Science.gov

Sample records for accelerator physics synchrotron

  1. Accelerator science in medical physics.

    PubMed

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future.

  2. Accelerator science in medical physics

    PubMed Central

    Peach, K; Wilson, P; Jones, B

    2011-01-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future. PMID:22374548

  3. Turn-By Beam Extraction during Acceleration in a Synchrotron

    NASA Astrophysics Data System (ADS)

    Tsoupas, Nicholaos; Trbojevic, Dejan

    2014-02-01

    A synchrotron to accelerate protons or carbon ions for medical applications is being designed at Brookhaven National Laboratory (BNL). Single beam bunches with maximum beam energy of 1.18 GeV and 400 MeV/u for protons and carbon ions respectively will be extracted from the synchrotron at 15 Hz. For protons, the maximum required energy for irradiating a tumor is ˜206 MeV. A pencil-like proton beam containing ˜5.4×107 p/bunch delivers a therapeutic dose of 2.5 Gy in ˜1.5 minutes to treat a tumor of 1 liter volume. It will take ˜80 minutes with bunches containing 4.5×104 ions/bunch to deliver the same dose of 2.5 Gy with a 400 MeV/u pencil-like carbon beam. This extended treatment time when using carbon ions is not acceptable. In addition, the synchrotron cannot be controlled with a beam bunch containing such a low number of carbon ions. To overcome these two problems of the extended treatment time and the low bunch intensity required for the treatment when carbon ions are used, we have devised a method to “peel” the required 4.5×104 carbon-ions/bunch from the accelerating carbon beam bunch containing ˜108 ions/bunch and deliver them to the tumor on a “turn-by-turn” basis. Unlike other methods of beam extraction from a synchrotron, such as resonance extraction, this method does not allow for any beam losses during the extraction and the carbon beam can be peeled off in less than 15 ms during the acceleration or deceleration cycle of the synchrotron. Thus, this turn-by-turn beam extraction method provides beam with variable energy and precisely controlled beam current during the 30 ms acceleration or deceleration time.

  4. Guide to accelerator physics program SYNCH: VAX version 1987. 2

    SciTech Connect

    Parsa, Z.; Courant, E.

    1987-01-01

    This guide is written to accommodate users of Accelerator Physics Data Base BNLDAG::DUAO:(PARSA1). It describes the contents of the on line Accelerator Physics data base DUAO:(PARSA1.SYNCH). SYNCH is a computer program used for the design and analysis of synchrotrons, storage rings and beamlines.

  5. VLHC accelerator physics

    SciTech Connect

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  6. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  7. A tracking code for injection and acceleration studies in synchrotrons

    SciTech Connect

    Lessner, E.; Symon, K. |

    1996-11-01

    CAPTURE-SPC is a Monte-Carlo-based tracking program that simulates the injection and acceleration processes in proton synchrotrons. The time evolution of a distribution of charged particles is implemented by a symplectic, second-order-accurate integration algorithm. The recurrence relations follow a time-stepping leap--frog method. The time-step can be varied optionally to reduce computer time. Space-charge forces are calculated by binning the phase-projected particle distribution. The statistical fluctuations introduced by the binning process are reduced by presmoothing the data by the cloud-in-cell method and by filtering. Both the bin size and amount of filtering can be varied during the acceleration cycle so that the bunch fine structure is retained while the short wavelength noise is attenuated. The initial coordinates of each macro particle together with its time of injection are retained throughout the calculations. This information is useful in determining low-loss injection schemes.

  8. Automated optical inspection for high-speed electron in synchrotron accelerator

    NASA Astrophysics Data System (ADS)

    Guo, Congliang; Liu, Tonghui; Wang, Rongsheng

    1998-08-01

    Automated optical inspection for accelerated electron beam in synchrotron accelerator or storage electron beam in storage ring is important method of electron beam diagnostic.It is also the very convenient aided method for us to se the real beam size and structure. In this paper, we will discuss the physical characters of detector and cable in both of electromagnet wave and photon beam. Our main study is how to measure the signal finest and how to transfer signal data into computer on-line fast enough. The system signal is relative to transfer model and photon sensor, and it is so easy to find a good real time beam signal for us to see moveable electron beam image as best as the system does. We can analysis the beam character and its parameters in one smart system. At the end, we introduce some analysis result and new design ideas. it will have more potential prospects on industry application and other applications.

  9. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  10. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  11. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  12. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  13. Accelerator Physics Code Web Repository

    SciTech Connect

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  14. An introduction to the physics of high energy accelerators

    SciTech Connect

    Edwards, D.A.; Syphers, J.J.

    1993-01-01

    This book is an outgrowth of a course given by the authors at various universities and particle accelerator schools. It starts from the basic physics principles governing particle motion inside an accelerator, and leads to a full description of the complicated phenomena and analytical tools encountered in the design and operation of a working accelerator. The book covers acceleration and longitudinal beam dynamics, transverse motion and nonlinear perturbations, intensity dependent effects, emittance preservation methods and synchrotron radiation. These subjects encompass the core concerns of a high energy synchrotron. The authors apparently do not assume the reader has much previous knowledge about accelerator physics. Hence, they take great care to introduce the physical phenomena encountered and the concepts used to describe them. The mathematical formulae and derivations are deliberately kept at a level suitable for beginners. After mastering this course, any interested reader will not find it difficult to follow subjects of more current interests. Useful homework problems are provided at the end of each chapter. Many of the problems are based on actual activities associated with the design and operation of existing accelerators.

  15. Accelerator Physics Challenges for the NSLS-II Project

    SciTech Connect

    Krinsky,S.

    2009-05-04

    The NSLS-II is an ultra-bright synchrotron light source based upon a 3-GeV storage ring with a 30-cell (15 super-period) double-bend-achromat lattice with damping wigglers used to lower the emittance below 1 nm. In this paper, we discuss the accelerator physics challenges for the design including: optimization of dynamic aperture; estimation of Touschek lifetime; achievement of required orbit stability; and analysis of ring impedance and collective effects.

  16. Compensation Techniques in Accelerator Physics

    SciTech Connect

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  17. Analytical tools in accelerator physics

    SciTech Connect

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  18. Synchrotron Radiation Therapy from a Medical Physics point of view

    NASA Astrophysics Data System (ADS)

    Prezado, Y.; Adam, J. F.; Berkvens, P.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Vautrin, M.; Deman, P.; Bräuer-Krisch, E.; Renier, M.; Elleaume, H.; Estève, F.; Bravin, A.

    2010-07-01

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT). The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  19. Synchrotron Radiation Therapy from a Medical Physics point of view

    SciTech Connect

    Prezado, Y.; Berkvens, P.; Braeuer-Krisch, E.; Renier, M.; Bravin, A.; Adam, J. F.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Deman, P.; Vautrin, M.

    2010-07-23

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT).The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  20. Experiments in atomic and applied physics using synchrotron radiation

    SciTech Connect

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs.

  1. Accelerator Physics Working Group Summary

    NASA Astrophysics Data System (ADS)

    Li, D.; Uesugi, T.; Wildnerc, E.

    2010-03-01

    The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.

  2. MUON ACCELERATION WITH A VERY FAST RAMPING SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.GARREN,A.A.PALMER,R.B.

    2002-07-01

    A 4600 Hz fast ramping synchrotron is explored as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice we describe. Muon survival is 83%.

  3. [Accelerator physics R&D

    SciTech Connect

    Krisch, A.D.

    1994-08-22

    This report discusses the NEPTUN-A experiment that will study spin effects in violent proton-proton collisions; the Siberian snake tests at IUCF cooler ring; polarized gas jets; and polarized proton acceleration to 1 TeV at Fermilab.

  4. Accelerator physics R and D

    NASA Astrophysics Data System (ADS)

    Krisch, A. D.

    1994-08-01

    This report discusses the NEPTUN-A experiment that will study spin effects in violent proton-proton collisions; the Siberian snake tests at IUCF cooler ring; polarized gas jets; and polarized proton acceleration to 1 TeV at Fermilab.

  5. Theoretical problems in accelerator physics. Progress report

    SciTech Connect

    Kroll, N.M.

    1993-08-01

    This report discusses the following topics in accelerator physics: radio frequency pulse compression and power transport; computational methods for the computer analysis of microwave components; persistent wakefields associated with waveguide damping of higher order modes; and photonic band gap cavities.

  6. Physics and Accelerator Applications of RF Superconductivity

    SciTech Connect

    H. Padamsee; K. W. Shepard; Ron Sundelin

    1993-12-01

    A key component of any particle accelerator is the device that imparts energy gain to the charged particle. This is usually an electromagnetic cavity resonating at a microwave frequency, chosen between 100 and 3000 MHz. Serious attempts to utilize superconductors for accelerating cavities were initiated more than 25 years ago with the acceleration of electrons in a lead-plated resonator at Stanford University (1). The first full-scale accelerator, the Stanford SCA, was completed in 1978 at the High Energy Physics Laboratory (HEPL) (2). Over the intervening one and a half decades, superconducting cavities have become increasingly important to particle accelerators for nuclear physics and high energy physics. For continuous operation, as is required for many applications, the power dissipation in the walls of a copper structure is quite substantial, for example, 0.1 megawatts per meter of structure operating at an accelerating field of 1 million volts/meter (MV/m). since losses increase as the square of the accelerating field, copper cavities become severely uneconomical as demand for higher fields grows with the higher energies called for by experimenters to probe ever deeper into the structure of matter. Rf superconductivity has become an important technology for particle accelerators. Practical structures with attractive performance levels have been developed for a variety of applications, installed in the targeted accelerators, and operated over significant lengths of time. Substantial progress has been made in understanding field and Q limitations and in inventing cures to advance performance. The technical and economical potential of rf superconductivity makes it an important candidate for future advanced accelerators for free electron lasers, for nuclear physics, and for high energy physics, at the luminosity as well as at the energy frontiers.

  7. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  8. Self-Consistent Synchrotron Spectra from Trans-Relativistic Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.

    2015-01-01

    Most existing analytical models describing the second-order Fermi acceleration of relativistic electrons due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the non-relativistic thermal background gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the electrons and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work, we present the first analytical solution to the global, trans-relativistic problem of electron acceleration, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. Since synchrotron and inverse-Compton losses are included in the transport equation, the resulting radiation spectra are computed self-consistently. The results can be used to model the acceleration of radiating electrons in AGN and solar environments, applications of both types are discussed.

  9. Computational Accelerator Physics Working Group Summary

    SciTech Connect

    Cary, John R.; Bohn, Courtlandt L.

    2004-08-27

    The working group on computational accelerator physics at the 11th Advanced Accelerator Concepts Workshop held a series of meetings during the Workshop. Verification, i.e., showing that a computational application correctly solves the assumed model, and validation, i.e., showing that the model correctly describes the modeled system, were discussed for a number of systems. In particular, the predictions of the massively parallel codes, OSIRIS and VORPAL, used for modeling advanced accelerator concepts, were compared and shown to agree, thereby establishing some verification of both codes. In addition, a number of talks on the status and frontiers of computational accelerator physics were presented, to include the modeling of ultrahigh-brightness electron photoinjectors and the physics of beam halo production. Finally, talks discussing computational needs were presented.

  10. Computational Accelerator Physics Working Group Summary

    SciTech Connect

    Cary, John R.; Bohn, Courtlandt L.

    2004-12-07

    The working group on computational accelerator physics at the 11th Advanced Accelerator Concepts Workshop held a series of meetings during the Workshop. Verification, i.e., showing that a computational application correctly solves the assumed model, and validation, i.e., showing that the model correctly describes the modeled system, were discussed for a number of systems. In particular, the predictions of the massively parallel codes, OSIRIS and VORPAL, used for modeling advanced accelerator concepts, were compared and shown to agree, thereby establishing some verification of both codes. In addition, a number of talks on the status and frontiers of computational accelerator physics were presented, to include the modeling of ultrahigh-brightness electron photoinjectors and the physics of beam halo production. Finally, talks discussing computational needs were presented.

  11. Non-accelerator particle physics

    SciTech Connect

    Steinberg, R.I.; Lane, C.E.

    1991-09-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the {nu}IMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs.

  12. Research in atomic and applied physics using a 6-GeV synchrotron source

    SciTech Connect

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented.

  13. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

    SciTech Connect

    Sessler, A.M.

    1984-07-01

    High energy physics, perhaps more than any other branch of science, is driven by technology. It is not the development of theory, or consideration of what measurements to make, which are the driving elements in our science. Rather it is the development of new technology which is the pacing item. Thus it is the development of new techniques, new computers, and new materials which allows one to develop new detectors and new particle-handling devices. It is the latter, the accelerators, which are at the heart of the science. Without particle accelerators there would be, essentially, no high energy physics. In fact. the advances in high energy physics can be directly tied to the advances in particle accelerators. Looking terribly briefly, and restricting one's self to recent history, the Bevatron made possible the discovery of the anti-proton and many of the resonances, on the AGS was found the {mu}-neutrino, the J-particle and time reversal non-invariance, on Spear was found the {psi}-particle, and, within the last year the Z{sub 0} and W{sup {+-}} were seen on the CERN SPS p-{bar p} collider. Of course one could, and should, go on in much more detail with this survey, but I think there is no need. It is clear that as better acceleration techniques were developed more and more powerful machines were built which, as a result, allowed high energy physics to advance. What are these techniques? They are very sophisticated and ever-developing. The science is very extensive and many individuals devote their whole lives to accelerator physics. As high energy experimental physicists your professional lives will be dominated by the performance of 'the machine'; i.e. the accelerator. Primarily you will be frustrated by the fact that it doesn't perform better. Why not? In these lectures, six in all, you should receive some appreciation of accelerator physics. We cannot, nor do we attempt, to make you into accelerator physicists, but we do hope to give you some insight into the

  14. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    SciTech Connect

    Karlica, Mile

    2015-12-17

    In this talk we present the sponge” model and its possible implications on the GRB afterglow light curves. “Sponge” model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  15. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  16. A 50-MeV mm-wave electron linear accelerator system for production of tunable short wavelength synchrotron radiation

    SciTech Connect

    Nassiri, A.; Kustom, R.L.; Mills, F.E.; Kang, Y.W.; Matthews, P.J.; Grudzien, D.; Song, J.; Horan, D.; Feinerman, A.D.; Willke, T.L. |; Henke, H. |

    1993-12-31

    The Advanced Photon Source (APS) at Argonne in collaboration with the University of Illinois at Chicago and the University of Wisconsin at Madison is developing a new millimeter wavelength, 50-MeV electron linear accelerator system for production of coherent tunable wavelength synchrotron radiation. Modern micromachining techniques based on deep etch x-ray lithography, LIGA (Lithografie, Galvanoformung, Abformung), capable of producing high-aspect ratio structures are being considered for the fabrication of the accelerating components.

  17. SIMULATIONS OF PARTICLE ACCELERATION BEYOND THE CLASSICAL SYNCHROTRON BURNOFF LIMIT IN MAGNETIC RECONNECTION: AN EXPLANATION OF THE CRAB FLARES

    SciTech Connect

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C. E-mail: greg.werner@colorado.edu E-mail: mitch@jila.colorado.edu

    2013-06-20

    It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of two-dimensional particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.

  18. Simulations of Particle Acceleration beyond the Classical Synchrotron Burnoff Limit in Magnetic Reconnection: An Explanation of the Crab Flares

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.

    2013-06-01

    It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of two-dimensional particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.

  19. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    ERIC Educational Resources Information Center

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  20. Physical Analysis of the Jovian Synchrotron Radio Emission

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  1. Study of the Synchrotron Radiation Emission from the NRL Modified Betatron Accelerator

    NASA Astrophysics Data System (ADS)

    Smith, Tab Jay

    1990-01-01

    Incoherent synchrotron radiation from a relativistic electron beam circulating in the magnetic field configuration of the NRL modified betatron accelerator has been studied numerically and experimentally. Numerical studies show that, for relativistic electron energies up to approximately 2 MeV, the single particle spectrum of radiation is dominated by a peak in the intensity distribution at the Doppler -shifted cyclotron frequency about the toroidal field. This intensity distribution very closely approximates the distribution for a linear helical electron trajectory with relativistic velocity along the axis of the helix. The radiated electric field oscillations, however, are 'modulated' due to the curvature of the major radius. As the electrons accelerate above an energy of a few MeV, the modulation width becomes so narrow that even the fast gyro-oscillation about the toroidal field produces no significant variation in the total radiated fields. Thus, the amplitude, polarization, and frequency content in the spectrum approaches that of a purely circular orbit. Experimental studies of the radiation have been conducted by monitoring the temporal evolution of radiated power during acceleration using fixed-frequency heterodyne receivers. Radiation was measured for electron beam energies in the range of 0.5 MeV to about 10 MeV, trapped beam currents up to approximately 500 A, and for values of toroidal guide field in the range of approximately 1900 to 3500 Gauss. At electron energies less than about 2 MeV, the polarization, amplitude, scaling with trapped beam current, and the temporal evolution of measured radiation during acceleration are in very good agreement with the predicted single particle spectrum. Furthermore, there is no evidence of collective emission at least within the frequency ranges 8 to 12 GHz and 26 to 40 GHz. The only significant discrepancy between the experimental and predicted results is the apparent absence of the horizontally polarized radiation

  2. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    SciTech Connect

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities.

  3. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  4. Tevatron accelerator physics and operation highlights

    SciTech Connect

    Valishev, A.; /Fermilab

    2011-03-01

    The performance of the Tevatron collider demonstrated continuous growth over the course of Run II, with the peak luminosity reaching 4 x 10{sup 32} cm{sup -2} s{sup -1}, and the weekly integration rate exceeding 70 pb{sup -1}. This report presents a review of the most important advances that contributed to this performance improvement, including beam dynamics modeling, precision optics measurements and stability control, implementation of collimation during low-beta squeeze. Algorithms employed for optimization of the luminosity integration are presented and the lessons learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects.

  5. Accelerator physics measurements at the damping ring

    NASA Astrophysics Data System (ADS)

    Rivkin, L.; Delahaye, J. P.; Wille, K.; Allen, M. A.; Bane, K.; Fieguth, T.; Hofmann, A.; Button, A.; Lee, M.; Linebarger, W.

    1985-05-01

    Besides the optics measurements described elsewhere, machine experiments were done at the Stanford Linear Collider (SLC) damping ring to determine some of its parameters. The synchrotron radiation energy loss which gives the damping rates was measured by observing the RF-voltage dependence of the synchronous phase angle. The emittance was obtained from the synchrotron light monitor, scraper measurements and by extracting the beam through a doublet and measuring its size for different quadrupole settings. Current dependent effects such as parasitic mode losses, head tail instabilities, synchrotron and betatron frequency shifts were measured to estimate the impedance. RF-cavity beam loading and its compensation were also studied and ion collection was investigated. All results agree reasonably well with expectations and indicate no limitations to the design performance.

  6. Synchrotrons: Taiwan unveils new synchrotron

    NASA Astrophysics Data System (ADS)

    Horiuchi, Noriaki

    2015-05-01

    Competitive activities around the globe to develop the world's brightest synchrotron light source have accelerated in recent years. Taiwanese scientists now aspire to be at the top of the list with the recently constructed Taiwan Photon Source.

  7. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Meron, M.; Agagu, A.; Jones, K. W.

    1987-04-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the X-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the photon beam ion source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. An overview of the field, current plans, and future possibilities will be presented.

  8. Ribbon thickness dependence of the Magnetic Alloy core characteristics in the accelerating frequency region of the J-PARC synchrotrons

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Shimada, T.; Tamura, F.; Yamamoto, M.; Hara, K.; Hasegawa, K.; Ohmori, C.; Takata, K.; Toda, M.; Yoshii, M.; Schnase, A.

    2014-06-01

    We employ Magnetic Alloy (MA) core loaded RF cavities for the J-PARC synchrotrons to achieve a high field gradient. The MA core has a laminated structure of 18 μm thick ribbon layers. We have been developing high shunt impedance MA cores to prepare for an increase of beam power. At low frequencies, it is well known that the eddy current loss in the ribbon is proportional to the square of the ribbon thickness. The MA core shunt impedance can be increased by using thinner ribbons. On the other hand, at high frequencies, the MA core magnetic characteristics are largely different from low frequencies. Using thinner ribbons might be effective to increase the MA core shunt impedance in the accelerating frequency region of the J-PARC synchrotrons. We reviewed the theoretical calculations of the ribbon thickness dependence of the MA core magnetic characteristics and we derived the ribbon thickness dependence from measured data. The measured data show that the MA core shunt impedance is inversely proportional to the ribbon thickness in the accelerating frequency region of the J-PARC synchrotrons, which is consistent with our calculations.

  9. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    SciTech Connect

    LeBrun, T.

    1996-12-31

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells.

  10. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  11. Physical activities to enhance an understanding of acceleration

    NASA Astrophysics Data System (ADS)

    Lee, S. A.

    2006-03-01

    On the basis of their everyday experiences, students have developed an understanding of many of the concepts of mechanics by the time they take their first physics course. However, an accurate understanding of acceleration remains elusive. Many students have difficulties distinguishing between velocity and acceleration. In this report, a set of physical activities to highlight the differences between acceleration and velocity are described. These activities involve running and walking on sand (such as an outdoor volleyball court).

  12. The Influence of Accelerator Science on Physics Research

    NASA Astrophysics Data System (ADS)

    Haussecker, Enzo F.; Chao, Alexander W.

    2011-06-01

    We evaluate accelerator science in the context of its contributions to the physics community. We address the problem of quantifying these contributions and present a scheme for a numerical evaluation of them. We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.

  13. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  14. Neutrino physics with accelerator driven subcritical reactors

    NASA Astrophysics Data System (ADS)

    Ciuffoli, Emilio; Evslin, Jarah; Zhao, Fengyi

    2016-01-01

    Accelerator driven system (ADS) subcritical nuclear reactors are under development around the world. They will be intense sources of free, 30-55 MeV μ + decay at rest {overline{ν}}_{μ } . These ADS reactor neutrinos can provide a robust test of the LSND anomaly and a precise measurement of the leptonic CP-violating phase δ, including sign(cos(δ)). The first phase of many ADS programs includes the construction of a low energy, high intensity proton or deuteron accelerator, which can yield competitive bounds on sterile neutrinos.

  15. Fluid Physics Under a Stochastic Acceleration Field

    NASA Technical Reports Server (NTRS)

    Vinals, Jorge

    2001-01-01

    The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.

  16. Linear Collider Accelerator Physics Issues Regarding Alignment

    SciTech Connect

    Seeman, J.T.; /SLAC

    2005-08-12

    The next generation of linear colliders will require more stringent alignment tolerances than those for the SLC with regard to the accelerating structures, quadrupoles, and beam position monitors. New techniques must be developed to achieve these tolerances. A combination of mechanical-electrical and beam-based methods will likely be needed.

  17. Fluid Physics in a Fluctuating Acceleration Environment

    NASA Technical Reports Server (NTRS)

    Thomson, J. Ross; Drolet, Francois; Vinals, Jorge

    1996-01-01

    We summarize several aspects of an ongoing investigation of the effects that stochastic residual accelerations (g-jitter) onboard spacecraft can have on experiments conducted in a microgravity environment. The residual acceleration field is modeled as a narrow band noise, characterized by three independent parameters: intensity (g(exp 2)), dominant angular frequency Omega, and characteristic correlation time tau. Realistic values for these parameters are obtained from an analysis of acceleration data corresponding to the SL-J mission, as recorded by the SAMS instruments. We then use the model to address the random motion of a solid particle suspended in an incompressible fluid subjected to such random accelerations. As an extension, the effect of jitter on coarsening of a solid-liquid mixture is briefly discussed, and corrections to diffusion controlled coarsening evaluated. We conclude that jitter will not be significant in the experiment 'Coarsening of solid-liquid mixtures' to be conducted in microgravity. Finally, modifications to the location of onset of instability in systems driven by a random force are discussed by extending the standard reduction to the center manifold to the stochastic case. Results pertaining to time-modulated oscillatory convection are briefly discussed.

  18. Accelerating Innovation: How Nuclear Physics Benefits Us All

    DOE R&D Accomplishments Database

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  19. Analysis of Old Copper Synchrotron Light Absorbers from the Stanford Positron Electron Accelerating Ring

    SciTech Connect

    Marshall, S.R.; Scott, B.; /SLAC

    2005-12-15

    Synchrotron light absorbers intercept synchrotron radiation to protect chamber walls from excessive heat. When subjected to the high temperature of the beam, these absorbers undergo thermal stress. If the stress is too great or fatigues the material, the absorbers may fail. These absorbers are designed to last the lifetime of the machine. Any premature cracking could result in a leak and, consequently, loss of the ultra high vacuum environment. Using secondary and backscattered electron techniques, several sections of a used copper absorber were analyzed for material damage. Chemical analyses were performed on these samples as well. Comparing the unexposed sections to the sections exposed to the electron beam, few cracks were seen in the copper. However, the exposed samples showed heavy surface damage, in addition to crevices that could eventually result in material failure. Significant corrosion was also evident along the water cooling passage of the samples. These findings suggest that further investigation and periodic inspection of absorbers in SPEAR3 are necessary to control corrosion of the copper.

  20. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  1. Accelerator physics analysis with an integrated toolkit

    SciTech Connect

    Holt, J.A.; Michelotti, L.; Satogata, T.

    1992-08-01

    Work is in progress on an integrated software toolkit for linear and nonlinear accelerator design, analysis, and simulation. As a first application, beamline'' and MXYZPTLK'' (differential algebra) class libraries, were used with an X Windows graphics library to build an user-friendly, interactive phase space tracker which, additionally, finds periodic orbits. This program was used to analyse a theoretical lattice which contains octupoles and decapoles to find the 20th order, stable and unstable periodic orbits and to explore the local phase space structure.

  2. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  3. Fluid Physics in a Fluctuating Acceleration Environment

    NASA Technical Reports Server (NTRS)

    Drolet, Francois; Vinals, Jorge

    1999-01-01

    Our program of research aims at developing a stochastic description of the residual acceleration field onboard spacecraft (g-jitter) to describe in quantitative detail its effect on fluid motion. Our main premise is that such a statistical description is necessary in those cases in which the characteristic time scales of the process under investigation are long compared with the correlation time of g-jitter. Although a clear separation between time scales makes this approach feasible, there remain several difficulties of practical nature: (i), g-jitter time series are not statistically stationary but rather show definite dependences on factors such as active or rest crew periods; (ii), it is very difficult to extract reliably the low frequency range of the power spectrum of the acceleration field. This range controls the magnitude of diffusive processes; and (iii), models used to date are Gaussian, but there is evidence that large amplitude disturbances occur much more frequently than a Gaussian distribution would predict. The lack of stationarity does not constitute a severe limitation in practice, since the intensity of the stochastic components changes very slowly during space missions (perhaps over times of the order of hours). A separate analysis of large amplitude disturbances has not been undertaken yet, but it does not seem difficult a priori to devise models that may describe this range better than a Gaussian distribution. The effect of low frequency components, on the other hand, is more difficult to ascertain, partly due to the difficulty associated with measuring them, and partly because they may be indistinguishable from slowly changing averages. This latter effect is further complicated by the lack of statistical stationarity of the time series. Recent work has focused on the effect of stochastic modulation on the onset of oscillatory instabilities as an example of resonant interaction between the driving acceleration and normal modes of the system

  4. Multi-pass Accelerator-Recuperator (MARS) as Coherent X-ray Synchrotron Radiation Source

    NASA Astrophysics Data System (ADS)

    Kulipanov, Gennady; Skrinsky, Alexander; Vinokurov, Nikolai

    2007-01-01

    Creation of a fully spatial coherent 4th generation SR source is possible in case of a shift from the electron storage rings to accelerators with energy recovery. However, in practice, all the projects assume the use of a single-turn version (ERL) compared to our first proposal of 1997 to use a multi-turn accelerator-recuperator (MARS). The purpose of this report is presentation of the modern conception of MARS and comparison of the ERL and MARS based radiation sources from the viewpoint of their realization in practice.

  5. (Advanced accelerator physics featuring the problems of small rings)

    SciTech Connect

    Olsen, D.K.

    1989-10-16

    The traveler attended the CERN Accelerator School and Uppsala University short course on Advanced Accelerator Physics held on the University campus, Uppsala, Sweden, from September 18-29, 1989. The course, attended by 81 people, was well conceived, well presented, and informative. The course was organized and specialized on the problems of small rings. The traveler also visited the CELSIUS ring facility of Uppsala University and the CRYRING ring facility of the Manne Siegbahn Institute in Stockholm, Sweden.

  6. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation.

    PubMed

    Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I

    2014-08-01

    The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.

  7. Applications of the ARGUS code in accelerator physics

    SciTech Connect

    Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.

    1993-12-31

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper.

  8. Synchrotron radiation

    SciTech Connect

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others.

  9. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  10. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  11. Better physical activity classification using smartphone acceleration sensor.

    PubMed

    Arif, Muhammad; Bilal, Mohsin; Kattan, Ahmed; Ahamed, S Iqbal

    2014-09-01

    Obesity is becoming one of the serious problems for the health of worldwide population. Social interactions on mobile phones and computers via internet through social e-networks are one of the major causes of lack of physical activities. For the health specialist, it is important to track the record of physical activities of the obese or overweight patients to supervise weight loss control. In this study, acceleration sensor present in the smartphone is used to monitor the physical activity of the user. Physical activities including Walking, Jogging, Sitting, Standing, Walking upstairs and Walking downstairs are classified. Time domain features are extracted from the acceleration data recorded by smartphone during different physical activities. Time and space complexity of the whole framework is done by optimal feature subset selection and pruning of instances. Classification results of six physical activities are reported in this paper. Using simple time domain features, 99 % classification accuracy is achieved. Furthermore, attributes subset selection is used to remove the redundant features and to minimize the time complexity of the algorithm. A subset of 30 features produced more than 98 % classification accuracy for the six physical activities.

  12. Accelerator physics highlights in the 1997/98 SLC run

    SciTech Connect

    Assmann, R.W.; Bane, K.L.F.; Barkow, T.

    1998-03-01

    The authors report various accelerator physics studies and improvements from the 1997/98 run at the Stanford Linear Collider (SLC). In particular, the authors discuss damping-ring lattice diagnostics, changes to the linac set up, fast control for linac rf phase stability, new emittance tuning strategies, wakefield reduction, modifications of the final-focus optics, longitudinal bunch shaping, and a novel spot-size control at the interaction point (IP).

  13. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  14. COMPASS, the COMmunity Petascale Project for Accelerator Science and Simulation, a broad computational accelerator physics initiative

    SciTech Connect

    J.R. Cary; P. Spentzouris; J. Amundson; L. McInnes; M. Borland; B. Mustapha; B. Norris; P. Ostroumov; Y. Wang; W. Fischer; A. Fedotov; I. Ben-Zvi; R. Ryne; E. Esarey; C. Geddes; J. Qiang; E. Ng; S. Li; C. Ng; R. Lee; L. Merminga; H. Wang; D.L. Bruhwiler; D. Dechow; P. Mullowney; P. Messmer; C. Nieter; S. Ovtchinnikov; K. Paul; P. Stoltz; D. Wade-Stein; W.B. Mori; V. Decyk; C.K. Huang; W. Lu; M. Tzoufras; F. Tsung; M. Zhou; G.R. Werner; T. Antonsen; T. Katsouleas

    2007-06-01

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  15. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    SciTech Connect

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; Wang, H.; Bruhwiler, D.L.; Dechow, D.; Mullowney, P.; Messmer, P.; Nieter, C.; Ovtchinnikov, S.; Paul, K.; Stoltz, P.; Wade-Stein, D.; Mori, W.B.; Decyk, V.; Huang, C.K.; Lu, W.; Tzoufras, M.; Tsung, F.; Zhou, M.; Werner, G.R.; Antonsen, T.; Katsouleas, T.; Morris, B.

    2007-07-16

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  16. COMPASS, the COMmunity Petascale Project for Accelerator Science And Simulation, a Broad Computational Accelerator Physics Initiative

    SciTech Connect

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Norris, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; /Jefferson Lab /Tech-X, Boulder /UCLA /Colorado U. /Maryland U. /Southern California U.

    2007-11-09

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

  17. Overview of accelerators in medicine

    SciTech Connect

    Lennox, A.J. |

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field.

  18. Accelerator-driven molten-salt blankets: Physics issues

    SciTech Connect

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-10-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m{sup 3} per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics.

  19. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  20. Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics

    SciTech Connect

    Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.

  1. Underground Accelerators for Precise Nuclear Physics: LUNA and DIANA

    NASA Astrophysics Data System (ADS)

    Leitner, Daniela

    2011-05-01

    Current stellar model simulations are at a level of precision that uncertainties in the nuclear-reaction rates are becoming significant for theoretical predictions and for the analysis of observational signatures. To address several open questions in cosmology, astrophysics, and non-Standard-Model neutrino physics, new high precision measurements of direct-capture nuclear fusion cross sections will be essential. At these low energies, fusion cross sections decrease exponentially with energy and are expected to approach femtobarn levels or less. The experimental difficulties in determining the low-energy cross sections are caused by large background rates associated with cosmic ray-induced reactions, background from natural radioactivity in the laboratory environment, and the beam-induced background on target impurities. Natural background can be reduced by careful shielding of the target and detector environment, and beam-induced background can be reduced by active shielding techniques through event identification, but it is difficult to reduce the background component from cosmic ray muons. An underground location has the advantage that the cosmic ray-induced background is reduced by several orders of magnitude, allowing the measurements to be pushed to far lower energies than feasible above ground. This has been clearly demonstrated at LUNA by the successful studies of critical reactions in the pp-chains and first reaction studies in the CNO cycles. The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, Michigan State University, Colorado School of Mines, Regis University, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory, to build a nuclear astrophysics accelerator facility deep underground. The DIANA accelerator facility is being designed to achieve large laboratory reaction rates by delivering two orders of magnitude higher ion beams to a

  2. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  3. SU-E-E-08: Applications of the Quantization of Coupled Circuits in Radiation Physics (design of Klystron, Bremsstrahlung, Synchrotron)

    SciTech Connect

    Ulmer, W

    2015-06-15

    Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4). The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to

  4. Designing high energy accelerators under DOE's New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    SciTech Connect

    Fowler, W.B.

    1991-05-01

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example.

  5. Acceleration of electrons by a laser pulse at its output onto an optical surface of the vacuum – transparent medium interface. Laser synchrotron

    NASA Astrophysics Data System (ADS)

    Romanovskiy, M. Yu

    2016-05-01

    We consider the electron dynamics in the field of an electromagnetic wave produced at the vacuum – transparent medium interface upon reflection from the boundary, close to total internal reflection. The propagation velocity of a constant phase of the electromagnetic wave along the interface can vary from c/n to infinity (c is the speed of light in vacuum, and n is the refractive index of the medium at the interface). In this case, there emerge regions of positive and negative phases of the field with wavelengths, approximately equal to half the wavelength of the original laser beam, which can propagate at a speed close to that of light in vacuum. If a beam of relativistic electrons propagates along the surface, they can gain energy and accelerate, as well as radiate. With closed trajectories of electron motion, a laser synchrotron will be implemented as a result of many acceleration cycles.

  6. Acceleration of electrons by a laser pulse at its output onto an optical surface of the vacuum - transparent medium interface. Laser synchrotron

    NASA Astrophysics Data System (ADS)

    Romanovskiy, M. Yu

    2016-05-01

    We consider the electron dynamics in the field of an electromagnetic wave produced at the vacuum - transparent medium interface upon reflection from the boundary, close to total internal reflection. The propagation velocity of a constant phase of the electromagnetic wave along the interface can vary from c/n to infinity (c is the speed of light in vacuum, and n is the refractive index of the medium at the interface). In this case, there emerge regions of positive and negative phases of the field with wavelengths, approximately equal to half the wavelength of the original laser beam, which can propagate at a speed close to that of light in vacuum. If a beam of relativistic electrons propagates along the surface, they can gain energy and accelerate, as well as radiate. With closed trajectories of electron motion, a laser synchrotron will be implemented as a result of many acceleration cycles.

  7. ASP2012: Fundamental Physics and Accelerator Sciences in Africa

    NASA Astrophysics Data System (ADS)

    Darve, Christine

    2012-02-01

    Much remains to be done to improve education and scientific research in Africa. Supported by the international scientific community, our initiative has been to contribute to fostering science in sub-Saharan Africa by establishing a biennial school on fundamental subatomic physics and its applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The lectures are addressed to students or young researchers with at least a background of 4 years of university formation. The aim of the school is to develop capacity, interpret, and capitalize on the results of current and future physics experiments with particle accelerators; thereby spreading education for innovation in related applications and technologies, such as medicine and information science. Following the worldwide success of the first school edition, which gathered 65 students for 3-week in Stellenbosch (South Africa) in August 2010, the second edition will be hosted in Ghana from July 15 to August 4, 2012. The school is a non-profit organization, which provides partial or full financial support to 50 of the selected students, with priority to Sub-Saharan African students.

  8. Perfect crystal propagator for physical optics simulations with Synchrotron Radiation Workshop

    NASA Astrophysics Data System (ADS)

    Sutter, John P.; Chubar, Oleg; Suvorov, Alexey

    2014-09-01

    Until now, a treatment of dynamical diffraction from perfect crystals has been missing in the "Synchrotron Radiation Workshop" (SRW) wavefront propagation computer code despite the widespread use of crystals on X-ray synchrotron beamlines. Now a special "Propagator" module for calculating dynamical diffraction from a perfect crystal in the Bragg case has been written in C++, integrated into the SRW C/C++ library and made available for simulations using the Python interface of SRW. The propagator performs local processing of the frequency-domain electric field in the angular representation. A 2-D Fast Fourier Transform is used for changing the field representation from/to the coordinate representation before and after applying the crystal propagator. This ensures seamless integration of the new propagator with the existing functionalities of the SRW package, allows compatibility with existing propagators for other optical elements, and enables the simulation of complex beamlines transporting partially coherent X-rays. The code has been benchmarked by comparison with predictions made by plane-wave and spherical-wave dynamical diffraction theory. Test simulations for a selection of X-ray synchrotron beamlines are also shown.

  9. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  10. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  11. Synchrotron and inverse-Compton emission from blazar jets - II. An accelerating jet model with a geometry set by observations of M87

    NASA Astrophysics Data System (ADS)

    Potter, William J.; Cotter, Garret

    2013-02-01

    In this paper we develop the jet model of Potter & Cotter to include a magnetically dominated accelerating parabolic base transitioning to a slowly decelerating conical jet with a geometry set by recent radio observations of M87. We conserve relativistic energy-momentum and particle number along the jet and calculate the observed synchrotron emission from the jet by calculating the integrated line-of-sight synchrotron opacity through the jet in the rest frame of each section of plasma. We calculate the inverse-Compton emission from synchrotron, cosmic microwave background (CMB), accretion disc, starlight, broad-line region (BLR), dusty torus and narrow-line region photons by transforming into the rest frame of the plasma along the jet. We fit our model to simultaneous multi-wavelength observations of the Compton-dominant FSRQ type blazar PKS 0227-369, with a jet geometry set by M87 and an accelerating bulk Lorentz factor consistent with simulations and theory. We investigate models in which the jet comes into equipartition at different distances along the jet and equipartition is maintained via the conversion of jet bulk kinetic energy into particle acceleration. We find that the jet must still be magnetically dominated within the BLR and cannot be in equipartition due to the severe radiative energy losses. The model fits the observations, including radio data, very well if the jet comes into equipartition outside the BLR within the dusty torus (1.5 pc) or at further distances (34 pc). The fits require a high-power jet with a large bulk Lorentz factor observed close to the line of sight, consistent with our expectations for a Compton-dominant blazar. We find that our fit in which the jet comes into equipartition furthest along the jet, which has a jet with the geometry of M87 scaled linearly with black hole mass, has an inferred black hole mass close to previous estimates. This implies that the jet of PKS 0227 might be well described by the same jet geometry as M87.

  12. Doing accelerator physics using SDDS, UNIX, and EPICS

    SciTech Connect

    Borland, M.; Emery, L.; Sereno, N.

    1995-12-31

    The use of the SDDS (Self-Describing Data Sets) file protocol, together with the UNIX operating system and EPICS (Experimental Physics and Industrial Controls System), has proved powerful during the commissioning of the APS (Advanced Photon Source) accelerator complex. The SDDS file protocol has permitted a tool-oriented approach to developing applications, wherein generic programs axe written that function as part of multiple applications. While EPICS-specific tools were written for data collection, automated experiment execution, closed-loop control, and so forth, data processing and display axe done with the SDDS Toolkit. Experiments and data reduction axe implemented as UNIX shell scripts that coordinate the execution of EPICS specific tools and SDDS tools. Because of the power and generic nature of the individual tools and of the UNIX shell environment, automated experiments can be prepared and executed rapidly in response to unanticipated needs or new ideas. Examples are given of application of this methodology to beam motion characterization, beam-position-monitor offset measurements, and klystron characterization.

  13. Review of Basic Physics of Laser-Accelerated Charged-Particle Beams

    SciTech Connect

    Suk, H.; Hur, M. S.; Jang, H.; Kim, J.

    2007-07-11

    Laser-plasma wake wave can accelerate charged particles, especially electrons with an enormously large acceleration gradient. The electrons in the plasma wake wave have complicated motions in the longitudinal and transverse directions. In this paper, basic physics of the laser-accelerated electron beam is reviewed.

  14. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  15. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect

    Kutschera, W.

    1983-01-01

    Several applications of accelerator-based mass spectroscopy are reviewed. Among these are the search for unknown species, determination of comogenic radioisotopes in natural materials and measurements of half-lifes, especially those of significance to dating. Accelerator parameters and techniques of importance for these applications are also considered.

  16. Flux and spectral variability of the blazar PKS 2155 -304 with XMM-Newton: Evidence of particle acceleration and synchrotron cooling

    NASA Astrophysics Data System (ADS)

    Bhagwan, Jai; Gupta, A. C.; Papadakis, I. E.; Wiita, Paul J.

    2016-04-01

    We have analyzed XMM-Newton observations of the high energy peaked blazar, PKS 2155 -304, made on 24 May 2002 in the 0.3-10 keV X-ray band. These observations display a mini-flare, a nearly constant flux period and a strong flux increase. We performed a time-resolved spectral study of the data, by dividing the data into eight segments. We fitted the data with a power-law and a broken power-law model, and in some of the segments we found a noticeable spectral flattening of the source's spectrum below 10 keV. We also performed "time-resolved" cross-correlation analyses and detected significant hard and soft lags (for the first time in a single observation of this source) during the first and last parts of the observation, respectively. Our analysis of the spectra, the variations of photon-index with flux as well as the correlation and lags between the harder and softer X-ray bands indicate that both the particle acceleration and synchrotron cooling processes make an important contribution to the emission from this blazar. The hard lags indicate a variable acceleration process. We also estimated the magnetic field value using the soft lags. The value of the magnetic field is consistent with the values derived from the broad-band SED modeling of this source.

  17. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    SciTech Connect

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  18. Medical physics--particle accelerators--the beginning.

    PubMed

    Ganz, Jeremy C

    2014-01-01

    This chapter outlines the early development of particle accelerators with the redesign from linear accelerator to cyclotron by Ernest Lawrence with a view to reducing the size of the machines as the power increased. There are minibiographies of Ernest Lawrence and his brother John. The concept of artificial radiation is outlined and the early attempts at patient treatment are mentioned. The reasons for trying and abandoning neutron therapy are discussed, and the early use of protons is described.

  19. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  20. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-01-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  1. Formation and Acceleration Physics on Plasma Injector 1

    NASA Astrophysics Data System (ADS)

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  2. Design Considerations of Fast-cycling Synchrotrons Based on Superconducting Transmission Line Magnets

    SciTech Connect

    Piekarz, H.; Hays, S.; Huang, Y.; Shiltsev, V.; /Fermilab

    2008-06-01

    Fast-cycling synchrotrons are key instruments for accelerator based nuclear and high-energy physics programs. We explore a possibility to construct fast-cycling synchrotrons by using super-ferric, {approx}2 Tesla B-field dipole magnets powered with a superconducting transmission line. We outline both the low temperature (LTS) and the high temperature (HTS) superconductor design options and consider dynamic power losses for an accelerator with operation cycle of 0.5 Hz. We also briefly outline possible power supply system for such accelerator, and discuss the quench protection system for the magnet string powered by a transmission line conductor.

  3. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  4. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  5. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    SciTech Connect

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB{sub 66} crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing.

  6. International Linear Collider Accelerator Physics R&D

    SciTech Connect

    George D. Gollin; Michael Davidsaver; Michael J. Haney; Michael Kasten; Jason Chang; Perry Chodash; Will Dluger; Alex Lang; Yehan Liu

    2008-09-03

    ILC work at Illinois has concentrated primarily on technical issues relating to the design of the accelerator. Because many of the problems to be resolved require a working knowledge of classical mechanics and electrodynamics, most of our research projects lend themselves well to the participation of undergraduate research assistants. The undergraduates in the group are scientists, not technicians, and find solutions to problems that, for example, have stumped PhD-level staff elsewhere. The ILC Reference Design Report calls for 6.7 km circumference damping rings (which prepare the beams for focusing) using “conventional” stripline kickers driven by fast HV pulsers. Our primary goal was to determine the suitability of the 16 MeV electron beam in the AØ region at Fermilab for precision kicker studies.We found that the low beam energy and lack of redundancy in the beam position monitor system complicated the analysis of our data. In spite of these issues we concluded that the precision we could obtain was adequate to measure the performance and stability of a production module of an ILC kicker, namely 0.5%. We concluded that the kicker was stable to an accuracy of ~2.0% and that we could measure this precision to an accuracy of ~0.5%. As a result, a low energy beam like that at AØ could be used as a rapid-turnaround facility for testing ILC production kicker modules. The ILC timing precision for arrival of bunches at the collision point is required to be 0.1 picosecond or better. We studied the bunch-to-bunch timing accuracy of a “phase detector” installed in AØ in order to determine its suitability as an ILC bunch timing device. A phase detector is an RF structure excited by the passage of a bunch. Its signal is fed through a 1240 MHz high-Q resonant circuit and then down-mixed with the AØ 1300 MHz accelerator RF. We used a kind of autocorrelation technique to compare the phase detector signal with a reference signal obtained from the phase detector

  7. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    SciTech Connect

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  8. CEBAF: The Continuous Electron Beam Accelerator Facility and its Physics Program

    SciTech Connect

    Mougey, Jean

    1992-01-01

    With the 4 GeV Continuous Electron Beam Accelerator Facility presently under construction in Newport News, Virginia, a new domain of nuclear and subnuclear phenomena can be investigated, mainly through coincidence experiments. An overview of the characteristic features of the accelerator and associated experimental equipment is given. Some examples of the physics programs are briefly described.

  9. Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)

    SciTech Connect

    Rivlin, Lev A

    2010-12-09

    We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)

  10. Physics design of an accelerator for an accelerator-driven subcritical system

    NASA Astrophysics Data System (ADS)

    Li, Zhihui; Cheng, Peng; Geng, Huiping; Guo, Zhen; He, Yuan; Meng, Cai; Ouyang, Huafu; Pei, Shilun; Sun, Biao; Sun, Jilei; Tang, Jingyu; Yan, Fang; Yang, Yao; Zhang, Chuang; Yang, Zheng

    2013-08-01

    An accelerator-driven subcritical system (ADS) program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs) which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  11. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  12. Seeing the Nature of the Accelerating Physics: It's a SNAP

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-05

    For true insight into the nature of dark energy, measurements of the precision and accuracy of the Supernova/Acceleration Probe (SNAP) are required. Precursor or scaled-down experiments are unavoidably limited, even for distinguishing the cosmological constant. They can pave the way for, but should not delay, SNAP by developing calibration, refinement, and systematics control (and they will also provide important, exciting astrophysics).

  13. Synergia: a modern tool for accelerator physics simulation

    SciTech Connect

    Spentzouris, P.; Amundson, J.; /Fermilab

    2004-10-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles.

  14. Physics of beam self-modulation in plasma wakefield accelerators

    SciTech Connect

    Lotov, K. V.

    2015-10-15

    The self-modulation instability is a key effect that makes possible the usage of nowadays proton beams as drivers for plasma wakefield acceleration. Development of the instability in uniform plasmas and in plasmas with a small density up-step is numerically studied with the focus at nonlinear stages of beam evolution. The step parameters providing the strongest established wakefield are found, and the mechanism of stable bunch train formation is identified.

  15. Inflationary Expansions Generated by a Physically Real Kinematic Acceleration

    NASA Astrophysics Data System (ADS)

    Savickas, David

    2010-02-01

    A repulsive cosmological acceleration is shown to exist that exhibits a behavior very similar to that found in both inflationary models at the time of origin of the universe, and also in the repulsive acceleration found in present-day cosmological observations. It is able to describe an inflationary model of a radiation universe in considerable numerical detail. It is based on a method that defines the Hubble parameter H, and consequently inertial systems themselves, directly in terms of the positions and velocities of mass particles in a universe. This makes it possible to describe a mass particle's motion relative to other particles in the universe, rather than relative to inertial systems. Because of this, the repulsive acceleration is a real kinematic effect existing in the present-day universe. This definition of H cannot include the use of photon positions or velocities because H determines the velocities of receding inertial systems of galaxies, and the velocity of a photon in a distant inertial system then depends on the definition of H itself. Therefore, at the time of its origin the magnitude of H in a radiation dominated universe would be solely determined by the behavior of the relatively few mass particles that it contained while allowing for a near balance with the gravitation of the Friedmann-Lemaître model. )

  16. Experimental Demonstration of the Induction Synchrotron

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Arakida, Yoshio; Dixit, Tanuja; Iwashita, Taiki; Kono, Tadaaki; Nakamura, Eiji; Otsuka, Kazunori; Shimosaki, Yoshito; Torikai, Kota; Wake, Masayoshi

    2007-02-01

    We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.

  17. Experimental demonstration of the induction synchrotron.

    PubMed

    Takayama, Ken; Arakida, Yoshio; Dixit, Tanuja; Iwashita, Taiki; Kono, Tadaaki; Nakamura, Eiji; Otsuka, Kazunori; Shimosaki, Yoshito; Torikai, Kota; Wake, Masayoshi

    2007-02-01

    We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.

  18. Accelerator physics of the Stanford Linear Collider and SLC accelerator experiments towards the Next Linear Collider

    SciTech Connect

    Seeman, J.T.

    1992-06-01

    The Stanford Linear Collider (SLC) was built to collide single bunches of electrons and positrons head-on at a single interaction point with single beam energies up to 55 GeV. The small beam sizes and high currents required for high luminosity operation have significantly pushed traditional beam quality limits. The Polarized Electron Source produces about 8 {times} 10{sup 10} electrons in each of two bunches with up to 28% polarization,. The Damping Rings provide coupled invariant emittances of 1.8 {times} 10{sup {minus}5} r-m with 4.5 {times} 10{sup 10} particles per bunch. The 57 GeV Linac has successfully accelerated over 3 {times} 10{sup 10} particles with design invariant emittances of 3 {times} 10{sup {minus}5} r-m. Both longitudinal and transverse wakefields affect strongly the trajectory and emittance corrections used for operations. The Arc systems routinely transport decoupled and betatron matched beams. In the Final Focus, the beams are chromatically corrected and demagnified producing spot sizes of 2 to 3 {mu}m at the focal point. Spot sizes below 2 {mu}m have been made during special tests. Instrumentation and feedback systems are well advanced, providing continuous beam monitoring and pulse-by-pulse control. A luminosity of 1.6 {times} 10{sup 29} cm{sup {minus}2}sec{sup {minus}1} has been produced. Several experimental tests for a Next Linear Collider (NLC) are being planned or constructed using the SLC accelerator as a test facility. The Final Focus Test Beam will demagnify a flat 50 GeV electron beam to dimensions near 60 nm vertically and 900 nm horizontally. A potential Emittance Dynamics Test Area has the capability to test the acceleration and transport of very low emittance beams, the compression of bunch lengths to 50 {mu}m, the acceleration and control of multiple bunches, and the properties of wakefields in the very short bunch length regime.

  19. Laser-based acceleration for nuclear physics experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Tesileanu, O.; Asavei, Th.; Dancus, I.; Gales, S.; Negoita, F.; Turcu, I. C. E.; Ursescu, D.; Zamfir, N. V.

    2016-05-01

    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments.

  20. Physics at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Lawrence Cardman

    2005-10-22

    The CEBAF accelerator at JLab is fulfilling its scientific mission to understand how hadrons are constructed from the quarks and gluons of QCD, to understand the QCD basis for the nucleon-nucleon force, and to explore the transition from the nucleon-meson to a QCD description. Its success is based on the firm foundation of experimental and theoretical techniques developed world-wide over the past few decades, on complementary data provided by essential lower-energy facilities, such as MAMI, and on the many insights provided by the scientists we are gathered here to honor.

  1. Accelerating Innovation: How Nuclear Physics Benefits Us All

    SciTech Connect

    Not Available

    2011-01-01

    From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

  2. Hadron physics at the new CW electron accelerators

    SciTech Connect

    Burkert, V.D.

    1990-01-01

    Major trends of the physics program related to the study of hadron structure and hadron spectroscopy at the new high current, high duty cycle electron machines are discussed. It is concluded that planned experiments at these machines may have important impact on our understanding of the strong interaction by studying the internal structure and spectroscopy of the nucleon and lower mass hyperon states.

  3. Proceedings of the workshop on B physics at hadron accelerators

    SciTech Connect

    McBride, P.; Mishra, C.S.

    1993-12-31

    This report contains papers on the following topics: Measurement of Angle {alpha}; Measurement of Angle {beta}; Measurement of Angle {gamma}; Other B Physics; Theory of Heavy Flavors; Charged Particle Tracking and Vertexing; e and {gamma} Detection; Muon Detection; Hadron ID; Electronics, DAQ, and Computing; and Machine Detector Interface. Selected papers have been indexed separately for inclusion the in Energy Science and Technology Database.

  4. Search for X-Ray Induced Acceleration of the Decay of the 31-yr Isomer 178Hf Using Synchrotron Radiation

    SciTech Connect

    Ahmad, I; Banar, J C; Becker, J A; Gemmell, D S; Kraemer, A; Mashayekhi, A; McNabb, D P; Miller, G G; Moore, E F; Pangault, L N; Rundberg, R S; Schiffer, J P; Shastri, S D; Wang, T F; Wilhelmy, J B

    2002-05-09

    Releasing the energy stored in an isomeric nuclear state in a controlled way with an atomic or electromagnetic trigger is an attractive speculation: the energy gain may be on the order of the ratio of nuclear/atomic energies - MeV/keV. (Nuclear isomers are loosely defined as excited nuclear states with lifetimes longer than 10{sup -9} s.) Nuclear isomers, therefore, represent an opportunity for a stand-alone energy source if suitable schemes for trigger and control of the energy release can be found. Potential applications include space drive, as well as very bright {gamma}-ray sources. The nucleus {sup 178}Hf has a nuclear isomer with excitation energy E{sub x} = 2.447 MeV. The 2.447-MeV isomeric state decays slowly (t{sub 1/2} = 31 y) to the nearby state at 2.433 MeV. The J{sup {pi}} = 13{sup -} state loses energy in a rapid (t {approx} 10{sup -12} s) {gamma}-ray cascade ending at the 8{sup -} rotational band head which in turn decays via the ground-state rotational band cascade. The {gamma}-ray cascade is delayed at the 8{sup -} state at 1.147 MeV, since the 8{sup -} state is also isomeric, with t{sub 1/2} = 4 s. Very scarce quantities of the 16{sup +}, 31-yr isomer are available for research ({approx} 10{sup 15} atoms). Reports of triggered decay of the {sup 178}Hf isomer induced by x-rays delivered by a dental x-ray machine have been made [2,3]. Enhancements of {approx} 1 - 2% in the isomer decay rate (dN/dt = - (1 + {var_epsilon})N/{tau}) had been reported for various {gamma}-rays in the cascade (distinguished by red and vertical lines in Figure 1). The reported integrated cross section for triggering the decay is cm{sup 2} keV, so large as to demand new physics. We have sought to verify these reports taking advantage of the intense photon flux available at the Advanced Photon Source.

  5. Transverse damping systems in modern synchrotrons

    NASA Astrophysics Data System (ADS)

    Zhabitsky, V. M.

    2006-12-01

    Transverse feedback systems for suppression of transverse coherent beam oscillations are used in modern synchrotrons for preventing the development of transverse instabilities and damping residual beam oscillations after injection. Information on damper systems for the Large Hadron Collider (LHC; CERN, Geneva) and the accelerator complex FAIR (GSI, Darmstadt) is presented. The project for the LHC is being performed at the Laboratory of Particle Physics of the Joint Institute for Nuclear Research in collaboration with CERN. The information concerning the state of the project and the plans of its completion at the LHC is given. The results of the first design activity on transverse damping systems at the SIS100 and SIS300 synchrotrons, to be created in the framework of the new international project FAIR, are presented.

  6. Ideas for future synchrotron light sources

    SciTech Connect

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three ``generations,`` from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source.

  7. Ideas for future synchrotron light sources

    SciTech Connect

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three generations,'' from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source.

  8. 'Accelerators and Beams,' multimedia computer-based training in accelerator physics

    SciTech Connect

    Silbar, R. R.; Browman, A. A.; Mead, W. C.; Williams, R. A.

    1999-06-10

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user's rate of learning and length of retention of the material. They integrate interactive 'On-Screen Laboratories,' hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer.

  9. High intensity proton synchrotrons

    NASA Astrophysics Data System (ADS)

    Craddock, M. K.

    1986-10-01

    Strong initiatives are being pursued in a number of countries for the construction of ``kaon factory'' synchrotrons capable of producing 100 times more intense proton beams than those available now from machines such as the Brookhaven AGS and CERN PS. Such machines would yield equivalent increases in the fluxes of secondary particles (kaons, pions, muons, antiprotons, hyperons and neutrinos of all varieties)—or cleaner beams for a smaller increase in flux—opening new avenues to various fundamental questions in both particle and nuclear physics. Major areas of investigation would be rare decay modes, CP violation, meson and hadron spectroscopy, antinucleon interactions, neutrino scattering and oscillations, and hypernuclear properties. Experience with the pion factories has already shown how high beam intensities make it possible to explore the ``precision frontier'' with results complementary to those achievable at the ``energy frontier''. This paper will describe proposals for upgrading and AGS and for building kaon factories in Canada, Europe, Japan and the United States, emphasizing the novel aspects of accelerator design required to achieve the desired performance (typically 100 μA at 30 GeV).

  10. From electron maps to acceleration models in the physics of flare

    NASA Astrophysics Data System (ADS)

    Massone, Anna Maria

    Electron maps reconstructed from RHESSI visibilities represent a powerful source of information for constraining models of electron acceleration in solar plasma physics during flaring events. In this talk I will describe how and to which extent electron maps can be utilized to estimate local electron spectral indices, the evolution of centroid position at different energies in the electron space and the compatibility of RHESSI observations with different theoretical models for the acceleration mechanisms.

  11. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    SciTech Connect

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  12. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    SciTech Connect

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-02-06

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator.

  13. EM Structure Based and Vacuum Acceleration

    SciTech Connect

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  14. Electron cooling system in the booster synchrotron of the HIAF project

    NASA Astrophysics Data System (ADS)

    Mao, L. J.; Yang, J. C.; Xia, J. W.; Yang, X. D.; Yuan, Y. J.; Li, J.; Ma, X. M.; Yan, T. L.; Yin, D. Y.; Chai, W. P.; Sheng, L. N.; Shen, G. D.; Zhao, H.; Tang, M. T.

    2015-06-01

    The High Intensity heavy ion Accelerator Facility (HIAF) is a new accelerator complex under design at the Institute of Modern Physics (IMP). The facility is aiming at the production of high intensity heavy ion beams for a wide range of experiments in high energy density physics, nuclear physics, atomic physics and other applications. It consists of a superconducting electron-cyclotron-resonance ion source and an intense proton ion source, a linear accelerator, a 34 Tm booster synchrotron ring, a 43 Tm multifunction compression synchrotron ring, a 13 Tm high precision spectrometer ring and several experimental terminals. A magnetized electron cooling device is supposed to be used in the booster ring for decreasing the transverse emittance of injected beams. The conceptual design and main parameters of this cooler are presented in this paper.

  15. ACCELERATOR PHYSICS ISSUES FOR FUTURE ELECTRON ION COLLIDERS.

    SciTech Connect

    PEGGS,S.; BEN-ZVI,I.; KEWISCH,J.; MURPHY,J.

    2001-06-18

    Interest continues to grow in the physics of collisions between electrons and heavy ions, and between polarized electrons and polarized protons [1,2,3]. Table 1 compares the parameters of some machines under discussion. DESY has begun to explore the possibility of upgrading the existing HERA-p ring to store heavy ions, in order to collide them with electrons (or positrons) in the HERA-e ring, or from TESLA [4]. An upgrade to store polarized protons in the HERA-p ring is also under discussion [1]. BNL is considering adding polarized electrons to the RHIC repertoire, which already includes heavy and light ions, and polarized protons. The authors of this paper have made a first pass analysis of this ''eRHIC'' possibility [5]. MIT-BATES is also considering electron ion collider designs [6].

  16. James Clerk Maxwell Prize for Plasma Physics: The Physics of Magnetic Reconnection and Associated Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Drake, James

    2010-11-01

    Solar and stellar flares, substorms in the Earth's magnetosphere, and disruptions in laboratory fusion experiments are driven by the explosive release of magnetic energy through the process of magnetic reconnection. During reconnection oppositely directed magnetic fields break and cross-connect. The resulting magnetic slingshots convert magnetic energy into high velocity flows, thermal energy and energetic particles. A major scientific challenge has been the multi-scale nature of the problem: a narrow boundary layer, ``the dissipation region,'' breaks field lines and controls the release of energy in a macroscale system. Significant progress has been made on fundamental questions such as how magnetic energy is released so quickly and why the release occurs as an explosion. At the small spatial scales of the dissipation region the motion of electrons and ions decouples, the MHD description breaks down and whistler and kinetic Alfven dynamics drives reconnection. The dispersive property of these waves leads to fast reconnection, insensitive to system size and weakly dependent on dissipation, consistent with observations. The evidence for these waves during reconnection in the magnetosphere and the laboratory is compelling. The role of turbulence within the dissipation region in the form of ``secondary islands'' or as a source of anomalous resistivity continues to be explored. A large fraction of the magnetic energy released during reconnection appears in the form of energetic electrons and protons -- up to 50% or more during solar flares. The mechanism for energetic particle production during magnetic reconnection has remained a mystery. Models based on reconnection at a single large x-line are incapable of producing the large numbers of energetic electrons seen in observations. Scenarios based on particle acceleration in a multi-x-line environment are more promising. In such models a link between the energy gain of electrons and the magnetic energy released, a

  17. Future Synchrotron Radiation Sources

    SciTech Connect

    Winick, Herman

    2003-07-09

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, microfabrication, archaeometry and medical diagnostics. These rings span electron energies from a few hundred MeV to 8 GeV. Several facilities serve 2000 or more users on 30-60 simultaneously operational experimental stations. The largest rings are more than 1 km in circumference, cost about US$1B to build and have annual budgets of about US$100M. This growth is due to the remarkable properties of synchrotron radiation, including its high intensity, brightness and stability; wide spectral range extending from the infra-red to hard x-rays; variable polarization; pulsed time structure; and high vacuum environment. The ever-expanding user community and the increasing number of applications are fueling a continued growth in the number of facilities around the world. In the past few years new types of light sources have been proposed based on linear accelerators. Linac-based sources now being pursued include the free-electron laser (FEL) and energy recovery linac (ERL

  18. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    NASA Astrophysics Data System (ADS)

    Gillich, Don; Shannon, Mike; Kovanen, Andrew; Anderson, Tom; Bright, Kevin; Edwards, Ronald; Danon, Yaron; Moretti, Brian; Musk, Jeffrey

    2011-06-01

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of ˜100 keV. Within the next year, cadets and faculty at USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.

  19. In-situ microscale through-silicon via strain measurements by synchrotron x-ray microdiffraction exploring the physics behind data interpretation

    SciTech Connect

    Liu, Xi; Thadesar, Paragkumar A.; Oh, Hanju; Bakir, Muhannad S.; Taylor, Christine L.; Sitaraman, Suresh K.; Kunz, Martin; Tamura, Nobumichi

    2014-09-15

    In-situ microscale thermomechanical strain measurements have been performed in combination with synchrotron x-ray microdiffraction to understand the fundamental cause of failures in microelectronics devices with through-silicon vias. The physics behind the raster scan and data analysis of the measured strain distribution maps is explored utilizing the energies of indexed reflections from the measured data and applying them for beam intensity analysis and effective penetration depth determination. Moreover, a statistical analysis is performed for the beam intensity and strain distributions along the beam penetration path to account for the factors affecting peak search and strain refinement procedure.

  20. Articulated Multimedia Physics, Lesson 6, Uniformly Accelerated Motion of Bodies Starting From Rest.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the sixth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to the uniformly accelerated motion of bodies starting from rest. The objective is to teach students how a complete set of equations of motion is derived and how to use them. Free falling bodies near the Earth's…

  1. Using a mobile phone acceleration sensor in physics experiments on free and damped harmonic oscillations

    NASA Astrophysics Data System (ADS)

    Carlos Castro-Palacio, Juan; Velázquez-Abad, Luisberis; Giménez, Marcos H.; Monsoriu, Juan A.

    2013-06-01

    We have used a mobile phone acceleration sensor, and the Accelerometer Monitor application for Android, to collect data in physics experiments on free and damped oscillations. Results for the period, frequency, spring constant, and damping constant agree very well with measurements obtained by other methods. These widely available sensors are likely to find increased use in instructional laboratories.

  2. Physical Interpretation of the Schott Energy of An Accelerating Point Charge and the Question of Whether a Uniformly Accelerating Charge Radiates

    ERIC Educational Resources Information Center

    Rowland, David R.

    2010-01-01

    A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…

  3. Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Barnard, J. J.; Briggs, R. J.; Davidson, R. C.; Dorf, M.; Grote, D. P.; Henestroza, E.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Sefkow, A. B.; Sharp, W. M.; Waldron, W. L.; Welch, D. R.; Yu, S. S.

    2009-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity "tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ˜30 nC pulse of Li+ ions to ˜3 MeV, then compresses it to ˜1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  4. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  5. {open_quotes}Accelerators and Beams,{close_quotes} multimedia computer-based training in accelerator physics

    SciTech Connect

    Silbar, R.R.; Browman, A.A.; Mead, W.C.; Williams, R.A.

    1999-06-01

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user{close_quote}s rate of learning and length of retention of the material. They integrate interactive {open_quotes}On-Screen Laboratories,{close_quotes} hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published ({ital Vectors, Forces}, and {ital Motion}), a fourth ({ital Dipole Magnets}) has been submitted for review, and three more exist in prototype form ({ital Quadrupoles, Matrix Transport}, and {ital Properties of Charged-Particle Beams}). Participants in the poster session will have the opportunity to try out these modules on a laptop computer. {copyright} {ital 1999 American Institute of Physics.}

  6. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Clark, J. C.; Isaacs-Smith, T.

    2001-07-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed.

  7. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  8. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    SciTech Connect

    Friedman, A.

    1996-01-26

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as {open_quotes}drivers{close_quotes} for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a {open_quotes}taxonomy{close_quotes} of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area.

  9. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.

    PubMed

    Arif, Muhammad; Kattan, Ahmed

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects' wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients.

  10. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body

    PubMed Central

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects’ wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients. PMID:26203909

  11. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  12. Synchrotron light source data book

    SciTech Connect

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices.

  13. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  14. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  15. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  16. Physical activity recognition based on rotated acceleration data using quaternion in sedentary behavior: a preliminary study.

    PubMed

    Shin, Y E; Choi, W H; Shin, T M

    2014-01-01

    This paper suggests a physical activity assessment method based on quaternion. To reduce user inconvenience, we measured the activity using a mobile device which is not put on fixed position. Recognized results were verified with various machine learning algorithms, such as neural network (multilayer perceptron), decision tree (J48), SVM (support vector machine) and naive bayes classifier. All algorithms have shown over 97% accuracy including decision tree (J48), which recognized the activity with 98.35% accuracy. As a result, physical activity assessment method based on rotated acceleration using quaternion can classify sedentary behavior with more accuracy without considering devices' position and orientation. PMID:25571109

  17. Research on acceleration method of reactor physics based on FPGA platforms

    SciTech Connect

    Li, C.; Yu, G.; Wang, K.

    2013-07-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  18. National Synchrotron Light Source

    ScienceCinema

    BNL

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  19. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    SciTech Connect

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  20. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  1. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  2. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics

    SciTech Connect

    Battistoni, Giuseppe; Broggi, Francesco; Brugger, Markus; Campanella, Mauro; Carboni, Massimo; Empl, Anton; Fasso, Alberto; Gadioli, Ettore; Cerutti, Francesco; Ferrari, Alfredo; Ferrari, Anna; Lantz, Matthias; Mairani, Andrea; Margiotta, M.; Morone, Christina; Muraro, Silvia; Parodi, Katerina; Patera, Vincenzo; Pelliccioni, Maurizio; Pinsky, Lawrence; Ranft, Johannes; /Siegen U. /CERN /Seibersdorf, Reaktorzentrum /INFN, Milan /Milan U. /SLAC /INFN, Legnaro /INFN, Bologna /Bologna U. /CERN /HITS, Heidelberg /CERN /CERN /Frascati /CERN /CERN /CERN /CERN /NASA, Houston

    2012-04-17

    FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations. After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such topics as accelerator related applications.

  3. Unobtrusive heart rate estimation during physical exercise using photoplethysmographic and acceleration data.

    PubMed

    Mullan, Patrick; Kanzler, Christoph M; Lorch, Benedikt; Schroeder, Lea; Winkler, Ludwig; Laich, Larissa; Riedel, Frederik; Richer, Robert; Luckner, Christoph; Leutheuser, Heike; Eskofier, Bjoern M; Pasluosta, Cristian

    2015-08-01

    Photoplethysmography (PPG) is a non-invasive, inexpensive and unobtrusive method to achieve heart rate monitoring during physical exercises. Motion artifacts during exercise challenge the heart rate estimation from wrist-type PPG signals. This paper presents a methodology to overcome these limitation by incorporating acceleration information. The proposed algorithm consisted of four stages: (1) A wavelet based denoising, (2) an acceleration based denoising, (3) a frequency based approach to estimate the heart rate followed by (4) a postprocessing step. Experiments with different movement types such as running and rehabilitation exercises were used for algorithm design and development. Evaluation of our heart rate estimation showed that a mean absolute error 1.96 bpm (beats per minute) with standard deviation of 2.86 bpm and a correlation of 0.98 was achieved with our method. These findings suggest that the proposed methodology is robust to motion artifacts and is therefore applicable for heart rate monitoring during sports and rehabilitation. PMID:26737687

  4. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    NASA Astrophysics Data System (ADS)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of <20%, have been accelerated at up to ~500 MeV, demonstrating 3 out of 4 for key requirements for ion fast ignition. The shown results now approach or exceed the limits set by many applications from ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can

  5. Multi-temperature synchrotron PXRD and physical properties study of half-Heusler TiCoSb.

    PubMed

    Skovsen, I; Bjerg, L; Christensen, M; Nishibori, E; Balke, B; Felser, C; Iversen, B B

    2010-11-14

    Phase pure samples of the half-Heusler material TiCoSb were synthesised and investigated. Multi-temperature synchrotron powder X-ray diffraction (PXRD) data measured between 90 and 1000 K in atmospheric air confirm the phase purity, but they also reveal a decomposition reaction starting at around 750 K. This affects the high temperature properties since TiCoSb is semiconducting, whereas CoSb is metallic. Between 90 K and 300 K the linear thermal expansion coefficient is estimated to be 10.5 × 10(-6) K(-1), while it is 8.49 10(-6) K(-1) between 550 K and 1000 K. A fit of a Debye model to the Atomic Displacement Parameters obtained from Rietveld refinement of the PXRD data gives a Debye temperature of 395(4) K. The heat capacity was measured between 2 K and 300 K and a Debye temperature of 375(5) K was obtained from modelling of the data. Coming from low temperatures the electrical resistivity shows a metallic to semiconducting transition at 113 K. A relatively high Seebeck coefficient of ∼-250 μV K(-1) was found at 400 K, but the substantial thermal conductivity (∼10 W mK(-1) at 400 K) leads to a moderate thermoelectric figure of merit of 0.025 at 400 K.

  6. Synchrotron white beam topography characterization of physical vapor transport grown AlN and ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Raghothamachar, Balaji; Vetter, William M.; Dudley, Michael; Dalmau, Rafael; Schlesser, Raoul; Sitar, Zlatko; Michaels, Emily; Kolis, Joseph W.

    2002-12-01

    Structural defects in AlN single crystals grown by the sublimation method and GaN single crystals grown by the ammonothermal method are characterized by synchrotron white-beam X-ray topography in conjunction with optical microscopy. AlN platelets are either of (1 1 2¯ 0) or (0 0 0 1) type depending on the growth conditions. Dislocation densities of the order of 10 3 cm -2 or lower are observed in some crystals. X-ray topographs reveal the presence of growth sector boundaries, inclusions, and growth dislocations that indicate slight impurity contamination. The 2H crystal structure of GaN single crystals obtained by the ammonothermal method was verified by Laue X-ray pattern analysis. GaN crystals grown are of the order of 1 mm in size and are either (0 0 0 1) platelets or [0 0 0 1] prismatic needles. Generally, prismatic needles are characterized by lower degree of mosaicity than (0 0 0 1) platelets.

  7. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

  8. Prototype rf cavity for the HISTRAP accelerator

    SciTech Connect

    Mosko, S.W.; Dowling, D.T.; Olsen, D.K.

    1989-01-01

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C.

  9. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Cavenago, M.

    2011-09-26

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  10. Vacuum and magnetic field constraints in a H -/light ion synchrotron

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Martin, R. L.; Rossi, S.; Silari, M.

    1994-08-01

    Acceleration of H - ions in a synchrotron imposes severe restrictions on the level of residual pressure in the vacuum chamber and the maximum magnetic field in the magnets of the ring. Significant vacuum requirements are also imposed by the acceleration of ions. This paper discusses these two aspects of the design of a combined H -/light ion synchrotron for radiation therapy. The fractional loss of the accelerated beam induced by the two processes is evaluated on the basis of a general treatment of the physics of these phenomena. The values of the vacuum and magnetic field necessary for normal operation of the machine are specified and a discussion is given of the behaviour of the above quantities as a function of several parameters such as beam energy, composition and pressure of the residual gas in the vacuum chamber and beam extraction time.

  11. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  12. Physical property comparison of 11 soft denture lining materials as a function of accelerated aging.

    PubMed

    Dootz, E R; Koran, A; Craig, R G

    1993-01-01

    Soft denture-lining materials are an important treatment option for patients who have chronic soreness associated with dental prostheses. Three distinctly different types of materials are generally used. These are plasticized polymers or copolymers, silicones, or polyphosphazene fluoroelastomer. The acceptance of these materials by patients and dentists is variable. The objective of this study is to compare the tensile strength, percent elongation, hardness, tear strength, and tear energy of eight plasticized polymers or copolymers, two silicones, and one polyphosphazene fluoroelastomer. Tests were run at 24 hours after specimen preparation and repeated after 900 hours of accelerated aging in a Weather-Ometer device. The data indicated a wide range of physical properties for soft denture-lining materials and showed that accelerated aging dramatically affected the physical and mechanical properties of many of the elastomers. No soft denture liner proved to be superior to all others. The data obtained should provide clinicians with useful information for selecting soft denture lining materials for patients.

  13. Tsallis entropy and complexity theory in the understanding of physics of precursory accelerating seismicity.

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Chatzopoulos, George

    2014-05-01

    Strong observational indications support the hypothesis that many large earthquakes are preceded by accelerating seismic release rates which described by a power law time to failure relation. In the present work, a unified theoretical framework is discussed based on the ideas of non-extensive statistical physics along with fundamental principles of physics such as the energy conservation in a faulted crustal volume undergoing stress loading. We derive the time-to-failure power-law of: a) cumulative number of earthquakes, b) cumulative Benioff strain and c) cumulative energy released in a fault system that obeys a hierarchical distribution law extracted from Tsallis entropy. Considering the analytic conditions near the time of failure, we derive from first principles the time-to-failure power-law and show that a common critical exponent m(q) exists, which is a function of the non-extensive entropic parameter q. We conclude that the cumulative precursory parameters are function of the energy supplied to the system and the size of the precursory volume. In addition the q-exponential distribution which describes the fault system is a crucial factor on the appearance of power-law acceleration in the seismicity. Our results based on Tsallis entropy and the energy conservation gives a new view on the empirical laws derived by other researchers. Examples and applications of this technique to observations of accelerating seismicity will also be presented and discussed. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds

  14. FINAL TECHNICAL REPORT FOR DE-FG02-05ER64097 Systems and Methods for Injecting Helium Beams into a Synchrotron Accelerator

    SciTech Connect

    Bush, David A

    2008-09-30

    A research grant was approved to fund development of requirements and concepts for extracting a helium-ion beam at the LLUMC proton accelerator facility, thus enabling the facility to better simulate the deep space environment via beams sufficient to study biological effects of accelerated helium ions in living tissues. A biologically meaningful helium-ion beam will be accomplished by implementing enhancements to increase the accelerator's maximum proton beam energy output from 250MeV to 300MeV. Additional benefits anticipated from the increased energy include the capability to compare possible benefits from helium-beam radiation treatment with proton-beam treatment, and to provide a platform for developing a future proton computed tomography imaging system.

  15. Evaluation of Multiple-Scale 3D Characterization for Coal Physical Structure with DCM Method and Synchrotron X-Ray CT

    PubMed Central

    Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures. PMID:25861674

  16. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  17. Synchrotron Radiation Workshop (SRW)

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations inmore » steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  18. Synchrotron Radiation Workshop (SRW)

    SciTech Connect

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.

  19. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  20. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  1. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research.

    PubMed

    Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf

    2011-09-01

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and

  2. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research.

    PubMed

    Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf

    2011-09-01

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and

  3. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    SciTech Connect

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf; Auer, Siegfried; Baust, Guenter; Matt, Guenter; Otto, Katharina; Colette, Andrew; Drake, Keith; Kempf, Sascha; Munsat, Tobin; Shu, Anthony; Sternovsky, Zoltan; Fiege, Katherina; Postberg, Frank; Gruen, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Mellert, Tobias; and others

    2011-09-15

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and

  4. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a Muon

  5. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  6. Synchrotron radiation as an infrared source.

    PubMed

    Stevenson, J R; Ellis, H; Bartlett, R

    1973-12-01

    The increasing availability of synchrotron radiation sources in a number of geographical regions of the world has motivated an evaluation of the radiation from electron accelerators and storage rings as a possible source for ir spectroscopy. As synchrotron radiation can be analytically described, a direct comparison is made with blackbody radiation for typical solid state spectroscopy. Both existing and proposed synchrotron radiation sources are found to be attractive in the ir. The ultrahigh vacuum environment of the source is compatible with clean surface investigations, the analytical description of the radiation is appropriate for calibration studies, and the continuous nature is suitable for Fourier spectroscopy or whenever a white light source is desirable.

  7. Anterior cruciate ligament augmentation for rotational instability following primary reconstruction with an accelerated physical therapy protocol.

    PubMed

    Carey, Timothy; Oliver, David; Pniewski, Josh; Mueller, Terry; Bojescul, John

    2013-01-01

    The purpose of the present study is to present the results of anterior cruciate ligament (ACL) augmentation for patients having rotational instability despite an intact vertical graft in lieu of conventional revision ACL reconstruction. ACL augmentation surgery with a horizontal graft was performed to augment a healed vertical graft on five patients and an accelerated rehabilitation protocol was instituted. Functional outcomes were assessed by the Lower Extremity Functional Scale (LEFS) and the Modified Cincinnati Rating System (MCRS). All patients completed physical therapy within 5 months and were able to return to full military duty without limitation. LEFS and MCRS were significantly improved. ACL augmentation with a horizontal graft provides an excellent alternative to ACL revision reconstruction for patients with an intact vertical graft, allowing an earlier return to duty for military service members.

  8. GPU-based acceleration of free energy calculations in solid state physics

    NASA Astrophysics Data System (ADS)

    Januszewski, Michał; Ptok, Andrzej; Crivelli, Dawid; Gardas, Bartłomiej

    2015-07-01

    Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.

  9. On the path to the digital rock physics of gas hydrate-bearing sediments - processing of in situ synchrotron-tomography data

    NASA Astrophysics Data System (ADS)

    Sell, Kathleen; Saenger, Erik H.; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Enzmann, Frieder; Kuhs, Werner F.; Kersten, Michael

    2016-08-01

    To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high-resolution 3-D representations for the accurate modeling of petrophysical and transport properties. Although such models are readily available via in situ synchrotron radiation X-ray tomography, the analysis of such data asks for complex workflows and high computational power to maintain valuable results. Here, we present a best-practice procedure complementing data from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of an acoustic wave propagation in 3-D using the derived results. A combination of the tomography and 3-D modeling opens a path to a more reliable deduction of properties of gas hydrate-bearing sediments without a reliance on idealized and frequently imprecise models.

  10. Beam-commissioning study of high-intensity accelerators using virtual accelerator model

    NASA Astrophysics Data System (ADS)

    Harada, H.; Shigaki, K.; Irie, Y.; Noda, F.; Hotchi, H.; Saha, P. K.; Shobuda, Y.; Sako, H.; Furukawa, K.; Machida, S.

    2009-04-01

    In order to control large-scale accelerators efficiently, a control system with a virtual accelerator model was constructed. The virtual accelerator (VA) is an on-line beam simulator provided with a beam monitor scheme. The VA is based upon the Experimental Physics and Industrial Control System (EPICS) and is configured under the EPICS input/output controller (IOC) in parallel with a real accelerator (RA). Thus, the machine operator can access the parameters of the RA through the channel access client and then feed them to the VA, and vice versa. Such a control scheme facilitates developments of the commissioning tools, feasibility study of the proposed accelerator parameters and examination of the measured accelerator data. This paper describes the beam commissioning results and activities by using the VA at the J-PARC 3-GeV rapid-cycling synchrotron (RCS).

  11. Beam Polarization at the ILC: the Physics Impact and the Accelerator Solutions

    SciTech Connect

    Aurand, B.; Bailey, I.; Bartels, C.; Brachmann, A.; Clarke, J.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Marchesini, I.; Monig, Klaus; Moffeit, K.C.; Moortgat-Pick, G.; Riemann, S.; Schalicke, A.; Schuler, P.; Starovoitov, P.; Ushakov, A.; /DESY /DESY, Zeuthen /Bonn U. /SLAC

    2011-11-23

    In this contribution accelerator solutions for polarized beams and their impact on physics measurements are discussed. Focus are physics requirements for precision polarimetry near the interaction point and their realization with polarized sources. Based on the ILC baseline programme as described in the Reference Design Report (RDR), recent developments are discussed and evaluated taking into account physics runs at beam energies between 100 GeV and 250 GeV, as well as calibration runs on the Z-pole and options as the 1TeV upgrade and GigaZ. The studies, talks and discussions presented at this conference demonstrated that beam polarization and its measurement are crucial for the physics success of any future linear collider. To achieve the required precision it is absolutely decisive to employ multiple devices for testing and controlling the systematic uncertainties of each polarimeter. The polarimetry methods for the ILC are complementary: with the upstream polarimeter the measurements are performed in a clean environment, they are fast and allow to monitor time-dependent variations of polarization. The polarimeter downstream the IP will measure the disrupted beam resulting in high background and much lower statistics, but it allows access to the depolarization at the IP. Cross checks between the polarimeter results give redundancy and inter-calibration which is essential for high precision measurements. Current plans and issues for polarimeters and also energy spectrometers in the Beam Delivery System of the ILC are summarized in reference [28]. The ILC baseline design allows already from the beginning the operation with polarized electrons and polarized positrons provided the spin rotation and the fast helicity reversal for positrons will be implemented. A reversal of the positron helicity significantly slower than that of electrons is not recommended to not compromise the precision and hence the success of the ILC. Recently to use calibration data at the Z

  12. Physics Division annual review, April 1, 1992--March 31, 1993

    SciTech Connect

    Thayer, K.J.

    1993-08-01

    This document is the annual review of the Argonne National Laboratory Physics Division for the period April 1, 1992--March 31, 1993. Work on the ATLAS device is covered, as well as work on a number of others in lab, as well as collaborative projects. Heavy ion nuclear physics research looked at quasi-elastic, and deep-inelastic reactions, cluster states, superdeformed nuclei, and nuclear shape effects. There were programs on accelerator mass spectroscopy, and accelerator and linac development. There were efforts in medium energy nuclear physics, weak interactions, theoretical nuclear and atomic physics, and experimental atomic and molecular physics based on accelerators and synchrotron radiation.

  13. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  14. Physics models in the MARS15 code for accelerator and space applications.

    SciTech Connect

    Mokhov, N. V.; Gudima, K. K.; Mashnik, S. G.; Rakhno, I. L.; Sierk, A. J.; Striganov, S.

    2004-01-01

    The MARS code system, developed over 30 years, is a set of Monte Carlo programs for detailed simulation of hadronic and electromagnetic cascades in an arbitrary geometry of accelerator, detector and spacecraft components with particle energy ranging from a fraction of an electron volt up to 100 TeV. The new MARS15 (2004) version is described with an emphasis on modeling physics processes. This includes an extended list of elementary particles and arbitrary heavy ions, their interaction cross-sections, inclusive and exclusive nuclear event generators, photo - hadron production, correlated ionization energy loss and multiple Coulomb scattering, nuclide production and residual activation, and radiation damage (DPA). In particular, the details of a new model for leading baryon production and implementation of advanced versions of the Cascade-Exciton Model (CEM03), and the Los Alamos version of Quark-Gluon String Model (LAQGSM03) are given. The applications that are motivating these developments, needs for better nuclear data, and future physics improvements are described.

  15. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  16. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    NASA Astrophysics Data System (ADS)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  17. Stanford Synchrotron Radiation Laboratory activity report for 1986

    SciTech Connect

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  18. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    In the area of solar physics, new calculations of the acoustic wave energy fluxes generated in the solar convective zone was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective zone is the excitation of magnetic flux tube waves which can carry energy along the tubes far away from the region. The problem as to how efficiently those waves are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube waves in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The wave trapping problems and evaluation of critical frequencies for wave reflection in the solar atmosphere was studied. It was shown that the role played by Alfven waves in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of wave energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of waves, a new analytical approach for studying linear Alfven waves in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) waves in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD waves and possible chaos driven by these waves are presently considered.

  19. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Hotchi, H.; Tani, N.; Watanabe, Y.; Harada, H.; Kato, S.; Okabe, K.; Saha, P. K.; Tamura, F.; Yoshimoto, M.

    2016-01-01

    In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  20. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect

    Moon, Chang-Bum

    2014-04-15

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  1. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  2. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  3. Summary Report of Working Group 3: High Energy Density Physics and Exotic Acceleration Schemes

    SciTech Connect

    Shvets, Gennady; Schoessow, Paul

    2006-11-27

    This report summarizes presented results and discussions in the Working Group 3 at the Twelfth Advanced Accelerator Concepts Workshop in 2006. Presentations on varied topics, such as laser proton acceleration, novel radiation sources, active medium accelerators, and many others, are reviewed, and the status and future directions of research in these areas are summarized.

  4. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    SciTech Connect

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  5. Integrating in situ high pressure small and wide angle synchrotron x-ray scattering for exploiting new physics of nanoparticle supercrystals

    PubMed Central

    Wang, Zhongwu; Chen, Ou; Cao, Charles Y.; Finkelstein, Ken; Smilgies, Detlef-M.; Lu, Xianmao; Bassett, William A.

    2010-01-01

    Combined small and wide angle synchrotron x-ray scattering (SAXS and WAXS) techniques have been developed for in situ high pressure samples, enabling exploration of the atomic structure and nanoscale superstructure phase relations. These studies can then be used to find connections between nanoparticle surfaces and internal atomic arrangements. We developed a four-axis control system for the detector, which we then employed for the study of two supercrystals assembled from 5 nm Fe3O4 and 10 nm Au nanoparticles. We optimized the x-ray energy and the sample-to-detector distance to facilitate simultaneous collection of both SAXS and WAXS. We further performedin situ high pressure SAXS and WAXS on a cubic supercrystal assembled from 4 nm wurtzite-structure CdSe nanoparticles. While wurtzite-structure CdSe nanoparticles transform into a rocksalt structure at 6.2 GPa, the cubic superstructure develops into a lamellarlike mesostructure at 9.6 GPa. Nanoparticle coupling and interaction could be enhanced, thus reducing the compressibility of the interparticle spacing above ∼3 GPa. At ∼6.2 GPa, the wurtzite-to-rocksalt phase transformation results in a noticeable drop of interparticle spacing. Above 6.2 GPa, a combined effect from denser CdSe nanoparticle causes the interparticle spacing to expand. These findings could be related to a series of changes including the surface structure, electronic and mechanical properties, and strain distribution of CdSe under pressure. This technique opens the way for exploring the new physics of nanoparticles and self-assembled superlattices. PMID:20886989

  6. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  7. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  8. THE RAPID CYCLING MEDICAL SYNCHROTRON RCMS.

    SciTech Connect

    PEGGS,S.; BARTON,D.; BEEBE-WANG,J.; CARDONA,J.; BRENNAN,M.; FISCHER,W.; GARDNER,C.; GASSNER,D.; ET AL

    2002-06-02

    Thirteen hadron beam therapy facilities began operation between 1990 and 2001 - 5 in Europe, 4 in North America, 3 in Japan, and 1 in South Africa [l]. Ten of them irradiate tumors with protons, 2 with Carbon- 12 ions, and 1 with both protons and Carbon-12. The facility with the highest patient throughput - a total of 6 174 patients in 11 years and as many as 150 patient treatments per day -is the Loma Linda University Medical Center, which uses a weak focusing slow cycling synchrotron to accelerate beam for delivery to passive scattering nozzles at the end of rotatable gantries [2, 3,4]. The Rapid Cycling Medical Synchrotron (RCMS) is a second generation synchrotron that, by contrast with the Loma Linda synchrotron, is strong focusing and rapid cycling, with a repetition rate of 30 Hz. Primary parameters for the RCMS are listed in Table 1.

  9. Synchrotron brightness distribution of turbulent radio jets

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Bridle, A. H.; Chan, K. L.

    1981-01-01

    Radio jets are considered as turbulent mixing regions and it is proposed that the essential small scale viscous dissipation in these jets is by emission of MHD waves and by their subsequent strong damping due, at least partly, to gyro-resonant acceleration of supra-thermal particles. A formula relating the synchrotron surface brightness of a radio jet to the turbulent power input is deduced from physical postulates, and is tested against the data for NGC315 and 3C31 (NGC383). The predicted brightness depends essentially on the collimation behavior of the jet, and, to a lesser extent, on the CH picture of a 'high' nozzle with accelerating flow. The conditions for forming a large scale jet at a high nozzle from a much smaller scale jet are discussed. The effect of entrainment on the prediction is discussed with the use of similarity solutions. Although entrainment is inevitably associated with the turbulent jet, it may or may not be a dominant factor depending on the ambient density profile.

  10. Evaluation of ‘OpenCL for FPGA’ for Data Acquisition and Acceleration in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Sridharan, Srikanth

    2015-12-01

    The increase in the data acquisition and processing needs of High Energy Physics experiments has made it more essential to use FPGAs to meet those needs. However harnessing the capabilities of the FPGAs has been hard for anyone but expert FPGA developers. The arrival of OpenCL with the two major FPGA vendors supporting it, offers an easy software-based approach to taking advantage of FPGAs in applications such as High Energy Physics. OpenCL is a language for using heterogeneous architectures in order to accelerate applications. However, FPGAs are capable of far more than acceleration, hence it is interesting to explore if OpenCL can be used to take advantage of FPGAs for more generic applications. To answer these questions, especially in the context of High Energy Physics, two applications, a DAQ module and an acceleration workload, were tested for implementation with OpenCL on FPGAs2. The challenges on using OpenCL for a DAQ application and their solutions, together with the performance of the OpenCL based acceleration are discussed. Many of the design elements needed to realize a DAQ system in OpenCL already exists, mostly as FPGA vendor extensions, but a small number of elements were found to be missing. For acceleration of OpenCL applications, using FPGAs has become as easy as using GPUs. OpenCL has the potential for a massive gain in productivity and ease of use enabling non FPGA experts to design, debug and maintain the code. Also, FPGA power consumption is much lower than other implementations. This paper describes one of the first attempts to explore the use of OpenCL for applications outside the acceleration workloads.

  11. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2016-04-01

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  12. Synchrotron Emission from Chaotic Stellar Winds

    NASA Technical Reports Server (NTRS)

    White, R. L.

    1985-01-01

    A model is presented for the radio emission from hot stars. Electrons are accelerated to relativistic energies by shocks in the wind near the star and emit radio radiation through the synchrotron mechanism. The particle spectrum and radio spectrum for this model are derived. The model accounts for many of the observed characteristics of some recently discovered stars which have peculiar radio emission.

  13. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  15. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Accelerators (5/5)

    SciTech Connect

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  17. Accelerators (4/5)

    SciTech Connect

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  18. Accelerators (3/5)

    SciTech Connect

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  19. J-PAS: The Javalambre-Physics of the Accelerating Universe Astrophysical Survey

    NASA Astrophysics Data System (ADS)

    Dupke, Renato a.; Benitez, Narciso; Moles, Mariano; Sodre, Laerte; J-PAS Collaboration

    2015-08-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Astrophysical Observatory in Spain with a dedicated 2.5m telescope and a 4.7deg^2 camera with 1.2Gpix. Starting in 2016, J-PAS will observe 8600 deg^2 of the Northern Sky and measure 0.003(1+z) precision photometric redshifts for nearly 1E08 LRG and ELG galaxies plus several million QSOs, sampling an effective volume of ~14 Gpc^3 up to z = 1.3. J-PAS will also detect and measure the mass of more than a hundred thousand galaxy clusters, setting constrains on Dark Energy which rival those obtained from BAO measurements.The key to the J-PAS potential is its innovative approach the combination of 54 145°A filters, placed 100°A apart, and a multi-degree field of view (FOV) which makes it a powerful “redshift machine”, with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. Moreover, since the J-PAS camera is equivalent to a very large, 4.7deg^2 “IFU”, it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations. J-PAS will have a lasting legacy value in many areas of Astrophysics, serving as a fundamental dataset for future Cosmological projects.Here, we present the overall description, status and scientific potential of the survey.

  20. J-PAS: The Javalambre-Physics of the Accelerating Universe Astrophysical Survey

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; Benitez, Narciso; Moles, Mariano; Sodre, Laerte; Irwin, Jimmy; J-PAS Collaboration

    2016-01-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Astrophysical Observatory in Spain with a dedicated 2.5m telescope and a 4.7deg^2 camera with 1.2Gpix. Starting in 2016, J-PAS will observe 8600 deg^2 of the Northern Sky and measure 0.003(1+z) precision photometric redshifts for nearly 1E08 LRG and ELG galaxies plus several million QSOs, sampling an effective volume of ~14 Gpc^3 up to z = 1.3. J-PAS will also detect and measure the mass of more than a hundred thousand galaxy clusters, setting constrains on Dark Energy which rival those obtained from BAO measurements.The key to the J-PAS potential is its innovative approach the combination of 54 145°A filters, placed 100°A apart, and a multi-degree field of view (FOV) which makes it a powerful "redshift machine", with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. Moreover, since the J-PAS camera is equivalent to a very large, 4.7deg^2 "IFU", it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations. J-PAS will have a lasting legacy value in many areas of Astrophysics, serving as a fundamental dataset for future Cosmological projects.Here, we present the overall description, status and scientific potential of the survey.

  1. Description of the programs and facilities of the Physics Division

    SciTech Connect

    Not Available

    1992-10-01

    The major emphasis of our experimental nuclear physics research is in Heavy-Ion Physics, centered at the recently completed ATLAS facility. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. In addition, the Division has strong programs in Medium-Energy Physics and in Weak-Interaction Physics as well as in accelerator development. Our nuclear theory research spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national scale. The Atomic Physics program, the largest of which is accelerator-based, primarily uses ATLAS, a 5-MV Dynamitron accelerator and a highly stable 150-kV accelerator. A synchrotron-based atomic physics program has recently been initiated with current research with the National Synchrotron Light Source in preparation for a program at the Advanced Photon Source, at Argonne. The principal interests of the Atomic Physics program are in the interactions of fast atomic and molecular ions with solids and gases and in the laser spectroscopy of exotic species. The program is currently being expanded to take advantage of the unique research opportunities in synchrotron-based research that will present themselves when the Advanced Photon Source comes on line at Argonne. These topics are discussed briefly in this report.

  2. Barrier rf systems in synchrotrons

    SciTech Connect

    Chandra M. Bhat

    2004-06-28

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications.

  3. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  4. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  5. Accelerators and Superconductivity: A Marriage of Convenience. Second John Adams Memorial Lecture

    NASA Astrophysics Data System (ADS)

    Wilson, Martin

    1987-06-01

    This lecture deals with the relationship between accelerator technology in high-energy-physics laboratories and the development of superconductors. It concentrates on synchrotron magnets, showing how their special requirements have brought about significant advances in the technology, particularly the development of filamentary superconducting composites. Such developments have made large superconducting accelerators an actuality: the Tevatron in routine operation, the Hadron Electron Ring Accelerator (HERA) under construction, and the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC) at the conceptual design stage. Other applications of superconductivity have also been facilitated - for example medical imaging and small accelerators for industrial and medical use.

  6. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    SciTech Connect

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  7. J-PAS: The Javalambre Physics of the Accelerated Universe Astrophysical Survey

    NASA Astrophysics Data System (ADS)

    Cepa, J.; Benítez, N.; Dupke, R.; Moles, M.; Sodré, L.; Cenarro, A. J.; Marín-Franch, A.; Taylor, K.; Cristóbal, D.; Fernández-Soto, A.; Mendes de Oliveira, C.; Abramo, L. R.; Alcaniz, J. S.; Overzier, R.; Hernández-Monteagudo, A.; Alfaro, E. J.; Kanaan, A.; Carvano, M.; Reis, R. R. R.; J-PAS Team

    2016-10-01

    The Javalambre Physics of the Accelerated Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Observatory in Spain with a purpose-built, dedicated 2.5 m telescope and a 4.7 sq.deg. camera with 1.2 Gpix. Starting in late 2016, J-PAS will observe 8500 sq.deg. of Northern Sky and measure Δz˜0.003(1+z) photo-z for 9× 107 LRG and ELG galaxies plus several million QSOs, sampling an effective volume of ˜ 14 Gpc3 up to z=1.3 and becoming the first radial BAO experiment to reach Stage IV. J-PAS will detect 7× 105 galaxy clusters and groups, setting constraints on Dark Energy which rival those obtained from its BAO measurements. Thanks to the superb characteristics of the site (seeing ˜ 0.7 arcsec), J-PAS is expected to obtain a deep, sub-arcsec image of the Northern sky, which combined with its unique photo-z precision will produce one of the most powerful cosmological lensing surveys before the arrival of Euclid. J-PAS's unprecedented spectral time domain information will enable a self-contained SN survey that, without the need for external spectroscopic follow-up, will detect, classify and measure σz˜ 0.5 redshifts for ˜ 4000 SNeIa and ˜ 900 core-collapse SNe. The key to the J-PAS potential is its innovative approach: a contiguous system of 54 filters with 145 Å width, placed 100 Å apart over a multi-degree FoV is a powerful redshift machine, with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. The J-PAS camera is equivalent to a 4.7 sq.deg. IFU and it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations.

  8. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations

  9. Physical Property Changes in Plutonium from Accelerated Aging using Pu-238 Enrichment

    SciTech Connect

    Chung, B W; Choi, B W; Saw, C K; Thompson, S R; Woods, C H; Hopkins, D J; Ebbinghaus, B B

    2006-12-20

    We present changes in volume, immersion density, and tensile properties observed from accelerated aged plutonium alloys. Accelerated alloys (or spiked alloys) are plutonium alloys enriched with approximately 7.5 weight percent of the faster-decaying {sup 238}Pu to accelerate the aging process by approximately 17 times the rate of unaged weapons-grade plutonium. After sixty equivalent years of aging on spiked alloys, the dilatometry shows the samples at 35 C have swelled in volume by 0.15 to 0.17 % and now exhibit a near linear volume increase due to helium in-growth. The immersion density of spiked alloys shows a decrease in density, similar normalized volumetric changes (expansion) for spiked alloys. Tensile tests show increasing yield and engineering ultimate strength as spiked alloys are aged.

  10. A Treasure Trove of Physics from a Common Source-Automobile Acceleration Data

    NASA Astrophysics Data System (ADS)

    Graney, Christopher M.

    2005-11-01

    What is better than interesting, challenging physics with good data free for the taking to which everyone can relate? That's what is available to anyone who digs into the reams of automobile performance tests that have been available in popular magazines since the 1950s. Opportunities to do and teach interesting physics abound, as evidenced by the frequent appearance of "physics of cars" articles in The Physics Teacher.1-6

  11. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.

    2013-12-01

    The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.

  12. Synchrotron radiation from protons

    SciTech Connect

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature.

  13. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles

    NASA Astrophysics Data System (ADS)

    Xu, X. L.; Hua, J. F.; Wu, Y. P.; Zhang, C. J.; Li, F.; Wan, Y.; Pai, C.-H.; Lu, W.; An, W.; Yu, P.; Hogan, M. J.; Joshi, C.; Mori, W. B.

    2016-03-01

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  14. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    PubMed

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  15. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    PubMed

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles. PMID:27058082

  16. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  17. Robert R. Wilson Prize for Achievement in the Physics of Particle Accelerators Talk

    NASA Astrophysics Data System (ADS)

    Peoples, John, Jr.

    2010-02-01

    The 1982 Design Luminosity Requirement for the Tevatron Collider luminosity was 10^30 cm-2 s-1. At the time this seemed like an ambitious goal because the uncompleted Tevatron would be the first superconducting synchrotron, the anti-proton source design was an ambitious two ring design, which many wise people thought was too complicated, magnetic field of the low beta quads was at the limit of superconducting wire performance and a thin rod of lithium carrying a mega-amp was the first anti-proton collection lens. The highest luminosity achieved in the first run of the Tevatron, as a Collider in 1987, was only 3x10^29 cm^2 s-1. Nevertheless, the original goal of 10^30 cm-2 s-1 was reached and then exceeded in the next two years and the luminosity goals were set higher. Twenty years later, the peak Tevatron collider luminosity in the two interaction regions is typically 3x10^32 cm-2s-1. This lecture will trace the nearly thirty year campaign of improvements that led to the current performance. )

  18. Accelerator & Fusion Research Division: 1993 Summary of activities

    SciTech Connect

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  19. Effect of physical training in cool and hot environments on +Gz acceleration tolerance in women

    NASA Technical Reports Server (NTRS)

    Brock, P. J.; Sciaraffa, D.; Greenleaf, J. E.

    1982-01-01

    Acceleration tolerance, plasma volume, and maximal oxygen uptake were measured in 15 healthy women before and after submaximal isotonic exercise training periods in cool and hot environments. The women were divided on the basis of age, maximal oxygen uptake, and +Gz tolerance into three groups: a group that exercised in heat (40.6 C), a group that exercised at a lower temperature (18.7 C), and a sedentary control group that functioned in the cool environment. There was no significant change in the +Gz tolerance in any group after training, and terminal heart rates were similar within each group. It is concluded that induction of moderate acclimation responses without increases in sweat rate or resting plasma volume has no influence on +Gz acceleration tolerance in women.

  20. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.

    PubMed

    Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M

    2015-02-27

    Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves. PMID:25722406

  1. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  2. Synchrotron polarization in blazars

    SciTech Connect

    Zhang, Haocheng; Böttcher, Markus; Chen, Xuhui

    2014-07-01

    We present a detailed analysis of time- and energy-dependent synchrotron polarization signatures in a shock-in-jet model for γ-ray blazars. Our calculations employ a full three-dimensional radiation transfer code, assuming a helical magnetic field throughout the jet. The code considers synchrotron emission from an ordered magnetic field, and takes into account all light-travel-time and other relevant geometric effects, while the relevant synchrotron self-Compton and external Compton effects are handled with the two-dimensional Monte-Carlo/Fokker-Planck (MCFP) code. We consider several possible mechanisms through which a relativistic shock propagating through the jet may affect the jet plasma to produce a synchrotron and high-energy flare. Most plausibly, the shock is expected to lead to a compression of the magnetic field, increasing the toroidal field component and thereby changing the direction of the magnetic field in the region affected by the shock. We find that such a scenario leads to correlated synchrotron + synchrotron-self-Compton flaring, associated with substantial variability in the synchrotron polarization percentage and position angle. Most importantly, this scenario naturally explains large polarization angle rotations by ≳ 180°, as observed in connection with γ-ray flares in several blazars, without the need for bent or helical jet trajectories or other nonaxisymmetric jet features.

  3. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  4. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGES

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; et al

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  5. Diagnostics used in commissioning the IUCF Cooler Injector Synchrotron

    SciTech Connect

    Ball, M.S.; Friesel, D.L.; Hamilton, B.J.

    1998-12-01

    Several new diagnostics systems were designed to aid in the commissioning of the IUCF Cooler Injection Synchrotron (CIS). Among them are a time of flight measurement system (ToF), a multi-wire profile monitor system (Harp) and a beam position monitor system (BPM). Pulsed beam from the 7 MeV linear accelerator is monitored using the ToF system. Several removable Harps are mounted in the injection beamline and ring which are instrumental for tuning ring injection and accumulation. BPMs are placed at the entrance and exit of the four ring dipole magnets to facilitate beam centering during injection and ramping. Fast and slow BPM displays are available to the operator for these functions. These diagnostics and their uses for CIS ring commissioning will be discussed. {copyright} {ital 1998 American Institute of Physics.}

  6. Synchrotron based spallation neutron source concepts

    SciTech Connect

    Cho, Y.

    1998-07-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required {approx} 1 {micro}s. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources.

  7. New theoretical results in synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.; Jarovoi, A. T.

    2005-11-01

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle Δ ≈ 1/γ (here γ-relativistic factor: γ = E/mc2, E energy, m electron rest mass, c light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23 27, 2001, p. 293 300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2 6, 2001, pp. 15 30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  8. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    DOE PAGES

    Thurman-Keup, R.; Bhat, C.; Blokland, W.; Crisp, J.; Eddy, N.; Fellenz, B.; Flora, R.; Hahn, A.; Hansen, S.; Kiper, T.; et al

    2011-10-17

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This study describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  9. Hadron Physics at the Charm and Bottom Thresholds and Other Novel QCD Physics Topics at the NICA Accelerator Facility

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-06-20

    The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.

  10. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  11. National Synchrotron Light Source

    ScienceCinema

    None

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  12. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  13. Diffusion studies with synchrotron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.

    2011-12-01

    Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.

  14. Stanford Synchrotron Radiation Laboratory activity report for 1987

    SciTech Connect

    Robinson, S.; Cantwell, K.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  15. Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator.

    PubMed

    Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube

    2016-01-01

    Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended. PMID:27221838

  16. Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)

    SciTech Connect

    Clearwater, S.

    1983-03-01

    The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe.

  17. Black hole physics. Black hole lightning due to particle acceleration at subhorizon scales.

    PubMed

    Aleksić, J; Ansoldi, S; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; Becerra González, J; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; de Oña Wilhelmi, E; Delgado Mendez, C; Dominis Prester, D; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; García López, R J; Garczarczyk, M; Garrido Terrats, D; Gaug, M; Godinović, N; González Muñoz, A; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Prada Moroni, P G; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rodriguez Garcia, J; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J

    2014-11-28

    Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet.

  18. Black hole physics. Black hole lightning due to particle acceleration at subhorizon scales.

    PubMed

    Aleksić, J; Ansoldi, S; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; Becerra González, J; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; de Oña Wilhelmi, E; Delgado Mendez, C; Dominis Prester, D; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; García López, R J; Garczarczyk, M; Garrido Terrats, D; Gaug, M; Godinović, N; González Muñoz, A; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Prada Moroni, P G; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rodriguez Garcia, J; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J

    2014-11-28

    Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet. PMID:25378461

  19. Accelerated Integrated Science Sequence (AISS): An Introductory Biology, Chemistry, and Physics Course

    ERIC Educational Resources Information Center

    Purvis-Roberts, Kathleen L.; Edwalds-Gilbert, Gretchen; Landsberg, Adam S.; Copp, Newton; Ulsh, Lisa; Drew, David E.

    2009-01-01

    A new interdisciplinary, introductory science course was offered for the first time during the 2007-2008 school year. The purpose of the course is to introduce students to the idea of working at the intersections of biology, chemistry, and physics and to recognize interconnections between the disciplines. Interdisciplinary laboratories are a key…

  20. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  1. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    SciTech Connect

    Lee, Peter L; Rhyne, James J

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  2. Accelerating Translation of Physical Activity and Cancer Survivorship Research into Practice: Recommendations for a More Integrated and Collaborative Approach

    PubMed Central

    Phillips, Siobhan M.; Alfano, Catherine M.; Perna, Frank M.; Glasgow, Russell E.

    2015-01-01

    Physical activity has been deemed safe and effective in reducing many negative side effects of treatment for cancer survivors and promoting better overall health. However, most of this research has focused on highly controlled randomized trials and little of this research has been translated into care or policy for survivors. The purpose of the present paper is to present a research agenda for the field to accelerate the dissemination and implementation of empirically-supported physical activity interventions into care. We provide rationale for the role of basic, behavioral, clinical implementation and population scientists in moving this science forward and call for a more coordinated effort across different phases of research. In addition, we provide key strategies and examples for ongoing and future studies using the RE-AIM (Reach, Efficacy/Effectiveness, Adoption, Implementation and Maintenance) framework and pose recommendations for collaborations between researchers and stakeholders to enhance the integration of this research into policy and practice. Overall, we recommend that physical activity and cancer survivorship research employ additional study designs, include relevant stakeholders and be more collaborative, integrated, contextual, and representative in terms of both setting and participants. PMID:24599577

  3. Practical aspects of shielding high-energy particle accelerators

    SciTech Connect

    Thomas, R.H. |

    1993-09-01

    The experimental basis of shielding design for high-energy accelerators that has been established over the past thirty years is described. Particular emphasis is given to the design of large accelerators constructed underground. The first data obtained from cosmic-ray physics were supplemented by basic nuclear physics. When these data proved insufficient, experiments were carried out and interpreted by several empirical formulae -- the most successful of which has been the Moyer Model. This empirical model has been used successfully to design the shields of most synchrotrons currently in operation, and is still being used in preliminary design and to check the results of neutron transport calculations. Accurate shield designs are needed to reduce external radiation levels during accelerator operations and to minimize environmental impacts such as {open_quotes}skyshine{close_quotes} and the production of radioactivity in groundwater. Examples of the cost of minimizing such environmental impacts are given.

  4. Physical basis for the ofloxacin-induced acceleration of lysozyme aggregation and polymorphism in amyloid fibrils.

    PubMed

    Muthu, Shivani A; Mothi, Nivin; Shiriskar, Sonali M; Pissurlenkar, Raghuvir R S; Kumar, Anil; Ahmad, Basir

    2016-02-15

    Aggregation of globular proteins is an intractable problem which generally originates from partially folded structures. The partially folded structures first collapse non-specifically and then reorganize into amyloid-like fibrils via one or more oligomeric intermediates. The fibrils and their on/off pathway intermediates may be toxic to cells and form toxic deposits in different human organs. To understand the basis of origins of the aggregation diseases, it is vital to study in details the conformational properties of the amyloidogenic partially folded structures of the protein. In this work, we examined the effects of ofloxacin, a synthetic fluoroquinolone compound on the fibrillar aggregation of hen egg-white lysozyme. Using two aggregation conditions (4M GuHCl at pH 7.0 and 37 °C; and pH 1.7 at 65 °C) and a number of biophysical techniques, we illustrate that ofloxacin accelerates fibril formation of lysozyme by binding to partially folded structures and modulating their secondary, tertiary structures and surface hydrophobicity. We also demonstrate that Ofloxacin-induced fibrils show polymorphism of morphology, tinctorial properties and hydrophobic surface exposure. This study will assist in understanding the determinant of fibril formation and it also indicates that caution should be exercised in the use of ofloxacin in patients susceptible to various aggregation diseases.

  5. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM

    SciTech Connect

    Das, Indra J.; Cheng, C.-W.; Watts, Ronald J.; Ahnesjoe, Anders; Gibbons, John; Li, X. Allen; Lowenstein, Jessica; Mitra, Raj K.; Simon, William E.; Zhu, Timothy C.

    2008-09-15

    For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors (<1%), beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning.

  6. Coherent Synchrotron Radiation: Theory and Simulations.

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2012-03-29

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  7. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  8. The Development of Biomedical Applications of Nuclear Physics Detector Technology at the Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew

    2003-10-01

    The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for the United States Department of Energy. As a user facility for physicists worldwide, its primary mission is to conduct basic nuclear physics research of the atom's nucleus at the quark level. Within the Jefferson Lab Physics Division is the Jefferson Lab Detector Group which was formed to support the design and construction of new detector systems during the construction phase of the major detector systems at Jefferson Lab and to act as technical consultants for the lab scientists and users. The Jefferson Lab Detector Group, headed by Dr. Stan Majewski, has technical capabilities in the development and use of radiation detection systems. These capabilities include expertise in nuclear particle detection through the use of gas detectors, scintillation and light guide techniques, standard and position-sensitive photomultiplier tubes (PSPMTs), fast analog readout electronics and data acquisition, and on-line image formation and analysis. In addition to providing nuclear particle detector support to the lab, the group has for several years (starting in 1996) applied these technologies to the development of novel high resolution gamma-ray imaging systems for biomedical applications and x-ray imaging techniques. The Detector Group has developed detector systems for breast cancer detection, brain cancer therapy and small animal imaging to support biomedical research. An overview will be presented of how this small nuclear physics detector research group by teaming with universities, medical facilities, industry and other national laboratories applies technology originating from basic nuclear physics research to biomedical applications.

  9. Physical and mechanical metallurgy of high purity Nb for accelerator cavities

    NASA Astrophysics Data System (ADS)

    Bieler, T. R.; Wright, N. T.; Pourboghrat, F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G. E.; Liu, W.

    2010-03-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  10. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    New calculations of the acoustic wave energy fluxes generated in the solar convective zone have been performed. The treatment of convective turbulence in the sun and solar-like stars, in particular, the precise nature of the turbulent power spectrum has been recognized as one of the most important issues in the wave generation problem. Several different functional forms for spatial and temporal spectra have been considered in the literature and differences between the energy fluxes obtained for different forms often exceed two orders of magnitude. The basic criterion for choosing the appropriate spectrum was the maximal efficiency of the wave generation. We have used a different approach based on physical and empirical arguments as well as on some results from numerical simulation of turbulent convection.

  11. Trans-Relativistic Particle Acceleration in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, P.

    2014-01-01

    Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron

  12. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    SciTech Connect

    Courau, T.; Plagne, L.; Ponicot, A.; Sjoden, G.

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadrature required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)

  13. Accelerating efforts to prevent childhood obesity: spreading, scaling, and sustaining healthy eating and physical activity.

    PubMed

    Chang, Debbie I; Gertel-Rosenberg, Allison; Snyder, Kim

    2014-12-01

    During the past decade, progress has been made in addressing childhood obesity through policy and practice changes that encourage increased physical activity and access to healthy food. With the implementation of these strategies, an understanding of what works to prevent childhood obesity is beginning to emerge. The task now is to consider how best to spread, scale, and sustain promising childhood obesity prevention strategies. In this article we examine a project led by Nemours, a children's health system, to address childhood obesity. We describe Nemours's conceptual approach to spreading, scaling, and sustaining a childhood obesity prevention intervention. We review a component of a Nemours initiative in Delaware that focused on early care and education settings and its expansion to other states through the National Early Care and Education Learning Collaborative to prevent childhood obesity. We also discuss lessons learned. Focusing on the spreading, scaling, and sustaining of promising strategies has the potential to increase the reach and impact of efforts in obesity prevention and help ensure their impact on population health.

  14. J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey

    NASA Astrophysics Data System (ADS)

    Benítez, N.; Dupke, R.; Moles, M.; Sodré, L.; Cenarro, A. J.; Marín Franch, A.; Taylor, K.; Cristóbal, D.; Fernández-Soto, A.; Mendes de Oliveira, C.; Cepa-Nogué, J.; Abramo, L. R.; Alcaniz, J. S.; Overzier, R.; Hernández-Monteagudo, C.; Alfaro, E. J.; Kanaan, A.; Carvano, M.; Reis, R. R. R.; J-PAS Collaboration

    2015-05-01

    J-PAS is a Spanish-Brazilian 8500 deg^2 Cosmological Survey which will be carried out from the Javalambre Observatory with a purpose-built, dedicated 2.5 m telescope and a 4.7 deg^2 camera with 1.2 Gpix. Starting in 2015, J-PAS will use 59 filters to measure high precision 0.003(1+z) photometric redshifts for 90M galaxies plus several million QSOs, about 50 times more than the largest current spectroscopic survey, sampling an effective volume of ˜ 14 Gpc^3 up to z=1.3. J-PAS will not only be first radial BAO experiment to reach Stage IV; it will also detect and measure the mass of 7× 10^5 galaxy clusters and groups, setting constrains on Dark Energy which rival those obtained from BAO measurements. The combination of a set of 145 Å NB filters, placed 100 Å apart, and a multi-degree field of view is a powerful ``redshift machine'', equivalent to a 4000 multiplexing spectrograph, but many times cheaper to build. The J-PAS camera is equivalent to a very large, 4.7 deg^2 ``IFU'', which will produce a time-resolved, 3D image of the Northern Sky with a very wide range of scientific applications in Galaxy Evolution, Stellar Physics and the Solar System.

  15. Multi-processor developments in the United States for future high energy physics experiments and accelerators

    SciTech Connect

    Gaines, I.

    1988-03-01

    The use of multi-processors for analysis and high-level triggering in High Energy Physics experiments, pioneered by the early emulator systems, has reached maturity, in particular with the multiple microprocessor systems in use at Fermilab. It is widely acknowledged that such systems will fulfill the major portion of the computing needs of future large experiments. Recent developments at Fermilab's Advanced Computer Program will make such systems even more powerful, cost-effective, and easier to use than they are at present. The next generation of microprocessors, already available, will provide CPU power of about one VAX 780 equivalent/$300, while supporting most VMS FORTRAN extensions and large (>8MB) amounts of memory. Low cost high density mass storage devices (based on video tape cartridge technology) will allow parallel I/O to remove potential I/O bottlenecks in systems of over 1000 VAX equipment processors. New interconnection schemes and system software will allow more flexible topologies and extremely high data bandwidth, especially for on-line systems. This talk will summarize the work at the Advanced Computer Program and the rest of the US in this field. 3 refs., 4 figs.

  16. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  17. Synchrotron radiation in biosciences

    NASA Astrophysics Data System (ADS)

    Marinkovic, Nebojsa S.; Gupta, Sayan; Zhan, Chenyang; Chance, Mark R.

    2005-12-01

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  18. Remote Synchrotron Light Instrumentation Using Optical Fibers

    SciTech Connect

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  19. Synchrotron radiation — 1873 to 1947

    NASA Astrophysics Data System (ADS)

    Blewett, John P.

    1988-04-01

    In 1873 Maxwell's treatise "Electricity and Magnetism" made it clear that a changing electric current will emit electromagnetic radiation. By the turn of the century, J.J. Thomson was showing that currents in space could be carried by electrons; accordingly, it was reasonable to believe that electrons, when accelerated, would radiate. By 1912, the theory of radiation from accelerated electrons was worked out and buried in the literature. Radiation from accelerated relativistic electrons did not come into prominence again until the 1940's when, finally, it was observed at the Research Laboratory of the General Electric Company. This paper will discuss the early theoretical treatments and will describe the first observations with the G.E. 100 MeV betatron and 75 MeV synchrotron.

  20. Synchrotron radiation sources and research

    SciTech Connect

    Teng, L.C.

    1995-12-31

    This is an introduction and a review of Synchrotron Radiation sources and the research performed using synchrotron radiation. I will begin with a brief discussion of the two principal uses of particle storage rings: for colliding beams (Collider) and for synchrotron radiation (Radiator). Then I will concentrate on discussions of synchrotron radiation topics, starting with a historical account, followed by descriptions of the features of the storage ring and the features of the radiation from the simplest source -- the bending magnet. I will then discuss the special insertion device sources -- wigglers and undulators -- and their radiations, and end with a brief general account of the research and other applications of synchrotron radiation.

  1. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    SciTech Connect

    Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  2. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    NASA Astrophysics Data System (ADS)

    Machida, S.; Barlow, R.; Berg, J. S.; Bliss, N.; Buckley, R. K.; Clarke, J. A.; Craddock, M. K.; D'Arcy, R.; Edgecock, R.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Johnstone, C.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Keil, E.; Kelliher, D. J.; Kirkman, I. W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Méot, F.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Owen, H. L.; Pasternak, J.; Peach, K. J.; Poole, M. W.; Rao, Y.-N.; Saveliev, Y.; Scott, D. J.; Sheehy, S. L.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P. H.; Wolski, A.; Yokoi, T.

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a `scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  3. 3 GeV Booster Synchrotron Conceptual Design Report

    SciTech Connect

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  4. Synchrotron Facilities and Free Electron Lasers

    SciTech Connect

    Vaclav, Vylet; Liu, James; /SLAC

    2007-12-21

    Synchrotron radiation (SR) is electromagnetic radiation emitted when a charged particle travels along a curved trajectory. Initially encountered as a nuisance around orbits of high energy synchrotron accelerators, it gradually became an indispensable research tool in many applications: crystallography, X-ray lithography, micromechanics, structural biology, microprobe X-ray experiments, etc. So-called first generation SR sources were exploiting SR in parasitic mode at electron accelerators built to study particle collisions. The second generation of SR sources was the first facilities solely devoted to SR production. They were optimized to achieve stable high currents in the accelerator ring to achieve substantially higher photon flux and to provide a large number of SR beam lines for users. Third generation sources were further optimized for increased brilliance, i.e. with photons densely packed into a beam of very small cross-sectional area and minimal angular divergence (see the Appendix for more detailed definitions of flux, brightness and brilliance) and makes extensive use of the insertion devices such as wigglers and undulators. Free Electron Lasers (FELs), the fourth generation SR sources, open new research possibilities by offering extremely short pulses of extremely bright and coherent radiation. The number of SR sources around the world now probably exceeds 100. These facilities vary greatly in size, energy of the electron (or positron) beams, range of photon energies and other characteristics of the photon beams produced. In what follows we will concentrate on describing some common aspects of SR facilities, their operation modes and specific radiation protection aspects.

  5. Synchrotron phase transition crossing using an rf harmonic

    SciTech Connect

    Griffin, J.E.

    1991-03-01

    This paper describes a new method of transition crossing in strong focusing proton or heavy ion synchrotrons. Such accelerators have the property that at some energy, frequently within the operating range of the machine, the rotation period of particles within the momentum acceptance range of the machine becomes independent of momentum. 19 refs., 10 figs.

  6. GPU/MIC Acceleration of the LHC High Level Trigger to Extend the Physics Reach at the LHC

    SciTech Connect

    Halyo, Valerie; Tully, Christopher

    2015-04-14

    The quest for rare new physics phenomena leads the PI [3] to propose evaluation of coprocessors based on Graphics Processing Units (GPUs) and the Intel Many Integrated Core (MIC) architecture for integration into the trigger system at LHC. This will require development of a new massively parallel implementation of the well known Combinatorial Track Finder which uses the Kalman Filter to accelerate processing of data from the silicon pixel and microstrip detectors and reconstruct the trajectory of all charged particles down to momentums of 100 MeV. It is expected to run at least one order of magnitude faster than an equivalent algorithm on a quad core CPU for extreme pileup scenarios of 100 interactions per bunch crossing. The new tracking algorithms will be developed and optimized separately on the GPU and Intel MIC and then evaluated against each other for performance and power efficiency. The results will be used to project the cost of the proposed hardware architectures for the HLT server farm, taking into account the long term projections of the main vendors in the market (AMD, Intel, and NVIDIA) over the next 10 years. Extensive experience and familiarity of the PI with the LHC tracker and trigger requirements led to the development of a complementary tracking algorithm that is described in [arxiv: 1305.4855], [arxiv: 1309.6275] and preliminary results accepted to JINST.

  7. Applications of free electron lasers and synchrotrons in industry and research

    SciTech Connect

    Barletta, William A.

    2013-04-19

    Synchrotron radiation sources have had a profound effect on both science and technology from their beginnings decades ago as parasitic operations on accelerators for high energy physics. Now the general area of photon science has opened up new experimental techniques which have become the mainstay tools of materials science, surface physics, protein crystallography, and nanotechnology. With the promise of ultra-bright beams from the latest generation of storage rings and free electron lasers with full coherence, the tools of photon science promise to open a new area of mesoscale science and technology as well as prove to be a disruptive wildcard in the search for sustainable energy technologies. This review will survey a range of applications and explore in greater depth the potential applications to EUV lithography and to technologies for solar energy.

  8. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  9. Cardiac acceleration at the onset of exercise: a potential parameter for monitoring progress during physical training in sports and rehabilitation.

    PubMed

    Hettinga, Florentina J; Monden, Paul G; van Meeteren, Nico L U; Daanen, Hein A M

    2014-05-01

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were searched to retrieve studies investigating HRonset. In total 652 studies were retrieved. These articles were then classified as having emphasis on HRonset in a sports or rehabilitation setting, which resulted in 8 of 112 studies with a sports application and 6 of 68 studies with a rehabilitation application that met inclusion criteria. Two co-existing mechanisms underlie HRonset: feedforward (central command) and feedback (mechanoreflex, metaboreflex, baroreflex) control. A number of studies investigated HRonset during the first few seconds of exercise (HRonsetshort), in which central command and the mechanoreflex determine vagal withdrawal, the major mechanism by which heart rate (HR) increases. In subsequent sports and rehabilitation studies, interest focused on HRonset during dynamic exercise over a longer period of time (HRonsetlong). Central command, mechanoreflexes, baroreflexes, and possibly metaboreflexes contribute to HRonset during the first seconds and minutes of exercise, which in turn leads to further vagal withdrawal and an increase in sympathetic activity. HRonset has been described as the increase in HR compared with resting state (delta HR) or by exponential modeling, with measurement intervals ranging from 0-4 s up to 2 min. Delta HR was used to evaluate HRonsetshort over the first 4 s of exercise, as well as for analyzing HRonsetlong. In exponential modeling, the HR response to dynamic exercise is biphasic, consisting of fast (parasympathetic, 0-10 s) and slow (sympathetic, 1-4 min) components. Although available studies differed largely in measurement protocols, cross-sectional and longitudinal training studies showed that studies analyzing HRonset

  10. The relation between tilt table and acceleration-tolerance and their dependence on stature and physical fitness

    NASA Technical Reports Server (NTRS)

    Klein, K. E.; Backhausen, F.; Bruner, H.; Eichhorn, J.; Jovy, D.; Schotte, J.; Vogt, L.; Wegman, H. M.

    1980-01-01

    A group of 12 highly trained athletes and a group of 12untrained students were subjected to passive changes of position on a tilt table and positive accelerations in a centrifuge. During a 20 min tilt, including two additional respiratory maneuvers, the number of faints and average cardiovascular responses did not differ significantly between the groups. During linear increase of acceleration, the average blackout level was almost identical in both groups. Statistically significant coefficients of product-moment correlation for various relations were obtained. The coefficient of multiple determination computed for the dependence of acceleration tolerance on heart-eye distance and systolic blood pressure at rest allows the explanation of almost 50% of the variation of acceleration tolerance. The maximum oxygen uptake showed the expected significant correlation to the heart rate at rest, but not the acceleration tolerance, or to the cardiovascular responses to tilting.

  11. Microangiography in Living Mice Using Synchrotron Radiation

    SciTech Connect

    Yuan Falei; Wang Yongting; Xie Bohua; Tang Yaohui; Guan Yongjing; Lu Haiyan; Yang Guoyuan; Xie Honglan; Du Guohao; Xiao Tiqiao

    2010-07-23

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 {mu}m/pixel. The optimal dose of contrast agent is 100 {mu}l per injection and the injecting rate is 33 {mu}l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43{+-}6.8 {mu}m. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  12. Rapid cycling medical synchrotron and beam delivery system

    DOEpatents

    Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  13. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  14. Making good use of synchrotron radiation, The role of CHESS at Cornell and as a national facility

    SciTech Connect

    Batterman, B.W.

    1986-01-01

    Atom smashers is what the New York Times calls them when it publishes a piece about particle accelerators. Historically, particle accelerators were in fact used to break apart atoms, but modern machines do more exotic things. One of them is a spin-off of acceleration - the production of high-energy synchrotron radiation. Once considered a nuisance, this radiation has become valuable in almost every field of science and engineering. It is the basis of a national facility, the Cornell High Energy Synchrotron Source (CHESS), that operates in conjunction with the Cornell Electron Storage Ring (CESR). CHESS provides the highest-energy synchrotron radiation available in the United States.

  15. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  16. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  17. Introducing Synchrotrons Into the Classroom

    ScienceCinema

    None

    2016-07-12

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  18. Introducing Synchrotrons Into the Classroom

    SciTech Connect

    2011-05-20

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  19. Evidence of Bulk Acceleration of the GRB X-Ray Flare Emission Region

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2016-06-01

    Applying our recently developed generalized version of the high-latitude emission theory to the observations of X-ray flares in gamma-ray bursts (GRBs), here we present clear observational evidence that the X-ray flare emission region is undergoing rapid bulk acceleration as the photons are emitted. We show that both the observed X-ray flare light curves and the photon index evolution curves can be simultaneously reproduced within a simple physical model invoking synchrotron radiation in an accelerating emission region far from the GRB central engine. Such an acceleration process demands an additional energy dissipation source other than kinetic energy, which points toward a significant Poynting flux in the emission region of X-ray flares. As the X-ray flares are believed to share a similar physical mechanism as the GRB prompt emission, our finding here hints that the GRB prompt emission jets may also carry a significant Poynting flux in their emitting region.

  20. A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source

    SciTech Connect

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1982-09-01

    This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at present

  1. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  2. Development of Partially-Coherent Wavefront Propagation Simulation Methods for 3rd and 4th Generation Synchrotron Radiation Sources.

    SciTech Connect

    Chubar O.; Berman, L; Chu, Y.S.; Fluerasu, A.; Hulbert, S.; Idir, M.; Kaznatcheev, K.; Shapiro, D.; Baltser, J.

    2012-04-04

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, is of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.

  3. Code comparison for accelerator design and analysis

    SciTech Connect

    Parsa, Z.

    1988-01-01

    We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary in these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs.

  4. Summary of the accelerator working group

    SciTech Connect

    Ankenbrandt, C.; Noble, R.J.

    1998-03-01

    We present a summary of the main topics discussed in the Accelerator Working Group during the ``Workshop on the Physics at the First Muon Collider``. The discussions centered on critical design issues for a high-intensity, medium-energy proton synchrotron that would replace the present Fermilab 8 GeV Booster early in the next century. Such a machine is intended both to serve the hadron program with an order of magnitude increase in average proton current and to be compatible as a source for a future muon collider. Particular issues discussed at length include rf system design, control of longitudinal space-charge effects, bunching of proton beams and beam instabilities.

  5. Problems in rejuvenating a control system and plans for the CERN proton synchrotron (CPS)

    NASA Astrophysics Data System (ADS)

    Perriollat, F.; Serre, C.

    1990-08-01

    The problem of rejuvenating a control system will normally emerge for most of the accelerators and large experimental physics facilities. The lifetime of these facilities is much longer than the lifetime of their control systems, due to the rapid evolution in computer science technology. This means that during the active life of one facility the control system may have to be renewed between one and three times. The problems o this rejuvenation are discussed, taking into account the previous experience at the CERN proton synchrotron (CPS) and the constraints imposed by the financing of the project and the lack of staff. The current plans and options selected for the new generation of the CPS control system are presented. Domains of common work with other control systems will be especially highlighted.

  6. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  7. A novel molecular synchrotron for cold collision and EDM experiments.

    PubMed

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-09-07

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed (88)SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles.

  8. A novel molecular synchrotron for cold collision and EDM experiments

    NASA Astrophysics Data System (ADS)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-09-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles.

  9. A novel molecular synchrotron for cold collision and EDM experiments

    PubMed Central

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  10. A novel molecular synchrotron for cold collision and EDM experiments.

    PubMed

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed (88)SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  11. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  12. The time variability of Jupiter's synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bolton, Scott Jay

    1991-02-01

    The time variability of the Jovian synchrotron emission is investigated by analyzing radio observations of Jupiter at decimetric wavelengths. The observations are composed from two distinct sets of measurements addressing both short term (days to weeks) and long term (months to years) variability. The study of long term variations utilizes a set of measurements made several times each month with the NASA Deep Space Network (DNS) antennas operating at 2295 MHz (13.1 cm). The DSN data set, covering 1971 through 1985, is compared with a set of measurements of the solar wind from a number of Earth orbiting spacecraft. The analysis indicates a maximum correlation between the synchrotron emission and the solar wind ram pressure with a two year time lag. Physical mechanisms affecting the synchrotron emission are discussed with an emphasis on radial diffusion. Calculations are performed that suggest the correlation is consistent with inward adiabatic diffusion of solar wind particles driven by Brice's model of ionospheric neutral wind convection (Brice 1972). The implication is that the solar wind could be a source of particles of Jupiter's radiation belts. The investigation of short term variability focuses on a three year Jupiter observing program using the University of California's Hat Creek radio telescope operating at 1400 MHz (21 cm). Measurements are made every two days during the months surrounding opposition. Results from the three year program suggest short term variability near the 10-20 percent level but should be considered inconclusive due to scheduling and observational limitations. A discussion of magneto-spheric processes on short term timescales identifies wave-particle interactions as a candidate source. Further analysis finds that the short term variations could be related to whistler mode wave-particles interactions in the radiation belts associated with atmospheric lightning on Jupiter. However, theoretical calculations on wave particle interactions

  13. Alternating gradient synchrotron

    SciTech Connect

    Lowenstein, D.I.

    1984-12-06

    With the start of a research and development effort directed towards the Superconducting Super Collider (SSC), it is essential that US industry become involved as soon as possible. For that reason, I describe what a conventional accelerator complex is like and therefore what the first stages of the SSC would entail.

  14. Introduction to Korean Accelerator Science and Activities in Industrial Accelerators

    NASA Astrophysics Data System (ADS)

    Namkung, Won

    2012-03-01

    After 20 years of the first large-scale accelerator in Korea, the Pohang Light Source (PLS) of 2.0 GeV at POSTECH, its upgrade (PLS-II) is now under commissioning with energy of 3.0 GeV. The users' service for synchrotron radiation is scheduled in April 2012. There are five big accelerator projects in various stages of construction, namely a high-intensity proton linac of 100 MeV, the PAL-XFEL of 10-GeV, a carbon therapy cyclotron of 400 MeV/u, and rare isotope accelerators for isotope separator on-line (ISOL) and In-flight Fragmentation (IFF). There are also strong demands for industrial uses of accelerators, especially in sterilization applications. In this paper, we report the current status of accelerator projects and its science in Korea, along with a brief review of accelerator R&D going back to the early 1960s at universities.

  15. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  16. Mossbauer spectroscopy with synchrotron radiation

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Sturhahn, W.

    1993-07-01

    The principles underlying observation of the Mossbauer effect with synchrotron radiation are explained. The current status of the field is reviewed, and prospects for dedicated experimental stations on third generation machines are discussed.

  17. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  18. Single-bunch synchrotron shutter

    SciTech Connect

    Norris, J.R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, M.

    1991-12-31

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4 {times} {pi} {times} r {times} such that a single pulse is selected for transmission through an open position of the shutter.

  19. Study for a proposed Phase I Energy Recovery Linac (ERL) Synchrotron Light Source at Cornell University

    SciTech Connect

    Sol M. Gruner and Maury Tigner, eds.; Ivan Bazarov; Sergey Belomestnykh; Don Bilderback; Ken Finkelstein; Ernie Fontes; Steve Gray; Sol M. Gruner; Geoff Krafft; Lia Merminga; Hasan Padamsee; Ray Helmke; Qun Shen; Joe Rogers; Charles Sinclair; Richard Talman; Maury Tigner

    2001-07-01

    Synchrotron radiation (SR) has become an essential and rapidly growing tool across the sciences and engineering. World-wide, about 70 SR sources are in various stages of operation, construction, or planning, representing a cumulative investment on many billions of dollars and serving a growing research community well in excess of 10,000 scientists. To date, all major SR x-ray facilities are based on electron (or positron) storage rings. Given the expected continued growth, importance and expense of SR sources, it is important to ask if there are alternatives to the storage ring SR source which offer advantages of capability or cost. A step in this direction is being taken by the SR community with the proposed developments of linac-based x-ray free-electron lasers (XFELs) utilizing the self-amplified spontaneous emission process (SASE). However, the versatility of modern developments in accelerator physics, as applied to synchrotron radiation, is not limited to storage rings or XFELs. New developments in laser driven photoinjectors and superconducting linac technology open new and exciting possibilities for novel SR-generating machines which offer extraordinary capabilities and promise to catalyze whole new areas of SR-based science.

  20. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  1. A VERY FAST RAMPING MUON SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.PALMER,R.B.GARREN,A.A.

    2003-05-12

    A 4600 Hz fast ramping synchrotron is studied as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice. Muon survival is 83%.

  2. NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.

    SciTech Connect

    LUCCIO, A.; D'IMPERIO, N.; MALITSKY, N.

    2005-09-12

    Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.

  3. Angiography by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.

    1987-01-01

    Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.

  4. Performances of BNL high-intensity synchrotrons

    SciTech Connect

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.

  5. Beam halo collimation in heavy ion synchrotrons

    NASA Astrophysics Data System (ADS)

    Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.

    2015-08-01

    This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.

  6. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  7. Proceedings of the 1987 IEEE particle accelerator conference: Volume 1

    SciTech Connect

    Lindstrom, E.R.; Taylor, L.S.

    1987-01-01

    This book contains papers from the IEEE conference on particle accelerators. The general areas covered in this first of three volumes are: high energy accelerators; colliders; novel methods; free electron lasers; low energy accelerators; ion sources; synchrotron light source; radiation sources; instrumentation and control. Individual papers are separately indexed.

  8. Synchrotron light source data book: Version 4, Revision 05/96

    SciTech Connect

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

  9. STUDIES ON SEXTUPOLE COMPONENTS GENERATED BY EDDY CURRENTS IN THE RAPID CYCLING MEDICAL SYNCHROTRON.

    SciTech Connect

    CARDONA,J.ABELL,D.T.PEGGS,S.

    2003-05-12

    The Rapid Cycling Medical Synchrotron is a second generation medical accelerator that it has been designed with a repetition frequency of 30 Hz. This repetition frequency is far above the typical repetition frequency used in medical accelerators. An elliptical beam pipe has been chosen for the RCMS design in order to win as much physical aperture as possible while keeping the magnet dimensions as small as possible. Rapid Cycling induces Eddy current in the magnets. Eddy currents and elliptical beam pipes generate sextupole components that might be necessary to consider. In this paper, the effects of these sextupoles components are evaluated, first by looking at the phase space of a bunch of particles that has been tracked for 62530 turns, and also by evaluating the dynamical aperture of the accelerator. The effect of the sextupoles component in the tuneshift is also evaluated. First results obtained with Marylie show that the width of a phase space ellipse of a bunch of particles is slightly affected by the sextupoles due to the Eddy currents.

  10. Smartphones as Experimental Tools: Different Methods to Determine the Gravitational Acceleration in Classroom Physics by Using Everyday Devices

    ERIC Educational Resources Information Center

    Kuhn, Jochen; Vogt, Patrik

    2013-01-01

    New media technology becomes more and more important for our daily life as well as for teaching physics. Within the scope of our N.E.T. research project we develop experiments using New Media Experimental Tools (N.E.T.) in physics education and study their influence on students learning abilities. We want to present the possibilities e.g. of…

  11. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    SciTech Connect

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-05-09

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  12. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  13. Measurement of parameters in Indus-2 synchrotron radiation source.

    PubMed

    Ghodke, A D; Husain, Riyasat; Kumar, Pradeep; Yadav, Surendra; Puntambekar, T A

    2012-10-01

    The paper presents the measurement of optics parameters in Indus-2 synchrotron radiation source, which include betatron tune, beta function, dispersion function, natural chromaticity, corrected chromaticity, central RF frequency, momentum compaction factor, and linear betatron coupling. Two methods were used for beta function measurement; a conventional quadrupole scan method and a method using the fitting of the orbit response matrix. A robust Levenberg-Marquardt algorithm was used for nonlinear least square fitting of the orbit response matrix. In this paper, detailed methods for the parameter measurements are described. The measured results are discussed and compared with the theoretical values obtained using accelerator simulation code Accelerator Toolbox in MATLAB.

  14. Physics considerations for laser-plasma linear colliders

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  15. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  16. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  17. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor.

    PubMed

    Singh, M J; De Esch, H P L

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  18. Medical heavy ion accelerator proposals

    NASA Astrophysics Data System (ADS)

    Gough, R. A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety.

  19. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  20. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  1. Muon Acceleration - RLA and FFAG

    SciTech Connect

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  2. Contact microscopy with synchrotron radiation

    SciTech Connect

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  3. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  4. Physics design for the ATA (Advanced Test Accelerator) tapered wiggler 10. 6. mu. FEL (Free-Electron Laser) amplifier experiment

    SciTech Connect

    Fawley, W.M.

    1985-05-09

    The design and construction of a high-gain, tapered wiggler 10.6 ..mu.. Free Electron Laser (FEL) amplifier to operate with the 50 MeV e-beam is underway. This report discussed the FEL simulation and the physics motivations behind the tapered wiggler design and initial experimental diagnostics.

  5. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  6. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  7. Harmonic ratcheting for fast acceleration

    NASA Astrophysics Data System (ADS)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  8. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  9. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  10. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  11. Optical systems for synchrotron radiation

    SciTech Connect

    Howells, M.R.

    1985-12-01

    Various fundamental topics which underlie the design and use of optical systems for synchrotron radiation are considered from the viewpoint of linear system theory. These topics include the damped harmonic oscillator, free space propagation of an optical field, electromagnetic theory of optical properties of materials, theory of dispersion, and the Kramers-Kronig relations. 32 refs., 5 figs. (LEW)

  12. Synchrotron radiation and biomedical imaging

    SciTech Connect

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs.

  13. GPU Acceleration of the Locally Selfconsistent Multiple Scattering Code for First Principles Calculation of the Ground State and Statistical Physics of Materials

    SciTech Connect

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; Rennich, Steven; Rogers, James H

    2016-01-01

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.

  14. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  15. Position sensitive detectors for synchrotron radiation studies: the tortoise and the hare?

    NASA Astrophysics Data System (ADS)

    Lewis, Rob

    2003-11-01

    The huge gulf between the high photon fluxes available from synchrotrons and the capabilities of detectors to measure the resulting photon, electron or ion signals is well known. Whilst accelerator technology continues to advance at a rapid pace, it is detector performance which represents the limiting factor for many synchrotron experiments. In some cases there are still single channel counting detectors based on 40-year-old designs operational on synchrotron beamlines. The dream of many researchers is a detector which is able to simultaneously image and perform spectroscopy at the required data rates. A solution is the massive integration of parallel electronics into detectors on a pixel by pixel basis. These ideas have been in gestation for very many years awaiting sufficient funding, nevertheless, several prototypes are now at the testing stage. The current status of these and other detector developments targeted at synchrotron science are briefly reviewed.

  16. Incoherent synchrotron emission of laser-driven plasma edge

    SciTech Connect

    Serebryakov, D. A. Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  17. Radiative damping in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.

    2012-11-01

    The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  18. Transition crossing in proton synchrotrons using a flattened rf wave

    NASA Astrophysics Data System (ADS)

    Bhat, C. M.; Griffin, J.; MacLachlan, J.; Martens, M.; Meisner, K.; Ng, K. Y.

    1997-01-01

    The problems of beam loss and emittance growth during transition crossing in a proton synchrotron have been major issues for many years. Recently we have developed a scheme that resolves some of these problems by eliminating rf focusing during transition crossing. The technique uses a flattened (nonsinusoidal) rf wave form which delivers the correct acceleration to all particles in the beam. This scheme has been tested in the Fermilab Main Ring accelerator by the addition of 13% of a third harmonic rf voltage to the fundamental accelerating rf voltage during the nonadiabatic period near the transition energy. Beam loss was completely eliminated, and longitudinal emittance dilution after transition remained below 15%. Simulations of longitudinal beam dynamics reproduce the data well.

  19. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  20. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  1. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  2. GeV electron beams from a cm-scale accelerator

    SciTech Connect

    Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.; Nakamura,K.; Geddes, C.G.R.; Esarey, E.B.; Schroeder, C.; Hooker, S.M.

    2006-05-04

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radio frequency based accelerators are limited to relatively low accelerating fields (10-50 MV/m) and hence require tens to hundreds of meters to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometers to generate particle energies of interest to the frontiers of high-energy physics.Laser wakefield accelerators (LWFA) in which particles are accelerated by the field of a plasma wave driven by an intense laser pulse produce electric fields several orders of magnitude stronger (10-100 GV/m) and so offer the potential of very compact devices. However, until now it has not been possible to maintain the required laser intensity, and hence acceleration, over the several centimeters needed to reach GeV energies.For this reason laser-driven accelerators have to date been limited to the 100 MeV scale. Contrary to predictions that PW-class lasers would be needed to reach GeV energies, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channeling a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide. We anticipate that laser-plasma accelerators based on capillary discharge waveguides will have a major impact on the development of future femtosecond radiation sources such as x-ray free electron lasers and become a standard building block for next generation high-energy accelerators.

  3. Arbitrary function generator for APS injector synchrotron correction magnets

    SciTech Connect

    Despe, O.D.

    1990-11-07

    The APS injector synchrotron ring measures about 368 m in circumference. In order to obtain the precision of the magnetic field required for the positron acceleration from 450 Mev to 7.7 Gev with low beam loss, eighty correction magnets are distributed around its circumference. These magnets provide the vernier field changes required for beam orbit correction during the acceleration phase of the injector synchrotron cycle. Because of mechanical imperfections in the construction, as well as installation of real dipole and multi-pole magnets, the exact field correction required at each correction magnet location is not known until a beam is actually accelerated. It is therefore essential that a means is provided to generate a correction field that is a function of the beam energy from injection until extraction for each correction magnet. The fairly large number of correction magnets in the system requires that the arbitrary function generator design be as simple as possible yet provide the required performance. An important, required performance feature is that the function can be changed or modified ``on the fly``, to provide the operator with a real-time feel during the tune up process. The arbitrary function generator described in this report satisfies these requirements.

  4. Medical applications of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thomlinson, W.

    1992-08-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotheraphy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatc needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  5. Medical applications of synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  6. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  7. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  8. Synchrotron Radiation in Life Sciences

    SciTech Connect

    Stojanoff, Vivian; Northrup, Paul; Pietri, Ruth; Zhong, Zhong

    2012-05-01

    Synchrotron Radiation (SR) presents itself as a “play-ground” with a large range of methods and techniques suitable to unveil the mysteries of life. Here we attempt to present a few of these methods that complement those employed in the home laboratory. SR diffraction, spectroscopy and imaging methods relevant to the atomic structure determination and characterization of the properties and function of chemical compounds and macromolecules of biological relevance, are introduced.

  9. The SIBERIA dedicated synchrotron radiation source: status report on the storage rings complex at the Kurchatov Institute for Atomic Energy

    NASA Astrophysics Data System (ADS)

    Artemiev, A. N.; Akhmedzhanov, S. M.; Vasilyev, A. A.; Gritsuk, G. M.; Dozorov, A. V.; Doronkin, Yu. V.; Zabelin, A. V.; Klimenko, M. N.; Kotov, S. A.; Krylov, Yu. V.; Lebedev, V. A.; Lipilin, A. V.; Nagornyh, I. M.; Nikulin, O. N.; Odintsov, D. G.; Pashkov, S. D.; Pesterev, S. G.; Prosvetov, V. K.; Rybakov, V. N.; Samorukov, M. M.; Treshchin, V. A.; Ushkov, V. L.; Tsup, A. R.; Chaikin, E. M.; Yupinov, Yu. L.

    1991-10-01

    This paper reviews the status of the SIBERIA storage rings complex. The parameters of the linac, booster synchrotron and main ring are given. The transfer of the SIBERIA-1 storage ring to its new site is described. The main parameters of the engineering systems for the SIBERIA complex are presented. The assembly of the SIBERIA-2 storage ring is planned to be finished in 1991. The SIBERIA storage rings complex has been constructed at the Kurchatov Institute for Atomic Energy (IAE) and is the first dedicated synchrotron radiation source in the USSR. The facility includes the SIBERIA-1 450 MeV electron storage ring, the SIBERIA-2 2.5 GeV electron storage ring, two electron transport lines EOC-1 and EOC-2, and an 80-100 MeV electron linac which serves as the injector. The general layout of SIBERIA is shown in fig. 1. All accelerators of the SIBERIA facility are designed and manufactured at the Institute of Nuclear Physics (INP) at Novosibirsk.

  10. MeV per nucleon ion irradiation of nuclear materials with high energy synchrotron X-ray characterization

    NASA Astrophysics Data System (ADS)

    Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; Almer, Jonathan; Bhattacharya, S.; Mohamed, Walid; Seidman, D.; Ye, Bei; Yun, D.; Xu, Ruqing; Zhu, Shaofei

    2016-04-01

    The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ∼10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-ray and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.

  11. Physics.

    ERIC Educational Resources Information Center

    Bromley, D. Allan

    1980-01-01

    The author presents the argument that the past few years, in terms of new discoveries, insights, and questions raised, have been among the most productive in the history of physics. Selected for discussion are some of the most important new developments in physics research. (Author/SA)

  12. Breast tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pani, Silvia; Arfelli, Fulvia; Dreossi, Diego; Montanari, Francesco; Longo, Renata; Olivo, Alessandro; Poropat, Paolo; Zanconati, Fabrizio; Palma, Ludovico D.; Castelli, Edoardo

    2002-05-01

    A feasibility study of breast CT with synchrotron radiation is currently being carried on at Elettra, the Trieste synchrotron radiation facility. Breast CT cannot be implemented easily with conventional radiographic tubes, due to the high dose that would be delivered to the breast by a polychromatic X-ray spectrum. The possibility of tuning the beam energy, available at a synchrotron radiation beamline, allows a significant reduction in the delivered dose, and at the same time the use of monochromatic beams avoids beam hardening artifacts on the reconstructed image. Images of in vitro breast tissue samples have been acquired by means of a high efficiency linear array detector coupled to a VLSI single photon counting readout electronics. The pixel width, determining the pixel size of the reconstructed image, is 200 micrometers , while the pixel height, determining the CT slice thickness, is 300 micrometers . Tomograms have been reconstructed by means of standard filtered backprojection algorithms. Images of normal and pathologic breast tissue samples show a good visibility of glandular structure. The delivered dose was in all cases comparable to the one delivered in clinical planar mammography. Due to the promising results we obtained, in vivo studies are under evaluation.

  13. Infrared microspectroscopy with synchrotron radiation

    SciTech Connect

    Carr, G.L.; Williams, G.P.

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  14. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents nine physics notes for British secondary school teachers. Some of these notes are: (1) speed of sound in a steel rod; (2) physics extracts-part four (1978); and (3) a graphical approach to acceleration. (HM)

  15. Pointlike gamma ray sources as signatures of distant accelerators of ultrahigh energy cosmic rays.

    PubMed

    Gabici, Stefano; Aharonian, Felix A

    2005-12-16

    We discuss the possibility of observing distant accelerators of ultrahigh energy cosmic rays in synchrotron gamma rays. Protons propagating away from their acceleration sites produce extremely energetic electrons during photopion interactions with cosmic microwave background photons. If the accelerator is embedded in a magnetized region, these electrons will emit high energy synchrotron radiation. The resulting synchrotron source is expected to be pointlike, steady, and detectable in the GeV-TeV energy range if the magnetic field is at the nanoGauss level.

  16. Operational experience from a large EPICS-based accelerator facility

    SciTech Connect

    Ciarlette, D.J.; Gerig, R.

    1995-12-31

    The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation x-ray light source which uses the Experimental Physics and Industrial Control System (EPICS) to operate its linear accelerator, positron accumulator ring, booster synchrotron, and storage ring equipment. EPICS has been used at the APS since the beginning of installation and commissioning. Currently, EPICS controls approximately 100 VME crates containing over 100,000 process variables. With this complexity, the APS has had to review some of the methods originally employed and make changes as necessary. In addition, due to commissioning and operational needs, higher-level operator software needed to be created. EPICS has been flexible enough to allow this.

  17. Center for beam physics 1996-1997

    SciTech Connect

    1997-02-01

    The Center for Beam Physics (CBP) is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Ernest Orlando Lawrence Berkeley National Laboratory of the University of California. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Special features of the Center`s program include addressing R&D issues needing long development time and providing a platform for conception, initiation, and support of institutional projects based on beams. The Center brings to bear a significant amount of diverse, complementary, and self-sufficient expertise in accelerator physics, synchrotron radiation, advanced microwave techniques, plasma physics, optics, and lasers on the forefront R&D issues in particle and photon beam research. In addition to functioning as a clearinghouse for novel ideas and concepts and related R&D (e.g., various theoretical and experimental studies in beam physics such as nonlinear dynamics, phase space control, laser-beam-plasma interaction, free-electron lasers, optics, and instrumentation), the Center provides significant support to Laboratory facilities and initiatives. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP`s outstanding team and gives a flavor of their multifaceted activities during 1996 and 1997.

  18. Status of compact synchrotron light source work at TAC

    NASA Astrophysics Data System (ADS)

    Swenson, C. A.; Huson, F. R.; Rocha, R.; Huang, Yunxiang

    A compact electron synchrotron for x ray lithography is a design project at the Texas Accelerator Center. The design is a four super-period symmetric cell lattice that is 18.8 meters in circumference. Numerical tracking results including edge fields affect the theoretical and mechanical design of the machine. An integrated magnet and lattice design algorithm is discussed. Structural design and measurement system parameters for a prototype superferric 3 Tesla 90 degs dipole are discussed. The prototype dipole magnet is currently under construction.

  19. Charge - dependent increase in coherence of synchrotron oscillation at injection

    SciTech Connect

    MacLachlan, J.A.; /Fermilab

    2004-11-01

    Because of coupled bunch instability and/or because of some unidentified mechanism, bunches from the 8 GeV Booster accelerator at Fermilab arrive in the Main Injector synchrotron with a complicated centroid distribution in phase and energy. The currently installed broad band kicker provides a maximum of 2 kV, insufficient to remove injection errors before the oscillations would de-cohere, ignoring the influence of bunch charge. Perhaps surprisingly, for sufficient but generally modest charge, the effect of potential well distortion is to maintain bunch integrity. This talk illustrates the phenomenon for injection into the Fermilab Main Injector and offers an explanation sufficiently general to apply elsewhere.

  20. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  1. Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; Gotthelf, E. V.; Halpern, J. P.

    2001-07-01

    orthogonal-mode polarized components. We review effects that may enhance the probability of alignment between the spin axis and space velocity of a pulsar, and speculate that short-period, slowly moving pulsars are just the ones best-suited to producing synchrotron nebulae with such aligned structures. Previous interpretations of the compact Vela nebula as a bow-shock in a very weakly magnetized wind suffered from data of inadequate spatial resolution and less plausible physical assumptions.

  2. TOWARDS FAST-PULSED SUPERCONDUCTING SYNCHROTRON MAGNETS.

    SciTech Connect

    MORITZ,G.; MUEHLE,C.; ANERELLA,M.; GHOSH,A.; SAMPSON,W.; WANDERER,P.; WILLEN,E.; AGAPOV,N.; KHODZHIBAGIYAN,H.; KOVALENKO,A.; HASSENZAHL,W.V.; WILSON,M.N.

    2001-06-18

    The concept for the new GSI accelerator facilities is based on a large synchrotron designed for operation at BR=200 Tm and with the short cycle-time of about one second to achieve high average beam intensities. Superconducting magnets may reduce considerably investment and operating costs in comparison with conventional magnets. A R and D program was initiated to develop these magnets for a maximum field of 2-4 Tesla and a ramp rate of 4 T/s. In collaboration with JINR (Dubna), the window-frame type Nuclotron dipole, which has been operated with 4 T/s at a maximum field of 2 Tesla, shall be developed to reduce heat losses and to improve the magnetic field quality. Another collaboration with BNL (Brookhaven) was established to develop the one-layer-coil cos{theta}-type RHIC arc dipole designed for operation at 3.5 Tesla with a rather slow ramp-rate of 0.07 T/s towards the design ramp-rate of 4 T/s. The design concepts for both R and D programs are reported.

  3. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  4. Synchrotron Environmental Science-I Workshop Report.

    SciTech Connect

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  5. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-11-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 Tm and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  6. Current Status of the Synchrotron Radiation Center

    NASA Astrophysics Data System (ADS)

    Kinraide, R.; Moore, C. J.; Jacobs, K. D.; Severson, M.; Bissen, M. J.; Frazer, B.; Bisognano, J. J.; Bosch, R. A.; Eisert, D.; Fisher, M.; Green, M. A.; Gundelach, C. T.; Hansen, R. W. C.; Hochst, H.; Julian, R. L.; Keil, R.; Kleman, K.; Kubala, T.; Legg, R. A.; Pedley, B.; Rogers, G. C.; Stott, J. P.; Wallace, D. J.; Wehlitz, R.; Wiese, L. M.; Taylor, J.; Campuzano, J. C.; De Stasio, G.

    2004-05-01

    The Synchrotron Radiation Center (SRC) operates the Aladdin electron storage ring at energies of 800 MeV or 1 GeV in support of a broad range of national and international research programs. A low emittance configuration is in routine operation during 800-MeV shifts and offers improved photon flux density with about the same beam lifetime. An improved undulator compensation algorithm and new optical beam position monitors have been implemented improving beam stability and maintaining vertical beam size variations to < 2% peak-to-peak during undulator scanning. Instrumentation initiatives include construction of a modified Wadsworth beamline (7.8 - 50 eV) and a variable-line-spacing plane-grating monochromator (VLS-PGM, 75 - 2000 eV) to utilize radiation from a permanent magnet undulator. The Wadsworth beamline is being commissioned for photoelectron spectroscopy (PES) experiments using high-resolution Scienta analyzers. The VLS-PGM is being constructed for experiments that require higher photon energies and high flux density such as x-ray photoemission electron microscopy (X-PEEM) and x-ray absorption spectroscopy (XAS). It is scheduled to be available in early 2004. Recent research at the SRC has produced exciting results in a variety of fields, culminating in eight articles published in Physical Review Letters and three in Nature since October 2002, in addition to articles in many other publications. An outreach program offers research experiences for undergraduates and provides the general public with an awareness of synchrotron radiation. Hands-on workshops and activities on FTIR microscopy and X-PEEM are offered for graduate students and scientists. SRC sponsors a summer Research Experience for Undergraduates (REU) program and offers opportunities to non-research universities and high schools. Tours and educational events are coordinated with local civic groups and schools. Open houses are offered that include tours, demonstrations, and family activities.

  7. Steady X-Ray Synchrotron Emission in the Northeastern Limb of SN 1006

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Mori, Koji; Reynolds, Stephen; Long, Knox; Winkler, P.; Tsunemi, Hiroshi

    2010-01-01

    We investigate time variations and detailed spatial structures of X-ray synchrotron emission in the northeastern limb of SN 1006, using two Chandra observations taken in 2000 and 2008. We extract spectra from a number of small ([approx]10'') regions. After taking account of proper motion and isolating the synchrotron from the thermal emission, we study time variations in the synchrotron emission in the small regions. We find that there are no regions showing strong flux variations. Our analysis shows an apparent flux decline in the overall synchrotron flux of [approx]4% at high energies, but we suspect that this is mostly a calibration effect, and that flux is actually constant to [approx]1%. This is much less than the variation found in other remnants where it was used to infer magnetic-field strengths up to 1 mG. We attribute the lack of variability to the smoothness of the synchrotron morphology, in contrast to the small-scale knots found to be variable in other remnants. The smoothness is to be expected for a Type Ia remnant encountering uniform material. Finally, we find a spatial correlation between the flux and the cutoff frequency in synchrotron emission. The simplest interpretation is that the cutoff frequency depends on the magnetic-field strength. This would require that the maximum energy of accelerated electrons is not limited by synchrotron losses, but by some other effect. Alternatively, the rate of particle injection and acceleration may vary due to some effect not yet accounted for, such as a dependence on shock obliquity.

  8. HISTRAP (Heavy Ion Storage Ring for Atomic Physics) prototype hardware studies

    SciTech Connect

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs.

  9. Particle acceleration, X-rays, and gamma-rays from winds

    NASA Technical Reports Server (NTRS)

    White, Richard L.; Chen, Wan

    1994-01-01

    The instability of the line-driven winds of hot stars leads to the formation of strong shocks. These shocks not only emit thermal X-rays, but also accelerate a small fraction of the thermal electrons and ions to relativistic energies. Synchrotron radiation from these energetic particles can account for the non-thermal radio emission observed from some hot stars, and can also explain the hard X-rays detected in the Einstein X-ray spectra. Our calculations indicate that the gamma-ray emission from non-thermal particles should be detectable by Gamma Ray Observatory (GRO). The detection (or non-detection) of these emissions over a wide energy range, from the radio to gamma-rays, should provide a great deal of information on the structure of the unstable winds and the physics of particle acceleration by shocks.

  10. Particle Acceleration, X-Rays, and Gamma-Rays From Winds

    NASA Technical Reports Server (NTRS)

    White, Richard L.; Chen, Wan

    1994-01-01

    The instability of the line-driven winds of hot stars leads to the formation of strong shocks. These shocks not only emit thermal X-rays, but also accelerate a small fraction of the thermal electrons and ions to relativistic energies. Synchrotron radiation from these energetic particles can account for the non-thermal radio emission observed from some hot stars, and can also explain the hard X-rays detected in the Einstein X-ray spectra. Our calculations indicate that the gamma-ray emission from non-thermal particles should be detectable by GRO. The detection (or non-detection) of these emissions over a wide energy range, from the radio to gamma-rays, should provide a great deal of information on the structure of the unstable winds and the physics of particle acceleration by shocks.

  11. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  12. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  13. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  14. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy.

    PubMed

    Zschornack, G; Ritter, E; Schmidt, M; Schwan, A

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C(4 +) and C(6 +) ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C(6 +)/H2(+) ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 10(9) protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  15. Physics

    NASA Astrophysics Data System (ADS)

    Campbell, Norman Robert

    2013-03-01

    Preface; Introduction; Part I. The Propositions of Science: 1. The subject matter of science; 2. The nature of laws; 3. The nature of laws (contd); 4. The discovery and proof of laws; 5. The explanation of laws; 6. Theories; 7. Chance and probability; 8. The meaning of science; 9. Science and philosophy; Part II. Measurement: 10. Fundamental measurement; 11. Physical number; 12. Fractional and negative magnitudes; 13. Numerical laws and derived magnitudes; 14. Units and dimensions; 15. The uses of dimensions; 16. Errors of measurement; methodical errors; 17. Errors of measurement; errors of consistency and the adjustment of observations; 18. Mathematical physics; Appendix; Index.

  16. Automated Tuning of the Advanced Photon Source Booster Synchrotron

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Carwardine, J. A.; Milton, S. V.

    1997-05-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 250 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. Ramped-magnet tracking errors can also lead to losses during the acceleration cycle. In order to simplify daily operation, automated tuning methods have been developed. Through the use of empirically determined response functions, transfer line corrector magnets, and beam position monitor readings, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. An automated version of this correction technique has been implemented using the feedback-based program sddscontrollaw. Further automation is used to adjust and minimize tracking errors between the five main ramped power supplies. These tuning algorithms and their implementation are described here along with an evaluation of their! performance.

  17. Radiative Damping in Plasma-Based Accelerators

    NASA Astrophysics Data System (ADS)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-11-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. It is shown that the radiation could significantly affect the beam properties (e.g., increased relative energy spread) in plasma wakefield accelerators.

  18. The Biological Effects on Cancer Cells by Synchrotron Radiation Generated from MIRRORCLE-6X

    NASA Astrophysics Data System (ADS)

    Ogata, T.; Teshima, T.; Matsumoto, M.; Kawaguchi, A.; Suzumoto, Y.; Hasegawa, D.; Mochizuki-Oda, N.; Yamada, H.; Matsuura, N.

    2004-08-01

    MIRRORCLE-6X, the unique portable synchrotrons, generates brilliant hard X-rays. The purpose of this study is to investigate the biological effects of synchrotron radiation on cancer cells to identify its effectiveness. A549 human lung adenocarcinoma and DU145 human prostate adenocarcinoma cells were used. We examined biological effects on cancer cells by colony formation assay, micronucleus assay, WST-1 method, and apoptosis detection of flow cytometry. Results of these assay revealed that the biological effects of X-ray generated from MIRRORCLE-6X on cancer cells are similar to those of 4 MV X-ray from linear accelerator (linac).

  19. Methods for lipid nanostructure investigation at neutron and synchrotron sources

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.

    2011-03-01

    A lipid membrane is a main component of biological membranes. Contemporary bionanotechnologies use phospholipids and ceramides as basic components of drugs and cosmetic preparations. Phospholipids-based nanoparticles are used as drug carriers. Effective development of bionanotechnologies in Russia calls for creation of physical methods to diagnose the particle nanostructure which would be promising for application in pharmacology. Radiation with wavelengths of 1-10 Å is an adequate instrument for detecting the nanostructure of lipid bi- and monolayers. The review deals with methods that apply neutron scattering and synchrotron radiation for studying nanostructures of lipid membranes, phospholipid nanoparticles, and phospholipid monolayers on a water surface by techniques of diffraction, small-angle scattering, and reflectometry. The importance of the mutually complementary application of neutron and synchrotron radiation for solving urgent problems of membrane biophysics, microbiology, dermapharmacology, and bionanotechnologies is demonstrated by particular examples of studies of phospholipid membranes and ceramide-based membranes. The efficiency of development and application of new methods for solving urgent problems of biophysics is shown. The review is written on the basis of results obtained over the period of 1999-2010 at the Joint Institute for Nuclear Research (JINR) Laboratory of Neutron Physics in collaboration with the Pharmaceutical Departments of universities of France (Paris-Sud, Chatenay Malabry) and Germany (Martin Luther University, Halle). The experiments were performed at various European and Russian neutron and synchrotron sources.

  20. Pros and Cons of the Acceleration Scheme (NF-IDS)

    SciTech Connect

    Bogacz, Alex; Bogacz, Slawomir

    2008-07-01

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc

  1. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  2. Evaluation of Radiation Dose Effects on Rat Bones Using Synchrotron Radiation Computed Microtomography

    SciTech Connect

    Nogueira, Liebert Parreiras; Braz, Delson

    2011-12-13

    In this work, we investigated the consequences of irradiation in the femora and ribs of rats submitted to radiation doses of 5 Gy. Three different sites in femur specimens (head, distal metaphysis and distal epiphysis) and one in ribs (ventral) were imaged using synchrotron radiation microcomputed tomography to assess trabecular bone microarchitecture. Histomorphometric quantification was calculated directly from the 3D microtomographic images using synchrotron radiation. The 3D microtomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. A better understanding of the biological interactions that occur after exposure to photon radiation is needed in order to optimize therapeutic regimens and facilitate development and strategies that decrease radiation-induced side effects in humans. Results showed significant differences between irradiated and non-irradiated specimens, mostly in head and distal metaphysis bone sites.

  3. Synchrotron Origin of the Typical GRB Band Function

    NASA Astrophysics Data System (ADS)

    Zhang, Binbin

    2016-07-01

    We perform a time-resolved spectral analysis of GRB 130606B within the framework of a fast-cooling synchrotron radiation model with magnetic field strength in the emission region decaying with time, as proposed by Uhm & Zhang. The data from all time intervals can be successfully fit by the model. The same data can be equally well fit by the empirical Band function with typical parameter values. Our results, which involve only minimal physical assumptions, offer one natural solution to the origin of the observed GRB spectra and imply that, at least some, if not all, Band-like GRB spectra with typical Band parameter values can indeed be explained by synchrotron radiation.

  4. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  5. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  6. On intrinsic nonlinear particle motion in compact synchrotrons

    NASA Astrophysics Data System (ADS)

    Hwang, Kyung Ryun

    Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.

  7. Computed tomography using synchrotron radiation

    SciTech Connect

    Thompson, A.C.; Llacer, J.; Finman, L.C.; Hughes, E.B.; Otis, J.N.; Wilson, S.; Zeman, H.D.

    1983-09-01

    X-ray computed tomography (CT) is a widely used method of obtaining cross-sectional views of objects. The high intensity, natural collimation, monochromaticity and energy tunability of synchrotron x-ray sources could potentially be used to provide CT images of improved quality. The advantages of these systems would be that images could be produced more rapidly with better spatial resolution and reduced beam artifacts. In addition, images, in some cases, could be acquired with elemental sensitivity. As a demonstration of the capability of such a system, CT images were obtained of four slices of an excised pig heart in which the arteries and the cardiac chambers were filled with an iodinated medium. Images were taken with incident x-rays tuned successively to energies just above and below the iodine K edge. Iodine specific images were obtained by logarithmically subtracting the low energy image data from the high energy data and then reconstructing the image. CT imaging using synchrotron radiation may become a convenient and non-destructive method of imaging samples difficult to study by other methods.

  8. Nuclear Resonance Scattering of Synchrotron Radiation as a Unique Electronic, Structural, and Thermodynamic Probe

    NASA Astrophysics Data System (ADS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    Discovery of Mössbauer effect [1] in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. Thus, Mössbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Mössbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physicists, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Mössbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or "in-beam" Mössbauer experiments with implanted radioactive ions. More recently, two Mössbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time.

  9. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  10. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES&H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES&H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  11. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  12. Accelerator Technology Division annual report, FY 1989

    SciTech Connect

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  13. The challenge of turbulent acceleration of relativistic particles in the intra-cluster medium

    NASA Astrophysics Data System (ADS)

    Brunetti, Gianfranco

    2016-01-01

    Acceleration of cosmic-ray electrons (CRe) in the intra-cluster medium (ICM) is probed by radio observations that detect diffuse, megaparsec-scale, synchrotron sources in a fraction of galaxy clusters. Giant radio halos are the most spectacular manifestations of non-thermal activity in the ICM and are currently explained assuming that turbulence, driven during massive cluster-cluster mergers, reaccelerates CRe at several giga-electron volts. This scenario implies a hierarchy of complex mechanisms in the ICM that drain energy from large scales into electromagnetic fluctuations in the plasma and collisionless mechanisms of particle acceleration at much smaller scales. In this paper we focus on the physics of acceleration by compressible turbulence. The spectrum and damping mechanisms of the electromagnetic fluctuations, and the mean free path (mfp) of CRe, are the most relevant ingredients that determine the efficiency of acceleration. These ingredients in the ICM are, however, poorly known, and we show that calculations of turbulent acceleration are also sensitive to these uncertainties. On the other hand this fact implies that the non-thermal properties of galaxy clusters probe the complex microphysics and the weakly collisional nature of the ICM.

  14. Workshop on detectors for synchrotron radiation

    SciTech Connect

    Robinson, Arthur L.

    2000-11-22

    Forefront experiments in many scientific areas for which synchrotron sources provide sufficient flux are nonetheless hindered because detectors cannot collect data fast enough, do not cover sufficiently solid angle, or do no have adequate resolution. Overall, the synchrotron facilities, each of which represents collective investments from funding agencies and user institutions ranging from many hundreds of millions to more than a billion dollars, are effectively significantly underutilized. While this chronic and growing problem plagues facilities around the world, it is particularly acute in the United States, where detector research often has to ride on the coat tails of explicitly science-oriented projects. As a first step toward moving out of this predicament, scientists from the U.S. synchrotron facilities held a national workshop in Washington, DC, on October 30-31, 2000. The Workshop on Detectors for Synchrotron Research aimed to create a national ''roadmap'' for development of synchrotron-radiation detectors.

  15. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  16. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  17. High heat load synchrotron optics

    SciTech Connect

    Mills, D.M.

    1992-08-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density these high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development.

  18. Synchrotron radiation and industrial research

    NASA Astrophysics Data System (ADS)

    Townsend, Rodney P.

    1995-05-01

    Fundamental studies on the properties of many different materials are of prime importance to most industrial concerns. For Unilever, solids (crystalline and amorphous), soft solids and complex fluids are the materials of primary interest. Synchrotron radiation has proved of great value for the analysis of a variety of such materials, because the intense and highly collimated radiation source has enabled us to obtain structural information rapidly as well as in time-resolved mode. In this paper are outlined the types of materials problems faced, and how we use different techniques to elucidate structure (both short and long range order) in zeolites, amorphous solids, as well as in biomaterials such as skin and hair containing lipid phases. Both equilibrium and time-resolved studies are described.

  19. The Brazilian Synchrotron Light Source

    SciTech Connect

    Brum, J. A.; Tavares, P. F.

    2007-01-19

    The Brazilian Synchrotron Light Laboratory has been operating the only light source in the southern hemisphere since July 1997. During this period, approximately 28000 hours of beam time were delivered reaching more than 1000 users per year from all over Brazil as well as from 10 other countries. In this paper, we briefly recall the history of the project and describe the present configuration of the machine and associated instrumentation, focusing on improvements and upgrades of the various light source subsystems and beamlines implemented in recent years. Finally, we report on the use of the facility by the national and international scientific communities, its impact on the scientific and technological scene in Brazil and present perspectives for future improvements of the machine.

  20. ULTRA-SHORT X-RAY RADIATION COMING FROM A LASER WAKEFIELD ACCELERATOR

    SciTech Connect

    Leurent, V; Michel, P; Clayton, C E; Pollock, B; Doeppner, T; Wang, T L; Ralph, J; Pak, A; Joshi, C; Tynan, G; Divol, L; Palastro, J P; Glenzer, S H; Froula, D H

    2008-06-17

    A Laser Wakefield Accelerator (LWFA) is under development at Lawrence Livermore National Laboratory (LLNL) to produce electron bunches with GeV class energy and energy spreads of a few-percent. The ultimate goal is to provide a bright and compact photon source for high energy density physics. The interaction of a high power (200 TW), short pulse (50 fs) laser with neutral He gas can generate quasi-monoenergetic electrons beams at energies up to 1 GeV [1]. The laser pulse can be self-guided over a dephasing length of 1 cm (for a plasma density of 1.5 x 10{sup 18} cm{sup -3}) overcoming the limitation of vacuum diffraction. Betatron radiation is emitted while the accelerated electrons undergo oscillations in the wakefield electrostatic field. Here we present electron spectrum measurements with a two screen spectrometer allowing to fix the ambiguities due to unknown angle at the plasma exit. We have measured monoenergetic electron beams at energies around 110 MeV. Furthermore a forward directed x-ray beam is observed. The peak energy of the measured synchrotron spectrum is reconstructed based on the energy deposited after different sets of filters, assuming x-ray radiation described in the synchrotron asymptotic limit (SAL) and is found around 6 keV.

  1. Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain, and to demonstrate new approaches for producing energetic particle beams. The extremely large electric fields, with amplitudes exceeding the TV/m level, that are produced in plasma medium are of relevance particle acceleration. Since the value of this longitudinal electric field, 10,000 times larger than those produced in conventional radio-frequency cavities, plasma accelerators appear to be very promising for the development of compact accelerators. The incredible progresses in the understanding of laser plasma interaction physic, allows an excellent control of electron injection and acceleration. Thanks to these recent achievements, laser plasma accelerators deliver today high quality beams of energetic radiation and particles. These beams have a number of interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine, radio-biology, chemistry, physics and material science,security (material inspection), and of course in accelerator science.

  2. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  3. Particle Acceleration and Nonthermal Emission in Relativistic Astrophysical Shocks

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo

    The common observational feature of Pulsar Wind Nebulae (PWNe), gamma-ray bursts (GRBs), and AGN jets is a broad nonthermal spectrum of synchrotron and inverse Compton radiation. It is usually assumed that the emitting electrons are accelerated to a power-law distribution at relativistic shocks, via the so-called Fermi mechanism. Despite decades of research, the Fermi acceleration process is still not understood from first principles. An assessment of the micro-physics of particle acceleration in relativistic shocks is of paramount importance to unveil the properties of astrophysical nonthermal sources, and it is the subject of this dissertation. In the first part of this thesis, I explore by means of fully-kinetic first-principle particle-in-cell (PIC) simulations the properties of relativistic shocks that propagate in electron-positron and electron-proton plasmas carrying uniform magnetic fields. I find that nonthermal particle acceleration only occurs if the upstream magnetization is weak (sigma<0.001), or if the pre-shock field is nearly aligned with the shock direction of propagation (quasi-parallel shocks). Relativistic shocks in PWNe, GRBs and AGN jets are usually thought to be appreciably magnetized (sigma>0.01) and quasi-perpendicular, yet they need to be efficient particle accelerators, in order to explain the prominent nonthermal signatures of these sources. Motivated by this discrepancy, I then relax the assumption of uniform pre-shock fields, and investigate the acceleration efficiency of perpendicular shocks that propagate in high-sigma flows with alternating magnetic fields. This is the geometry expected at the termination shock of pulsar winds, but it could also be relevant for Poynting-dominated jets in GRBs and AGNs. I show by means of PIC simulations that compression of the flow at the shock will force annihilation of nearby field lines, a process known as shock-driven reconnection. Magnetic reconnection can efficiently transfer the energy of

  4. Physics.

    PubMed

    Bromley, D A

    1980-07-01

    From massive quarks deep in the hearts of atomic nuclei to the catastrophic collapse of giant stars in the farthest reaches of the universe, from the partial realization of Einstein's dream of a unified theory of the forces of nature to the most practical applications in technology, medicine, and throughout contemporary society, physics continues to have a profound impact on man's view of the universe and on the quality of life. The author argues that the past few years, in terms of new discoveries, new insight-and the new questions-have been among the most productive in the history of the field and puts into context his selection of some of the most important new developments in this fundamental science.

  5. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in elementary particle physics - pantip from very low to very high energies

    SciTech Connect

    Jacob, M.

    1980-05-01

    The recent development of cooling techniques offers the possibility to obtain intense sources of antiprotons, stacking them as they are produced at a multi-GeV accelerator. The wide array of applications presently considered, ranging from reactions at extremely low energy in the case of p anti p atoms to reactions at hundreds of GeV in the case of head-on collisions between protons and antiprotons accelerated at the same time in a super synchrotron, is reviewed. Special emphasis is put on the present CERN program, which will reach the data-taking stage in 1981. The study of p anti p interactions is meant as an illustration of how new possibilities open new directions in elementary particle physics, whether reaching energies hitherto much beyond accelerator possibilities or developing new lower-energy beams improved tremendously over those presently available. 14 figures, 1 table.

  6. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  7. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  8. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  9. Symposium report on frontier applications of accelerators

    SciTech Connect

    Parsa, Z.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  10. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  11. Spatial and temporal beam profiles for the LHC using synchrotron light

    NASA Astrophysics Data System (ADS)

    Jeff, A.; Bart Pedersen, S.; Boccardi, A.; Bravin, E.; Fisher, A. S.; Guerrero Ollacarizqueta, A.; Lefevre, T.; Rabiller, A.; Welsch, C. P.

    2010-04-01

    Synchrotron radiation is emitted whenever a beam of charged particles passes though a magnetic field. The power emitted is strongly dependent on the relativistic Lorentz factor of the particles, which itself is proportional to the beam energy and inversely proportional to the particle rest mass. Thus, synchrotron radiation is usually associated with electron accelerators, which are commonly used as light sources. However the largest proton machines reach sufficiently high energies to make synchrotron light useful for diagnostic purposes. The Large Hadron Collider at CERN will accelerate protons up to an energy of 7TeV. An optical arrangement has been made which focuses synchrotron light from two LHC magnets to image the cross-section of the beam. It is also planned to use this setup to produce a longitudinal profile of the beam by use of fast Single Photon Counting. This is complicated by the bunched nature of the beam which needs to be measured with a very large dynamic range. In this contribution we present early experimental data of the transverse LHC beam profile together with a scheme for measuring the longitudinal profile with a time resolution of 50 ps. It includes the use of a gating regime to increase the dynamic range of the photon counter and a three-stage correction algorithm to compensate for the detector's deadtime, afterpulsing and pile-up effects.

  12. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 x 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target. A conceptual layout is shown. 5 refs., 4 figs., 3 tabs.

  13. The neutrino electron accelerator

    SciTech Connect

    Shukla, P.K.; Stenflo, L.; Bingham, R.; Bethe, H.A.; Dawson, J.M.; Mendonca, J.T.

    1998-01-01

    It is shown that a wake of electron plasma oscillations can be created by the nonlinear ponderomotive force of an intense neutrino flux. The electrons trapped in the plasma wakefield will be accelerated to high energies. Such processes may be important in supernovas and pulsars. {copyright} {ital 1998 American Institute of Physics.}

  14. Report of the Synchrotron Radiation Vacuum Workshop

    SciTech Connect

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  15. Breast tomography with synchrotron radiation: preliminary results

    NASA Astrophysics Data System (ADS)

    Pani, Silvia; Longo, Renata; Dreossi, Diego; Montanari, Francesco; Olivo, Alessandro; Arfelli, Fulvia; Bergamaschi, Anna; Poropat, Paolo; Rigon, Luigi; Zanconati, Fabrizio; Dalla Palma, Ludovico; Castelli, Edoardo

    2004-05-01

    A system for in vivo breast imaging with monochromatic x-rays has been designed and built at the synchrotron radiation facility Elettra in Trieste (Italy) and will be operational in 2004. The system design involves the possibility of performing both planar mammography and breast tomography. In the present work, the first results obtained with a test set-up for breast tomography are shown and discussed. Tomographic images of in vitro breasts were acquired using monochromatic x-ray beams in the energy range 20-28 keV and a linear array silicon pixel detector. Tomograms were reconstructed using standard filtered backprojection algorithms; the effect of different filters was evaluated. The attenuation coefficients of fibroglandular and adipose tissue were measured, and a quantitative comparison of images acquired at different energies was performed by calculating the differential signal-to-noise ratio of fibroglandular details in adipose tissue. All images required a dose comparable to the dose delivered in clinical, conventional mammography and showed a high resolution of the breast structures without the overlapping effects that limit the visibility of the structures in 2D mammography. A quantitative evaluation of the images proves that the image quality at a given dose increases in the considered energy range and for the considered breast sizes. This work is dedicated to the memory of Paolo Poropat, who died tragically on June 8th, 2002. He was a brilliant experimental scientist and gave relevant contributions to the fields of high energy physics and medical physics. He had a very rich and versatile personality, a brilliant character, a big vitality. We will never forget him, his love of life, the passion and the enthusiasm he put into everything he did.

  16. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-01-01

    HISTRAP is a proposed synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac. The ring will have a maximum bending power of 2.0 T.m and have a circumference of 46.8 m.

  17. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  18. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  19. Archimedes: Accelerator Reveals Ancient Text

    SciTech Connect

    Bergmann, Uwe

    2004-02-24

    Archimedes (287-212 BC), who is famous for shouting 'Eureka' (I found it) is considered one of the most brilliant thinkers of all times. The 10th-century parchment document known as the 'Archimedes Palimpsest' is the unique source for two of the great Greek's treatises. Some of the writings, hidden under gold forgeries, have recently been revealed at the Stanford Synchrotron Radiation Laboratory at SLAC. An intense x-ray beam produced in a particle accelerator causes the iron in original ink, which has been partly erased and covered, to send out a fluorescence glow. A detector records the signal and a digital image showing the ancient writings is produced. Please join us in this fascinating journey of a 1,000-year-old parchment from its origin in the Mediterranean city of Constantinople to a particle accelerator in Menlo Park.

  20. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  1. New directions in linear accelerators

    SciTech Connect

    Jameson, R.A.

    1984-01-01

    Current work on linear particle accelerators is placed in historical and physics contexts, and applications driving the state of the art are discussed. Future needs and the ways they may force development are outlined in terms of exciting R and D challenges presented to today's accelerator designers. 23 references, 7 figures.

  2. Proceedings of the 1987 IEEE particle accelerator conference: Volume 2

    SciTech Connect

    Lindstrom, E.R.; Taylor, L.S.

    1987-01-01

    This report contains papers from the IEEE particle accelerator conference. This second volume of three covers the following main topics: Instrumentation and control, accelerators for medium energies and nuclear physics, high current accelerators, and beam dynamics. (LSP)

  3. Molecular photoemission studies using synchrotron radiation

    SciTech Connect

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  4. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  5. Simulation of synchrotron motion with rf noise

    SciTech Connect

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

  6. Time resolved spectroscopy using synchrotron infrared pulses

    SciTech Connect

    Carr, G.L.; Lobo, R.P.S.M. |; Hirschmugl, C.J.; LaVeigne, J.; Reitze, D.H.; Tanner, D.B.

    1997-09-01

    Electron synchrotron storage rings, such as the VUV ring at the National Synchrotron Light Source (NSLS), produce short pulses of infrared (IR) radiation suitable for investigating the time-dependent phenomena in a variety of interesting experimental systems. In contrast to other pulses sources of IR, the synchrotron produces a continuum spectral output over the entire IR (and beyond), though at power levels typically below those obtained from laser systems. The infrared synchrotron radiation (IRSR) source is therefore well-suited as a probe using standard FTIR spectroscopic techniques. Here the authors describe the pump-probe spectroscopy facility being established at the NSLS and demonstrate the technique by measuring the photocarrier decay in a semiconductor.

  7. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  8. Color changes in modern and fossil teeth induced by synchrotron microtomography.

    PubMed

    Richards, Gary D; Jabbour, Rebecca S; Horton, Caroline F; Ibarra, Caitlin L; MacDowell, Alastair A

    2012-10-01

    Studies using synchrotron microtomography have shown that this radiographic imaging technique provides highly informative microanatomical data from modern and fossil bones and teeth without the need for physical sectioning. The method is considered to be nondestructive; however, researchers using the European Synchrotron Radiation Facility have reported that color changes sometimes occur in teeth during submicron scanning. Using the Advanced Light Source, we tested for color changes during micron-level scanning and for postexposure effects of ultraviolet light. We exposed a 2.0-mm wide strip (band) to synchrotron light in 32 specimens, using multiple energy levels and scan durations. The sample included modern and fossilized teeth and bone. After scanning, the specimens were exposed to fluorescent and direct ultraviolet light. All teeth showed color changes caused by exposure to synchrotron radiation. The resulting color bands varied in intensity but were present even at the lowest energy and shortest duration of exposure. Color bands faded during subsequent exposure to fluorescent and ultraviolet light, but even after extensive ultraviolet exposure, 67% (8/12) of UV-exposed teeth retained some degree of induced color. We found that the hydroxyapatite crystals, rather than the organic component, are the targets of change, and that diagenesis appears to impact color retention. Color changes have significance beyond aesthetics. They are visible indicators of ionization (chemical change) and, therefore, of potential physical damage. It is important for researchers to recognize that synchrotron microtomography may damage specimens, but adopting suitable safeguards and procedures may moderate or eliminate this damage.

  9. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  10. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  11. Simulations of synchrotron loss in hotspots

    NASA Astrophysics Data System (ADS)

    Matthews, Alan P.

    Simulations of the radio emission and polarization of hot spots are presented in which synchrotron losses have been taken into account. The hot spots were modeled on the basis of simulations of an axisymetric nonrelativistic jet into which a passive, initial randomly oriented magnetic field is introduced. The magnetic field configuration is then distorted by the flow. The simulations illustrate that synchrotron loss takes its toll not only in old parts of a source, but also in regions of enhanced magnetic fields.

  12. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  13. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

    SciTech Connect

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W. E-mail: ryu@canopus.cnu.ac.kr

    2012-09-01

    Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

  14. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  15. Characteristics of radiation safety for synchrotron radiation and X-ray free electron laser facilities.

    PubMed

    Asano, Yoshihiro

    2011-07-01

    Radiation safety problems are discussed for typical electron accelerators, synchrotron radiation (SR) facilities and X-ray free electron laser (XFEL) facilities. The radiation sources at the beamline of the facilities are SR, including XFEL, gas bremsstrahlung and high-energy gamma ray and photo-neutrons due to electron beam loss. The radiation safety problems for each source are compared by using 8 GeV class SR and XFEL facilities as an example.

  16. Wakefields in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  17. Noninvasive emittance and energy spread monitor using optical synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fiorito, R.; Shkvarunets, A.; Castronovo, D.; Cornacchia, M.; Di Mitri, S.; Kishek, R.; Tschalaer, C.; Veronese, M.

    2014-12-01

    We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, divergences, emittances, Twiss parameters and energy spread of a relativistic electron beam. The beam is externally focused to a waist at the first bend and the OSR generated there can be used to measure the rms beam size. Subsequent pairs of bends produce far field OSR interferences (OSRI) whose visibility depends on the beam energy spread and the angular divergence. Under proper conditions, one of these two effects will dominate the OSRI visibility from a particular pair of bends and can be used to diagnose the dominant effect. The properties of different configuration of bends in the chicane have been analyzed to provide an optimum diagnostic design for a given set of beam parameters to: (1) provide a sufficient number of OSR interferences to allow a measurement of the fringe visibility; (2) minimize the effect of coherent synchrotron radiation and space charge forces on the particles motion; and (3) minimize the effect of compression on the bunch length as the beam passes through the chicane. A design for the chicane has been produced for application to the FERMI free electron laser facility and by extension to similar high brightness linear accelerators. Such a diagnostic promises to greatly improve control of the electron beam optics with a noninvasive measurement of beam parameters and allow on-line optics matching and feedback.

  18. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  19. SuperB Progress Report for Accelerator

    SciTech Connect

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

  20. Tailorable software architectures in the accelerator control system environment

    NASA Astrophysics Data System (ADS)

    Mejuev, Igor; Kumagai, Akira; Kadokura, Eiichi

    2001-08-01

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user tailorability has been extensively researched in applied computer science from HCl and software engineering perspectives. Tailorability allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user tailorability in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. In this work we introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of distributed monitoring application for 12 GeV KEK Proton Synchrotron as an example. The software prototypes used in this work are based on a generic tailoring platform (VEDICI), which allows decoupling of tailoring interfaces and runtime components. While representing a reusable application-independent framework, VEDICI can be potentially applied for tailoring of arbitrary compositional Web-based applications.

  1. Aging of organic materials around high-energy particle accelerators

    NASA Astrophysics Data System (ADS)

    Tavlet, Marc

    1997-08-01

    Around particle accelerators used for fundamental research on the basic structure of matter, materials and components are exposed to ionizing radiation caused by beam losses in the proton machines and by synchrotron radiation in the lepton machines. Furthermore, with the high-energy and high-intensity collisions produced from future colliders, radiation damage is also to be expected in particle-physics detectors. Therefore, for a safe and reliable operation, the radiation aging of most of the components has to be assessed prior to their selection. An extensive radiation-damage test program has been carried out at CERN for decades on a routine basis and many results have been published. The tests have mainly concentrated on magnet-coil insulations and cable-insulating materials; they are carried out in accordance with the IEC 544 standard which defines the mechanical tests to be performed and the methods of degradation evaluation. The mechanical tests are also used to assess the degradation of composite structural materials. Moreover, electrical properties of high-voltage insulations and optical properties of organic scintillators and wave guides have also been studied. Our long-term experience has pointed out many parameters to be taken into account for the estimate of the lifetime of components in the radiation environment of our accelerators. One of the main parameters is the dose-rate effect, but the influence of other parameters has sometimes to be taken into account.

  2. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  3. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  4. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  5. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  6. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  7. Determination of Arsenic Poisoning and Metabolism in Hair by Synchrotron Radiation: The Case of Phar Lap

    SciTech Connect

    Kempson, Ivan M.; Henry, Dermot A.

    2010-08-26

    Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.

  8. CORED RUTHERFORD CABLES FOR THE GSI FAST RAMPING SYNCHROTRON.

    SciTech Connect

    WILSON,M.N.; GHOSH,A.K.; TEN HAKEN,B.; HASSENZAHL,W.V.; KAUGERTS,J.; MORITZ,G.; MUEHLE,C.; DEN OUDEN,A.; SOIKA,R.; WANDERER,P.; WESSEL,W.A.J.

    2002-08-04

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 200T-m and 100T.m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of s c loss and field distortion. This paper discusses the 200T.m ring, which will use Cos0 magnets based on the RHIC dipole design. We discuss the reasons for choosing Rutherford cable with a resistive core and report loss measurements carried out on cable samples. These measurements are compared with theoretical calculations using measured values of inter-strand resistance. Reasonably good agreement is found, but there are indications of non-uniformity in the adjacent resistance R,. Using these measured parameters, losses and temperature rise are calculated for a RHIC dipole in the operating cycle of the accelerator. A novel insulation scheme designed to promote efficient cooling is described.

  9. Radiation Safety System for Stanford Synchrotron Radiation Laboratory

    SciTech Connect

    Liu, J

    2004-03-12

    Radiation Safety System (RSS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed. The RSS, which is designed to protect people from prompt radiation hazards from accelerator operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS). The ACS prevents people from being exposed to the lethal radiation level inside the shielding housing (called a PPS area at SLAC). The ACS for a PPS area consists of the shielding housing, beam inhibiting devices, and a standard entry module at each entrance. The BCS protects people from the prompt radiation hazards outside a PPS area under both normal and abnormal beam loss situations. The BCS consists of the active power (current/energy) limiting devices, beam stoppers, shielding, and an active radiation monitor system. The policies and practices in setting up the RSS at SLAC are illustrated.

  10. Intelligent mirror monitor and controller for synchrotron radiation beam lines

    SciTech Connect

    Xu, X.L.; Yang, J.

    1983-01-01

    A microprocessor-based, stand-alone mirror monitor and control system has been developed for synchrotron radiation beam lines. The operational requirements for mirror position and tilt angle, including the parameters for controlling the number of steps, direction, speed and acceleration of the driving motors, may be programmed into EPROMS. The instruction sequence to carry out critical motions will be stored in a program buffer. A manual control knob is also provided to fine tune the mirror position if desired. A synchronization scheme for the height and tilt motions maintains a fixed mirror angle during insertion. Absolute height and tilt angle are displayed. Electronic (or programmable) tilt angle limits are provided to protect against damage from misalignment of high power beams such as focussed wiggler beams. A description of mirror drives with a schematic diagram is presented. Although the controller is made for mirror movers, it can be used in other applications where multiple stepping motors perform complex synchronized motions.

  11. Diagnostics used in commissioning the IUCF Cooler Injector Synchrotron

    SciTech Connect

    Ball, Mark S.; Friesel, Dennis L.; Hamilton, Brett J.

    1998-12-10

    Several new diagnostics systems were designed to aid in the commissioning of the IUCF Cooler Injection Synchrotron (CIS). Among them are a time of flight measurement system (ToF), a multi-wire profile monitor system (Harp) and a beam position monitor system (BPM). Pulsed beam from the 7 MeV linear accelerator is monitored using the ToF system. Several removable Harps are mounted in the injection beamline and ring which are instrumental for tuning ring injection and accumulation. BPMs are placed at the entrance and exit of the four ring dipole magnets to facilitate beam centering during injection and ramping. Fast and slow BPM displays are available to the operator for these functions. These diagnostics and their uses for CIS ring commissioning will be discussed.

  12. Diagnostics used in commissioning the IUCF Cooler Injector Synchrotron

    NASA Astrophysics Data System (ADS)

    Ball, Mark S.; Friesel, Dennis L.; Hamilton, Brett J.

    1998-12-01

    Several new diagnostics systems were designed to aid in the commissioning of the IUCF Cooler Injection Synchrotron (CIS). Among them are a time of flight measurement system (ToF), a multi-wire profile monitor system (Harp) and a beam position monitor system (BPM). Pulsed beam from the 7 MeV linear accelerator is monitored using the ToF system. Several removable Harps are mounted in the injection beamline and ring which are instrumental for tuning ring injection and accumulation. BPMs are placed at the entrance and exit of the four ring dipole magnets to facilitate beam centering during injection and ramping. Fast and slow BPM displays are available to the operator for these functions. These diagnostics and their uses for CIS ring commissioning will be discussed.

  13. APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS

    DOEpatents

    Heard, H.G.

    1961-10-24

    A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)

  14. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    SciTech Connect

    Liu, James C.; Rokni, Sayed H.; Asano, Yoshihiro; Casey, William R.; Donahue, Richard J.; /LBL, Berkeley

    2005-06-29

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  15. 50 Years of experimental particle physics in Bonn. A personal recollection

    NASA Astrophysics Data System (ADS)

    Paul, Ewald

    2013-09-01

    The first synchrotron for electrons in Europe was built at the Physikalisches Institut Bonn in the fifties, and two electron accelerators were built in the following decades. For fifty years, accelerators in Bonn have been in use for studying particle physics in scattering experiments with electron and photon beams, and for research and development of new detector components in both accelerator and experimental technology. Also, for fifty years, experimental groups in Bonn have worked on external experiments at accelerators and storage rings in the large research centres CERN and DESY. In this article, the long history of experimental particle physics in Bonn and at external accelerators is reviewed. It is shown that the interplay between an institute at a university and research centres can be very fruitful. Running accelerators at the institute supported by well equipped workshops were the basis for a wide range of technical developments. Most of the work was carried out in the hands of students. This was successful and guaranteed optimal possibilities for their education. The article is based on the personal recollection of the author. Dedicated to Wolfgang Paul, on the occasion of his hundredth birthday

  16. Experimental study of coherent synchrotron radiation in the emittance exchange line at the A0-photoinjector

    SciTech Connect

    Thangaraj, Jayakar C.T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A.H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y.E.-; Church, M.; Piot, P.; /Fermilab /Northern Illinois U.

    2010-08-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchanger to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at A0 photoinjector.

  17. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  18. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  19. Microwave inverse Cerenkov accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, T. B.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    1997-03-01

    A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM01 fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5πmm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM01 mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line.

  20. Special radiation protection aspects of medical accelerators.

    PubMed

    Silari, M

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next, shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy, (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). PMID:11843087

  1. High-Resolution Synchrotron Radiation Imaging of Trace Metal Elemental Concentrations in Porites Coral

    NASA Astrophysics Data System (ADS)

    Cirino, M.; Dunbar, R. B.; Tangri, N.; Mehta, A.

    2014-12-01

    We investigated the use of synchrotron radiation for elemental imaging within the skeleton of a Porites coral from American Samoa to explore the fine-scale structure of strontium to calcium (Sr/Ca) variability. The use of a synchrotron for coral paleoclimate analysis is relatively new. The method provides a high resolution, two-dimensional elemental map of a coral surface. The aragonitic skeleton of Porites sp. colonies has been widely used for paleoclimate reconstruction as the oxygen isotope ratio (δ18O) signal varies with both sea surface temperature (SST) and sea surface salinity (SSS). Sr/Ca has been used in previous studies in conjunction with δ18O to deconvolve SST from SSS, as Sr/Ca in the coral skeleton varies with SST, but not SSS. However, recent studies suggest that in some cases Sr/Ca variability in coral does not reliably reflect changes in SST. We sought to address this puzzle by investigating Sr/Ca variability in Porites corals at a very fine spatial scale while also demonstrating the suitability of the synchrotron as a coral analysis tool. We also considered Sr/Ca variability as it pertains to the coral's structural elements. The Stanford Linear Accelerator Center synchrotron station generates collimated x-rays in the energy range of 4500-45000 eV with beam diameters as small as 20 μm. Synchrotron imaging allows faster and higher-resolution Sr/Ca analysis than does inductively coupled plasma mass spectrometry (ICP-MS). It also is capable of mapping spatial distributions of many elements, which aids in the development of a multiproxy approach to paleoclimate reconstruction. Imaging and analysis of the Porites coral using synchrotron radiation revealed an intricate sub-seasonal Sr/Ca signal, possibly correlating to a sub-monthly resolution. This signal, which seems unrelated to SST, dominates the annual signal.

  2. Beamlets from stochastic acceleration.

    PubMed

    Perri, Silvia; Carbone, Vincenzo

    2008-09-01

    We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.

  3. Beam instabilities in hadron synchrotrons

    DOE PAGES

    Metral, E.; T. Argyropoulos; Bartosik, H.; Biancacci, N.; Buffat, X.; Esteban Muller, J. F.; Herr, W.; Iadarola, G.; Lasheen, A.; Li, K.; et al

    2016-04-01

    Beam instabilities cover a wide range of effects in particle accelerators and they have been the subjects of intense research for several decades. As the machines performance was pushed new mechanisms were revealed and nowadays the challenge consists in studying the interplays between all these intricate phenomena, as it is very often not possible to treat the different effects separately. Furthermore, the aim of this paper is to review the main mechanisms, discussing in particular the recent developments of beam instability theories and simulations.

  4. Elementary particle physics

    NASA Technical Reports Server (NTRS)

    Perkins, D. H.

    1986-01-01

    Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.

  5. The ISAS Synchrotron Microprobe at DELTA

    SciTech Connect

    Bohlen, Alex von; Kraemer, Markus; Hergenroeder, Roland; Berges, Ulf

    2007-01-19

    Since 2004 ISAS operates a dipole beamline at the synchrotron radiation facility DELTA at University of Dortmund. Synchrotron radiation is used at this beamline as an excellent excitation source for X-ray fluorescence spectrometry (XRF). Among others, the high brilliance of the synchrotron radiation in contrast to conventional X-ray tubes, the strong polarization of the synchrotron radiation and the low divergence of the electron beam can be applied to XRF offering several advantages for spectroscopy. These outstanding features encouraged us to develop and operate a synchrotron radiation induced X-ray micro fluorescence probe connected to a wavelength dispersive spectrometer (SR-WDXRF). A relevant characteristic of such a device, namely, good lateral resolution at high spectral resolution can be applied for single spot-, line-scan and area map analyses of a variety of objects. The instrumentation of the SR-WDXRF and the performed experiments will be presented. Main task is the detection of light elements by their fluorescence K-lines and the specification of element compounds.

  6. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1995-12-31

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ``gold standards`` to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications.

  7. Evidence that the maximum electron energy in hotspots of FR II galaxies is not determined by synchrotron cooling

    NASA Astrophysics Data System (ADS)

    Araudo, Anabella T.; Bell, Anthony R.; Crilly, Aidan; Blundell, Katherine M.

    2016-08-01

    It has been suggested that relativistic shocks in extragalactic sources may accelerate the highest energy cosmic rays. The maximum energy to which cosmic rays can be accelerated depends on the structure of magnetic turbulence near the shock but recent theoretical advances indicate that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV. We study the hotspots of powerful radiogalaxies, where electrons accelerated at the termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is ≲ TeV for a canonical magnetic field of ˜100 μG. Based on theoretical considerations we show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed with high spatial resolution at radio, infrared and optical wavelengths.

  8. SYNCHROTRON EMISSION DRIVEN BY THE CHERENKOV-DRIFT INSTABILITY IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Osmanov, Z.; Chkheidze, N.

    2013-02-10

    In the present paper, we study the generation of synchrotron emission by means of the feedback of Cherenkov-drift waves on the particle distribution through the diffusion process. Despite the efficient synchrotron losses, it is demonstrated that the excited Cherenkov-drift instability leads to the quasi-linear diffusion (QLD), the effect of which is balanced by dissipation factors and, as a result, the pitch angles are prevented from damping, thus maintaining the corresponding synchrotron emission. We analyze the model for a wide range of physical parameters and determine that the mechanism of QLD guarantees the generation of electromagnetic radiation from soft X-rays up to soft {gamma}-rays, which is strongly correlated with Cherenkov-drift emission ranging from IR up to UV energy domains.

  9. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  10. Figuring the Acceleration of the Simple Pendulum

    ERIC Educational Resources Information Center

    Lieberherr, Martin

    2011-01-01

    The centripetal acceleration has been known since Huygens' (1659) and Newton's (1684) time. The physics to calculate the acceleration of a simple pendulum has been around for more than 300 years, and a fairly complete treatise has been given by C. Schwarz in this journal. But sentences like "the acceleration is always directed towards the…

  11. W.K.H. Panofsky Prize in Experimental Particle Physics: The design, construction and performance of the B Factory accelerator facilities, PEP-II and KEKB

    NASA Astrophysics Data System (ADS)

    Dorfan, Jonathan

    2016-03-01

    The discovery and elucidation of CP violation in the B-meson system presented daunting challenges for the accelerator and detector facilities. This talk discusses how these challenges were met and overcome in the electron-positron colliding-beam accelerator facilities PEP-II (at SLAC) and KEKB (at KEK). The key challenge was to produce unprecedentedly large numbers of B-mesons in a geometry that provided high-statistics, low-background samples of decays to CP eigenstates. This was realized with asymmetric collisions at the Γ(4S) at peak luminosities in excess of 3 ×1033 /sq. cm/sec. Specialized optics were developed to generate efficient, low background, multi-bunch collisions in an energy-asymmetric collision geometry. Novel technologies for the RF, vacuum and feedback systems permitted the storage of multi-amp, multi-bunch beams of electrons and positrons, thereby generating high peak luminosities. Accelerator uptimes greater than 95 percent, combined with high-intensity injection systems, ensured large integrated luminosity. Both facilities rapidly attained their design specifications and ultimately far exceeded the projected performance expectations for both peak and integrated luminosity.

  12. 3D-analysis of plant microstructures: advantages and limitations of synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.

    2013-01-01

    Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials

  13. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  14. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    SciTech Connect

    Luo, Yun

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  15. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    SciTech Connect

    Luo, Yun

    2015-08-29

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  16. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    DOE PAGES

    Luo, Yun

    2015-08-29

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less

  17. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    NASA Astrophysics Data System (ADS)

    Luo, Yun

    2015-11-01

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this paper, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  18. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  19. Accelerators for Intensity Frontier Research

    SciTech Connect

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  20. Space-charge calculations in synchrotrons

    SciTech Connect

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.