion plasma through an expanding magnetic field is a process common to most fusion propulsion concepts. The propulsive efficiency of this process has a strong bearing on the overall performance of fusion propulsion. In order to simulate the expansion of a fusion plasma, a concept has been developed in which a high velocity plasma is first stagnated in a converging magnetic field to high (100s of eV) temperatures, then expanded though a converging/diverging magnetic nozzle. As a first step in constructing this experiment, a gigawatt magnetoplasmadynamic plasma accelerator was constructed to generate the initial high velocity plasma and has been characterized. The source is powered by a 1.6 MJ, 1.6 ms pulse forming network. The device has been operated with currents up to 300 kA and power levels up to 200 MWe. These values are among the highest levels reached in an magnetoplasmadynamic thruster. The device operation has been characterized by quasi-steady voltage and current measurements for helium mass flow rates from 0.5 to 27 g s-1. Probe results for downstream plasma density and electron temperature are also presented. The source behavior is examined in terms of current theories for magnetoplasmadynamic thrusters.

  16. Hyper-velocity impact experiments with electrostatic dust accelerators

    NASA Astrophysics Data System (ADS)

    Mocker, Anna; Aust, Thomas; Bugiel, Sebastian; Hillier, Jonathan; Hornung, Klaus; Li, Yan-Wei; Strack, Heiko; Ralf, Srama

    2015-06-01

    Hypervelocity impacts (HVI) of micrometer-sized particles play an important role in a variety of fields such as the investigation of matter at extreme pressures and temperatures, shock waves in solid bodies, planetology and cosmic dust. The physical phenomena occurring upon impact are fragmentation and cratering, shock waves, the production of neutral and ionized gas, and light flashes. Advanced analysis techniques promise new insights into short time-scale high-pressure states of matter, requiring the production of high speed projectiles. Electrostatic accelerators act as a source of micrometer and sub-micrometer particles as projectiles for HVI experiments. This paper describes an HVI facility, capable of accelerating particles to over 100 km/s, currently located at the Max Planck Institute for Nuclear Physics in Heidelberg, together with planned improvements. The facility is about to be relocated to the University of Stuttgart. This is an opportunity to enhance the facility to meet the requirements of future experimental campaigns, necessary to better understand the micrometeoroid hypervelocity impact process and develop new in situ dust experiments. We will present the design of the new facility and the planned enhancements, including new diagnostic apparatus.

  17. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  18. Fluid Physics in a Fluctuating Acceleration Environment

    NASA Technical Reports Server (NTRS)

    Drolet, Francois; Vinals, Jorge

    1999-01-01

    Our program of research aims at developing a stochastic description of the residual acceleration field onboard spacecraft (g-jitter) to describe in quantitative detail its effect on fluid motion. Our main premise is that such a statistical description is necessary in those cases in which the characteristic time scales of the process under investigation are long compared with the correlation time of g-jitter. Although a clear separation between time scales makes this approach feasible, there remain several difficulties of practical nature: (i), g-jitter time series are not statistically stationary but rather show definite dependences on factors such as active or rest crew periods; (ii), it is very difficult to extract reliably the low frequency range of the power spectrum of the acceleration field. This range controls the magnitude of diffusive processes; and (iii), models used to date are Gaussian, but there is evidence that large amplitude disturbances occur much more frequently than a Gaussian distribution would predict. The lack of stationarity does not constitute a severe limitation in practice, since the intensity of the stochastic components changes very slowly during space missions (perhaps over times of the order of hours). A separate analysis of large amplitude disturbances has not been undertaken yet, but it does not seem difficult a priori to devise models that may describe this range better than a Gaussian distribution. The effect of low frequency components, on the other hand, is more difficult to ascertain, partly due to the difficulty associated with measuring them, and partly because they may be indistinguishable from slowly changing averages. This latter effect is further complicated by the lack of statistical stationarity of the time series. Recent work has focused on the effect of stochastic modulation on the onset of oscillatory instabilities as an example of resonant interaction between the driving acceleration and normal modes of the system

  19. Doing accelerator physics using SDDS, UNIX, and EPICS

    SciTech Connect

    Borland, M.; Emery, L.; Sereno, N.

    1995-12-31

    The use of the SDDS (Self-Describing Data Sets) file protocol, together with the UNIX operating system and EPICS (Experimental Physics and Industrial Controls System), has proved powerful during the commissioning of the APS (Advanced Photon Source) accelerator complex. The SDDS file protocol has permitted a tool-oriented approach to developing applications, wherein generic programs axe written that function as part of multiple applications. While EPICS-specific tools were written for data collection, automated experiment execution, closed-loop control, and so forth, data processing and display axe done with the SDDS Toolkit. Experiments and data reduction axe implemented as UNIX shell scripts that coordinate the execution of EPICS specific tools and SDDS tools. Because of the power and generic nature of the individual tools and of the UNIX shell environment, automated experiments can be prepared and executed rapidly in response to unanticipated needs or new ideas. Examples are given of application of this methodology to beam motion characterization, beam-position-monitor offset measurements, and klystron characterization.

  20. (Advanced accelerator physics featuring the problems of small rings)

    SciTech Connect

    Olsen, D.K.

    1989-10-16

    The traveler attended the CERN Accelerator School and Uppsala University short course on Advanced Accelerator Physics held on the University campus, Uppsala, Sweden, from September 18-29, 1989. The course, attended by 81 people, was well conceived, well presented, and informative. The course was organized and specialized on the problems of small rings. The traveler also visited the CELSIUS ring facility of Uppsala University and the CRYRING ring facility of the Manne Siegbahn Institute in Stockholm, Sweden.

  1. An introduction to the physics of high energy accelerators

    SciTech Connect

    Edwards, D.A.; Syphers, J.J.

    1993-01-01

    This book is an outgrowth of a course given by the authors at various universities and particle accelerator schools. It starts from the basic physics principles governing particle motion inside an accelerator, and leads to a full description of the complicated phenomena and analytical tools encountered in the design and operation of a working accelerator. The book covers acceleration and longitudinal beam dynamics, transverse motion and nonlinear perturbations, intensity dependent effects, emittance preservation methods and synchrotron radiation. These subjects encompass the core concerns of a high energy synchrotron. The authors apparently do not assume the reader has much previous knowledge about accelerator physics. Hence, they take great care to introduce the physical phenomena encountered and the concepts used to describe them. The mathematical formulae and derivations are deliberately kept at a level suitable for beginners. After mastering this course, any interested reader will not find it difficult to follow subjects of more current interests. Useful homework problems are provided at the end of each chapter. Many of the problems are based on actual activities associated with the design and operation of existing accelerators.

  2. Applications of the ARGUS code in accelerator physics

    SciTech Connect

    Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.

    1993-12-31

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper.

  3. Sustained Spheromak Physics Experiment, SSPX

    SciTech Connect

    Hooper, E.B.

    1997-05-15

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T{sub e} = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ``gun`` into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T{sub e} measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T{sub e} of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime.

  4. The Physics of the CMS Experiment

    SciTech Connect

    Sanabria, J. C.

    2007-10-26

    The Large Hadron Collider (LHC) at CERN will start running 2008 producing proton-proton collisions with a center-of-mass energy of 14 TeV. Four large experiments will operate together with this accelerator: ALICE, ATLAS, CMS and LHCb. The main scientific goal of this project is to understand in detail the mechanism for electro-weak symmetry breaking and to search for physics beyond the standard model of particles. ATLAS and CMS are general purpose detectors designed for search and discovery of new physics, and optimized to search for Higgs and signals of supersymmetric matter (SUSY). In this paper the main features of the CMS detector will be presented and its potential for Higgs and SUSY discoveries will be discussed.

  5. Accelerator physics measurements at the damping ring

    NASA Astrophysics Data System (ADS)

    Rivkin, L.; Delahaye, J. P.; Wille, K.; Allen, M. A.; Bane, K.; Fieguth, T.; Hofmann, A.; Button, A.; Lee, M.; Linebarger, W.

    1985-05-01

    Besides the optics measurements described elsewhere, machine experiments were done at the Stanford Linear Collider (SLC) damping ring to determine some of its parameters. The synchrotron radiation energy loss which gives the damping rates was measured by observing the RF-voltage dependence of the synchronous phase angle. The emittance was obtained from the synchrotron light monitor, scraper measurements and by extracting the beam through a doublet and measuring its size for different quadrupole settings. Current dependent effects such as parasitic mode losses, head tail instabilities, synchrotron and betatron frequency shifts were measured to estimate the impedance. RF-cavity beam loading and its compensation were also studied and ion collection was investigated. All results agree reasonably well with expectations and indicate no limitations to the design performance.

  6. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  7. Inverse Cherenkov and inverse FEL accelerator experiments at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.V.; vanSteenbergen, A.; Babzien, M.

    1995-12-31

    Status update on the ongoing inverse Cherenkov acceleration experiment and prospects to its 100 MeV short-term upgrade. The first report on 1 MeV electron acceleration with the 0.5 GW CO{sub 2} laser used in the inverse FEL scheme. (author). 22 refs., 8 figs., 1 tab.

  8. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    NASA Astrophysics Data System (ADS)

    Gillich, Don; Shannon, Mike; Kovanen, Andrew; Anderson, Tom; Bright, Kevin; Edwards, Ronald; Danon, Yaron; Moretti, Brian; Musk, Jeffrey

    2011-06-01

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of ˜100 keV. Within the next year, cadets and faculty at USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.

  9. Better physical activity classification using smartphone acceleration sensor.

    PubMed

    Arif, Muhammad; Bilal, Mohsin; Kattan, Ahmed; Ahamed, S Iqbal

    2014-09-01

    Obesity is becoming one of the serious problems for the health of worldwide population. Social interactions on mobile phones and computers via internet through social e-networks are one of the major causes of lack of physical activities. For the health specialist, it is important to track the record of physical activities of the obese or overweight patients to supervise weight loss control. In this study, acceleration sensor present in the smartphone is used to monitor the physical activity of the user. Physical activities including Walking, Jogging, Sitting, Standing, Walking upstairs and Walking downstairs are classified. Time domain features are extracted from the acceleration data recorded by smartphone during different physical activities. Time and space complexity of the whole framework is done by optimal feature subset selection and pruning of instances. Classification results of six physical activities are reported in this paper. Using simple time domain features, 99 % classification accuracy is achieved. Furthermore, attributes subset selection is used to remove the redundant features and to minimize the time complexity of the algorithm. A subset of 30 features produced more than 98 % classification accuracy for the six physical activities.

  10. The electron accelerator for the AWAKE experiment at CERN

    NASA Astrophysics Data System (ADS)

    Pepitone, K.; Doebert, S.; Burt, G.; Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G.; Mete, O.; Verzilov, V.; Apsimon, R.

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  11. Accelerated growth of calcium silicate hydrates: Experiments and simulations

    SciTech Connect

    Nicoleau, Luc

    2011-12-15

    Despite the usefulness of isothermal calorimetry in cement analytics, without any further computations this brings only little information on the nucleation and growth of hydrates. A model originally developed by Garrault et al. is used in this study in order to simulate hydration curves of cement obtained by calorimetry with different known hardening accelerators. The limited basis set of parameters used in this model, having a physical or chemical significance, is valuable for a better understanding of mechanisms underlying in the acceleration of C-S-H precipitation. Alite hydration in presence of four different types of hardening accelerators was investigated. It is evidenced that each accelerator type plays a specific role on one or several growth parameters and that the model may support the development of new accelerators. Those simulations supported by experimental observations enable us to follow the formation of the C-S-H layer around grains and to extract interesting information on its apparent permeability.

  12. Accelerator Physics Challenges for the NSLS-II Project

    SciTech Connect

    Krinsky,S.

    2009-05-04

    The NSLS-II is an ultra-bright synchrotron light source based upon a 3-GeV storage ring with a 30-cell (15 super-period) double-bend-achromat lattice with damping wigglers used to lower the emittance below 1 nm. In this paper, we discuss the accelerator physics challenges for the design including: optimization of dynamic aperture; estimation of Touschek lifetime; achievement of required orbit stability; and analysis of ring impedance and collective effects.

  13. Accelerator physics highlights in the 1997/98 SLC run

    SciTech Connect

    Assmann, R.W.; Bane, K.L.F.; Barkow, T.

    1998-03-01

    The authors report various accelerator physics studies and improvements from the 1997/98 run at the Stanford Linear Collider (SLC). In particular, the authors discuss damping-ring lattice diagnostics, changes to the linac set up, fast control for linac rf phase stability, new emittance tuning strategies, wakefield reduction, modifications of the final-focus optics, longitudinal bunch shaping, and a novel spot-size control at the interaction point (IP).

  14. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  15. Estimates of effects of residual acceleration on USML-1 experiments

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    The purpose of this study effort was to develop analytical models to describe the effects of residual accelerations on the experiments to be carried on the first U.S. Microgravity Lab mission (USML-1) and to test the accuracy of these models by comparing the pre-flight predicted effects with the post-flight measured effects. After surveying the experiments to be performed on USML-1, it became evident that the anticipated residual accelerations during the USML-1 mission were well below the threshold for most of the primary experiments and all of the secondary (Glovebox) experiments and that the only set of experiments that could provide quantifiable effects, and thus provide a definitive test of the analytical models, were the three melt growth experiments using the Bridgman-Stockbarger type Crystal Growth Furnace (CGF). This class of experiments is by far the most sensitive to low level quasi-steady accelerations that are unavoidable on space craft operating in low earth orbit. Because of this, they have been the drivers for the acceleration requirements imposed on the Space Station. Therefore, it is appropriate that the models on which these requirements are based are tested experimentally. Also, since solidification proceeds directionally over a long period of time, the solidified ingot provides a more or less continuous record of the effects from acceleration disturbances.

  16. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  17. COMPASS, the COMmunity Petascale Project for Accelerator Science and Simulation, a broad computational accelerator physics initiative

    SciTech Connect

    J.R. Cary; P. Spentzouris; J. Amundson; L. McInnes; M. Borland; B. Mustapha; B. Norris; P. Ostroumov; Y. Wang; W. Fischer; A. Fedotov; I. Ben-Zvi; R. Ryne; E. Esarey; C. Geddes; J. Qiang; E. Ng; S. Li; C. Ng; R. Lee; L. Merminga; H. Wang; D.L. Bruhwiler; D. Dechow; P. Mullowney; P. Messmer; C. Nieter; S. Ovtchinnikov; K. Paul; P. Stoltz; D. Wade-Stein; W.B. Mori; V. Decyk; C.K. Huang; W. Lu; M. Tzoufras; F. Tsung; M. Zhou; G.R. Werner; T. Antonsen; T. Katsouleas

    2007-06-01

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  18. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    SciTech Connect

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; Wang, H.; Bruhwiler, D.L.; Dechow, D.; Mullowney, P.; Messmer, P.; Nieter, C.; Ovtchinnikov, S.; Paul, K.; Stoltz, P.; Wade-Stein, D.; Mori, W.B.; Decyk, V.; Huang, C.K.; Lu, W.; Tzoufras, M.; Tsung, F.; Zhou, M.; Werner, G.R.; Antonsen, T.; Katsouleas, T.; Morris, B.

    2007-07-16

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  19. COMPASS, the COMmunity Petascale Project for Accelerator Science And Simulation, a Broad Computational Accelerator Physics Initiative

    SciTech Connect

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Norris, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; /Jefferson Lab /Tech-X, Boulder /UCLA /Colorado U. /Maryland U. /Southern California U.

    2007-11-09

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  20. Inverse-Transition Radiation Laser Acceleration Experiments at SLAC

    SciTech Connect

    Colby, Eric R.; Ischebeck, R.; Mcguinness, C.; Noble, R.J.; Sears, CMS; Siemann, Robert H.; Spencer, James E.; Walz, D.R.; Byer, R.L.; Plettner, T.; /Stanford U., Phys. Dept.

    2008-01-16

    We present a series of laser-driven particle acceleration experiments that are aimed at studying laser-particle acceleration as an inverse-radiation process. To this end we employ a semi-open vacuum setup with a thin planar boundary that interacts with the laser and the electromagnetic field of the electron beam. Particle acceleration from different types of boundaries will be studied and compared to the theoretical expectations from the Inverse-radiation picture and the field path integral method. We plan to measure the particle acceleration effect from transparent, reflective, black, and rough surface boundaries. While the agreement between the two acceleration pictures is straightforward to prove analytically for the transparent and reflective boundaries the equivalence is not clear-cut for the absorbing and rough-surface boundaries. Experimental observation may provide the evidence to distinguish between the models.

  1. From the Discovery of Radioactivity to the First Accelerator Experiments

    NASA Astrophysics Data System (ADS)

    Walter, Michael

    The chapter reviews the historical phases of cosmic ray research from the very beginning around 1900 until the 1940s when first particle accelerators replaced cosmic particles as source for elementary particle interactions. In opposite to the discovery of X-rays or the ionising α-, β- and γ-rays, it was an arduous path to the definite acceptance of the new radiation. The starting point was the explanation that air becomes conductive by the ionising radiation of radioactive elements in the surroundings. In the following years the penetration power of the radiation was studied with the result, that there seems be a component harder than the known γ-rays. Victor F. Hess did in 1912 the key experiment with a hydrogen balloon. He measured with three detectors an increase of ionisation up to altitudes of 5 300 m and discovered the extraterrestrial penetrating radiation. The next phase is characterised by W. Kolhörster's confirmation in 1914, doubts by R.A. Millikan and others as well as the spectacular re-discovery of cosmic rays by Millikan in 1926. With the invention of new detectors as the cloud chamber and the Geiger-Müller counter and of the coincidence method the properties of cosmic rays could be investigated. One of the striking results was the discovery that cosmic rays are of corpuscular nature. The broad research activities starting end of the 1920s were the begin of a scientific success story, which nobody of the early protagonists might have imagined. In 1932 C.D. Anderson discovered the antiparticle of the electron. It was the birth of elementary particle physics. Four years later the muon was discovered which was for many years wrongly assumed to be the carrier of the short range nuclear force predicted by H. Yukawa. One of the last high-lights before the particle accelerators took over this field of fundamental research was the discovery of the Yukawa particle. In photographic emulsions exposed by cosmic particles the pion was found in 1947. This

  2. The Gift of Time: Today's Academic Acceleration Case Study Voices of Experience

    ERIC Educational Resources Information Center

    Scheibel, Susan Riley

    2010-01-01

    The purpose of this qualitative case study was to examine today's academic acceleration from the lived experience and perspectives of two young adults whose education was shortened, thereby allowing them the gift of time. Through personal interviews, parent interviews, and physical artifacts, the researcher gained a complex, holistic understanding…

  3. Seeing the Nature of the Accelerating Physics: It's a SNAP

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-05

    For true insight into the nature of dark energy, measurements of the precision and accuracy of the Supernova/Acceleration Probe (SNAP) are required. Precursor or scaled-down experiments are unavoidably limited, even for distinguishing the cosmological constant. They can pave the way for, but should not delay, SNAP by developing calibration, refinement, and systematics control (and they will also provide important, exciting astrophysics).

  4. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Clark, J. C.; Isaacs-Smith, T.

    2001-07-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed.

  5. Choosing experiments to accelerate collective discovery.

    PubMed

    Rzhetsky, Andrey; Foster, Jacob G; Foster, Ian T; Evans, James A

    2015-11-24

    A scientist's choice of research problem affects his or her personal career trajectory. Scientists' combined choices affect the direction and efficiency of scientific discovery as a whole. In this paper, we infer preferences that shape problem selection from patterns of published findings and then quantify their efficiency. We represent research problems as links between scientific entities in a knowledge network. We then build a generative model of discovery informed by qualitative research on scientific problem selection. We map salient features from this literature to key network properties: an entity's importance corresponds to its degree centrality, and a problem's difficulty corresponds to the network distance it spans. Drawing on millions of papers and patents published over 30 years, we use this model to infer the typical research strategy used to explore chemical relationships in biomedicine. This strategy generates conservative research choices focused on building up knowledge around important molecules. These choices become more conservative over time. The observed strategy is efficient for initial exploration of the network and supports scientific careers that require steady output, but is inefficient for science as a whole. Through supercomputer experiments on a sample of the network, we study thousands of alternatives and identify strategies much more efficient at exploring mature knowledge networks. We find that increased risk-taking and the publication of experimental failures would substantially improve the speed of discovery. We consider institutional shifts in grant making, evaluation, and publication that would help realize these efficiencies.

  6. Choosing experiments to accelerate collective discovery

    PubMed Central

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.

    2015-01-01

    A scientist’s choice of research problem affects his or her personal career trajectory. Scientists’ combined choices affect the direction and efficiency of scientific discovery as a whole. In this paper, we infer preferences that shape problem selection from patterns of published findings and then quantify their efficiency. We represent research problems as links between scientific entities in a knowledge network. We then build a generative model of discovery informed by qualitative research on scientific problem selection. We map salient features from this literature to key network properties: an entity’s importance corresponds to its degree centrality, and a problem’s difficulty corresponds to the network distance it spans. Drawing on millions of papers and patents published over 30 years, we use this model to infer the typical research strategy used to explore chemical relationships in biomedicine. This strategy generates conservative research choices focused on building up knowledge around important molecules. These choices become more conservative over time. The observed strategy is efficient for initial exploration of the network and supports scientific careers that require steady output, but is inefficient for science as a whole. Through supercomputer experiments on a sample of the network, we study thousands of alternatives and identify strategies much more efficient at exploring mature knowledge networks. We find that increased risk-taking and the publication of experimental failures would substantially improve the speed of discovery. We consider institutional shifts in grant making, evaluation, and publication that would help realize these efficiencies. PMID:26554009

  7. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    SciTech Connect

    Friedman, A.

    1996-01-26

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as {open_quotes}drivers{close_quotes} for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a {open_quotes}taxonomy{close_quotes} of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area.

  8. Facilitating an accelerated experience-based co-design project.

    PubMed

    Tollyfield, Ruth

    This article describes an accelerated experience-based co-design (AEBCD) quality improvement project that was undertaken in an adult critical care setting and the facilitation of that process. In doing so the aim is to encourage other clinical settings to engage with their patients, carers and staff alike and undertake their own quality improvement project. Patient, carer and staff experience and its place in the quality sphere is outlined and the importance of capturing patient, carer and staff feedback established. Experience-based co-design (EBCD) is described along with the recently tested accelerated version of the process. An overview of the project and outline of the organisational tasks and activities undertaken by the facilitator are given. The facilitation of the process and key outcomes are discussed and reflected on. Recommendations for future undertakings of the accelerated process are given and conclusions drawn.

  9. Induction Accelerator Technology Choices for the Integrated Beam Experiment (IBX)

    SciTech Connect

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Logan, B.G.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2003-09-15

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete 'source-to-target' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current ({approx}1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing.This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets.

  10. Space experiments with particle accelerators (SEPAC): Description of instrumentation

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.

    1987-01-01

    SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.

  11. Accelerator-driven molten-salt blankets: Physics issues

    SciTech Connect

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-10-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m{sup 3} per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics.

  12. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  13. Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics

    SciTech Connect

    Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.

  14. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  15. Underground Accelerators for Precise Nuclear Physics: LUNA and DIANA

    NASA Astrophysics Data System (ADS)

    Leitner, Daniela

    2011-05-01

    Current stellar model simulations are at a level of precision that uncertainties in the nuclear-reaction rates are becoming significant for theoretical predictions and for the analysis of observational signatures. To address several open questions in cosmology, astrophysics, and non-Standard-Model neutrino physics, new high precision measurements of direct-capture nuclear fusion cross sections will be essential. At these low energies, fusion cross sections decrease exponentially with energy and are expected to approach femtobarn levels or less. The experimental difficulties in determining the low-energy cross sections are caused by large background rates associated with cosmic ray-induced reactions, background from natural radioactivity in the laboratory environment, and the beam-induced background on target impurities. Natural background can be reduced by careful shielding of the target and detector environment, and beam-induced background can be reduced by active shielding techniques through event identification, but it is difficult to reduce the background component from cosmic ray muons. An underground location has the advantage that the cosmic ray-induced background is reduced by several orders of magnitude, allowing the measurements to be pushed to far lower energies than feasible above ground. This has been clearly demonstrated at LUNA by the successful studies of critical reactions in the pp-chains and first reaction studies in the CNO cycles. The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, Michigan State University, Colorado School of Mines, Regis University, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory, to build a nuclear astrophysics accelerator facility deep underground. The DIANA accelerator facility is being designed to achieve large laboratory reaction rates by delivering two orders of magnitude higher ion beams to a

  16. Micro-Bubble Experiments at the Van de Graaff Accelerator

    SciTech Connect

    Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.; Gromov, Roman; Youker, A. J.; Makarashvili, Vakhtang; Bailey, James; Stepinski, D. C.; Chemerisov, S. D.; Vandegrift, G. F.

    2015-02-01

    In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O2 + H2) data were collected. The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.

  17. Nuclear effects in atmospheric and accelerator neutrino experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2010-11-24

    We have studied the nuclear medium effects in the neutrino (antineutrino) induced interactions in nuclei at intermediate energy region. We have applied this study to calculate the event rates for atmospheric and accelerator neutrino experiments. The study of the nuclear effects has been done for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  18. The Student Course Experience among Online, Accelerated, and Traditional Courses

    ERIC Educational Resources Information Center

    Bielitz, Colleen L.

    2016-01-01

    The demand by the public for a wider variety of course formats has led to complexity in determining a course's optimal delivery format as many faculty members still believe that online and accelerated courses do not offer students an equivalent experience to traditional face to face instruction. The purpose of this quantitative, comparative study…

  19. Accelerator/Experiment Operations - FY 2001 Through FY 2003

    SciTech Connect

    Jeffrey A. Appel et al.

    2004-02-05

    This Technical Memorandum (TM) summarizes the accelerator and experiment operations for the period FY 2001 through FY 2003. The plan is to have an annual TM to gather such information in one place. In this case, the information concerns the startup of Run II at the Tevatron Collider and the beginning of the MiniBooNE neutrino experiment. While the focus is on the FY 2003 efforts, this document includes summaries of the earlier years where available for completeness.

  20. First results of the plasma wakefield acceleration experiment at PITZ

    NASA Astrophysics Data System (ADS)

    Lishilin, O.; Gross, M.; Brinkmann, R.; Engel, J.; Grüner, F.; Koss, G.; Krasilnikov, M.; Martinez de la Ossa, A.; Mehrling, T.; Osterhoff, J.; Pathak, G.; Philipp, S.; Renier, Y.; Richter, D.; Schroeder, C.; Schütze, R.; Stephan, F.

    2016-09-01

    The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self-modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ.

  1. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    SciTech Connect

    England, R.J.; Colby, E.R.; Ischebeck, R.; McGuinness, C.M.; Noble, R.; Plettner, T.; Sears, C.M.S.; Siemann, R.H.; Spencer, J.E.; Walz, D.; /SLAC

    2011-11-21

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.

  2. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    SciTech Connect

    England, R. J.; Colby, E. R.; McGuinness, C. M.; Noble, R.; Plettner, T.; Siemann, R. H.; Spencer, J. E.; Walz, D.; Ischebeck, R.; Sears, C. M. S.

    2009-01-22

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50 pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. We will describe the experimental plan and recent simulation studies of candidate fibers.

  3. Experimental test accelerator: description and results of initial experiments

    SciTech Connect

    Fessenden, T.; Birx, D.; Briggs, R.

    1980-06-02

    The ETA is a high current (10,000 Amp) linear induction accelerator that produces short (30 ns) pulses of electrons at 5 MeV twice per second or in bursts of 5 pulses separated by as little as one millisecond. At this time the machine has operated at 65% of its design current and 90% of the design voltage. This report contains a description of the accelerator and its diagnostics; the results of the initial year of operation; a comparison of design codes with experiments on beam transport; and a discussion of some of the special problems and their status.

  4. Modeling laser wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted frames

    SciTech Connect

    Martins, S. F.; Fonseca, R. A.; Vieira, J.; Silva, L. O.

    2010-05-15

    The development of new laser systems at the 10 Petawatt range will push laser wakefield accelerators to novel regimes, for which theoretical scalings predict the possibility to accelerate electron bunches up to tens of GeVs in meter-scale plasmas. Numerical simulations will play a crucial role in testing, probing, and optimizing the physical parameters and the setup of future experiments. Fully kinetic simulations are computationally very demanding, pushing the limits of today's supercomputers. In this paper, the recent developments in the OSIRIS framework [R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002)] are described, in particular the boosted frame scheme, which leads to a dramatic change in the computational resources required to model laser wakefield accelerators. Results from one-to-one modeling of the next generation of laser systems are discussed, including the confirmation of electron bunch acceleration to the energy frontier.

  5. Modeling laser wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted framesa)

    NASA Astrophysics Data System (ADS)

    Martins, S. F.; Fonseca, R. A.; Vieira, J.; Silva, L. O.; Lu, W.; Mori, W. B.

    2010-05-01

    The development of new laser systems at the 10 Petawatt range will push laser wakefield accelerators to novel regimes, for which theoretical scalings predict the possibility to accelerate electron bunches up to tens of GeVs in meter-scale plasmas. Numerical simulations will play a crucial role in testing, probing, and optimizing the physical parameters and the setup of future experiments. Fully kinetic simulations are computationally very demanding, pushing the limits of today's supercomputers. In this paper, the recent developments in the OSIRIS framework [R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002)] are described, in particular the boosted frame scheme, which leads to a dramatic change in the computational resources required to model laser wakefield accelerators. Results from one-to-one modeling of the next generation of laser systems are discussed, including the confirmation of electron bunch acceleration to the energy frontier.

  6. Hadron physics at the new CW electron accelerators

    SciTech Connect

    Burkert, V.D.

    1990-01-01

    Major trends of the physics program related to the study of hadron structure and hadron spectroscopy at the new high current, high duty cycle electron machines are discussed. It is concluded that planned experiments at these machines may have important impact on our understanding of the strong interaction by studying the internal structure and spectroscopy of the nucleon and lower mass hyperon states.

  7. Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Barnard, J. J.; Briggs, R. J.; Davidson, R. C.; Dorf, M.; Grote, D. P.; Henestroza, E.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Sefkow, A. B.; Sharp, W. M.; Waldron, W. L.; Welch, D. R.; Yu, S. S.

    2009-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity "tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ˜30 nC pulse of Li+ ions to ˜3 MeV, then compresses it to ˜1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  8. Crucial Experiments in Quantum Physics.

    ERIC Educational Resources Information Center

    Trigg, George L.

    The six experiments included in this monography are titled Blackbody Radiation, Collision of Electrons with Atoms, The Photoelectric Effect, Magnetic Properties of Atoms, The Scattering of X-Rays, and Diffraction of Electrons by a Crystal Lattice. The discussion provides historical background by giving description of the original experiments and…

  9. Acceleration results from the microwave inverse FEL experiment

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Marshall, T. C.; Hirshfield, J. L.

    2001-05-01

    An inverse free-electron-laser accelerator has been developed, built, and operated in the microwave regime. Development of this device has been described at previous Workshops; the accelerator is driven by RF power at 2.8 GHz propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator with tapered pitch, while an array of solenoid coils provides an axial guide magnetic field. In low-power experiments, injected electron beams at energies between 5 and 6 MeV have gained up to 0.35 MeV with minimal energy spread, and the phase sensitivity of the IFEL mechanism has been clearly demonstrated for the first time. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling the device to high power and high frequency is discussed.

  10. Physical Science Experiments for Scientific Glassblowing Technicians.

    ERIC Educational Resources Information Center

    Tillis, Samuel E.; Donaghay, Herbert C.

    The twenty experiments in this text have been designed to give the scientific glassblowing technician the opportunity to use scientific glass apparatus in the study of physical science. Primary emphasis of these experiments is on the practical application of the physical science program as a working tool for the scientific glassblowing technician.…

  11. Current experiments in elementary particle physics

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  12. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    PubMed

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. PMID:27522919

  13. Absolute acceleration measurements on STS-50 from the Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1994-01-01

    Orbital Acceleration Research Experiment (OARE) data on Space Transportation System (STS)-50 have been examined in detail during a 2-day time period. Absolute acceleration levels have been derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. During the interval, the tri-axial OARE raw telemetered acceleration measurements have been filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval have been analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z-axis sensitive range scale factors were determined in a separate process using orbiter maneuvers and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter center-of-gravity, which are the aerodynamic signals along each body axis. Results indicate that there is a force being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces have been reexamined, but none produces the observed effect. Thus, it is tentatively concluded that the orbiter is creating the environment observed. At least part of this force is thought to be due to the Flash Evaporator System.

  14. Physics of the TALE Experiment

    NASA Astrophysics Data System (ADS)

    Thomson, G. B.

    The Telescope Array Low Energy Extension (TALE) Experiment consists of three detectors which will extend the sensitivity in energy of the Telescope Array (TA) experiment by two orders of magnitude, from 18.5experiment at all energies, and double it at the highest energies. The aim of the experiment is to study the second knee, the ankle, and the galactic/extragalactic transition. The three detectors start with a set of fluorescence detectors deployed in such a way that they are paired with TA fluorescence detectors at a separation of 6 km. These stereo pairs are designed to study the ankle of the cosmic ray spectrum in an optimal way. The second of the three is a "tower" detector, which is a fluorescence detector designed to have increased coverage in elevation angle, up to 71 degrees. This detector is designed to study the second knee of the spectrum. The third detector is an infill array to be added to TA within the aperture of the tower detector. This will make possible hybrid observation with the tower detector, and provide greatly improved reconstruction of lower energy events in purely surface detector mode.

  15. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  16. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  17. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  18. Experiments in intermediate energy physics

    SciTech Connect

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  19. Subjective acceleration of time experience in everyday life across adulthood.

    PubMed

    John, Dennis; Lang, Frieder R

    2015-12-01

    Most people believe that time seems to pass more quickly as they age. Building on assumptions of socioemotional selectivity theory, we investigated whether awareness that one's future lifetime is limited is associated with one's experience of time during everyday activities across adulthood in 3 studies. In the first 2 studies (Study 1: N = 608; Study 2: N = 398), participants completed a web-based version of the day reconstruction method. In Study 3 (N = 392) participants took part in a newly developed tomorrow construction method, a web-based experimental method for assessing everyday life plans. Results confirmed that older adults' subjective interpretation of everyday episodes is that these episodes pass more quickly compared with younger adults. The subjective acceleration of time experience in old age was more pronounced during productive activities than during regenerative-consumptive activities. The age differences were partly related to limited time remaining in life. In addition, subjective acceleration of time experience was associated with positive evaluations of everyday activities. Findings suggest that subjective acceleration of time in older adults' daily lives reflects an adaptation to limitations in time remaining in life. (PsycINFO Database Record

  20. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Hogan, M; Ischebeck, R; Kirby, N; Siemann, R; Walz, D; Muggli, P; Scott, A; Yoder, R

    2006-08-04

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  1. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.; /LLNL, Livermore /UCLA /SLAC /Southern California U. /UC, Santa Barbara /Manhattan Coll., Riverdale

    2007-03-27

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  2. Cryogenic supply for accelerators and experiments at FAIR

    SciTech Connect

    Kauschke, M.; Xiang, Y.; Schroeder, C. H.; Streicher, B.; Kollmus, H.

    2014-01-29

    In the coming years the new international accelerator facility FAIR (Facility for Antiproton and Ion Research), one of the largest research projects worldwide, will be built at GSI. In the final construction FAIR consists of synchrotrons and storage rings with up to 1,100 meters in circumference, two linear accelerators and about 3.5 kilometers beam transfer lines. The existing GSI accelerators serve as pre-accelerators. Partly the new machines will consist of superconducting magnets and therefore require a reliable supply with liquid helium. As the requirements for the magnets is depending on the machine and have a high variety, the cooling system is different for each machine; two phase cooling, forced flow cooling and bath cooling respectively. In addition the cold mass of the individual magnets varies between less than 1t up to 80t and some magnets will cause a dynamic heat load due to ramping that is higher than the static loads. The full cryogenic system will be operated above atmospheric pressure. The refrigeration and liquefaction power will be provided by two main cryogenic plants of 8 and 25 kW at 4K and two smaller plants next to the experiments.

  3. Dielectric Wakefield Accelerator Experiments at the SABER Facility

    SciTech Connect

    Kanareykin, A.; Thompson, M.C.; Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Badakov, H.; Cook, A.M.; Rosenzweig, J.B.; Tikhoplav, R.; Travish, G.; Muggli, P.; /Southern California U.

    2008-01-28

    Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC Final Focus Test Beam (FFTB), are foreseen to be produced at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of multi-GV/m in plasmas. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 um and 200 um ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in fused silica (with full data analysis still ongoing) [1]. With the construction and commissioning of the SABER facility at SLAC, new experiments would be made possible to test further aspects of DWAs including materials, tube geometrical variations, direct measurements of the Cerenkov fields, and proof of acceleration in tubes >10 cm in length. This collaboration will investigate breakdown thresholds and accelerating fields in new materials including CVD diamond. Here we describe the experimental plans, beam parameters, simulations, and progress to date as well as future prospects for machines based of DWA structures.

  4. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  5. Magnetic acceleration of aluminum foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, Stephan; Martinez, David; Plechaty, Christopher; Stein, Sandra; Presura, Radu

    2010-06-01

    Scaled experiments studying the interaction of shock waves with inhomogeneous background media are essential for understanding many astrophysical phenomena, since they can be used to test analytical theories and simulation codes. We are currently developing such experiments at the Nevada Terawatt Facility. We are using a pulsed power generator (1 MA peak current) to accelerate thin aluminum flyer plates. By impacting these foils on low-density foam targets, we will be able to carry out scaled experiments. We have demonstrated velocities of up to 8 km/s for 50 μm thick aluminum flyers, and are planning to further increase the flyer velocities. We have also carried out first impact tests with transparent polycarbonate targets. Several improvements for our setup are currently in planning, and these improvements will enable us to design scaled experiments for our facility.

  6. Current experiments in elementary particle physics. Revision

    SciTech Connect

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  7. Tevatron End-of-Run Beam Physics Experiments

    SciTech Connect

    Valishev, A.; Gu, X.; Miyamoto, R.; White, S.; Schmidt, F.; Qiang, J.; /LBNL

    2012-05-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beam-beam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  8. Current experiments in elementary particle physics

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. ); Oyanagi, Y. ); Dodder, D.C. ); Ryabov, Yu.G.; Slabospitsky, S.R. . Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  9. Current experiments in elementary particle physics. Revised

    SciTech Connect

    Galic, H.; Wohl, C.G.; Armstrong, B.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Olin, A.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  10. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  11. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  12. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    SciTech Connect

    Wender, S. A.; Venneri, F.; Bowman, C. D.; Arthur, E. D.; Heighway, E.; Beard, C. A.; Bracht, R. R.; Buksa, J. J.; Chavez, W.; DeVolder, B. G.; Park, J. J.; Parker, R. B.; Pillai, C.; Pitcher, E.; Potter, R. C.; Reid, R. S.; Russell, G. J.; Trujillo, D. A.; Weinacht, D. J.; Wilson, W. B.

    1995-09-15

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MWt.

  13. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    SciTech Connect

    Wender, S.A.; Venneri, F.; Bowman, C.D.; Arthur, E.D.; Heighway, E.A.; Beard, C.A.; Bracht, R.R.; Buksa, J.J.; Chavez, W.; DeVolder, B.G.

    1994-10-01

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MW{sub t}.

  14. Hypervelocity macroparticle accelerator experiments at CEM-UT

    SciTech Connect

    Weeks, D.A.; Weldon, W.F.; Zowarka, R.C. Jr. . Center for Electromechanics)

    1991-01-01

    This paper reports on several railgun experiments designed to accelerate projectile masses of 2 to 5 g to velocities greater than 6 km/s that were performed at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). Two parallel rail-type accelerators with 12.7 mm square bores were used for the experiments. One gun is 2-m long, has molybdenum rails, alumina ceramic insulators, and the other gun is 1-m long, has molybdenum rails, and granite insulators. The greatest velocity achieved to date during the experiments was 5.1 kn/s. During the test program, the following ideas to enhance launcher performance were tested: stiff-gun structures to reduce plasma leakage and rail movement; refractory bore materials to reduce ablation and frictional losses; and prefilling the gun bore with gases which will eliminate precursor arcs. After three experiments utilizing the 2 m long launcher, with peak current ranging from 660 to 780 kA (bore pressures ranging from 62.6 to 87.5 ksi), a gun barrel comprised of 96% pure alumina ceramic insulators and 99.9% pure molybdenum rails (which is hydraulically contained and preloaded) has survived with minimal damage and no degradation of seals.

  15. Physical experiments of transpressional folding

    NASA Astrophysics Data System (ADS)

    Tikoff, Basil; Peterson, Karl

    1998-06-01

    In order to understand the process of folding in obliquely convergent settings, we formed folds within a shear box capable of creating homogeneous transpressional deformations. Folds were created in a single layer of stiff mixed plasticine and silicone that overlay a Newtonian silicone, for a variety of plate convergence angles. As small amplitude folds became visible, they were parallel to the long axis of the horizontal finite strain ellipse. With increasing deformation, the fold hinges rotated parallel with the long axis of the horizontal finite strain ellipse for all angles of convergence. This parallelism indicates that fold hinges, once formed, rotate with the horizontal strain ellipse rather than as material lines. The experiments highlight several interesting effects of transpression dynamics. The fold hinges initiate parallel to either ṡ1 or ṡ2 and are parallel to either S1 or S2 with increasing deformation. Neither infinitesimal strain (stress) nor finite strain is resolvable solely from fold geometry. Further, the net amount of contraction determined by folding across the zone was overestimated in all cases except pure contraction. This effect is obvious for the case of wrenching, where folding implies that the zone contracts if elongation parallel to the fold hinge is not considered. Therefore, attempts to balance cross-sections in transpressional zones will tend to overestimate contraction unless the wrench component of deformation is addressed. This result is validated by applying the modeling results in folding in central California adjacent to the San Andreas fault, where cross-section balancing indicates higher amounts of contraction than predicted by plate motion.

  16. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Cavenago, M.

    2011-09-26

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  17. Industrial metrology as applied to large physics experiments

    SciTech Connect

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m{sup 3}, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ``survey alignment toolbox`` measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require a heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments.

  18. Review of Basic Physics of Laser-Accelerated Charged-Particle Beams

    SciTech Connect

    Suk, H.; Hur, M. S.; Jang, H.; Kim, J.

    2007-07-11

    Laser-plasma wake wave can accelerate charged particles, especially electrons with an enormously large acceleration gradient. The electrons in the plasma wake wave have complicated motions in the longitudinal and transverse directions. In this paper, basic physics of the laser-accelerated electron beam is reviewed.

  19. Unobtrusive heart rate estimation during physical exercise using photoplethysmographic and acceleration data.

    PubMed

    Mullan, Patrick; Kanzler, Christoph M; Lorch, Benedikt; Schroeder, Lea; Winkler, Ludwig; Laich, Larissa; Riedel, Frederik; Richer, Robert; Luckner, Christoph; Leutheuser, Heike; Eskofier, Bjoern M; Pasluosta, Cristian

    2015-08-01

    Photoplethysmography (PPG) is a non-invasive, inexpensive and unobtrusive method to achieve heart rate monitoring during physical exercises. Motion artifacts during exercise challenge the heart rate estimation from wrist-type PPG signals. This paper presents a methodology to overcome these limitation by incorporating acceleration information. The proposed algorithm consisted of four stages: (1) A wavelet based denoising, (2) an acceleration based denoising, (3) a frequency based approach to estimate the heart rate followed by (4) a postprocessing step. Experiments with different movement types such as running and rehabilitation exercises were used for algorithm design and development. Evaluation of our heart rate estimation showed that a mean absolute error 1.96 bpm (beats per minute) with standard deviation of 2.86 bpm and a correlation of 0.98 was achieved with our method. These findings suggest that the proposed methodology is robust to motion artifacts and is therefore applicable for heart rate monitoring during sports and rehabilitation. PMID:26737687

  20. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  1. Experiences of Ninth Grade Physical Education Students.

    ERIC Educational Resources Information Center

    Portman, Penelope A.

    Numerous studies exist that report the behaviors of elite athletes, but little research exists which describes the experiences of students within public school physical education classes. The purpose of this study was to describe the experiences articulated by ninth graders participating (n=67) in their last semester of required physical…

  2. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  3. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  4. Current Experiments in Particle Physics (September 1996)

    SciTech Connect

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  5. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Nakamura, K.; Esarey, E.; Leemans, W. P.; Gonsalves, A. J.; Panasenko, D.; Toth, Cs.; Geddes, C. G. R.; Schroeder, C. B.; Lin, C.

    2009-01-22

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 {mu}m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 {mu}m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  6. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Advanced Light Source; Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2008-09-29

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filledcapillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  7. High Temperature μSR Experiments for Accelerator Developments

    NASA Astrophysics Data System (ADS)

    Ohmori, Chihiro; Koda, Akihiro; Miyake, Yasuhiro; Nishiyama, Kusuo; Shimomura, Koichiro; Schnase, Alexander; Ezura, Eiji; Hara, Keigo; Hasegawa, Katsushi; Nomura, Masahiro; Shimada, Taihei; Takata, Koji; Tamura, Fumihiko; Toda, Makoto; Yamamoto, Masanobu; Yoshii, Masahito

    High temperature μSR is a powerful technique to study magnetic materials. In J-PARC accelerator synchrotrons, the Rapid Cycling Synchrotron (RCS) and Main Ring (MR), a unique magnetic alloy-loaded cavity is used for the beam acceleration and much higher field gradient has been achieved. Such high field gradient cavities made a compact RCS possible by reducing the length for beam acceleration. Now, further upgrades of the J-PARC, RF cavities with higher RF voltage and less power loss in the magnetic core are needed for the MR. For the improvements of the magnetic property of magnetic alloy core, the high temperature μSR (muon Spin Rotation/Relaxation) was used to investigate the crystallization process of the material. Based on the measurement results, the test production of the large ring cores of a magnetic alloy, FT3L, was tried. The FT3L is the magnetic alloy which has two times better performance than the present one, FT3M. For the FT3L production, the magnetic annealing is needed to control the easy-magnetized axis of the crystalline. After the success of the test production, a mass production was started in the industry to replace all existing cavities in the MR. The first 5-cell FT3L cavity is assembled for the bench test before the installation in the accelerator tunnel. By the new cavities, the total RF voltage of J-PARC MR will be doubled to increase the beam power for neutrino experiment. In future, the cavities will be also used for the RCS to increase the beam power beyond 1 MW.

  8. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  9. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect

    Kutschera, W.

    1983-01-01

    Several applications of accelerator-based mass spectroscopy are reviewed. Among these are the search for unknown species, determination of comogenic radioisotopes in natural materials and measurements of half-lifes, especially those of significance to dating. Accelerator parameters and techniques of importance for these applications are also considered.

  10. Charmonium physics in the belle experiment

    SciTech Connect

    Mizuk, R. V.; Pakhlova, G. V.; Pakhlov, P. N.; Chistov, R. N.

    2010-04-15

    At the present time, charmonium physics experiences renaissance. Among many discoveries made within the past six years, the majority do not have an unambiguous interpretation and do not comply with traditional theoretical expectations. This review article is devoted to experimental results obtained by the members of the Belle Collaboration from the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the realms of charmonium spectroscopy and the production and decays of charmonia and charmonium-like states.

  11. An Overview of the International Reactor Physics Experiment Evaluation Project

    SciTech Connect

    Briggs, J. Blair; Gulliford, Jim

    2014-10-09

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  12. Operational experience from a large EPICS-based accelerator facility

    SciTech Connect

    Ciarlette, D.J.; Gerig, R.

    1995-12-31

    The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation x-ray light source which uses the Experimental Physics and Industrial Control System (EPICS) to operate its linear accelerator, positron accumulator ring, booster synchrotron, and storage ring equipment. EPICS has been used at the APS since the beginning of installation and commissioning. Currently, EPICS controls approximately 100 VME crates containing over 100,000 process variables. With this complexity, the APS has had to review some of the methods originally employed and make changes as necessary. In addition, due to commissioning and operational needs, higher-level operator software needed to be created. EPICS has been flexible enough to allow this.

  13. Current Experiments in Particle Physics. 1996 Edition.

    SciTech Connect

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  14. James Clerk Maxwell Prize for Plasma Physics: The Physics of Magnetic Reconnection and Associated Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Drake, James

    2010-11-01

    Solar and stellar flares, substorms in the Earth's magnetosphere, and disruptions in laboratory fusion experiments are driven by the explosive release of magnetic energy through the process of magnetic reconnection. During reconnection oppositely directed magnetic fields break and cross-connect. The resulting magnetic slingshots convert magnetic energy into high velocity flows, thermal energy and energetic particles. A major scientific challenge has been the multi-scale nature of the problem: a narrow boundary layer, ``the dissipation region,'' breaks field lines and controls the release of energy in a macroscale system. Significant progress has been made on fundamental questions such as how magnetic energy is released so quickly and why the release occurs as an explosion. At the small spatial scales of the dissipation region the motion of electrons and ions decouples, the MHD description breaks down and whistler and kinetic Alfven dynamics drives reconnection. The dispersive property of these waves leads to fast reconnection, insensitive to system size and weakly dependent on dissipation, consistent with observations. The evidence for these waves during reconnection in the magnetosphere and the laboratory is compelling. The role of turbulence within the dissipation region in the form of ``secondary islands'' or as a source of anomalous resistivity continues to be explored. A large fraction of the magnetic energy released during reconnection appears in the form of energetic electrons and protons -- up to 50% or more during solar flares. The mechanism for energetic particle production during magnetic reconnection has remained a mystery. Models based on reconnection at a single large x-line are incapable of producing the large numbers of energetic electrons seen in observations. Scenarios based on particle acceleration in a multi-x-line environment are more promising. In such models a link between the energy gain of electrons and the magnetic energy released, a

  15. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  16. Medical physics--particle accelerators--the beginning.

    PubMed

    Ganz, Jeremy C

    2014-01-01

    This chapter outlines the early development of particle accelerators with the redesign from linear accelerator to cyclotron by Ernest Lawrence with a view to reducing the size of the machines as the power increased. There are minibiographies of Ernest Lawrence and his brother John. The concept of artificial radiation is outlined and the early attempts at patient treatment are mentioned. The reasons for trying and abandoning neutron therapy are discussed, and the early use of protons is described.

  17. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  18. The Physics of the Imploding Can Experiment

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2010-01-01

    One of the popular demonstrations of atmospheric pressure in introductory physics courses is the "crushing can" or "imploding can" experiment. In this demonstration, which has also been extensively discussed on the Internet, a small amount of water is placed in a soda can and heated until it boils and water vapor almost entirely fills the can. The…

  19. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  20. Multimedia Representation of Experiments in Physics

    ERIC Educational Resources Information Center

    Kirstein, Juergen; Nordmeier, Volkhard

    2007-01-01

    In most physics courses using multimedia, real experiments are represented as digital video demonstrations. These time-based media have the disadvantage that students are often in the state of passive learners. Also, traditional multimedia learning environments only allow for the selection of different digitized media, but the learning process is…

  1. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    NASA Astrophysics Data System (ADS)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of <20%, have been accelerated at up to ~500 MeV, demonstrating 3 out of 4 for key requirements for ion fast ignition. The shown results now approach or exceed the limits set by many applications from ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can

  2. Formation and Acceleration Physics on Plasma Injector 1

    NASA Astrophysics Data System (ADS)

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  3. Nuclear physics experiments with low cost instrumentation

    NASA Astrophysics Data System (ADS)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  4. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  5. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGESBeta

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  6. Recent Physics Results with the COMPASS Experiment

    SciTech Connect

    Paul, Stephan

    2006-02-11

    The COMPASS experiment has obtained first physics results in the field of polarized distribution functions for quarks and gluons using muon scattering off polarized deuterons. The analysis using open charm production and pairs of high pT hadrons is presented. We also have used a transversely polarized target to address transverse information for quarks inside the nucleon. In addition, a pilot run with incoming pions taken late 2004 will give first information on the pion polarizabilities and hadron resonances. The physics prospects from this run as well as from future data taking in this field are also outlined.

  7. International Linear Collider Accelerator Physics R&D

    SciTech Connect

    George D. Gollin; Michael Davidsaver; Michael J. Haney; Michael Kasten; Jason Chang; Perry Chodash; Will Dluger; Alex Lang; Yehan Liu

    2008-09-03

    ILC work at Illinois has concentrated primarily on technical issues relating to the design of the accelerator. Because many of the problems to be resolved require a working knowledge of classical mechanics and electrodynamics, most of our research projects lend themselves well to the participation of undergraduate research assistants. The undergraduates in the group are scientists, not technicians, and find solutions to problems that, for example, have stumped PhD-level staff elsewhere. The ILC Reference Design Report calls for 6.7 km circumference damping rings (which prepare the beams for focusing) using “conventional” stripline kickers driven by fast HV pulsers. Our primary goal was to determine the suitability of the 16 MeV electron beam in the AØ region at Fermilab for precision kicker studies.We found that the low beam energy and lack of redundancy in the beam position monitor system complicated the analysis of our data. In spite of these issues we concluded that the precision we could obtain was adequate to measure the performance and stability of a production module of an ILC kicker, namely 0.5%. We concluded that the kicker was stable to an accuracy of ~2.0% and that we could measure this precision to an accuracy of ~0.5%. As a result, a low energy beam like that at AØ could be used as a rapid-turnaround facility for testing ILC production kicker modules. The ILC timing precision for arrival of bunches at the collision point is required to be 0.1 picosecond or better. We studied the bunch-to-bunch timing accuracy of a “phase detector” installed in AØ in order to determine its suitability as an ILC bunch timing device. A phase detector is an RF structure excited by the passage of a bunch. Its signal is fed through a 1240 MHz high-Q resonant circuit and then down-mixed with the AØ 1300 MHz accelerator RF. We used a kind of autocorrelation technique to compare the phase detector signal with a reference signal obtained from the phase detector

  8. Connecting High School Physics Experiences, Outcome Expectations, Physics Identity, and Physics Career Choice: A Gender Study

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire

    2010-01-01

    This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…

  9. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2016-04-01

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  10. Constraining fundamental physics with future CMB experiments

    SciTech Connect

    Galli, Silvia; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N.

    2010-12-15

    The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

  11. Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)

    SciTech Connect

    Rivlin, Lev A

    2010-12-09

    We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)

  12. Physics design of an accelerator for an accelerator-driven subcritical system

    NASA Astrophysics Data System (ADS)

    Li, Zhihui; Cheng, Peng; Geng, Huiping; Guo, Zhen; He, Yuan; Meng, Cai; Ouyang, Huafu; Pei, Shilun; Sun, Biao; Sun, Jilei; Tang, Jingyu; Yan, Fang; Yang, Yao; Zhang, Chuang; Yang, Zheng

    2013-08-01

    An accelerator-driven subcritical system (ADS) program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs) which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  13. Synergia: a modern tool for accelerator physics simulation

    SciTech Connect

    Spentzouris, P.; Amundson, J.; /Fermilab

    2004-10-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles.

  14. Physics of beam self-modulation in plasma wakefield accelerators

    SciTech Connect

    Lotov, K. V.

    2015-10-15

    The self-modulation instability is a key effect that makes possible the usage of nowadays proton beams as drivers for plasma wakefield acceleration. Development of the instability in uniform plasmas and in plasmas with a small density up-step is numerically studied with the focus at nonlinear stages of beam evolution. The step parameters providing the strongest established wakefield are found, and the mechanism of stable bunch train formation is identified.

  15. Inflationary Expansions Generated by a Physically Real Kinematic Acceleration

    NASA Astrophysics Data System (ADS)

    Savickas, David

    2010-02-01

    A repulsive cosmological acceleration is shown to exist that exhibits a behavior very similar to that found in both inflationary models at the time of origin of the universe, and also in the repulsive acceleration found in present-day cosmological observations. It is able to describe an inflationary model of a radiation universe in considerable numerical detail. It is based on a method that defines the Hubble parameter H, and consequently inertial systems themselves, directly in terms of the positions and velocities of mass particles in a universe. This makes it possible to describe a mass particle's motion relative to other particles in the universe, rather than relative to inertial systems. Because of this, the repulsive acceleration is a real kinematic effect existing in the present-day universe. This definition of H cannot include the use of photon positions or velocities because H determines the velocities of receding inertial systems of galaxies, and the velocity of a photon in a distant inertial system then depends on the definition of H itself. Therefore, at the time of its origin the magnitude of H in a radiation dominated universe would be solely determined by the behavior of the relatively few mass particles that it contained while allowing for a near balance with the gravitation of the Friedmann-Lemaître model. )

  16. Initial Physics Achievements of LHD Experiments

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    1998-11-01

    The Large Helical Device (LHD) experiments have started this year after a successful eight-year construction period. LHD investigates many possibilities of physics studies on heliotron type toroidal plasma confinement, which stimulates efforts to obtain the necessary knowledge and capabilities of currentless and disruption-free steady plasmas under the optimized continuous helical field configuration. LHD is a large heliotron (a major radius of 3.9 m and a minor radius of 0.65 m) with a high potential for steady-state operation by means of superconducting coils to maximize the intrinsic capability of LHD in physics. The plasma performance is expected to be close to the break-even condition. The construction and machine commissioning phases have attained a wide variety of milestones in fusion engineering, which successfully led to the first plasma production on March 31, 1998. We have two physics experimental campaign this year. The initial plasma experiment was conducted with 2nd harmonic 84-GHz ECH of 0.35 MW at the magnetic field of 1.5 T. Magnetic field mapping experiment by an electron beam and fluorescent mesh has demonstrated clearly the nested and healthy structure of magnetic surfaces, which indicates the successful completion of the physical design and the effectiveness of engineering quality control during the fabrication. During the first experimental campaign, a clear indication through the physics results which highlights the viable performance of the LHD plasmas has been already obtained despite the limited resources and exploration. An energy confinement time of 0.25 s has been observed for \\overlinene of 0.6× 10^19m-3 with 70 kW of ECH. The central electron temperature has reached 1.3 keV. The obtained confinement time is not in contradiction to the ISS95 law or better. A clear dependence of confinement on density has not been lost although saturation is expected in the present condition from the experience in tokamaks. Spontaneous toroidal

  17. Microprocessors in physics experiments at SLAC

    SciTech Connect

    Rochester, L.S.

    1981-04-01

    The increasing size and complexity of high energy physics experiments is changing the way data are collected. To implement a trigger or event filter requires complex logic which may have to be modified as the experiment proceeds. Simply to monitor a detector, large amounts of data must be processed on line. The use of microprocessors or other programmable devices can help to achieve these ends flexibly and economically. At SLAC, a number of microprocessor-based systems have been built and are in use in experimental setups, and others are now being developed. This talk is a review of existing systems and their use in experiments, and of developments in progress and future plans.

  18. Isentropic compression experiments on the Sandia Z accelerator

    SciTech Connect

    HALL,CLINT A.

    2000-02-21

    A long-standing goal of the equation of state (EOS) community has been the development of a loading capability for direct measurement of material properties along an isentrope. Previous efforts on smooth bore launchers have been somewhat successful, but quite difficult to accurately reproduce, had pressure limitations, or tended to be a series of small shocks as opposed to a smoothly increasing pressure load. A technique has recently been developed on the Sandia National Laboratories Z accelerator which makes use of the high current densities and magnetic fields available to produce nearly isentropic compression of samples that are approximately 1 mm in thickness over approximately 120 ns. Velocity interferometry is used to measure the rear surface motion of these samples. The resulting time resolved velocity profiles from multiple sample thicknesses provide information about mechanical response under isentropic loading conditions and phase transition kinetics. Feasibility experiments have been performed to pressures of approximately 130 kbar in copper and 300 kbar in iron with effects of the {alpha}-{var_epsilon} phase change kinetics in iron clearly observed. Work is in progress to achieve 1--2% accuracy in P-v space along an isentrope, provide uniaxial strain, and to eliminate magnetic field and current diffusion within the sample of interest.

  19. Containerless experiments in fluid physics in microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1990-01-01

    The physical phenomena associated with the behavior of liquid samples freely suspended in low gravity must be thoroughly understood prior to undertaking detailed scientific studies of the materials under scrutiny. The characteristics of molten specimens under the action of containerless positioning stresses must be identified and separated from the specific phenomena relating to the absence of an overwhelming gravitational field. The strategy designed to optimize the scientific return of reliable experimental data from infrequent microgravity investigations should include the gradual and logical phasing of more sophisticated studies building on the accumulated results from previous flight experiments. Lower temperature fluid physics experiments using model materials can provide a great deal of information that can be useful in analyzing the behavior of high temperature melts. The phasing of the experimental capabilities should, therefore, also include a gradual build-up of more intricate and specialized diagnostic instrumentation and environmental control and monitoring capabilities. Basic physical investigations should also be distinguished from specific materials technology issues. The latter investigations require very specific high temperature (and high vacuum) devices that must be thoroughly mastered on the ground prior to implementing them in space.

  20. Physics at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Lawrence Cardman

    2005-10-22

    The CEBAF accelerator at JLab is fulfilling its scientific mission to understand how hadrons are constructed from the quarks and gluons of QCD, to understand the QCD basis for the nucleon-nucleon force, and to explore the transition from the nucleon-meson to a QCD description. Its success is based on the firm foundation of experimental and theoretical techniques developed world-wide over the past few decades, on complementary data provided by essential lower-energy facilities, such as MAMI, and on the many insights provided by the scientists we are gathered here to honor.

  1. Accelerating Innovation: How Nuclear Physics Benefits Us All

    SciTech Connect

    Not Available

    2011-01-01

    From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

  2. Tokamak physics experiment: Diagnostic windows study

    SciTech Connect

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

  3. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a Muon

  4. The AEgIS experiment at CERN for the measurement of antihydrogen gravity acceleration

    NASA Astrophysics Data System (ADS)

    Scampoli, Paola; Storey, James

    2014-05-01

    The Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment is conducted by an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration of antihydrogen in the local field of the Earth, with Δg/g = 1% precision as a first achievement. The idea is to produce cold (100 mK) antihydrogen (\\bar H) through a pulsed charge exchange reaction by overlapping clouds of antiprotons, from the Antiproton Decelerator (AD) and positronium atoms inside a Penning trap. The antihydrogen has to be produced in an excited Rydberg state to be subsequently accelerated to form a beam. The deflection of the antihydrogen beam can then be measured by using a moiré deflectometer coupled to a position sensitive detector to register the impact point of the anti-atoms through the vertex reconstruction of their annihilation products. After being approved in late 2008, AEgIS started taking data in a commissioning phase in 2012. This paper presents an outline of the experiment with a brief overview of its physics motivation and of the state-of-the-art of the g measurement on antimatter. Particular attention is given to the current status of the emulsion-based position detector needed to measure the \\bar H sag in AEgIS.

  5. The Low Temperature Microgravity Physics Experiments Project

    NASA Technical Reports Server (NTRS)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; Gannon, Jade

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  6. Proceedings of the workshop on B physics at hadron accelerators

    SciTech Connect

    McBride, P.; Mishra, C.S.

    1993-12-31

    This report contains papers on the following topics: Measurement of Angle {alpha}; Measurement of Angle {beta}; Measurement of Angle {gamma}; Other B Physics; Theory of Heavy Flavors; Charged Particle Tracking and Vertexing; e and {gamma} Detection; Muon Detection; Hadron ID; Electronics, DAQ, and Computing; and Machine Detector Interface. Selected papers have been indexed separately for inclusion the in Energy Science and Technology Database.

  7. A Physics Exploratory Experiment on Plasma Liner Formation

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  8. Evaluation of ‘OpenCL for FPGA’ for Data Acquisition and Acceleration in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Sridharan, Srikanth

    2015-12-01

    The increase in the data acquisition and processing needs of High Energy Physics experiments has made it more essential to use FPGAs to meet those needs. However harnessing the capabilities of the FPGAs has been hard for anyone but expert FPGA developers. The arrival of OpenCL with the two major FPGA vendors supporting it, offers an easy software-based approach to taking advantage of FPGAs in applications such as High Energy Physics. OpenCL is a language for using heterogeneous architectures in order to accelerate applications. However, FPGAs are capable of far more than acceleration, hence it is interesting to explore if OpenCL can be used to take advantage of FPGAs for more generic applications. To answer these questions, especially in the context of High Energy Physics, two applications, a DAQ module and an acceleration workload, were tested for implementation with OpenCL on FPGAs2. The challenges on using OpenCL for a DAQ application and their solutions, together with the performance of the OpenCL based acceleration are discussed. Many of the design elements needed to realize a DAQ system in OpenCL already exists, mostly as FPGA vendor extensions, but a small number of elements were found to be missing. For acceleration of OpenCL applications, using FPGAs has become as easy as using GPUs. OpenCL has the potential for a massive gain in productivity and ease of use enabling non FPGA experts to design, debug and maintain the code. Also, FPGA power consumption is much lower than other implementations. This paper describes one of the first attempts to explore the use of OpenCL for applications outside the acceleration workloads.

  9. Active experiments using rocket-borne shaped charge barium releases. [solar-terrestrial magnetospheric physics

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Davis, T. N.

    1980-01-01

    A reliable payload system and scaled down shaped charges were developed for carrying out experiments in solar-terrestrial magnetospheric physics. Four Nike-Tomahawk flights with apogees near 450 km were conducted to investigate magnetospheric electric fields, and two Taurus-Tomahawk rockets were flown in experiments on the auroral acceleration process in discrete auroras. In addition, a radial shaped charge was designed for plasma perturbation experiments.

  10. Physical scale experiments on torrential filter structures

    NASA Astrophysics Data System (ADS)

    Chiari, Michael; Moser, Markus; Trojer, Martin; Hübl, Johannes

    2016-04-01

    In the framework of the INTERREG Project "SedAlp" physical scale model experiments are carried out in the hydraulic laboratory of the Institute of Mountain Risk Engineering at the University of Life Sciences in Vienna in order to optimize torrent protection structures. Two different types of check dams are investigated. A screen-dam with inclined vertical beams is compared with a beam-dam with horizontal beams. The experiments evaluate the variation of sediment transport of these structures including the influence of coarse woody debris. Therefore the distance between the steel elements can be adjusted to show their ability to filter sediment. The physical scale of the experiments is 1:30. All experimental runs are Froude scaled. Both dams are tested in elongated and pear-shaped sediment retention basins in order to investigate the shape effect of the deposition area. For a systematic comparison of the two check dams experiments with fluvial bedload transport are made. First a typical hydrograph for an extreme flood with unlimited sediment supply is modelled. A typical torrential sediment mixture with a wide grain-size distribution is fed by a conveyor belt according the transport capacity of the upstream reach. Then the deposition is scanned with a laser-scan device in order to analyse the deposition pattern and the deposited volume. Afterwards a flood with a lower reoccurrence period without sediment transport from upstream is modelled to investigate the ability of the protection structure for self-emptying. To investigate the influence of driftwood on the deposition behaviour experiments with logs are made. Different log diameters and lengths are added upstream the basin. The results show, that the deposition during the experiments was not controlled by sorting-effects at the location of the dam. The deposition always started from upstream, where the transport capacity was reduced due to the milder slope and the widening of the basin. No grain sorting effects

  11. 'Accelerators and Beams,' multimedia computer-based training in accelerator physics

    SciTech Connect

    Silbar, R. R.; Browman, A. A.; Mead, W. C.; Williams, R. A.

    1999-06-10

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user's rate of learning and length of retention of the material. They integrate interactive 'On-Screen Laboratories,' hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer.

  12. Characterization of the Source Physics Experiment Site

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Broome, S. T.; Townsend, M.; Abbott, R. E.; Snelson, C. M.; Cogbill, A. H.; Conklin, G.; Mitra, G.; Sabbeth, L.

    2012-12-01

    Designed to improve long-range treaty monitoring capabilities, the Source Physics Experiments, conducted at the Nevada National Security Site, also provide an opportunity to advance near-field monitoring and field-based investigations of suspected underground test locations. In particular, features associated with underground testing can be evaluated using Source Physics Experiment activities as analogs, linking on-site inspections with remote sensing technologies. Following a calibration shot (SPE 1), SPE 2 (10/2011) and SPE 3 (07/2012) were performed in the same emplacement hole with 1.0 ton of explosives at 150 ft depth. Because one of the goals of the Source Physics Experiments is to determine damage effects on seismic wave propagation and improve modeling capabilities, a key component in the predictive component and ultimate validation of the models is a full understanding of the intervening geology between the source and instrumented bore holes. Ground-based LIDAR and fracture mapping, mechanical properties determined via laboratory testing of rock core, discontinuity analysis and optical microscopy of the core rocks were performed prior to and following each experiment. In addition, gravity and magnetic data were collected between SPE 2 and 3. The source region of the explosions was also characterized using cross-borehole seismic tomography and vertical seismic profiling utilizing two sets of two boreholes within 40 meters of ground zero. The two sets of boreholes are co-linear with the explosives hole in two directions. Results of the LIDAR collects from both SPE 2 and 3 indicate a permanent ground displacement of up to several centimeters aligning along the projected surface traces of two faults observed in the core and fractures mapped at the surface. Laboratory testing and optical work show a difference in the characteristics of the rocks below and above 40 feet and within the fault zones.The estimated near-surface densities from the gravity survey show

  13. First experience of vectorizing electromagnetic physics models for detector simulation

    SciTech Connect

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; Licht, J.de Fine; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  14. First experience of vectorizing electromagnetic physics models for detector simulation

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  15. The laboratory experience in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  16. Electromagnetic Safety of Spacecraft During Active Experiments with the Use of Plasma Accelerators and Ion Injectors

    NASA Astrophysics Data System (ADS)

    Plokhikh, Andrey; Popov, Garri; Shishkin, Gennady; Antropov, Nikolay; Vazhenin, Nikolay; Soganova, Galina

    Works under the development and application of stationary and pulsed plasma accelerators of charged particles conducted at the Moscow Aviation Institute and Research Institute of Applied Mechanics and Electrodynamics during over 40 years, active experiments on board meteorological rockets, artificial Earth satellites and "Mir" orbital station including [1], allowed to obtain data on the influence of pulsed and continuous plasma injection with the given parameters on the drop of energetic particles out of the radiation belts, efficiency of artificial excitation and propagation of electromagnetic waves in ELF and VLF ranges, and evolution of artificial plasma formations in different regions of ionosphere. Variation of the near-spacecraft electromagnetic environment related to the operation of plasma injectors was registered during active experiments along with the global electrodynamic processes. The measured electromagnetic fields are of rather high intensity and occupy frequency spectrum from some Hz to tens of GHz that may be of definite danger for the operation of spacecraft and its onboard systems. Analysis for the known test data is presented in the paper and methods are discussed for the diagnostics and modeling under laboratory conditions of radiative processes proceeding at the operation of plasma accelerators and ion injectors used while making active space experiments. Great attention is paid to the methodological and metrological bases for making radio measurements in vacuum chambers, design concept and hardware configuration of ground special-purpose instrumentation scientific complexes [2]. Basic requirements are formulated for the measurements and analysis of electromagnetic fields originating during the operation of plasma accelerators, including the radiative induced and conductive components inside the spacecraft, as well as the wave emission and excitation outside the spacecraft, in the ionosphere including. Measurement results for the intrinsic

  17. Experiments on hypersonic ramjet propulsion cycles using a ram accelerator

    NASA Technical Reports Server (NTRS)

    Chew, G.; Knowlen, C.; Burnham, E. A.; Hertzberg, A.; Bruckner, A. P.

    1991-01-01

    Work on hypersonic propulsion research using a ram accelerator is presented. Several different ram accelerator propulsive cycles have been experimentally demonstrated over the Mach number range of 3 to 8.5. The subsonic, thermally choked combustion mode has accelerated projectiles to near the Chapman-Jouguet (C-J) detonation velocity within many different propellant mixtures. In the transdetonative velocity regime (85 to 115 percent of C-J speed), projectiles have established a propulsive cycle which allows them to transition smoothly from subdetonative to superdetonative velocities. Luminosity data indicate that the combustion process moves forward onto the projectile body as it approaches the C-J speed. In the superdetonative velocity range, the projectiles accelerate while always traveling faster than the C-J velocity. Ram accelerator projectiles operating continuously through these velocity regimes generate distinctive hypersonic phenomena which can be studied very effectively in the laboratory. These results would be very useful for validating sophisticated CFD computer codes and in collecting engineering data for potential airbreathing hypersonic propulsive systems.

  18. From electron maps to acceleration models in the physics of flare

    NASA Astrophysics Data System (ADS)

    Massone, Anna Maria

    Electron maps reconstructed from RHESSI visibilities represent a powerful source of information for constraining models of electron acceleration in solar plasma physics during flaring events. In this talk I will describe how and to which extent electron maps can be utilized to estimate local electron spectral indices, the evolution of centroid position at different energies in the electron space and the compatibility of RHESSI observations with different theoretical models for the acceleration mechanisms.

  19. Experiments Using Cell Phones in Physics Classroom Education: The Computer-Aided "g" Determination

    ERIC Educational Resources Information Center

    Vogt, Patrik; Kuhn, Jochen; Muller, Sebastian

    2011-01-01

    This paper continues the collection of experiments that describe the use of cell phones as experimental tools in physics classroom education. We describe a computer-aided determination of the free-fall acceleration "g" using the acoustical Doppler effect. The Doppler shift is a function of the speed of the source. Since a free-falling objects…

  20. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    SciTech Connect

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  1. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  2. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    SciTech Connect

    Chen, K.; Chen, H.; Kierstead, J.; Takai, H.; Rescia, S.; Hu, X.; Xu, H.; Mead, J.; Lanni, F.; Minelli, M.

    2015-08-17

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detector front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.

  3. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    DOE PAGESBeta

    Chen, K.; Chen, H.; Kierstead, J.; Takai, H.; Rescia, S.; Hu, X.; Xu, H.; Mead, J.; Lanni, F.; Minelli, M.

    2015-08-17

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detectormore » front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.« less

  4. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  5. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  6. Acceleration units for the Induction Linac Systems Experiment (ILSE)

    SciTech Connect

    Faltens, A.; Brady, V.; Brodzik, D.; Hansen, L.; Laslett, L.J.; Mukherjee, S.; Bubp, D.; Ravenscroft, D.; Reginato, L.

    1989-03-01

    The design of a high current heavy ion induction linac driver for inertial confinement fusion is optimized by adjusting the acceleration units along the length of the accelerator to match the beam current, energy, and pulse duration at any location. At the low energy end of the machine the optimum is a large number of electrostatically focused parallel beamlets, whereas at higher energies the optimum is a smaller number of magnetically focused beams. ILSE parallels this strategy by using 16 electrostatically focused beamlets at the low end followed by 4 magnetically focused beams after beam combining. 3 refs., 2 figs.

  7. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    SciTech Connect

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-02-06

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator.

  8. A capstone research experience for physics majors

    NASA Astrophysics Data System (ADS)

    Jackson, David

    2013-03-01

    Dickinson College is a small liberal arts college with a thriving physics program. For years, one of the key features of our program has been a year-long senior research project that was required for each student. Unfortunately, as our number of majors increased, it became more and more difficult to supervise such a large number of senior research projects. To deal with this growing challenge, we developed a capstone research experience that involves a larger number of students working together on an independent group project. In this talk I will give a broad overview of our new senior research model and provide a few examples of projects that have been carried out over the past few years. I will also briefly describe the positive and negative aspects of this model from the perspective of faculty and students.

  9. ACCELERATOR PHYSICS ISSUES FOR FUTURE ELECTRON ION COLLIDERS.

    SciTech Connect

    PEGGS,S.; BEN-ZVI,I.; KEWISCH,J.; MURPHY,J.

    2001-06-18

    Interest continues to grow in the physics of collisions between electrons and heavy ions, and between polarized electrons and polarized protons [1,2,3]. Table 1 compares the parameters of some machines under discussion. DESY has begun to explore the possibility of upgrading the existing HERA-p ring to store heavy ions, in order to collide them with electrons (or positrons) in the HERA-e ring, or from TESLA [4]. An upgrade to store polarized protons in the HERA-p ring is also under discussion [1]. BNL is considering adding polarized electrons to the RHIC repertoire, which already includes heavy and light ions, and polarized protons. The authors of this paper have made a first pass analysis of this ''eRHIC'' possibility [5]. MIT-BATES is also considering electron ion collider designs [6].

  10. A data readout approach for physics experiments

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Ru; Cao, Ping; Gao, Li-Wei; Zheng, Jia-Jun

    2015-07-01

    With increasing physical event rates and the number of electronic channels, traditional readout schemes meet the challenge of improving readout speed caused by the limited bandwidth of the crate backplane. In this paper, a high-speed data readout method based on the Ethernet is presented to make each readout module capable of transmitting data to the DAQ. Features of explicitly parallel data transmitting and distributed network architecture give the readout system the advantage of adapting varying requirements of particle physics experiments. Furthermore, to guarantee the readout performance and flexibility, a standalone embedded CPU system is utilized for network protocol stack processing. To receive the customized data format and protocol from front-end electronics, a field programmable gate array (FPGA) is used for logic reconfiguration. To optimize the interface and to improve the data throughput between CPU and FPGA, a sophisticated method based on SRAM is presented in this paper. For the purpose of evaluating this high-speed readout method, a simplified readout module is designed and implemented. Test results show that this module can support up to 70 Mbps data throughput from the readout module to DAQ. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)

  11. Infrasound Generation from the Source Physics Experiments

    NASA Astrophysics Data System (ADS)

    Preston, L. A.; Schramm, K. A.; Jones, K. R.

    2015-12-01

    Understanding the acoustic and infrasound source generation mechanisms from underground explosions is of great importance for usage of this unique data type in non-proliferation activities. One of the purposes of the Source Physics Experiments (SPE), a series of underground explosive shots at the Nevada National Security Site (NNSS), is to gain an improved understanding of the generation and propagation of physical signals, such as seismic and infrasound, from the near to far field. Two of the SPE shots (SPE-1 and SPE-4') were designed to be small "Green's Function" sources with minimal spall or permanent surface deformation. We analyze infrasound data collected from these two shots at distances from ~300 m to ~1 km and frequencies up to 20 Hz. Using weather models based upon actual observations at the times of these sources, including 3-D variations in topography, temperatures, pressures, and winds, we synthesized full waveforms using Sandia's moving media acoustic propagation simulation suite. Several source mechanisms were simulated and compared and contrasted with observed waveforms using full waveform source inversion. We will discuss results of these source inversions including the relative roll of spall from these small explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Two-Channel Rectangular Dielectric Wake Field Accelerator Structure Experiment

    SciTech Connect

    Sotnikov, G. V.; Marshall, T. C.; Shchelkunov, S. V.; Didenko, A.; Hirshfield, J. L.

    2009-01-22

    A design is presented for a two-channel 30-GHz rectangular dielectric wake field accelerator structure being built for experimental tests at Argonne National Laboratory (ANL). This structure allows for a transformer ratio T much greater than two, and permits continuous coupling of energy from drive bunches to accelerated bunches. It consists of three planar slabs of cordierite ceramic ({epsilon} = 4.7) supported within a rectangular copper block, forming a drive channel 12 mmx6 mm, and an accelerator channel 2 mmx6 mm. When driven by a 50 nC, 14 MeV single bunch available at ANL, theory predicts an acceleration field of 6 MeV/m, and T = 12.6. Inherent transverse wake forces introduce deflections and some distortion of bunch profiles during transit through the structure that are estimated to be tolerable. Additionally, a cylindrical two-channel DWFA is introduced which shares many advantages of the rectangular structure including high T, and the added virtue of axisymmetry that eliminates lowest-order transverse deflecting forces.

  13. RF ACCELERATING STRUCTURE FOR THE MUON COOLING EXPERIMENT.

    SciTech Connect

    CORLETT,J.; GREEN,M.; LI,D.; HOLTKAMP,N.; MORETTI,A.; KIRK,H.G.; PALMER,R.B.; ZHAO,Y.; SUMMERS,D.

    1999-03-29

    The ionization cooling of muons requires longitudinal acceleration of the muons after scattering in a hydrogen target. In order to maximize the accelerating voltage, we propose using linear accelerating structures with cells bounded by thin beryllium metal foils. This produces an on-axis field equivalent to the maximum surface field, whereas with beam-pipes the accelerating field is approximately half that of the peak surface field in the cavity. The muons interact only weakly with the thin foils. A {pi}/2 interleaved cavity structure has been chosen, with alternate cells coupled together externally, and the two groups of cells fed in quadrature. At present they are considering an operating temperature of 77K to gain a factor of at least two in Q-value over room temperature. The authors describe the design of the {pi}/2 interleaved cavity structure, design of an alternative {pi}-mode open structure, preliminary experimental results from a low-power test cavity, and plans for high-power testing.

  14. Present and future high-energy accelerators for neutrino experiments

    SciTech Connect

    Kourbanis, I.; /Fermilab

    2007-06-01

    There is an active neutrino program making use of the high-energy (larger than 50 GeV) accelerators both in USA at Fermilab with NuMI and at CERN in Europe with CNGS. In this paper we will review the prospects for high intensity high energy beams in those two locations during the next decade.

  15. Physics evaluation of compact tokamak ignition experiments

    SciTech Connect

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.

  16. DIANA - A deep underground accelerator for nuclear astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Winklehner, Daniel; Lemut, Alberto; Leitner, Daniela; Couder, Manoel; Hodgkinson, Adrian; Wiescher, Michael

    2013-04-01

    DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulomb barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.

  17. DIANA - A deep underground accelerator for nuclear astrophysics experiments

    SciTech Connect

    Winklehner, Daniel; Leitner, Daniela; Lemut, Alberto; Hodgkinson, Adrian; Couder, Manoel; Wiescher, Michael

    2013-04-19

    DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulomb barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.

  18. AGS experiments in nuclear/QCD physics at medium energies

    SciTech Connect

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  19. Synergy Between Experiments and Simulations in Laser and Beam-Driven Plasma Acceleration and Light Sources

    NASA Astrophysics Data System (ADS)

    Mori, Warren B.

    2015-11-01

    Computer simulations have been an integral part of plasma physics research since the early 1960s. Initially, they provided the ability to confirm and test linear and nonlinear theories in one-dimension. As simulation capabilities and computational power improved, then simulations were also used to test new ideas and applications of plasmas in multi-dimensions. As progress continued, simulations were also used to model experiments. Today computer simulations of plasmas are ubiquitously used to test new theories, understand complicated nonlinear phenomenon, model the full temporal and spatial scale of experiments, simulate parameters beyond the reach of current experiments, and test the performance of new devices before large capital expenditures are made to build them. In this talk I review the progress in simulations in a particular area of plasma physics: plasma based acceleration (PBA). In PBA a short laser pulse or particle beam propagates through long regions of plasma creating plasma wave wakefields on which electrons or positrons surf to high energies. In some cases the wakefields are highly nonlinear, involve three-dimensional effects, and the trajectories of plasma particles cross making it essential that fully kinetic and three-dimensional models are used. I will show how particle-in-cell (PIC) simulations were initially used to propose the basic idea of PBA in one dimension. I will review some of the dramatic progress in the experimental demonstration of PBA and show how this progress was dramatically helped by a synergy between experiments and full-scale multi-dimensional PIC simulations. This will include a review of how the capability of PIC simulation tools has improved. I will also touch on some recent progress on improvements to PIC simulations of PBA and discuss how these improvements may push the synergy further towards real time steering of experiments and start to end modeling of key components of a future linear collider or XFEL based on PBA

  20. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect

    Moon, Chang-Bum

    2014-04-15

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  1. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  2. Articulated Multimedia Physics, Lesson 6, Uniformly Accelerated Motion of Bodies Starting From Rest.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the sixth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to the uniformly accelerated motion of bodies starting from rest. The objective is to teach students how a complete set of equations of motion is derived and how to use them. Free falling bodies near the Earth's…

  3. Physical Interpretation of the Schott Energy of An Accelerating Point Charge and the Question of Whether a Uniformly Accelerating Charge Radiates

    ERIC Educational Resources Information Center

    Rowland, David R.

    2010-01-01

    A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…

  4. Optimizing liner implosions for high energy density physics experiments

    SciTech Connect

    Ekdahl, C.; Humphries, S. Jr.

    1996-12-31

    Cylindrical metal shells imploded by magnetic fields - liners - are used as kinetic energy drivers for high energy density physics experiments in hydrodynamics and dynamic material property measurements. There are at least three ways in which liners have been, or are expected to be, used to produce high energy density, i.e., high pressure, in target materials. A common approach uses the liner as a convergent flyer plate, which impacts a material target cylinder after having been shocklessly accelerated across an intervening gap. The resultant shock and piston hydrodynamic flow in the target are used in exploration of a wide variety of phenomena and material properties. Another common method is to slowly compress a liner containing a material sample in a such fashion that little heating occurs. This technique is most useful for investigated physical properties at low temperature and extreme density. Finally, one can use a hybrid approach to shock heat with an impacting liner followed by slower adiabatic, if not isentropic, compression to explore material properties in extrema. The magnetic fields for driving these liners may be produced by either high explosive pulsed power generators or by capacitor banks. Here we will consider only capacitor banks.

  5. Experience in using FlexCtrl SCADA for accelerator automation

    NASA Astrophysics Data System (ADS)

    Nikiforov, A.; Aleinikov, V.; Sychev, A.; Borina, I.; Rukavishnikov, A.

    2012-07-01

    The programmed component of the automatic control of accelerators on the basis of licensed software packages (FlexCtrl SCADA, Photon Application Builder, and Cogent DataHub) and an additionally developed library of classes (related to visual programming with regard to functional capabilities and which all together represent an integrated media for producing the automation system) is described in the article. The number of features of the media components and the number of the components themselves can be increased since the developed media is characterized as open.

  6. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  7. Options for integrated beam experiments for inertial fusion energy and high-energy density physics research

    NASA Astrophysics Data System (ADS)

    Leitner, M. A.; Celata, C. M.; Lee, E. P.; Logan, B. G.; Waldron, W. L.; Yu, S. S.; Barnard, J. J.

    2005-05-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is presently focused on separate smaller-scale scientific experiments addressing key issues of future Inertial Fusion Energy (IFE) and High-Energy-Density-Physics (HEDP) drivers: the injection, transport, and focusing of intense heavy ion beams at currents from 25 to 600 mA. As a next major step in the HIF-VNL program, we aim for a fully integrated beam physics experiment, which allows integrated source-to-target physics research with a high-current heavy ion beam of IFE-relevant brightness with the goal of optimizing target focusing. This paper describes two rather different options for such an integrated experiment, the Integrated Beam Experiment (IBX) and the Neutralized Drift Compression Experiment (NDCX). Both proposals put emphasis on the unique capability for integrated injection, acceleration, compression, and focusing of a high-current, space-charge-dominated heavy ion beam.

  8. {open_quotes}Accelerators and Beams,{close_quotes} multimedia computer-based training in accelerator physics

    SciTech Connect

    Silbar, R.R.; Browman, A.A.; Mead, W.C.; Williams, R.A.

    1999-06-01

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user{close_quote}s rate of learning and length of retention of the material. They integrate interactive {open_quotes}On-Screen Laboratories,{close_quotes} hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published ({ital Vectors, Forces}, and {ital Motion}), a fourth ({ital Dipole Magnets}) has been submitted for review, and three more exist in prototype form ({ital Quadrupoles, Matrix Transport}, and {ital Properties of Charged-Particle Beams}). Participants in the poster session will have the opportunity to try out these modules on a laptop computer. {copyright} {ital 1999 American Institute of Physics.}

  9. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGESBeta

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  10. Laser wakefield acceleration experiments at the University of Michigan

    SciTech Connect

    Matsuoka, T.; McGuffey, C.; Horovitz, Y.; Dollar, F.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Reed, S.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Huntington, C. M.; Drake, R. P.; Levin, M.; Zigler, A.

    2009-01-22

    Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing the laser power and electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 8x10{sup 19} W/cm{sup 2} at laser power of 100 TW to be delivered to the gas-jet using f/10 focusing optics. We found that electron beam charge was increased significantly with an increase of the laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. Betatron motion of electrons was also observed depending on laser power and electron density.

  11. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  12. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect

    Zisman, Michael S.

    2011-10-06

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams ('Beta Beams'), one based on decays of stored muon beams ('Neutrino Factory'), and one based on the decays of an intense pion beam ('Superbeam'). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R and D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  13. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.

    PubMed

    Arif, Muhammad; Kattan, Ahmed

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects' wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients.

  14. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body

    PubMed Central

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects’ wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients. PMID:26203909

  15. A call for virtual experiments: accelerating the scientific process.

    PubMed

    Cooper, Jonathan; Vik, Jon Olav; Waltemath, Dagmar

    2015-01-01

    Experimentation is fundamental to the scientific method, whether for exploration, description or explanation. We argue that promoting the reuse of virtual experiments (the in silico analogues of wet-lab or field experiments) would vastly improve the usefulness and relevance of computational models, encouraging critical scrutiny of models and serving as a common language between modellers and experimentalists. We review the benefits of reusable virtual experiments: in specifying, assaying, and comparing the behavioural repertoires of models; as prerequisites for reproducible research; to guide model reuse and composition; and for quality assurance in the translational application of models. A key step towards achieving this is that models and experimental protocols should be represented separately, but annotated so as to facilitate the linking of models to experiments and data. Lastly, we outline how the rigorous, streamlined confrontation between experimental datasets and candidate models would enable a "continuous integration" of biological knowledge, transforming our approach to systems biology.

  16. Physics Experiments with Nintendo Wii Controllers

    ERIC Educational Resources Information Center

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from…

  17. The Physics of Bird Flight: An Experiment

    ERIC Educational Resources Information Center

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  18. Case-study experiments in the introductory physics curriculum

    NASA Astrophysics Data System (ADS)

    Arion, D. N.; Crosby, K. M.; Murphy, E. A.

    2000-09-01

    Carthage College added inquiry-based case study activities to the traditional introductory physics laboratory. Student teams designed, constructed, and executed their own experiments to study real-world phenomena, through which they gained understanding both of physic principles and methods of physics research. Assessment results and student feedback through teacher evaluations indicate that these activities improved student attitudes about physics as well as their ability to solve physics problems relative to previous course offerings that did not include case study.

  19. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  20. Subjective Acceleration of Time Experience in Everyday Life across Adulthood

    ERIC Educational Resources Information Center

    John, Dennis; Lang, Frieder R.

    2015-01-01

    Most people believe that time seems to pass more quickly as they age. Building on assumptions of socioemotional selectivity theory, we investigated whether awareness that one's future lifetime is limited is associated with one's experience of time during everyday activities across adulthood in 3 studies. In the first 2 studies (Study 1: N = 608;…

  1. Use of Video in the Harvard Project Physics Experiments

    ERIC Educational Resources Information Center

    Quan, Joyce

    1974-01-01

    The advantages are related of a video recorder over a Polaroid camera for doing experiments dealing with the "conservation of mass and momentum." Use of video records is advocated for recording measurements in physics experiments. (JP)

  2. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  3. Physics experiments with Nintendo Wii controllers

    NASA Astrophysics Data System (ADS)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from a spring undergoing simple harmonic motion, a pair of controllers mounted on colliding gliders on a linear air track, and a person jumping from a balance board.

  4. Dynamic Weighing Experiments--The Way to New Physics of Gravitation

    SciTech Connect

    Dmitriev, A. L.; Nikushchenko, E. M.; Bulgakova, S. A.

    2010-01-28

    Dynamic weighing is a measuring of size of the average gravity force acting on a test body which is in the state of accelerated movement. The acceleration of a body, or its microparticles, can be caused both by forces of gravitation, and by a direct, electromagnetic in nature, influence on the part of other bodies. It is just dynamic weighing of bodies which is informative in studying the features of electromagnetic and gravitational forces interaction. The report gives a brief review of results of experiments with weighing of accelerated moving bodies--in case of shock phenomena, in state of rotation, and in heating. Special attention is given to measurements of free fall accelerations of a mechanical rotor. In majority of the laboratory experiments executed with the purpose of checking the equivalence principle, the axis of a rotor was oriented vertically. In our experiment we measured the free fall accelerations of the closed container inside which a mechanical rotor (gyroscope) with a horizontal axis of rotation was installed. There was observed an appreciable, essentially exceeding errors of measurements increase of acceleration of free falling of the container at angular speed of rotation of a rotor up to 20 000 rev/min. The physical conditions of free vertical falling of a body essentially differ from conditions of rotary (orbital) movement of a body in the field of gravity and the result obtained by us does not contradict the results of measurements of a gyroscope precession on satellites. Experiments with dynamic weighing of bodies give useful information on complex properties of the gravity force which are beyond the scope of well-known theories. Their careful analysis will allow to expand and supplement the concepts based on the general theory of relativity, and probably to open a way to new physics of gravitation and to new principles of movement.

  5. GPU acceleration experience with RRTMG long wave radiation model

    NASA Astrophysics Data System (ADS)

    Price, Erik; Mielikainen, Jarno; Huang, Bormin; Huang, HungLung A.; Lee, Tsengdar

    2013-10-01

    in many weather forecast and climate models. RRTMG_LW is in operational use in ECMWF weather forecast system, the NCEP global forecast system, the ECHAM5 climate model, Community Earth System Model (CESM) and the weather and forecasting (WRF) model. RRTMG_LW has also been evaluated for use in GFDL climate model. In this paper, we examine the feasibility of using graphics processing units (GPUs) to accelerate the RRTMG_LW as used by the WRF. GPUs can provide a substantial improvement in RRTMG speed by supporting the parallel computation of large numbers of independent radiative calculations. Furthermore, using commodity GPUs for accelerating RRTMG_LW allows getting a much higher computational performance at lower price point than traditional CPUs. Furthermore, power and cooling costs are significantly reduced by using GPUs. A GPU-compatible version of RRTMG was implemented and thorough testing was performed to ensure that the original level of accuracy is retained. Our results show that GPUs can provide significant speedup over conventional CPUs. In particular, Nvidia's GTX 680 GPU card can provide a speedup of 69x for the compared to its single-threaded Fortran counterpart running on Intel Xeon E5-2603 CPU.

  6. Physical activity recognition based on rotated acceleration data using quaternion in sedentary behavior: a preliminary study.

    PubMed

    Shin, Y E; Choi, W H; Shin, T M

    2014-01-01

    This paper suggests a physical activity assessment method based on quaternion. To reduce user inconvenience, we measured the activity using a mobile device which is not put on fixed position. Recognized results were verified with various machine learning algorithms, such as neural network (multilayer perceptron), decision tree (J48), SVM (support vector machine) and naive bayes classifier. All algorithms have shown over 97% accuracy including decision tree (J48), which recognized the activity with 98.35% accuracy. As a result, physical activity assessment method based on rotated acceleration using quaternion can classify sedentary behavior with more accuracy without considering devices' position and orientation. PMID:25571109

  7. Space Experiments with Particle Accelerators (SEPAC), status review, 23 September 1980

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development responsibilities of SEPAC include: accelerator systems, diagnostic systems, power systems, dedicated experiment processor, interface unit, control panel, and all flight software. The operations of SEPAC, including automated experiments under DEP command control and SEPAC manual operations, are outlined. A diagram of the system configuration is presented.

  8. Research on acceleration method of reactor physics based on FPGA platforms

    SciTech Connect

    Li, C.; Yu, G.; Wang, K.

    2013-07-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  9. 3D Simulations for a Micron-Scale, Dielectric-Based Acceleration Experiment

    SciTech Connect

    Yoder, R. B.; Travish, G.; Xu Jin; Rosenzweig, J. B.

    2009-01-22

    An experimental program to demonstrate a dielectric, slab-symmetric accelerator structure has been underway for the past two years. These resonant devices are driven by a side-coupled 800-nm laser and can be configured to maintain the field profile necessary for synchronous acceleration and focusing of relativistic or nonrelativistic particles. We present 3D simulations of various versions of the structure geometry, including a metal-walled structure relevant to ongoing cold tests on resonant properties, and an all-dielectric structure to be constructed for a proof-of-principle acceleration experiment.

  10. Youth with Visual Impairments: Experiences in General Physical Education

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Robinson, Barbara L.; Rollheiser, Heidi

    2006-01-01

    The rapid increase in the number of students with visual impairments currently being educated in inclusive general physical education makes it important that physical education instructors know how best to serve them. Assessment of the experiences of students with visual impairments during general physical education classes, knowledge of students'…

  11. An Experiment on a Physical Pendulum and Steiner's Theorem

    ERIC Educational Resources Information Center

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  12. First order error corrections in common introductory physics experiments

    NASA Astrophysics Data System (ADS)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  13. Friendship, Physicality, and Physical Education: An Exploration of the Social and Embodied Dynamics of Girls' Physical Education Experiences

    ERIC Educational Resources Information Center

    Hills, Laura

    2007-01-01

    Physical education represents a dynamic social space where students experience and interpret physicality in a context that accentuates peer relationships and privileges particular forms of embodiment. This article focuses on girls' understandings of physicality with respect to the organisation of physical education and more informal social…

  14. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    SciTech Connect

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here on the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.

  15. Current experiments in elementary particle physics. Revision 1-85

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  16. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  17. Sprint Accelerations to First Base Among Major League Baseball Players With Different Years of Career Experience.

    PubMed

    Coleman, A Eugene; Amonette, William E

    2015-07-01

    The purpose of this article was to compare times to first base in Major League Baseball games to determine whether running velocity decreases to the foul line and first base among players with differing years of playing experience. From 1998 to 2012, 1,185 sprint times to first base were analyzed: 469 outfielders, 601 infielders, and 115 catchers. The players were divided into differing experience categories depending on their years of service in Major League Baseball: 1-5, 6-10, 11-15, and 16-20+ years. Velocity at the foul line and first base was compared and interval accelerations were reported. Comparisons were completed by playing position, and within left- and right-handed batters. Left-handed outfielders exhibited reduced velocities at 6-10 (p = 0.04), 11-15 (p = 0.004), and 16-20 years (p < 0.001) compared with 1-5 years; there were no statistical differences in velocity at the foul line. Right-handed outfielders exhibited significantly reduced velocities at first base in 6-10 (p = 0.002) and 11-15 years (p = 0.001); they also had a reduced velocities at the foul line in 6-10 (p = 0.004) and 11-15 years (p = 0.009). Right-handed infielders had reduced velocities at first base in 11-15 years (p < 0.001). No other differences were observed within infielders at first base or the foul line. There were no differences within the compared variables for catchers. Decreases in running velocity to first base with experience are seen in outfielders but are less prominent in infielders and catchers. Although physical capabilities for sprinting may decline with age, it is possible that through repetition more experienced players perfect the skill-related component of running to first base, thus preserving speed.

  18. Sprint Accelerations to First Base Among Major League Baseball Players With Different Years of Career Experience.

    PubMed

    Coleman, A Eugene; Amonette, William E

    2015-07-01

    The purpose of this article was to compare times to first base in Major League Baseball games to determine whether running velocity decreases to the foul line and first base among players with differing years of playing experience. From 1998 to 2012, 1,185 sprint times to first base were analyzed: 469 outfielders, 601 infielders, and 115 catchers. The players were divided into differing experience categories depending on their years of service in Major League Baseball: 1-5, 6-10, 11-15, and 16-20+ years. Velocity at the foul line and first base was compared and interval accelerations were reported. Comparisons were completed by playing position, and within left- and right-handed batters. Left-handed outfielders exhibited reduced velocities at 6-10 (p = 0.04), 11-15 (p = 0.004), and 16-20 years (p < 0.001) compared with 1-5 years; there were no statistical differences in velocity at the foul line. Right-handed outfielders exhibited significantly reduced velocities at first base in 6-10 (p = 0.002) and 11-15 years (p = 0.001); they also had a reduced velocities at the foul line in 6-10 (p = 0.004) and 11-15 years (p = 0.009). Right-handed infielders had reduced velocities at first base in 11-15 years (p < 0.001). No other differences were observed within infielders at first base or the foul line. There were no differences within the compared variables for catchers. Decreases in running velocity to first base with experience are seen in outfielders but are less prominent in infielders and catchers. Although physical capabilities for sprinting may decline with age, it is possible that through repetition more experienced players perfect the skill-related component of running to first base, thus preserving speed. PMID:25353082

  19. A small scale accelerator-driven subcritical assembly demonstration experiment at LAMPF

    SciTech Connect

    Wender, S.A.

    1994-12-31

    The coupling of a neutron-producing accelerator with a sub-critical fission assembly has been proposed at Los Alamos as a method of addressing (1) the destruction of weapons-grade plutonium, (2) the reduction of nuclear waste from commercial reactors and, (3) the generation of power using the thorium/uranium cycle. A small scale experiment is described that will demonstrate many of the aspects of this accelerator-driven transmutation technology. This experiment will use the high-power proton beam from the LAMPF accelerator. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning, transmutation of commercial spent fuel and energy production from thorium. The experiment will be operated at power levels around 5 MWt.

  20. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics

    SciTech Connect

    Battistoni, Giuseppe; Broggi, Francesco; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M.; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; /Siegen U. /CERN /Seibersdorf, Reaktorzentrum /INFN, Milan /Milan U. /SLAC /INFN, Legnaro /INFN, Bologna /Bologna U. /CERN /HITS, Heidelberg /CERN /CERN /Frascati /CERN /CERN /CERN /CERN /NASA, Houston

    2012-04-17

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such topics as accelerator related applications.

  1. Solution Calorimetry Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  2. Using the Wiimote in Introductory Physics Experiments

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of…

  3. Ice Target and Gas Target Experiments in the IMPACT Dust Accelerator

    NASA Astrophysics Data System (ADS)

    Munsat, T. L.; Collette, A.; Dee, R.; Gruen, E.; Horanyi, M.; James, D.; Janches, D.; Kempf, S.; Plane, J. M. C.; Shu, A. J.; Simolka, J.; Sternovsky, Z.; Thomas, E.

    2014-12-01

    The dust accelerator facility at the SSERVI Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT) is presently implementing two major target upgrades: a cryogenic ice target and a high-pressure gas target. The ice target consists of a LN2 cryogenic system connected to both a water-ice deposition system as well as a movable freezer/holder for a pre-mixed liquid cartridge. Planned experiments include the bombardment of a variety of frozen targets and simulated ice/regolith mixtures, and the assessment of all impact products (solid ejecta, gas, plasma) as well as spectroscopy of both the impact-produced light flashes and the reflected spectra (UV, visible, IR). Such measurements are highly relevant to both physical and chemical surface modification of airless bodies due to micrometeoroid impacts. The gas target consists of a differentially pumped chamber kept at moderate background pressures, such that high-velocity (~10 km/s) micrometeoroids are completely ablated within 10's of cm (i.e. within the measurement chamber). The chamber is configured with segmented electrodes to perform a spatially-resolved measurement of charge production during ablation, and localized light-collection optics enable an assessment of the light production (luminous efficiency). Such studies are critical to the understanding of past and future ground-based measurements of meteor ablation in Earth's atmosphere, which in turn can potentially provide the best estimates of the interplanetary dust particle flux.

  4. An investigation into the effectiveness of smartphone experiments on students’ conceptual knowledge about acceleration

    NASA Astrophysics Data System (ADS)

    Mazzella, Alessandra; Testa, Italo

    2016-09-01

    This study is a first attempt to investigate effectiveness of smartphone-based activities on students’ conceptual understanding of acceleration. 143 secondary school students (15-16 years old) were involved in two types of activities: smartphone- and non-smartphone activities. The latter consisted in data logging and ‘cookbook’ activities. For the sake of comparison, all activities featured the same phenomena, i.e., the motion on an inclined plane and pendulum oscillations. A pre-post design was adopted, using open questionnaires as probes. Results show only weak statistical differences between the smartphone and non-smartphone groups. Students who followed smartphone activities were more able to design an experiment to measure acceleration and to correctly describe acceleration in a free fall motion. However, students of both groups had many difficulties in drawing acceleration vector along the trajectory of the studied motion. Results suggest that smartphone-based activities may be effective substitutes of traditional experimental settings and represent a valuable aid for teachers who want to implement laboratory activities at secondary school level. However, to achieve a deeper conceptual understanding of acceleration, some issues need to be addressed: what is the reference system of the built-in smartphone sensor; relationships between smartphone acceleration graphs and experimental setup; vector representation of the measured acceleration.

  5. An investigation into the effectiveness of smartphone experiments on students’ conceptual knowledge about acceleration

    NASA Astrophysics Data System (ADS)

    Mazzella, Alessandra; Testa, Italo

    2016-09-01

    This study is a first attempt to investigate effectiveness of smartphone-based activities on students’ conceptual understanding of acceleration. 143 secondary school students (15–16 years old) were involved in two types of activities: smartphone- and non-smartphone activities. The latter consisted in data logging and ‘cookbook’ activities. For the sake of comparison, all activities featured the same phenomena, i.e., the motion on an inclined plane and pendulum oscillations. A pre-post design was adopted, using open questionnaires as probes. Results show only weak statistical differences between the smartphone and non-smartphone groups. Students who followed smartphone activities were more able to design an experiment to measure acceleration and to correctly describe acceleration in a free fall motion. However, students of both groups had many difficulties in drawing acceleration vector along the trajectory of the studied motion. Results suggest that smartphone-based activities may be effective substitutes of traditional experimental settings and represent a valuable aid for teachers who want to implement laboratory activities at secondary school level. However, to achieve a deeper conceptual understanding of acceleration, some issues need to be addressed: what is the reference system of the built-in smartphone sensor; relationships between smartphone acceleration graphs and experimental setup; vector representation of the measured acceleration.

  6. Learning Physics by Experiment: I. Falling Objects

    NASA Astrophysics Data System (ADS)

    Shaibani, Saami J.

    2014-03-01

    As a rule, students enjoy conducting experiments in which the practical aspects are straightforward and well-defined. This also applies even when there is no anticipated result for students to ``prove.'' A laboratory exercise with such properties was created for students to undertake in a completely blind manner, and they happily proceeded without any knowledge at all of what they might expect to find. The philosophy developed for the research in this paper expands the pioneering approach formulated some half century ago and successfully employed more recently. In the present era of differentiated instruction (DI) being implemented in a diversity of educational settings, the design of the subject experiment is especially significant for its inclusive nature and for the positive outcomes it produces for less academically capable students. All students benefit from such an environment because it preempts the wasted effort of undue manipulation and it removes the need to contrive agreement with a textbook via irregular attempts at reverse engineering.

  7. The SOX experiment in the neutrino physics

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  8. Cuban Techno-physical Experiments in Space

    NASA Astrophysics Data System (ADS)

    Altshuler, José; Calzadilla Amaya, Ocatvio; Falcon, Federico; Fuentes, Juan E.; Lodos, Jorge; Vigil Santos, Elena

    When Cuba joined the Intercosmos Program of the socialist countries in the mid-1960s, the great educational and scientific reform taking place at that time in the country had hardly begun to bear fruit. But when, a decade later, the Soviet Union offered all the participant countries the chance to make use of its space vehicles and related installations so that their cosmonauts could carry out original scientific experiments in space, the situation had changed radically in Cuba. In a short time around 200 people already involved in scientific and technological activities succeeded in designing and setting up—in close collaboration with various Soviet, East German and Bulgarian institutions—some 20 scientific experiments that were to be carried out in orbit around the earth during the joint Soviet-Cuban space flight of September 18-26, 1980. Those experiments, and a further one that was also set up for the same space flight—but carried out during a later flight, as mentioned below—are historically important since they were the first in their class to be carried out by humans in space under microgravity conditions.

  9. Centralising Space: The Physical Education and Physical Activity Experiences of South Asian, Muslim Girls

    ERIC Educational Resources Information Center

    Stride, Annette

    2016-01-01

    This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…

  10. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

  11. Polymer physics experiments with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Smith, Douglas E.

    1999-11-01

    Bacteriophage DNA molecules were taken as a model flexible polymer chain for the experimental study of polymer dynamics at the single molecule level. Video fluorescence microscopy was used to directly observe the conformational dynamics of fluorescently labeled molecules, optical tweezers were used to manipulate individual molecules, and micro-fabricated flow cells were used to apply controlled hydrodynamic strain to molecules. These techniques constitute a powerful new experimental approach in the study of basic polymer physics questions. I have used these techniques to study the diffusion and relaxation of isolated and entangled polymer molecules and the hydrodynamic deformation of polymers in elongational and shear flows. These studies revealed a rich, and previously unobserved, ``molecular individualism'' in the dynamical behavior of single molecules. Individual measurements on ensembles of identical molecules allowed the average conformation to be determined as well as the underlying probability distributions for molecular conformation. Scaling laws, that predict the dependence of properties on chain length and concentration, were also tested. The basic assumptions of the reptation model were directly confirmed by visualizing the dynamics of entangled chains.

  12. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  13. B Physics at the DO experiment

    SciTech Connect

    Cruz Burelo, Eduard de la

    2008-11-13

    At the beginning of RunII of the Tevatron and after more than 30 years of the discovery of the b quark at Fermilab, the lack of statistics had restricted our knowledge on b-baryons to the observation of the lightest b-baryon, the {lambda}{sub b}, and to its lifetime measured in decays which did not allow a fully reconstruction of this particle. I present results of the search for b-baryons in the DO experiment. As part of this program, a precise measurement of the {lambda}{sub b} lifetime was performed, and the discovery of the {xi}{sub b}{sup -} resulted from an analysis of 1.3 fb{sup -1} of data collected with the D0 detector during 2002-2006.

  14. Theory and experiment in gravitational physics

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1981-01-01

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  15. Current experiments in elementary-particle physics - March 1983

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)

  16. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  17. Simple Experiments on the Physics of Vision: The Retina

    ERIC Educational Resources Information Center

    Cortel, Adolf

    2005-01-01

    Many simple experiments can be performed in the classroom to explore the physics of vision. Students can learn of the two types of receptive cells (rods and cones), their distribution on the retina and the existence of the blind spot.

  18. A "Medical Physics" Course Based Upon Hospital Field Experience

    ERIC Educational Resources Information Center

    Onn, David G.

    1972-01-01

    Describes a noncalculus, medical physics'' course with a basic element of direct hospital field experience. The course is intended primarily for premedical students but may be taken by nonscience majors. (Author/PR)

  19. An Experiment in ''Less Time, More Options": A Study of Accelerated University Students.

    ERIC Educational Resources Information Center

    Litwin, James L.; And Others

    This study investigated the characteristics and experiences of 59 college students accelerated from their freshman to their junior year. The students showed high academic performance and few social problems, but questions of personal identity remained problematic; the best single predictor of academic success was found to be freshman grade-point…

  20. Recent results from polarization experiments at the LHEP-JINR Accelerator

    SciTech Connect

    Ladygin, V. P.; Azhgirey, L. S.; Gurchin, Yu. V.; Isupov, A. Yu.; Krasnov, V. A.; Khrenov, A. N.; Kiselev, A. S.; Kizka, V. A.; Kurilkin, A. K.; Kurilkin, P. K.; Livanov, A. N.; Ladygina, N. B.; Malakhov, A. I.; Piyadin, S. M.; Reznikov, S. G.; Shikhalev, M. A.; Vasiliev, T. A.; Uesaka, T.; Kawabata, T.; Sakaguchi, S.

    2008-10-13

    The review of recent results from polarization experiments performed at LHEP-JINR Accelerator Complex in a GeV range is given. The current status of the spin program at Nuclotron as well as its further continuation with new high intensity polarized deuterons ion source is discussed.

  1. School Counselors' Perceptions and Experience with Acceleration as a Program Option for Gifted and Talented Students

    ERIC Educational Resources Information Center

    Wood, Susannah; Portman, Tarrell Awe Agahe; Cigrand, Dawnette L.; Colangelo, Nicholas

    2010-01-01

    This article presents findings from a national survey of 149 practicing school counselors who are members of the American School Counselor Association. The survey gathered information on school counselors' perceptions of and experiences with acceleration as a program option for gifted students. Results indicate that, although school counselors'…

  2. Examining Nontraditional Graduate Students' Academic Writing Experiences in an Accelerated Adult Program

    ERIC Educational Resources Information Center

    Crite, Charles E., Jr.

    2013-01-01

    The academic writing competencies of nontraditional graduate students enrolled in accelerated graduate programs have become a growing concern for many higher learning educators in those programs. The purpose of this nonexperimental quantitative study was to examine the writing experiences that impacted nontraditional graduate students enrolled in…

  3. Measuring the Acceleration Due to Gravity: An Experiment Galileo Could Have Run.

    ERIC Educational Resources Information Center

    Mentzer, Robert G.

    1984-01-01

    Today students routinely measure the acceleration due to gravity (g) with strobes and high-speed photography. However, it is possible to measure g using equipment and reasoning available to Galileo. Such an experiment (and the equipment needed) is described. (JN)

  4. Web life: The Internet Plasma Physics Education Experience

    NASA Astrophysics Data System (ADS)

    2009-02-01

    An educational outreach site maintained by the Princeton Plasma Physics Laboratory in the US, IPPEX features several interactive, game-like tools (applets) for exploring the physics of fusion, the doughnut-shaped "tokamak" reactors used in fusion experiments around the world, and related topics.

  5. Peer Provocation in Physical Education: Experiences of Botswana Adolescents

    ERIC Educational Resources Information Center

    Shehu, Jimoh

    2009-01-01

    Critical incidents of peer provocation in physical education were investigated among 675 junior secondary school students in Botswana. Data were generated through a brief, open-ended questionnaire requesting the students to narrate their experiences of bad, hurtful and offensive peer behaviours during physical education classes. Six overlapping…

  6. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  7. J-PAS: The Javalambre Physics of the Accelerated Universe Astrophysical Survey

    NASA Astrophysics Data System (ADS)

    Cepa, J.; Benítez, N.; Dupke, R.; Moles, M.; Sodré, L.; Cenarro, A. J.; Marín-Franch, A.; Taylor, K.; Cristóbal, D.; Fernández-Soto, A.; Mendes de Oliveira, C.; Abramo, L. R.; Alcaniz, J. S.; Overzier, R.; Hernández-Monteagudo, A.; Alfaro, E. J.; Kanaan, A.; Carvano, M.; Reis, R. R. R.; J-PAS Team

    2016-10-01

    The Javalambre Physics of the Accelerated Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Observatory in Spain with a purpose-built, dedicated 2.5 m telescope and a 4.7 sq.deg. camera with 1.2 Gpix. Starting in late 2016, J-PAS will observe 8500 sq.deg. of Northern Sky and measure Δz˜0.003(1+z) photo-z for 9× 107 LRG and ELG galaxies plus several million QSOs, sampling an effective volume of ˜ 14 Gpc3 up to z=1.3 and becoming the first radial BAO experiment to reach Stage IV. J-PAS will detect 7× 105 galaxy clusters and groups, setting constraints on Dark Energy which rival those obtained from its BAO measurements. Thanks to the superb characteristics of the site (seeing ˜ 0.7 arcsec), J-PAS is expected to obtain a deep, sub-arcsec image of the Northern sky, which combined with its unique photo-z precision will produce one of the most powerful cosmological lensing surveys before the arrival of Euclid. J-PAS's unprecedented spectral time domain information will enable a self-contained SN survey that, without the need for external spectroscopic follow-up, will detect, classify and measure σz˜ 0.5 redshifts for ˜ 4000 SNeIa and ˜ 900 core-collapse SNe. The key to the J-PAS potential is its innovative approach: a contiguous system of 54 filters with 145 Å width, placed 100 Å apart over a multi-degree FoV is a powerful redshift machine, with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. The J-PAS camera is equivalent to a 4.7 sq.deg. IFU and it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations.

  8. Accelerator Technology Division annual report, FY 1989

    SciTech Connect

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  9. Vibration isolation technology: Sensitivity of selected classes of experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1990-01-01

    The solution was sought of a 2-D axisymmetric moving boundary problem for the sensitivity of isothermal and nonisothermal liquid columns and the sensitivity of thermo-capillary flows to buoyancy driven convection caused by residual accelerations. The sensitivity of a variety of space experiments to residual accelerations are examined. In all the cases discussed, the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion (such as thermocapillary flow), or fluid motion must be suppressed or eliminated (such as in diffusion studies, or directional solidification experiments). The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt crystal interface. As far as the response to transient disturbances is concerned the sensitivity is determined by both the magnitude and frequency the acceleration and the characteristic momentum and solute diffusion times.

  10. Physical property comparison of 11 soft denture lining materials as a function of accelerated aging.

    PubMed

    Dootz, E R; Koran, A; Craig, R G

    1993-01-01

    Soft denture-lining materials are an important treatment option for patients who have chronic soreness associated with dental prostheses. Three distinctly different types of materials are generally used. These are plasticized polymers or copolymers, silicones, or polyphosphazene fluoroelastomer. The acceptance of these materials by patients and dentists is variable. The objective of this study is to compare the tensile strength, percent elongation, hardness, tear strength, and tear energy of eight plasticized polymers or copolymers, two silicones, and one polyphosphazene fluoroelastomer. Tests were run at 24 hours after specimen preparation and repeated after 900 hours of accelerated aging in a Weather-Ometer device. The data indicated a wide range of physical properties for soft denture-lining materials and showed that accelerated aging dramatically affected the physical and mechanical properties of many of the elastomers. No soft denture liner proved to be superior to all others. The data obtained should provide clinicians with useful information for selecting soft denture lining materials for patients.

  11. Status of the Jefferson Lab Polarized Beam Physics Program and Preparations for Upcoming Parity Experiments

    SciTech Connect

    J. Grames; P. Adderley; M. Baylac; J. Clark; A. Day; J. Hansknecht; M. Poelker; M. Stutzman

    2003-07-01

    An ambitious nuclear physics research program continues at Jefferson Lab with Users at three experiment halls receiving reliable, highly polarized electrons at currents to 100 {micro}A. The polarized photoguns and drive lasers that contribute to Jefferson Lab's success will be described as well as significant events since PES2000. Typical of conditions at accelerators worldwide, success brings new challenges. Beam quality specifications continue to become more demanding as Users conduct more challenging experiments. In the months that follow this workshop, two parity violation experiments will begin at Jefferson Lab, G0 and HAPPEx2. The photogun requirements for these experiments will be discussed as well as our plans to eliminate/minimize systematic errors. Recent efforts to construct high power Ti-Sapphire drive lasers for these experiments also will be discussed.

  12. Tsallis entropy and complexity theory in the understanding of physics of precursory accelerating seismicity.

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Chatzopoulos, George

    2014-05-01

    Strong observational indications support the hypothesis that many large earthquakes are preceded by accelerating seismic release rates which described by a power law time to failure relation. In the present work, a unified theoretical framework is discussed based on the ideas of non-extensive statistical physics along with fundamental principles of physics such as the energy conservation in a faulted crustal volume undergoing stress loading. We derive the time-to-failure power-law of: a) cumulative number of earthquakes, b) cumulative Benioff strain and c) cumulative energy released in a fault system that obeys a hierarchical distribution law extracted from Tsallis entropy. Considering the analytic conditions near the time of failure, we derive from first principles the time-to-failure power-law and show that a common critical exponent m(q) exists, which is a function of the non-extensive entropic parameter q. We conclude that the cumulative precursory parameters are function of the energy supplied to the system and the size of the precursory volume. In addition the q-exponential distribution which describes the fault system is a crucial factor on the appearance of power-law acceleration in the seismicity. Our results based on Tsallis entropy and the energy conservation gives a new view on the empirical laws derived by other researchers. Examples and applications of this technique to observations of accelerating seismicity will also be presented and discussed. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds

  13. Autonomy and the Student Experience in Introductory Physics

    ERIC Educational Resources Information Center

    Hall, Nicholas Ron

    2013-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students…

  14. Physics Lab Experiments and Correlated Computer Aids. Teacher Edition.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H.

    Forty-nine physics experiments are included in the teacher's edition of this laboratory manual. Suggestions are given in margins for preparing apparatus, organizing students, and anticipating difficulties likely to be encountered. Sample data, graphs, calculations, and sample answers to leading questions are also given for each experiment. It is…

  15. Bicycle Freewheeling with Air Drag as a Physics Experiment

    ERIC Educational Resources Information Center

    Janssen, Paul; Janssens, Ewald

    2015-01-01

    To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models…

  16. Thought Experiments in Physics Education: A Simple and Practical Example.

    ERIC Educational Resources Information Center

    Lattery, Mark J.

    2001-01-01

    Uses a Galilean thought experiment to enhance learning in a college-level physical science course. Presents both modern and historical perspectives of Galileo's work. As a final project, students explored Galileo's thought experiment in the laboratory using modern detectors with satisfying results. (Contains 25 references.) (Author/ASK)

  17. Primary Teachers' Experience of a Physical Education Professional Development Programme

    ERIC Educational Resources Information Center

    Coulter, Maura; Woods, Catherine B.

    2012-01-01

    Professional development (PD) is essential for primary school teachers to meet the demands of the education system. Quality PD is aligned with classroom conditions, school contexts and teachers' daily experiences. The purpose of the study was to explore primary teachers' experiences of a 6-week physical education professional development programme…

  18. Low Cost Alternatives to Commercial Lab Kits for Physics Experiments

    ERIC Educational Resources Information Center

    Kodejška, C.; De Nunzio, G.; Kubinek, R.; Ríha, J.

    2015-01-01

    Conducting experiments in physics using modern measuring techniques, and particularly those utilizing computers, is often much more attractive to students than conducting experiments conventionally. However, the cost of professional kits in the Czech Republic is still very expensive for many schools. The basic equipment for one student workplace…

  19. Experiments in atomic and applied physics using synchrotron radiation

    SciTech Connect

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs.

  20. A linear accelerator in the space: The beam experiment aboard rocket

    SciTech Connect

    O'Shea, P.G.; Butler, T.A.; Lynch, M.T.; McKenna, K.F.; Pongratz, M.B.

    1990-01-01

    On July 13, 1989 the BEAM experiment Aboard Rocket (BEAR) linear accelerator was successfully launched and operated in space. The flight demonstrated that a neutral hydrogen beam could be successfully propagated in an exoatmospheric environment. The accelerator, which was the result of an extensive collaboration between Los Alamos National Laboratory and industrial partners, was designed to produce a 10 mA (equivalent), 1 MeV neutral hydrogen beam in 50 {mu}s pulses at 5 Hz. The major components were a 30 keV H{sup {minus}} injector a 1 MeV radio frequency quadrupole, two 425 Mhz RF amplifiers, a gas cell neutralizer, beam optics, vacuum system and controls. The design was strongly constrained by the need for a lightweight rugged system that would survive the rigors of launch and operate autonomously. Following the flight the accelerator was recovered and operated again on the laboratory. 6 figs., 2 tabs.

  1. STS-40 orbital acceleration research experiment flight results during a typical sleep period

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1992-01-01

    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities was flown aboard Shuttle on STS-40. The instrument is designed to measure and record the Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarefied flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument detects aerodynamic behavior of the Shuttle while in low-earth orbit. A 2-h orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low-frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight liner corrections for drift.

  2. The PHOBOS experiment at RHIC - physics and capabilities.

    SciTech Connect

    Back, B. B.

    1998-11-17

    The PHOBOS experiment at RHIC is designed to study multiplicity distributions and fluctuations over all of 4{pi}, as well as particle spectra and correlations at mid rapidity, with a particular emphasis on physics at low p{sub T}. The experiment is relatively small and relies almost entirely on silicon pad detector technology. The flexibility of the design, the conservative nature of the technologies used, and the ability to take data at high rates place the experiment in a good position to search for exotic physics from heavy-ion collisions at the early stages of RHIC operations.

  3. Two experiments in physics based on electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Pinto, Nicholas J.

    2008-12-01

    Two experiments related to nanoscience are described. These experiments are currently part of the undergraduate Physics program at the University of Puerto Rico. A simple to build and operate electrospinning apparatus produces conducting polymer nanofibers that are used to fabricate nanoresistors and Schottky nanodiodes. The properties of these devices are straightforward to study. A modification of the sample chamber can convert the nanoresistor experiment into a supersensitive alcohol vapor sensor.

  4. Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang, Franklin R.; Jacobson, Verlin T.; McCaskill, Greg E.; Bengtson, Roger D.; Goulding, Richard H.

    2000-01-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans.

  5. Motivation for proposed experimentation in the realm of accelerated E. M. systems: A preliminary design for an experiment

    NASA Technical Reports Server (NTRS)

    Post, E. J.

    1970-01-01

    An experiment, designed to determine the difference between fields-magnetic and electric-surrounding a uniformly moving charge as contrasted with the fields surrounding an accelerated charge, is presented. A thought experiment is presented to illustrate the process.

  6. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research.

    PubMed

    Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf

    2011-09-01

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and

  7. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research.

    PubMed

    Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf

    2011-09-01

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and

  8. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    SciTech Connect

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf; Auer, Siegfried; Baust, Guenter; Matt, Guenter; Otto, Katharina; Colette, Andrew; Drake, Keith; Kempf, Sascha; Munsat, Tobin; Shu, Anthony; Sternovsky, Zoltan; Fiege, Katherina; Postberg, Frank; Gruen, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Mellert, Tobias; and others

    2011-09-15

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and

  9. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    NASA Astrophysics Data System (ADS)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  10. Elementary particle physics

    NASA Technical Reports Server (NTRS)

    Perkins, D. H.

    1986-01-01

    Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.

  11. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

    ERIC Educational Resources Information Center

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-01-01

    In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…

  12. Resiliency in Physics: The Lived Experiences of African-American Women Who Completed Doctoral Physics Programs

    ERIC Educational Resources Information Center

    Burnette, Samara Fleming

    2013-01-01

    Currently, little is known about African-American women with doctoral degrees in physics. This study examined the lived experiences of African-American women who completed doctoral programs in physics. Due to factors of race and gender, African-American women automatically enter a double-bind in science, technology, engineering, and mathematics…

  13. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  14. Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory

    SciTech Connect

    Saveliev, Y M; Buckley, R K; Buckley, S R; Clarke, J A; Corlett, P A; Dunning, D J; Goulden, A R; Hill, S F; Jackson, F; Jamison, S P; Jones, J K; Jones, L B; Leonard, S; McIntosh, P A; McKenzie, J W; Middleman, K J; Militsyn, B L; Moss, A J; Muratori, B D; Orrett, J F; Pattalwar, S M; Phillips, P J; Scott, D J; Seddon, E A; Shepherd, B.J.A.; Smith, S L; Thompson, N; Wheelhouse, A E; Williams, P H; Harrison, P; Holder, D J; Holder, G M; Schofield, A L; Weightman, P; Williams, R L; Laundry, D; Powers, T; Priebe, G; Surman, M

    2010-05-01

    Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

  15. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments.

    PubMed

    Chang, J C; Lockner, D A; Reches, Z

    2012-10-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth's crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (M(w)) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake's rupture front quickens dynamic weakening by intense wear of the fault zone. PMID:23042892

  16. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    USGS Publications Warehouse

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  17. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM

    SciTech Connect

    Das, Indra J.; Cheng, C.-W.; Watts, Ronald J.; Ahnesjoe, Anders; Gibbons, John; Li, X. Allen; Lowenstein, Jessica; Mitra, Raj K.; Simon, William E.; Zhu, Timothy C.

    2008-09-15

    For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors (<1%), beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning.

  18. Experiences in sport, physical activity, and physical education among Christian, Buddhist, and Hindu Asian adolescent girls.

    PubMed

    Araki, Kaori; Kodani, Iku; Gupta, Nidhi; Gill, Diane L

    2013-01-01

    Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed. PMID:23412952

  19. Experiences in sport, physical activity, and physical education among Christian, Buddhist, and Hindu Asian adolescent girls.

    PubMed

    Araki, Kaori; Kodani, Iku; Gupta, Nidhi; Gill, Diane L

    2013-01-01

    Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed.

  20. Experiences in Sport, Physical Activity, and Physical Education Among Christian, Buddhist, and Hindu Asian Adolescent Girls

    PubMed Central

    Kodani, Iku; Gupta, Nidhi; Gill, Diane L.

    2013-01-01

    Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed. PMID:23412952

  1. Physics with REX-ISOLDE: from experiment to facility

    NASA Astrophysics Data System (ADS)

    Van Duppen, P.; Riisager, K.

    2011-02-01

    The REX-ISOLDE project and its physics program are presented. The innovative approach used to post-accelerate essentially all existing radioactive beams available at ISOLDE to 3 MeV u-1 is presented and beam properties are discussed. Isotopes as light as 8Li and as heavy as 224Ra have been used for Coulomb excitation, few-nucleon transfer reaction or fusion evaporation studies. Selected examples of the physics program, primarily utilizing the Miniball detector and segmented silicon detector arrays, are presented emphasizing some unique features of REX-ISOLDE. Finally, the HIE-ISOLDE project aiming at, amongst other goals, increasing the beam energy to 5.5 MeV u-1 and above, will be briefly discussed.

  2. Experiences of a high-school physics textbook author

    NASA Astrophysics Data System (ADS)

    Zitzewitz, Paul W.

    2004-05-01

    For the past twenty years I have been involved writing a widely used high school physics textbook. I will discuss my experiences with the many forces that shape such a book, including state requirements, the publisher, editors, free-lance writers, reviewers, high school teachers, and students. Attempts to incorporate the results of physics education research and the changing role of technology in the production process will also be discussed.

  3. The physics of musical scales: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  4. Physics Experiments Planned for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Verdon, Charles P.

    1998-11-01

    This talk will review the current status and plans for high energy density physics experiments to be conducted on the National Ignition Facility (NIF). The NIF a multi-laboratory effort, presently under construction at the Lawrence Livermore National Laboratory, is a 192 beam solid state glass laser system designed to deliver 1.8MJ (at 351nm) in temporal shaped pulses. This review will begin by introducing the NIF in the context of its role in the overall United States Stockpile Stewardship Program. The major focus of this talk will be to describe the physics experiments planned for the NIF. By way of introduction to the experiments a short review of the NIF facility design and projected capabilities will be presented. In addition the current plans and time line for the activation of the laser and experimental facilities will also be reviewed. The majority of this talk will focus on describing the national inertial confinement fusion integrated theory and experimental target ignition plan. This national plan details the theory and experimental program required for achieving ignition and modest thermonuclear gain on the NIF. This section of the presentation will include a status of the current physics basis, ignition target designs, and target fabrication issues associated with the indirect-drive and direct-drive approaches to ignition. The NIF design provides the capabilities to support experiments for both approaches to ignition. Other uses for the NIF, including non ignition physics relevant to the national security mission, studies relevant to Inertial Fusion Energy, and basic science applications, will also be described. The NIF offers the potential to generate new basic scientific understanding about matter under extreme conditions by making available a unique facility for research into: astrophysics and space physics, hydrodynamics, condensed matter physics, material properties, plasma physics and radiation sources, and radiative properties. Examples of

  5. Current experiments in particle physics - particle data group

    SciTech Connect

    Galic, H.; Lehar, F.; Kettle, P.R.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  6. Ion Acceleration by Beating Electrostatic Waves: Theory, Experiments and Relevance to Spacecraft Propulsion

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar

    2007-10-01

    After a brief overview of electrodeless plasma propulsion concepts, we will focus on a recently discovered ion acceleration mechanism, which appears to occur naturally in Earth's ionosphere, holds promise as an effective means to energize ions for applications in thermonuclear fusion and electrodeless space plasma propulsion. Unlike previously known mechanisms for energizing plasmas with electrostatic (ES) waves, and which accelerate only ions whose initial velocities are above a certain threshold (close to the wave's phase velocity), the new acceleration mechanism, involving pairs of beating ES waves, is non-resonant and can accelerate ions with arbitrarily small initial velocities, thus offering a more effective way to couple energy to plasmas. We will discuss the fundamentals of the nonlinear dynamics of a single magnetized ion interacting with a pair of beating ES waves and show that there exist necessary and sufficient conditions for the phenomenon to occur. We will see how these fundamental conditions are derived by analyzing the motion's Hamiltonian using a second-order perturbation technique in conjunction with Lie transformations. The analysis shows that when the Hamiltonian lies outside the energy barrier defined by the location of the elliptic and hyperbolic critical points of the motion, the electric field of the beating waves can accelerate ions regularly from low initial velocities, then stochastically, to high energies. We will then illustrate real plasma effects using Monte Carlo numerical simulation and discuss the recent results from a dedicated experiment in my lab in which laser-induced fluorescence (LIF) measurements of ion energies have provided the first laboratory observation of this acceleration mechanism. The talk will conclude with a few ideas on how the fundamental insight can be applied to develop novel plasma propulsion concepts.

  7. Preliminary Results from the UCLA/SLAC Ultra-High Gradient CerenkovWakefield Accelerator Experiment

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.; /Manhattan Coll., Riverdale

    2008-02-06

    The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. This experiment takes advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam has been successfully focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 {micro}m/OD = 325 {micro}m and ID = 100 {micro}m/OD = 325 {micro}m. The pulse length of the electron beam was varied in the range 20 {micro}m < {sigma}{sub z} < 100 {micro}m which produced a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments we plan to collect and measure coherent Cerenkov radiation emitted from the capillary tube to gain more information about the strength of the accelerating fields.

  8. Anterior cruciate ligament augmentation for rotational instability following primary reconstruction with an accelerated physical therapy protocol.

    PubMed

    Carey, Timothy; Oliver, David; Pniewski, Josh; Mueller, Terry; Bojescul, John

    2013-01-01

    The purpose of the present study is to present the results of anterior cruciate ligament (ACL) augmentation for patients having rotational instability despite an intact vertical graft in lieu of conventional revision ACL reconstruction. ACL augmentation surgery with a horizontal graft was performed to augment a healed vertical graft on five patients and an accelerated rehabilitation protocol was instituted. Functional outcomes were assessed by the Lower Extremity Functional Scale (LEFS) and the Modified Cincinnati Rating System (MCRS). All patients completed physical therapy within 5 months and were able to return to full military duty without limitation. LEFS and MCRS were significantly improved. ACL augmentation with a horizontal graft provides an excellent alternative to ACL revision reconstruction for patients with an intact vertical graft, allowing an earlier return to duty for military service members.

  9. GPU-based acceleration of free energy calculations in solid state physics

    NASA Astrophysics Data System (ADS)

    Januszewski, Michał; Ptok, Andrzej; Crivelli, Dawid; Gardas, Bartłomiej

    2015-07-01

    Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.

  10. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  11. Compilation of current high-energy-physics experiments

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

  12. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing

    1993-04-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  13. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  14. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  15. Experiments Using Cell Phones in Physics Classroom Education: The Computer-Aided g Determination

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen; Müller, Sebastian

    2011-09-01

    This paper continues the collection of experiments that describe the use of cell phones as experimental tools in physics classroom education.1-4 We describe a computer-aided determination of the free-fall acceleration g using the acoustical Doppler effect. The Doppler shift is a function of the speed of the source. Since a free-falling objects speed is changing linearly with time, the Doppler shift is also changing with time. It is possible to measure this shift using software that is both easy to use and readily available. Students will use the time-dependency of the Doppler shift to experimentally determine the acceleration due to gravity by using a cell phone as a freely falling object emitting a sound with constant frequency.

  16. Accelerating the connection between experiments and models: The FACE-MDS experience

    NASA Astrophysics Data System (ADS)

    Norby, R. J.; Medlyn, B. E.; De Kauwe, M. G.; Zaehle, S.; Walker, A. P.

    2014-12-01

    The mandate is clear for improving communication between models and experiments to better evaluate terrestrial responses to atmospheric and climatic change. Unfortunately, progress in linking experimental and modeling approaches has been slow and sometimes frustrating. Recent successes in linking results from the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments with ecosystem and land surface models - the FACE Model-Data Synthesis (FACE-MDS) project - came only after a period of slow progress, but the experience points the way to future model-experiment interactions. As the FACE experiments were approaching their termination, the FACE research community made an explicit attempt to work together with the modeling community to synthesize and deliver experimental data to benchmark models and to use models to supply appropriate context for the experimental results. Initial problems that impeded progress were: measurement protocols were not consistent across different experiments; data were not well organized for model input; and parameterizing and spinning up models that were not designed for simulating a specific site was difficult. Once these problems were worked out, the FACE-MDS project has been very successful in using data from the Duke and ORNL FACE experiment to test critical assumptions in the models. The project showed, for example, that the stomatal conductance model most widely used in models was supported by experimental data, but models did not capture important responses such as increased leaf mass per unit area in elevated CO2, and did not appropriately represent foliar nitrogen allocation. We now have an opportunity to learn from this experience. New FACE experiments that have recently been initiated, or are about to be initiated, include a eucalyptus forest in Australia; the AmazonFACE experiment in a primary, tropical forest in Brazil; and a mature oak woodland in England. Cross-site science questions are being developed that will have a

  17. Beam Polarization at the ILC: the Physics Impact and the Accelerator Solutions

    SciTech Connect

    Aurand, B.; Bailey, I.; Bartels, C.; Brachmann, A.; Clarke, J.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Marchesini, I.; Monig, Klaus; Moffeit, K.C.; Moortgat-Pick, G.; Riemann, S.; Schalicke, A.; Schuler, P.; Starovoitov, P.; Ushakov, A.; /DESY /DESY, Zeuthen /Bonn U. /SLAC

    2011-11-23

    In this contribution accelerator solutions for polarized beams and their impact on physics measurements are discussed. Focus are physics requirements for precision polarimetry near the interaction point and their realization with polarized sources. Based on the ILC baseline programme as described in the Reference Design Report (RDR), recent developments are discussed and evaluated taking into account physics runs at beam energies between 100 GeV and 250 GeV, as well as calibration runs on the Z-pole and options as the 1TeV upgrade and GigaZ. The studies, talks and discussions presented at this conference demonstrated that beam polarization and its measurement are crucial for the physics success of any future linear collider. To achieve the required precision it is absolutely decisive to employ multiple devices for testing and controlling the systematic uncertainties of each polarimeter. The polarimetry methods for the ILC are complementary: with the upstream polarimeter the measurements are performed in a clean environment, they are fast and allow to monitor time-dependent variations of polarization. The polarimeter downstream the IP will measure the disrupted beam resulting in high background and much lower statistics, but it allows access to the depolarization at the IP. Cross checks between the polarimeter results give redundancy and inter-calibration which is essential for high precision measurements. Current plans and issues for polarimeters and also energy spectrometers in the Beam Delivery System of the ILC are summarized in reference [28]. The ILC baseline design allows already from the beginning the operation with polarized electrons and polarized positrons provided the spin rotation and the fast helicity reversal for positrons will be implemented. A reversal of the positron helicity significantly slower than that of electrons is not recommended to not compromise the precision and hence the success of the ILC. Recently to use calibration data at the Z

  18. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  19. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  20. Modular safety interlock system for high energy physics experiments

    SciTech Connect

    Kieffer, J.; Golceff, B.V.

    1980-10-01

    A frequent problem in electronics systems for high energy physics experiments is to provide protection for personnel and equipment. Interlock systems are typically designed as an afterthought and as a result, the working environment around complex experiments with many independent high voltages or hazardous gas subsystems, and many different kinds of people involved, can be particularly dangerous. A set of modular hardware has been designed which makes possible a standardized, intergrated, hierarchical system's approach and which can be easily tailored to custom requirements.

  1. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Kafka, Gene

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  2. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect

    Rosenzweig, James; Travish, Gil; Hogan, Mark; Muggli, Patric; /Southern California U.

    2012-07-05

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.

  3. Informed Practice: Students' Clinical Experiences in the Undergraduate Phase of an Accelerated Physician Assistant Program.

    PubMed

    Dereczyk, Amy; DeWitt, Rachel

    2016-06-01

    This qualitative study explored the clinical experiences of students in an accelerated physician assistant (PA) program. The participants were either certified nursing assistants (CNAs) or emergency medical technicians-basic (EMTs-B). The study was designed to elicit (1) how the participants perceived their older patients and (2) how the participants' experiences might affect their own future communications, bedside manner, and clinical preparedness as PAs. This study used a focus group to explore students' clinical experiences before the graduate phase of their accelerated PA program. Five female and 2 male PA students (N = 7) participated in the study. All participants were 23 years old and worked as either a CNA or an EMT-B. Results fell into 2 basic themes: informing practice and forming relationships. Regarding the first theme, participants felt that their experience as entry-level health care providers allowed them to improve their communication skills and bedside manner and to provide greater comfort to patients. Regarding the second theme, participants gained appreciation for older people and began to recognize the knowledge deficits and learning needs of their patients. The results suggested that a student's clinical experience as a CNA or an EMT-B before entering a PA program has a positive effect on the student's personal and professional development. The participants acquired greater appreciation and respect for older patients and members of the health care team. PMID:27123599

  4. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    SciTech Connect

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  5. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  6. Multidisciplinary Field Training in Undergraduate Physical Geography: Russian Experience

    ERIC Educational Resources Information Center

    Kasimov, Nikolay S.; Chalov, Sergey R.; Panin, Andrey V.

    2013-01-01

    Field training is seen as a central component of the discipline of Physical Geography and an essential part of the undergraduate curriculum. This paper explores the structure and relationships between fieldwork and theoretical courses and the abundant experiences of field training in the undergraduate curriculum of 37 Russian universities. It…

  7. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  8. Physical Activity Experiences of Boys with and without ADHD

    ERIC Educational Resources Information Center

    Harvey, William J.; Reid, Greg; Bloom, Gordon A.; Staples, Kerri; Grizenko, Natalie; Mbekou, Valentin; Ter-Stepanian, Marina; Joober, Ridha

    2009-01-01

    Physical activity experiences of 12 age-matched boys with and without attention-deficit hyperactivity disorder (ADHD) were explored by converging information from Test of Gross Motor Development-2 assessments and semistructured interviews. The knowledge-based approach and the inhibitory model of executive functions, a combined theoretical lens,…

  9. Skylab Experiments, Volume I, Physical Science, Solar Astronomy.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Up-to-date knowledge about Skylab experiments is presented for the purpose of informing high school teachers about scientific research performed in orbit and enabling them to broaden their scope of material selection. The first volume is concerned with the solar astronomy program. The related fields are physics, electronics, biology, chemistry,…

  10. Radical Recombination Kinetics: An Experiment in Physical Organic Chemistry.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1980-01-01

    Describes a student kinetic experiment involving second order kinetics as well as displaying photochromism using a wide variety of techniques from both physical and organic chemistry. Describes measurement of (1) the rate of the recombination reaction; (2) the extinction coefficient; and (3) the ESR spectrometer signal. (Author/JN)

  11. Early Career Experiences of Physical Education Teachers in Urban Schools

    ERIC Educational Resources Information Center

    Flory, Sara B.

    2015-01-01

    The purpose of this study was to examine the early career experiences of three physical education (PE) teachers who taught in urban charter schools. Using cultural relevance theory, three early career PE teachers were observed and interviewed for approximately six weeks each. Data were analyzed using constant comparison. Two major themes emerged…

  12. The Hispanic Experience in Physical Education Programs and Departments

    ERIC Educational Resources Information Center

    Hodge, Samuel R.; Cervantes, Carlos M.; Vigo-Valentin, Alexander N.; Canabal-Torres, Maria Y.; Ortiz-Castillo, Esther M.

    2012-01-01

    The purpose of this article is to discuss challenges and identify strategies to increase the representation of Hispanic faculty in the academy, particularly Physical Education (PE) programs and departments at doctorate-granting universities. Recommendations to increase the presence and improve the experiences of Hispanic faculty are provided.…

  13. Chladni Patterns on Drumheads: A "Physics of Music" Experiment

    ERIC Educational Resources Information Center

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…

  14. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  15. Physics models in the MARS15 code for accelerator and space applications.

    SciTech Connect

    Mokhov, N. V.; Gudima, K. K.; Mashnik, S. G.; Rakhno, I. L.; Sierk, A. J.; Striganov, S.

    2004-01-01

    The MARS code system, developed over 30 years, is a set of Monte Carlo programs for detailed simulation of hadronic and electromagnetic cascades in an arbitrary geometry of accelerator, detector and spacecraft components with particle energy ranging from a fraction of an electron volt up to 100 TeV. The new MARS15 (2004) version is described with an emphasis on modeling physics processes. This includes an extended list of elementary particles and arbitrary heavy ions, their interaction cross-sections, inclusive and exclusive nuclear event generators, photo - hadron production, correlated ionization energy loss and multiple Coulomb scattering, nuclide production and residual activation, and radiation damage (DPA). In particular, the details of a new model for leading baryon production and implementation of advanced versions of the Cascade-Exciton Model (CEM03), and the Los Alamos version of Quark-Gluon String Model (LAQGSM03) are given. The applications that are motivating these developments, needs for better nuclear data, and future physics improvements are described.

  16. B-physics prospects with the LHCb experiment

    SciTech Connect

    Harnew, N.

    2008-04-15

    This paper summarizes the B-physics prospects of the LHCb experiment. Firstly, a brief introduction to the CKM matrix and the mechanism of CP violation in the Standard Model is given. The advantages of the LHCb experiment for B-physics exploitation will then be described, together with a short description of the detector components. Finally, the LHCb physics aims and prospects will be summarized, focusing on the measurements of sin(2{beta}) in tree and gluonic penguin diagrams, sin(2{alpha}) in B{sub d}{sup 0} {sup {yields}} {pi}{sup +}{pi}{sup -} and {pi}{sup +}{pi}{sup -}{pi}{sup 0}, neutral B-meson oscillations and the B{sub s}{sup 0} mixing phase, and the measurement of {gamma} using a variety of complementary methods.

  17. STS-40 orbital acceleration research experiment flight results during a typical sleep period

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Nicholson, J. Y.; Ritter, J. R.

    1992-01-01

    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model.

  18. Beam dynamics studies for the relativistic klystron two-beam accelerator experiment

    NASA Astrophysics Data System (ADS)

    Lidia, Steven M.

    2001-04-01

    Two-beam accelerators (TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band \\(~8-12 GHz\\) through Ka-band \\(~30-35 GHz\\) frequency regions. The relativistic klystron two-beam accelerator project, whose aim is to study TBAs based upon extended relativistic klystrons, is described, and a new simulation code is used to design the latter portions of the experiment. Detailed, self-consistent calculations of the beam dynamics and of the rf cavity output are presented and discussed together with a beam line design that will generate nearly 1.2 GW of power from 40 rf cavities over a 10 m distance. The simulations show that beam current losses are acceptable and that longitudinal and transverse focusing techniques are sufficiently capable of maintaining a high degree of beam quality along the entire beam line.

  19. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  20. Scintillation counters in modern high-energy physics experiments (Review)

    NASA Astrophysics Data System (ADS)

    Kharzheev, Yu. N.

    2015-07-01

    Scintillation counters (SCs) based on organic plastic scintillators (OPSs) are widely used in modern high-energy physics (HEP) experiments. A comprehensive review is given to technologies for production of OPS strips and tiles (extrusion, injection molding, etc.), optical and physical characteristics of OPSs, and methods of light collection based on the use of wavelength-shifting (WLS) fibers coupled to multipixel vacuum and silicon PMs. Examples are given of the use of SCs in modern experiments involved in the search for quarks and new particles, including the Higgs boson (D0, CDF, ATLAS, CMS), new states of matter (ALICE), CP violation (LHCb, KLOE), neutrino oscillations (MINOS, OPERA), and cosmic particles in a wide mass and energy interval (AMS-02). Scintillation counters hold great promise for future HEP experiments (at the ILC, NICA, FAIR) due to properties of a high segmentation, WLS fiber light collection, and multipixel silicon PMT readout.

  1. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    In the area of solar physics, new calculations of the acoustic wave energy fluxes generated in the solar convective zone was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective zone is the excitation of magnetic flux tube waves which can carry energy along the tubes far away from the region. The problem as to how efficiently those waves are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube waves in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The wave trapping problems and evaluation of critical frequencies for wave reflection in the solar atmosphere was studied. It was shown that the role played by Alfven waves in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of wave energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of waves, a new analytical approach for studying linear Alfven waves in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) waves in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD waves and possible chaos driven by these waves are presently considered.

  2. Diagnostics for ion beam driven high energy density physics experiments

    SciTech Connect

    Bieniosek, F. M.; Henestroza, E.; Lidia, S.; Ni, P. A.

    2010-10-15

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  3. Diagnostics for ion beam driven high energy density physics experiments.

    PubMed

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  4. Diagnostics for ion beam driven high energy density physics experiments.

    PubMed

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II. PMID:21033977

  5. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  6. Fluid physics, thermodynamics, and heat transfer experiments in space

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  7. Statistical physics of human beings in games: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Huang, Ji-Ping

    2014-07-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.

  8. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  9. Summary Report of Working Group 3: High Energy Density Physics and Exotic Acceleration Schemes

    SciTech Connect

    Shvets, Gennady; Schoessow, Paul

    2006-11-27

    This report summarizes presented results and discussions in the Working Group 3 at the Twelfth Advanced Accelerator Concepts Workshop in 2006. Presentations on varied topics, such as laser proton acceleration, novel radiation sources, active medium accelerators, and many others, are reviewed, and the status and future directions of research in these areas are summarized.

  10. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.

  11. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    SciTech Connect

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  12. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    SciTech Connect

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  13. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials. PMID:19205295

  14. Falling antimatter: An experiment to measure the gravitational acceleration of the antiproton

    SciTech Connect

    Dyer, P.; Camp, J.; Holzscheiter, M.H.; Graessle, S.

    1988-01-01

    According to some theories of gravity, antimatter will fall faster than matter in the earth's gravitational field. An experiment to measure the gravitational force on the antiproton is under construction. Antiprotons of a few MeV from the LEAR facility of CERN will be slowed down and caught in a large Penning electromagnetic trap. They will then be cooled and transferred to Penning cooling and launching traps. The gravitational acceleration will be measured by the time-of-flight in a drift tube shielding stray electronic fields, and will be compared with that measured for H/sup /minus// ions. Progress on a number of fronts is described. 9 refs., 2 figs.

  15. Development of electron beam accelerator for SEPAC experiment on Spacelab One

    NASA Astrophysics Data System (ADS)

    Kawashima, N.; Kudo, I.; Goma, K.

    Design and performance features of the electron beam accelerator (EBA) to be used on the SEPAC experiment on the Spacelab One Shuttle mission are described. The EBA comprises an electron gun, power supply, and a high voltage converter (HVC). Numerical models were developed for the functional performances of the 20 mm diam beam intensity and the focusing and deflection coils. Functional features of the anode, heater, focusing and deflection and auxiliary power supply systems, and the HVC, controller, and redundancy features are provided. A mission simulation, verified that all mission objectives could be met with the device, including avoidance of electromagnetic interference with other Shuttle activities and equipment.

  16. Vibration isolation technology: Sensitivity of selected classes of space experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Zhang, Y. Q.; Adebiyi, Adebimpe

    1989-01-01

    Progress performed on each task is described. Order of magnitude analyses related to liquid zone sensitivity and thermo-capillary flow sensitivity are covered. Progress with numerical models of the sensitivity of isothermal liquid zones is described. Progress towards a numerical model of coupled buoyancy-driven and thermo-capillary convection experiments is also described. Interaction with NASA personnel is covered. Results to date are summarized and they are discussed in terms of the predicted space station acceleration environment. Work planned for the second year is also discussed.

  17. Investigation of neutrino oscillations in the T2k long-baseline accelerator experiment

    SciTech Connect

    Izmaylov, A. O. Yershov, N. V.; Kudenko, Yu. G.; Matveev, V. A.; Mineev, O. V.; Musienko, Yu. V.; Khabibulliun, M. M.; Khotjantsev, A. N.; Shaykhiev, A. T.

    2012-02-15

    High-sensitivity searches for transitions of muon neutrinos to electron neutrinos are the main task of the T2K (Tokai-to-Kamioka) second-generation long-baseline accelerator neutrino experiment. The present article is devoted to describing basic principles of T2K, surveying experimental apparatuses that it includes, and considering in detail the muon-range detector (SMRD) designed and manufactured by a group of physicists from the Institute of Nuclear Research (Russian Academy of Sciences, Moscow). The results of the first measurements with a neutrino beam are presented, and plans for the near future are discussed.

  18. Evidence for muon neutrino oscillation in an accelerator-based experiment.

    PubMed

    Aliu, E; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Cavata, C; Cervera, A; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernandez, E; Fukuda, Y; Gomez-Cadenas, J; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayashi, K; Hayato, Y; Helmer, R L; Hill, J; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Inagaki, T; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kerr, D; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kubota, J; Kudenko, Yu; Kuno, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Maruyama, T; Matsuno, S; Matveev, V; Mauger, C; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mine, S; Mineev, O; Mitsuda, C; Miura, M; Moriguchi, Y; Morita, T; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Rodriguez, A; Saji, C; Sakuda, M; Sanchez, F; Sarrat, A; Sasaki, T; Scholberg, K; Schroeter, R; Sekiguchi, M; Sharkey, E; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M; Sobel, H; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Ueda, S; Vagins, M; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamamoto, S; Yanagisawa, C; Yershov, N; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2005-03-01

    We present results for nu(mu) oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced nu(mu) beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy-dependent disappearance of nu(mu), which we presume have oscillated to nu(tau). The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).

  19. The UCLA/SLAC Ultra-High Gradient Cerenkov Wakefield Accelerator Experiment

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebec, R.; Siemann, R.; Walz, D.; Scott, A.; Yoder, R.; /Manhattan Coll., Riverdale

    2006-01-25

    An experiment is planned to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range. This new UCLA/SLAC/USC collaboration will take advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., {delta}{sub z} = 20 {micro}m at Q = 3 nC). The electron beam will be focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 {micro}m/OD = 325 {micro}m and ID = 100 {micro}m/OD = 325 {micro}m. The pulse length of the electron beam will be varied in order to alter the accelerating gradient and probe the breakdown threshold of the dielectric structures. In addition to breakdown studies, we plan to collect and measure coherent Cerenkov radiation emitted from the capillary tube to gain information about the strength of the accelerating fields.

  20. Symmetry and aesthetics in introductory physics: An experiment in interdisciplinary physics and fine arts education

    NASA Astrophysics Data System (ADS)

    van der Veen, Janet Krause

    In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to "imagine new realities" was correlated with what have been traditionally considered non-scientific qualities of imagination and creativity, which are usually associated with fine arts. In view of the current developments in physics of the 21st Century, including the searches for cosmic dark energy and evidence from the Large Hadron Collider which, it is hoped, will verify or refute the proposals of String Theory, the importance of developing creativity and imagination through education is gaining recognition. Two questions are addressed by this study: First, How can we bring the sense of aesthetics and creativity, which are important in the practice of physics, into the teaching and learning of physics at the introductory college level, without sacrificing the mathematical rigor which is necessary for proper understanding of physics? Second, How can we provide access to physics for a diverse population of students which includes physics majors, arts majors, and future teachers? An interdisciplinary curriculum which begins with teaching math as a language of nature, and utilizes arts to help visualize the connections between mathematics and the physical universe, may provide answers to these questions. In this dissertation I describe in detail the case study of the eleven students - seven physics majors and four arts majors - who participated in an experimental course, Symmetry and Aesthetics in Introductory Physics, in Winter Quarter, 2007, at UCSB's College of Creative Studies. The very positive results of this experiment suggest that this model deserves further testing, and could provide an entry into the study of physics for physics majors, liberal arts majors, future teachers, and as a foundation for media arts and technology programs.

  1. Physics Results from the Antiproton Experiment (APEX) at Fermilab

    DOE Data Explorer

    APEX Collaboration

    Is Antimatter stable? The APEX experiment searches for the decay of antiprotons at the Fermilab Antiproton Accumulator. Observation of antiproton decay would indicate a violation of the CPT theorem, which is one of the most fundamental theorems of modern physics. The best laboratory limits on antiproton decay come from the APEX experiment which achieved a sensitivity to antiproton lifetimes up to of order 700,000 years for the most sensitive decay modes. Antiproton lifetimes in this range could arise from CPT violation at the Planck scale.[copied from http://www-apex.fnal.gov/] This website presents published results from the APEX Test Experiment (T861) and from the E868 Experiment. Limits were placed on six antiproton decay modes with a muon in the final state and on seven antiproton decay modes with an electron in the final state. See also the summary table and plot and the APEX picture gallery.

  2. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    SciTech Connect

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-15

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH{sub 2} with 2.8% H{sub 2} served as the discharge medium. H{sub 2} was chosen in order to observe the broadening of the H{sub β} emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 10{sup 16} cm{sup −3}. Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  3. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-01

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J ×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH2 with 2.8% H2 served as the discharge medium. H2 was chosen in order to observe the broadening of the Hβ emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 1016 cm-3 . Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  4. LIGO: Creating enhancements to the undergraduate physics experience

    NASA Astrophysics Data System (ADS)

    McGuire, S. C.

    2005-04-01

    Over the past four years we have initiated a program of research and educational outreach between the Laser Interferometer Gravitational-wave Observatory (LIGO) and the Department of Physics at Southern University-Baton Rouge that has enabled undergraduate physics majors to participate in a broad array of research based activities. Our emphasis has been on the integration of research into the educational experience of our physics majors. Specifically, students participate in research at the LIGO Livingston Observatory during the summers with LIGO scientists in addition to year round faculty-supervised research on campus. In continuing their research on campus students may also obtain academic credit toward graduation by enrolling in a research course, receiving Honors College Credit and/or incorporating the research into undergraduate theses. Through the LIGO Science Education Center (SEC) Outreach Project, we are revamping parts of our undergraduate curriculum to emphasize LIGO science particularly as relates to K-12 teacher preparation. Examples of activities will be presented.

  5. Physics from solar neutrinos in dark matter direct detection experiments

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Bœhm, Céline

    2016-05-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle sin2 θ W to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos, and use these estimates to quantify errors on future measurements of the neutrino fluxes, weak mixing angle and solar observables, as well as to constrain new physics in the neutrino sector. Our analysis shows that the combined rates of solar neutrino events in second generation experiments (SuperCDMS and LZ) can yield a measurement of the pp flux to 2.5% accuracy via electron recoil, and slightly improve the 8B flux determination. Assuming a low-mass argon phase, projected tonne-scale experiments like DARWIN can reduce the uncertainty on both the pp and boron-8 neutrino fluxes to below 1%. Finally, we use current results from LUX, SuperCDMS and CDMSlite to set bounds on new interactions between neutrinos and electrons or nuclei, and show that future direct detection experiments can be used to set complementary constraints on the parameter space associated with light mediators.

  6. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  7. Long Term Physical Health Consequences of Adverse Childhood Experiences

    PubMed Central

    Monnat, Shannon M.; Chandler, Raeven Faye

    2015-01-01

    This study examined associations between adverse childhood family experiences and adult physical health using data from 52,250 US adults aged 18–64 from the 2009–2012 Behavioral Risk Factor Surveillance System (BRFSS). We found that experiencing childhood physical, verbal, or sexual abuse, witnessing parental domestic violence, experiencing parental divorce, and living with someone who was depressed, abused drugs or alcohol, or who had been incarcerated were associated with one or more of the following health outcomes: self-rated health, functional limitations, diabetes, and heart attack. Adult socioeconomic status and poor mental health and health behaviors significantly mediated several of these associations. The results of this study highlight the importance of family-based adverse childhood experiences on adult health outcomes and suggest that adult SES and stress-related coping behaviors may be crucial links between trauma in the childhood home and adult health. PMID:26500379

  8. Experience, gender, and performance: Connecting high school physics experience and gender differences to introductory college physics performance

    NASA Astrophysics Data System (ADS)

    Tai, Robert H.

    Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics

  9. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  10. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  11. GPU/MIC Acceleration of the LHC High Level Trigger to Extend the Physics Reach at the LHC

    SciTech Connect

    Halyo, Valerie; Tully, Christopher

    2015-04-14

    The quest for rare new physics phenomena leads the PI [3] to propose evaluation of coprocessors based on Graphics Processing Units (GPUs) and the Intel Many Integrated Core (MIC) architecture for integration into the trigger system at LHC. This will require development of a new massively parallel implementation of the well known Combinatorial Track Finder which uses the Kalman Filter to accelerate processing of data from the silicon pixel and microstrip detectors and reconstruct the trajectory of all charged particles down to momentums of 100 MeV. It is expected to run at least one order of magnitude faster than an equivalent algorithm on a quad core CPU for extreme pileup scenarios of 100 interactions per bunch crossing. The new tracking algorithms will be developed and optimized separately on the GPU and Intel MIC and then evaluated against each other for performance and power efficiency. The results will be used to project the cost of the proposed hardware architectures for the HLT server farm, taking into account the long term projections of the main vendors in the market (AMD, Intel, and NVIDIA) over the next 10 years. Extensive experience and familiarity of the PI with the LHC tracker and trigger requirements led to the development of a complementary tracking algorithm that is described in [arxiv: 1305.4855], [arxiv: 1309.6275] and preliminary results accepted to JINST.

  12. Electron Beam-Induced Conductivity Experiments in a Static Cell for Application to MHD Accelerators

    SciTech Connect

    Lipinski, Ronald L.; Nelson, Gordon L.; Pena, Gary E.; Reed, Kim W.

    1999-06-24

    Past analyses of conventional MHD accelerator systems, which employ arc heaters in conjunction with alkali metal seeding of the air, have concluded that this approach to acceleration of air is not capable of reaching the high total enthalpy, low temperatures, and high dynamic pressures required to support advanced engine testingl'2>3. The very high temperatures required to ionize the seed material, coupled with known limits on the maximum operating pressures attainable in arc heaters, dictate that the final entropy of the test gas will exceed the targeted test section value, resulting in test section pressures or Mach numbers which are too low. This was the basic conclusion of the NASA-sponsored MARIAH study3. The present work describes the fist phase of a planned multi-year experimental effort to demonstrate an alternative mode of MHD accelerator operation which can potentially obviate these limitations. The concept is to exploit the ionizing power of electron beams to create a nonequilibrium ionization condition in the MHD channel, thus greatly increasing the electrical conductivity compared to its thermodynamic equilibrium (essentially zero) value. The advantage of this mode of operation is that the static temperatures can be kept relatively low through the MHD channel. The paper summa rizes the theoretical model for electron beam ionization in air, recently developed by Macheret et a12. Experiments conducted at San&a National Laboratories for the purpose of validating this model are also described. The fust phase of these experiments consist of measuring the bulk electrical conductivity of static air in a confined volume in the vicinity of an energetic electron beam. The experimental method is described, preliminary data is presented, and the results are interpreted in the light of the theoretical model.

  13. Generative Role of Experiments in Physics and in Teaching Physics: A Suggestion for Epistemological Reconstruction

    ERIC Educational Resources Information Center

    Koponen, Ismo T.; Mantyla, Terhi

    2006-01-01

    In physics teaching experimentality is an integral component in giving the starting point of knowledge formation and conceptualization. However, epistemology of experiments is not often addressed directly in the educational and pedagogical literature. This warrants an attempt to produce an acceptable reconstruction of the epistemological role of…

  14. On the Limitations of Thought Experiments in Physics and the Consequences for Physics Education.

    ERIC Educational Resources Information Center

    Reiner, Miriam; Burko, Lior M.

    2003-01-01

    Focuses on the role of Thought Experiments (TEs) in ongoing processes of conceptual refinement for physicists and physics learners. Analyze TEs related to stellar evolution and general relativity. Identifies the stages at which crucial errors are made in these TEs and the cognitive processes which lead to these errors. Discusses implications for…

  15. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  16. New Spin-Physics Experiments with Frozen-Spin Target at MAMI

    SciTech Connect

    Reicherz, Gerhard; Thomas, Andreas

    2011-12-14

    In the physics program for the MAMI C accelerator the investigation of the spin dependent excitation spectrum of the nucleon and fundamental properties, such as the spin polarizabilities of the nucleon are an important goal. This will be tackled in the framework of the A2-collaboration by doing double polarization experiments, using the linearly or circularly polarized energy marked photon beam in combination with a new solid state polarized target. The horizontal dilution refrigerator of the Frozen Spin Target was constructed by and is operated in close cooperation with, the Joint Institute for Nuclear Research in Dubna, Russia. The system offers both longitudinally and transversely polarized protons and deuterons. The target material, butanol and deuterated butanol, was developed and produced by the Ruhr-University of Bochum and provides the highest degree of polarization, measured with a new NMR apparatus. The status of the experiment and preliminary results will be presented.

  17. Test particle acceleration in a numerical MHD experiment of an anemone jet

    NASA Astrophysics Data System (ADS)

    Rosdahl, K. J.; Galsgaard, K.

    2010-02-01

    Aims: To use a 3D numerical MHD experiment representing magnetic flux emerging into an open field region as a background field for tracing charged particles. The interaction between the two flux systems generates a localised current sheet where MHD reconnection takes place. We investigate how efficiently the reconnection region accelerates charged particles and what kind of energy distribution they acquire. Methods: The particle tracing is done numerically using the Guiding Center Approximation on individual data sets from the numerical MHD experiment. Results: We derive particle and implied photon distribution functions having power law forms, and look at the impact patterns of particles hitting the photosphere. We find that particles reach energies far in excess of those seen in observations of solar flares. However the structure of the impact region in the photosphere gives a good representation of the topological structure of the magnetic field. Three movies are only available in electronic form at http://www.aanda.org

  18. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  19. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  20. High energy physics experiment triggers and the trustworthiness of software

    SciTech Connect

    Nash, T.

    1991-10-01

    For all the time and frustration that high energy physicists expend interacting with computers, it is surprising that more attention is not paid to the critical role computers play in the science. With large, expensive colliding beam experiments now dependent on complex programs working at startup, questions of reliability -- the trustworthiness of software -- need to be addressed. This issue is most acute in triggers, used to select data to record -- and data to discard -- in the real time environment of an experiment. High level triggers are built on codes that now exceed 2 million source lines -- and for the first time experiments are truly dependent on them. This dependency will increase at the accelerators planned for the new millennium (SSC and LHC), where cost and other pressures will reduce tolerance for first run problems, and the high luminosities will make this on-line data selection essential. A sense of this incipient crisis motivated the unusual juxtaposition to topics in these lectures. 37 refs., 1 fig.

  1. Autonomy and the Student Experience in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas Ron

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students perceived their instructors to be. An autonomy supportive instructor acknowledges students' perspectives, feelings, and perceptions and provides students with information and opportunities for choice, while minimizing external pressures. It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (beta=0.31***) and negatively correlated with student anxiety about taking physics (beta=-0.23**). It was also positively correlated with how autonomous (vs. controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to vs. had to; beta=0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (beta=0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (beta=0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable experience in the course. If greater autonomy support was in fact the cause of a more favorable student experience, as suggested by Self-determination Theory and experimental studies in other contexts, these results would have implications for instruction and instructor professional development in similar contexts. I discuss these implications. Study II, an experimental study, investigated the effect

  2. Physical basis of coastal productivity: The SEEP and MASAR experiments

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    Two major cooperative experiments, code-named Shelf Edge Exchange Processes (SEEP) I and II, were carried out on the northeast U.S. continental shelf and slope by an interdisciplinary group of scientists in the past decade. The work, supported by the Department of Energy, Office of Health and Environmental Research, had the broad aim of determining whether or to what extent energy-related human activities interfere with the high biological productivity of coastal waters. Much of SEEP I work was reported in a dedicated issue of Continental Shelf Research, including a summary article on the experiment as a whole [Walsh et al., 1988[. A parallel experiment, supported by the Minerals Management Service and code-named Mid Atlantic Slope and Rise (MASAR), had the objective of exploring physical processes over the continental slope and rise, including especially currents in the upper part of the water column. A good deal of MASAR work was also reported in the SEEP issue just mentioned, mainly in an article by Csanady and Hamilton (1988). There have been other papers and publications on these experiments, and more are forthcoming. While many questions remain, our horizons have broadened considerably after a decade of work on this problem, as if our aeroplane had just emerged from clouds to expose an interesting landscape. In this article I shall try to describe the physical (-oceanographic) features of that landscape, not in the chronological order in which we have espied them, but as the logic of the subject dictates.

  3. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-12-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  4. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II), a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-11-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  5. The experiment PANDA: physics with antiprotons at FAIR

    NASA Astrophysics Data System (ADS)

    Boca, Gianluigi

    2015-05-01

    PANDA is an experiment that will run at the future facility FAIR, Darmstadt, Germany. A high intensity and cooled antiproton beam will collide on a fixed hydrogen or nuclear target covering center-of-mass energies between 2.2 and 5.5 GeV. PANDA addresses various physics aspects from the low energy non-perturbative region towards the perturbative regime of QCD. With the impressive theoretical developments in this field, e.g. lattice QCD, the predictions are becoming more accurate in the course of time. The data harvest with PANDA will, therefore, be an ideal test bench with the aim to provide a deeper understanding of hadronic phenomena such as confinement and the generation of hadron masses. A variety of physics topics will be covered with PANDA, for example: the formation or production of exotic non-qqbar charm meson states connected to the recently observed XYZ spectrum; the study of gluon-rich matter, such as glueballs and hybrids; the spectroscopy of the excited states of strange and charm baryons, their production cross section and their spin correlations; the behaviour of hadrons in nuclear matter; the hypernuclear physics; the electromagnetic proton form factors in the timelike region. The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1-2 % at 1 GeV/c in the central region); secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons); a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  6. Introductory Physics Experiments Using the Wii Balance Board

    NASA Astrophysics Data System (ADS)

    Starr, Julian; Sobczak, Robert; Iqbal, Zohaib; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console by Nintendo, utilizes several different controllers, such as the Wii remote (Wiimote) and the balance board, for game-playing. The balance board was introduced in early 2008. It contains four strain gauges and has Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC with Bluetooth capability can detect the information sent out by the balance board. Based on the ease with which the forces measured by each strain gauge can be obtained, we have designed several experiments for introductory physics courses that make use of this device. We present experiments to measure the forces generated when students lift their arms with and without added weights, distribution of forces on an extended object when weights are repositioned, and other normal forces cases. The results of our experiments are compared with those predicted by Newtonian mechanics. )

  7. The Influence of Hands On Physics Experiments on Scientific Process Skills According to Prospective Teachers' Experiences

    ERIC Educational Resources Information Center

    Hirça, Necati

    2013-01-01

    In this study, relationship between prospective science and technology teachers' experiences in conducting Hands on physics experiments and their physics lab I achievement was investigated. Survey model was utilized and the study was carried out in the 2012 spring semester. Seven Hands on physics experiments were conducted with 28 prospective…

  8. Experiences of Psychological and Physical Aggression in Adolescent Romantic Relationships: Links to Psychological Distress

    ERIC Educational Resources Information Center

    Jouriles, Ernest N.; Garrido, Edward; Rosenfield, David; McDonald, Renee

    2009-01-01

    Objective: This research examined links between adolescents' experiences of psychological and physical relationship aggression and their psychological distress. Experiences of psychological and physical aggression were expected to correlate positively with symptoms of psychological distress, but experiences of psychological aggression were…

  9. Source physics experiments at the Nevada Test Site.

    SciTech Connect

    Lee, Ping; Snelson, Catherine; Abbott, Robert; Coblentz, David D.; Corbell, Robert; Bowyer, Theodore W.; Sussman, Aviva J.; Carrigan, Charles R.; Bradley, Christopher R.; Patton, Howard J.; Seifert, Carolyn E.; Sweeney, Jerry J.; Brunish, Wendee M.; Hawkins, Ward L.; Antoun,Tarabay H.; Wohletz, Kenneth H.; Zucca, John Jay

    2010-10-01

    The U. S. capability to monitor foreign underground nuclear test activities relies heavily on measurement of explosion phenomena, including characteristic seismic, infrasound, radionuclide, and acoustic signals. Despite recent advances in each of these fields, empirical, rather than physics-based, approaches are used to predict and explain observations. Seismologists rely on prior knowledge of the variations of teleseismic and regional seismic parameters such as p- and s-wave arrivals from simple one-dimensional models for the teleseismic case to somewhat more complicated enhanced two-dimensional models for the regional case. Likewise, radionuclide experts rely on empirical results from a handful of limited experiments to determine the radiological source terms present at the surface after an underground test. To make the next step in the advancement of the science of monitoring we need to transform these fields to enable predictive, physics-based modeling and analysis. The Nevada Test Site Source Physics Experiments (N-SPE) provide a unique opportunity to gather precise data from well-designed experiments to improve physics-based modeling capability. In the seismic experiments, data collection will include time domain reflectometry to measure explosive performance and yield, free-field accelerometers, extensive seismic arrays, and infrasound and acoustic measurements. The improved modeling capability that we will develop using this data should enable important advances in our ability to monitor worldwide for nuclear testing. The first of a series of source physics experiments will be conducted in the granite of Climax Stock at the NTS, near the locations of the HARD HAT and PILE DRIVER nuclear tests. This site not only provides a fairly homogeneous and well-documented geology, but also an opportunity to improve our understanding of how fractures, joints, and faults affect seismic wave generation and propagation. The Climax Stock experiments will consist of a 220

  10. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    SciTech Connect

    Benage, John F.; Albright, Brian J.; Fernandez, Juan C.

    2012-09-04

    An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL

  11. Can Cognitive Activities during Breaks in Repetitive Manual Work Accelerate Recovery from Fatigue? A Controlled Experiment

    PubMed Central

    Mathiassen, Svend Erik; Hallman, David M.; Lyskov, Eugene; Hygge, Staffan

    2014-01-01

    Neurophysiologic theory and some empirical evidence suggest that fatigue caused by physical work may be more effectively recovered during “diverting” periods of cognitive activity than during passive rest; a phenomenon of great interest in working life. We investigated the extent to which development and recovery of fatigue during repeated bouts of an occupationally relevant reaching task was influenced by the difficulty of a cognitive activity between these bouts. Eighteen male volunteers performed three experimental sessions, consisting of six 7-min bouts of reaching alternating with 3 minutes of a memory test differing in difficulty between sessions. Throughout each session, recordings were made of upper trapezius muscle activity using electromyography (EMG), heart rate and heart rate variability (HRV) using electrocardiography, arterial blood pressure, and perceived fatigue (Borg CR10 scale and SOFI). A test battery before, immediately after and 1 hour after the work period included measurements of maximal shoulder elevation strength (MVC), pressure pain threshold (PPT) over the trapezius muscles, and a submaximal isometric contraction. As expected, perceived fatigue and EMG amplitude increased during the physical work bouts. Recovery did occur between the bouts, but fatigue accumulated throughout the work period. Neither EMG changes nor recovery of perceived fatigue during breaks were influenced by cognitive task difficulty, while heart rate and HRV recovered the most during breaks with the most difficult task. Recovery of perceived fatigue after the 1 hour work period was also most pronounced for the most difficult cognitive condition, while MVC and PPT showed ambiguous patterns, and EMG recovered similarly after all three cognitive protocols. Thus, we could confirm that cognitive tasks between bouts of fatiguing physical work can, indeed, accelerate recovery of some factors associated with fatigue, even if benefits may be moderate and some responses may

  12. Can cognitive activities during breaks in repetitive manual work accelerate recovery from fatigue? A controlled experiment.

    PubMed

    Mathiassen, Svend Erik; Hallman, David M; Lyskov, Eugene; Hygge, Staffan

    2014-01-01

    Neurophysiologic theory and some empirical evidence suggest that fatigue caused by physical work may be more effectively recovered during "diverting" periods of cognitive activity than during passive rest; a phenomenon of great interest in working life. We investigated the extent to which development and recovery of fatigue during repeated bouts of an occupationally relevant reaching task was influenced by the difficulty of a cognitive activity between these bouts. Eighteen male volunteers performed three experimental sessions, consisting of six 7-min bouts of reaching alternating with 3 minutes of a memory test differing in difficulty between sessions. Throughout each session, recordings were made of upper trapezius muscle activity using electromyography (EMG), heart rate and heart rate variability (HRV) using electrocardiography, arterial blood pressure, and perceived fatigue (Borg CR10 scale and SOFI). A test battery before, immediately after and 1 hour after the work period included measurements of maximal shoulder elevation strength (MVC), pressure pain threshold (PPT) over the trapezius muscles, and a submaximal isometric contraction. As expected, perceived fatigue and EMG amplitude increased during the physical work bouts. Recovery did occur between the bouts, but fatigue accumulated throughout the work period. Neither EMG changes nor recovery of perceived fatigue during breaks were influenced by cognitive task difficulty, while heart rate and HRV recovered the most during breaks with the most difficult task. Recovery of perceived fatigue after the 1 hour work period was also most pronounced for the most difficult cognitive condition, while MVC and PPT showed ambiguous patterns, and EMG recovered similarly after all three cognitive protocols. Thus, we could confirm that cognitive tasks between bouts of fatiguing physical work can, indeed, accelerate recovery of some factors associated with fatigue, even if benefits may be moderate and some responses may be

  13. J-PAS: The Javalambre-Physics of the Accelerating Universe Astrophysical Survey

    NASA Astrophysics Data System (ADS)

    Dupke, Renato a.; Benitez, Narciso; Moles, Mariano; Sodre, Laerte; J-PAS Collaboration

    2015-08-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Astrophysical Observatory in Spain with a dedicated 2.5m telescope and a 4.7deg^2 camera with 1.2Gpix. Starting in 2016, J-PAS will observe 8600 deg^2 of the Northern Sky and measure 0.003(1+z) precision photometric redshifts for nearly 1E08 LRG and ELG galaxies plus several million QSOs, sampling an effective volume of ~14 Gpc^3 up to z = 1.3. J-PAS will also detect and measure the mass of more than a hundred thousand galaxy clusters, setting constrains on Dark Energy which rival those obtained from BAO measurements.The key to the J-PAS potential is its innovative approach the combination of 54 145°A filters, placed 100°A apart, and a multi-degree field of view (FOV) which makes it a powerful “redshift machine”, with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. Moreover, since the J-PAS camera is equivalent to a very large, 4.7deg^2 “IFU”, it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations. J-PAS will have a lasting legacy value in many areas of Astrophysics, serving as a fundamental dataset for future Cosmological projects.Here, we present the overall description, status and scientific potential of the survey.

  14. J-PAS: The Javalambre-Physics of the Accelerating Universe Astrophysical Survey

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; Benitez, Narciso; Moles, Mariano; Sodre, Laerte; Irwin, Jimmy; J-PAS Collaboration

    2016-01-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Astrophysical Observatory in Spain with a dedicated 2.5m telescope and a 4.7deg^2 camera with 1.2Gpix. Starting in 2016, J-PAS will observe 8600 deg^2 of the Northern Sky and measure 0.003(1+z) precision photometric redshifts for nearly 1E08 LRG and ELG galaxies plus several million QSOs, sampling an effective volume of ~14 Gpc^3 up to z = 1.3. J-PAS will also detect and measure the mass of more than a hundred thousand galaxy clusters, setting constrains on Dark Energy which rival those obtained from BAO measurements.The key to the J-PAS potential is its innovative approach the combination of 54 145°A filters, placed 100°A apart, and a multi-degree field of view (FOV) which makes it a powerful "redshift machine", with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. Moreover, since the J-PAS camera is equivalent to a very large, 4.7deg^2 "IFU", it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations. J-PAS will have a lasting legacy value in many areas of Astrophysics, serving as a fundamental dataset for future Cosmological projects.Here, we present the overall description, status and scientific potential of the survey.

  15. Statistical comparison between experiments and numerical simulations of shock-accelerated gas cylinders

    SciTech Connect

    Rider, William; Kamm, J. R.; Zoldi, C. A.; Tomkins, C. D.

    2002-01-01

    We present detailed spatial analysis comparing experimental data and numerical simulation results for Richtmyer-Meshkov instability experiments of Prestridge et al. and Tomkins et al. These experiments consist, respectively, of one and two diffuse cylinders of sulphur hexafluoride (SF{sub 6}) impulsively accelerated by a Mach 1.2 shockwave in air. The subsequent fluid evolution and mixing is driven by the deposition of baroclinic vorticity at the interface between the two fluids. Numerical simulations of these experiments are performed with three different versions of high resolution finite volume Godunov methods, including a new weighted adaptive Runge-Kutta (WARK) scheme. We quantify the nature of the mixing using using integral measures as well as fractal analysis and continuous wavelet transforms. Our investigation of the gas cylinder configurations follows the path of our earlier studies of the geometrically and dynamically more complex gas 'curtain' experiment. In those studies, we found significant discrepancies in the details of the experimentally measured mixing and the details of the numerical simulations. Here we evaluate the effects of these hydrodynamic integration techniques on the diffuse gas cylinder simulations, which we quantitatively compare with experimental data.

  16. Initial Physics Operation of the National Spherical Torus Experiment- Upgrade

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis; NSTX-U Team

    2015-11-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) is an experiment designed to study the physics of Spherical Torus (ST) at about twice the toroidal field and neutral beam injection (NBI) power as NSTX for 5 s. at full parameters. In its initial operational period NSTX-U will limit operation to BT <= .75 T but the full complement of 6 neutral beam (NB) sources will be available. Three NB sources added during the upgrade inject more tangentially and will be essential to investigate the physics of neutral beam current drive. In NSTX-U, use of a digital real-time plasma control system and the application of wall conditioning techniques will be used to achieve routine operation with good confinement. The wall conditioning techniques include bakeout to over 300°C, helium glow discharge cleaning, boronization of the plasma facing surfaces using deuterated trimethylboron gas in a helium glow discharge and lithium evaporation onto the walls. Auxiliary heating by up to 6 MW of High Harmonic Fast Waves will be available. The operational experience during the plasma commissioning phase will be discussed. Work Supported by U.S.D.O.E. Contract No. DE-AC02-09CH11466.

  17. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  18. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  19. Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-11-01

    Prior research has shown, at our institution: 1) males outperform females on conceptual assessments (a gender gap), 2) the gender gap persists despite the use of research-based reforms, and 3) the gender gap is correlated with students' physics and mathematics background and prior attitudes and beliefs [Kost, et al. PRST-PER, 5, 010101]. Our follow-up work begins to explore how males and females experience the introductory course differently and how these differences relate to the gender gap. We gave a survey to students in the introductory course in which we investigated students' physics identity and self-efficacy. We find there are significant gender differences in each of these three areas, and further find that these measures are weakly correlated with student conceptual performance, and moderately correlated with course grade.

  20. Negative Experiences in Physical Education and Sport: How Much Do They Affect Physical Activity Participation Later in Life?

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.

    2013-01-01

    People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood…

  1. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    SciTech Connect

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  2. Experiments on 1,000 km/s flyer acceleration and collisions

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Serlin, V.; Obenschain, S. P.

    2012-10-01

    We will present results from follow-on experiments to the record-high velocities achieved using the ultra-uniform deep-uv drive of the Nike KrF laser [Karasik et al, Phys. Plasmas 17, 056317 (2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ˜1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Such velocities may indicate a path to lower minimum energy required for central ignition. Still higher velocities and higher target densities are required for impact fast ignition. New results give velocity of >1,100 km/s achieved through improvements in pulseshaping. Variation of second foil parameters results in significant change in fusion neutron production on impact. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Availability of pressures generated by collisions of such highly accelerated flyers may provide an experimental platform for study of matter at extreme conditions. Work is supported by US DOE (NNSA).

  3. Laboratory Experiments with the Concordia College High-Speed Dust Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Manning, H. L.

    2011-12-01

    During the Apollo Era, NASA's Goddard Space Flight Center built a 2MeV high-speed, dust particle accelerator. This facility was used to test and calibrate the LEAM instrument which was flown to the lunar surface by Apollo 17. As the Apollo project wound down, NASA no longer had need of the dust particle accelerator, and in 1975, it was move to Concordia College in Moorhead, MN. Through the years, it has been maintained and some modifications and improvements have been made to it. In the past decade, the facility has been revived and used by several collaborating institutions to study dust detector instrumentation as well as the effects of dust impacts on various materials. We have tested a prototype, space-flight dust particle detector. Also, piezoelectric pins which can be used as dust detectors were studied to learn the pin's response to single particle impacts of different energies and momenta, and then those measured responses were compared with theoretical models. The effects of high speed impacts on ultra-high temperature ceramics, aerogel, and several different thin films have also been studied at our facility. The results of these experiments will be presented.

  4. Features of accelerated electron beam formation in LHCD experiments on FT-2 tokamak

    NASA Astrophysics Data System (ADS)

    Lashkul, S. I.; Rozhdestvensky, V. V.; Altukhov, A. B.; Dyachenko, V. V.; Esipov, L. A.; Kantor, M. Yu.; Krikunov, S. V.; Kuprienko, D. V.; Stepanov, A. Yu.

    2012-12-01

    In experiments with lower hybrid current drive (LHCD) on the FT-2 tokamak, lower hybrid (LH) waves have been successfully used for the first time to ensure effective additional heating of plasma electrons from 450 to 600 eV ( I Pl = 32 kA, Δ t RF = 14 ms, P RF = 100 kW, F = 920 MHz). Several factors influencing the efficiency of plasma heating have been discovered. In particular, significant growth of radiation losses in the LHCD regime has been found, which is probably related to an increase in the intensity of synchrotron radiation from accelerated electrons. The increase in this intensity in the 53-156 GHz frequency range was accompanied by short spikes of microwave radiation, which were observed only in a narrower frequency range (53-78 GHz) and apparently resulted from interaction of a runaway electron beam with significant local mirrors of toroidal magnetic field. A model of the additional heating of plasma electrons due to absorption of the microwave radiation generated by a beam of accelerated electrons is proposed.

  5. The International Reactor Physics Experiment Evaluation Project (IRPHEP)

    SciTech Connect

    J. Blair Briggs; Enrico Sartori; Lori Scott

    2006-09-01

    Since the beginning of the Nuclear Power industry, numerous experiments concerned with nuclear energy and technology have been performed at different research laboratories, worldwide. These experiments required a large investment in terms of infrastructure, expertise, and cost; however, many were performed without a high degree of attention to archival of results for future use. The degree and quality of documentation varies greatly. There is an urgent need to preserve integral reactor physics experimental data, including measurement methods, techniques, and separate or special effects data for nuclear energy and technology applications and the knowledge and competence contained therein. If the data are compromised, it is unlikely that any of these experiments will be repeated again in the future. The International Reactor Physics Evaluation Project (IRPhEP) was initiated, as a pilot activity in 1999 by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June of 2003. The purpose of the IRPhEP is to provide an extensively peer reviewed set of reactor physics related integral benchmark data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next generation reactors and establish the safety basis for operation of these reactors. A short history of the IRPhEP is presented and its purposes are discussed in this paper. Accomplishments of the IRPhEP, including the first publication of the IRPhEP Handbook, are highlighted and the future of the project outlined.

  6. Participation in the definition, conduct, and analysis of particle accelerator experiments for the first Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC) is a joint endeavor between NASA and the Institute of Space and Aeronautical Sciences (ISAS) in Japan. Its objectives are to use energetic electron beams to investigate beam-atmosphere interactions and beam-plasma interactions in the earth's upper atmosphere and ionosphere using the shuttle Spacelab. Two flights of SEPAC have occurred to date (Spacelab 1 on STS-9 in Nov.-Dec. 1983 and ATLAS 1 on STS-45 in Mar.-Apr. 1992). The SEPAC instrumentation is available for future missions, and the scientific results of the first two missions justify further investigations; however, at present there are no identifiable future flight opportunities. As specified in the contract, the primary purpose of this report is to review the scientific accomplishments of the ATLAS 1 SEPAC experiments, which have been documented in the published literature, with only a brief review of the earlier Spacelab 1 results. One of the main results of the Spacelab 1 SEPAC experiments was that the ejection of plasma from the magnetoplasmadynamic (MPD) arcjet was effective in maintaining vehicle charge neutralization during electron beam firings, but only for a brief period of 10 ms or so. Therefore, a xenon plasma contactor, which can provide continuous vehicle charge neutralization, was developed for the ATLAS 1 SEPAC experiments. Because of the successful operation of the plasma contactor on ATLAS 1, it was possible to perform experiments on beam-plasma interactions and beam-atmosphere interactions at the highest beam power levels of SEPAC. In addition, the ability of the plasma contactor to eject neutral xenon led to a successful experiment on the critical ionization velocity (CIV) phenomena on ATLAS 1.

  7. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  9. Measurement of Coriolis Acceleration with a Smartphone

    ERIC Educational Resources Information Center

    Shaku, Asif; Kraft, Jakob

    2016-01-01

    Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern…

  10. Chladni Patterns on Drumheads: A ``Physics of Music'' Experiment

    NASA Astrophysics Data System (ADS)

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional systems, such as string and wind instruments, to the two-dimensional membranes and plates of the percussion family. Although the sand patterns attributed to Ernst Florens Friedrich Chladni (1756-1827) are often demonstrated for this purpose using metal plates,2-4 the use of drumheads offers several pedagogical and practical advantages in the lab.

  11. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    SciTech Connect

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; McKenzie-Carter, M.A.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR.

  12. A Summer Research Experience in Particle Physics Using Skype

    NASA Astrophysics Data System (ADS)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  13. Report on Physics of Channelization: Theory, Experiment, and Observation

    SciTech Connect

    Kudrolli, Arshad

    2014-05-19

    The project involved a study of physical processes that create eroded channel and drainage networks. A particular focus was on how the shape of the channels and the network depended on the nature of the fluid flow. Our approach was to combine theoretical, experimental, and observational studies in close collaboration with Professor Daniel Rothman of the Massachusetts Institute of Technology. Laboratory -scaled experiments were developed and quantitative data on the shape of the pattern and erosion dynamics are obtained with a laser-aided topography technique and fluorescent optical imaging techniques.

  14. Extreme ultraviolet diagnostics of preformed plasma in laser-driven proton acceleration experiments

    SciTech Connect

    Ragozin, Eugene N.; Pirozhkov, Alexander S.; Yogo, Akifumi; Ma Jinglong; Ogura, Koichi; Orimo, Satoshi; Sagisaka, Akito; Mori, Michiaki; Li, Zhong; Nishiuchi, Mamiko; Daido, Hiroyuki

    2006-12-15

    Proton acceleration experiments involving a 5 {mu}m thick Ti foil target irradiation are carried out with the femtosecond Ti:sapphire laser JLITE-X. The plasma emission at 13.5 nm is recorded employing concave multilayer mirrors, which image the front- and rear-side plasmas onto the sensitive surfaces of a fast x-ray photodiode and a backside-illuminated charge coupled device. Online time-of-flight fast-particle measurements are performed simultaneously with the extreme ultraviolet (XUV) measurements. A strong correlation is observed between the energetic proton signal and the spatiotemporal behavior of the XUV plasma emission. In particular, the longer duration of the prepulse-produced XUV plasma emission indicates a lowering of the maximum proton energy. This allows using the XUV emission for the diagnostics of the high-intensity laser-solid-target interaction.

  15. Colliding pulse injection experiments in non-collinear geometryfor controlled laser plasma wakefield acceleration of electrons

    SciTech Connect

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans,Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler,D.; Cary, J.R.

    2007-06-25

    An optical injection scheme for a laser-plasma basedaccelerator which employs a non-collinear counter-propagating laser beamto push background electrons in the focusing and acceleration phase viaponderomotive beat with the trailing part of the wakefield driver pulseis discussed. Preliminary experiments were performed using a drive beamof a_0 = 2.6 and colliding beam of a_1 = 0.8 both focused on the middleof a 200 mu m slit jet backed with 20 bar, which provided ~; 260 mu mlong gas plume. The enhancement in the total charge by the collidingpulse was observed with sharp dependence on the delay time of thecolliding beam. Enhancement of the neutron yield was also measured, whichsuggests a generation of electrons above 10 MeV.

  16. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    SciTech Connect

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  17. Boosted frame PIC simulations of LWFA: ultra-fast modeling of current experiments and first studies of acceleration towards the energy frontier

    NASA Astrophysics Data System (ADS)

    Martins, Samuel

    2009-11-01

    The development of new laser systems, in the 10PW range, will push Laser Wakefield Accelerators (LWFA) to a new qualitative regime, for which theoretical scalings predict the possibility to accelerate electron bunches close to the energy frontier, with self-injected electrons in excess of 10 GeV, and above 50GeV bunches with externally injected electrons. As in the past, numerical simulations will certainly play an important role in testing, probing and optimizing the physical parameters and setup of these upscale experiments. The distances involved in these numerical experiments, however, are very demanding in terms of computational resources, so that three-dimensional fully kinetic simulations are not yet possible to (easily) accomplish. Following the work on optimized Lorentz frames by J.-L. Vay [PRL 98, 130405 (2007)], the Lorentz transformation for a boosted frame was implemented in OSIRIS [R. A. Fonseca et al, LNCS 2329, III-342 (Springer-Verlag, 2002)], leading to a dramatic change in the computational resources required to model LWFA. The critical implementation details will be described, and the main difficulties discussed. Quantitative benchmarks will be presented between boosted frame and laboratory frame simulations, and also with experimental results from Imperial College and Lawrence Livermore National Laboratory, with emphasis on the boosted frame scheme as a tool for faster design and modeling of current experiments. Finally, simulations for the scenarios possible with the next generation of laser systems will be presented, including the confirmation of electron bunch acceleration to the energy frontier.

  18. High school student physics research experience yields positive results

    NASA Astrophysics Data System (ADS)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  19. Engineering students' experiences from physics group work in learning labs

    NASA Astrophysics Data System (ADS)

    Strøm Mellingsæter, Magnus

    2014-01-01

    Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential for how the students experience the learning labs, and how do these aspects relate to the emergence of occurrences termed joint workspace, i.e. the maintenance of content-related dialogues within the group? Programme description: First year mechanical engineering students attended the learning labs as a compulsory part of the physics course. The student groups were instructed to solve physics problems using the interactive whiteboard and then submit their work as whiteboard files. Sample: One group of five male students was followed during their work in these learning labs through one term. Design and methods: Data were collected as video recordings and fieldwork observation. In this paper, a focus group interview with the students was the main source of analysis. The interpretations of the interview data were compared with the video material and the fieldwork observations. Results: The results show that the students' overall experience with the learning labs was positive. They did, however, point to internal aspects of conflicting common and personal goals, which led to a group-work dynamics that seemed to inhibit elaborate discussions and collaboration. The students also pointed to external aspects, such as a close temporal proximity between lectures and exercises, which also seemed to inhibit occurrences termed joint workspace. Conclusions: In order to increase the likelihood of a joint workspace throughout the term in the learning labs, careful considerations have to be made with regard to timing between lectures and exercises, but also with regard to raising the students' awareness about shared and personal goals.

  20. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses