Science.gov

Sample records for accelerator physics synchrotron

  1. On the polarized beam acceleration in medium energy synchrotrons

    SciTech Connect

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  2. SPEAR3 Accelerator Physics Update

    SciTech Connect

    Safranek, James A.; Corbett, W.Jeff; Gierman, S.; Hettel, R.O.; Huang, X.; Nosochkov, Yuri; Sebek, Jim; Terebilo, Andrei; /SLAC

    2007-11-02

    The SPEAR3 storage ring at Stanford Synchrotron Radiation Laboratory has been delivering photon beams for three years. We will give an overview of recent and ongoing accelerator physics activities, including 500 mA fills, work toward top-off injection, long-term orbit stability characterization and improvement, fast orbit feedback, new chicane optics, low alpha optics & short bunches, low emittance optics, and MATLAB software. The accelerator physics group has a strong program to characterize and improve SPEAR3 performance

  3. Accelerator science in medical physics.

    PubMed

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future.

  4. Accelerator science in medical physics

    PubMed Central

    Peach, K; Wilson, P; Jones, B

    2011-01-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future. PMID:22374548

  5. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    NASA Astrophysics Data System (ADS)

    Dugan, G.; Sagan, D.

    2017-02-01

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall where the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program's use.

  6. Guide to accelerator physics program SYNCH: VAX version 1987. 2

    SciTech Connect

    Parsa, Z.; Courant, E.

    1987-01-01

    This guide is written to accommodate users of Accelerator Physics Data Base BNLDAG::DUAO:(PARSA1). It describes the contents of the on line Accelerator Physics data base DUAO:(PARSA1.SYNCH). SYNCH is a computer program used for the design and analysis of synchrotrons, storage rings and beamlines.

  7. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  8. VLHC accelerator physics

    SciTech Connect

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  9. French nuclear physics accelerator opens

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2016-12-01

    A new €140m particle accelerator for nuclear physics located at the French Large Heavy Ion National Accelerator (GANIL) in Caen was inaugurated last month in a ceremony attended by French president François Hollande.

  10. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    SciTech Connect

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B; Kryukov, S S; Lozovoi, V I; Smirnov, A V; Shashkov, E V; Schelev, M Ya; Dorokhov, V L; Meshkov, O I; Nikiforov, D A

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue of designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)

  11. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Vereshchagin, A. K.; Vorob'ev, N. S.; Gornostaev, P. B.; Dorokhov, V. L.; Kryukov, S. S.; Lozovoi, V. I.; Meshkov, O. I.; Nikiforov, D. A.; Smirnov, A. V.; Shashkov, E. V.; Schelev, M. Ya

    2016-02-01

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue of designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP.

  12. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  13. Accelerator physics and modeling: Proceedings

    SciTech Connect

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  14. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  15. The role of shock acceleration on synchrotron radiation following SL-9 impact

    NASA Astrophysics Data System (ADS)

    Brecht, Stephen H.; Pesses, Mark E.; de Pater, Imke; Gladd, N. T.; Lyon, John G.

    In Brecht et al. [1995] shock acceleration was proposed to explain the enhanced synchrotron radiation levels that followed the impact of SL-9 on Jupiter. This paper presents preliminary estimates of the expected synchrotron radiation levels following a fragment impact. The estimates rely on an analytic description of the diffusive shock acceleration and compare favorably with radio telescope data. The agreement between the calculations and data add support to the idea that the shock acceleration process may have been operative in the Jovian magnetosphere.

  16. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  17. Accelerator Physics Code Web Repository

    SciTech Connect

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  18. An introduction to the physics of high energy accelerators

    SciTech Connect

    Edwards, D.A.; Syphers, J.J.

    1993-01-01

    This book is an outgrowth of a course given by the authors at various universities and particle accelerator schools. It starts from the basic physics principles governing particle motion inside an accelerator, and leads to a full description of the complicated phenomena and analytical tools encountered in the design and operation of a working accelerator. The book covers acceleration and longitudinal beam dynamics, transverse motion and nonlinear perturbations, intensity dependent effects, emittance preservation methods and synchrotron radiation. These subjects encompass the core concerns of a high energy synchrotron. The authors apparently do not assume the reader has much previous knowledge about accelerator physics. Hence, they take great care to introduce the physical phenomena encountered and the concepts used to describe them. The mathematical formulae and derivations are deliberately kept at a level suitable for beginners. After mastering this course, any interested reader will not find it difficult to follow subjects of more current interests. Useful homework problems are provided at the end of each chapter. Many of the problems are based on actual activities associated with the design and operation of existing accelerators.

  19. Accelerator Physics Challenges for the NSLS-II Project

    SciTech Connect

    Krinsky,S.

    2009-05-04

    The NSLS-II is an ultra-bright synchrotron light source based upon a 3-GeV storage ring with a 30-cell (15 super-period) double-bend-achromat lattice with damping wigglers used to lower the emittance below 1 nm. In this paper, we discuss the accelerator physics challenges for the design including: optimization of dynamic aperture; estimation of Touschek lifetime; achievement of required orbit stability; and analysis of ring impedance and collective effects.

  20. Compensation Techniques in Accelerator Physics

    SciTech Connect

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  1. Synchrotron Radiation Therapy from a Medical Physics point of view

    SciTech Connect

    Prezado, Y.; Berkvens, P.; Braeuer-Krisch, E.; Renier, M.; Bravin, A.; Adam, J. F.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Deman, P.; Vautrin, M.

    2010-07-23

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT).The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  2. Analytical tools in accelerator physics

    SciTech Connect

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  3. Experiments in atomic and applied physics using synchrotron radiation

    SciTech Connect

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs.

  4. Induction acceleration of heavy ions in the KEK digital accelerator: Demonstration of a fast-cycling induction synchrotron

    NASA Astrophysics Data System (ADS)

    Takayama, K.; Yoshimoto, T.; Barata, M.; Wah, Leo Kwee; Xingguang, Liu; Iwashita, T.; Harada, S.; Adachi, T.; Arai, T.; Arakawa, D.; Asao, H.; Kadokura, E.; Kawakubo, T.; Nakanishi, H.; Okada, Y.; Okamura, K.; Okazaki, K.; Takagi, A.; Takano, S.; Wake, M.

    2014-01-01

    A fast-cycling induction synchrotron was demonstrated. Ions with extremely low energies and mass-to-charge ratios (A /Q) in the range from 2 to 10 were injected, captured by barrier voltages, and accelerated to the end of the acceleration cycle of 50 ms by flat pulse voltages generated by pulse transformers referred to as induction cells. Induction acceleration in a wide dynamic frequency range of 56 kHz to 1 MHz was also demonstrated. This accelerator is expected as the next generation of a heavy ion driver for cancer therapy, where a large scale injector is not required. A wide variety of ions for ion energy implantation experiments needing novel materials will be delivered from this compact circular accelerator.

  5. MUON ACCELERATION WITH A VERY FAST RAMPING SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.GARREN,A.A.PALMER,R.B.

    2002-07-01

    A 4600 Hz fast ramping synchrotron is explored as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice we describe. Muon survival is 83%.

  6. Relationship of FEL physics to accelerator physics

    SciTech Connect

    Morton, P.L.

    1981-08-01

    The beam dynamics and operation of a free electron laser are discussed after a description of accelerator beam dynamics. Various wiggler field schemes are studied including the constant parameter wiggler, the variable parameter wiggler, and the gain-expanded wiggler. (WHK)

  7. Self-Consistent Synchrotron Spectra from Trans-Relativistic Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.

    2015-01-01

    Most existing analytical models describing the second-order Fermi acceleration of relativistic electrons due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the non-relativistic thermal background gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the electrons and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work, we present the first analytical solution to the global, trans-relativistic problem of electron acceleration, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. Since synchrotron and inverse-Compton losses are included in the transport equation, the resulting radiation spectra are computed self-consistently. The results can be used to model the acceleration of radiating electrons in AGN and solar environments, applications of both types are discussed.

  8. Theoretical problems in accelerator physics. Progress report

    SciTech Connect

    Kroll, N.M.

    1993-08-01

    This report discusses the following topics in accelerator physics: radio frequency pulse compression and power transport; computational methods for the computer analysis of microwave components; persistent wakefields associated with waveguide damping of higher order modes; and photonic band gap cavities.

  9. Physics and Accelerator Applications of RF Superconductivity

    SciTech Connect

    H. Padamsee; K. W. Shepard; Ron Sundelin

    1993-12-01

    A key component of any particle accelerator is the device that imparts energy gain to the charged particle. This is usually an electromagnetic cavity resonating at a microwave frequency, chosen between 100 and 3000 MHz. Serious attempts to utilize superconductors for accelerating cavities were initiated more than 25 years ago with the acceleration of electrons in a lead-plated resonator at Stanford University (1). The first full-scale accelerator, the Stanford SCA, was completed in 1978 at the High Energy Physics Laboratory (HEPL) (2). Over the intervening one and a half decades, superconducting cavities have become increasingly important to particle accelerators for nuclear physics and high energy physics. For continuous operation, as is required for many applications, the power dissipation in the walls of a copper structure is quite substantial, for example, 0.1 megawatts per meter of structure operating at an accelerating field of 1 million volts/meter (MV/m). since losses increase as the square of the accelerating field, copper cavities become severely uneconomical as demand for higher fields grows with the higher energies called for by experimenters to probe ever deeper into the structure of matter. Rf superconductivity has become an important technology for particle accelerators. Practical structures with attractive performance levels have been developed for a variety of applications, installed in the targeted accelerators, and operated over significant lengths of time. Substantial progress has been made in understanding field and Q limitations and in inventing cures to advance performance. The technical and economical potential of rf superconductivity makes it an important candidate for future advanced accelerators for free electron lasers, for nuclear physics, and for high energy physics, at the luminosity as well as at the energy frontiers.

  10. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  11. Accelerator prospects for photon-photon physics

    SciTech Connect

    Hutton, A.

    1992-05-01

    This paper provides an overview of the accelerators in the world where two-photon physics could be carried out in the future. The list includes facilities where two-photon physics is already an integral part of the scientific program but also mentions some other machines where initiating new programs may be possible.

  12. Research in atomic and applied physics using a 6-GeV synchrotron source

    SciTech Connect

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented.

  13. The plasma physics of shock acceleration

    NASA Technical Reports Server (NTRS)

    Jones, Frank C.; Ellison, Donald C.

    1991-01-01

    The history and theory of shock acceleration is reviewed, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. The work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks is discussed. Some of the outstanding problems that still confront theorists and observers in this field are described.

  14. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    SciTech Connect

    Karlica, Mile

    2015-12-17

    In this talk we present the sponge” model and its possible implications on the GRB afterglow light curves. “Sponge” model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  15. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    SciTech Connect

    Scarpelli, Andrea

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  16. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

    SciTech Connect

    Sessler, A.M.

    1984-07-01

    High energy physics, perhaps more than any other branch of science, is driven by technology. It is not the development of theory, or consideration of what measurements to make, which are the driving elements in our science. Rather it is the development of new technology which is the pacing item. Thus it is the development of new techniques, new computers, and new materials which allows one to develop new detectors and new particle-handling devices. It is the latter, the accelerators, which are at the heart of the science. Without particle accelerators there would be, essentially, no high energy physics. In fact. the advances in high energy physics can be directly tied to the advances in particle accelerators. Looking terribly briefly, and restricting one's self to recent history, the Bevatron made possible the discovery of the anti-proton and many of the resonances, on the AGS was found the {mu}-neutrino, the J-particle and time reversal non-invariance, on Spear was found the {psi}-particle, and, within the last year the Z{sub 0} and W{sup {+-}} were seen on the CERN SPS p-{bar p} collider. Of course one could, and should, go on in much more detail with this survey, but I think there is no need. It is clear that as better acceleration techniques were developed more and more powerful machines were built which, as a result, allowed high energy physics to advance. What are these techniques? They are very sophisticated and ever-developing. The science is very extensive and many individuals devote their whole lives to accelerator physics. As high energy experimental physicists your professional lives will be dominated by the performance of 'the machine'; i.e. the accelerator. Primarily you will be frustrated by the fact that it doesn't perform better. Why not? In these lectures, six in all, you should receive some appreciation of accelerator physics. We cannot, nor do we attempt, to make you into accelerator physicists, but we do hope to give you some insight into the

  17. SIMULATIONS OF PARTICLE ACCELERATION BEYOND THE CLASSICAL SYNCHROTRON BURNOFF LIMIT IN MAGNETIC RECONNECTION: AN EXPLANATION OF THE CRAB FLARES

    SciTech Connect

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C. E-mail: greg.werner@colorado.edu E-mail: mitch@jila.colorado.edu

    2013-06-20

    It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of two-dimensional particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.

  18. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  19. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    ERIC Educational Resources Information Center

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  20. Chemical vs. Physical Acceleration of Cement Hydration

    PubMed Central

    Bentz, Dale P.; Zunino, Franco; Lootens, Didier

    2016-01-01

    Cold weather concreting often requires the use of chemical accelerators to speed up the hydration reactions of the cement, so that setting and early-age strength development will occur in a timely manner. While calcium chloride (dihydrate – CaCl2·2H2O) is the most commonly used chemical accelerator, recent research using fine limestone powders has indicated their high proficiency for physically accelerating early-age hydration and reducing setting times. This paper presents a comparative study of the efficiency of these two approaches in accelerating hydration (as assessed via isothermal calorimetry), reducing setting times (Vicat needle), and increasing early-age mortar cube strength (1 d and 7 d). Both the CaCl2 and the fine limestone powder are used to replace a portion of the finest sand in the mortar mixtures, while keeping both the water-to-cement ratio and volume fractions of water and cement constant. Studies are conducted at 73.4 °F (23°C) and 50 °F (10 °C), so that activation energies can be estimated for the hydration and setting processes. Because the mechanisms of acceleration of the CaCl2 and limestone powder are different, a hybrid mixture with 1 % CaCl2 and 20 % limestone powder (by mass of cement) is also investigated. Both technologies are found to be viable options for reducing setting times and increasing early-age strengths, and it is hoped that concrete producers and contractors will consider the addition of fine limestone powder to their toolbox of techniques for assuring performance in cold weather and other concreting conditions where acceleration may be needed. PMID:28077884

  1. Physical Analysis of the Jovian Synchrotron Radio Emission

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  2. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    SciTech Connect

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab.

  3. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  4. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    SciTech Connect

    LeBrun, T.

    1996-12-31

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells.

  5. Induction synchrotron

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Kishiro, Junichi

    2000-08-01

    A novel proton synchrotron employing induction cells instead of radio frequency cavities is proposed. The major feature of the barrier bucket acceleration, where acceleration and longitudinal focusing are independently achieved is theoretically discussed with the help of multi-particle simulations. It is proved that barrier bucket acceleration allows ultimate use of longitudinal phase-space and is quite effective to substantially increase the beam intensity in synchrotrons. Engineering aspects of key devices to realize the novel synchrotron, a ferri/ferro-magnetic material loaded induction cell and a modulator being rapidly switched in synchronization with beam acceleration are described in detail. The idea is applied to an existing machine (the KEK 12 GeV-PS) and high-intensity proton rings such as JHF, ESS, and SNS and their predicted improvement in machine performance is given with numerical values for each case.

  6. Preferential positron heating and acceleration by synchrotron maser instabilities in relativistic positron-electron-proton plasmas

    NASA Technical Reports Server (NTRS)

    Hoshino, Masahiro; Arons, Jonathan

    1991-01-01

    A new process of the preferential strong heating of positrons through the ion synchrotron maser instability in positron-electron-proton magnetized plasmas is investigated using particle-in-cell simulations. It is shown that the positrons form a nonthermal power-law-like energy distribution via their gyroresonant interaction with the extraordinary modes emitted by the ions. It is noted that this process may be of significance in connection with the shock excitation of nonthermal synchrotron radiation from astrophysical systems powered by relativistic outflows from compact central objects, e.g., supernova remnants powered by pulsars and jets from active galactic nuclei.

  7. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  8. Physical activities to enhance an understanding of acceleration

    NASA Astrophysics Data System (ADS)

    Lee, S. A.

    2006-03-01

    On the basis of their everyday experiences, students have developed an understanding of many of the concepts of mechanics by the time they take their first physics course. However, an accurate understanding of acceleration remains elusive. Many students have difficulties distinguishing between velocity and acceleration. In this report, a set of physical activities to highlight the differences between acceleration and velocity are described. These activities involve running and walking on sand (such as an outdoor volleyball court).

  9. The Influence of Accelerator Science on Physics Research

    NASA Astrophysics Data System (ADS)

    Haussecker, Enzo F.; Chao, Alexander W.

    2011-06-01

    We evaluate accelerator science in the context of its contributions to the physics community. We address the problem of quantifying these contributions and present a scheme for a numerical evaluation of them. We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.

  10. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  11. The Future of Accelerator Physics. The Tamura Symposium Proceedings

    SciTech Connect

    Tajima, T.

    1996-04-01

    These proceedings represent the papers presented at the Tamura symposium on accelerator physics. The topics discussed include many novel ideas for future exploration, for example, 30TeV X 30TeV collider, Moebius accelerator, new magnets, new table{minus}top terawatt (T3) lasers, free space accelerators, advanced cooling of beams, including optical cooling,etc.. There were 30 papers presented at the symposium and 28 have been abstracted for the Energy Science and Technology database.(AIP)

  12. Summary report of working group 2: Computations for accelerator physics

    NASA Astrophysics Data System (ADS)

    Cowan, Benjamin M.; Benedetti, C.

    2017-03-01

    The Computations for Accelerator Physics Working Group reviewed recent progress in and surveyed the state of the art of computational modeling of advanced accelerators. This included applications to laser-plasma and structure-based accelerators as well as beam dynamics in circular colliders. Fundamental aspects of numerical modeling and direct particle interaction techniques were discussed. The Working Group also covered the implications of advanced compute architectures.

  13. Fluid Physics in a Fluctuating Acceleration Environment

    NASA Technical Reports Server (NTRS)

    Thomson, J. Ross; Drolet, Francois; Vinals, Jorge

    1996-01-01

    We summarize several aspects of an ongoing investigation of the effects that stochastic residual accelerations (g-jitter) onboard spacecraft can have on experiments conducted in a microgravity environment. The residual acceleration field is modeled as a narrow band noise, characterized by three independent parameters: intensity (g(exp 2)), dominant angular frequency Omega, and characteristic correlation time tau. Realistic values for these parameters are obtained from an analysis of acceleration data corresponding to the SL-J mission, as recorded by the SAMS instruments. We then use the model to address the random motion of a solid particle suspended in an incompressible fluid subjected to such random accelerations. As an extension, the effect of jitter on coarsening of a solid-liquid mixture is briefly discussed, and corrections to diffusion controlled coarsening evaluated. We conclude that jitter will not be significant in the experiment 'Coarsening of solid-liquid mixtures' to be conducted in microgravity. Finally, modifications to the location of onset of instability in systems driven by a random force are discussed by extending the standard reduction to the center manifold to the stochastic case. Results pertaining to time-modulated oscillatory convection are briefly discussed.

  14. Fluid Physics Under a Stochastic Acceleration Field

    NASA Technical Reports Server (NTRS)

    Vinals, Jorge

    2001-01-01

    The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.

  15. Accelerating Innovation: How Nuclear Physics Benefits Us All

    DOE R&D Accomplishments Database

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  16. SYMMETRY, HAMILTONIAN PROBLEMS AND WAVELETS IN ACCELERATOR PHYSICS

    SciTech Connect

    FEDOROVA,A.; ZEITLIN,M.; PARSA,Z.

    2000-03-31

    In this paper the authors consider applications of methods from wavelet analysis to nonlinear dynamical problems related to accelerator physics. In this approach they take into account underlying algebraical, geometrical and topological structures of corresponding problems.

  17. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  18. Methods of geometrical integration in accelerator physics

    NASA Astrophysics Data System (ADS)

    Andrianov, S. N.

    2016-12-01

    In the paper we consider a method of geometric integration for a long evolution of the particle beam in cyclic accelerators, based on the matrix representation of the operator of particles evolution. This method allows us to calculate the corresponding beam evolution in terms of two-dimensional matrices including for nonlinear effects. The ideology of the geometric integration introduces in appropriate computational algorithms amendments which are necessary for preserving the qualitative properties of maps presented in the form of the truncated series generated by the operator of evolution. This formalism extends both on polarized and intense beams. Examples of practical applications are described.

  19. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  20. Fluid Physics in a Fluctuating Acceleration Environment

    NASA Technical Reports Server (NTRS)

    Drolet, Francois; Vinals, Jorge

    1999-01-01

    Our program of research aims at developing a stochastic description of the residual acceleration field onboard spacecraft (g-jitter) to describe in quantitative detail its effect on fluid motion. Our main premise is that such a statistical description is necessary in those cases in which the characteristic time scales of the process under investigation are long compared with the correlation time of g-jitter. Although a clear separation between time scales makes this approach feasible, there remain several difficulties of practical nature: (i), g-jitter time series are not statistically stationary but rather show definite dependences on factors such as active or rest crew periods; (ii), it is very difficult to extract reliably the low frequency range of the power spectrum of the acceleration field. This range controls the magnitude of diffusive processes; and (iii), models used to date are Gaussian, but there is evidence that large amplitude disturbances occur much more frequently than a Gaussian distribution would predict. The lack of stationarity does not constitute a severe limitation in practice, since the intensity of the stochastic components changes very slowly during space missions (perhaps over times of the order of hours). A separate analysis of large amplitude disturbances has not been undertaken yet, but it does not seem difficult a priori to devise models that may describe this range better than a Gaussian distribution. The effect of low frequency components, on the other hand, is more difficult to ascertain, partly due to the difficulty associated with measuring them, and partly because they may be indistinguishable from slowly changing averages. This latter effect is further complicated by the lack of statistical stationarity of the time series. Recent work has focused on the effect of stochastic modulation on the onset of oscillatory instabilities as an example of resonant interaction between the driving acceleration and normal modes of the system

  1. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation.

    PubMed

    Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I

    2014-08-01

    The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.

  2. High Energy Density Physics and Exotic Acceleration Schemes

    SciTech Connect

    Cowan, T.; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  3. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  4. Physics with post-accelerated beams at ISOLDE: nuclear reactions

    NASA Astrophysics Data System (ADS)

    Di Pietro, A.; Riisager, K.; Van Duppen, P.

    2017-04-01

    Nuclear-reaction studies have until now constituted a minor part of the physics program with post-accelerated beams at ISOLDE, mainly due to the maximum energy of REX-ISOLDE of around 3 MeV/u that limits reaction work to the mass region below A = 100. We give an overview of the current experimental status and of the physics results obtained so far. Finally, the improved conditions given by the HIE-ISOLDE upgrade are described.

  5. From Particle Physics to Astroparticle Physics: Proton Decay and the Rise of Non-accelerator Physics

    NASA Astrophysics Data System (ADS)

    Meyer, Hinrich

    The search for proton decay was motivated by simple questions about the content of the observable universe. Why is matter so stable and why do we not see antimatter of primordial origin? The symmetry of the standard model of particle physics would have required that matter and antimatter annihilated in the early universe. In 1968, Sacharov showed that the matter-antimatter asymmetry could have formed in a state of thermal non-equilibrium of the universe, as given in big bang cosmology, together with the well-confirmed C and CP violations, and proton decay. The latter phenomenon could be only investigated in large none-accelerator experiments. The SU(5) extension of the standard model implied a proton lifetime of about 1029 years. With detectors consisting of 1 000 tons of matter and located deep under the Earth surface, such as the French-German Fréjus iron-calorimeter, in the mid 1980s one expected to detect several proton decays per year. Here, we report on the way leading from accelerator laboratories to underground physics, which paradoxically enough turned out to studying cosmic rays. There has not been any evidence for the instability of protons, and lifetime limits of more than 1034 years have been obtained. However, great progress in particle physics and in the physics of cosmic rays could be achieved with neutrinos.

  6. Health physics manual of good practices for accelerator facilities

    SciTech Connect

    Casey, W.R.; Miller, A.J.; McCaslin, J.B.; Coulson, L.V.

    1988-04-01

    It is hoped that this manual will serve both as a teaching aid as well as a useful adjunct for program development. In the context of application, this manual addresses good practices that should be observed by management, staff, and designers since the achievement of a good radiation program indeed involves a combined effort. Ultimately, radiation safety and good work practices become the personal responsibility of the individual. The practices presented in this manual are not to be construed as mandatory rather they are to be used as appropriate for the specific case in the interest of radiation safety. As experience is accrued and new data obtained in the application of this document, ONS will update the guidance to assure that at any given time the guidance reflects optimum performance consistent with current technology and practice.The intent of this guide therefore is to: define common health physics problems at accelerators; recommend suitable methods of identifying, evaluating, and managing accelerator health physics problems; set out the established safety practices at DOE accelerators that have been arrived at by consensus and, where consensus has not yet been reached, give examples of safe practices; introduce the technical literature in the accelerator health physics field; and supplement the regulatory documents listed in Appendix D. Many accelerator health physics problems are no different than those at other kinds of facilities, e.g., ALARA philosophy, instrument calibration, etc. These problems are touched on very lightly or not at all. Similarly, this document does not cover other hazards such as electrical shock, toxic materials, etc. This does not in any way imply that these problems are not serious. 160 refs.

  7. Better physical activity classification using smartphone acceleration sensor.

    PubMed

    Arif, Muhammad; Bilal, Mohsin; Kattan, Ahmed; Ahamed, S Iqbal

    2014-09-01

    Obesity is becoming one of the serious problems for the health of worldwide population. Social interactions on mobile phones and computers via internet through social e-networks are one of the major causes of lack of physical activities. For the health specialist, it is important to track the record of physical activities of the obese or overweight patients to supervise weight loss control. In this study, acceleration sensor present in the smartphone is used to monitor the physical activity of the user. Physical activities including Walking, Jogging, Sitting, Standing, Walking upstairs and Walking downstairs are classified. Time domain features are extracted from the acceleration data recorded by smartphone during different physical activities. Time and space complexity of the whole framework is done by optimal feature subset selection and pruning of instances. Classification results of six physical activities are reported in this paper. Using simple time domain features, 99 % classification accuracy is achieved. Furthermore, attributes subset selection is used to remove the redundant features and to minimize the time complexity of the algorithm. A subset of 30 features produced more than 98 % classification accuracy for the six physical activities.

  8. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    SciTech Connect

    Fischer, Richard P.; Gold, Steven H.

    2016-07-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements in the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.

  9. Innovative applications of genetic algorithms to problems in accelerator physics

    NASA Astrophysics Data System (ADS)

    Hofler, Alicia; Terzić, Balša; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.

  10. What accelerator mass spectrometry can do for solar physics

    NASA Astrophysics Data System (ADS)

    Newkirk, Gordon

    1984-11-01

    We review some of the empirical aspects of the solar magnetic activity and the convective dynamo models developed to account for the magnetic cycle. Alternative hypotheses which have recently emerged are sketched. Possible applications of accelerator mass spectrometry to solar physics and the important questions that proxy data on past solar activity might answer are evaluated. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  11. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  12. Applications of the ARGUS code in accelerator physics

    NASA Astrophysics Data System (ADS)

    Petillo, J. J.; Mankofsky, A.; Krueger, W. A.; Kostas, C.; Mondelli, A. A.; Drobot, A. T.

    1993-12-01

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between Science Applications International Corporation (SAICTM) and the Los Alamos Accelerator Code Group (LAACG). It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input, memory management, disk I/O, and diagnostics. Physics modules are in place for electrostatic and electromagnetic field solutions, frequency-domain (eigenvalue) solutions, time-dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing. ARGUS operates on either Cray or workstation platforms, and a MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper.

  13. Experimental determination of physical processes in space, leading to deviations of radio synchrotron radiation spectra from the power law

    NASA Astrophysics Data System (ADS)

    Men', A. V.

    2008-02-01

    We present universal formulas for spectral characteristics of cosmic radio sources of synchrotron radiation upon the presence of spectral density maxima at certain frequencies (spectra with negative curvature) taking into account most typical physical processes observed in space. On the basis of long-term observations of angular radiation structure of cosmic radio sources in the decameter wavelength range by the URAN radio interferometer system, we determine most probable physical processes resulting in spectra with extremum values for several quasars, radio galaxies, and their separate components. On the basis of these data, we estimate some parameters of cosmic medium, magnetic field, and angular sizes of compact radio sources and their components.

  14. Physics design of the HNB accelerator for ITER

    NASA Astrophysics Data System (ADS)

    de Esch, H. P. L.; Kashiwagi, M.; Taniguchi, M.; Inoue, T.; Serianni, G.; Agostinetti, P.; Chitarin, G.; Marconato, N.; Sartori, E.; Sonato, P.; Veltri, P.; Pilan, N.; Aprile, D.; Fonnesu, N.; Antoni, V.; Singh, M. J.; Hemsworth, R. S.; Cavenago, M.

    2015-09-01

    The physics design of the accelerator for the heating neutral beamline on ITER is now finished and this paper describes the considerations and choices which constitute the basis of this design. Equal acceleration gaps of 88 mm have been chosen to improve the voltage holding capability while keeping the beam divergence low. Kerbs (metallic plates around groups of apertures, attached to the downstream surface of the grids) are used to compensate for the beamlet-beamlet interaction and to point the beamlets in the right direction. A novel magnetic configuration is employed to compensate for the beamlet deflection caused by the electron suppression magnets in the extraction grid. A combination of long-range and short-range magnetic fields is used to reduce electron leakage between the grids and limit the transmitted electron power to below 800 kW.

  15. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  16. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  17. SU-E-E-08: Applications of the Quantization of Coupled Circuits in Radiation Physics (design of Klystron, Bremsstrahlung, Synchrotron)

    SciTech Connect

    Ulmer, W

    2015-06-15

    Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4). The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to

  18. Acceleration of electrons by a laser pulse at its output onto an optical surface of the vacuum - transparent medium interface. Laser synchrotron

    NASA Astrophysics Data System (ADS)

    Romanovskiy, M. Yu

    2016-05-01

    We consider the electron dynamics in the field of an electromagnetic wave produced at the vacuum - transparent medium interface upon reflection from the boundary, close to total internal reflection. The propagation velocity of a constant phase of the electromagnetic wave along the interface can vary from c/n to infinity (c is the speed of light in vacuum, and n is the refractive index of the medium at the interface). In this case, there emerge regions of positive and negative phases of the field with wavelengths, approximately equal to half the wavelength of the original laser beam, which can propagate at a speed close to that of light in vacuum. If a beam of relativistic electrons propagates along the surface, they can gain energy and accelerate, as well as radiate. With closed trajectories of electron motion, a laser synchrotron will be implemented as a result of many acceleration cycles.

  19. Designing high energy accelerators under DOE's New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    SciTech Connect

    Fowler, W.B.

    1991-05-01

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example.

  20. SU-E-T-47: A Monte Carlo Model of a Spot Scanning Proton Beam Based On a Synchrotron Proton Therapy Accelerator

    SciTech Connect

    Xie, C; Lin, H; Jing, J; Chen, C; Cao, R; Pei, X

    2015-06-15

    Purpose: To build the model of a spot scanning proton beam for the dose calculation of a synchrotron proton therapy accelerator, which is capable of accelerating protons from 50 up to 221 MeV. Methods: The spot scanning beam nozzle is modeled using TOPAS code, a simulation tool based on Geant4.9.6. The model contained a beam pipe vacuum window, a beam profile monitor, a drift chamber, two plane-parallel ionization chambers, and a spot-position monitor consisted of a multiwire ionization chamber. A water phantom is located with its upstream surface at the isocenter plane. The initial proton beam energy and anglar deflection are modeled using a Gaussian distribution with FWHM (Full Widths at Half Maximum) deponding on its beam energy. The phase space file (PSF) on a virtual surface located at the center between the two magnets is recorded. PSF is used to analyze the pencil beam features and offset the pencil beam position. The source model parameters are verificated by fitting the simulated Result to the measurement. Results: The simulated percentage depth dose (PDD) and lateral profiles of scanning pencil beams of various incident proton energies are verificated to the measurement. Generally the distance to agreement (DTA) of Bragg peaks is less than 0.2cm. The FWHM of Gaussian anglar distribution was adjusted to fit the lateral profile difference between the simulation and the measurement to less than 2∼3cm. Conclusion: A Monte Carlo model of a spot scanning proton beam was bullt based on a synchrotron proton therapy accelerator. This scanning pencil beam model will be as a block to build the broad proton beam as a proton TPS dose verification tool.

  1. ASP2012: Fundamental Physics and Accelerator Sciences in Africa

    NASA Astrophysics Data System (ADS)

    Darve, Christine

    2012-02-01

    Much remains to be done to improve education and scientific research in Africa. Supported by the international scientific community, our initiative has been to contribute to fostering science in sub-Saharan Africa by establishing a biennial school on fundamental subatomic physics and its applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The lectures are addressed to students or young researchers with at least a background of 4 years of university formation. The aim of the school is to develop capacity, interpret, and capitalize on the results of current and future physics experiments with particle accelerators; thereby spreading education for innovation in related applications and technologies, such as medicine and information science. Following the worldwide success of the first school edition, which gathered 65 students for 3-week in Stellenbosch (South Africa) in August 2010, the second edition will be hosted in Ghana from July 15 to August 4, 2012. The school is a non-profit organization, which provides partial or full financial support to 50 of the selected students, with priority to Sub-Saharan African students.

  2. Synchrotron and inverse-Compton emission from blazar jets - II. An accelerating jet model with a geometry set by observations of M87

    NASA Astrophysics Data System (ADS)

    Potter, William J.; Cotter, Garret

    2013-02-01

    In this paper we develop the jet model of Potter & Cotter to include a magnetically dominated accelerating parabolic base transitioning to a slowly decelerating conical jet with a geometry set by recent radio observations of M87. We conserve relativistic energy-momentum and particle number along the jet and calculate the observed synchrotron emission from the jet by calculating the integrated line-of-sight synchrotron opacity through the jet in the rest frame of each section of plasma. We calculate the inverse-Compton emission from synchrotron, cosmic microwave background (CMB), accretion disc, starlight, broad-line region (BLR), dusty torus and narrow-line region photons by transforming into the rest frame of the plasma along the jet. We fit our model to simultaneous multi-wavelength observations of the Compton-dominant FSRQ type blazar PKS 0227-369, with a jet geometry set by M87 and an accelerating bulk Lorentz factor consistent with simulations and theory. We investigate models in which the jet comes into equipartition at different distances along the jet and equipartition is maintained via the conversion of jet bulk kinetic energy into particle acceleration. We find that the jet must still be magnetically dominated within the BLR and cannot be in equipartition due to the severe radiative energy losses. The model fits the observations, including radio data, very well if the jet comes into equipartition outside the BLR within the dusty torus (1.5 pc) or at further distances (34 pc). The fits require a high-power jet with a large bulk Lorentz factor observed close to the line of sight, consistent with our expectations for a Compton-dominant blazar. We find that our fit in which the jet comes into equipartition furthest along the jet, which has a jet with the geometry of M87 scaled linearly with black hole mass, has an inferred black hole mass close to previous estimates. This implies that the jet of PKS 0227 might be well described by the same jet geometry as M87.

  3. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  4. The synchrotron-maser theory of type II solar radio emission processes - The physical model and generation mechanism

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Steinolfson, R. S.; Zhou, G. C.

    1986-01-01

    A theory is proposed to explain the generation mechanism of type II solar radio bursts. It is suggested that the shock wave formed at the leading edge of a coronal transient can accelerate electrons. Because of the nature of the acceleration process, the energized electrons can possess a 'hollow-beam' type distribution function. When the electron beam propagates along the ambient magnetic field to lower altitudes and attains larger pitch angles, a synchrotron-maser instability can set in. This instability leads to the amplification of unpolarized or weakly polarized radiation. The present discussion incorporates a model which describes the ambient magnetic field and background plasma by means of MHD simulation. The potential emission regions may be located approximately, according to the time-dependent MHD simulation. Since the average local plasma frequency in the source region can be evaluated from the MHD model, the frequent drift associated with the radiation may be estimated. The result seems to be in good agreement with that derived from observations.

  5. Simulations and synchrotron radiation from the relativistic jet base

    NASA Astrophysics Data System (ADS)

    Porth, O.

    The central acceleration region of active galactic nuclei (AGN) is simulated for a two-component spine and sheath jet. For the steady jet component we perform the spatially resolved polarized synchrotron transfer producing observables as radio maps, spectra and derived rotation measures. The wealth of detail obtained this way helps to assess the physical processes (such as internal Faraday rotation) and model assumptions.

  6. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  7. Design of the KHIMA synchrotron

    NASA Astrophysics Data System (ADS)

    Yim, Heejoong; An, Dong Hyun; Hahn, Garam; Park, Chawon; Kim, Geun-Beom

    2015-10-01

    The Korea Heavy Ion Medical Accelerator project (KHIMA) has been proposed as an ion-beam synchrotron facility for cancer therapy. The facility will be installed at Gijang, Busan with completion in 2017. The proposed maximum energy of the ions is 430 MeV/u (for carbon) to cover various tumor depths up to 30 cm. For the synchrotron design, we optimized the lattice configuration to fit the therapy. We discuss here the status of the synchrotron's design.

  8. Analysis of induced radionuclides in low-activation concrete (limestone concrete) using the 12 GeV proton synchrotron accelerator facility at KEK.

    PubMed

    Saito, K; Tanosaki, T; Fujii, H; Miura, T

    2005-01-01

    22Na is one of the long-lived radionuclides induced in shielding concrete of a beam-line tunnel of a high-energy particle accelerator facility and poses a problem of radiation wastes at the decommissioning of the facility. In order to estimate the 22Na concentration induced in shielding concrete, chemical reagents such as NaHCO3, MgO, Al203, SiO2 and CaCO3 were irradiated at several locations in the beam-line tunnel of the 12 GeV proton synchrotron accelerator at KEK, and the 22Na concentrations induced in those chemical reagents were measured. Low-activation concrete made up of limestone aggregates was also irradiated by secondary particles in the beam-line tunnel and the long-lived radionuclide, such as 22Na, concentrations induced in the concrete were measured. It was confirmed that 22Na concentrations induced in Mg, Al, Si and Ca were lower than that in Na, and that 22Na concentrations induced in the low-activation concrete was lower than those induced in ordinary concrete made up of sandstone aggregates.

  9. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  10. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect

    Kutschera, W.

    1983-01-01

    Several applications of accelerator-based mass spectroscopy are reviewed. Among these are the search for unknown species, determination of comogenic radioisotopes in natural materials and measurements of half-lifes, especially those of significance to dating. Accelerator parameters and techniques of importance for these applications are also considered.

  11. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    SciTech Connect

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  12. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  13. A Project for synchrotron with electron cooling for cancer therapy

    NASA Astrophysics Data System (ADS)

    Vostrikov, V. A.; Kiselev, V. A.; Levichev, E. B.; Parkhomchuk, V. V.; Reva, V. B.; Sinyatkin, S.

    2012-07-01

    A project for a new generation of proton and ion accelerator facilities for cancer therapy has been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch, Russian Academy of Sciences (SB RAS). This facility includes an electrostatic injector, a booster with a 10-Hz repetition rate, and a main synchrotron with electron cooling and beam transport lines for delivering the beam to treatment rooms. The application of electron cooling makes it possible to increase the beam intensity and reduce the apertures of both the synchrotron and the high-energy transport lines, as well as save construction costs and energy consumption as required by the accelerator complex. This paper describes the main features of the synchrotron and the requirements for its main systems and their parameters.

  14. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    SciTech Connect

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB{sub 66} crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing.

  15. TEACHING PHYSICS: Atwood's machine: experiments in an accelerating frame

    NASA Astrophysics Data System (ADS)

    Teck Chee, Chia; Hong, Chia Yee

    1999-03-01

    Experiments in an accelerating frame are often difficult to perform, but simple computer software allows sufficiently rapid and accurate measurements to be made on an arrangement of weights and pulleys known as Atwood's machine.

  16. Medical physics--particle accelerators--the beginning.

    PubMed

    Ganz, Jeremy C

    2014-01-01

    This chapter outlines the early development of particle accelerators with the redesign from linear accelerator to cyclotron by Ernest Lawrence with a view to reducing the size of the machines as the power increased. There are minibiographies of Ernest Lawrence and his brother John. The concept of artificial radiation is outlined and the early attempts at patient treatment are mentioned. The reasons for trying and abandoning neutron therapy are discussed, and the early use of protons is described.

  17. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    SciTech Connect

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  18. Formation and Acceleration Physics on Plasma Injector 1

    NASA Astrophysics Data System (ADS)

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  19. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  20. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  1. International Linear Collider Accelerator Physics R&D

    SciTech Connect

    George D. Gollin; Michael Davidsaver; Michael J. Haney; Michael Kasten; Jason Chang; Perry Chodash; Will Dluger; Alex Lang; Yehan Liu

    2008-09-03

    ILC work at Illinois has concentrated primarily on technical issues relating to the design of the accelerator. Because many of the problems to be resolved require a working knowledge of classical mechanics and electrodynamics, most of our research projects lend themselves well to the participation of undergraduate research assistants. The undergraduates in the group are scientists, not technicians, and find solutions to problems that, for example, have stumped PhD-level staff elsewhere. The ILC Reference Design Report calls for 6.7 km circumference damping rings (which prepare the beams for focusing) using “conventional” stripline kickers driven by fast HV pulsers. Our primary goal was to determine the suitability of the 16 MeV electron beam in the AØ region at Fermilab for precision kicker studies.We found that the low beam energy and lack of redundancy in the beam position monitor system complicated the analysis of our data. In spite of these issues we concluded that the precision we could obtain was adequate to measure the performance and stability of a production module of an ILC kicker, namely 0.5%. We concluded that the kicker was stable to an accuracy of ~2.0% and that we could measure this precision to an accuracy of ~0.5%. As a result, a low energy beam like that at AØ could be used as a rapid-turnaround facility for testing ILC production kicker modules. The ILC timing precision for arrival of bunches at the collision point is required to be 0.1 picosecond or better. We studied the bunch-to-bunch timing accuracy of a “phase detector” installed in AØ in order to determine its suitability as an ILC bunch timing device. A phase detector is an RF structure excited by the passage of a bunch. Its signal is fed through a 1240 MHz high-Q resonant circuit and then down-mixed with the AØ 1300 MHz accelerator RF. We used a kind of autocorrelation technique to compare the phase detector signal with a reference signal obtained from the phase detector

  2. Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)

    SciTech Connect

    Rivlin, Lev A

    2010-12-09

    We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)

  3. Seeing the Nature of the Accelerating Physics: It's a SNAP

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-05

    For true insight into the nature of dark energy, measurements of the precision and accuracy of the Supernova/Acceleration Probe (SNAP) are required. Precursor or scaled-down experiments are unavoidably limited, even for distinguishing the cosmological constant. They can pave the way for, but should not delay, SNAP by developing calibration, refinement, and systematics control (and they will also provide important, exciting astrophysics).

  4. Physics of beam self-modulation in plasma wakefield accelerators

    SciTech Connect

    Lotov, K. V.

    2015-10-15

    The self-modulation instability is a key effect that makes possible the usage of nowadays proton beams as drivers for plasma wakefield acceleration. Development of the instability in uniform plasmas and in plasmas with a small density up-step is numerically studied with the focus at nonlinear stages of beam evolution. The step parameters providing the strongest established wakefield are found, and the mechanism of stable bunch train formation is identified.

  5. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  6. Laser-based acceleration for nuclear physics experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Tesileanu, O.; Asavei, Th.; Dancus, I.; Gales, S.; Negoita, F.; Turcu, I. C. E.; Ursescu, D.; Zamfir, N. V.

    2016-05-01

    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments.

  7. Physics at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Lawrence Cardman

    2005-10-22

    The CEBAF accelerator at JLab is fulfilling its scientific mission to understand how hadrons are constructed from the quarks and gluons of QCD, to understand the QCD basis for the nucleon-nucleon force, and to explore the transition from the nucleon-meson to a QCD description. Its success is based on the firm foundation of experimental and theoretical techniques developed world-wide over the past few decades, on complementary data provided by essential lower-energy facilities, such as MAMI, and on the many insights provided by the scientists we are gathered here to honor.

  8. Accelerating Innovation: How Nuclear Physics Benefits Us All

    SciTech Connect

    Not Available

    2011-01-01

    From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

  9. Hadron physics at the new CW electron accelerators

    SciTech Connect

    Burkert, V.D.

    1990-01-01

    Major trends of the physics program related to the study of hadron structure and hadron spectroscopy at the new high current, high duty cycle electron machines are discussed. It is concluded that planned experiments at these machines may have important impact on our understanding of the strong interaction by studying the internal structure and spectroscopy of the nucleon and lower mass hyperon states.

  10. Proceedings of the workshop on B physics at hadron accelerators

    SciTech Connect

    McBride, P.; Mishra, C.S.

    1993-12-31

    This report contains papers on the following topics: Measurement of Angle {alpha}; Measurement of Angle {beta}; Measurement of Angle {gamma}; Other B Physics; Theory of Heavy Flavors; Charged Particle Tracking and Vertexing; e and {gamma} Detection; Muon Detection; Hadron ID; Electronics, DAQ, and Computing; and Machine Detector Interface. Selected papers have been indexed separately for inclusion the in Energy Science and Technology Database.

  11. Synchrotron light

    SciTech Connect

    Craievich, A. )

    1990-01-01

    Several developed countries such as the USA, URSS, England, France, Italy, Sweden and Japan have one or more of these synchrotron light facilities operating or under construction. Some developing countries have constructed (China) or are building (Taiwan, India, Korea, Brazil) synchrotron light facilities. The construction of the Brazilian synchrotron source began in June, 1987. After two years of activities, the injector linac for the electron storage ring is in its final stage of construction. These Proceedings contain the Invited Lectures presented at the Workshop by specialists working on synchrotron light applications and related instrumentation and by members of LNLS regarding technical details of the Brazilian project. The II Workshop Synchrotron Light: Applications and Related Instrumentation was dedicated to oral presentations about applications of synchrotron light, most of which were not covered during the I Workshop, organized by LNLS in 1988, and the Proceedings of which were published by World Scientific. The II Workshop included discussions on the application possibilities for the newly designed LNLS 1.15 GeV storage ring, and on the modifications which would eventually be necessary for the work-station and instrumentation projects currently in progress at LNLS and at various external user laboratories.

  12. Electron cooling system in the booster synchrotron of the HIAF project

    NASA Astrophysics Data System (ADS)

    Mao, L. J.; Yang, J. C.; Xia, J. W.; Yang, X. D.; Yuan, Y. J.; Li, J.; Ma, X. M.; Yan, T. L.; Yin, D. Y.; Chai, W. P.; Sheng, L. N.; Shen, G. D.; Zhao, H.; Tang, M. T.

    2015-06-01

    The High Intensity heavy ion Accelerator Facility (HIAF) is a new accelerator complex under design at the Institute of Modern Physics (IMP). The facility is aiming at the production of high intensity heavy ion beams for a wide range of experiments in high energy density physics, nuclear physics, atomic physics and other applications. It consists of a superconducting electron-cyclotron-resonance ion source and an intense proton ion source, a linear accelerator, a 34 Tm booster synchrotron ring, a 43 Tm multifunction compression synchrotron ring, a 13 Tm high precision spectrometer ring and several experimental terminals. A magnetized electron cooling device is supposed to be used in the booster ring for decreasing the transverse emittance of injected beams. The conceptual design and main parameters of this cooler are presented in this paper.

  13. ``Accelerators and Beams,'' multimedia computer-based training in accelerator physics

    NASA Astrophysics Data System (ADS)

    Silbar, R. R.; Browman, A. A.; Mead, W. C.; Williams, R. A.

    1999-06-01

    We are developing a set of computer-based tutorials on accelerators and charged-particle beams under an SBIR grant from the DOE. These self-paced, interactive tutorials, available for Macintosh and Windows platforms, use multimedia techniques to enhance the user's rate of learning and length of retention of the material. They integrate interactive "On-Screen Laboratories," hypertext, line drawings, photographs, two- and three-dimensional animations, video, and sound. They target a broad audience, from undergraduates or technicians to professionals. Presently, three modules have been published (Vectors, Forces, and Motion), a fourth (Dipole Magnets) has been submitted for review, and three more exist in prototype form (Quadrupoles, Matrix Transport, and Properties of Charged-Particle Beams). Participants in the poster session will have the opportunity to try out these modules on a laptop computer.

  14. Synchrotrons for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Pullia, Marco G.

    Since 1990, when the world's first hospital-based proton therapy center opened in Loma Linda, California, interest in dedicated proton and carbon ion therapy facilities has been growing steadily. Today, many proton therapy centers are in operation, but the number of centers offering carbon ion therapy is still very low. This difference reflects the fact that protons are well accepted by the medical community, whereas radiotherapy with carbon ions is still experimental. Furthermore, accelerators for carbon ions are larger, more complicated and more expensive than those for protons only. This article describes the accelerator performance required for hadrontherapy and how this is realized, with particular emphasis on carbon ion synchrotrons.

  15. Report of the Subpanel on Accelerator Research and Development of the High Energy Physics Advisory Panel

    SciTech Connect

    Not Available

    1980-06-01

    Accelerator R and D in the US High Energy Physics (HEP) program is reviewed. As a result of this study, some shift in priority, particularly as regards long-range accelerator R and D, is suggested to best serve the future needs of the US HEP program. Some specific new directions for the US R and D effort are set forth. 18 figures, 5 tables. (RWR)

  16. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    SciTech Connect

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  17. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    SciTech Connect

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-02-06

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator.

  18. In-situ microscale through-silicon via strain measurements by synchrotron x-ray microdiffraction exploring the physics behind data interpretation

    SciTech Connect

    Liu, Xi; Thadesar, Paragkumar A.; Oh, Hanju; Bakir, Muhannad S.; Taylor, Christine L.; Sitaraman, Suresh K.; Kunz, Martin; Tamura, Nobumichi

    2014-09-15

    In-situ microscale thermomechanical strain measurements have been performed in combination with synchrotron x-ray microdiffraction to understand the fundamental cause of failures in microelectronics devices with through-silicon vias. The physics behind the raster scan and data analysis of the measured strain distribution maps is explored utilizing the energies of indexed reflections from the measured data and applying them for beam intensity analysis and effective penetration depth determination. Moreover, a statistical analysis is performed for the beam intensity and strain distributions along the beam penetration path to account for the factors affecting peak search and strain refinement procedure.

  19. Deep ocean mineral water accelerates recovery from physical fatigue

    PubMed Central

    2013-01-01

    Background Deep oceans have been suggested as a possible site where the origin of life occurred. Along with this theoretical lineage, experiments using components from deep ocean water to recreate life is underway. Here, we propose that if terrestrial organisms indeed evolved from deep oceans, supply of deep ocean mineral water (DOM) to humans, as a land creature, may replenish loss of molecular complexity associated with evolutionary sea-to-land migration. Methods We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of DOM, taken from a depth of 662 meters off the coast of Hualien, Taiwan, on time of recovery from a fatiguing exercise conducted at 30°C. Results The fatiguing exercise protocol caused a protracted reduction in aerobic power (reduced VO2max) for 48 h. However, DOM supplementation resulted in complete recovery of aerobic power within 4 h (P < 0.05). Muscle power was also elevated above placebo levels within 24 h of recovery (P < 0.05). Increased circulating creatine kinase (CK) and myoglobin, indicatives of exercise-induced muscle damage, were completely eliminated by DOM (P < 0.05) in parallel with attenuated oxidative damage (P < 0.05). Conclusion Our results provide compelling evidence that DOM contains soluble elements, which can increase human recovery following an exhaustive physical challenge. PMID:23402436

  20. Physics of Double Pulse Irradiation of Targets For Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M.; Masud, R.; Manzoor, L.; Tiedje, H.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2016-10-01

    Experiments have been carried out on double-pulse irradiation of um-scale foil targets with varying preplasma conditions. Our experiment at the Titan Laser facility utilized two 700 fs, 1054 nm pulses, separated by 1 to 5 ps with a total energy of 100 J, and with 5-20% of the total energy contained within the first pulse. The proton spectra were measured with radiochromic film stacks and magnetic spectrometers. The prepulse energy was on the order of 10 mJ, which appears to have a moderating effect on the double pulse enhancement of proton beam. We have performed LSP PIC simulations to understand the double pulse enhancement mechanism, as well as the role of preplasma in modifying the interaction. A 1D parameter study was done to isolate various aspects of the interaction, while 2D simulations provide more detailed physical insight and a better comparison with experimental data. Work by the Univ. of Alberta was supported by the Natural Sciences and Engineering Research Council of Canada. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  1. State of particle accelerators and high energy physics (Fermilab Summer School, 1981). Part 2

    SciTech Connect

    Carrigan, R.A. Jr.; Huson, F.R.; Month, M.

    1982-01-01

    The material gathered in this volume covers the seminars given at the Summer School on High Energy Particle Accelerators, sponsored by the United States Department of Energy (DOE) and the National Science Foundation, held at Fermilab in Batavia, Illinois, July 13 to 24, 1981. The school was organized as a response to a recent appeal by a subpanel of the DOE High Energy Physics Advisory Panel (HEPAP) for more scientists and more students to work in the field of high energy particle accelerators. The committee set a number of objectives for the school: (1) to present in a thorough and up-to-date manner the entire spectrum of knowledge relating to accelerators; (2) to disseminate that knowledge to audiences that can best make use of it; (3) to encourage, by providing text materials and training to potential instructors, the development of accelerator physics education as part of university programs in high-energy physics; and (4) to foster a more extensive dialogue between particle and accelerator physicists. Separate entries were prepared for the data base for the papers included. (WHK)

  2. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  3. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    NASA Astrophysics Data System (ADS)

    Gillich, Don; Shannon, Mike; Kovanen, Andrew; Anderson, Tom; Bright, Kevin; Edwards, Ronald; Danon, Yaron; Moretti, Brian; Musk, Jeffrey

    2011-06-01

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of ˜100 keV. Within the next year, cadets and faculty at USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.

  4. Physical Interpretation of the Schott Energy of An Accelerating Point Charge and the Question of Whether a Uniformly Accelerating Charge Radiates

    ERIC Educational Resources Information Center

    Rowland, David R.

    2010-01-01

    A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…

  5. Physics with a high-intensity proton accelerator below 30 GeV

    SciTech Connect

    Hoffman, C.M.

    1982-01-01

    The types of physics that would be pursued at a high-intensity, moderate-energy proton accelerator are discussed. The discussion is drawn from the deliberations of the 30-GeV subgroup of the Fixed-Target Group at this workshop.

  6. Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Briggs, R.J.; Davidson, R.C.; Dorf, M.; Grote, D.P.; Henestroza, E.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Sefkow, A.B.; Sharp, W.M.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2008-08-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  7. Toward a physics design for NDCX II, an ion accelerator for warm dense matter and HIF target physics studies

    SciTech Connect

    Friedman, A; Barnard, J J; Briggs, R J; Davidson, R C; Dorf, M; Grote, D P; Henestroza, E; Lee, E P; Leitner, M A; Logan, B G; Sefkow, A B; Sharp, W M; Waldron, W L; Welch, D R; Yu, S S

    2008-07-30

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity 'tilt' to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates an {approx} 30 nC pulse of Li{sup +} ions to {approx} 3 MeV, then compresses it to {approx} 1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  8. Synchrotron light source data book

    SciTech Connect

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices.

  9. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  10. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  11. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  12. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    SciTech Connect

    Friedman, A.

    1996-01-26

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as {open_quotes}drivers{close_quotes} for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a {open_quotes}taxonomy{close_quotes} of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area.

  13. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.

    PubMed

    Arif, Muhammad; Kattan, Ahmed

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects' wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients.

  14. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body

    PubMed Central

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects’ wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients. PMID:26203909

  15. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  16. National Synchrotron Light Source

    ScienceCinema

    BNL

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  17. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    SciTech Connect

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  18. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  19. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  20. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  1. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  2. Research on acceleration method of reactor physics based on FPGA platforms

    SciTech Connect

    Li, C.; Yu, G.; Wang, K.

    2013-07-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  3. Multi-temperature synchrotron PXRD and physical properties study of half-Heusler TiCoSb.

    PubMed

    Skovsen, I; Bjerg, L; Christensen, M; Nishibori, E; Balke, B; Felser, C; Iversen, B B

    2010-11-14

    Phase pure samples of the half-Heusler material TiCoSb were synthesised and investigated. Multi-temperature synchrotron powder X-ray diffraction (PXRD) data measured between 90 and 1000 K in atmospheric air confirm the phase purity, but they also reveal a decomposition reaction starting at around 750 K. This affects the high temperature properties since TiCoSb is semiconducting, whereas CoSb is metallic. Between 90 K and 300 K the linear thermal expansion coefficient is estimated to be 10.5 × 10(-6) K(-1), while it is 8.49 10(-6) K(-1) between 550 K and 1000 K. A fit of a Debye model to the Atomic Displacement Parameters obtained from Rietveld refinement of the PXRD data gives a Debye temperature of 395(4) K. The heat capacity was measured between 2 K and 300 K and a Debye temperature of 375(5) K was obtained from modelling of the data. Coming from low temperatures the electrical resistivity shows a metallic to semiconducting transition at 113 K. A relatively high Seebeck coefficient of ∼-250 μV K(-1) was found at 400 K, but the substantial thermal conductivity (∼10 W mK(-1) at 400 K) leads to a moderate thermoelectric figure of merit of 0.025 at 400 K.

  4. Signal of Acceleration and Physical Mechanism of Water Cycle in Xinjiang, China

    PubMed Central

    Feng, Guo-Lin; Wu, Yong-Ping

    2016-01-01

    Global warming accelerates water cycle with features of regional difference. However, little is known about the physical mechanism behind the phenomenon. To reveal the links between water cycle and climatic environment, we analyzed the changes of water cycle elements and their relationships with climatic and environmental factors. We found that when global warming was significant during the period of 1986-2003, the precipitation in Tarim mountains as well as Xinjiang increased rapidly except for Tarim plains, which indicated that there existed a signal of acceleration for water cycle in Xinjiang. The speed of water cycle is mainly affected by altitude, latitude, longitude, slope direction, and the most fundamental element is temperature. Moreover, according to Clausius-Kela Bai Lung relation, we found that the climate change induced the increase of temperature and accelerated the local water cycle only for the wet places. Our results provide a possible physical mechanisms of water cycle and thus well link the climate change to water circulation. PMID:27907078

  5. Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung-Seuk; Seo, Won-Seon; Choi, Duck-Kyun

    2011-09-01

    Thermoelectric cooling module (TEM) which is electric device has a mechanical stress because of temperature gradient in itself. It means that structure of TEM is vulnerable in an aspect of reliability but research on reliability of TEM was not performed a lot. Recently, the more the utilization of thermoelectric cooling devices grows, the more the needs for life prediction and improvement are increasing. In this paper, we investigated life distribution, shape parameter of the TEM through accelerated life test (ALT). And we discussed about how to enhance life of TEM through the Physics-of-failure. Experimental results of ALT showed that the thermoelectric cooling module follows the Weibull distribution, shape parameter of which is 3.6. The acceleration model is coffin Coffin-Manson and material constant is 1.8.

  6. Main Design Principles of the Cold Beam Pipe in the FastRamped Superconducting Accelerator Magnets for Heavy Ion Synchrotron SIS100

    NASA Astrophysics Data System (ADS)

    Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.

    SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.

  7. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    NASA Astrophysics Data System (ADS)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of <20%, have been accelerated at up to ~500 MeV, demonstrating 3 out of 4 for key requirements for ion fast ignition. The shown results now approach or exceed the limits set by many applications from ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can

  8. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    SciTech Connect

    Ilgner, Ch.

    2015-07-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the

  9. Report of the HEPAP Subpanel on Major Detectors in Non-Accelerator Particle Physics

    NASA Astrophysics Data System (ADS)

    1989-05-01

    The subpanel on Major Detectors in Non-Accelerator Particle Physics was formed in February 1989 as the result of a letter from Robert Hunter, Director, Office of Energy Research, to Francis Low, Chairman of HEPAP. A copy of the letter is included in the Appendix to this report. The letter referred to the previous report of HEPAP Subpanel on High Energy Gamma Ray and Neutrino Astronomy which had found that several groups of scientists were working on promising new ideas and proposals in non-accelerator high energy physics and astrophysics; this report recommended that panel be formed to evaluate large projects in these areas of science when specific proposals were received by the funding agencies. In concurring with the recommendation, the request to establish this new Subpanel included the following specific charge: Within the context of changing world wide high energy physics activities and opportunities, review as necessary and evaluate the following major research proposals which have been submitted to the Department of Energy and/or to the National Science foundation: DUMAND II, GRANDE, and the Fly's Eye Upgrade.

  10. Report of the HEPAP subpanel on major detectors in non-accelerator particle physics

    SciTech Connect

    Not Available

    1989-05-01

    The subpanel on Major Detectors in Non-Accelerator Particle Physics was formed in February 1989 as the result of a letter from Robert Hunter, Director, Office of Energy Research, to Francis Low, Chairman of HEPAP. A copy of the letter is included in the Appendix to this report. The letter referred to the previous report of HEPAP Subpanel on High Energy Gamma Ray and Neutrino Astronomy which had found that several groups of scientists were working on promising new ideas and proposals in non-accelerator high energy physics and astrophysics; this report recommended that panel be formed to evaluate large projects in these areas of science when specific proposals were received by the funding agencies. In concurring with the recommendation, the request to establish this new Subpanel included the following specific charge: Within the context of changing world wide high energy physics activities and opportunities, review as necessary and evaluate the following major research proposals which have been submitted to the Department of Energy and/or to the National Science foundation: DUMAND II, GRANDE, and the Fly's Eye Upgrade.

  11. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

  12. FINAL TECHNICAL REPORT FOR DE-FG02-05ER64097 Systems and Methods for Injecting Helium Beams into a Synchrotron Accelerator

    SciTech Connect

    Bush, David A

    2008-09-30

    A research grant was approved to fund development of requirements and concepts for extracting a helium-ion beam at the LLUMC proton accelerator facility, thus enabling the facility to better simulate the deep space environment via beams sufficient to study biological effects of accelerated helium ions in living tissues. A biologically meaningful helium-ion beam will be accomplished by implementing enhancements to increase the accelerator's maximum proton beam energy output from 250MeV to 300MeV. Additional benefits anticipated from the increased energy include the capability to compare possible benefits from helium-beam radiation treatment with proton-beam treatment, and to provide a platform for developing a future proton computed tomography imaging system.

  13. Physics and engineering design of the accelerator and electron dump for SPIDER

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Serianni, G.; Sonato, P.; Veltri, P.; Zaccaria, P.

    2011-06-01

    The ITER Neutral Beam Test Facility (PRIMA) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size ion source with low voltage extraction called SPIDER and a full size neutral beam injector at full beam power called MITICA. SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H- and in a later stage D- ions) from an ITER size ion source. The main requirements of this experiment are a H-/D- extracted current density larger than 355/285 A m-2, an energy of 100 keV and a pulse duration of up to 3600 s. Several analytical and numerical codes have been used for the design optimization process, some of which are commercial codes, while some others were developed ad hoc. The codes are used to simulate the electrical fields (SLACCAD, BYPO, OPERA), the magnetic fields (OPERA, ANSYS, COMSOL, PERMAG), the beam aiming (OPERA, IRES), the pressure inside the accelerator (CONDUCT, STRIP), the stripping reactions and transmitted/dumped power (EAMCC), the operating temperature, stress and deformations (ALIGN, ANSYS) and the heat loads on the electron dump (ED) (EDAC, BACKSCAT). An integrated approach, taking into consideration at the same time physics and engineering aspects, has been adopted all along the design process. Particular care has been taken in investigating the many interactions between physics and engineering aspects of the experiment. According to the 'robust design' philosophy, a comprehensive set of sensitivity analyses was performed, in order to investigate the influence of the design choices on the most relevant operating parameters. The design of the SPIDER accelerator, here described, has been developed in order to satisfy with reasonable margin all the requirements given by ITER, from the physics and engineering points of view. In particular, a new approach to the compensation of unwanted beam deflections inside the accelerator

  14. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  15. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  16. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  17. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  18. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  19. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  20. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wu, Y. P.; Hua, J. F.; Lu, W.; Gu, Y. Q.; Silva, L. O.; Joshi, C.; Mori, W. B.

    2016-12-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse breakup of the target.

  1. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Cavenago, M.

    2011-09-26

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  2. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.

    2011-09-01

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  3. Status of MAPA (Modular Accelerator Physics Analysis) and the Tech-X Object-Oriented Accelerator Library

    NASA Astrophysics Data System (ADS)

    Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.

    1998-04-01

    The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.

  4. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    SciTech Connect

    Liu, Chuan S.; Shao, Xi

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks on our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.

  5. Tsallis entropy and complexity theory in the understanding of physics of precursory accelerating seismicity.

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Chatzopoulos, George

    2014-05-01

    Strong observational indications support the hypothesis that many large earthquakes are preceded by accelerating seismic release rates which described by a power law time to failure relation. In the present work, a unified theoretical framework is discussed based on the ideas of non-extensive statistical physics along with fundamental principles of physics such as the energy conservation in a faulted crustal volume undergoing stress loading. We derive the time-to-failure power-law of: a) cumulative number of earthquakes, b) cumulative Benioff strain and c) cumulative energy released in a fault system that obeys a hierarchical distribution law extracted from Tsallis entropy. Considering the analytic conditions near the time of failure, we derive from first principles the time-to-failure power-law and show that a common critical exponent m(q) exists, which is a function of the non-extensive entropic parameter q. We conclude that the cumulative precursory parameters are function of the energy supplied to the system and the size of the precursory volume. In addition the q-exponential distribution which describes the fault system is a crucial factor on the appearance of power-law acceleration in the seismicity. Our results based on Tsallis entropy and the energy conservation gives a new view on the empirical laws derived by other researchers. Examples and applications of this technique to observations of accelerating seismicity will also be presented and discussed. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds

  6. Laser Synchrotron Source (LSS)

    NASA Astrophysics Data System (ADS)

    Sprangle, Philip; Ting, Antonio; Esarey, Eric; Fisher, Amon; Mourou, Gerald

    1993-02-01

    The Laser Synchrotron Source (LSS) utilizes a high peak power or high average power laser to generate within a vacuum chamber a laser beam travelling in one direction to interact with an electron beam traveling in an opposite direction in order to generate high-power x-rays. A ring resonator formed by a plurality of mirrors directs the laser beam in a closed loop to impact with the electron beam to produce x-rays. Concave mirrors in the ring resonator focus the laser beam upon the point where the laser beam interacts with the electron beam to intensify the laser energy at that point. When a Radio Frequency Linear Accelerator (RF linac) is used to produce the electron beam, x-rays having a short pulse length are generated. When a betatron is used as an electron source, x-rays having a long pulse length are generated.

  7. National Synchrotron Light Source II

    SciTech Connect

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-04-25

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  8. National Synchrotron Light Source II

    ScienceCinema

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-07-12

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  9. On the path to the digital rock physics of gas hydrate-bearing sediments - processing of in situ synchrotron-tomography data

    NASA Astrophysics Data System (ADS)

    Sell, Kathleen; Saenger, Erik H.; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Enzmann, Frieder; Kuhs, Werner F.; Kersten, Michael

    2016-08-01

    To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high-resolution 3-D representations for the accurate modeling of petrophysical and transport properties. Although such models are readily available via in situ synchrotron radiation X-ray tomography, the analysis of such data asks for complex workflows and high computational power to maintain valuable results. Here, we present a best-practice procedure complementing data from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of an acoustic wave propagation in 3-D using the derived results. A combination of the tomography and 3-D modeling opens a path to a more reliable deduction of properties of gas hydrate-bearing sediments without a reliance on idealized and frequently imprecise models.

  10. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a Muon

  11. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research.

    PubMed

    Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf

    2011-09-01

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and

  12. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    SciTech Connect

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf; Auer, Siegfried; Baust, Guenter; Matt, Guenter; Otto, Katharina; Colette, Andrew; Drake, Keith; Kempf, Sascha; Munsat, Tobin; Shu, Anthony; Sternovsky, Zoltan; Fiege, Katherina; Postberg, Frank; Gruen, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Mellert, Tobias; and others

    2011-09-15

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and

  13. Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons

    SciTech Connect

    Shah, R. C.; Albert, F.; Ta Phuoc, K.; Shevchenko, O.; Boschetto, D.; Burgy, F.; Rousseau, J.-P.; Rousse, A.; Pukhov, A.; Kiselev, S.

    2006-10-15

    We observe Fresnel edge diffraction of the x-ray beam generated by the relativistic interaction of a high-intensity laser pulse with He gas. The observed diffraction at center energy 4.5 keV agrees with Gaussian incoherent source profile of full-width-half-maximum (FWHM)<8 {mu}m. Analysis indicates this corresponds to an upper limit on the transverse profile of laser-accelerated electrons within the plasma in agreement with three-dimensional, particle-in-cell results (FWHM=4 {mu}m)

  14. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  15. GPU-based acceleration of free energy calculations in solid state physics

    NASA Astrophysics Data System (ADS)

    Januszewski, Michał; Ptok, Andrzej; Crivelli, Dawid; Gardas, Bartłomiej

    2015-07-01

    Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.

  16. Stanford Synchrotron Radiation Laboratory activity report for 1986

    SciTech Connect

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  17. Synchrotron Radiation, Polarization, Devices and New Sources

    NASA Astrophysics Data System (ADS)

    Couprie, Marie-Emmanuelle; Valléau, Mathieu

    Synchrotron radiation is emitted by accelerated relativistic charged particles. In accelerators, it is produced when the particle trajectory is subjected to a magnetic field, either in bending magnets or in specific insertion devices (undulators or wigglers) made of an alternated succession of magnets, allowing the number of curvatures to be increased and the radiation to be reinforced. Synchrotron radiation, tunable from infra-red to x-rays, has a low divergence and small size source, and it can provide different types of polarization. It produces radiation pulses, whose duration results from that of the electron bunch from which they are generated. The repetition rate also depends on the accelerator type: high (typically MHz for storage rings, kHz for superconducting linear accelerators) and 10 to 100 Hz (for normal conducting linear accelerators). Longitudinally coherent radiation can also be generatedf or long bunches with respect to the emitted wavelength or thanks to the Free Electron Laser process.

  18. Physics Division annual review, April 1, 1992--March 31, 1993

    SciTech Connect

    Thayer, K.J.

    1993-08-01

    This document is the annual review of the Argonne National Laboratory Physics Division for the period April 1, 1992--March 31, 1993. Work on the ATLAS device is covered, as well as work on a number of others in lab, as well as collaborative projects. Heavy ion nuclear physics research looked at quasi-elastic, and deep-inelastic reactions, cluster states, superdeformed nuclei, and nuclear shape effects. There were programs on accelerator mass spectroscopy, and accelerator and linac development. There were efforts in medium energy nuclear physics, weak interactions, theoretical nuclear and atomic physics, and experimental atomic and molecular physics based on accelerators and synchrotron radiation.

  19. Rf cavity primer for cyclic proton accelerators

    SciTech Connect

    Griffin, J.E.

    1988-04-01

    The purpose of this note is to describe the electrical and mechanical properites of particle accelerator rf cavities in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion will be limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common pratice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.

  20. Energetics, Physics and Impact of Large-Scale Jets: Fast and Super-Eddington or Slow and Multi-TeV Accelerators?

    NASA Astrophysics Data System (ADS)

    Georganopoulos, Markos

    We propose to answer a long-standing, important question on the nature of quasar largescale jets: are they fast (Lorentz factors 10-20) and powerful (in many cases superEddington) or slow, sub-Eddington, and multi-TeV particle accelerators?. The answer has direct bearing on the physics of cluster gas heating by powerful jets, an important feedback mechanism in the structure formation process. Also, for slow jets the beamingcorrected radiated power of the large scale jet may be comparable to, or even exceed that of the blazar (core) with important implications for the GeV background radiation and the heating of intergalactic gas by TeV photons, something that has been suggested as the reason for the dearth of dwarf galaxies compared with the cold dark matter predictions. The question of the jet nature has been open since the 2000s, when Chandra detected anomalously high levels of X-rays from dozens of powerful kpc-scale radio/optical jets, indicating a separate origin from the radio-optical synchrotron emission. The widely accepted model for these X-rays has been a very powerful highly-relativistic kpc-scale jet producing inverse Compton emission by up-scattering the cosmic microwave background (IC/CMB), though the X-rays could also be synchrotron emission from a multi-TeV electron population accelerated in situ, as both models can reproduce the observed radio to X-ray spectra. However, very recent work by our group has ruled out the IC/CMB model in two cases. In the case of 3C 273, the uniquely determined GeV flux predicted by the IC/CMB model overproduces the 99.9% flux limit obtained from Fermi gamma-ray observations. These results do not, however, rule out IC/CMB in general, although they do bring synchrotron, slow, multi-TeV accelerator jets to the forefront. In conjunction with radio-to-X-ray multi-wavelength archival imaging, we will extend our study to a much larger sample of over 70 quasar-hosted jets, using the Fermi method we pioneered, while also

  1. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  2. Beam Polarization at the ILC: the Physics Impact and the Accelerator Solutions

    SciTech Connect

    Aurand, B.; Bailey, I.; Bartels, C.; Brachmann, A.; Clarke, J.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Marchesini, I.; Monig, Klaus; Moffeit, K.C.; Moortgat-Pick, G.; Riemann, S.; Schalicke, A.; Schuler, P.; Starovoitov, P.; Ushakov, A.; /DESY /DESY, Zeuthen /Bonn U. /SLAC

    2011-11-23

    In this contribution accelerator solutions for polarized beams and their impact on physics measurements are discussed. Focus are physics requirements for precision polarimetry near the interaction point and their realization with polarized sources. Based on the ILC baseline programme as described in the Reference Design Report (RDR), recent developments are discussed and evaluated taking into account physics runs at beam energies between 100 GeV and 250 GeV, as well as calibration runs on the Z-pole and options as the 1TeV upgrade and GigaZ. The studies, talks and discussions presented at this conference demonstrated that beam polarization and its measurement are crucial for the physics success of any future linear collider. To achieve the required precision it is absolutely decisive to employ multiple devices for testing and controlling the systematic uncertainties of each polarimeter. The polarimetry methods for the ILC are complementary: with the upstream polarimeter the measurements are performed in a clean environment, they are fast and allow to monitor time-dependent variations of polarization. The polarimeter downstream the IP will measure the disrupted beam resulting in high background and much lower statistics, but it allows access to the depolarization at the IP. Cross checks between the polarimeter results give redundancy and inter-calibration which is essential for high precision measurements. Current plans and issues for polarimeters and also energy spectrometers in the Beam Delivery System of the ILC are summarized in reference [28]. The ILC baseline design allows already from the beginning the operation with polarized electrons and polarized positrons provided the spin rotation and the fast helicity reversal for positrons will be implemented. A reversal of the positron helicity significantly slower than that of electrons is not recommended to not compromise the precision and hence the success of the ILC. Recently to use calibration data at the Z

  3. Detector design studies for Turkish Accelerator Center

    NASA Astrophysics Data System (ADS)

    Aksu, Burçin; Piliçer, Ercan

    2017-02-01

    The proposed Particle Factory detector at Turkish Accelerator Center (TAC-PF) aims to search for charm physics, CP violation and mixing of D0 mesons as well as new physics effects by investigating head-on collisions of 1 GeV electron from Energy Recovery Linac (ERL) with 3.56 GeV positrons from synchrotron storage ring. In this work, we constructed the TAC-PF detector design by using a recently developed framework namely Detector Description for High Energy Physics (DD4hep). The baseline TAC-PF detector design and its qualifications were summarized, followed by a general description.

  4. Improvements of the TROLL-2 synchrotron and new developments

    NASA Astrophysics Data System (ADS)

    Anevsky, S. I.; Vernyi, A. E.; Panasyuk, V. S.; Khromchenko, V. B.

    1991-10-01

    Information on radical improvements of the TROLL-2 synchrotron, a specialized pulsed synchrotron radiation source, is presented in this article. Two new variants for particle injection from a solid electromagnet to a ring one, as a specialized continuous synchrotron radiation source are considered. Particle pre-acceleration from thermal velocities to injection energy herewith may take place both in the synchronous and in the isochrone regime.

  5. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    NASA Astrophysics Data System (ADS)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  6. Physics models in the MARS15 code for accelerator and space applications.

    SciTech Connect

    Mokhov, N. V.; Gudima, K. K.; Mashnik, S. G.; Rakhno, I. L.; Sierk, A. J.; Striganov, S.

    2004-01-01

    The MARS code system, developed over 30 years, is a set of Monte Carlo programs for detailed simulation of hadronic and electromagnetic cascades in an arbitrary geometry of accelerator, detector and spacecraft components with particle energy ranging from a fraction of an electron volt up to 100 TeV. The new MARS15 (2004) version is described with an emphasis on modeling physics processes. This includes an extended list of elementary particles and arbitrary heavy ions, their interaction cross-sections, inclusive and exclusive nuclear event generators, photo - hadron production, correlated ionization energy loss and multiple Coulomb scattering, nuclide production and residual activation, and radiation damage (DPA). In particular, the details of a new model for leading baryon production and implementation of advanced versions of the Cascade-Exciton Model (CEM03), and the Los Alamos version of Quark-Gluon String Model (LAQGSM03) are given. The applications that are motivating these developments, needs for better nuclear data, and future physics improvements are described.

  7. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  8. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  9. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2017-01-01

    At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.

  10. THE RAPID CYCLING MEDICAL SYNCHROTRON RCMS.

    SciTech Connect

    PEGGS,S.; BARTON,D.; BEEBE-WANG,J.; CARDONA,J.; BRENNAN,M.; FISCHER,W.; GARDNER,C.; GASSNER,D.; ET AL

    2002-06-02

    Thirteen hadron beam therapy facilities began operation between 1990 and 2001 - 5 in Europe, 4 in North America, 3 in Japan, and 1 in South Africa [l]. Ten of them irradiate tumors with protons, 2 with Carbon- 12 ions, and 1 with both protons and Carbon-12. The facility with the highest patient throughput - a total of 6 174 patients in 11 years and as many as 150 patient treatments per day -is the Loma Linda University Medical Center, which uses a weak focusing slow cycling synchrotron to accelerate beam for delivery to passive scattering nozzles at the end of rotatable gantries [2, 3,4]. The Rapid Cycling Medical Synchrotron (RCMS) is a second generation synchrotron that, by contrast with the Loma Linda synchrotron, is strong focusing and rapid cycling, with a repetition rate of 30 Hz. Primary parameters for the RCMS are listed in Table 1.

  11. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  12. Synchrotron brightness distribution of turbulent radio jets

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Bridle, A. H.; Chan, K. L.

    1981-01-01

    Radio jets are considered as turbulent mixing regions and it is proposed that the essential small scale viscous dissipation in these jets is by emission of MHD waves and by their subsequent strong damping due, at least partly, to gyro-resonant acceleration of supra-thermal particles. A formula relating the synchrotron surface brightness of a radio jet to the turbulent power input is deduced from physical postulates, and is tested against the data for NGC315 and 3C31 (NGC383). The predicted brightness depends essentially on the collimation behavior of the jet, and, to a lesser extent, on the CH picture of a 'high' nozzle with accelerating flow. The conditions for forming a large scale jet at a high nozzle from a much smaller scale jet are discussed. The effect of entrainment on the prediction is discussed with the use of similarity solutions. Although entrainment is inevitably associated with the turbulent jet, it may or may not be a dominant factor depending on the ambient density profile.

  13. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    SciTech Connect

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  14. Laboratory source of synchrotron radiation: TROLL-2

    NASA Astrophysics Data System (ADS)

    Anevsky, S. I.; Vernyi, A. E.; Panasjuk, V. S.; Khromchenko, V. B.

    1987-11-01

    A laboratory synchrotron radiation (SR) source TROLL-2 is described. Its main parameters are as follows: the energy of the accelerated particles = 24 MeV; the orbit radius = 20 mm; the SR pulse half-width = 2 ms, the maximum spectral radiant power (at λ = 350 nm) = 1.2×10 6 W/m.

  15. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  16. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  17. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator.

    PubMed

    Attalla, Ehab M; Abo-Elenein, H S; Ammar, H; El-Desoky, Ismail

    2010-07-01

    Dosimetric properties of virtual wedge (VW) and physical wedge (PW) in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs) and PW factors (PWFs) have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  18. Evaluation of ‘OpenCL for FPGA’ for Data Acquisition and Acceleration in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Sridharan, Srikanth

    2015-12-01

    The increase in the data acquisition and processing needs of High Energy Physics experiments has made it more essential to use FPGAs to meet those needs. However harnessing the capabilities of the FPGAs has been hard for anyone but expert FPGA developers. The arrival of OpenCL with the two major FPGA vendors supporting it, offers an easy software-based approach to taking advantage of FPGAs in applications such as High Energy Physics. OpenCL is a language for using heterogeneous architectures in order to accelerate applications. However, FPGAs are capable of far more than acceleration, hence it is interesting to explore if OpenCL can be used to take advantage of FPGAs for more generic applications. To answer these questions, especially in the context of High Energy Physics, two applications, a DAQ module and an acceleration workload, were tested for implementation with OpenCL on FPGAs2. The challenges on using OpenCL for a DAQ application and their solutions, together with the performance of the OpenCL based acceleration are discussed. Many of the design elements needed to realize a DAQ system in OpenCL already exists, mostly as FPGA vendor extensions, but a small number of elements were found to be missing. For acceleration of OpenCL applications, using FPGAs has become as easy as using GPUs. OpenCL has the potential for a massive gain in productivity and ease of use enabling non FPGA experts to design, debug and maintain the code. Also, FPGA power consumption is much lower than other implementations. This paper describes one of the first attempts to explore the use of OpenCL for applications outside the acceleration workloads.

  19. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  20. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  1. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  2. Proposals for synchrotron light sources

    SciTech Connect

    Teng, L.C.

    1985-06-01

    Ever since it was first applied in the 1960's synchrotron radiation from an accelerating electron beam has been gaining popularity as a powerful tool for research and development in a wide variety of fields of science and technology. By now there are some 20 facilities operating either parasitically or dedicatedly for synchrotron radiation research in different parts of the world. In addition there are another 20 facilities either in construction or in various stages of proposal and design. The experiences gained from the operating facilities and the recent development of insertion devices such as wigglers and undulators as radiation sources led to a new set of requirements on the design of synchrotron radiation storage rings for optimum utility. The surprisingly uniform applicability and unanimous acceptance of these criteria give assurance that they are indeed valid criteria derived form mature considerations and experiences. Instead of describing the design of each of these new facilities it is, thus, more effective to discuss these desirable design features and indicate how they are incorporated in the design using machines listed as examples. 9 refs., 7 figs., 2 tabs.

  3. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  4. Description of the programs and facilities of the Physics Division

    SciTech Connect

    Not Available

    1992-10-01

    The major emphasis of our experimental nuclear physics research is in Heavy-Ion Physics, centered at the recently completed ATLAS facility. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. In addition, the Division has strong programs in Medium-Energy Physics and in Weak-Interaction Physics as well as in accelerator development. Our nuclear theory research spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national scale. The Atomic Physics program, the largest of which is accelerator-based, primarily uses ATLAS, a 5-MV Dynamitron accelerator and a highly stable 150-kV accelerator. A synchrotron-based atomic physics program has recently been initiated with current research with the National Synchrotron Light Source in preparation for a program at the Advanced Photon Source, at Argonne. The principal interests of the Atomic Physics program are in the interactions of fast atomic and molecular ions with solids and gases and in the laser spectroscopy of exotic species. The program is currently being expanded to take advantage of the unique research opportunities in synchrotron-based research that will present themselves when the Advanced Photon Source comes on line at Argonne. These topics are discussed briefly in this report.

  5. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  6. Letters What causes an ice skater to accelerate? Note on the definitions of weight A-level physics is mathematical enough Correction to 'Confusion over the physics of circular motion'

    NASA Astrophysics Data System (ADS)

    2011-11-01

    What causes an ice skater to accelerate? Hugh Fricker Note on the definitions of weight Nenad Stojilovic A-level physics is mathematical enough Helen Hare Correction to 'Confusion over the physics of circular motion'

  7. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    SciTech Connect

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  8. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations

  9. J-PAS: The Javalambre Physics of the Accelerated Universe Astrophysical Survey

    NASA Astrophysics Data System (ADS)

    Cepa, J.; Benítez, N.; Dupke, R.; Moles, M.; Sodré, L.; Cenarro, A. J.; Marín-Franch, A.; Taylor, K.; Cristóbal, D.; Fernández-Soto, A.; Mendes de Oliveira, C.; Abramo, L. R.; Alcaniz, J. S.; Overzier, R.; Hernández-Monteagudo, A.; Alfaro, E. J.; Kanaan, A.; Carvano, M.; Reis, R. R. R.; J-PAS Team

    2016-10-01

    The Javalambre Physics of the Accelerated Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Observatory in Spain with a purpose-built, dedicated 2.5 m telescope and a 4.7 sq.deg. camera with 1.2 Gpix. Starting in late 2016, J-PAS will observe 8500 sq.deg. of Northern Sky and measure Δz˜0.003(1+z) photo-z for 9× 107 LRG and ELG galaxies plus several million QSOs, sampling an effective volume of ˜ 14 Gpc3 up to z=1.3 and becoming the first radial BAO experiment to reach Stage IV. J-PAS will detect 7× 105 galaxy clusters and groups, setting constraints on Dark Energy which rival those obtained from its BAO measurements. Thanks to the superb characteristics of the site (seeing ˜ 0.7 arcsec), J-PAS is expected to obtain a deep, sub-arcsec image of the Northern sky, which combined with its unique photo-z precision will produce one of the most powerful cosmological lensing surveys before the arrival of Euclid. J-PAS's unprecedented spectral time domain information will enable a self-contained SN survey that, without the need for external spectroscopic follow-up, will detect, classify and measure σz˜ 0.5 redshifts for ˜ 4000 SNeIa and ˜ 900 core-collapse SNe. The key to the J-PAS potential is its innovative approach: a contiguous system of 54 filters with 145 Å width, placed 100 Å apart over a multi-degree FoV is a powerful redshift machine, with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. The J-PAS camera is equivalent to a 4.7 sq.deg. IFU and it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations.

  10. Laser undulated synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Baine, Michael A. J.

    2000-07-01

    This work will address the practicality of using lasers to undulate electron beams for the production of tunable, short pulsed, monochromatic, synchrotron radiation. An x-ray source based on this mechanism, referred to as a Laser Synchrotron Source (LSS), has several attractive features: (1)x-rays can be generated with an electron beam whose energy is a factor of 100 smaller than competing synchrotron sources that use magnetic undulators, (2)the pulse length can be made extremely short (<100fs) by using short pulsed lasers, (3)the polarization can be controlled by changing the polarization of the incident laser, (4)the bandwidth can be quite narrow (<1%), and (5)the resultant x-rays are well collimated (θ < .1 rad for γ > 10) in the direction of the electron beam. These factors combine to produce one of the brightest (>1018 J/s mrad mm2 1%BW) sources of x-rays available. The most attractive feature, however, is its compact size and low cost, which suit it well for applications in Medicine, Biology, and Physics. The problem will be treated in two parts: analysis of nonlinear Thomson scattering for arbitrary interaction geometry of intense lasers and relativistic electron beams, and description of a proof-of-principle experiment carried out at the Naval Research Laboratory.

  11. Physics issues in the design of a recirculating induction accelerator for heavy ion fusion

    SciTech Connect

    Barnard, J.J.; Newton, M.A.; Reginato, L.L.; Sharp, W.M.; Yu, S.S.

    1991-04-15

    A substantial savings in size and cost over a linear machine may be achieved in an induction accelerator in which a heavy ion beam makes many (< {approximately} 50) passes through one or more circular induction accelerators. We examine how the requirement of high beam quality and the requirement of pulse simultaneity at the target constrain the design of such an accelerator. Some of the issues that we have considered include beam interactions with residual gas, beam-beam charge exchange, emittance growth around bends, and beam instabilities. We show some of the interplay between maximization of beam quality and recirculator efficiency, and the minimization of recirculator cost, in arriving at a recirculator design. 9 refs., 1 fig.

  12. Proceedings of the 1998 International Computational Accelerator Physics Conference (ICAP98)

    NASA Astrophysics Data System (ADS)

    Ko, K.

    2002-01-01

    The CLASSIC library is a C++ class library which provides services for building portable accelerator models and algorithms for their analysis. This paper describes the motivations behind the CLASSIC library and its main features. It shows how this library can be used in a large accelerator design program like the new version 9 of MAD written in C++. The possibilities are illustrated by presenting some new developments in MAD version 9, like sophisticated matching features with simultaneous matching of two rings. The major part of the CLASSIC library is now implemented. Its source code and some preliminary documentation are available from the author.

  13. A Treasure Trove of Physics from a Common Source-Automobile Acceleration Data

    NASA Astrophysics Data System (ADS)

    Graney, Christopher M.

    2005-11-01

    What is better than interesting, challenging physics with good data free for the taking to which everyone can relate? That's what is available to anyone who digs into the reams of automobile performance tests that have been available in popular magazines since the 1950s. Opportunities to do and teach interesting physics abound, as evidenced by the frequent appearance of "physics of cars" articles in The Physics Teacher.1-6

  14. Diagnostics used in commissioning the IUCF Cooler Injector Synchrotron

    SciTech Connect

    Ball, M.S.; Friesel, D.L.; Hamilton, B.J.

    1998-12-01

    Several new diagnostics systems were designed to aid in the commissioning of the IUCF Cooler Injection Synchrotron (CIS). Among them are a time of flight measurement system (ToF), a multi-wire profile monitor system (Harp) and a beam position monitor system (BPM). Pulsed beam from the 7 MeV linear accelerator is monitored using the ToF system. Several removable Harps are mounted in the injection beamline and ring which are instrumental for tuning ring injection and accumulation. BPMs are placed at the entrance and exit of the four ring dipole magnets to facilitate beam centering during injection and ramping. Fast and slow BPM displays are available to the operator for these functions. These diagnostics and their uses for CIS ring commissioning will be discussed. {copyright} {ital 1998 American Institute of Physics.}

  15. Negative ion source development at the cooler synchrotron COSY/Jülich

    NASA Astrophysics Data System (ADS)

    Felden, O.; Gebel, R.; Maier, R.; Prasuhn, D.

    2013-02-01

    The Nuclear Physics Institute at the Forschungszentrum Jülich, a member of the Helmholtz Association, conducts experimental and theoretical basic research in the field of hadron, particle, and nuclear physics. It operates the cooler synchrotron COSY, an accelerator and storage ring, which provides unpolarized and polarized proton and deuteron beams with beam momenta of up to 3.7 GeV/c. Main activities of the accelerator division are the design and construction of the high energy storage ring HESR, a synchrotron and part of the international FAIR project, and the operation and development of COSY with injector cyclotron and ion sources. Filament driven volume sources and a charge exchange colliding beams source, based on a nuclear polarized atomic beam source, provide unpolarized and polarized H- or D- routinely for more than 6500 hours/year. Within the Helmholtz Association's initiative Accelerator Research and Development, ARD, the existing sources at COSY, as well as new sources for future programs, are investigated and developed. The paper reports about these plans, improved pulsed beams from the volume sources and the preparation of a source for the ELENA project at CERN.

  16. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    PubMed

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  17. Final Report for "Non-Accelerator Physics – Research in High Energy Physics: Dark Energy Research on DES"

    SciTech Connect

    Ritz, Steve; Jeltema, Tesla

    2016-12-01

    One of the greatest mysteries in modern cosmology is the fact that the expansion of the universe is observed to be accelerating. This acceleration may stem from dark energy, an additional energy component of the universe, or may indicate that the theory of general relativity is incomplete on cosmological scales. The growth rate of large-scale structure in the universe and particularly the largest collapsed structures, clusters of galaxies, is highly sensitive to the underlying cosmology. Clusters will provide one of the single most precise methods of constraining dark energy with the ongoing Dark Energy Survey (DES). The accuracy of the cosmological constraints derived from DES clusters necessarily depends on having an optimized and well-calibrated algorithm for selecting clusters as well as an optical richness estimator whose mean relation and scatter compared to cluster mass are precisely known. Calibrating the galaxy cluster richness-mass relation and its scatter was the focus of the funded work. Specifically, we employ X-ray observations and optical spectroscopy with the Keck telescopes of optically-selected clusters to calibrate the relationship between optical richness (the number of galaxies in a cluster) and underlying mass. This work also probes aspects of cluster selection like the accuracy of cluster centering which are critical to weak lensing cluster studies.

  18. Accelerator & Fusion Research Division: 1993 Summary of activities

    SciTech Connect

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  19. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    DOE PAGES

    Thurman-Keup, R.; Bhat, C.; Blokland, W.; ...

    2011-10-17

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This study describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  20. Status of SESAME Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Tarawneh, Hamed

    2013-04-01

    During this presentation, I will talk about the current status of the SESAME synchrotron radiation source (SESAME: Synchrotron light for Experimental Science and Application in the Middle East). SESAME is an international research center located in Allan, Jordan and the accelerator complex consists of new storage ring of an energy of 2.5 GeV injected at 800 MeV and the injector is based on the upgraded 22.5 MeV Microtron and 800 MeV booster from the BESSY-I machine donated by Germany. The results of the design work and the optimizations of the beam optics for the SESAME storage ring and booster accelerators' lattices will be presented. I will also report on the status of the storage ring main sub-systems and the scientific case of the SESAME facility with the planned day-one beamlines.

  1. National Synchrotron Light Source

    ScienceCinema

    None

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  2. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  3. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  4. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  5. Advanced Accelerator Concepts: Seventh Workshop. Proceedings

    SciTech Connect

    Chattopadhyay, S.; McCullough, J.; Dahl, P.

    1997-09-01

    These proceedings are based on the Seventh Workshop on Advanced Accelerator Concepts held in October, 1996 at Lake Tahoe, California. This workshop was sponsored by the US Department of Energy(High Energy Physics Division, Advanced Technology Branch) and by the center for Beam Physics at the Lawrence Berkeley National Laboratory of the University of California. A wide range of applications was covered at the workshop, from high energy colliders to synchrotron radiation sources. This scope included topics such as new methods of particle acceleration, production of ultrahigh gradient electromagnetic fields, diagnostics and control of particle/photon beams in ultrashort dimensions and ultrafast time scales, and various energy and beam sources. There were 87 papers presented at the workshop and out of these, 65 have been abstracted for the Energy Science and Technology database.(AIP)

  6. Diffusion studies with synchrotron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.

    2011-12-01

    Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.

  7. Stanford Synchrotron Radiation Laboratory activity report for 1987

    SciTech Connect

    Robinson, S.; Cantwell, K.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  8. Effect of physical training in cool and hot environments on +Gz acceleration tolerance in women

    NASA Technical Reports Server (NTRS)

    Brock, P. J.; Sciaraffa, D.; Greenleaf, J. E.

    1982-01-01

    Acceleration tolerance, plasma volume, and maximal oxygen uptake were measured in 15 healthy women before and after submaximal isotonic exercise training periods in cool and hot environments. The women were divided on the basis of age, maximal oxygen uptake, and +Gz tolerance into three groups: a group that exercised in heat (40.6 C), a group that exercised at a lower temperature (18.7 C), and a sedentary control group that functioned in the cool environment. There was no significant change in the +Gz tolerance in any group after training, and terminal heart rates were similar within each group. It is concluded that induction of moderate acclimation responses without increases in sweat rate or resting plasma volume has no influence on +Gz acceleration tolerance in women.

  9. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.

    PubMed

    Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M

    2015-02-27

    Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.

  10. Can low-energy electrons affect high-energy physics accelerators?

    SciTech Connect

    Cimino, R.; Collins, I.R.; Furman, M.A.; Pivi, M.; Ruggiero, F.; Rumolo, G.; Zimmermann, F.

    2004-02-09

    Present and future accelerators performances may be limited by the electron cloud (EC) effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber.We present measurements of the total secondary electron yield (SEY) and the related energy distribution curves of the secondary electrons as a function of incident-electron energy. Particular attention has been paid to the emission process due to very low-energy primary electrons (<20 eV). It is shown that the SEY approaches unity and the reflected electron component is predominant in the limit of zero primary incident electron energy. Motivated by these measurements, we have used state-of-the-art EC simulation codes to predict how these results may impact the production of the electron cloud in the Large Hadron Collider, under construction at CERN, and the related surface heat load.

  11. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGES

    Stygar, W. A.; Awe, T. J.; Bennett, N L; ...

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  12. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  13. Nuclear physics information needed for accelerator driven transmutation of nuclear waste

    SciTech Connect

    Lisowski, P.W.; Bowman, C.D.; Arthur, E.D.; Young, P.G.

    1991-01-01

    There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding options for dealing with long-lived actinide wastes and fission products, and for power production. This paper describes a new Los Alamos concept using thermal neutrons and examines the nuclear data requirements. 7 refs., 3 figs., 1 tab.

  14. Spin echo in synchrotrons

    NASA Astrophysics Data System (ADS)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  15. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  16. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    SciTech Connect

    Lee, Peter L; Rhyne, James J

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  17. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  18. Hadron Physics at the Charm and Bottom Thresholds and Other Novel QCD Physics Topics at the NICA Accelerator Facility

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-06-20

    The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.

  19. Health physics aspects of neutron activated components in a linear accelerator.

    PubMed

    Guo, Shuntong; Ziemer, Paul L

    2004-05-01

    The purpose of this study was to investigate the residual radioactivity in the therapy accessories of a medical x ray linear accelerator. The residual radioactivity mainly originated from nuclear activation reactions by neutrons, which are present as a contamination radiation in the x-ray beam. The radiation used in this study was the 25 MV x-ray beam produced by a CGR Saturne III linear accelerator. The five treatment aids include four wedges of various angles and one cerrobend block. The decrease in dose rates with time was followed for 60 min for each of the five treatment aids immediately after 999 monitor units of irradiation. The integral doses from the surface of each of four activated therapy accessories following three different radiation doses were measured by using thermoluminescent dosimeters (CaF2). In the TLD measurement, polyethylene filters were used to differentiate beta or beta particles from the mixed decay radiation. A high-purity germanium detection system was utilized to collect and to analyze the gamma spectra from the activated therapy accessories. The residual radioisotopes found in the 15 degree wedge and 30 degree wedge included V, Cr, Cr, Mn, Fe, Co, and Ni. In the 45 degree and 60 degree wedges, the radionuclides identified were Co, Ni, Cu, and W. The principal nuclides identified in the irradiated cerrobend block were In, Sn, Cd, Pb. The corresponding nuclear reactions from which the residual radionuclides produced were confirmed by consulting the current literature.

  20. Health Physics Aspects of Neutron Activated Components in a Linear Accelerator.

    PubMed

    Guo, Shuntong; Ziemer, Paul L

    2004-05-01

    The purpose of this study was to investigate the residual radioactivity in the therapy accessories of a medical x ray linear accelerator. The residual radioactivity mainly originated from nuclear activation reactions by neutrons, which are present as a contamination radiation in the x-ray beam. The radiation used in this study was the 25 MV x-ray beam produced by a CGR Saturne III linear accelerator. The five treatment aids include four wedges of various angles and one cerrobend block. The decrease in dose rates with time was followed for 60 min for each of the five treatment aids immediately after 999 monitor units of irradiation. The integral doses from the surface of each of four activated therapy accessories following three different radiation doses were measured by using thermoluminescent dosimeters (CaF2). In the TLD measurement, polyethylene filters were used to differentiate β or β particles from the mixed decay radiation. A high-purity germanium detection system was utilized to collect and to analyze the γ spectra from the activated therapy accessories. The residual radioisotopes found in the 15° wedge and 30° wedge included V, Cr, Cr, Mn, Fe, Co, and Ni. In the 45° and 60° wedges, the radionuclides identified were Co, Ni, Cu, and W. The principal nuclides identified in the irradiated cerrobend block were In, Sn, Cd, Pb. The corresponding nuclear reactions from which the residual radionuclides produced were confirmed by consulting the current literature.

  1. Extreme of Landscape in Nuclear Physics via High Power Accelerators and Innovative Instrumentation

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2013-06-01

    The advent of high power light and heavy ion accelerators producing intense secondary radioactive ion beams (RIB) made possible the exploration of a new territory of nuclei with extreme in Mass and/or N/Z ratios. To pursue the investigation of this "terra incognita" several projects, based on second generation accelerators producing intense stables and RIB, all aiming at the increase by several orders of magnitude of the RIB intensities are now under construction and/or planned for the end of this decade in the world. RIB production at SPES@Legnaro, SPIRAL2@GANIL, ALTO@Orsay, ISAC@TRIUMPF and HIE-ISOLDE@CERN are based on the ISOL method, RIBF@RIKEN, FRIB@MSU-NSCL, FAIR@GSI with the new Super-FRS fragment - separator takes advantage of the "In Flight" technique. Projects of high intensity heavy ions, and low energy drivers (< 10 MeV/n) are also foreseen at Flerov Laboratory@DUBNA, GSI, RIKEN and GANIL. Technical performances, innovative new instrumentation and methods, and keys experiments in connection with these second generation high intensity facilities will be reviewed.

  2. Accelerated fatigue behavior and mechano-physical characterizations of in vitro physiological simulation of nitinol stents.

    PubMed

    Saidane, K; Polizu, S; Yahia, L'h

    2007-01-01

    In this study, we have provided an experimental evaluation of the fatigue behavior of the nitinol (NiTi) endovascular device (peripheral stent). The accelerated fatigue tests were performed using arterial conditions, which mimicked actual physiological conditions. Natural, rubber latex-tubing materials were used to simulate human arteries. The equipment design and the test parameters used allowed for the simulation of a compliant artery and the application of circumferential forces to the device.The stent compliance values were good indicators for tracking the time evolution of fatigue behavior. Moreover, the analyses of changes on the surface morphology and on the chemical composition were used to establish a relationship between surface characteristics and peripheral stent response during 400 million cycles, which is equivalent to 10 yrs of human life. In order to determine the influence of the accelerated fatigue, an evaluation of both mechanical and surface characteristics was carried out before and after testing using the following tests and methods, respectively: radial hoop testing (RH), scanning electron microscope analysis (SEM), auger electron spectroscopy (AES), atomic absorption spectroscopy (AAS), and X-ray photoelectron spectroscopy (XPS). Under these experimental conditions, the studies have shown that after 400 million cycles, the tested stents did not demonstrate any mechanical failure. Moreover, the surface did not undergo any changes in its chemical composition. However, we did observe an increase in roughness and signs of pitting corrosion.

  3. Third-generation synchrotron light sources

    SciTech Connect

    Schlachter, A.S.; Wuilleumier, F.J.

    1993-09-01

    X rays are a powerful probe of matter because they interact with electrons in atoms, molecules, and solids. They are commonly produced by relativistic electrons or positrons stored in a synchrotron. Recent advances in technology are leading to the development of a new third generation of synchrotron radiation sources that produce vacuum-ultraviolet and x-ray beams of unprecedented brightness. These new sources are characterized by a very low electron-beam emittance and by long straight sections to accommodate permanent-magnet undulators and wigglers. Several new low-energy light sources, including the Advanced Light Source, presently under construction at the Lawrence Berkeley Laboratory, and ELETTRA, presently being constructed in Trieste, will deliver the world`s brightest synchrotron radiation in the VUV and soft x-ray regions of the spectrum. Applications include atomic and molecular physics and chemistry, surface and materials science, microscopy, and life sciences.

  4. Doubling Beam Intensity Unlocks Rare Opportunities for Discovery at Fermi National Accelerator Laboratory

    SciTech Connect

    Segui, Jennifer A.

    2014-05-01

    Particle accelerators such as the Booster synchrotron at the Fermi National Accelerator Laboratory (FNAL) produce high-intensity proton beams for particle physics experiments that can ultimately reveal the secrets of the universe. High-intensity proton beams are required by experiments at the “intensity frontier” of particle physics research, where the availability of more particles improves the chances of observing extremely rare physical processes. In addition to their central role in particle physics experiments, particle accelerators have found widespread use in industrial, nuclear, environmental, and medical applications. RF cavities are essential components of particle accelerators that, depending on the design, can perform multiple functions, including bunching, focusing, decelerating, and accelerating a beam of charged particles. Engineers are working to model the RF cavities required for upgrading the 40-year old Booster synchrotron. It is a rather complicated process to refurbish, test, and qualify the upgraded RF cavities to sustain an increased repetition rate of the RF field required to produce proton beams at double the current intensity. Both multiphysics simulation and physical measurements are used to evaluate the RF, thermal, and mechanical properties of the Booster RF cavities.

  5. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  6. Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator.

    PubMed

    Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube

    2016-01-01

    Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.

  7. Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)

    SciTech Connect

    Clearwater, S.

    1983-03-01

    The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe.

  8. Coherent Synchrotron Radiation: Theory and Simulations.

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2012-03-29

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  9. Black hole physics. Black hole lightning due to particle acceleration at subhorizon scales.

    PubMed

    Aleksić, J; Ansoldi, S; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; Becerra González, J; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; de Oña Wilhelmi, E; Delgado Mendez, C; Dominis Prester, D; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; García López, R J; Garczarczyk, M; Garrido Terrats, D; Gaug, M; Godinović, N; González Muñoz, A; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Prada Moroni, P G; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rodriguez Garcia, J; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J

    2014-11-28

    Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet.

  10. Accelerated Integrated Science Sequence (AISS): An Introductory Biology, Chemistry, and Physics Course

    ERIC Educational Resources Information Center

    Purvis-Roberts, Kathleen L.; Edwalds-Gilbert, Gretchen; Landsberg, Adam S.; Copp, Newton; Ulsh, Lisa; Drew, David E.

    2009-01-01

    A new interdisciplinary, introductory science course was offered for the first time during the 2007-2008 school year. The purpose of the course is to introduce students to the idea of working at the intersections of biology, chemistry, and physics and to recognize interconnections between the disciplines. Interdisciplinary laboratories are a key…

  11. Practical aspects of shielding high-energy particle accelerators

    SciTech Connect

    Thomas, R.H. |

    1993-09-01

    The experimental basis of shielding design for high-energy accelerators that has been established over the past thirty years is described. Particular emphasis is given to the design of large accelerators constructed underground. The first data obtained from cosmic-ray physics were supplemented by basic nuclear physics. When these data proved insufficient, experiments were carried out and interpreted by several empirical formulae -- the most successful of which has been the Moyer Model. This empirical model has been used successfully to design the shields of most synchrotrons currently in operation, and is still being used in preliminary design and to check the results of neutron transport calculations. Accurate shield designs are needed to reduce external radiation levels during accelerator operations and to minimize environmental impacts such as {open_quotes}skyshine{close_quotes} and the production of radioactivity in groundwater. Examples of the cost of minimizing such environmental impacts are given.

  12. Theory of the Alternating-Gradient Synchrotron

    NASA Astrophysics Data System (ADS)

    Courant, E. D.; Snyder, H. S.

    2000-04-01

    The equations of motion of the particles in a synchrotron in which the field gradient indexn=-(r/B) ∂B/∂rvaries along the equilibrium orbit are examined on the basis of the linear approximation. It is shown that if n alternates rapidly between large positive and large negative values, the stability of both radial and vertical oscillations can be greatly increased compared to conventional accelerators in which n is azimuthally constant and must lie between 0 and 1. Thus aperture requirements are reduced. For practical designs, the improvement is limited by the effects of constructional errors; these lead to resonance excitation of oscillations and consequent instability if 2νx or 2νz or νx+νz is integral, where νx and νz are the frequencies of horizontal and vertical betatron oscillations, measured in units of the frequency of revolution. The mechanism of phase stability is essentially the same as in a conventional synchrotron, but the radial amplitude of synchrotron oscillations is reduced substantially. Furthermore, at a "transition energy" E1≈νxMc2 the stable and unstable equilibrium phases exchange roles, necessitating a jump in the phase of the radiofrequency accelerating voltage. Calculations indicate that the manner in which this jump is performed is not very critical.

  13. Theory of the alternating-gradient synchrotron

    SciTech Connect

    Courant, E. D.; Snyder, H. S.

    2000-04-10

    The equations of motion of the particles in a synchrotron in which the field gradient index n=-(r/B){partial_derivative}B/{partial_derivative}r varies along the equilibrium orbit are examined on the basis of the linear approximation. It is shown that if n alternates rapidly between large positive and large negative values, the stability of both radial and vertical oscillations can be greatly increased compared to conventional accelerators in which n is azimuthally constant and must lie between 0 and 1. Thus aperture requirements are reduced. For practical designs, the improvement is limited by the effects of constructional errors: these lead to resonance excitation of oscillations and consequent instability if 2v{sub x} or 2v{sub z} or v{sub x}+v{sub z} is integral, where v{sub x} and v{sub z} are the frequencies of horizontal and vertical betatron oscillations, measured in units of the frequency of revolution. The mechanism of phase stability is essentially the same as in a conventional synchrotron, but the radial amplitude of synchrotron oscillations is reduced substantially. Furthermore, at a ''transition energy'' E{sub 1}{approx_equal}v{sub x}Mc{sup 2} the stable and unstable equilibrium phases exchange roles, necessitating a jump in the phase of the radiofrequency accelerating voltage. Calculations indicate that the manner in which this jump is performed is not very critical. (c) 2000 Academic Press, Inc.

  14. Accelerating translation of physical activity and cancer survivorship research into practice: recommendations for a more integrated and collaborative approach.

    PubMed

    Phillips, Siobhan M; Alfano, Catherine M; Perna, Frank M; Glasgow, Russell E

    2014-05-01

    Physical activity has been deemed safe and effective in reducing many negative side effects of treatment for cancer survivors and promoting better overall health. However, most of this research has focused on highly controlled randomized trials and little of this research has been translated into care or policy for survivors. The purpose of the present article is to present a research agenda for the field to accelerate the dissemination and implementation of empirically supported physical activity interventions into care. We provide rationale for the role of basic, behavioral, clinical implementation, and population scientists in moving this science forward and call for a more coordinated effort across different phases of research. In addition, we provide key strategies and examples for ongoing and future studies using the RE-AIM (reach, efficacy/effectiveness, adoption, implementation, and maintenance) framework and pose recommendations for collaborations between researchers and stakeholders to enhance the integration of this research into policy and practice. Overall, we recommend that physical activity and cancer survivorship research use additional study designs, include relevant stakeholders, and be more collaborative, integrated, contextual, and representative in terms of both setting and participants.

  15. Sirepo for Synchrotron Radiation Workshop

    SciTech Connect

    Nagler, Robert; Moeller, Paul; Rakitin, Maksim

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  16. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  17. Synchrotron radiation in biosciences

    NASA Astrophysics Data System (ADS)

    Marinkovic, Nebojsa S.; Gupta, Sayan; Zhan, Chenyang; Chance, Mark R.

    2005-12-01

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  18. THE RHIC INJECTOR ACCELERATORS CONFIGURATIONS, AND PERFORMANCE FOR THE RHIC 2003 AU - D PHYSICS RUN.

    SciTech Connect

    Ahrens, L; Benjamin, J; Blaskiewicz, M; Brennan, J M; Brown, K A; Carlson, K A; Delong, J; D'Ottavio, T; Frak, B; Gardner, C J; Glenn, J W; Harvey, M; Hayes, T; Hseuh, H- C; Ingrassia, P; Lowenstein, D; Mackay, W; Marr, G; Morris, J; Roser, T; Satogata, T; Smith, G; Smith, K S; Steski, D; Tsoupas, N; Thieberger, P; Zeno, K; Zhang, S Y

    2003-05-12

    The RHIC 2003 Physics Run [1] required collisions between gold ions and deuterons. The injector necessarily had to deliver adequate quality (transverse and longitudinal emittance) and quantity of both species. For gold this was a continuing evolution from past work [2]. For deuterons it was new territory. For the filling of the RHIC the injector not only had to deliver quality beams but also had to switch between these species quickly. This paper details the collider requirements and our success in meeting these. Some details of the configurations employed are given.

  19. Commissioning of the medical synchrotron HIMAC

    SciTech Connect

    Yamada, S.

    1994-12-31

    A heavy ion synchrotron complex, HIMAC, has been constructed for medical use at National Institute of Radiological Sciences (NIRS), Japan. The heavy ion therapy is adopted because it has the merits of the excellent dose localization and the high biological effectiveness on both aerobic and anaerobic cancer cells. The maximum energy of the HIMAC synchrotron is designed to be 800 MeV/u for light ions with q/A=1/2 so that the residual range of silicon ions reaches about 30 cm in human body. There are three treatment rooms two of which have a vertical and a horizontal beam line, respectively. The third treatment room is equipped with both beams lines. The beam tests of the accelerator system started in last November and is successfully completed in February. After about four months tests of the irradiation system including the biological experiments, the clinical trials started on June 21 using a 290 MeV/u carbon beam.

  20. Radiation protection at synchrotron radiation facilities.

    PubMed

    Liu, J C; Vylet, V

    2001-01-01

    A synchrotron radiation (SR) facility typically consists of an injector, a storage ring, and SR beamlines. The latter two features are unique to SR facilities, when compared to other types of accelerator facilities. The SR facilities have the characteristics of low injection beam power, but high stored beam power. The storage ring is generally above ground with people occupying the experimental floor around a normally thin concrete ring wall. This paper addresses the radiation issues, in particular the shielding design, associated with the storage ring and SR beamlines. Normal and abnormal beam losses for injection and stored beams, as well as typical storage ring operation, are described. Ring shielding design for photons and neutrons from beam losses in the ring is discussed. Radiation safety issues and shielding design for SR beamlines, considering gas bremsstrahlung and synchrotron radiation, are reviewed. Radiation source terms and the methodologies for shielding calculations are presented.

  1. Trans-Relativistic Particle Acceleration in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, P.

    2014-01-01

    Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron

  2. Remote Synchrotron Light Instrumentation Using Optical Fibers

    SciTech Connect

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  3. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  4. The Development of Biomedical Applications of Nuclear Physics Detector Technology at the Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew

    2003-10-01

    The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for the United States Department of Energy. As a user facility for physicists worldwide, its primary mission is to conduct basic nuclear physics research of the atom's nucleus at the quark level. Within the Jefferson Lab Physics Division is the Jefferson Lab Detector Group which was formed to support the design and construction of new detector systems during the construction phase of the major detector systems at Jefferson Lab and to act as technical consultants for the lab scientists and users. The Jefferson Lab Detector Group, headed by Dr. Stan Majewski, has technical capabilities in the development and use of radiation detection systems. These capabilities include expertise in nuclear particle detection through the use of gas detectors, scintillation and light guide techniques, standard and position-sensitive photomultiplier tubes (PSPMTs), fast analog readout electronics and data acquisition, and on-line image formation and analysis. In addition to providing nuclear particle detector support to the lab, the group has for several years (starting in 1996) applied these technologies to the development of novel high resolution gamma-ray imaging systems for biomedical applications and x-ray imaging techniques. The Detector Group has developed detector systems for breast cancer detection, brain cancer therapy and small animal imaging to support biomedical research. An overview will be presented of how this small nuclear physics detector research group by teaming with universities, medical facilities, industry and other national laboratories applies technology originating from basic nuclear physics research to biomedical applications.

  5. PHYSICS OF OUR DAYS Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated Hillas plot and radiation-loss constraints

    NASA Astrophysics Data System (ADS)

    Ptitsyna, Kseniya V.; Troitsky, Sergei V.

    2010-10-01

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely, the geometric (Hillas) criterion and the restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and find potential UHECR accelerators. For the acceleration in the central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, although acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  6. Synchrotron Facilities and Free Electron Lasers

    SciTech Connect

    Vaclav, Vylet; Liu, James; /SLAC

    2007-12-21

    Synchrotron radiation (SR) is electromagnetic radiation emitted when a charged particle travels along a curved trajectory. Initially encountered as a nuisance around orbits of high energy synchrotron accelerators, it gradually became an indispensable research tool in many applications: crystallography, X-ray lithography, micromechanics, structural biology, microprobe X-ray experiments, etc. So-called first generation SR sources were exploiting SR in parasitic mode at electron accelerators built to study particle collisions. The second generation of SR sources was the first facilities solely devoted to SR production. They were optimized to achieve stable high currents in the accelerator ring to achieve substantially higher photon flux and to provide a large number of SR beam lines for users. Third generation sources were further optimized for increased brilliance, i.e. with photons densely packed into a beam of very small cross-sectional area and minimal angular divergence (see the Appendix for more detailed definitions of flux, brightness and brilliance) and makes extensive use of the insertion devices such as wigglers and undulators. Free Electron Lasers (FELs), the fourth generation SR sources, open new research possibilities by offering extremely short pulses of extremely bright and coherent radiation. The number of SR sources around the world now probably exceeds 100. These facilities vary greatly in size, energy of the electron (or positron) beams, range of photon energies and other characteristics of the photon beams produced. In what follows we will concentrate on describing some common aspects of SR facilities, their operation modes and specific radiation protection aspects.

  7. 3 GeV Booster Synchrotron Conceptual Design Report

    SciTech Connect

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  8. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  9. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    SciTech Connect

    Byer, Robert L.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  10. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    SciTech Connect

    Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  11. EBIS, an option for medical synchrotrons

    SciTech Connect

    Prelec, K.

    1993-12-31

    Light ion beams have been used for cancer therapy for about twenty years; several dedicated facilities are presently either planned or under construction. In addition, several synchrotrons designed for other purposes are now considered for medical applications as well. A medical synchrotron needs a preaccelerator to produce and inject a range of different light ions, preferably fully stripped, into the ring. The size, cost and complexity of the preaccelerator depend on the performance of its first element, the ion source, and these features will be optimized if the source itself produces fully stripped ions. An EBIS (Electron Beam Ion Source) is capable of producing fully stripped light ions up to argon with intensities sufficient for medical applications. As it has been pointed out in the past, this source option may require just one stage of preacceleration, an RFQ linac, thus making it very simple and compact. The AGS Department has a separate project already under way to develop a very high intensity EBIS for our nuclear physics program. It is, however, our plan first to construct and test an intermediate size device and then to proceed to the design of the final, full scale device. Parameters of that intermediate model are close to those that would be needed for a medical synchrotron. This paper describes the BNL program and considers parameters of EBIS devices for possible use in synchrotron facilities serving as sources of high energy light ions for cancer therapy.

  12. Biological/biomedical accelerator mass spectrometry targets. 2. Physical, morphological, and structural characteristics.

    PubMed

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2008-10-15

    The number of biological/biomedical applications that require AMS to achieve their goals is increasing, and so is the need for a better understanding of the physical, morphological, and structural traits of high quality of AMS targets. The metrics of quality included color, hardness/texture, and appearance (photo and SEM), along with FT-IR, Raman, and powder X-ray diffraction spectra that correlate positively with reliable and intense ion currents and accuracy, precision, and sensitivity of fraction modern ( F m). Our previous method produced AMS targets of gray-colored iron-carbon materials (ICM) 20% of the time and of graphite-coated iron (GCI) 80% of the time. The ICM was hard, its FT-IR spectra lacked the sp (2) bond, its Raman spectra had no detectable G' band at 2700 cm (-1), and it had more iron carbide (Fe 3C) crystal than nanocrystalline graphite or graphitizable carbon (g-C). ICM produced low and variable ion current whereas the opposite was true for the graphitic GCI. Our optimized method produced AMS targets of graphite-coated iron powder (GCIP) 100% of the time. The GCIP shared some of the same properties as GCI in that both were black in color, both produced robust ion current consistently, their FT-IR spectra had the sp (2) bond, their Raman spectra had matching D, G, G', D +G, and D '' bands, and their XRD spectra showed matching crystal size. GCIP was a powder that was easy to tamp into AMS target holders that also facilitated high throughput. We concluded that AMS targets of GCIP were a mix of graphitizable carbon and Fe 3C crystal, because none of their spectra, FT-IR, Raman, or XRD, matched exactly those of the graphite standard. Nevertheless, AMS targets of GCIP consistently produced the strong, reliable, and reproducible ion currents for high-throughput AMS analysis (270 targets per skilled analyst/day) along with accurate and precise F m values.

  13. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    SciTech Connect

    Cline, David B.

    2016-09-07

    An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  14. A proton synchrotron blazar model for flaring in Markarian 501

    NASA Astrophysics Data System (ADS)

    Mücke, A.; Protheroe, R. J.

    2001-03-01

    The spectral energy distribution (SED) of gamma-ray (γ-ray) loud BL Lac objects typically has a double-humped appearance usually interpreted in terms of synchrotron self-Compton models. In proton blazar models, the SED is instead explained in terms of acceleration of protons and subsequent cascading. We discuss a variation of the synchrotron proton blazar model, first proposed by Mücke and Protheroe (Proc. Workshop GeV-TeV Astrophysics: Toward a Major Atmospheric Cherenkov Telescope VI, Snowbird, Utah, submitted for publication), in which the low energy part of the SED is mainly proton synchrotron radiation by electrons co-accelerated with protons, which produce the high energy part of the SED mainly as synchrotron radiation. As an approximation, we assume non-relativistic shock acceleration which could apply if the bulk of the plasma in the jet frame were non-relativistic. Our results may therefore change if a relativistic equation of state was used. We consider the case where the maximum energy of the accelerated protons is above the threshold for pion photoproduction interactions on the synchrotron photons of the low energy part of the SED. Using a Monte Carlo/numerical technique to simulate the interactions and subsequent cascading of the accelerated protons, we are able to fit the high-energy γ-ray portion of the observed SED of Markarian 501 during the April 1997 flare. We find that the emerging cascade spectra initiated by γ-rays from π 0 decay and by e ± from μ ± decay turn out to be relatively featureless. Synchrotron radiation produced by μ ± from π ± decay, and even more importantly by protons, and subsequent synchrotron-pair cascading, is able to reproduce well the high energy part of the SED. For this fit, we find that synchrotron radiation by protons dominates the TeV emission, pion photoproduction being less important with the consequence that we predict a lower neutrino flux than in other proton blazar models.

  15. Small-amplitude synchrotron tune near transition

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-05-01

    The separatrices of the rf buckets near transition are mapped when the synchronous phase is neither 0 or {pi}. The small-amplitude synchronous tune is derived when the rf frequency is changed. Synchrotron radiation is present in all electron storage ring. As a result, the synchronous phase is always offset from {phi}{sub s} = {pi} to compensate for the power loss. Even for proton storage rings with negligible synchrotron radiation, the synchronous phase is also required to be offset from {phi}{sub s} = 0 or {pi} slightly to compensate for beam loading. Thus for all storage rings operating near transition, beam particles reside in accelerating buckets instead of stationary bucket. It is of interest to map these buckets and see how they evolve near transition. When the rf frequency is varied, the closed orbit is pushed radially inward or outward. The momentum of the particle synchronous with the rf is thus changed. By measuring the small-amplitude synchrotron tune as a function of the rf frequency, the lowest first few orders of the slip factor can be inferred. Here, we derive this relationship up to the lowest first three orders of the slip factor when the particle velocity is not ultra-relativistic.

  16. GPU/MIC Acceleration of the LHC High Level Trigger to Extend the Physics Reach at the LHC

    SciTech Connect

    Halyo, Valerie; Tully, Christopher

    2015-04-14

    The quest for rare new physics phenomena leads the PI [3] to propose evaluation of coprocessors based on Graphics Processing Units (GPUs) and the Intel Many Integrated Core (MIC) architecture for integration into the trigger system at LHC. This will require development of a new massively parallel implementation of the well known Combinatorial Track Finder which uses the Kalman Filter to accelerate processing of data from the silicon pixel and microstrip detectors and reconstruct the trajectory of all charged particles down to momentums of 100 MeV. It is expected to run at least one order of magnitude faster than an equivalent algorithm on a quad core CPU for extreme pileup scenarios of 100 interactions per bunch crossing. The new tracking algorithms will be developed and optimized separately on the GPU and Intel MIC and then evaluated against each other for performance and power efficiency. The results will be used to project the cost of the proposed hardware architectures for the HLT server farm, taking into account the long term projections of the main vendors in the market (AMD, Intel, and NVIDIA) over the next 10 years. Extensive experience and familiarity of the PI with the LHC tracker and trigger requirements led to the development of a complementary tracking algorithm that is described in [arxiv: 1305.4855], [arxiv: 1309.6275] and preliminary results accepted to JINST.

  17. Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation.

    PubMed

    Kim, Jin Rae; Oh, Se Heang; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang; Jeon, Byeong Hwa; Lee, Jin Ho

    2013-12-01

    Sufficient functional restoration of damaged peripheral nerves is a big clinical challenge. In this study, a nerve guide conduit (NGC) with selective permeability was prepared by rolling an asymmetrically porous polycaprolactone/Pluronic F127 membrane fabricated using a novel immersion precipitation method. Dual stimulation (nerve growth factor [NGF] as a biological stimulus and low-intensity pulse ultrasound [US] as a physical stimulus) was adapted to enhance nerve regeneration through an NGC. The animal study revealed that each stimulation (NGF or US) has a positive effect to promote the peripheral nerve regeneration through the NGC, however, the US-stimulated NGC group allowed more accelerated nerve regeneration compared with the NGF-stimulated group. The NGC group that received dual stimulation (NGF and US) showed more effective nerve regeneration behavior than the groups that received a single stimulation (NGF or US). The asymmetrically porous NGC with dual NGF and US stimulation may be a promising strategy for the clinical treatment of delayed and insufficient functional recovery of a peripheral nerve.

  18. Advances and synergy of high pressure sciences at synchrotron sources

    SciTech Connect

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  19. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  20. Microangiography in Living Mice Using Synchrotron Radiation

    SciTech Connect

    Yuan Falei; Wang Yongting; Xie Bohua; Tang Yaohui; Guan Yongjing; Lu Haiyan; Yang Guoyuan; Xie Honglan; Du Guohao; Xiao Tiqiao

    2010-07-23

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 {mu}m/pixel. The optimal dose of contrast agent is 100 {mu}l per injection and the injecting rate is 33 {mu}l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43{+-}6.8 {mu}m. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  1. Rapid cycling medical synchrotron and beam delivery system

    DOEpatents

    Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  2. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  3. The Use of Synchrotron Radiation of Electron Circles in Applications

    NASA Astrophysics Data System (ADS)

    Anevsky, S. I.; Vernyi, A. Ye; Panasyuk, V. S.; Sapritsky, V. I.

    1987-05-01

    The use of the synchrotron radiation (SR) in the vacuum ultraviolet (VUV) spectroscopy and radiometry opens new doors for a researcher. In this connection a consideration of SR characteristics of small size specialized SR sources, which can be available even in single laboratories, is given below. "TROLL" is an electron synchrotron with a cyclotron preacceleration. It has been developed as a specialized SR source for the calibration of VUV sources as secondary standards in the spectral range of 40-250 nm in the units of spectral radiance. In conclusion there is summary of advantages of small size accelerators.

  4. Introducing Synchrotrons Into the Classroom

    ScienceCinema

    None

    2016-07-12

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  5. Pushing the Frontiers of Science with Synchrotron Radiation: BESAC Panel on DOE Synchrotron Radiation Sources and Science

    NASA Astrophysics Data System (ADS)

    Birgeneau, Robert J.

    1998-04-01

    During 1997 a panel empowered by the Basic Energy Sciences Advisory Committee and chaired by the speaker carried out a comprehensive review of the four DOE synchrotron sources, the ALS, APS, NSLS and SSRL^1.(Report of Basic Energy Sciences Advisory Committee Panel on DOE Synchrotron Radiation Sources and Science, November 1997) We also reviewed the science and technology, past and present, carried out at these facilities. This included the areas of materials research, surface science, polymers and other forms of soft condensed matter, atomic, optical, and molecular physics and chemistry, molecular environmental science, the geosciences and structural biology. We also considered more cursorily ongoing and proposed research on fourth generation sources. The most straightforward and most important conclusion of this study is that over the past 20 years in the United States synchrotron radiation research has evolved from an esoteric endeavor practiced by a small number of scientists primarily from the fields of solid state physics and surface science to a mainstream activity which provides essential information in all of the above fields. The user community at U.S. synchrotron facilities continues to grow exponentially, having reached more than 4000 on-site users annually in FY97. The research carried out at the four DOE synchrotron sources is both very broad and often exceptionally deep. We will review the results of this study with emphasis on the current science and anticipated future research carried out at modern synchrotron sources.

  6. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  7. The relation between tilt table and acceleration-tolerance and their dependence on stature and physical fitness

    NASA Technical Reports Server (NTRS)

    Klein, K. E.; Backhausen, F.; Bruner, H.; Eichhorn, J.; Jovy, D.; Schotte, J.; Vogt, L.; Wegman, H. M.

    1980-01-01

    A group of 12 highly trained athletes and a group of 12untrained students were subjected to passive changes of position on a tilt table and positive accelerations in a centrifuge. During a 20 min tilt, including two additional respiratory maneuvers, the number of faints and average cardiovascular responses did not differ significantly between the groups. During linear increase of acceleration, the average blackout level was almost identical in both groups. Statistically significant coefficients of product-moment correlation for various relations were obtained. The coefficient of multiple determination computed for the dependence of acceleration tolerance on heart-eye distance and systolic blood pressure at rest allows the explanation of almost 50% of the variation of acceleration tolerance. The maximum oxygen uptake showed the expected significant correlation to the heart rate at rest, but not the acceleration tolerance, or to the cardiovascular responses to tilting.

  8. Cardiac acceleration at the onset of exercise: a potential parameter for monitoring progress during physical training in sports and rehabilitation.

    PubMed

    Hettinga, Florentina J; Monden, Paul G; van Meeteren, Nico L U; Daanen, Hein A M

    2014-05-01

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were searched to retrieve studies investigating HRonset. In total 652 studies were retrieved. These articles were then classified as having emphasis on HRonset in a sports or rehabilitation setting, which resulted in 8 of 112 studies with a sports application and 6 of 68 studies with a rehabilitation application that met inclusion criteria. Two co-existing mechanisms underlie HRonset: feedforward (central command) and feedback (mechanoreflex, metaboreflex, baroreflex) control. A number of studies investigated HRonset during the first few seconds of exercise (HRonsetshort), in which central command and the mechanoreflex determine vagal withdrawal, the major mechanism by which heart rate (HR) increases. In subsequent sports and rehabilitation studies, interest focused on HRonset during dynamic exercise over a longer period of time (HRonsetlong). Central command, mechanoreflexes, baroreflexes, and possibly metaboreflexes contribute to HRonset during the first seconds and minutes of exercise, which in turn leads to further vagal withdrawal and an increase in sympathetic activity. HRonset has been described as the increase in HR compared with resting state (delta HR) or by exponential modeling, with measurement intervals ranging from 0-4 s up to 2 min. Delta HR was used to evaluate HRonsetshort over the first 4 s of exercise, as well as for analyzing HRonsetlong. In exponential modeling, the HR response to dynamic exercise is biphasic, consisting of fast (parasympathetic, 0-10 s) and slow (sympathetic, 1-4 min) components. Although available studies differed largely in measurement protocols, cross-sectional and longitudinal training studies showed that studies analyzing HRonset

  9. Automated Image Quality Optimization for Synchrotron Light Interferometers

    SciTech Connect

    Pavel Chevtsov

    2005-10-10

    Jefferson Lab has been using Synchrotron Light Interferometers (SLI) for real time high resolution, non-invasive measurement of electron beam energy spread in two experimental halls for over two years. An SLI is a classic device, which generates synchrotron light interference patterns by means of a double slit. The beam energy spread is calculated on the basis of the visibility (contrast) of the interference pattern produced by the SLI. The results of the calculations are sensitive to the position of the double slit with respect to the synchrotron light beam illuminating it. Even small changes of the electron beam trajectory in the accelerator can significantly distort the shape of the interference pattern and decrease the reliability of these results. To improve this situation, we developed a state machine control application, which automatically adjusts the positions of the SLI double slits and the mirrors directing light on these slits. The paper describes the main ideas implemented in this application and its performance.

  10. Phase lock of rapid cycling synchrotron and neutron choppers

    SciTech Connect

    Praeg, W.; McGhee, D.; Volk, G.

    1981-01-01

    The 500-MeV synchrotron of Argonne's Intense Pulsed Neutron Source operates at 30 Hz. Its beam spill must be locked to neutron choppers with a precision of +- 0.5 ..mu..s. A chopper and an accelerator have large and different inertias. This makes synchronization by phase lock to the 60-Hz power line extremely difficult. We solved the phasing problems by running both the Ring Magnet Power Supply (RMPS) of the synchrotron and the chopper motors from a common oscillator that is stable to 1 ppM and by controlling five quantities of the RMPS. The quantities controlled by feedback loops are dc current, injection current, ejection current, resonant frequency, and the phase shift between the synchrotron peak field and the chopper window.

  11. Time-resolved analysis of Fermi gamma-ray bursts with fast- and slow-cooled synchrotron photon models

    SciTech Connect

    Burgess, J. M.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Goldstein, A.; Bhat, P. N.; Paciesas, W. S.; Xiong, S.; Greiner, J.; Gruber, D.; Kienlin, A.; Rau, A.; Kouveliotou, C.; Meegan, C. A.; Axelsson, M.; Baring, M. G.; Dermer, C. D.; Iyyani, S.; Kocevski, D. E-mail: Rob.Preece@nasa.gov E-mail: baring@rice.edu; and others

    2014-03-20

    Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. The GRB spectrum is therefore modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. To produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index α is consistent with a synchrotron component with α = –0.81 ± 0.1. This value lies between the limiting values of α = –2/3 and α = –3/2 for electrons in the slow- and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. In addition, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.

  12. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  13. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  14. [Correlations of anthropometric and psychodynamic indexes of accelerant boys and girls (georgians) and their comparing with the data of women and men of normal physical development].

    PubMed

    Nadashvili, L A

    2005-12-01

    Our goal was to determine relations of anthropometric and psychodynamic indexes of accelerant women and men (Georgian) and compare them with the data of women and men of normal physical development. For this reason we have investigated 100 accelerants -- 45 girls and 55 boys. On the basis of our study we have shown that correlations between subspecies of temperament and anthropometrical signs in accelerant women and men are equal or lower among men. From the point of view of character form -- these data in women are comparatively high, and correlation of intellect and types of mood and anthropometric signs are equal. In comparison with the men of normal development, in accelerant men are noticed law interconnection between anthropometrical and psychodynamic data except subspecies of intellect, which is equal in every case. Connection between the types of mood and anthropometric data are moderate (in the limits 0.3-0.4). Men accelerants (Georgians) are brachymorphic somatotypes; they are distinguished by phlegmatic temperament, introversion, middle logic intellect, conflict -- statistic mood; according to the mood they are harmonic-dynamic constitutional types.

  15. Studies of Coherent Synchrotron Radiation with the Discontinuous Galerkin Method

    NASA Astrophysics Data System (ADS)

    Bizzozero, David A.

    In this thesis, we present methods for integrating Maxwell's equations in Frenet-Serret coordinates in several settings using discontinuous Galerkin (DG) finite element method codes in 1D, 2D, and 3D. We apply these routines to the study of coherent synchrotron radiation, an important topic in accelerator physics. We build upon the published computational work of T. Agoh and D. Zhou in solving Maxwell's equations in the frequency-domain using a paraxial approximation which reduces Maxwell's equations to a Schrodinger-like system. We also evolve Maxwell's equations in the time-domain using a Fourier series decomposition with 2D DG motivated by an experiment performed at the Canadian Light Source. A comparison between theory and experiment has been published (Phys. Rev. Lett. 114, 204801 (2015)). Lastly, we devise a novel approach to integrating Maxwell's equations with 3D DG using a Galilean transformation and demonstrate proof-of-concept. In the above studies, we examine the accuracy, efficiency, and convergence of DG.

  16. Development of partially-coherent wavefront propagation simulation methods for 3rd and 4th generation synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Fluerasu, Andrei; Hulbert, Steve; Idir, Mourad; Kaznatcheev, Konstantine; Shapiro, David; Shen, Qun; Baltser, Jana

    2011-09-01

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, is of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using "Synchrotron Radiation Workshop" (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.

  17. A novel molecular synchrotron for cold collision and EDM experiments

    PubMed Central

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  18. Evidence of Bulk Acceleration of the GRB X-Ray Flare Emission Region

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2016-06-01

    Applying our recently developed generalized version of the high-latitude emission theory to the observations of X-ray flares in gamma-ray bursts (GRBs), here we present clear observational evidence that the X-ray flare emission region is undergoing rapid bulk acceleration as the photons are emitted. We show that both the observed X-ray flare light curves and the photon index evolution curves can be simultaneously reproduced within a simple physical model invoking synchrotron radiation in an accelerating emission region far from the GRB central engine. Such an acceleration process demands an additional energy dissipation source other than kinetic energy, which points toward a significant Poynting flux in the emission region of X-ray flares. As the X-ray flares are believed to share a similar physical mechanism as the GRB prompt emission, our finding here hints that the GRB prompt emission jets may also carry a significant Poynting flux in their emitting region.

  19. The time variability of Jupiter's synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bolton, Scott Jay

    1991-02-01

    The time variability of the Jovian synchrotron emission is investigated by analyzing radio observations of Jupiter at decimetric wavelengths. The observations are composed from two distinct sets of measurements addressing both short term (days to weeks) and long term (months to years) variability. The study of long term variations utilizes a set of measurements made several times each month with the NASA Deep Space Network (DNS) antennas operating at 2295 MHz (13.1 cm). The DSN data set, covering 1971 through 1985, is compared with a set of measurements of the solar wind from a number of Earth orbiting spacecraft. The analysis indicates a maximum correlation between the synchrotron emission and the solar wind ram pressure with a two year time lag. Physical mechanisms affecting the synchrotron emission are discussed with an emphasis on radial diffusion. Calculations are performed that suggest the correlation is consistent with inward adiabatic diffusion of solar wind particles driven by Brice's model of ionospheric neutral wind convection (Brice 1972). The implication is that the solar wind could be a source of particles of Jupiter's radiation belts. The investigation of short term variability focuses on a three year Jupiter observing program using the University of California's Hat Creek radio telescope operating at 1400 MHz (21 cm). Measurements are made every two days during the months surrounding opposition. Results from the three year program suggest short term variability near the 10-20 percent level but should be considered inconclusive due to scheduling and observational limitations. A discussion of magneto-spheric processes on short term timescales identifies wave-particle interactions as a candidate source. Further analysis finds that the short term variations could be related to whistler mode wave-particles interactions in the radiation belts associated with atmospheric lightning on Jupiter. However, theoretical calculations on wave particle interactions

  20. INVESTIGATING PARTICLE ACCELERATION IN PROTOSTELLAR JETS: THE TRIPLE RADIO CONTINUUM SOURCE IN SERPENS

    SciTech Connect

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos; Carrasco-González, Carlos; Rodríguez, Luis F.; Araudo, Anabella; Torrelles, José M.; Anglada, Guillem; Martí, Josep

    2016-02-10

    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  1. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  2. Summary of the accelerator working group

    SciTech Connect

    Ankenbrandt, C.; Noble, R.J.

    1998-03-01

    We present a summary of the main topics discussed in the Accelerator Working Group during the ``Workshop on the Physics at the First Muon Collider``. The discussions centered on critical design issues for a high-intensity, medium-energy proton synchrotron that would replace the present Fermilab 8 GeV Booster early in the next century. Such a machine is intended both to serve the hadron program with an order of magnitude increase in average proton current and to be compatible as a source for a future muon collider. Particular issues discussed at length include rf system design, control of longitudinal space-charge effects, bunching of proton beams and beam instabilities.

  3. Using Jupiter's Synchrotron Radiation as a Probe into Jupiter's Inner Radiation Belts

    NASA Technical Reports Server (NTRS)

    Bolton, S. J.; Gulkis, S.; Klein, M. J.; Thorne, R. M.

    1995-01-01

    The Jovian decimetric emission is caused by the combined emission of synchrotron radiation originating from the relativistic electrons trapped in Jupiter's 'Van Allen radiation belts' and thermal emission from the planet's atmosphere. Synchrotron radiation characteristics and variations (which provides insight into the physical properties of Jupiter's inner radiation belts) will be amplified and discussed.

  4. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    NASA Astrophysics Data System (ADS)

    (Konstantinova), O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  5. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  6. Cataclysmic Variables as Synchrotron Sources?

    SciTech Connect

    Harrison, Thomas E.

    2008-05-23

    Evidence is mounting that cataclysmic variables are weak sources of synchrotron emission. If true, it demonstrates that accretion powered interacting binaries produce such emission whether their primaries are white dwarfs, neutron stars, or black holes.

  7. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  8. Mossbauer spectroscopy with synchrotron radiation

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Sturhahn, W.

    1993-07-01

    The principles underlying observation of the Mossbauer effect with synchrotron radiation are explained. The current status of the field is reviewed, and prospects for dedicated experimental stations on third generation machines are discussed.

  9. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-10-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 X 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target.

  10. Angiography by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.

    1987-01-01

    Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.

  11. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  12. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  13. A VERY FAST RAMPING MUON SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.PALMER,R.B.GARREN,A.A.

    2003-05-12

    A 4600 Hz fast ramping synchrotron is studied as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice. Muon survival is 83%.

  14. Design of the main racetrack microtron accelerator end magnets of the Institute of Physics of University of São Paulo

    NASA Astrophysics Data System (ADS)

    Kassab, L. R.; Martins, M. N.; Takahashi, J.; Gouffon, P.

    1999-03-01

    This work deals with the design of the Institute of Physics of the University of São Paulo (IFUSP) main racetrack microtron accelerator end magnets. This is the last stage of acceleration, comprised of an accelerating section (1.04 m) and two end magnets (0.1585 T), in which a 5.10 MeV beam, produced by a racetrack microtron booster has its energy raised up to 31.15 MeV after 28 accelerations. Poisson code was used to give the final configuration that includes auxiliary pole pieces (clamps) and auxiliary homogenizing gaps. The clamps create a reverse fringe field region and avoid the vertical defocusing and the horizontal displacement of the beam produced by extended fringe fields; Ptrace code was used to perform the trajectory calculations in the fringe field region. The auxiliary homogenizing gaps improve the field uniformity as they create a ``magnetic shower'' that provides uniformity of +/-0.3%, before the introduction of the correcting coils that will be attached to the pole faces. This method of correction, used in the IFUSP racetrack microtron booster magnets, enabled uniformity of +/-0.001% in an average field of 0.1 T and will also be employed for these end magnets.

  15. Performances of BNL high-intensity synchrotrons

    SciTech Connect

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.

  16. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  17. Synchrotron light source data book: Version 4, Revision 05/96

    SciTech Connect

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

  18. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  19. Practical application of noise diffusion in U-70 synchrotron

    NASA Astrophysics Data System (ADS)

    Ivanov, S. V.; Lebedev, O. P.

    2016-12-01

    This paper briefly outlines the physical substantiation and the engineering implementation of technological systems in the U-70 synchrotron based on controllable noise diffusion of the beam. They include two systems of stochastic slow beam extraction (for high and intermediate energy) and the system of longitudinal noise RF gymnastics designated for flattening the bunch distribution over the azimuth.

  20. Unification of synchrotron radiation and inverse Compton scattering

    SciTech Connect

    Lewin, W.H.G.; Barber, D.P.; Chen, P.

    1995-03-24

    This article describes a new approach to radiation theory. This theory, expounded by Lieu and Axford, uses the concept of inverse Compton scattering to explain with unprecedented simplicity all the classical and quantum electrodynamic properties of synchrotron radiation, unifying two fundamental processes in physics. Ramifications of this theory are also discussed. 13 refs., 1 fig.

  1. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    DOE PAGES

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; ...

    2016-07-12

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn–Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. In this paper, we present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Finally, using the Craymore » XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.« less

  2. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    SciTech Connect

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; Rennich, Steven; Rogers, James H.

    2016-07-12

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn–Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. In this paper, we present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Finally, using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.

  3. Measurement of parameters in Indus-2 synchrotron radiation source

    NASA Astrophysics Data System (ADS)

    Ghodke, A. D.; Husain, Riyasat; Kumar, Pradeep; Yadav, Surendra; Puntambekar, T. A.

    2012-10-01

    The paper presents the measurement of optics parameters in Indus-2 synchrotron radiation source, which include betatron tune, beta function, dispersion function, natural chromaticity, corrected chromaticity, central RF frequency, momentum compaction factor, and linear betatron coupling. Two methods were used for beta function measurement; a conventional quadrupole scan method and a method using the fitting of the orbit response matrix. A robust Levenberg-Marquardt algorithm was used for nonlinear least square fitting of the orbit response matrix. In this paper, detailed methods for the parameter measurements are described. The measured results are discussed and compared with the theoretical values obtained using accelerator simulation code Accelerator Toolbox in MATLAB.

  4. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    SciTech Connect

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-05-09

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  5. Spatial Coherence of Synchrotron Radiation

    SciTech Connect

    Marchesini, S; Coisson, R

    2003-10-30

    Synchrotron Radiation (SR) has been widely used since the 80's as a tool for many applications of UV, soft X rays and hard X rays in condensed matter physics, chemistry and biology. The evolution of SR sources towards higher brightness has led to the design of low-emittance electron storage rings (emittance is the product of beam size and divergence), and the development of special source magnetic structures, as undulators. This means that more and more photons are available on a narrow bandwidth and on a small collimated beam; in other words there is the possibility of getting a high power in a coherent beam. In most applications, a monochromator is used, and the temporal coherence of the light is given by the monochromator bandwidth. With smaller and smaller sources, even without the use of collimators, the spatial coherence of the light has become appreciable, first in the UV and soft X ray range, and then also with hard X rays. This has made possible new or improved experiments in interferometry, microscopy, holography, correlation spectroscopy, etc. In view of these recent possibilities and applications, it is useful to review some basic concepts about spatial coherence of SR, and its measurement and applications. In particular we show how the spatial coherence properties of the radiation in the far field can be calculated with simple operations from the single-electron amplitude and the electron beam angular and position spreads. The gaussian approximation will be studied in detail for a discussion of the properties of the far field mutual coherence and the estimate of the coherence widths, and the comparison with the VanCittert-Zernike limit.

  6. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ-ray pulsars (≲106 year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳106 year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L sd ≲ 1034 erg s‑1, non-dipole magnetic field components should be dominant at the emission region. For the γ-ray pulsars with L sd ≲ 1035 erg s‑1, observed γ-ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  7. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  8. Smartphones as Experimental Tools: Different Methods to Determine the Gravitational Acceleration in Classroom Physics by Using Everyday Devices

    ERIC Educational Resources Information Center

    Kuhn, Jochen; Vogt, Patrik

    2013-01-01

    New media technology becomes more and more important for our daily life as well as for teaching physics. Within the scope of our N.E.T. research project we develop experiments using New Media Experimental Tools (N.E.T.) in physics education and study their influence on students learning abilities. We want to present the possibilities e.g. of…

  9. Fluorescence dynamics of biological systems using synchrotron radiation

    SciTech Connect

    Gratton, E.; Mantulin, W.W.; Weber, G.; Royer, C.A.; Jameson, D.M.; Reininger, R.; Hansen, R.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes that can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}

  10. Transfiguration of extracting mirror in synchrotron radiation system at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Huang, GuoQing; Zhou, WeiMin; Ye, KaiRong; Leng, YongBin

    2011-12-01

    The first extracting mirror is very important for synchrotron radiation monitor (SRM). The SRM system of SSRF (Shanghai Synchrotron Radiation Facility) should extract the visible light with low optical distortion. The analysis of SR power spectrum and heat transfiguration based on Matlab is introduced in this paper, which will be used in calibration. One beryllium mirror with water-cooling is used to transmit X-ray and reflect visible light to satisfy the measurement request. The existing system suffers from a dynamic problem in some beam physics study. The system includes optics, image acquisition and interferometers. One of the instruments is a digital camera providing the image of the beam transverse profile. The hardware configuration will be summarized. The synchrotron radiation measurement system has been in operation in SSRF for more than one year.

  11. Physics considerations for laser-plasma linear colliders

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  12. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  13. Towards synchrotron-based nanocharacterization

    NASA Astrophysics Data System (ADS)

    Bleuet, Pierre; Arnaud, Lucile; Biquard, Xavier; Cloetens, Peter; Doyen, Lise; Gergaud, Patrice; Lamontagne, Patrick; Lavayssière, Maylis; Micha, Jean-Sébastien; Renault, Olivier; Rieutord, François; Susini, Jean; Ulrich, Olivier

    2009-09-01

    The advent of 3rd generation synchrotron sources coupled with high efficiency x-ray focusing optics opened new nanocharacterization possibilities. This paper is an overview of synchrotron-based techniques that may be of interest for nanotechnology researchers. Although not exhaustive, it includes a general background of synchrotron principle and main x-ray interactions before addressing nanoimaging possibilities. Three-dimensional (3D) hard x-ray multimodal tomography is now doable that allows producing 3D morphological, chemical and crystalline images with a sub-100 nm resolution. Although the resolution is still limited with respect to electron imaging, it presents attractive features like depth resolution and non-destructive exam. Besides imaging, diffraction also allows strain determination within microstructures and is illustrated here on 100 nm copper lines. Surface analysis is illustrated through X-ray Photoelectron Emission Microscopy (XPEEM).

  14. Contact microscopy with synchrotron radiation

    SciTech Connect

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  15. Optimized IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2015-09-01

    Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending-magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal-shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending-magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.

  16. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  17. Medical heavy ion accelerator proposals

    NASA Astrophysics Data System (ADS)

    Gough, R. A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety.

  18. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  19. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor.

    PubMed

    Singh, M J; De Esch, H P L

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  20. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; De Esch, H. P. L.

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H- accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  1. Shoulder physical activity, functional disability and task difficulties in patients with stiff shoulders: interpretation from RT3 accelerator.

    PubMed

    Yang, Jing-Lan; Lin, Jiu-Jenq; Huang, Han-Yi; Huang, Tsun-Shun; Chao, Yu Wen

    2014-08-01

    We determined whether the degree of symptom-related functional disability was related to daily physical activity of the shoulder in subjects with stiff shoulders (SSs). Responsiveness and a clinically meaningful level of discrimination between improvement and non-improvement for shoulder physical activity (SPA) were determined. Twenty-six subjects with SSs participated. Shoulder physical activity was assessed by RT3 accelerometers fixed on the humerus during daily 14-h data collection periods twice a week for 2 weeks. A moderate correlation coefficient was found between SPA and functional disability (β = .47). Based on our cohort design and sample, we suggest that SPA (higher than 101.8 counts, hard-moderate or hard tasks) during daily activity are associated with (with at least 83% probability) non-improvement in an individual with SS. Compared to the non-improvement group, the improvement group had less duration of sedentary activity, less frequency and duration of hard tasks, and more frequency and duration of easy tasks (p < 0.01). Appropriate guidance on shoulder physical activities for subjects with SS is important to consider in rehabilitation strategies for these subjects. In our sample, a hard level of shoulder physical activity and sedentary activity should be cautious for these subjects. Further study is needed to validate therapeutic effect of physical activity on the course of patient improvement in subjects with SSs.

  2. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  3. Comparing the standards of one metabolic equivalent of task in accurately estimating physical activity energy expenditure based on acceleration.

    PubMed

    Kim, Dohyun; Lee, Jongshill; Park, Hoon Ki; Jang, Dong Pyo; Song, Soohwa; Cho, Baek Hwan; Jung, Yoo-Suk; Park, Rae-Woong; Joo, Nam-Seok; Kim, In Young

    2016-08-24

    The purpose of the study is to analyse how the standard of resting metabolic rate (RMR) affects estimation of the metabolic equivalent of task (MET) using an accelerometer. In order to investigate the effect on estimation according to intensity of activity, comparisons were conducted between the 3.5 ml O2 · kg(-1) · min(-1) and individually measured resting VO2 as the standard of 1 MET. MET was estimated by linear regression equations that were derived through five-fold cross-validation using 2 types of MET values and accelerations; the accuracy of estimation was analysed through cross-validation, Bland and Altman plot, and one-way ANOVA test. There were no significant differences in the RMS error after cross-validation. However, the individual RMR-based estimations had as many as 0.5 METs of mean difference in modified Bland and Altman plots than RMR of 3.5 ml O2 · kg(-1) · min(-1). Finally, the results of an ANOVA test indicated that the individual RMR-based estimations had less significant differences between the reference and estimated values at each intensity of activity. In conclusion, the RMR standard is a factor that affects accurate estimation of METs by acceleration; therefore, RMR requires individual specification when it is used for estimation of METs using an accelerometer.

  4. Synchrotron Light Interferometry at Jefferson Lab

    SciTech Connect

    Arne Freyberger; Pavel Chevtsov; Anthony Day; William Hicks

    2004-07-01

    The hyper-nuclear physics program at JLAB requires an upper limit on the RMS momentum spread of {delta}p/p < 3 x 10{sup -5}. The momentum spread is determined by measuring the beam width at a dispersive location (D {approx} 4m) in the transport line to the experimental halls. Ignoring the epsilon-beta contribution to the intrinsic beam size, this momentum spread corresponds to an upper bound on the beam width of {sigma}{sub beam} < 120 {micro}m. Typical techniques to measure and monitor the beam size are either invasive or do not have the resolution to measure such small beam sizes. Using interferometry of the synchrotron light produced in the dispersive bend, the resolution of the optical system can be made very small. The non-invasive nature of this measurement allows continuous monitoring of the momentum spread. Two synchrotron light interferometers have been built and installed at JLAB, one each in the Hall-A and Hall-C transport lines. The devices operate over a beam current range from 20 {micro}A to 120 {micro}A and have a spatial resolution of 10um. The structure of the interferometers, the experience gained during its installation, beam measurements and momentum spread stability are presented. The dependence of the measured momentum spread on beam current will be presented.

  5. Robert R. Wilson Prize III: Applications of Intrabeam Scattering Formulae to a Myriad of Accelerator Systems

    NASA Astrophysics Data System (ADS)

    Mtingwa, Sekazi K.

    2017-01-01

    We discuss our entree into accelerator physics and the problem of intrabeam scattering in particular. We focus on the historical importance of understanding intrabeam scattering for the successful operation of Fermilab's Accumulator and Tevatron and the subsequent hunt for the top quark, and its importance for successful operation of CERN's Large Hadron Collider that discovered the Higgs boson. We provide details on intrabeam scattering formalisms for hadron and electron beams at high energies, concluding with an Ansatz by Karl Bane that has applications to electron damping rings and synchrotron light sources.

  6. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  7. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  8. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  9. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  10. Reactor physics studies for the Advanced Fuel Cycle Initiative (AFCI) Reactor-Accelerator Coupling Experiments (RACE) Project

    NASA Astrophysics Data System (ADS)

    Stankovskiy, Evgeny Yuryevich

    In the recently completed RACE Project of the AFCI, accelerator-driven subcritical systems (ADS) experiments were conducted to develop technology of coupling accelerators to nuclear reactors. In these experiments electron accelerators induced photon-neutron reactions in heavy-metal targets to initiate fission reactions in ADS. Although the Idaho State University (ISU) RACE ADS was constructed only to develop measurement techniques for advanced experiments, many reactor kinetics experiments were conducted there. In the research reported in this dissertation, a method was developed to calculate kinetics parameters for measurement and calculation of the reactivity of ADS, a safety parameter that is necessary for control and monitoring of power production. Reactivity is measured in units of fraction of delayed versus prompt neutron from fission, a quantity that cannot be directly measured in far-subcritical reactors such as the ISU RACE configuration. A new technique is reported herein to calculate it accurately and to predict kinetic behavior of a far-subcritical ADS. Experiments conducted at ISU are first described and experimental data are presented before development of the kinetic theory used in the new computational method. Because of the complexity of the ISU ADS, the Monte-Carlo method as applied in the MCNP code is most suitable for modeling reactor kinetics. However, the standard method of calculating the delayed neutron fraction produces inaccurate values. A new method was developed and used herein to evaluate actual experiments. An advantage of this method is that its efficiency is independent of the fission yield of delayed neutrons, which makes it suitable for fuel with a minor actinide component (e.g. transmutation fuels). The implementation of this method is based on a correlated sampling technique which allows the accurate evaluation of delayed and prompt neutrons. The validity of the obtained results is indicated by good agreement between experimental

  11. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  12. Incoherent synchrotron emission of laser-driven plasma edge

    SciTech Connect

    Serebryakov, D. A. Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  13. Incoherent synchrotron emission of laser-driven plasma edge

    NASA Astrophysics Data System (ADS)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  14. Measurement and simulations of intensity-dependent effects in the Fermilab Booster synchrotron

    NASA Astrophysics Data System (ADS)

    McCarron, Daniel

    The Fermilab Booster is a nearly 40-year-old proton synchrotron, designed to accelerate protons from 0.4 to 8 GeV kinetic energy for extraction into the Main Injector, and currently operating with a typical intensity of 4.5 x 1012 particles per beam, roughly twice the design value, because of requirements for high particle flux in various experiments. Its relatively low injection energy provides certain challenges in maintaining beam quality/stability under such demands. Quantification of effects limiting intensity could provide enhanced beam stability and reduced downtime. Future accelerator design may also benefit from this better understanding of intensity-limiting effects near injection. Chapter 1 summarizes 20th-century accelerator research up to modern synchrotrons. Chapter 2 introduces some accelerator-physics terminology, and briefly describes the Booster. Synergia, a space-charge modeling tool, is presented with relevant benchmarks. Emittance is discussed in Chapter 3. Space-charge fields couple particle motion, leading to interplanar emittance exchange, necessitating simultaneous measurements to obtain adequate descriptions at higher intensities. Measurements are described and results are given. RMS emittances agree with known values at nominal intensities and emittance exchange is accounted for. Correlation terms between the planes are quantified using Synergia, and shown to be at most an 8% effect. Studies of coherent and incoherent betatron-frequency intensity dependence near injection are presented. In Chapter 4 coherent frequency shifts are shown to be from dipole- and quadrupole-wakefield effects. Asymmetry of the laminated, magnetic chambers are responsible for the magnitudes and opposing signs of horizontal and vertical wakefield tune shifts. Chapter 5 details procedures for obtaining a coherent-shift intensity dependence, yielding -0.009/1012 and +0.001/10 12 in the vertical and horizontal planes respectively, accumulating to maximal values over

  15. Position sensitive detectors for synchrotron radiation studies: the tortoise and the hare?

    NASA Astrophysics Data System (ADS)

    Lewis, Rob

    2003-11-01

    The huge gulf between the high photon fluxes available from synchrotrons and the capabilities of detectors to measure the resulting photon, electron or ion signals is well known. Whilst accelerator technology continues to advance at a rapid pace, it is detector performance which represents the limiting factor for many synchrotron experiments. In some cases there are still single channel counting detectors based on 40-year-old designs operational on synchrotron beamlines. The dream of many researchers is a detector which is able to simultaneously image and perform spectroscopy at the required data rates. A solution is the massive integration of parallel electronics into detectors on a pixel by pixel basis. These ideas have been in gestation for very many years awaiting sufficient funding, nevertheless, several prototypes are now at the testing stage. The current status of these and other detector developments targeted at synchrotron science are briefly reviewed.

  16. Modelling 20 years of synchrotron flaring in the jet of 3C 273

    NASA Astrophysics Data System (ADS)

    Türler, M.; Courvoisier, T. J.-L.; Paltani, S.

    2000-09-01

    We present a phenomenological jet model which is able to reproduce well the observed variations of the submillimetre-to-radio emission of the bright quasar 3C 273 during the last 20 years. It is a generalization of the original shock model of Marscher & Gear (1985), which is now able to describe an accelerating or decelerating shock wave, in a curved, non-conical and non-adiabatic jet. The model defines the properties of a synchrotron outburst which is expected to be emitted by the jet material in a small region just behind the shock front. By a proper parameterization of the average outburst's evolution and of the peculiarities of individual outbursts, we are able to decompose simultaneously thirteen long-term light-curves of 3C 273 in a series of seventeen distinct outbursts. It is the first time that a model is so closely confronted to the long-term multi-wavelength variability properties of a quasar. The ability of the model to reproduce the very different shapes of the submillimetre-to-radio light curves of 3C 273 gives strong support to the shock model of Marscher & Gear (1985). Indirectly, it also reinforces the idea that the outbursts seen in the light-curves are physically linked to the distinct features observed to move along the jet with apparently superluminal velocities. The more than 5000 submillimetre-to-radio observations in the different light-curves are able to constrain the physical properties of the jet. The results suggest, for instance, that the magnetic field behind the shock front is rather turbulent. There is also some evidence that the jet radius does not increase linearly with distance down the jet or, alternatively, that the synchrotron emitting material decelerates with distance and/or bends away from the line-of-sight.

  17. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  18. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  19. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  20. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  1. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  2. Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice.

    PubMed

    Murase, Takatoshi; Haramizu, Satoshi; Ota, Noriyasu; Hase, Tadashi

    2009-08-01

    The decline in physical performance with increasing age is a crucial problem in our aging society. We examined the effects of resveratrol, a natural polyphenolic compound present in grapes, in combination with habitual exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1). The endurance capacity of SAMP1 mice undergoing an exercise regimen (SAMP1-Ex) decreased over 12 weeks whereas that of SAMP1 mice fed 0.2% (w/w) resveratrol along with exercise (SAMP1-ExRes) remained significantly higher. In the SAMP1-ExRes group, there was a significant increase in oxygen consumption and skeletal muscle mRNA levels of mitochondrial function-related enzymes. These results suggest that the intake of resveratrol, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and that these effects are attributable, at least in part, to improved mitochondrial function in skeletal muscle.

  3. A new principle of coherence in a synchrotron source

    NASA Astrophysics Data System (ADS)

    Singal, Ashok Kumar

    /X-rays and the radio variabilities. In the case of a dense beam of monoenergetic electrons, e.g. in the case of synchrotron accelerators, the synchrotron spectrum may be that of an incoherent source at the peak near the characteristic frequency, but at sufficiently longer wavelengths coherence could be present, without the need of some specific mechanism for coherence.

  4. CEBAF Accelerator Achievements

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Drury, M.; Hovater, C.; Hutton, A.; Krafft, G. A.; Poelker, M.; Reece, C.; Tiefenback, M.

    2011-05-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  5. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  6. Medical applications of synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  7. Methods of computer processing of experimental data on the intensity of bunches in synchrotrons

    NASA Astrophysics Data System (ADS)

    Zhabitsky, V. M.

    2016-12-01

    Methods of computer processing of experimental data on the intensity of bunches in synchrotrons for the purpose of receiving functional dependences from time during the accelerating cycle for a number of circulating particles and the mean-square length of a bunch are discussed. Examples of such dependences for the beam at the nuclotron (JINR) and PSB (CERN) are presented.

  8. Influence of familiarization on the reliability of vertical jump and acceleration sprinting performance in physically active men.

    PubMed

    Moir, Gavin; Button, Chris; Glaister, Mark; Stone, Michael H

    2004-05-01

    The purpose of the present study was to determine the number of familiarization sessions required to obtain an accurate measure of reliability associated with loaded vertical jump and 20-m sprint running performance. Ten physically active men attended 5 separate testing sessions over a 3-week period where they performed unloaded and loaded (10-kg extra load) countermovement (CMJ) and static (SJ) jumps, followed by straight-line 20-m sprints. Jump height was recorded for the vertical jumps using a jump mat, while the time for 10 m and 20 m was recorded during the sprints using photocells. The highest (jump conditions) and fastest (sprint) of 3 trials performed during each of the 5 testing sessions was used in the subsequent analysis. Familiarization was assessed using the scores obtained during the 5 separate testing sessions. Reliability was assessed by calculating intraclass correlation coefficients (ICCs) and coefficient of variation (CV). No significant differences were obtained between the testing sessions for any of the measures. ICCs ranged from 0.89 to 0.95, while CVs ranged from 1.9 to 2.6%. These results indicate that high levels of reliability can be achieved without the need for familiarization sessions when using loaded and unloaded CMJ and SJ and 20-m sprint performance with physically active men.

  9. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  10. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  11. Infrared microspectroscopy with synchrotron radiation

    SciTech Connect

    Carr, G.L.; Williams, G.P.

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  12. GeV electron beams from a cm-scale accelerator

    SciTech Connect

    Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.; Nakamura,K.; Geddes, C.G.R.; Esarey, E.B.; Schroeder, C.; Hooker, S.M.

    2006-05-04

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radio frequency based accelerators are limited to relatively low accelerating fields (10-50 MV/m) and hence require tens to hundreds of meters to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometers to generate particle energies of interest to the frontiers of high-energy physics.Laser wakefield accelerators (LWFA) in which particles are accelerated by the field of a plasma wave driven by an intense laser pulse produce electric fields several orders of magnitude stronger (10-100 GV/m) and so offer the potential of very compact devices. However, until now it has not been possible to maintain the required laser intensity, and hence acceleration, over the several centimeters needed to reach GeV energies.For this reason laser-driven accelerators have to date been limited to the 100 MeV scale. Contrary to predictions that PW-class lasers would be needed to reach GeV energies, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channeling a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide. We anticipate that laser-plasma accelerators based on capillary discharge waveguides will have a major impact on the development of future femtosecond radiation sources such as x-ray free electron lasers and become a standard building block for next generation high-energy accelerators.

  13. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  14. Charge - dependent increase in coherence of synchrotron oscillation at injection

    SciTech Connect

    MacLachlan, J.A.; /Fermilab

    2004-11-01

    Because of coupled bunch instability and/or because of some unidentified mechanism, bunches from the 8 GeV Booster accelerator at Fermilab arrive in the Main Injector synchrotron with a complicated centroid distribution in phase and energy. The currently installed broad band kicker provides a maximum of 2 kV, insufficient to remove injection errors before the oscillations would de-cohere, ignoring the influence of bunch charge. Perhaps surprisingly, for sufficient but generally modest charge, the effect of potential well distortion is to maintain bunch integrity. This talk illustrates the phenomenon for injection into the Fermilab Main Injector and offers an explanation sufficiently general to apply elsewhere.

  15. Acccelerator Physics Issues of a Very Large Hadron Collider

    SciTech Connect

    Chou, W.

    1997-06-01

    A Very Large Hadron Collider (VLHC) was proposed for the post-LHC future. This paper gives a quick survey of a number of accelerator physics issues based on the information obtained from a parameter spreadsheet SSP. The main technical challenges to build such a machine appear to be: the large number of events per crossing (in hundreds), enormous beam stored energy (equivalent to tens tons of TNT), ground motion (which is particularly harmful when the synchrotron frequency is in the sub-Hertz range), small dynamic aperture (due to long filling time), fast growth of the resistive wall instability (in a fraction of one turn), low threshold of the single bunch transverse instability (due to big machine size), strong synchrotron radiation (at a level close to the LEP) and short radiation damage lifetime, etc. Possible solutions to some of these problems will also be discussed.

  16. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  17. Comparison of children's free-living physical activity derived from wrist and hip raw accelerations during the segmented week.

    PubMed

    Noonan, Robert J; Boddy, Lynne M; Kim, Youngwon; Knowles, Zoe R; Fairclough, Stuart J

    2016-11-14

    This study assessed children's physical activity (PA) levels derived from wrist-worn GENEActiv and hip-worn ActiGraph GT3X+ accelerometers and examined the comparability of PA levels between the two devices throughout the segmented week. One hundred and twenty-nine 9-10-year-old children (79 girls) wore a GENEActiv (GAwrist) and ActiGraph GT3X+ (AGhip) accelerometer on the left wrist and right hip, respectively, for 7 days. Mean minutes of light PA (LPA) and moderate-to-vigorous PA (MVPA) per weekday (whole-day, before-school, school and after-school) and weekend day (whole-day, morning and afternoon-evening) segments were calculated, and expressed as percentage of segment time. Repeated measures analysis of variance examined differences in LPA and MVPA between GAwrist and AGhip for each time segment. Bland-Altman plots assessed between-device agreement for LPA and MVPA for whole weekday and whole weekend day segments. Correlations between GAwrist and AGhip were weak for LPA (r = 0.18-0.28), but strong for MVPA (r = 0.80-0.86). LPA and MVPA levels during all weekday and weekend day segments were significantly higher for GAwrist than AGhip (p < 0.001). The largest inter-device percent difference of 26% was observed in LPA during the school day segment. Our data suggest that correction factors are needed to improve raw PA level comparability between GAwrist and AGhip.

  18. TH-C-BRB-00: Open Source Hardware in Medical Physics and Its Potential to Accelerate Innovation.

    PubMed

    Therriault-Proulx, Francois

    2016-06-01

    By definition, Open Source Hardware (OSH) is "hardware whose design is made publicly available so that anyone can study, modify, distribute, make, and sell the design or hardware based on that design". The advantages of OSH are multiple and the movement has been growing exponentially over the last couple years, leading to the spread and evolution of 3D printing technologies, the creation of affordable and easy to use micro-controller boards (Arduino, Raspberry Pi, etc.), as well as a plurality of other "hands-on"/DIY projects. As we have seen over the past few years with 3D printing, where the number of projects benefiting clinical practice as grown significantly, the highly educated and technology savvy Medical Physics community is positioned to take advantage of and benefit from paradigm-shifting movements. Sharing of knowledge, know-how, and technology can be a key factor in furthering the impact medical physicists can have. Whether it is to develop phantoms, applicators, detector holders or devices based on the use of motors and sensors, sharing design files significantly enables further development. Because these designs would be massively peer-reviewed through their online publication, improvements would be made, and the creators of the design would be rewarded with an increase number of citation of their work. A curated database of software and hardware projects can be an invaluable to the field, but a critical mass of contributors is likely needed to guarantee the most impact. This symposium will discuss the benefits and hurdles for such an endeavor.

  19. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule.

    PubMed

    Yamanaka, Yujiro; Hashimoto, Satoko; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi

    2010-03-01

    Effects of timed physical exercise were examined on the reentrainment of sleep-wake cycle and circadian rhythms to an 8-h phase-advanced sleep schedule. Seventeen male adults spent 12 days in a temporal isolation facility with dim light conditions (<10 lux). The sleep schedule was phase-advanced by 8 h from their habitual sleep times for 4 days, which was followed by a free-run session for 6 days, during which the subjects were deprived of time cues. During the shift schedule, the exercise group (n = 9) performed physical exercise with a bicycle ergometer in the early and middle waking period for 2 h each. The control group (n = 8) sat on a chair at those times. Their sleep-wake cycles were monitored every day by polysomnography and/or weight sensor equipped with a bed. The circadian rhythm in plasma melatonin was measured on the baseline day before phase shift: on the 4th day of shift schedule and the 5th day of free-run. As a result, the sleep-onset on the first day of free-run in the exercise group was significantly phase-advanced from that in the control and from the baseline. On the other hand, the circadian melatonin rhythm was significantly phase-delayed in the both groups, showing internal desynchronization of the circadian rhythms. The sleep-wake cycle resynchronized to the melatonin rhythm by either phase-advance or phase-delay shifts in the free-run session. These findings indicate that the reentrainment of the sleep-wake cycle to a phase-advanced schedule occurs independent of the circadian pacemaker and is accelerated by timed physical exercise.

  20. Steady X-Ray Synchrotron Emission in the Northeastern Limb of SN 1006

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Mori, Koji; Reynolds, Stephen; Long, Knox; Winkler, P.; Tsunemi, Hiroshi

    2010-01-01

    We investigate time variations and detailed spatial structures of X-ray synchrotron emission in the northeastern limb of SN 1006, using two Chandra observations taken in 2000 and 2008. We extract spectra from a number of small ([approx]10'') regions. After taking account of proper motion and isolating the synchrotron from the thermal emission, we study time variations in the synchrotron emission in the small regions. We find that there are no regions showing strong flux variations. Our analysis shows an apparent flux decline in the overall synchrotron flux of [approx]4% at high energies, but we suspect that this is mostly a calibration effect, and that flux is actually constant to [approx]1%. This is much less than the variation found in other remnants where it was used to infer magnetic-field strengths up to 1 mG. We attribute the lack of variability to the smoothness of the synchrotron morphology, in contrast to the small-scale knots found to be variable in other remnants. The smoothness is to be expected for a Type Ia remnant encountering uniform material. Finally, we find a spatial correlation between the flux and the cutoff frequency in synchrotron emission. The simplest interpretation is that the cutoff frequency depends on the magnetic-field strength. This would require that the maximum energy of accelerated electrons is not limited by synchrotron losses, but by some other effect. Alternatively, the rate of particle injection and acceleration may vary due to some effect not yet accounted for, such as a dependence on shock obliquity.

  1. Programmed improvements of the alternating gradient synchrotron complex at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    SciTech Connect

    1994-03-01

    The purpose and need for DOE to undertake the actions described in this document are to improve the efficiency of the Alternating Gradient Synchrotron (AGS) complex. Benefits would include optimization of the AGS scientific program, increased high-energy and nuclear physics experimentation, improved health and safety conditions for workers and users, reduced impact on the environment and the general public, energy conservation, decreased generation of hazardous and radioactive wastes, and completion of actions required to permit the AGS to be the injector to the Relativistic Heavy Ion Collider (RHIC)., Improved efficiency is defined as increasing the AGS`s capabilities to capture and accelerate the proton intensity transferred to the AGS from the AGS booster. Improved capture of beam intensity would reduce the beam losses which equate to lost scientific opportunity for study and increased potential for radiation doses to workers and the general public. The action would also refurbish magnets used in the transfer tunnel which connects the AGS complex to RHIC to permit smooth injection of beam into the RHIC accelerator. These magnets were previously used to direct beam to fixed targets for high energy physics studies but have hot received proper maintenance to be reliable as injectors to RHIC. The document describes alternative actions, the affected environment, and environmental impacts.

  2. Center for beam physics 1996-1997

    SciTech Connect

    1997-02-01

    The Center for Beam Physics (CBP) is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Ernest Orlando Lawrence Berkeley National Laboratory of the University of California. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Special features of the Center`s program include addressing R&D issues needing long development time and providing a platform for conception, initiation, and support of institutional projects based on beams. The Center brings to bear a significant amount of diverse, complementary, and self-sufficient expertise in accelerator physics, synchrotron radiation, advanced microwave techniques, plasma physics, optics, and lasers on the forefront R&D issues in particle and photon beam research. In addition to functioning as a clearinghouse for novel ideas and concepts and related R&D (e.g., various theoretical and experimental studies in beam physics such as nonlinear dynamics, phase space control, laser-beam-plasma interaction, free-electron lasers, optics, and instrumentation), the Center provides significant support to Laboratory facilities and initiatives. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP`s outstanding team and gives a flavor of their multifaceted activities during 1996 and 1997.

  3. Coherent synchrotron radiation in the isochronous muon collider ring

    SciTech Connect

    Gallardo, J.C.

    1996-10-01

    To achieve the luminosity of L = 10{sup 35} cm{sup {minus}2}s{sup {minus}1} in a {mu}{sup +}{mu}{sup {minus}} collider, two bunches per sign of N = 2 {times} 10{sup 12} particles each and a betatron function of {beta}* = 3 mm at the interaction point (IP) are required. This small {beta}* at the IP constrains the size of the bunch to be {sigma}{sub z} {approximately} {beta}*. To maintain this rather short bunch without excessive rf power consumption, an isochronous lattice has been chosen for the final collider ring. One of the important advantages of muons as opposed to electrons is that at up to at least TeV energy it is possible to accelerate muons in circular machines as their synchrotron radiation is reduced by a factor of (m{sub e}/m{sub {mu}}){sup 2} {approximately} 23 {times} 10{sup {minus}6} with respect to electrons. Nevertheless, the large number of muons in a short bunch suggests the possibility of strong shielded coherent synchrotron radiation. First, the author uses the well known formulae to evaluate the power of shielded coherent synchrotron radiation in the isochronous muon collider ring. Finally, following the results obtained by Kheifets and Zotter for a bunch with a Gaussian longitudinal charge distribution the author shows that the coherent synchrotron radiation in the isochronous {mu}{sup +}{mu}{sup {minus}} collider ring is negligible if the rms bunch length is larger than {approx} 0.3 mm.

  4. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy.

    PubMed

    Zschornack, G; Ritter, E; Schmidt, M; Schwan, A

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C(4 +) and C(6 +) ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C(6 +)/H2(+) ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 10(9) protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  5. Tune control improvements on the rapid cycling synchrotron

    SciTech Connect

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-06-01

    The as-built lattice of the Rapid Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. 5 refs.

  6. Tune-control improvements on the rapid-cycling synchrotron

    SciTech Connect

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-01-01

    The as-built lattice of the Rapid-Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. A set of octupole magnets and programmable power supplies with similar dynamic qualities have been constructed and installed to control the anticipated high-intensity transverse instability. This system will be operational in the spring of 1981.

  7. Synchrotron X-ray diagnostics of cutoff shape of nonthermal electron spectrum at young supernova remnants

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo; Ohira, Yutaka; Sawada, Makoto; Bamba, Aya

    2014-02-01

    Synchrotron X-rays can be a useful tool to investigate electron acceleration at young supernova remnants (SNRs). At present, since the magnetic field configuration around the shocks of SNRs is uncertain, it is not clear whether electron acceleration is limited by SNR age, synchrotron cooling, or even escape from the acceleration region. We study whether the acceleration mechanism can be constrained by the cutoff shape of the electron spectrum around the maximum energy. We derive analytical formulae of the cutoff shape in each case where the maximum electron energy is determined by SNR age, synchrotron cooling and escape from the shock. They are related to the energy dependence of the electron diffusion coefficient. Next, we discuss whether information on the cutoff shape can be provided by observations in the near future which will simply give the photon indices and the flux ratios in the soft and hard X-ray bands. We find that if the power-law index of the electron spectrum is independently determined by other observations, then we can constrain the cutoff shape by comparing theoretical predictions of the photon indices and/or the flux ratios with observed data which will be measured by NuSTAR and/or ASTRO-H. Such study is helpful in understanding the acceleration mechanism. In particular, it will supply another independent constraint on the magnetic field strength around the shocks of SNRs.

  8. Physics.

    ERIC Educational Resources Information Center

    Bromley, D. Allan

    1980-01-01

    The author presents the argument that the past few years, in terms of new discoveries, insights, and questions raised, have been among the most productive in the history of physics. Selected for discussion are some of the most important new developments in physics research. (Author/SA)

  9. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  10. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    SciTech Connect

    Shiltsev, Vladimir

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  11. Methods for lipid nanostructure investigation at neutron and synchrotron sources

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.

    2011-03-01

    A lipid membrane is a main component of biological membranes. Contemporary bionanotechnologies use phospholipids and ceramides as basic components of drugs and cosmetic preparations. Phospholipids-based nanoparticles are used as drug carriers. Effective development of bionanotechnologies in Russia calls for creation of physical methods to diagnose the particle nanostructure which would be promising for application in pharmacology. Radiation with wavelengths of 1-10 Å is an adequate instrument for detecting the nanostructure of lipid bi- and monolayers. The review deals with methods that apply neutron scattering and synchrotron radiation for studying nanostructures of lipid membranes, phospholipid nanoparticles, and phospholipid monolayers on a water surface by techniques of diffraction, small-angle scattering, and reflectometry. The importance of the mutually complementary application of neutron and synchrotron radiation for solving urgent problems of membrane biophysics, microbiology, dermapharmacology, and bionanotechnologies is demonstrated by particular examples of studies of phospholipid membranes and ceramide-based membranes. The efficiency of development and application of new methods for solving urgent problems of biophysics is shown. The review is written on the basis of results obtained over the period of 1999-2010 at the Joint Institute for Nuclear Research (JINR) Laboratory of Neutron Physics in collaboration with the Pharmaceutical Departments of universities of France (Paris-Sud, Chatenay Malabry) and Germany (Martin Luther University, Halle). The experiments were performed at various European and Russian neutron and synchrotron sources.

  12. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  13. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  14. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  15. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  16. Pros and Cons of the Acceleration Scheme (NF-IDS)

    SciTech Connect

    Bogacz, Alex; Bogacz, Slawomir

    2008-07-01

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc

  17. Workshop on detectors for synchrotron radiation

    SciTech Connect

    Robinson, Arthur L.

    2000-11-22

    Forefront experiments in many scientific areas for which synchrotron sources provide sufficient flux are nonetheless hindered because detectors cannot collect data fast enough, do not cover sufficiently solid angle, or do no have adequate resolution. Overall, the synchrotron facilities, each of which represents collective investments from funding agencies and user institutions ranging from many hundreds of millions to more than a billion dollars, are effectively significantly underutilized. While this chronic and growing problem plagues facilities around the world, it is particularly acute in the United States, where detector research often has to ride on the coat tails of explicitly science-oriented projects. As a first step toward moving out of this predicament, scientists from the U.S. synchrotron facilities held a national workshop in Washington, DC, on October 30-31, 2000. The Workshop on Detectors for Synchrotron Research aimed to create a national ''roadmap'' for development of synchrotron-radiation detectors.

  18. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  19. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  20. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES&H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES&H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  1. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  2. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  3. Ring design of the Prague synchrotron for cancer therapy

    NASA Astrophysics Data System (ADS)

    Molodozhentsev, A.; Makoveev, V.; Minashkin, V.; Shevtsov, V.; Sidorov, G.; Prokesh, K.; Sedlak, J.; Kuzmiak, M.

    1998-04-01

    The paper presents main elements of a dedicated proton synchrotron for hadron therapy. The beam parameters for active scanning of tumours are discussed. The output energy of the beam should be variable in the range 60-220 MeV. The average current of the proton beam is equal to 10 nA. The repetition rate of the accelerator is chosen of 1 Hz to get a spill time for slow extraction of about 500 ms. The timing cycle of the accelerator including the quasi-adiabatic capture process and acceleration is described. The RF gymnastics is utilized to prepare the unbunched beam for slow extraction. The magnetic elements of the ring, compact RF and VCO systems are presented in the paper. The maximum magnet field of the dipole magnet should be 1.2 T and the maximum magnetic field on the pole of the quadrupole lenses should be less than 1 T. The resonator should work on the first harmonic with a frequency from 1.298 MHz till 4.804 MHz. The length of the resonator should be less than 1 m. The maximum voltage on the accelerator gap should be about 2 kV.

  4. Status of the Alternating Gradient Synchrotron (AGS) upgrade project

    SciTech Connect

    Sluyters, T.

    1988-01-01

    The upgrade of BNL's Alternating Gradient Synchrotron progresses parallel with the construction of the 1.5 GeV Booster with a view to completion of its major components in 1991. The initial goals of the upgrade program are: to prepare the AGS ring for acceleration of at least 5 /times/ 10/sup 13/ protons per pulse, to accelerate heavy ions up to gold, to accelerate polarized protons in the 10/sup 12/-10/sup 13/ intensity range, and to improve the reliability and flexibility of the present machine operation. Figure 1 shows the AGS complex as it will operate in 1991. There are several major systems in the AGS complex which have to be upgraded in order to accelerate the higher intensity beams and heavier ions. These systems are: the RFQ preinjector, the rf cavities, the vacuum, the transverse dampers, the correction magnets, extraction equipment, and the Siemens main magnet power supply. Additional major projects, which will keep the ring activation within /open quotes/acceptable/close quotes/ limits despite a four-fold increase in beam intensity, are a fast beam chopper, a gamma-transition jump system, and a high frequency dilution cavity. These last projects have received high priority because they benefit as well the present operation of the AGS.

  5. PROTON SYNCHROTRON RADIATION FROM EXTENDED JETS OF PKS 0637–752 AND 3C 273

    SciTech Connect

    Bhattacharyya, Wrijupan; Gupta, Nayantara

    2016-02-01

    Many powerful radio quasars are associated with large-scale jets, exhibiting bright knots as shown by high-resolution images from the Hubble Space Telescope (HST) and the Chandra X-ray Observatory. The radio-optical flux component from these jets can be attributed to synchrotron radiation by accelerated relativistic electrons while the IC/CMB model, by far, has been the most popular explanation for the observed X-ray emission from these jets. Recently, the IC/CMB X-ray mechanism has been strongly disfavored for 3C 273 and PKS 0637–752 since the anomalously hard and steady gamma-ray emission predicted by such models violates the observational results from Fermi-LAT. Here we propose the proton synchrotron origin of the X-ray–gamma-ray flux from the knots of PKS 0637–752 with a reasonable budget in luminosity, by considering synchrotron radiation from an accelerated proton population. Moreover, for the source 3C 273, the optical data points near 10{sup 15} Hz could not be fitted using electron synchrotron. We propose an updated proton synchrotron model, including the optical data from HST, to explain the common origin of optical-X-ray–gamma-ray emission from the knots of quasar 3C 273 as an extension of the work done by Kundu and Gupta. We also show that TeV emission from large-scale quasar jets, in principle, can arise from proton synchrotron, which we discuss in the context of knot wk8.9 of PKS 0637–752.

  6. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  7. Accelerator Technology Division annual report, FY 1989

    SciTech Connect

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  8. Synchrotron radiation and high pressure: new light on materials under extreme conditions.

    PubMed

    Hemley, Russell J; Mao, Ho-kwang; Struzhkin, Viktor V

    2005-03-01

    With the steady development of static high-pressure techniques in recent years, it is now possible to probe in increasing detail the novel behavior of materials subjected to extreme conditions of multimegabar pressures (>300 GPa) and temperatures from cryogenic states to thousands of degrees. By and large, the growth in this area has been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in high-pressure powder and single-crystal diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. A brief overview of selected highlights in each of these classes of experiments is presented that illustrate both the state-of-the-art as well as current technical and scientific challenges. The experiments have been made possible by the development of a spectrum of new techniques at both third- and second-generation high-energy sources together with key advances in high-pressure technology. The results have implications for a variety of problems in physics, chemistry, materials science, geoscience, planetary science, and biology.

  9. Ecological and agricultural applications of synchrotron IR microscopy

    NASA Astrophysics Data System (ADS)

    Raab, T. K.; Vogel, J. P.

    2004-10-01

    The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 μm provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes ("Cellulose synthase-like" genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, and pmr6 have been characterized by these methods, and biochemical relations between two of the genes suggested by IR spectroscopy and multivariate statistical techniques could not have been inferred through classical molecular biology. In ecological experiments, live plants can also be imaged in small microcosms with mid-IR transmitting ZnSe windows. Small exudate molecules may be spatially mapped in relation to root architecture at diffraction-limited resolution, and the effect of microbial symbioses on the quantity and quality of exudates inferred. Synchrotron IR microscopy provides a useful adjunct to molecular biological methods and underground observatories in the ongoing assessment of the role of root-soil-microbe communication.

  10. Muon Acceleration-RLA and FFAG

    SciTech Connect

    Bogacz, S. Alex

    2011-10-06

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittace dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  11. Development of a tunable UV laser system synchronizing precisely with synchrotron radiation pulses from UVSOR.

    PubMed

    Mizutani, M; Tokeshi, M; Hiraya, A; Mitsuke, K

    1997-01-01

    A mode-locked Ti:sapphire laser is made to oscillate at the frequency of the UVSOR storage ring, 90.115 MHz, in a multi-bunch operation mode. The third harmonic of the laser is available in the wavelength range 243-280 nm. Synchrotron radiation from an undulator is monochromated by a grazing-incidence monochromator and introduced coaxially with the laser. The temporal profile of the photon pulses is monitored in situ by a luminescing substance/photomultiplier combination. The delay timing between the laser and synchrotron radiation can be changed from 0 to 11 ns by adjusting an electronic module that provides phase-locked loop stabilization of the laser pulse. The reliability and feasibility of this laser-synchrotron radiation combination technique are demonstrated by applying pump-probe experiments to two physical systems. The first system is photodissociation of iodomethane (CHA) with a laser photon, followed by photoionization of I and CH3 fragments with synchrotron radiation. The second, two-photon ionization of He atoms, is studied as the prototype of a time-resolved experiment. The He+ signal counts as a function of the laser-synchrotron radiation delay are found to be enhanced in a narrow time window, which can be interpreted in terms of a short lifetime of the resonant state, He*(1s2p 1P), produced by primary synchrotron radiation excitation.

  12. Report of the Synchrotron Radiation Vacuum Workshop

    SciTech Connect

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  13. A Study of Polarized Proton Acceleration in J-PARC

    SciTech Connect

    Luccio, A. U.; Bai, M.; Roser, T.; Molodojentsev, A.; Ohmori, C.; Sato, H.; Hatanaka, K.

    2007-06-13

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductve partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  14. A STUDY OF POLARIZED PROTON ACCELERATION IN J-PARC.

    SciTech Connect

    LUCCIO, A.U.; BAI, M.; ROSER, T.

    2006-10-02

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductive partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  15. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 x 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target. A conceptual layout is shown. 5 refs., 4 figs., 3 tabs.

  16. Particle Acceleration and Nonthermal Emission in Relativistic Astrophysical Shocks

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo

    The common observational feature of Pulsar Wind Nebulae (PWNe), gamma-ray bursts (GRBs), and AGN jets is a broad nonthermal spectrum of synchrotron and inverse Compton radiation. It is usually assumed that the emitting electrons are accelerated to a power-law distribution at relativistic shocks, via the so-called Fermi mechanism. Despite decades of research, the Fermi acceleration process is still not understood from first principles. An assessment of the micro-physics of particle acceleration in relativistic shocks is of paramount importance to unveil the properties of astrophysical nonthermal sources, and it is the subject of this dissertation. In the first part of this thesis, I explore by means of fully-kinetic first-principle particle-in-cell (PIC) simulations the properties of relativistic shocks that propagate in electron-positron and electron-proton plasmas carrying uniform magnetic fields. I find that nonthermal particle acceleration only occurs if the upstream magnetization is weak (sigma<0.001), or if the pre-shock field is nearly aligned with the shock direction of propagation (quasi-parallel shocks). Relativistic shocks in PWNe, GRBs and AGN jets are usually thought to be appreciably magnetized (sigma>0.01) and quasi-perpendicular, yet they need to be efficient particle accelerators, in order to explain the prominent nonthermal signatures of these sources. Motivated by this discrepancy, I then relax the assumption of uniform pre-shock fields, and investigate the acceleration efficiency of perpendicular shocks that propagate in high-sigma flows with alternating magnetic fields. This is the geometry expected at the termination shock of pulsar winds, but it could also be relevant for Poynting-dominated jets in GRBs and AGNs. I show by means of PIC simulations that compression of the flow at the shock will force annihilation of nearby field lines, a process known as shock-driven reconnection. Magnetic reconnection can efficiently transfer the energy of

  17. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  18. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  19. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  20. The synchrotron halo and magnetic field of NGC 4449.

    NASA Astrophysics Data System (ADS)

    Klein, U.; Hummel, E.; Bomans, D. J.; Hopp, U.

    1996-09-01

    The large-scale distribution of the radio emission and the magnetic field of the bright irregular galaxy NGC 4449 is investigated. The galaxy possesses a low-frequency halo, with an extent of ~7kpc. Its radio spectrum steepens towards the galaxy's periphery, with extreme values of the spectral index α=-0.7+/-0.1 (Snu_~νalpha^). The synchrotron halo may have been produced by a galactic wind, driven by the star formation and associated supernova activity pervading the body of this galaxy. The fraction of thermal radio emission at 1GHz is f_th1_=10+/-3%. Using an Hα image, we have made an attempt to separate the thermal and nonthermal emission across NGC 4449. The results are consistent with what is derived from the integral radio spectrum of the galaxy. The spectrum of the synchrotron radiation is found to vary considerably across the galaxy, with α_nth_~-0.5 in the central regions, indicating on-going particle acceleration, and α_nth_~-0.7 in the halo regime. While the overall nonthermal spectral index is identical to that of the Large Magellanic Cloud (LMC), the relative amount of thermal emission, though somewhat higher than in normal spirals, is not at all as high as in the LMC. A magnetic field, which in the halo has ordered components on kpc scales, is found to pervade NGC 4449, with degrees of linear polarization exceeding 40% on scales of 2-3kpc. It is mostly tangled within the central (disk) region of the galaxy. There is evidence for a coherent magnetic field structure to emerge from a chain of HII complexes, and stretching into the synchrotron halo. Together with the LMC, there are now two known examples of (low-mass) irregular galaxies with detected linear radio polarization.

  1. Molecular photoemission studies using synchrotron radiation

    SciTech Connect

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  2. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  3. Symposium report on frontier applications of accelerators

    SciTech Connect

    Parsa, Z.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  4. Drift Loss-Cone Distributions Electrons in the Jovian Synchrotron Zone from 06 and VIP4 Models

    NASA Technical Reports Server (NTRS)

    Wang, K.; Bolton, S. J.; Gulkis, S.; Levin, S. M.

    2000-01-01

    Relativistic electrons (10-50 MeV) play an important role to account for the observed synchrotron decimetric radiation in Jupiter's inner radiation belt (L < 4). A detailed knowledge of these electron distributions is required to understand the synchrotron emission observations and the associated on-going physical processes. In this paper, instead of assuming electrons drift along constant L-shell at the magnetic equator as many earlier studies adopted, we calculate the size of the theoretical drift-loss cone for relativistic electrons using both the O6 and VIP4 magnetic field models. Model maps of the synchrotron emission for specific electron distributions are shown for comparison.

  5. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  6. Wakefields in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  7. Empirical deadtime corrections at synchrotron sources.

    SciTech Connect

    Walko, D. A.; Arms, D. A.; Landahl, E. C.; X-Ray Science Division

    2008-01-01

    An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction.

  8. Empirical deadtime corrections for synchrotron sources.

    SciTech Connect

    Walko, D. A.; Arms, D. A.; Landahl, E. C.; X-Ray Science Division

    2008-01-01

    An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction.

  9. High-energy thermal synchrotron emission

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Epstein, R. I.; Petrosian, V.

    1985-01-01

    It is shown how the thermal synchrotron emission spectrum is modified when the photon energy is greater than the mean energy of the radiating particles. The effect if applying this energy conservation constraint is to produce spectra which have less high-energy photon emission than had been previously estimated. The thermal synchrotron spectra provide satisfactory fits to recently observed very high energy gamma ray spectra of certain burst sources.

  10. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  11. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  12. Nanoparticles and nanowires: synchrotron spectroscopy studies

    SciTech Connect

    Sham, T.K.

    2008-08-11

    This paper reviews the research in nanomaterials conducted in our laboratory in the last decade using conventional and synchrotron radiation techniques. While preparative and conventional characterisation techniques are described, emphasis is placed on the analysis of nanomaterials using synchrotron radiation. Materials of primary interests are metal nanoparticles and semiconductor nanowires and nanoribbons. Synchrotron techniques based on absorption spectroscopy such as X-ray absorption fine structures (XAFS), which includes X-ray absorption near edge structures (XANES) and extended X-ray absorption fine structures (EXFAS), and de-excitation spectroscopy, including X-ray excited optical luminescence (XEOL), time-resolved X-ray excited optical luminescence (TRXEOL) and X-ray emission spectroscopy (XES) are described. We show that the tunability, brightness, polarisation and time structure of synchrotron radiation are providing unprecedented capabilities for nanomaterials analysis. Synchrotron studies of prototype systems such as gold nanoparticles, 1-D nanowires of group IV materials, C, Si and Ge as well as nanodiamond, and compound semiconductors, ZnS, CdS, ZnO and related materials are used to illustrate the power and unique capabilities of synchrotron spectroscopy in the characterisation of local structure, electronic structure and optical properties of nanomaterials.

  13. Color changes in modern and fossil teeth induced by synchrotron microtomography.

    PubMed

    Richards, Gary D; Jabbour, Rebecca S; Horton, Caroline F; Ibarra, Caitlin L; MacDowell, Alastair A

    2012-10-01

    Studies using synchrotron microtomography have shown that this radiographic imaging technique provides highly informative microanatomical data from modern and fossil bones and teeth without the need for physical sectioning. The method is considered to be nondestructive; however, researchers using the European Synchrotron Radiation Facility have reported that color changes sometimes occur in teeth during submicron scanning. Using the Advanced Light Source, we tested for color changes during micron-level scanning and for postexposure effects of ultraviolet light. We exposed a 2.0-mm wide strip (band) to synchrotron light in 32 specimens, using multiple energy levels and scan durations. The sample included modern and fossilized teeth and bone. After scanning, the specimens were exposed to fluorescent and direct ultraviolet light. All teeth showed color changes caused by exposure to synchrotron radiation. The resulting color bands varied in intensity but were present even at the lowest energy and shortest duration of exposure. Color bands faded during subsequent exposure to fluorescent and ultraviolet light, but even after extensive ultraviolet exposure, 67% (8/12) of UV-exposed teeth retained some degree of induced color. We found that the hydroxyapatite crystals, rather than the organic component, are the targets of change, and that diagenesis appears to impact color retention. Color changes have significance beyond aesthetics. They are visible indicators of ionization (chemical change) and, therefore, of potential physical damage. It is important for researchers to recognize that synchrotron microtomography may damage specimens, but adopting suitable safeguards and procedures may moderate or eliminate this damage.

  14. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  15. Archimedes: Accelerator Reveals Ancient Text

    SciTech Connect

    Bergmann, Uwe

    2004-02-24

    Archimedes (287-212 BC), who is famous for shouting 'Eureka' (I found it) is considered one of the most brilliant thinkers of all times. The 10th-century parchment document known as the 'Archimedes Palimpsest' is the unique source for two of the great Greek's treatises. Some of the writings, hidden under gold forgeries, have recently been revealed at the Stanford Synchrotron Radiation Laboratory at SLAC. An intense x-ray beam produced in a particle accelerator causes the iron in original ink, which has been partly erased and covered, to send out a fluorescence glow. A detector records the signal and a digital image showing the ancient writings is produced. Please join us in this fascinating journey of a 1,000-year-old parchment from its origin in the Mediterranean city of Constantinople to a particle accelerator in Menlo Park.

  16. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  17. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  18. Diagnostics used in commissioning the IUCF Cooler Injector Synchrotron

    SciTech Connect

    Ball, Mark S.; Friesel, Dennis L.; Hamilton, Brett J.

    1998-12-10

    Several new diagnostics systems were designed to aid in the commissioning of the IUCF Cooler Injection Synchrotron (CIS). Among them are a time of flight measurement system (ToF), a multi-wire profile monitor system (Harp) and a beam position monitor system (BPM). Pulsed beam from the 7 MeV linear accelerator is monitored using the ToF system. Several removable Harps are mounted in the injection beamline and ring which are instrumental for tuning ring injection and accumulation. BPMs are placed at the entrance and exit of the four ring dipole magnets to facilitate beam centering during injection and ramping. Fast and slow BPM displays are available to the operator for these functions. These diagnostics and their uses for CIS ring commissioning will be discussed.

  19. Radiation Safety System for Stanford Synchrotron Radiation Laboratory

    SciTech Connect

    Liu, J

    2004-03-12

    Radiation Safety System (RSS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed. The RSS, which is designed to protect people from prompt radiation hazards from accelerator operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS). The ACS prevents people from being exposed to the lethal radiation level inside the shielding housing (called a PPS area at SLAC). The ACS for a PPS area consists of the shielding housing, beam inhibiting devices, and a standard entry module at each entrance. The BCS protects people from the prompt radiation hazards outside a PPS area under both normal and abnormal beam loss situations. The BCS consists of the active power (current/energy) limiting devices, beam stoppers, shielding, and an active radiation monitor system. The policies and practices in setting up the RSS at SLAC are illustrated.

  20. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  1. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

    SciTech Connect

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W. E-mail: ryu@canopus.cnu.ac.kr

    2012-09-01

    Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

  2. Determination of Arsenic Poisoning and Metabolism in Hair by Synchrotron Radiation: The Case of Phar Lap

    SciTech Connect

    Kempson, Ivan M.; Henry, Dermot A.

    2010-08-26

    Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.

  3. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  4. Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core

    NASA Astrophysics Data System (ADS)

    Morita, Y.; Kageyama, T.; Akoshima, M.; Torizuka, S.; Tsukamoto, M.; Yamashita, S.; Yoshikawa, N.

    2013-11-01

    The accelerating cavities used in the rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) are loaded with magnetic alloy (MA) cores. Over lengthly periods of RCS operation, significant reductions in the impedance of the cavities resulting from the buckling of the cores were observed. A series of thermal structural simulations and compressive strength tests showed that the buckling can be attributed to the low-viscosity epoxy resin impregnation of the MA core that causes the stiffening of the originally flexible MA-ribbon-wound core. Our results showed that thermal stress can be effectively reduced upon using a core that is not epoxy-impregnated.

  5. Experimental study of coherent synchrotron radiation in the emittance exchange line at the A0-photoinjector

    SciTech Connect

    Thangaraj, Jayakar C.T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A.H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y.E.-; Church, M.; Piot, P.; /Fermilab /Northern Illinois U.

    2010-08-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchanger to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at A0 photoinjector.

  6. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    SciTech Connect

    Liu, James C.; Rokni, Sayed H.; Asano, Yoshihiro; Casey, William R.; Donahue, Richard J.; /LBL, Berkeley

    2005-06-29

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  7. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  8. Developing a framework for predicting upper extremity muscle activities, postures, velocities, and accelerations during computer use: the effect of keyboard use, mouse use, and individual factors on physical exposures.

    PubMed

    Bruno Garza, Jennifer L; Catalano, Paul J; Katz, Jeffrey N; Huysmans, Maaike A; Dennerlein, Jack T

    2012-01-01

    Prediction models were developed based on keyboard and mouse use in combination with individual factors that could be used to predict median upper extremity muscle activities, postures, velocities, and accelerations experienced during computer use. In the laboratory, 25 participants performed five simulated computer trials with different amounts of keyboard and mouse use ranging from a highly keyboard-intensive trial to a highly mouse-intensive trial. During each trial, muscle activity and postures of the shoulder and wrist and velocities and accelerations of the wrists, along with percentage keyboard and mouse use, were measured. Four individual factors (hand length, shoulder width, age, and gender) were also measured on the day of data collection. Percentage keyboard and mouse use explained a large amount of the variability in wrist velocities and accelerations. Although hand length, shoulder width, and age were each significant predictors of at least one median muscle activity, posture, velocity, or acceleration exposure, these individual factors explained very little variability in addition to percentage keyboard and mouse use in any of the physical exposures investigated. The amounts of variability explained for models predicting median wrist velocities and accelerations ranged from 75 to 84% but were much lower for median muscle activities and postures (0-50%). RMS errors ranged between 8 to 13% of the range observed. While the predictions for wrist velocities and accelerations may be able to be used to improve exposure assessment for future epidemiologic studies, more research is needed to identify other factors that may improve the predictions for muscle activities and postures.

  9. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  10. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  11. SuperB Progress Report for Accelerator

    SciTech Connect

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

  12. Elliptical Undulators HU256 for Synchrotron SOLEIL

    SciTech Connect

    Batrakov, A.; Churkin, I.; Ilyin, I.; Kolokolnikov, Yu.; Rouvinski, E.; Semenov, E.; Steshov, A.; Vobly, P.; Briquez, F.; Chubar, O.; Dael, A.; Marcouile, O.; Marteau, F.; Roux, G.; Valleau, M.

    2007-01-19

    Three elliptical undulators HU256 of electromagnetic type were produced, tested and magnetically measured by the Budker Institute of Nuclear Physics (Russia) for Synchrotron Soleil (France). The undulators have a new design of a Bx and Bz closed structure for insertion vacuum chamber. In the elliptical undulator HU256 with period of the magnetic fields of 256 mm, the vertical magnetic field (Bzmax=0.44 T) formed by 27 Bz laminated dipole magnets is symmetric, and the horizontal magnetic field (Bxmax=0.33 T) formed by 28 Bx laminated dipole magnets is asymmetric. The undulator can work in standard mode as well as in a quasi-periodical mode. The vertical magnetic field may be modulated by switching on the modulation coils placed on the Bz dipoles. Two power supply systems allow us to modulate the horizontal magnetic field, and change the radiation spectrum. The magnetic calculations of the individual dipoles and dipoles in ''undulator'' environment were executed by means of Mermaid 3D Code. The magnetic measurements of the individual dipoles had confirmed the magnetic calculations. On basis of semiempirical dependences from the mechanical characteristics the estimates of the magnetic parameters for all dipoles were calculated. Sorting of dipoles in the undulators have been done, and it has improved the magnetic parameters of the assembled undulators in comparison with the statistical estimations. The magnetic measurements of the undulators HU256 were carried out at Budker INP by Hall probes and at Soleil by Hall probes and Stretched Wire. Now the 1st undulator HU256 is installed at Soleil Storage Ring.

  13. The Crab Nebula: Linking MeV Synchrotron and 50 TeV Inverse Compton Photons

    NASA Astrophysics Data System (ADS)

    Horns, D.; Aharonian, F. A.

    2004-10-01

    Pulsar wind driven synchrotron nebulae are offering a unique view on the connection of the pulsar wind and the surrounding medium. The Crab nebula is particu- larly well suited for detailed studies of the different emis- sion regions. As inferred from the observed synchrotron emission extending beyond MeV energies, the Crab is a unique and extreme accelerator. In the framework of the synchrotron/inverse Compton emission model, the same electrons with energies exceeding 1015 eV that are re- sponsible for the MeV synchrotron emission produce via inverse Compton scattering 10-50 TeV radiation which has recently been observed with the HEGRA system of ground based gamma-ray telescopes. Here we discuss the close relation of the two energy bands covered by INTE- GRAL and ground based gamma-ray telescopes. Despite the lack of sufficient spatial resolution in both bands to resolve the emission region, correlation of the flux mea- surements in the two energy bands would allow to con- strain the structure of the emission region. The emission region is expected to be a very compact region (limited by the life-time of the electrons) near the termination shock of the pulsar wind. We extend previous model calcula- tions for the nebula's emission to include an additional compact non-thermal emission region recently detected at mm wavelengths. The overall good agreement of this model with data constrains additional emission processes (ions in the wind, inverse Compton from the unshocked wind) to be of little relevance. Key words: Crab nebula; acceleration; Crab pulsar; elec- trons; radiation; synchrotron; inverse Compton.

  14. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  15. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  16. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  17. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  18. APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS

    DOEpatents

    Heard, H.G.

    1961-10-24

    A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)

  19. Beam instabilities in hadron synchrotrons

    DOE PAGES

    Metral, E.; T. Argyropoulos; Bartosik, H.; ...

    2016-04-01

    Beam instabilities cover a wide range of effects in particle accelerators and they have been the subjects of intense research for several decades. As the machines performance was pushed new mechanisms were revealed and nowadays the challenge consists in studying the interplays between all these intricate phenomena, as it is very often not possible to treat the different effects separately. Furthermore, the aim of this paper is to review the main mechanisms, discussing in particular the recent developments of beam instability theories and simulations.

  20. High-Resolution Synchrotron Radiation Imaging of Trace Metal Elemental Concentrations in Porites Coral

    NASA Astrophysics Data System (ADS)

    Cirino, M.; Dunbar, R. B.; Tangri, N.; Mehta, A.

    2014-12-01

    We investigated the use of synchrotron radiation for elemental imaging within the skeleton of a Porites coral from American Samoa to explore the fine-scale structure of strontium to calcium (Sr/Ca) variability. The use of a synchrotron for coral paleoclimate analysis is relatively new. The method provides a high resolution, two-dimensional elemental map of a coral surface. The aragonitic skeleton of Porites sp. colonies has been widely used for paleoclimate reconstruction as the oxygen isotope ratio (δ18O) signal varies with both sea surface temperature (SST) and sea surface salinity (SSS). Sr/Ca has been used in previous studies in conjunction with δ18O to deconvolve SST from SSS, as Sr/Ca in the coral skeleton varies with SST, but not SSS. However, recent studies suggest that in some cases Sr/Ca variability in coral does not reliably reflect changes in SST. We sought to address this puzzle by investigating Sr/Ca variability in Porites corals at a very fine spatial scale while also demonstrating the suitability of the synchrotron as a coral analysis tool. We also considered Sr/Ca variability as it pertains to the coral's structural elements. The Stanford Linear Accelerator Center synchrotron station generates collimated x-rays in the energy range of 4500-45000 eV with beam diameters as small as 20 μm. Synchrotron imaging allows faster and higher-resolution Sr/Ca analysis than does inductively coupled plasma mass spectrometry (ICP-MS). It also is capable of mapping spatial distributions of many elements, which aids in the development of a multiproxy approach to paleoclimate reconstruction. Imaging and analysis of the Porites coral using synchrotron radiation revealed an intricate sub-seasonal Sr/Ca signal, possibly correlating to a sub-monthly resolution. This signal, which seems unrelated to SST, dominates the annual signal.

  1. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  2. Comment [on “Synchrotron sheds new light on geophysical materials”

    NASA Astrophysics Data System (ADS)

    Charlie, Wayne; Dumford, Deanna

    Thank you for the excellent synchrotron article (Eos, February 11, 1997, pp. 61-62). However, the “first light” experiments at the Advanced Photon Source (APS) at Argonne National Laboratory on December 20, 1996, do not “mark the dawn of a new era of rock and mineral physics.” Third-generation synchrotron radiation sources have been used at the Cornell CHESS facility for geoscience research for many years. For example, we used this facility with Barnes Bierck and Tammo Steenhuis to study consolidation and flow in geophysical materials in 1994.

  3. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  4. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  5. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  6. Metrology of reflection optics for synchrotron radiation

    SciTech Connect

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community.

  7. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1995-12-31

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ``gold standards`` to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications.

  8. The ISAS Synchrotron Microprobe at DELTA

    SciTech Connect

    Bohlen, Alex von; Kraemer, Markus; Hergenroeder, Roland; Berges, Ulf

    2007-01-19

    Since 2004 ISAS operates a dipole beamline at the synchrotron radiation facility DELTA at University of Dortmund. Synchrotron radiation is used at this beamline as an excellent excitation source for X-ray fluorescence spectrometry (XRF). Among others, the high brilliance of the synchrotron radiation in contrast to conventional X-ray tubes, the strong polarization of the synchrotron radiation and the low divergence of the electron beam can be applied to XRF offering several advantages for spectroscopy. These outstanding features encouraged us to develop and operate a synchrotron radiation induced X-ray micro fluorescence probe connected to a wavelength dispersive spectrometer (SR-WDXRF). A relevant characteristic of such a device, namely, good lateral resolution at high spectral resolution can be applied for single spot-, line-scan and area map analyses of a variety of objects. The instrumentation of the SR-WDXRF and the performed experiments will be presented. Main task is the detection of light elements by their fluorescence K-lines and the specification of element compounds.

  9. Evidence that the maximum electron energy in hotspots of FR II galaxies is not determined by synchrotron cooling

    NASA Astrophysics Data System (ADS)

    Araudo, Anabella T.; Bell, Anthony R.; Crilly, Aidan; Blundell, Katherine M.

    2016-08-01

    It has been suggested that relativistic shocks in extragalactic sources may accelerate the highest energy cosmic rays. The maximum energy to which cosmic rays can be accelerated depends on the structure of magnetic turbulence near the shock but recent theoretical advances indicate that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV. We study the hotspots of powerful radiogalaxies, where electrons accelerated at the termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is ≲ TeV for a canonical magnetic field of ˜100 μG. Based on theoretical considerations we show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed with high spatial resolution at radio, infrared and optical wavelengths.

  10. SYNCHROTRON EMISSION DRIVEN BY THE CHERENKOV-DRIFT INSTABILITY IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Osmanov, Z.; Chkheidze, N.

    2013-02-10

    In the present paper, we study the generation of synchrotron emission by means of the feedback of Cherenkov-drift waves on the particle distribution through the diffusion process. Despite the efficient synchrotron losses, it is demonstrated that the excited Cherenkov-drift instability leads to the quasi-linear diffusion (QLD), the effect of which is balanced by dissipation factors and, as a result, the pitch angles are prevented from damping, thus maintaining the corresponding synchrotron emission. We analyze the model for a wide range of physical parameters and determine that the mechanism of QLD guarantees the generation of electromagnetic radiation from soft X-rays up to soft {gamma}-rays, which is strongly correlated with Cherenkov-drift emission ranging from IR up to UV energy domains.

  11. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  12. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  13. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  14. Discussing the processes constraining the Jovian synchrotron radio emission's features

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  15. Coherent synchrotron radiation for broadband terahertz spectroscopy.

    PubMed

    Barros, J; Evain, C; Manceron, L; Brubach, J-B; Tordeux, M-A; Brunelle, P; Nadolski, L; Loulergue, A; Couprie, M-E; Bielawski, S; Szwaj, C; Roy, P

    2013-03-01

    We present the first high resolution (10(-3) cm(-1)) interferometric measurements in the 200-750 GHz range using coherent synchrotron radiation, achieved with a low momentum compaction factor. The effect of microbunching on spectra is shown, depending on the bunch current. A high signal-to-noise ratio is reached thanks to an artifact correction system based on a double detection scheme. Combined to the broad emitted spectral range and high flux (up to 10(5) times the incoherent radiation), this study demonstrates that coherent synchrotron radiation can now be used for stability-demanding applications, such as gas-phase studies of unstable molecules.

  16. Compact synchrotron light source of the HSRC.

    PubMed

    Yoshida, K; Takayama, T; Hori, T

    1998-05-01

    A 700 MeV synchrotron radiation source optimized in order to be incorporated in the university laboratory is under commissioning at Hiroshima University. The storage ring is of a racetrack type with two long straight sections for installing undulators. The bending field is as strong as 2.7 T, produced by normal-conducting magnet technology, and delivers synchrotron radiation with a critical wavelength of 1.42 nm. The strong magnetic field also enables a low-energy injection scheme to be employed owing to the fast radiation damping. A 150 MeV microtron has been adopted as the injector.

  17. Coherent synchrotron radiation for broadband terahertz spectroscopy

    SciTech Connect

    Barros, J.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Brunelle, P.; Nadolski, L.; Loulergue, A.; Couprie, M.-E.; Roy, P.; Evain, C.; Bielawski, S.; Szwaj, C.

    2013-03-15

    We present the first high resolution (10{sup -3} cm{sup -1}) interferometric measurements in the 200-750 GHz range using coherent synchrotron radiation, achieved with a low momentum compaction factor. The effect of microbunching on spectra is shown, depending on the bunch current. A high signal-to-noise ratio is reached thanks to an artifact correction system based on a double detection scheme. Combined to the broad emitted spectral range and high flux (up to 10{sup 5} times the incoherent radiation), this study demonstrates that coherent synchrotron radiation can now be used for stability-demanding applications, such as gas-phase studies of unstable molecules.

  18. Synchrotron characterization of functional tin dioxide nanowires

    SciTech Connect

    Domashevskaya, E. P. Chuvenkova, O. A.; Turishchev, S. Yu.

    2015-12-31

    Wire-like crystals of tin dioxide were synthesized by a gas-transport technique. The wires, of mainly nanometric diameters, were characterized by spectroscopy and microscopy techniques with the use of highly brilliant and intense synchrotron radiation. We studied the influence of the surface chemical state and the oxygen vacancies on the atomic and electronic structure of the nanowires. The surface of the nanowires is covered by a few nanometers of tin suboxides. The lack of oxygen over the surface layers leads to specific sub-zone formation in a gap, as shown by synchrotron studies.

  19. Figuring the Acceleration of the Simple Pendulum

    ERIC Educational Resources Information Center

    Lieberherr, Martin

    2011-01-01

    The centripetal acceleration has been known since Huygens' (1659) and Newton's (1684) time. The physics to calculate the acceleration of a simple pendulum has been around for more than 300 years, and a fairly complete treatise has been given by C. Schwarz in this journal. But sentences like "the acceleration is always directed towards the…

  20. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  1. Requirements of a proton beam accelerator for an accelerator-driven reactor

    SciTech Connect

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-12-31

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam.

  2. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    SciTech Connect

    Luo, Yun

    2015-08-29

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  3. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    DOE PAGES

    Luo, Yun

    2015-08-29

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less

  4. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    SciTech Connect

    Luo, Yun

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  5. Physics Program at COSY-Juelich with Polarized Hadronic Probes

    SciTech Connect

    Kacharava, Andro

    2009-08-04

    Hadron physics aims at a fundamental understanding of all particles and their interactions that are subject to the strong force. Experiments using hadronic probes could contribute to shed light on open questions on the structure of hadrons and their interaction as well as the symmetries of nature. The COoler SYnchrotron COSY at the Forschungszentrum Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c. The availability of both an electron cooler as well as a stochastic beam cooling system allows for precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets.This contribution summarizes the ongoing physics program at the COSY facility using ANKE, WASA and TOF detector systems with polarized hadronic probes, highlighting recent results and outlining the new developments.

  6. GRBs Radiative Processes: Synchrotron and Synchrotron Self-Absorption From a Power Law Electrons Distribution with Finite Energy Range

    NASA Astrophysics Data System (ADS)

    Fouka, M.; Ouichaoui, S.

    2010-10-01

    Synchrotron emission behind relativistic magnetic internal-external shocks in gamma-ray bursts cosmological explosions is assumed to be the basic emission mechanism for prompt and afterglow emissions. Inverse Compton from relativistic electrons can also have appreciable effects by upscattering initial synchrotron or blackbody photons or other photons fields up to GeV-TeV energies. For extreme physical conditions such as high magnetic fields (e.g., B>105 Gauss) self-absorption is not negligible and can hardly affect spectra at least for the low energy range. In this paper we present calculations of the synchrotron power, Pν, and their asymptotic forms, generated by a power law relativistic electron distribution of type Ne(γ) = Cγ-p with γ1<γ<γ2, especially for finite values of the higher limit γ2. For this aim we defined the dimensionless parametric function Zp(x,ɛ) with x = ν/ν1 and ɛ = γ2/γ1 so that Pν~Zp(ν/ν1,ɛ), with ν1 = (3/4π)γ12qBsinθ/mc (θ being the pitch angle). Asymptotic forms of this later are derived for three different frequency ranges, i.e., x<<1, 1<>ɛ2. These results are then used to calculate the absorption coefficient, αν, and the source function, Sν, together with their asymptotic forms through the dimensionless parametric functions Hp(x,ɛ) and Yp(x,ɛ), respectively. Further calculation details are also presented and discussed.

  7. Elementary particle physics

    NASA Technical Reports Server (NTRS)

    Perkins, D. H.

    1986-01-01

    Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.

  8. W.K.H. Panofsky Prize in Experimental Particle Physics: The design, construction and performance of the B Factory accelerator facilities, PEP-II and KEKB

    NASA Astrophysics Data System (ADS)

    Dorfan, Jonathan

    2016-03-01

    The discovery and elucidation of CP violation in the B-meson system presented daunting challenges for the accelerator and detector facilities. This talk discusses how these challenges were met and overcome in the electron-positron colliding-beam accelerator facilities PEP-II (at SLAC) and KEKB (at KEK). The key challenge was to produce unprecedentedly large numbers of B-mesons in a geometry that provided high-statistics, low-background samples of decays to CP eigenstates. This was realized with asymmetric collisions at the Γ(4S) at peak luminosities in excess of 3 ×1033 /sq. cm/sec. Specialized optics were developed to generate efficient, low background, multi-bunch collisions in an energy-asymmetric collision geometry. Novel technologies for the RF, vacuum and feedback systems permitted the storage of multi-amp, multi-bunch beams of electrons and positrons, thereby generating high peak luminosities. Accelerator uptimes greater than 95 percent, combined with high-intensity injection systems, ensured large integrated luminosity. Both facilities rapidly attained their design specifications and ultimately far exceeded the projected performance expectations for both peak and integrated luminosity.

  9. Accelerators for Intensity Frontier Research

    SciTech Connect

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  10. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  11. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  12. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  13. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  14. Acceleration of runaway electrons in solar flares

    SciTech Connect

    Moghaddam-taaheri, E.; Goertz, C.K. )

    1990-03-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2. 23 refs.

  15. Acceleration of runaway electrons in solar flares

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  16. Optical synchrotron radiation beam imaging with a digital mask

    SciTech Connect

    Zhang, Hao; Fiorito, Ralph; Corbett, Jeff; Shkvarunets, Anatoly; Tian, Kai; Fisher, Alan; Douglas, D.; Wilson, F.; Zhang, S.; Mok, W.; Mitsuhashi, T.

    2016-01-01

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  17. Magnetic Reconnection with Strong Synchrotron Cooling in Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri; Spitkovsky, Anatoly

    2012-10-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. In this presentation, a basic physical picture of reconnection in this environment is developed. It is shown that reconnection proceeds in the plasmoid-dominated regime, via an hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. The basic parameters of these current layers --- temperature, density, and layer thickness --- are estimated in terms of the upstream magnetic field. It is argued that, after accounting for the bulk Doppler boosting, the synchrotron and inverse-Compton emission mechanisms can explain the observed pulsed high-energy (GeV) and VHE (˜ 100 GeV) radiation, respectively. The motions of the secondary plasmoids may contribute to the pulsar's radio emission.

  18. Molecular electronics studies by synchrotron radiation

    SciTech Connect

    Wee, Andrew T. S.; Chen Wei; Chi Dongchen; Chen Shi; Wang Li; Gao Xingyu

    2009-01-29

    In molecular electronics research, the molecule-metal interfacial properties crucially control the electronic properties of the devices fabricated. We use synchrotron radiation techniques of PES and NEXAFS, complemented by STM, to study the molecular orientation and interfacial charge transfer processes of model molecule-metal systems.

  19. PRINCIPLES OF SYNCHROTRON TECHNIQUES, POTENTIAL AND LIMITATIONS

    EPA Science Inventory

    Once environmental contaminants, such as arsenic, chromium, cadmium and lead, are detected, the problem becomes how to deal with them. For the past decade, researchers at the US EPA in Cincinnati have been employing synchrotron speciation methods to determine the exact chemical f...

  20. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638