Science.gov

Sample records for accelerator research studies

  1. Accelerator research studies

    SciTech Connect

    Not Available

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  2. Accelerator research studies

    SciTech Connect

    Not Available

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  3. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  4. Accelerator research studies. Final report, June 1, 1994--May 31, 1995

    SciTech Connect

    1995-08-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy has completed the third year of its three-year funding cycle and an additional one-year, no-cost extension. The program consisted of the following three tasks: Task A -- Study of the transport and longitudinal compression of intense, high-brightness beams; Task B -- Study of high-brightness beam generation in pseudospark devices; Task C -- Study of a gyroklystron high-power microwave source for linear colliders. The research carried out for each task and progress made is reported.

  5. Accelerator research studies. Final report, June 1, 1991--May 31, 1994

    SciTech Connect

    1994-12-31

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy is currently in the third year of its three-year funding cycle. The program consists of the following three tasks: Task A -- Study of the transport and longitudinal compression of intense, high-brightness beams; Task B -- Study of high-brightness beam generation in pseudospark devices; Task C -- Study of a gyroklystron high-power microwave source for linear colliders. The research for each task is detailed in this report.

  6. UCLA accelerator research & development. Progress report

    SciTech Connect

    1997-09-01

    This report discusses work on advanced accelerators and beam dynamics at ANL, BNL, SLAC, UCLA and Pulse Sciences Incorporated. Discussed in this report are the following concepts: Wakefield acceleration studies; plasma lens research; high gradient rf cavities and beam dynamics studies at the Brookhaven accelerator test facility; rf pulse compression development; and buncher systems for high gradient accelerator and relativistic klystron applications.

  7. Accelerator research studies. Technical progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Not Available

    1992-02-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  8. Accelerator research studies. Technical progress report, June 1, 1992--May 31, 1993

    SciTech Connect

    Not Available

    1993-03-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ``Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,`` (P.I., M. Reiser); TASK B, ``Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,`` (Co-P.I.`s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ``Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,`` (Co-P.I.`s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  9. Design studies and commissioning plans for plasma acceleration research station experimental program

    SciTech Connect

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-15

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  10. Design studies and commissioning plans for plasma acceleration research station experimental program

    NASA Astrophysics Data System (ADS)

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-01

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  11. UCLA accelerator research and development

    SciTech Connect

    Cline, D.B.

    1992-01-01

    This progress report covers work supported by the above DOE grant over the period November 1, 1991 to July 31, 1992. The work is a program of experimental and theoretical studies in advanced particle accelerator research and development for high energy physics applications. The program features research at particle beam facilities in the United States and includes research on novel high power sources, novel focussing systems (e.g. plasma lens), beam monitors, novel high brightness, high current gun systems, and novel flavor factories in particular the {phi} Factory.

  12. Accelerators for research and applications

    SciTech Connect

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.

  13. Radiobiological research at JINR's accelerators

    NASA Astrophysics Data System (ADS)

    Krasavin, E. A.

    2016-04-01

    The half-a-century development of radiobiological studies at the Joint Institute for Nuclear Research (JINR) is reviewed on a stage-by-stage basis. With the use of the institute's accelerators, some key aspects of radiation biology have been settled, including the relative biological effectiveness (RBE) of various types of ionizing radiation with different physical characteristics; radiation-induced mutagenesis mechanisms, and the formation and repair of genetic structure damage. Practical space radiobiology problems that can be solved using high-energy charged particles are discussed.

  14. Accelerator research studies. Final report, June 1, 1990--November 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The program consisted of the following three tasks: TASK A, ``Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,`` TASK B, ``Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,`` and TASK C, ``Study of a Gyroklystron High-Power Microwave Source for Linear Colliders.``

  15. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  16. Accelerator Research Studies. Annual report for June 1, 2003 - May 31, 2004

    SciTech Connect

    O'Shea, P. G.; Reiser, M.; Granatstein, V. L.; Lawson, W.; Haber, I.; Kishek, R.

    2004-01-23

    The report provides a summary progress on three tasks: Task A: Study of the Physics of Space-Charge Dominated Beams for Advanced Accelerator Applications; Task B: Studies of High-Power Gyroklystrons and Application to Linear Colliders; and, Task C: Theory and Simulation of the Physics Space-Charge Dominated Beams

  17. Accelerators in Research and Industry

    NASA Astrophysics Data System (ADS)

    Norton, G. A.

    1997-10-01

    Over the last sixty years the applications of ion beam accelerators has grown from basic nuclear structure research to the manufacture, preservation, and development of a large number of products which directly affect every day life. In addition, ion beam accelerators continue to provide a unique contribution in both basic and applied research in fields from art history to zoology. Applications fit into two main groups, materials analysis and materials modification. Most materials analysis include routine use of Rutherford Backscattering (RBS) and particle induced x-ray emission (PIXE) with new developments in analysis techniques being developed for remote elemental detection of plastic explosives and drugs. Existing accelerator systems and new accelerator systems are being developed for use in the area of accelerator based mass spectrometry (AMS) which is having a profound affect on a wide variety of fields which rely on counting extremely rare isotopes in very small samples. Accelerators used for materials modification continue to have a significant economic impact in the field of semiconductors and the development of new semiconductor and other high technology products.

  18. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  19. Accelerators for Intensity Frontier Research

    SciTech Connect

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  20. Proposed research on advanced accelerator concepts

    SciTech Connect

    Davidson, R.C.; Wurtele, J.S.

    1991-09-01

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

  1. Research needs of the new accelerator technologies

    SciTech Connect

    Sessler, A.M.

    1982-08-01

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research.

  2. Accelerating Translational Research by Clinically Driven Development of an Informatics Platform–A Case Study

    PubMed Central

    Abugessaisa, Imad; Saevarsdottir, Saedis; Tsipras, Giorgos; Lindblad, Staffan; Sandin, Charlotta; Nikamo, Pernilla; Ståhle, Mona; Malmström, Vivianne; Klareskog, Lars; Tegnér, Jesper

    2014-01-01

    Translational medicine is becoming increasingly dependent upon data generated from health care, clinical research, and molecular investigations. This increasing rate of production and diversity in data has brought about several challenges, including the need to integrate fragmented databases, enable secondary use of patient clinical data from health care in clinical research, and to create information systems that clinicians and biomedical researchers can readily use. Our case study effectively integrates requirements from the clinical and biomedical researcher perspectives in a translational medicine setting. Our three principal achievements are (a) a design of a user-friendly web-based system for management and integration of clinical and molecular databases, while adhering to proper de-identification and security measures; (b) providing a real-world test of the system functionalities using clinical cohorts; and (c) system integration with a clinical decision support system to demonstrate system interoperability. We engaged two active clinical cohorts, 747 psoriasis patients and 2001 rheumatoid arthritis patients, to demonstrate efficient query possibilities across the data sources, enable cohort stratification, extract variation in antibody patterns, study biomarker predictors of treatment response in RA patients, and to explore metabolic profiles of psoriasis patients. Finally, we demonstrated system interoperability by enabling integration with an established clinical decision support system in health care. To assure the usefulness and usability of the system, we followed two approaches. First, we created a graphical user interface supporting all user interactions. Secondly we carried out a system performance evaluation study where we measured the average response time in seconds for active users, http errors, and kilobits per second received and sent. The maximum response time was found to be 0.12 seconds; no server or client errors of any kind were detected

  3. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  4. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  5. Advanced accelerator research at Argonne

    SciTech Connect

    Konecny, R.; MacLachlan, J.; Norem, J.; Ruggiero, A.; Schoessow, P.; Simpson, J.

    1986-01-01

    A facility with which to experimentally measure methods of advanced acceleration is at the point of completion at Argonne National Laboratory. The new facility consists a system which produces pulse ''doublets'' of energetic electrons, pulse shaping hardware, a space for experimental apparatus, and a high resolution spectrometer. The leading 21 MeV pulse in a doublet can contain up to 15 nano-coulombs of charge and can be adjusted to be from 6 to over 100 pic-seconds in length. The trailing doublet pulse is at 15 MeV, contains about 10/sup 6/ electrons, and can be precisely positioned behind the first from 0 to more than 2000 pico-seconds. This second pulse serves as a probe of fields produced by the intense leading pulse. The initial experimental program includes studies of wake field effects in structures and in plasma. The high resolution of the spectrometer will also make possible measurements of the wakes of various components such as bellows, beam signal pickups, and vacuum connections. Commissioning of the facility is to begin in September, 1986. Tests using cavities and plasma are expected to begin soon thereafter.

  6. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  7. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  8. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  9. Application of particle accelerators in research.

    PubMed

    Mazzitelli, Giovanni

    2011-07-01

    Since the beginning of the past century, accelerators have started to play a fundamental role as powerful tools to discover the world around us, how the universe has evolved since the big bang and to develop fundamental instruments for everyday life. Although more than 15 000 accelerators are operating around the world only a very few of them are dedicated to fundamental research. An overview of the present high energy physics (HEP) accelerator status and prospectives is presented. PMID:21908658

  10. Accelerator mass spectrometry in biomedical research

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Turteltaub, K. W.

    1994-06-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13-15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels for tracing biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. Our primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subjects research using AMS includes nutrition, toxicity and elemental balance studies. 3H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  11. Accelerator mass spectrometry in biomedical research

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  12. Heavy-Ion Fusion Accelerator Research, 1992

    SciTech Connect

    Not Available

    1993-06-01

    The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena.

  13. Independent Study Unit on Accelerated Reference Frames

    ERIC Educational Resources Information Center

    Poultney, S. K.

    1973-01-01

    Presents a list of topics, research areas, references, and laboratory equipment which is prepared to facilitate general-science students' understanding of physics aspects in accelerated reference frames after their study of circular motion and Galilean relativity in mechanics. (CC)

  14. NIH/NSF accelerate biomedical research innovations

    Cancer.gov

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  15. RF-Based Accelerators for HEDP Research

    SciTech Connect

    Staples, John W.; Sessler, Andrew; Keller, Roderich; Ostroumov,Petr; Chou, Weiren

    2005-05-09

    Accelerator-driven High-Energy Density Physics (HEDP) experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the warm dense matter regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field compact superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with multiple parallel beams combined at the target. The beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  16. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  17. Heavy Ion Fusion Accelerator Research (HIFAR)

    SciTech Connect

    Not Available

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  18. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  19. Accelerating Neoproterozoic Research through Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Condon, Daniel; Prave, Anthony; Boggiani, Paulo; Fike, David; Halverson, Galen; Kasemann, Simone; Knoll, Andrew; Zhu, Maoyan

    2014-05-01

    The Neoproterozoic Era (1.0 to 0.541 Ga) and earliest Cambrian (541 to ca. 520 Ma) records geologic changes unlike any other in Earth history: supercontinental tectonics of Rodinia followed by its breakup and dispersal into fragments that form the core of today's continents; a rise in oxygen that, perhaps for the first time in Earth history, resulted in the deep oceans becoming oxic; snowball Earth, which envisages a blanketing of global ice cover for millions of years; and, at the zenith of these combined biogeochemical changes, the evolutionary leap from eukaryotes to animals. Such a concentration of hallmark events in the evolution of our planet is unparalleled and many questions regarding Earth System evolution during times of profound climatic and geological changes remain to be answered. Neoproterozoic successions also offer insight into the genesis of a number of natural resources. These include banded-iron formation, organic-rich shale intervals (with demonstrated hydrocarbon source rocks already economically viable in some countries), base and precious metal ore deposits and REE occurrences, as well as industrial minerals and dimension stone. Developing our understanding of the Neoproterozoic Earth-system, combined with regional geology has the potential to impact the viability of these resources. Our understanding of the Neoproterozoic and early Cambrian, though, is overwhelmingly dependent on outcrop-based studies, which suffer from lack of continuity of outcrop and, in many instances, deep weathering profiles. A limited number of research projects study Precambrian strata have demonstrated the potential impact of scientific drilling to augment and complement ongoing outcrop based studies and advancing research. An ICDP and ECORD sponsored workshop, to be held in March 2014, has been convened to discuss the utility of scientific drilling for accelerating research of the Neoproterozoic through early Cambrian (ca. 0.9 to 0.52 Ga) rock record. The aim is to

  20. Orbital Acceleration Research Experiment: Calibration Measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1995-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three-axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass, which can resolve accelerations to the 10(sub -9) g level. The experiment also contains a full calibration station to permit in situ bias and scale-factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the Orbiter, and thus provides absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale-factor measurements have been performed on orbit. A detailed analysis of the calibration process is given, along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight-maneuver data used to validate the scale-factor measurements in the sensor's most sensitive range are also presented. Estimates on calibration uncertainties are discussed. These uncertainty estimates provides bounds on the STS-58 absolute acceleration measurements for future applications.

  1. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  2. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  3. Studies of accelerated compact toruses

    SciTech Connect

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-04

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.

  4. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  5. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    NASA Astrophysics Data System (ADS)

    Pešić, Milan; Nešković, Nebojša

    2006-06-01

    Study of a small accelerator-driven subcritical research reactor in the Vinča Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology.

  6. An overview of cosmic ray research - Composition, acceleration and propagation

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1988-01-01

    An overview of cosmic ray (CR) research and its relationship to other areas of high-energy astrophysics is presented. Research being conducted on the composition of cosmic rays (CRs) is examined, including the study of the solar system 'template' for CRs, CR abundances at earth, solar energetic particles, the CR elements beyond zinc, and the study of electrons, positrons, antinuclei, and of isotopic composition of CRs. Research on the CR energy spectrum and anisotropy is briefly reviewed. The study of acceleration processes, particle confinement, and propagation of CRs is addressed. Finally, the investigation of source abundances in CRs is discussed.

  7. Space station capability for research in rotational hypogravity. [to study human physiological responses to rotational acceleration stresses

    NASA Technical Reports Server (NTRS)

    Keller, G.

    1973-01-01

    Certain capabilities provided in preliminary designs of orbital space stations for research in rotational hypogravity are outlined. Also indicated are alternative configurations that are being considered. Principal addresses are members of an international community of physiologists whose work in earth oriented, as well as space oriented, physiology can be supported through observation under the background environment of null gravity. Their participation in originating and devising advanced experiments and in developing requirements is expected to enhance final design of the selected space station and to make the research program more meaningful.

  8. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  9. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  10. Research and Development for Ultra-High Gradient Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Dolgashev, Valery; Higashi, Yasuo; Spataro, Bruno

    2010-11-01

    Research on the basic physics of high-gradient, high frequency accelerator structures and the associated RF/microwave technology are essential for the future of discovery science, medicine and biology, energy and environment, and national security. We will review the state-of-the-art for the development of high gradient linear accelerators. We will present the research activities aimed at exploring the basic physics phenomenon of RF breakdown. We present the experimental results of a true systematic study in which the surface processing, geometry, and materials of the structures have been varied, one parameter at a time. The breakdown rate or alternatively, the probability of breakdown/pulse/meter has been recorded for different operating parameters. These statistical data reveal a strong dependence of breakdown probability on surface magnetic field, or alternatively on surface pulsed heating. This is in contrast to the classical view of electric field dependence.

  11. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  12. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  13. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  14. Accelerator and fusion research division. 1992 Summary of activities

    SciTech Connect

    Not Available

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  15. Papers arising from IAEA Coordinated Research Project "Utilization of ion accelerators for studying and modelling of radiation induced defects in semiconductors and insulators" (F11016)

    NASA Astrophysics Data System (ADS)

    Vittone, Ettore; Breese, Mark; Simon, Aliz

    2016-04-01

    Within the International Atomic Energy Agency (IAEA) Department of Nuclear Sciences and Applications, activities are carried out to assist and advise IAEA Member States in assessing their needs for capacity building, research and development in nuclear sciences. Support is also provided to Member States' activities geared towards deriving benefits in fields such as (i) advanced materials for nuclear applications, (ii) application of accelerators and associated instrumentation, and (iii) nuclear, atomic and molecular data. One of the means that the IAEA uses to deliver its programme is Coordinated Research Projects (CRPs) which are very effective in stimulating international research and scientific interaction among the Member States.

  16. Application of accelerators for the research and development of scintillators.

    PubMed

    Shibuya, Kengo; Koshimizu, Masanori; Asai, Keisuke; Muroya, Yusa; Katsumura, Yosuke; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga; Murayama, Hideo

    2007-08-01

    We introduce experimental systems which use accelerators to evaluate scintillation properties such as scintillation intensity, wavelength, and lifetime. A single crystal of good optical quality is often unavailable during early stages in the research and development (R&D) of new scintillator materials. Because of their beams' high excitation power and/or low penetration depth, accelerators facilitate estimation of the properties of early samples which may only be available as powders, thin films, and very small crystals. We constructed a scintillation spectrum measurement system that uses a Van de Graaff accelerator and an optical multichannel analyzer to estimate the relative scintillation intensity. In addition, we constructed a scintillation time profile measurement system that uses an electron linear accelerator and a femtosecond streak camera or a microchannel plate photomultiplier tube followed by a digital oscilloscope to determine the scintillation lifetimes. The time resolution is approximately 10 ps. The scintillation spectra or time profiles can be obtained in a significantly shorter acquisition time in comparison with that required by conventional measuring systems. The advantages of the systems described in this study can significantly promote the R&D of novel scintillator materials. PMID:17764319

  17. Research Study

    ERIC Educational Resources Information Center

    Glick, Ashley

    2010-01-01

    Background: Action Research about my 2nd grade classroom in the Buffalo School District. I examined three areas of interest and tried to find some conclusions related to behavior management. Purpose: The purpose of this study is how will implementing procedures, rules, and consequences help improve student behavior. Research Design: Descriptive;…

  18. COBRA accelerator for Sandia ICF diode research at Cornell University

    SciTech Connect

    Smith, D.L.; Ingwersen, P.; Bennett, L.F.; Boyes, J.D.; Anderson, D.E.; Greenly, J.B.; Sudan, R.N.

    1995-05-01

    The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse forming lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-III intermediate store capacitor (ISC); and a modified ion diode from Cornell`s LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180{degrees} about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.

  19. COBRA accelerator for Sandia ICF diode research at Cornell University

    NASA Astrophysics Data System (ADS)

    Smith, David L.; Ingwersen, Pete; Bennett, Lawrence F.; Boyes, John D.; Anderson, David E.; Greenly, John B.; Sudan, Ravi N.

    The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse forming lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-3 intermediate store capacitor (ISC); and a modified ion diode from Cornell's LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180(degrees) about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.

  20. Mercury ion thruster research, 1977. [plasma acceleration

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1977-01-01

    The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.

  1. Accelerator and Fusion Research Division: 1984 summary of activities

    SciTech Connect

    Not Available

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

  2. Accelerating Regulatory Progress in Multi-Institutional Research

    PubMed Central

    Paolino, Andrea R.; Lauf, Sherry Lee; Pieper, Lisa E.; Rowe, Jared; Vargas, Ileana M.; Goff, Melissa A.; Daley, Matthew F.; Tuzzio, Leah; Steiner, John F.

    2014-01-01

    Purpose: Multi-institutional collaborations are necessary in order to create large and robust data sets that are needed to answer important comparative effectiveness research (CER) questions. Before scientific work can begin, a complex maze of administrative and regulatory requirements must be efficiently navigated to avoid project delays. Innovation: Staff from research, regulatory, and administrative teams involved in three HMO Research Network (HMORN) multi-institutional collaborations developed and employed novel approaches: to secure and maintain Institutional Review Board (IRB) approvals; to enable data sharing, and to expedite subawards for two data-only minimal risk studies. These novel approaches accelerated required processes and approvals while maintaining regulatory, human subjects, and institutional protections. Credibility: Outcomes from the processes described here are compared with processes outlined in the research and regulatory literature and with processes that have been used in previous multisite research collaborations. Conclusion and Discussion: Research, regulatory, and administrative staff are essential contributors to the success of multi-institutional collaborations. Their flexibility, creativity, and effective communication skills can lead to the development of efficient approaches to achieving the necessary oversight for these complex projects. Elements of these specific strategies can be adapted and used by other research networks. Other efforts in these areas should be evaluated and shared. The processes that help develop a “learning research system” play an important and complementary role in sustaining multi-institutional research collaborations. PMID:25848593

  3. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  4. The Compact Accelerator System for Performing Astrophysical Research Underground - CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Wells, Doug; Wiescher, Michael

    2014-03-01

    An accelerator laboratory (CASPAR) to be installed at the Sanford Underground Research Facility (SURF) is being constructed by a collaboration lead by South Dakota School of Mines and Technology. The study of alpha induced reactions of astrophysical interest in a quasi-background free environment is the goal of the laboratory. Specifically, neutron producing reactions for the s-process will be investigated. This process is responsible for the nucleosynthesis of half of the the elements heavier than iron. An outline of CASPAR, its timeline and scientific goals will be presented.

  5. idaho Accelerator Center Advanced Fuel Cycle Research

    SciTech Connect

    Wells, Douglas; Dale, Dan

    2011-10-20

    The technical effort has been in two parts called; Materials Science and Instrumentation Development. The Materials Science technical program has been based on a series of research and development achievements in Positron-Annihilation Spectroscopy (PAS) for defect detection in structural materials. This work is of particular importance in nuclear power and its supporting systems as the work included detection of defects introduced by mechanical and thermal phenomena as well as those caused by irradiation damage. The second part of the program has focused on instrumentation development using active interrogation techniques supporting proliferation resistant recycling methodologies and nuclear material safeguards. This effort has also lead to basic physics studies of various phenomena relating to photo-fission. Highlights of accomplishments and facility improvement legacies in these areas over the program period include

  6. Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Smedal, Harald A.; Wingrove, Rodney C.

    1960-01-01

    A research program the general objective of which was to measure the effects of various sustained accelerations on the control performance of pilots, was carried out on the Aviation Medical Acceleration Laboratory centrifuge, U.S. Naval Air Development Center, Johnsville, PA. The experimental setup consisted of a flight simulator with the centrifuge in the control loop. The pilot performed his control tasks while being subjected to acceleration fields such as might be encountered by a forward-facing pilot flying an atmosphere entry vehicle. The study was divided into three phases. In one phase of the program, the pilots were subjected to a variety of sustained linear acceleration forces while controlling vehicles with several different sets of longitudinal dynamics. Here, a randomly moving target was displayed to the pilot on a cathode-ray tube. For each combination of acceleration field and vehicle dynamics, pilot tracking accuracy was measured and pilot opinion of the stability and control characteristics was recorded. Thus, information was obtained on the combined effects of complexity of control task and magnitude and direction of acceleration forces on pilot performance. These tests showed that the pilot's tracking performance deteriorated markedly at accelerations greater than about 4g when controlling a lightly damped vehicle. The tentative conclusion was also reached that regardless of the airframe dynamics involved, the pilot feels that in order to have the same level of control over the vehicle, an increase in the vehicle dynamic stability was required with increases in the magnitudes of the acceleration impressed upon the pilot. In another phase, boundaries of human tolerance of acceleration were established for acceleration fields such as might be encountered by a pilot flying an orbital vehicle. A special pilot restraint system was developed to increase human tolerance to longitudinal decelerations. The results of the tests showed that human tolerance

  7. The Influence of Accelerator Science on Physics Research

    NASA Astrophysics Data System (ADS)

    Haussecker, Enzo F.; Chao, Alexander W.

    2011-06-01

    We evaluate accelerator science in the context of its contributions to the physics community. We address the problem of quantifying these contributions and present a scheme for a numerical evaluation of them. We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.

  8. Report on accelerated corrosion studies.

    SciTech Connect

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  9. Teaching and Research with Accelerators at Tarleton State University

    SciTech Connect

    Marble, Daniel K.

    2009-03-10

    Tarleton State University students began performing both research and laboratory experiments using accelerators in 1998 through visitation programs at the University of North Texas, US Army Research Laboratory, and the Naval Surface Warfare Center at Carderock. In 2003, Tarleton outfitted its new science building with a 1 MV pelletron that was donated by the California Institution of Technology. The accelerator has been upgraded and supports a wide range of classes for both the Physics program and the ABET accredited Engineering Physics program as well as supplying undergraduate research opportunities on campus. A discussion of various laboratory activities and research projects performed by Tarleton students will be presented.

  10. Natural and accelerated bioremediation research program plan

    SciTech Connect

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  11. A facility for accelerator research and education at Fermilab

    SciTech Connect

    Church, Mike; Nagaitsev, Sergei; /Fermilab

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  12. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1990--September 30, 1990

    SciTech Connect

    Not Available

    1990-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, induction acceleration, is being studied at the Lawrence Berkeley Laboratory and at the Lawrence Livermore National Laboratory. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple-beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification without significant dilution of the optical quality of the beams; (4) final bunching, transport, and accurate focusing on a small target.

  13. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  14. Proton and heavy ion acceleration facilities for space radiation research.

    PubMed

    Miller, Jack

    2003-06-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space. PMID:12959128

  15. Accelerator R&D: Research for Science - Science for Society

    SciTech Connect

    The HEP Accelerator R&D Task Force: N.R. Holtkamp,S. Biedron, S.V. Milton, L. Boeh, J.E. Clayton, G. Zdasiuk, S.A. Gourlay, M.S. Zisman,R.W. Hamm, S. Henderson, G.H. Hoffstaetter, L. Merminga, S. Ozaki, F.C. Pilat, M. White

    2012-07-01

    In September 2011 the US Senate Appropriations Committee requested a ten-year strategic plan from the Department of Energy (DOE) that would describe how accelerator R&D today could advance applications directly relevant to society. Based on the 2009 workshop 'Accelerators for America's Future' an assessment was made on how accelerator technology developed by the nation's laboratories and universities could directly translate into a competitive strength for industrial partners and a variety of government agencies in the research, defense and national security sectors. The Office of High Energy Physics, traditionally the steward for advanced accelerator R&D within DOE, commissioned a task force under its auspices to generate and compile ideas on how best to implement strategies that would help fulfill the needs of industry and other agencies, while maintaining focus on its core mission of fundamental science investigation.

  16. Accelerator & Fusion Research Division: 1993 Summary of activities

    SciTech Connect

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  17. Accelerator and Fusion Research Division: 1993 Summary of activities

    NASA Astrophysics Data System (ADS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  18. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  19. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1--September 30, 1988

    SciTech Connect

    Not Available

    1988-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; final bunching, transport, and accurate focusing on a small target.

  20. Harnessing the crowd to accelerate molecular medicine research.

    PubMed

    Smith, Robert J; Merchant, Raina M

    2015-07-01

    Crowdsourcing presents a novel approach to solving complex problems within molecular medicine. By leveraging the expertise of fellow scientists across the globe, broadcasting to and engaging the public for idea generation, harnessing a scalable workforce for quick data management, and fundraising for research endeavors, crowdsourcing creates novel opportunities for accelerating scientific progress. PMID:26141797

  1. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  2. Research and development of capacitive transducer with linear acceleration

    NASA Astrophysics Data System (ADS)

    Korobova, Natalia; Kochurina, Elena; Timoshenkov, Sergey; Chaplygin, Yuriy; Anchutin, Stepan; Kosolapov, Andrey

    2015-05-01

    Paper presents the study results and modeling of functional characteristics of the linear acceleration transducers, enabling sensors creation with the specified parameters. Sensing element made for linear acceleration transducer with torsion cruciform section has been proposed on the based design and technological principles. It allows minimizing the impact of cross-acceleration and gives the maximum of center mass displacement for high sensors sensitivity in the given dimensions. The range of measured acceleration from ± 0.2g to ± 50g was provided by changing the torsion bar thickness n = 34 ÷ 56 microns. The transducers frequency range of linear acceleration 100-150 Hz depends on the gas pressure P = 700-800Pa in which the sensor element was located. Methods converting displacement of sensing element in the sensor output have been provided. On their basis the linear acceleration transducers with analog output signal having a predetermined frequency range and high linearity of the transformation (nonlinearity 0.2-1.5%) was developed. Also the linear acceleration transducers with digital signal consuming little (no more than 850 μA), low noisy (standard deviation to 0.1mg/rt-Hz) and high sensitivity (up to 0.1mg) to the accelerations was made. Errors in manufacturing process of sensitive elements and operating environment temperature affect the changes in the characteristics of the linear acceleration transducers. It has been established that different plate thickness up to 3.6% leads to the scale factor error to 4.7%. Irreproducibility of depth anisotropic etching of silicon up to 6.6% introduces an error in the output signal of 2.9 ... 13.8mg.

  3. Absolute acceleration measurements on STS-50 from the Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1994-01-01

    Orbital Acceleration Research Experiment (OARE) data on Space Transportation System (STS)-50 have been examined in detail during a 2-day time period. Absolute acceleration levels have been derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. During the interval, the tri-axial OARE raw telemetered acceleration measurements have been filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval have been analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z-axis sensitive range scale factors were determined in a separate process using orbiter maneuvers and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter center-of-gravity, which are the aerodynamic signals along each body axis. Results indicate that there is a force being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces have been reexamined, but none produces the observed effect. Thus, it is tentatively concluded that the orbiter is creating the environment observed. At least part of this force is thought to be due to the Flash Evaporator System.

  4. Novel neutron sources at the Radiological Research Accelerator Facility.

    PubMed

    Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

  5. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE PAGESBeta

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  6. Novel neutron sources at the Radiological Research Accelerator Facility

    PubMed Central

    Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

    2012-01-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

  7. Novel neutron sources at the Radiological Research Accelerator Facility

    SciTech Connect

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  8. Novel neutron sources at the Radiological Research Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  9. Flame acceleration studies in the MINIFLAME facility

    SciTech Connect

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

    1989-07-01

    Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

  10. W-band accelerator study in KEK

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2001-05-01

    In this paper, we summarize the W-band accelerator study in KEK. We present a design study on W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz traveling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. We study the beam dynamics in high frequency and high gradient; due to the high gradient, the pondermotive effect plays an important role in beam dynamics; we found the pondermotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion.

  11. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    SciTech Connect

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  12. Transverse emittance studies of an induction accelerator of heavy ions

    SciTech Connect

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-04-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL we have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs{sup +} induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to {approximately} 1 MeV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. We will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration. 4 refs., 4 figs., 1 tab.

  13. Analytical study of diffusive relativistic shock acceleration.

    PubMed

    Keshet, Uri

    2006-12-01

    Particle acceleration in relativistic shocks is studied analytically in the test-particle, small-angle scattering limit, for an arbitrary velocity-angle diffusion function D. The particle spectral index s is found to be sensitive to D, particularly downstream and at certain angles. The analysis, confirmed numerically, justifies and generalizes previous results for isotropic diffusion. It can be used to test collisionless shock models and to observationally constrain D. For example, strongly forward- or backward-enhanced diffusion downstream is ruled out by gamma-ray burst afterglow observations. PMID:17155790

  14. MAFIA study of the RFQ1 accelerator

    NASA Astrophysics Data System (ADS)

    Adams, F. P.; de Jong, M. S.; Hutcheon, R. M.

    1991-05-01

    The RFQ1 accelerator has been modeled using the MAFIA codes. Calculated resonant frequency shifts due to the introduction of components into the accelerator agree reasonably well with measurements. Heating predictions based on calculated results correspond well with observations.

  15. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  16. UCLA Neptune Facility for Advanced Accelerator Studies

    SciTech Connect

    Tochitsky, Sergei Ya.; Clayton, Christopher E.; Marsh, Kenneth A.; Joshi, Chandrashekhar; Rosenzweig, James B.; Pellegrini, Claudio

    2004-12-07

    The Neptune Laboratory at UCLA is being used for exploring concepts useful for advanced accelerators. This facility hosts a TW-class CO2 laser system and a high-brightness photoinjector producing a 14 MeV electron beam. The goal for the laboratory is to carry out experiments on high-gradient acceleration of externally injected electrons in both laser-driven relativistic plasma waves and EM laser field in vacuum. Experiments on plasma beat-wave acceleration using a prebunched electron beam, a high-energy gain 10-{mu}m inverse free electron laser accelerator, longitudinal electron beam shaping and laser based light-sources are planned.

  17. Experimental studies of plasma wake-field acceleration and focusing

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Gai, W.; Konecny, R.; Mtingwa, S.; Norem, J.; Rosing, M.; Schoessow, P.; Simpson, J.

    1989-07-18

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs.

  18. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    SciTech Connect

    Not Available

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target.

  19. Accelerator and Fusion Research Division annual report, fiscal year 1980, October 1979-September 1980

    SciTech Connect

    Not Available

    1981-03-01

    Research during October 1979 to September 1980 is summarized. Areas covered include: accelerator operations; positron-electron project; stochastic beam cooling; high-field superconducting magnets; accelerator theory; neutral beam sources; and heavy ion fusion. (GHT)

  20. Modified betatron accelerator studies. Final report

    SciTech Connect

    Hughes, T.P.; Godfrey, B.B.

    1984-12-01

    This final report describes work carried out on the equilibrium and stability properties of circular accelerators. A rigid-disk beam model in which the fields are treated exactly is used to study linear instabilities. This approach has uncovered an important inductive effect which at high toroidal mode numbers leads to either stability or to a hybrid instability. A corresponding effect has been found in electron-layer geometry. The new theory also shows that moving the equilibrium position toward the inner wall can stabilize low mode numbers. With the aid of IVORY code simulation results it is shown that the transverse motion of beam partilces is a key factor in determining beam stability. The upper bound on particle circulation frequency spread is shown to be a function only of the beam major and minor radii. This leads to upper bounds on stable currents in the modified betatron. Numerical results on stability in the stellatron and reversing-solenoidal-lens betatrons are presented. In addition, the sensitivity of equilibrium particle orbits in the stellatron to initial conditions is calculated.

  1. BESTIA - The next generation ultra-fast CO2 laser for advanced accelerator research

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2016-09-01

    Over the last two decades, BNL's ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. Our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  2. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    DOE PAGESBeta

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particlemore » acceleration of ions and electrons.« less

  3. Computational studies and optimization of wakefield accelerators

    SciTech Connect

    Tsung, Frank S.; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Mori, Warren B.; Vay, Jean-Luc; Martins, Samuel F.; Katsouleas, Tom; Cormier-Michel, Estelle; Fawley, William M.; Huang, Chengkun; Wang, Xiadong; Cowan, Ben; Decyk, Victor K.; Fonseca, Ricardo A.; Lu, Wei; Messmer, Peter; Mullowney, Paul; Nakamura, Kei; Paul, Kevin; Plateau, Guillaume R.; Schroeder, Carl B.; Silva, Luis O.; Toth, Csaba; Geddes, C.G.R.; Tzoufras, Michael; Antonsen, Tom; Vieira, Jorge; Leemans, Wim P.

    2008-06-16

    Laser- and particle beam-driven plasma wakefield accelerators produce accelerating fields thousands of times higher than radio-frequency accelerators, offering compactness and ultrafast bunches to extend the frontiers of high energy physics and to enable laboratory-scale radiation sources. Large-scale kinetic simulations provide essential understanding of accelerator physics to advance beam performance and stability and show and predict the physics behind recent demonstration of narrow energy spread bunches. Benchmarking between codes is establishing validity of the models used and, by testing new reduced models, is extending the reach of simulations to cover upcoming meter-scale multi-GeV experiments. This includes new models that exploit Lorentz boosted simulation frames to speed calculations. Simulations of experiments showed that recently demonstrated plasma gradient injection of electrons can be used as an injector to increase beam quality by orders of magnitude. Simulations are now also modeling accelerator stages of tens of GeV, staging of modules, and new positron sources to design next-generation experiments and to use in applications in high energy physics and light sources.

  4. The melanoma research alliance: the power of patient advocacy to accelerate research and novel therapies.

    PubMed

    Black, Debra; Brockway-Lunardi, Laura

    2013-12-01

    Patient advocacy organizations play a major role in accelerating research and are particularly important in a disease like melanoma, for which there is an urgent need for new tools and treatments. Melanoma is a growing public health burden. In the United States alone, the incidence of melanoma has tripled over the past 30 years, and one American dies every hour from the disease. To accelerate the field, the Melanoma Research Alliance (MRA) was founded in 2007 and is now the largest private funder of melanoma research, having invested more than $48 million in innovative and translational research projects worldwide to date. This investment is bearing fruit in the recent transformation of the melanoma clinical landscape, which has brought new hope to patients and their families. Yet, even with new drugs on the market, much more needs to be done until melanoma is effectively addressed. MRA is part of a growing group of nonprofit disease research foundations collectively called "venture philanthropies" that are playing a powerful role in transforming the outlook for their disease by overcoming barriers that bog down progress, targeting key areas, and enhancing collaboration. MRA is leading an innovative agenda to accelerate efforts on behalf of patients. Our goal, while significant, is straightforward: to end suffering and death due to melanoma. PMID:24778128

  5. UCLA accelerator research and development. Progress report, [November 1, 1991--July 31, 1992

    SciTech Connect

    Cline, D.B.

    1992-09-01

    This progress report covers work supported by the above DOE grant over the period November 1, 1991 to July 31, 1992. The work is a program of experimental and theoretical studies in advanced particle accelerator research and development for high energy physics applications. The program features research at particle beam facilities in the United States and includes research on novel high power sources, novel focussing systems (e.g. plasma lens), beam monitors, novel high brightness, high current gun systems, and novel flavor factories in particular the {phi} Factory.

  6. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  7. Low-energy electron accelerators in industry and applied research

    NASA Astrophysics Data System (ADS)

    Mondelaers, W.

    1998-04-01

    The use of electron accelerators in industry involve a broad range of machines and applications. The major actual large-scale applications are crosslinking of wire and cable insulation, plastic films and foam, curing of coatings and rubbers, and sterilisation of medical products. The recent availability, at attractive costs, of electron accelerators with high beam power (up to 200 kW) covering an energy range up to 10 MeV, has created new possibilities for a substantial expansion of the application range. The actual position of electron accelerators in industry is reviewed, new emerging applications and novel opportunities for multipurpose facilities are described.

  8. Numerical studies of multipactor in dielectric-loaded accelerator structures

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas

    2009-11-01

    Multipactor (MP) is known as the avalanche growth of the number of secondary electrons emitted from a solid surface exposed to an rf electric field under vacuum conditions. MP may occur in various microwave and rf systems such as microwave tubes, rf windows and launchers, accelerating structures, and rf satellite payloads. In this work we present results of MP analysis in dielectric-loaded accelerator (DLA) structures. The starting point of our work was experimental and theoretical studies of DLA structures jointly done by Argonne National Laboratory and Naval Research Laboratory (J. G. Power et al., Phys. Rev. Lett. 92, 164801 (2004); J. G. Power et al., AIP Conf. Proc. 877, 362 (2006)). In the theoretical model developed during those studies the space-charge field due to the total number of particles is taken into account as a parameter. We perform our studies using a self-consistent approach with the help of time-dependent two-dimensional code developed at the University of Maryland (O. V. Sinitsyn et al., Phys. Plasmas 16, 073102 (2009)). Results include analysis of MP evolution at an early stage, detailed studies of individual electron trajectories, analysis of MP onset time under various conditions and comparison of some results with the experimental data.

  9. Coupler Studies for PBG Fiber Accelerators

    SciTech Connect

    England, J.; Ng, C.; Noble, R.; Spencer, J.; Wu, Z.; Xu, D.; /SLAC

    2011-08-17

    Photonic band gap (PBG) fiber with hollow core defects are being designed and fabricated for use as laser driven accelerators because they can provide gradients of several GeV/m for picosecond pulse lengths. We expect to produce fiber down to {lambda} = 1.5-2.0 {micro}m wavelengths but still lack a viable means for efficient coupling of laser power into such structures due to the very different character of the TM-like modes from those used in the telecom field and the fact that the defect must function as both a longitudinal waveguide for the accelerating field and a transport channel for the particles. We discuss the status of our work in pursuing both end and side coupling. For both options, the symmetry of these crystals leads to significant differences with the telecom field. Side coupling provides more options and appears to be preferred. Our goals are to test gradients, mode content and coupling efficiencies on the NLCTA at SLAC. While there are many potential types of fiber based on very different fabrication methods and materials we will concentrate on 2D axisymmetric glass with hexagonal symmetry but will discuss several different geometries including 2D and 3D planar structures. Since all of these can be fabricated using modern techniques with a variety of dielectric materials they are expected to have desirable optical and radiation hardness properties. Thus, we expect a new generation of very high gradient accelerators that extends the Livingston-Panofsky chart of exponential growth in energy vs. time at greatly reduced costs. For illustration, Fig.1 shows a simulation of our first engineered fiber with an accelerating mode expected near 7.3 {micro}m that is now ready to test on the NLCTA. In this example, one sees the uniform longitudinal accelerating field in the central defect as first shown by Lin3 together with a hexagonal array of surrounding hot spots. Contrary to what one expects from the telecom field, Ng et al. have shown4 that the ideal end

  10. Energy research: accelerator builders eager to aid fusion work.

    PubMed

    Metz, W D

    1976-10-15

    Useful fusion energy may be generated by means of heavy ion accelerator driven implosions if the contraints dictated by the physics and economics of thermonuclear targets and reactors can be satisfied. PMID:17738040

  11. 50 years of research on particle acceleration in the heliosphere

    NASA Astrophysics Data System (ADS)

    Fisk, L. A.

    2015-09-01

    In 1965, and through the late 1960s, the heliosphere was considered to be a passive place, an impediment to the information on the galaxy contained in galactic cosmic ray observations, and on the Sun, from solar energetic particles. All this changed in the early 1970s with the discovery of the Anomalous Cosmic Rays (ACRs), and the subsequent acceptance that the ACRs are ionized interstellar neutral gas that is accelerated in the heliosphere by four orders of magnitude in energy. In the mid-1970s, Pioneer 10 & 11 observations provided direct evidence of acceleration. In 1977-78, diffusive shock acceleration was introduced, and subsequently developed in detail, providing compelling explanations for, e.g., the observed acceleration in co-rotating interaction regions, and a likely explanation for the acceleration of ACRs at the termination shock of the solar wind. In 2004 and 2008, the Voyagers crossed the termination shock, did not observe the acceleration of the ACRs, but did observe that low- energy particles, up to a few MeV/nucleon, had identical spectra downstream from the termination shock, a distribution function that is a power law in particle speed with a spectral index of -5. When Voyager 1 reached ∼120 AU, where the high-energy ACRs are at peak intensity, the ACR spectrum is also a -5 spectrum. Moreover, observations of suprathermal tails in the solar wind in the inner solar system have a -5 spectrum, often peaking downstream, but not at shocks. These observations led to the development of a new acceleration mechanism, the pump acceleration mechanism of Fisk & Gloeckler, which can account for all the observed -5 spectra.

  12. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    SciTech Connect

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    2011-11-14

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

  13. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  14. Physiological Effects of Acceleration Observed During a Centrifuge Study of Pilot Performance

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Creer, Brent Y.; Wingrove, Rodney C.

    1960-01-01

    An investigation was conducted by the National Aeronautics and Space Administration, Ames Research Center, and the Naval Air Development Center, Aviation Medical Acceleration Laboratory, to study the effects of acceleration on pilot performance and to obtain some meaningful data for use in establishing tolerance to acceleration levels. The flight simulator used in the study was the Johnsville centrifuge operated as a closed loop system. The pilot was required to perform a control task in various sustained acceleration fields typical of those that Might be encountered by a pilot flying an entry vehicle in which he is seated in a forward-facing position. A special restraint system was developed and designed to increase the pilot's tolerance to these accelerations. The results of this study demonstrated that a well-trained subject, such as a test pilot, can adequately carry out a control task during moderately high accelerations for prolonged periods of time. The maximum levels of acceleration tolerated were approximately 6 times that of gravity for approximately 6 minutes, and varied slightly with the acceleration direction. The tolerance runs were in each case terminated by the subject. In all but two instances, the cause was extreme fatigue. On two occasions the subject terminated the run when he "grayed out." Although there were subjective and objective findings involving the visual and cardiovascular systems, the respiratory system yielded the more critical limiting factors. It would appear that these limiting factors were less severe during the "eyeballs-out" accelerations when compared with the "eyeballs-in" accelerations. These findings are explained on the basis of the influence that the inertial forces of acceleration have on the mechanics of respiration. A condensed version of this report was presented at the Annual Meeting of the Aerospace Medical Association, Miami Beach, May 5-11, 1960, in a paper entitled "Ability of Pilots to Perform a Control Task in

  15. Research on GPU Acceleration for Monte Carlo Criticality Calculation

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Yu, Ganglin; Wang, Kan

    2014-06-01

    The Monte Carlo neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The "neutron transport step" is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the "neutron transport step" strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs.

  16. Managing the future: the Special Virus Leukemia Program and the acceleration of biomedical research.

    PubMed

    Scheffler, Robin Wolfe

    2014-12-01

    After the end of the Second World War, cancer virus research experienced a remarkable revival, culminating in the creation in 1964 of the United States National Cancer Institute's Special Virus Leukemia Program (SVLP), an ambitious program of directed biomedical research to accelerate the development of a leukemia vaccine. Studies of cancer viruses soon became the second most highly funded area of research at the Institute, and by far the most generously funded area of biological research. Remarkably, this vast infrastructure for cancer vaccine production came into being before a human leukemia virus was shown to exist. The origins of the SVLP were rooted in as much as shifts in American society as laboratory science. The revival of cancer virus studies was a function of the success advocates and administrators achieved in associating cancer viruses with campaigns against childhood diseases such as polio and leukemia. To address the urgency borne of this new association, the SVLP's architects sought to lessen the power of peer review in favor of centralized Cold War management methods, fashioning viruses as "administrative objects" in order to accelerate the tempo of biomedical research and discovery. PMID:25459347

  17. Experimental study of ion heating and acceleration during magnetic reconnection

    SciTech Connect

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  18. COMBINED STEREO/RHESSI STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Krucker, S.; Vrsnak, B. E-mail: asv@igam.uni-graz.a E-mail: krucker@ssl.berkeley.ed

    2010-04-01

    Using the potential of two unprecedented missions, Solar Terrestrial Relations Observatory (STEREO) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), we study three well-observed fast coronal mass ejections (CMEs) that occurred close to the limb together with their associated high-energy flare emissions in terms of RHESSI hard X-ray (HXR) spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data, the full CME kinematics of the impulsive acceleration phase up to {approx}4 R{sub sun} is measured with a high time cadence of <=2.5 minutes. For deriving CME velocity and acceleration, we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h <= 0.4 R{sub sun}, and the peak velocity at h <= 2.1 R{sub sun} (in one case, as small as 0.5 R{sub sun}). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI HXR flux evolve in a synchronized manner. These results support the 'standard' flare/CME model which is characterized by a feedback relationship between the large-scale CME acceleration process and the energy release in the associated flare.

  19. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    SciTech Connect

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-08-26

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

  20. Accelerator mass spectrometry as a bioanalytical tool for nutritional research

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.

    1997-09-01

    Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

  1. Accelerated Districts--The Next Step. A Summary of Research and Design.

    ERIC Educational Resources Information Center

    Driver, Cyrus; And Others

    The National Center for the Accelerated Schools Project at Stanford University has recognized that district-level change is necessary if changes at accelerated schools are to gain permanence and become widespread. The Center has therefore initiated a research and development project to design a set of models on which districts can reconstitute…

  2. Application of Accelerators in research and Industry: Proceedings of the fourteenth International Conference. Proceedings

    SciTech Connect

    Duggan, J.L.; Morgan, I.

    1997-08-01

    The fourteenth International Conference on the Application of Accelerators in Research and Industry was held in November, 1996 in Texas, USA. The United States Department of Energy was one of the sponsors of this conference. The conference was widely attended by accelerator scientists throughout the world. The topics discussed included a wide range of applications spanning the fields from Art History to Zoology. An overview of the Design Project for the National spallation Neutron Source was presented in one of the plenary sessions, as was a summary of Accelerated Beams of Radioactive Ions. Accelerator based Atomic Physics had the most sessions. The subject of accelerator Technology covered topics such as new accelerators, beam handling systems, ion sources, detector, spectrometers, and magnets etc. Radioactive Beams and Nuclear Physics were also topics of several sessions. New Research Opportunities for Nuclear structure, Nuclear Astrophysics, Material Science, and the future facilities and applications of Accelerated Beams of Radioactive ions were discussed. These proceedings represent the papers presented at this exciting conference which summarized the State of the Art technology of Accelerator applications in research and Industry. These proceedings contain 341 papers, out of which, 99 have been abstracted for the Energy Science and Technology database.(AIP)

  3. EuCARD2: enhanced accelerator research and development in Europe

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.

  4. Heavy ion fusion accelerator research (HIFAR) year-end report, April 1, 1987-September 30, 1987

    SciTech Connect

    Not Available

    1987-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to access the suitabilty of heavy ion accelerators as iginiters for Inertial Confinement Fusion (ICF). A specific accerelator techonolgy, the induction linac, has been studied at the Lawerence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the vadidation of new accelerator strategies, to cut costs. The papers in this report that address these goals are: MBE-4 mechanical progress, alignment of MBE-4, a compact energy analyzer for MBE-4, Cs/sup +/ injector modeling with the EGUN code, an improved emittance scanning system for HIFAR, 2-MV injector, carbon arc source development, beam combining in ILSE, emittance growth due to transverse beam combining in ILSE - particle simulation results, achromatic beam combiner for ILSE, additional elements for beam merging, quadrupole magnet design for ILSE, and waveforms and longitudinal beam-parameters for ILSE.

  5. Real-Time Data from the Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The objective of the Orbital Acceleration Research Experiment (OARE) is to measure, with high accuracy, the low-frequency, low-magnitude acceleration levels onboard the space shuttle. The shuttle experiences acceleration from atmospheric drag, gravity gradient forces, shuttle rotations, crew activities, water/waste dumps, and shuttle attitude thrusters. The OARE instrument has successfully flown on five past shuttle missions and is scheduled for five upcoming microgravity science missions. The data collected by OARE will be utilized by microgravity scientists to better predict and analyze the influence and effects of the shuttle's on-orbit microgravity environment on experiments in materials, combustion, and fluids research.

  6. Accelerator-based research activities at “Centro Nacional de Aceleradores”, Seville (Spain)

    NASA Astrophysics Data System (ADS)

    Respaldiza, M. A.; Ager, F. J.; Carmona, A.; Ferrer, J.; García-León, M.; García-López, J.; García-Orellana, I.; Gómez-Tubío, B.; Morilla, Y.; Ontalba, M. A.; Ortega-Feliu, I.

    2008-05-01

    In February 1998, almost 10 years ago, the set-up of the first IBA (ion beam analysis) facility in Spain took place with the arrival of a 3 MV tandem accelerator [J. García-López, F.J. Ager, M. Barbadillo-Rank, F.J. Madrigal, M.A. Ontalba, M.A. Respaldiza, M.D. Ynsa, Nucl. Instr. and Meth. B 161-163 (2000) 1137]. Since then, an intensive research program using IBA techniques has been carried out. Subsequently, a cyclotron for 18 MeV protons has been also installed at the "Centro Nacional de Aceleradores" (CNA), devoted mainly to isotope production for PET (positron emission tomography) techniques, but possibly applied to material analysis and damage studies on a dedicated beam line. Moreover, a 1 MV tandem has been recently installed for AMS (accelerator mass spectrometry) 14C dating and environmental research with other isotopes. In the present paper we describe the new facilities and the developments of the 3 MV tandem beam lines occurred during the past years, as well as some examples of the most recent research activities in our Center in the fields of Material Science, Archaeometry, Biomedicine and Environment.

  7. International scoping study: accelerator working group report

    SciTech Connect

    Zisman, Michael; Zisman, M.S.

    2006-09-30

    During the past several years, an International Scoping Study (ISS) of a Neutrino Factory was carried out, with the aim of developing an internationally accepted baseline facility design. Progress toward that goal will be described. Many of the key technical aspects of a Neutrino Factory facility design are presently being investigated experimentally, and the status of these investigations will be mentioned. Plans for the recently launched International Design Study (IDS), which serves as a follow-on to the ISS, will be briefly described.

  8. Accelerating the Development of Expertise: A Step-Change in Social Science Research Capacity Building

    ERIC Educational Resources Information Center

    Wray, Alison; Wallace, Mike

    2011-01-01

    It is argued that future research capacity building for the social sciences needs to incorporate methods to accelerate the acquisition by researchers of holistic expertise relevant to their roles as researchers and as developers of others. An agenda is presented, based on a model of learning that highlights missing elements of current provision,…

  9. NASA's Spaceflight Visual Impairment and Intracranial Hypertension Research Plan: An accelerated Research Collaboration

    NASA Technical Reports Server (NTRS)

    Otto, Christian; Fogarty, J.; Grounds, D.; Davis, J.

    2010-01-01

    To date six long duration astronauts have experienced in flight visual changes and post flight signs of optic disc edema, globe flattening, choroidal folds, hyperoptic shifts and or raised intracranial pressure. In some cases the changes were transient while in others they are persistent with varying degrees of visual impairment. Given that all astronauts exposed to microgravity experience a cephalad fluid shift, and that both symptomatic and asymptomatic patients have exhibited optic nerve sheath edema on MRI, there is a high probability that all astronauts develop in-flight idiopathic intracranial hypertension to some degree. Those who are susceptible, have an increased likelihood of developing treatment resistant papilledema resulting in visual impairment and possible long-term vision loss. Such an acquired disability would have a profound mission impact and would be detrimental to the long term health of the astronaut. The visual impairment and increased intracranial pressure phenomenon appears to have multiple contributing factors. Consequently, the working "physiological fault bush" with elevated intracranial pressure at its center, is divided into ocular effects, and CNS and other effects. Some of these variables have been documented and or measured through operational data gathering, while others are unknown, undocumented and or hypothetical. Both the complexity of the problem and the urgency to find a solution require that a unique, non-traditional research model be employed such as the Accelerated Research Collaboration(TM) (ARC) model that has been pioneered by the Myelin Repair Foundation. In the ARC model a single entity facilitates and manages all aspects of the basic, translational, and clinical research, providing expert oversight for both scientific and managerial efforts. The result is a comprehensive research plan executed by a multidisciplinary team and the elimination of stove-piped research. The ARC model emphasizes efficient and effective

  10. The World of Wonder Accelerated Learning Community: A Case Study.

    ERIC Educational Resources Information Center

    Biddle, Julie K.

    This report presents a case study of the World of Wonders Accelerated Learning Community School (WOW). A community school in Ohio is a new kind of public school-an independent public school that is nonsectarian and nondiscriminatory. The report presents three contexts for the study--historical, local and methodological--and highlights some of the…

  11. Field quality study in Nb(3)Sn accelerator magnets

    SciTech Connect

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; DiMarco, J.; Kashikhin, V.S.; Lamm, M.; Novitski, I.; Schlabach, P.; Velev, G.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-05-01

    Four nearly identical Nb{sub 3}Sn dipole models of the same design were built and tested at Fermilab. It provided a unique opportunity of systematic study the field quality effects in Nb{sub 3}Sn accelerator magnets. The results of these studies are reported in the paper.

  12. Computational Science Guides and Accelerates Hydrogen Research (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    This fact sheet describes NREL's accomplishments in using computational science to enhance hydrogen-related research and development in areas such as storage and photobiology. Work was performed by NREL's Chemical and Materials Science Center and Biosciences Center.

  13. Project development teams: a novel mechanism for accelerating translational research.

    PubMed

    Sajdyk, Tammy J; Sors, Thomas G; Hunt, Joe D; Murray, Mary E; Deford, Melanie E; Shekhar, Anantha; Denne, Scott C

    2015-01-01

    The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators.Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds. PMID:25319172

  14. A STUDY OF POLARIZED PROTON ACCELERATION IN J-PARC.

    SciTech Connect

    LUCCIO, A.U.; BAI, M.; ROSER, T.

    2006-10-02

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductive partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  15. A Study of Polarized Proton Acceleration in J-PARC

    SciTech Connect

    Luccio, A. U.; Bai, M.; Roser, T.; Molodojentsev, A.; Ohmori, C.; Sato, H.; Hatanaka, K.

    2007-06-13

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductve partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  16. A study on task difficulty and acceleration stress

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Rogers, D. B.

    1981-01-01

    The results of two experiments which relate to task difficulty and the effects of environmental stress on tracking performance are discussed and compared to subjective evaluations. The first experiment involved five different sum of sine tracking tasks which humans tracked both in a static condition and under a 5 Gz acceleration stress condition. The second experiment involved similar environmental stress conditions but in this case the tasks were constructed from deterministic functions with specially designed velocity and acceleration profiles. Phase Plane performance analysis was conducted to study potential measures of workload or tracking difficulty.

  17. Diagnostics for studies of novel laser ion acceleration mechanisms

    SciTech Connect

    Senje, Lovisa; Aurand, Bastian; Wahlström, Claes-Göran; Yeung, Mark; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Roth, Markus; Li, Kun; Neumayer, Paul; Dromey, Brendan; Jung, Daniel; Bagnoud, Vincent; Zepf, Matthew; Kuehl, Thomas

    2014-11-15

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  18. Study of accelerator neutrino detection at a spallation source

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang

    2016-06-01

    We study the detection of accelerator neutrinos produced at the China Spallation Neutron Source (CSNS). Using the code FLUKA, we have simulated the production of neutrinos in a proton beam on a tungsten target and obtained the yield efficiency, numerical flux, and average energy of different flavors of neutrinos. Furthermore, detection of these accelerator neutrinos is investigated in two reaction channels: neutrino-electron reactions and neutrino-carbon reactions. The expected numbers of different flavors of neutrinos have also been calculated. Supported by National Natural Science Foundation of China (11205185, 11175020)

  19. An Experimental Study of Laminarization Induced by Acceleration and Curvature

    NASA Astrophysics Data System (ADS)

    Jackson, R. Brian

    The Generation IV Very High Temperature Reactor (VHTR) design is being actively studied in various countries for application due to its inherent passive safe design, higher thermal efficiencies, and proposed capability of providing high temperature process heat. The pebble bed core is one of two core designs used in gas reactors. In the pebble bed core there are mechanisms present which can cause the flow to laminarize, thus reducing its heat transfer effectiveness. Wind tunnel experiments were conducted using Particle Image Velocimetry (PIV) to investigate boundary layer laminarization due to flow acceleration and convex curvature effects. The flow was subject to acceleration and curvature both separately and together and the flow behavior characterized with velocity flow profiles, mean boundary layer parameters, and turbulence quantities. Laminarization was identified and the influence of acceleration and curvature was characterized.

  20. Accelerator and Fusion Research Division. Annual report, October 1978-September 1979

    SciTech Connect

    Not Available

    1980-03-01

    Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)

  1. Target Material Irradiation Studies for High-Intensity Accelerator Beams

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W.T.; McDonald, K.; Sheppard, J.; Evangelakis, G.; Yoshimura, K.; /KEK, Tsukuba

    2005-08-16

    This paper presents results of recent experimental studies focusing on the behavior of special materials and composites under irradiation conditions and their potential use as accelerator targets. The paper also discusses the approach and goals of on-going investigations on an expanded material matrix geared toward the neutrino superbeam and muon collider initiatives.

  2. Observational Study on Initiation and Acceleration of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Zhang, Jie

    2005-01-01

    During the performance period, we have successfully carried out all the tasks and fulfilled all the scientific objectives outlined in the proposal, which are about building a C1 Ch4E catalog and studying CME accelerations in both inner and outer corona.

  3. Vacuum Insulator Studies for the Dielectric Wall Accelerator

    SciTech Connect

    Harris, J R; Chen, Y J; Blackfield, D; Sanders, D M; Caporaso, G J; Krogh, M

    2007-06-11

    As part of our ongoing development of the Dielectric Wall Accelerator, we are studying the performance of multilayer high-gradient insulators. These vacuum insulating structures are composed of thin, alternating layers of metal and dielectric, and have been shown to withstand higher gradients than conventional vacuum insulator materials. This paper describes these structures and presents some of our recent results.

  4. The Gift of Time: Today's Academic Acceleration Case Study Voices of Experience

    ERIC Educational Resources Information Center

    Scheibel, Susan Riley

    2010-01-01

    The purpose of this qualitative case study was to examine today's academic acceleration from the lived experience and perspectives of two young adults whose education was shortened, thereby allowing them the gift of time. Through personal interviews, parent interviews, and physical artifacts, the researcher gained a complex, holistic understanding…

  5. Accelerating cancer systems biology research through Semantic Web technology.

    PubMed

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. PMID:23188758

  6. Cluster Multi-Point Studies of the Auroral Acceleration Region

    NASA Astrophysics Data System (ADS)

    Marklund, G. T.

    2014-12-01

    Multi-point studies of the auroral acceleration region (AAR) by the Cluster spacecraft has enabled a number of open issues on the auroral acceleration to be addressed and revealed. Data from AAR crossings of Inverted-V aurora, by the C1 and C3 spacecraft at different altitudes, enabled a detailed reconstruction of the acceleration potential and a verification of its stability on a five min time scale. The relative role of quasi-static and Alfvénic acceleration behind aurora are addressed in two event studies. In one of these, the two processes are shown to operate jointly on the plasma population within the polar cap boundary. In the other, the electron energy flux producing multiple arcs within a surge is found to be generally dominated by the quasi-static contribution. Acceleration features and the FAC closure associated with surge-horn aurora crossed by the Cluster fleet were derived in another event study. A study of the density distribution within the auroral cavity, showed for all included events, exponential density decreases, relative to the ambient densities, from the mid to top of the AAR. In another study, cavities were found to extend well beyond the top of the AAR. Finally, statistical high-latitude electric field and plasma density distributions are presented based on 10 years of Cluster data collected between 2 and 4 RE altitudes. Intense electric fields appear in two altitude regimes on the nightside, separated by a gap at 2.8 RE. The upper altitude fields were interpreted to be Alfvénic and the lower altitude fields quasi-static, related to the AAR. The gap in the electric field intensity indicates a partial closure of the potentials in the lower region, with similarities to model results of reflected Alfvén waves and earlier reported observations

  7. Traditional and accelerated Ponseti technique: a comparative study.

    PubMed

    Elgohary, Hatem S A; Abulsaad, Mazen

    2015-07-01

    The purpose of this study was to compare the results of traditional and accelerated Ponseti techniques to clarify whether this technique can be done safely in reduced time with complete correction of the deformity and without complications. A total of 66 feet in 41 children with idiopathic club foot and with Pirani score no <4 were included; of these, 34 feet in 20 children were managed with the traditional Ponseti method with one cast a week, in the other 32 feet in 21 children, an accelerated technique was used with casting twice a week, and the Pirani score was used for initial assessment and for follow-up. The results were comparable for both groups; the mean number of casts for full correction was 4.88 ± 0.88 in the traditional group and 5.16 ± 0.72 in the accelerated group. Initial correction was obtained in all cases in both groups, and relapses were observed in 14.7 % in the traditional group and in 15.6 % in the accelerated group. Deformities required from four to seven casts for correction in both groups. There was a statistically significant reduction in the mean time required for correction from onset of manipulation till tenotomy or correction of equines without tenotomy which was 33.36 ± 6.69 days (21-42 days) in the traditional Ponseti group and 18.13 ± 3.02 days (11-22 days) in accelerated Ponseti (P = 0.001). Accelerated Ponseti technique significantly reduces the correction time without affecting the final results; it is quite as safe and effective as the traditional Ponseti. PMID:25633123

  8. Accelerating Cancer Systems Biology Research through Semantic Web Technology

    PubMed Central

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S.

    2012-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute’s caBIG®, so users can not only interact with the DMR through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers’ intellectual property. PMID:23188758

  9. Studies of Multipactor in Dielectric-Loaded Accelerator Structures: Comparison of Simulation Results with Experimental Data

    SciTech Connect

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas Jr.

    2010-11-04

    In this paper new results of numerical studies of multipactor in dielectric-loaded accelerator structures are presented. The results are compared with experimental data obtained during recent studies of such structures performed by Argonne National Laboratory, the Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs, LLC. Good agreement between the theory and experiment was observed for the structures with larger inner diameter, however the structures with smaller inner diameter demonstrated a discrepancy between the two. Possible reasons for such discrepancy are discussed.

  10. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  11. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators.

    PubMed

    Kim, Myung-Hee Y; Rusek, Adam; Cucinotta, Francis A

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and (4)He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  12. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators

    PubMed Central

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam–energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  13. Study and application on accelerated algorithm of ray-casting

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoping; Wu, Jian; Cui, Zhiming; Ma, Jianlin

    2007-12-01

    Medical image 3D reconstruct is an important application filed for volume rendering, for it special using, it required fast interactive speed and high image quality. The ray casting algorithm (RCA) is a widely used basic volume rendering algorithm. It can get high quality image but the rendering speed is very slowly for powerful computing capacity. Due to these shortcomings and deficiencies, the accelerated ray casting algorithm is presented in this paper to improve its rendering speed and apply it to medical image 3D reconstruct. Firstly, accelerate algorithms for ray casting are fully studied and compared. Secondly, improved tri-linear interpolation technology has been selected and extended to continuous ray casting in order to reduce matrix computation by matrix transformation characteristics of re-sampling points. Then ray interval casting technology is used to reduce the number of rays. Utilizing volume data sets cropping technology that improving boundary box technique avoids the sampling in empty voxel. Finally, the synthesized accelerate algorithm has been proposed. The result shown that compare with standard ray casting algorithm, the accelerate algorithm not only improve the rendering speed but also produce the required quality images.

  14. Intercampus institute for research at particle accelerators. Final report, March 15, 1992--September 30, 1995

    SciTech Connect

    1997-09-22

    This is the final report to the DOE for the Intercampus Institute for Research at Particle Accelerators, or IIRPA, at least for the San Diego branch. Over the years that DOE supported IIRPA, we were told that yearly reports (and the final report) were not necessary because the previous year`s summary in our annual request for funds constituted those reports. Therefore, it has taken some effort, and a corresponding long time, to put something together, after the fact. The IIRPA was born as an idea that arose during discussions at the 1974 PEP summer study, and began to be funded by DoE during the early stages of PEP detector design and construction. The intent was for the members of the Institute to be responsible for the PEP-9 Facility; all of the PEP experiments were supposed to be facilities, rather than just experimental setups for a particular group or research goal. IIRPA was approved as a Multicampus Research Unit (MRU) in 1977 by the University of California, and it was active on the UCD, UCSB and UCSD campuses for 10 years. This report concentrates on the period of time when the Directorship of IIRPA was once again at the San Diego campus, 1989 to 1995. The collection of yearly reports consisting of research in different areas of particle physics, make up this report in the appendices.

  15. Acceleration Tolerance: Effect of Exercise, Acceleration Training; Bed Rest and Weightlessness Deconditioning. A Compendium of Research (1950-1996)

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; McKenzie, M. A.; Stad, N. J.; Barnes, P. R.; Jackson, C. G. R.; Ghiasvand, F.; Greenleaf, J. E.

    1997-01-01

    This compendium includes abstracts and annotations of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of acceleration, training and deconditioning. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed annotation of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and keyword indices are provided, plus an additional selected bibliography of related work and of those papers received after the volume was prepared for publication. This volume includes material published from 1950-1996.

  16. Accelerator and Fusion Research Division annual report, October 1981-September 1982. Fiscal year 1982

    SciTech Connect

    Johnson, R.K.; Bouret, C.

    1983-05-01

    This report covers the activities of LBL's Accelerator and Fusion Research Division (AFRD) during 1982. In nuclear physics, the Uranium Beams Improvement Project was concluded early in the year, and experimentation to exploit the new capabilities began in earnest. Technical improvement of the Bevalac during the year centered on a heavy-ion radiofrequency quadrupole (RFQ) as part of the local injector upgrade, and we collaborated in studies of high-energy heavy-ion collision facilities. The Division continued its collaboration with Fermilab to design a beam-cooling system for the Tevatron I proton-antiprotron collider and to engineer the needed cooling components for the antiproton. The high-field magnet program set yet another record for field strength in an accelerator-type dipole magnet (9.2 T at 1.8 K). The Division developed the design for the Advanced Light Source (ALS), a 1.3-GeV electron storage ring designed explicitly (with low beam emittance and 12 long straight sections) to generate high-brilliance synchrotron light from insertion devices. The Division's Magnetic Fusion Energy group continued to support major experiments at the Princeton Plasma Physics Laboratory, the Lawrence Livermore National Laboratory (LLNL), and General Atomic Co. by developing positive-ion-based neutral-beam injectors. Progress was made toward converting our major source-test facility into a long-pulse national facility, the Neutral Beam Engineering Test Facility, which was completed on schedule and within budget in 1983. Heavy Ion Fusion research focused on planning, theoretical studies, and beam-transport experiments leading toward a High Temperature Experiment - a major test of this promising backup approach to fusion energy.

  17. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    SciTech Connect

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  18. The Radiological Research Accelerator Facility. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  19. Comparative study of acceleration transducers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Buchczik, Dariusz; Wyżgolik, Roman; Pietraszek, Stanisław

    2006-10-01

    The results of comparative studies of the metrological parameters of acceleration transducers constructed in Institute of Electronics, Silesian University of Technology is presented in this article. The construction of the transducers is based on commercially available monolithic accelerometers and optimized for biomedical applications. The parameters determined during the tests are similar to the parameters of the monolithic accelerometers declared by their manufacturers. It proofs that both the mechanical and the electronic construction of the transducers are correct.

  20. Research program for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    NASA Astrophysics Data System (ADS)

    Barashenkov, V. S.; Buttsev, V. S.; Buttseva, G. L.; Dudarev, S. Ju.; Polanski, A.; Puzynin, I. V.; Sissakian, A. N.

    2000-07-01

    This paper presents the research program of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating in the Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna. Mixed-oxide (MOX) fuel (25% PuO2+75% UO2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient keff=0.945, energetic gain G=30, and accelerator beam power of 0.5 kW.

  1. NDCX-II, A New Induction Linear Accelerator for Warm Dense Matter Research

    SciTech Connect

    Leitner, M.; Bieniosek, F.; Kwan, J.; Logan, G.; Waldron, W.; Barnard, J.J.; Friedman, A.; Sharp, B.; Gilson, E.; Davidson, R.

    2009-06-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30 nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.

  2. Artificial intelligence research in particle accelerator control systems for beam line tuning

    SciTech Connect

    Pieck, Martin

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  3. LLNL/UC (Lawrence Livermore National Laboratory)/(University of California) AMS (accelerator mass spectrometry) facility and research program

    SciTech Connect

    Davis, J.C.; Proctor, I.D.; Southon, J.R.; Caffee, M.W.; Heikkinen, D.W.; Roberts, M.L.; Moore, T.L.; Turteltaub, K.W.; Nelson, D.E.; Loyd, D.H.; Vogel, J.S.

    1990-04-18

    The Lawrence Livermore National Laboratory (LLNL) and the University of California (UC) now have in operation a large AMS spectrometer built as part of a new multiuser laboratory centered on an FN tandem. AMS measurements are expected to use half of the beam time of the accelerator. LLNL use of AMS is in research on consequences of energy usage. Examples include global warming, geophysical site characterization, radiation biology and dosimetry, and study of mutagenic and carcinogenic processes. UC research activities are in clinical applications, archaeology and anthropology, oceanography, and geophysical and geochemical research. Access is also possible for researchers outside the UC system. The technological focus of the laboratory is on achieving high rates of sample through-put, unattended operation, and advances in sample preparation methods. Because of the expected growth in the research programs and the other obligations of the present accelerator, we are designing a follow-on dedicated facility for only AMS and microprobe analysis that will contain at least two accelerators with multiple spectrometers. 10 refs., 1 fig.

  4. Collaborative Research: Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models

    SciTech Connect

    Katsouleas, Thomas; Decyk, Viktor

    2009-10-14

    Final Report for grant DE-FG02-06ER54888, "Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models" Viktor K. Decyk, University of California, Los Angeles Los Angeles, CA 90095-1547 The primary goal of this collaborative proposal was to modify the code QuickPIC and apply it to study the long-time stability of beam propagation in low density electron clouds present in circular accelerators. The UCLA contribution to this collaborative proposal was in supporting the development of the pipelining scheme for the QuickPIC code, which extended the parallel scaling of this code by two orders of magnitude. The USC work was as described here the PhD research for Ms. Bing Feng, lead author in reference 2 below, who performed the research at USC under the guidance of the PI Tom Katsouleas and the collaboration of Dr. Decyk The QuickPIC code [1] is a multi-scale Particle-in-Cell (PIC) code. The outer 3D code contains a beam which propagates through a long region of plasma and evolves slowly. The plasma response to this beam is modeled by slices of a 2D plasma code. This plasma response then is fed back to the beam code, and the process repeats. The pipelining is based on the observation that once the beam has passed a 2D slice, its response can be fed back to the beam immediately without waiting for the beam to pass all the other slices. Thus independent blocks of 2D slices from different time steps can be running simultaneously. The major difficulty was when particles at the edges needed to communicate with other blocks. Two versions of the pipelining scheme were developed, for the the full quasi-static code and the other for the basic quasi-static code used by this e-cloud proposal. Details of the pipelining scheme were published in [2]. The new version of QuickPIC was able to run with more than 1,000 processors, and was successfully applied in modeling e-clouds by our collaborators in this proposal [3-8]. Jean-Luc Vay at Lawrence Berkeley

  5. Building a common pediatric research terminology for accelerating child health research.

    PubMed

    Kahn, Michael G; Bailey, L Charles; Forrest, Christopher B; Padula, Michael A; Hirschfeld, Steven

    2014-03-01

    Longitudinal observational clinical data on pediatric patients in electronic format is becoming widely available. A new era of multi-institutional data networks that study pediatric diseases and outcomes across disparate health delivery models and care settings are also enabling an innovative collaborative rapid improvement paradigm called the Learning Health System. However, the potential alignment of routine clinical care, observational clinical research, pragmatic clinical trials, and health systems improvement requires a data infrastructure capable of combining information from systems and workflows that historically have been isolated from each other. Removing barriers to integrating and reusing data collected in different settings will permit new opportunities to develop a more complete picture of a patient's care and to leverage data from related research studies. One key barrier is the lack of a common terminology that provides uniform definitions and descriptions of clinical observations and data. A well-characterized terminology ensures a common meaning and supports data reuse and integration. A common terminology allows studies to build upon previous findings and to reuse data collection tools and data management processes. We present the current state of terminology harmonization and describe a governance structure and mechanism for coordinating the development of a common pediatric research terminology that links to clinical terminologies and can be used to align existing terminologies. By reducing the barriers between clinical care and clinical research, a Learning Health System can leverage and reuse not only its own data resources but also broader extant data resources. PMID:24534404

  6. Building a Common Pediatric Research Terminology for Accelerating Child Health Research

    PubMed Central

    Bailey, L. Charles; Forrest, Christopher B.; Padula, Michael A.; Hirschfeld, Steven

    2014-01-01

    Longitudinal observational clinical data on pediatric patients in electronic format is becoming widely available. A new era of multi-institutional data networks that study pediatric diseases and outcomes across disparate health delivery models and care settings are also enabling an innovative collaborative rapid improvement paradigm called the Learning Health System. However, the potential alignment of routine clinical care, observational clinical research, pragmatic clinical trials, and health systems improvement requires a data infrastructure capable of combining information from systems and workflows that historically have been isolated from each other. Removing barriers to integrating and reusing data collected in different settings will permit new opportunities to develop a more complete picture of a patient’s care and to leverage data from related research studies. One key barrier is the lack of a common terminology that provides uniform definitions and descriptions of clinical observations and data. A well-characterized terminology ensures a common meaning and supports data reuse and integration. A common terminology allows studies to build upon previous findings and to reuse data collection tools and data management processes. We present the current state of terminology harmonization and describe a governance structure and mechanism for coordinating the development of a common pediatric research terminology that links to clinical terminologies and can be used to align existing terminologies. By reducing the barriers between clinical care and clinical research, a Learning Health System can leverage and reuse not only its own data resources but also broader extant data resources. PMID:24534404

  7. FAIR - An International Accelerator Facility for Research with Ions and Antiprotons

    SciTech Connect

    Henning, Walter

    2005-06-08

    An overview is given on the international Facility for Antiproton and Ion Research (FAIR) at GSI, its science motivation and goals, the facility lay-out and characteristics, the accelerator design challenges, the schedule for construction, and the international interest/participation in the project.

  8. International Scoping Study of a Future Accelerator NeutrinoComplex

    SciTech Connect

    Zisman, Michael S.

    2006-06-21

    The International Scoping Study (ISS), launched at NuFact05 to evaluate the physics case for a future neutrino facility, along with options for the accelerator complex and detectors, is laying the foundations for a subsequent conceptual-design study. It is hosted by Rutherford Appleton Laboratory (RAL) and organized by the international community, with participants from Europe, Japan, and the U.S. Here we cover the work of the Accelerator Working Group. For the 4-MW proton driver, linacs, synchrotrons, and Fixed-Field Alternating Gradient (FFAG) rings are considered. For targets, issues of both liquid-metal and solid materials are examined. For beam conditioning, (phase rotation, bunching, and ionization cooling), we evaluate schemes both with and without cooling, the latter based on scaling-FFAG rings. For acceleration, we examine scaling FFAGs and hybrid systems comprising linacs, dogbone RLAs, and non-scaling FFAGs. For the decay ring, we consider racetrack and triangular shapes, the latter capable of simultaneously illuminating two different detectors at different long baselines. Comparisons are made between various technical approaches to identify optimum design choices.

  9. Accelerated stability studies of Sufoofe Sailan: A Unani formulation

    PubMed Central

    Rani, Seema; Rahman, Khaleequr; Younis, Peerzada Mohammad

    2015-01-01

    Introduction: Sufoofe Sailan (SS) is a polyherbal powder preparation used in Unani medicine to treat gynecological diseases. It is observed that SS degrade early as it is in the form of powder; however, the stability study of SS was not carried out till date. Aim: To evaluate the accelerated stability of SS. Materials and Methods: Finished formulation of SS was packed in three airtight transparent polyethylene terephthalate containers. One pack was analyzed just after manufacturing and remaining two packs were kept in stability chamber at 40°C ± 2°C/75% ± 5% RH, of which one pack was analyzed after the completion of three and another after 6 months. Organoleptic, physico-chemical, microbiological parameters along with high-performance thin layer chromatography (HPTLC) fingerprinting were carried out. Results: Organoleptic characters showed no significant change in accelerated stability condition. All physico-chemical parameters showed changes <5%, HPTLC fingerprinting showed minimum changes and microbial studies were in confirmation to the World Health Organization guidelines. Conclusion: SS confirmed to the International Conference on Harmonization Guideline for accelerated testing of the pharmaceutical product on said parameters and as per the Grimm's statement the shelf life of SS may last 20 months. PMID:26730145

  10. Research methods for parameters of accelerated low-energy proton beam

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Dudkin, G. N.; Kyznetsov, S. I.; Nechaev, B. A.; Padalko, V. N.; Philippov, A. V.; Sadovsky, A. B.; Varlachev, V. A.; Zvaygintsev, O. A.

    2015-07-01

    To study the pd-reaction cross-section it is necessary to know the main parameters of the accelerated hydrogen ion beam with a high accuracy. These parameters include: the energy ion dispersion; the content of neutrals; the ratio of atomic and molecular ions of hydrogen in the flux of accelerated particles. This work is aimed at development of techniques and the measurement of the above mentioned parameters of the low-energy proton beam.

  11. Report of the Subpanel on Accelerator Research and Development of the High Energy Physics Advisory Panel

    SciTech Connect

    Not Available

    1980-06-01

    Accelerator R and D in the US High Energy Physics (HEP) program is reviewed. As a result of this study, some shift in priority, particularly as regards long-range accelerator R and D, is suggested to best serve the future needs of the US HEP program. Some specific new directions for the US R and D effort are set forth. 18 figures, 5 tables. (RWR)

  12. Application of accelerator mass spectrometry in aluminum metabolism studies

    NASA Astrophysics Data System (ADS)

    Meirav, O.; Sutton, R. A. L.; Fink, D.; Middleton, R.; Klein, J.; Walker, V. R.; Halabe, A.; Vetterli, D.; Johnson, R. R.

    1990-12-01

    The recent recognition that aluminum causes toxicity in uremie patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as in humans.

  13. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge Tennessee

    SciTech Connect

    Watson, David; Jardine, Philip; Gu, Baohua; Parker, Jack; Brandt, Craig; Holladay, Susan; Wolfe, Amy; Bogle, Mary Anna; Lowe, Kenneth; Hyder, Kirk

    2006-06-01

    The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR).

  14. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  15. Priority research areas to accelerate the development of practical ultraconductive copper conductors

    SciTech Connect

    Lee, Dominic F.; Burwell, Malcolm; Stillman, H.

    2015-09-01

    This report documents the findings at an Ultraconductive Copper Strategy Meeting held on March 11, 2015 in Washington DC. The aim of this meeting was to bring together researchers of ultraconductive copper in the U.S. to identify and prioritize critical non-proprietary research activities that will enhance the understanding in the material and accelerate its development into practical conductors. Every effort has been made to ensure that the discussion and findings are accurately reported in this document.

  16. Research for the Fluid Field of the Centrifugal Compressor Impeller in Accelerating Startup

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhu; Chen, Gang; Zhu, Changyun; Qin, Guoliang

    2013-03-01

    In order to study the flow field in the impeller in the accelerating start-up process of centrifugal compressor, the 3-D and 1-D transient accelerated flow governing equations along streamline in the impeller of the centrifugal compressor are derived in detail, the assumption of pressure gradient distribution is presented, and the solving method for 1-D transient accelerating flow field is given based on the assumption. The solving method is achieved by programming and the computing result is obtained. It is obtained by comparison that the computing method is met with the test result. So the feasibility and effectiveness for solving accelerating start-up problem of centrifugal compressor by the solving method in this paper is proven.

  17. WIPO Re:Search: Accelerating anthelmintic development through cross-sector partnerships

    PubMed Central

    Ramamoorthi, Roopa; Graef, Katy M.; Dent, Jennifer

    2014-01-01

    Neglected tropical diseases (NTDs), malaria, and tuberculosis have a devastating effect on an estimated 1.6 billion people worldwide. The World Intellectual Property Organization (WIPO) Re:Search consortium accelerates the development of new drugs, vaccines, and diagnostics for these diseases by connecting the assets and resources of pharmaceutical companies, such as compound libraries and expertise, to academic or nonprofit researchers with novel product discovery or development ideas. As the WIPO Re:Search Partnership Hub Administrator, BIO Ventures for Global Health (BVGH) fields requests from researchers, identifies Member organizations able to fulfill these requests, and helps forge mutually beneficial collaborations. Since its inception in October 2011, WIPO Re:Search membership has expanded to more than 90 institutions, including leading pharmaceutical companies, universities, nonprofit research institutions, and product development partnerships from around the world. To date, WIPO Re:Search has facilitated over 70 research agreements between Consortium Members, including 11 collaborations focused on anthelmintic drug discovery. PMID:25516832

  18. The COBRA accelerator pulsed-power driver for Cornell/Sandia ICF research

    SciTech Connect

    Smith, D.L.; Ingwersen, P.; Bennett, L.F.; Boyes, J.D.; Anderson, D.E.; Greenly, J.B.; Sudan, R.N.; Hammer, D.A.

    1995-07-01

    This paper introduces and describes the new Cornell Beam Research Accelerator, COBRA, the result of a three and one-half year collaboration. The flexible 4 to 5-MV, 100 to 250-kA, 46-ns pulse width accelerator is based on a four-cavity Inductive Voltage Adder (IVA) design. In addition to being a mix of new and existing components, COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 1800 about their vertical axis. Our tests with negative high voltage on the inner MITL stalk indicate that the vacuum power flow has established reasonable azimuthal symmetry within about 2 ns (or 0.6 m) after the cavity output cap. Preliminary results with the accelerator, single cavity, and MITL are presented alone, with the design details and circuit model predictions.

  19. STS-40 orbital acceleration research experiment flight results during a typical sleep period

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1992-01-01

    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities was flown aboard Shuttle on STS-40. The instrument is designed to measure and record the Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarefied flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument detects aerodynamic behavior of the Shuttle while in low-earth orbit. A 2-h orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low-frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight liner corrections for drift.

  20. Engineering study of a 10 MeV heavy ion linear accelerator

    SciTech Connect

    Fong, C.G.; Fessenden, T.J.; Fulton, R.L.; Keefe, D.

    1989-03-01

    LBL's Heavy Ion Fusion Accelerator Research group has completed the engineering study of the Induction Linac Systems Experiment (ILSE). ILSE will address nearly all accelerator physics issues of a scaled heavy ion induction linac inertial fusion pellet driver. Designed as a series of subsystem experiments, ILSE will accelerate 16 parallel carbon ion beams from a 2 MeV injector presently under development to 10 MeV at one ..mu..sec. This overview paper will present the physics and engineering requirements and describe conceptual design approaches for building ILSE. Major ILSE subsystems consist of electrostatic focusing quadrupole matching and accelerating sections, a 16 to 4 beam transverse combining section, a 4 beam magnetic focusing quadrupole accelerating section, a single beam 180 degree bend section, a drift compression section and a final focus and target chamber. These subsystems are the subject of accompanying papers. Also discussed are vacuum and alignment, diagnostics/data acquisition and controls, key conclusions and plans for further development. 10 refs., 4 figs., 1 tab.

  1. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  2. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  3. Stability study for matching in laser driven plasma acceleration

    NASA Astrophysics Data System (ADS)

    Rossi, A. R.; Anania, M. P.; Bacci, A.; Belleveglia, M.; Bisesto, F. G.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petrarca, M.; Pompili, R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Villa, F.

    2016-09-01

    In a recent paper [14], a scheme for inserting and extracting high brightness electron beams to/from a plasma based acceleration stage was presented and proved to be effective with an ideal bi-Gaussian beam, as could be delivered by a conventional photo-injector. In this paper, we extend that study, assessing the method stability against some jitters in the properties of the injected beam. We find that the effects of jitters in Twiss parameters are not symmetric in results; we find a promising configuration that yields better performances than the setting proposed in [14]. Moreover we show and interpret what happens when the beam charge profiles are modified.

  4. Study of Direct Current Negative Ion Source for Medicine Accelerator

    SciTech Connect

    Belchenko, Yu.; Ivanov, I.; Piunov, I.

    2005-04-06

    Status of dc H- ion source development for tandem accelerator of boron capture neutron therapy is described. Upgrade and study of the Penning surface-plasma source with hollow cathodes was continued. Results of source optimization, of ion optic computer simulation, and of emittance measurement are presented. The upgraded source delivers dc H- beam with energy 25 kV, current 8 mA, 1rms emittance JukcyX {approx} 0.2 {pi} mm{center_dot}mrad, JukcyY {approx} 0.3 {pi} mm{center_dot}mrad at discharge power {<=} 0.5 kW.

  5. Recent results of studies of acceleration of compact toroids

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Hartmen, C. W.; Eddleman, J.

    1984-03-01

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.

  6. Study of a multi-beam accelerator driven thorium reactor

    SciTech Connect

    Ludewig, H.; Aronson, A.

    2011-03-01

    The primary advantages that accelerator driven systems have over critical reactors are: (1) Greater flexibility regarding the composition and placement of fissile, fertile, or fission product waste within the blanket surrounding the target, and (2) Potentially enhanced safety brought about by operating at a sufficiently low value of the multiplication factor to preclude reactivity induced events. The control of the power production can be achieved by vary the accelerator beam current. Furthermore, once the beam is shut off the system shuts down. The primary difference between the operation of an accelerator driven system and a critical system is the issue of beam interruptions of the accelerator. These beam interruptions impose thermo-mechanical loads on the fuel and mechanical components not found in critical systems. Studies have been performed to estimate an acceptable number of trips, and the value is significantly less stringent than had been previously estimated. The number of acceptable beam interruptions is a function of the length of the interruption and the mission of the system. Thus, for demonstration type systems and interruption durations of 1sec < t < 5mins, and t > 5mins 2500/yr and 50/yr are deemed acceptable. However, for industrial scale power generation without energy storage type systems and interruption durations of t < 1sec., 1sec < t < 10secs., 10secs < t < 5mins, and t > 5mins, the acceptable number of interruptions are 25000, 2500, 250, and 3 respectively. However, it has also been concluded that further development is required to reduce the number of trips. It is with this in mind that the following study was undertaken. The primary focus of this study will be the merit of a multi-beam target system, which allows for multiple spallation sources within the target/blanket assembly. In this manner it is possible to ameliorate the effects of sudden accelerator beam interruption on the surrounding reactor, since the remaining beams will still

  7. Spectral variability studies and acceleration scenarios in jets of blazars

    NASA Astrophysics Data System (ADS)

    Joshi, Manasvita

    2009-06-01

    This work focuses on the study of spectral energy distributions (SEDs) and the spectral variability patterns of blazars, especially BL Lac objects. It also investigates the dominant mode of particle acceleration in the jets of blazars. The first part of the work describes the BL Lac object 3C 66A, which was the target of an intensive multiwavelength campaign in 2003/2004. During the campaign, flux measurements from radio to X-ray frequencies and upper limits in the very high energy (VHE) g-ray regime were obtained. A time-dependent leptonic jet model has been used to obtain a detailed description of the physical processes in 3C 66A. This successful model results in the reproduction of the observed spectral energy distribution (SED) and the optical variability pattern. The model also predicts an intrinsic cutoff value for the VHE g-ray emission and the possibility of the object being observed by MAGIC, Fermi, and other future missions. The second part of the work uses the internal shock model to explore the particle acceleration scenarios and the subsequent production of radiation via synchrotron and synchrotron self-Compton processes at sub-pc scales of a relativistic jet. A code has been developed to simulate the acceleration mechanism and to calculate the resulting spectrum after accounting for the inhomogeneity in the photon density throughout the acceleration region by dividing the region into multiple zones and considering the subsequent time- dependent radiation transfer within the zone and in between zones. An extensive study to understand the effects of varying shock and radiative parameters on the SED and spectral lightcurves of a generic blazar source has been carried out to aid in future theoretical analysis of such sources. This dissertation also includes a brief description of the observations conducted with the 1.3 m McGraw-Hill telescope of the MDM observatory at Kitt Peak, Arizona. The observations were carried out as a part of an ongoing long- term

  8. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  9. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  10. The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1994-04-01

    This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user`s guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented.

  11. A performance study of the Loma Linda proton medical accelerator

    SciTech Connect

    Coutrakon, G.; Hubbard, J.; Johanning, J.; Maudsley, G.; Slaton, T.; Morton, P. )

    1994-11-01

    More than three years have passed since Loma Linda treated the first cancer patient with the world's first proton accelerator dedicated to radiation therapy. Since that time, over 1000 patients have completed treatments and the facility currently treats more than 45 patients per day. With a typical intensity of 3[times]10[sup 10] protons per pulse and 27 pulses per minute, dose rates of 90--100 cGy/min are easily achieved on a 20-cm diameter field. In most cases, patient treatment times are 2 min, much less than the patient alignment time required before each treatment. Nevertheless, there is considerable medical interest in increasing field sizes up to 40-cm diameter while keeping dose rates high and treatment times low. In this article, beam measurements relevant to intensity studies are presented and possible accelerator modifications for upgrades are proposed. It is shown that nearly all intensity losses can be ascribed to the large momentum spread of the injected beam and occur at or near the injection energy of 2 MeV. The agreement between calculations and measurements appears quite good. In addition, optimum beam characteristics for a new injector are discussed based upon the momentum acceptance and space charge limits of the Loma Linda synchrotron.

  12. A performance study of the Loma Linda proton medical accelerator.

    PubMed

    Coutrakon, G; Hubbard, J; Johanning, J; Maudsley, G; Slaton, T; Morton, P

    1994-11-01

    More than three years have passed since Loma Linda treated the first cancer patient with the world's first proton accelerator dedicated to radiation therapy. Since that time, over 1000 patients have completed treatments and the facility currently treats more than 45 patients per day. With a typical intensity of 3 x 10(10) protons per pulse and 27 pulses per minute, dose rates of 90-100 cGy/min are easily achieved on a 20-cm diameter field. In most cases, patient treatment times are 2 min, much less than the patient alignment time required before each treatment. Nevertheless, there is considerable medical interest in increasing field sizes up to 40-cm diameter while keeping dose rates high and treatment times low. In this article, beam measurements relevant to intensity studies are presented and possible accelerator modifications for upgrades are proposed. It is shown that nearly all intensity losses can be ascribed to the large momentum spread of the injected beam and occur at or near the injection energy of 2 MeV. The agreement between calculations and measurements appears quite good. In addition, optimum beam characteristics for a new injector are discussed based upon the momentum acceptance and space charge limits of the Loma Linda synchrotron. PMID:7891629

  13. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  14. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  15. Prototype of a test bench for applied research on Extracted beams of the nuclotron accelerator complex

    NASA Astrophysics Data System (ADS)

    Baldin, A. A.; Berlev, A. I.; Bradnova, V.; Butenko, A. V.; Fedorov, A. N.; Kudashkin, I. V.

    2016-05-01

    The results of the development and testing of elements of a test bench for investigating the impact of accelerated particle beams on biological objects, electronics, and other targets are presented. The systems for beam monitoring and target positioning were tested on extracted argon beams in the framework of experiments on studying the radiation hardness of electronic components.

  16. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract

    SciTech Connect

    Pirruccello, M.C.; Tobias, C.A.

    1980-11-01

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)

  17. ECR (Electron Cyclotron Resonance) source for the HHIRF (Holifield Heavy Ion Research Facility) tandem accelerator

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Meigs, M.J.; Mills, G.D.; Mosko, S.W.; Tatum, B.A.

    1990-01-01

    Electron Cyclotron Resonance, ECR, ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the advantages of using an ECR heavy-ion source in the terminal of the Holifield Heavy Ion Research Facility (HHIRF) 25-MV tandem accelerator is discussed. A possible ECR system for installation in the HHIRF tandem terminal is described.

  18. STS-40 orbital acceleration research experiment flight results during a typical sleep period

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Nicholson, J. Y.; Ritter, J. R.

    1992-01-01

    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model.

  19. Accelerator mass spectrometry-enabled studies: current status and future prospects

    PubMed Central

    Arjomand, Ali

    2010-01-01

    Accelerator mass spectrometry is a detection platform with exceptional sensitivity compared with other bioanalytical platforms. Accelerator mass spectrometry (AMS) is widely used in archeology for radiocarbon dating applications. Early exploration of the biological and pharmaceutical applications of AMS began in the early 1990s. AMS has since demonstrated unique problem-solving ability in nutrition science, toxicology and pharmacology. AMS has also enabled the development of new applications, such as Phase 0 microdosing. Recent development of AMS-enabled applications has transformed this novelty research instrument to a valuable tool within the pharmaceutical industry. Although there is now greater awareness of AMS technology, recognition and appreciation of the range of AMS-enabled applications is still lacking, including study-design strategies. This review aims to provide further insight into the wide range of AMS-enabled applications. Examples of studies conducted over the past two decades will be presented, as well as prospects for the future of AMS. PMID:20440378

  20. UV photoemission studies of metal photocathodes for particle accelerators

    SciTech Connect

    Fischer, J.; Srinivasan-Rao, T.

    1988-09-01

    Photoemission from several metals was studied with 10 ps laser pulses at 266 nm. The yield was linear with energy and with area. Quantum efficiencies (/eta/) were determined (up to 10/sup /minus/3/ e/photons for samarium), and found to vary as (h..nu..-/phi/)/sup 2/. /eta/ also increased with the field. The field assisted efficiencies were calculated for some metals and confirmed by experiment for gold, up to surface fields of /approximately/3/times/10/sup 8/ V/m. High charge and current densities, close to 10/sup 5/ A/cm/sup 2/ from macroscopic areas, were measured or indicated. Results are then related to applications in accelerators. 18 refs., 15 figs., 4 tabs.

  1. New, More Authentic Model for AIDS Will Accelerate Studies | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer, and Jeff Lifson, Guest Writer Researchers are working to develop a more authentic animal model of human immunodeficiency virus (HIV) infection and AIDS that is expected to speed up studies of experimental treatments and vaccines.

  2. Nuclear waste incineration and accelerator aspects from the European PDS-XADS study

    NASA Astrophysics Data System (ADS)

    Mueller, Alex C.

    2005-04-01

    In the context of general environmental concerns, the issue of waste from nuclear power plants is a question of actual interest. Here fundamental research in Nuclear Science may have great potential impact on society and on the longer-term future. In contrast to certain non-scientifically voiced opininos, it is clear, from basic facts of Nuclear Science, that e.g. fast neutrons can transmute long-lived radio-toxic components of the spent fuel into short-lived species. Because of the flexibility and control needed for the transmutation of large quantities of nuclear waste with a high content of minor actinides, one could favor for a transmuter reactor a sub-critical system, where the needed additional neutrons come from an external source, i.e. a high-energy proton accelerator producing spallation neutrons. In the European context, a roadmap for this technology was developped by a technical expert group. Consecutive to this, the European project PDS-XADS has been launched, as a preliminary design study for an Accelerator-Driven System. Here we shall report the conclusions for the layout of the accelerator and the associated beam-line to the reactor. The technical options have been chosen with the reliability of the accelerator as prime design criterion.

  3. Review of heavy-ion induced desorption studies for particle accelerators

    NASA Astrophysics Data System (ADS)

    Mahner, Edgar

    2008-10-01

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavy-ion program at CERN’s Large Hadron Collider collisions between beams of fully stripped lead (Pb82+208) ions with a beam energy of 2.76TeV/u and a nominal luminosity of 1027cm-2s-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 1012 uranium (U28+238) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the results obtained in several laboratories using dedicated test setups, the mitigation techniques found, and their implementation in accelerators.

  4. Accelerating Research Productivity in Social Work Programs: Perspectives on NIH's Postdoctoral T32 Research Training Mechanism

    ERIC Educational Resources Information Center

    Matthieu, Monica M.; Bellamy, Jennifer L.; Pena, Juan B.; Scott, Lionel D., Jr.

    2008-01-01

    This article describes the experiences of four social work researchers who pursued an alternative career path immediately following their doctorate in social work by accepting a postdoctoral training fellowship funded by the National Institutes of Health (NIH). As schools of social work look for creative ways to build research capacity, this…

  5. [Sugar consumption and prenatal acceleration. II. Studies on the etiology and pathophysiology of secular prenatal acceleration].

    PubMed

    Ziegler, E

    1976-12-01

    The pathophysiologic considerations support the causal relationship between the secular trend of sugar consumption in industrialized society and the development of prenatal acceleration, which is evident on the basis of epidemiological data. The excessive consumption of sugar and the other quickly absorbed "refined" carbohydrates enhances the hormonogenic effect of food which is also potentiated by the proteins. Together with the caloric overloading, provoked also by the excess in fat, characteristic for the affluent society, the excessive sugar consumption enhances in the pregnant women obesity and "protodiabetes" (PFEIFFER), in the predisposed child the tendency to hyperinsulinism with its consequences. In a prediabetic mother with normal glucose-tolerance the regularly repeated postprandial overfloating of the fetus with maternal glucose changes the feto-maternal hormonal regulation and enhances together with the overloading of substrate, i.e. energy and elements of biosyntheses, the accelerated fetal growth and especially the obesity of the large baby. PMID:1035212

  6. Multiwavelength studies of Galactic TeV particle accelerators

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-07-01

    Our Milky Way galaxy is host to a variety of astrophysical objects capable of accelerating particles to TeV energies, including supernova remnants and pulsar wind nebulae. I will review recent multiwavelength results on Galactic TeV sources and discuss the implications for particle acceleration and diffusion in these systems.

  7. Accelerating Progress in Eating Disorders Prevention: A Call for Policy Translation Research and Training.

    PubMed

    Austin, S Bryn

    2016-01-01

    The public health burden of eating disorders is well documented, and over the past several decades, researchers have made important advances in the prevention of eating disorders and related problems with body image. Despite these advances, however, several critical limitations to the approaches developed to date leave the field far from achieving the large-scale impact that is needed. This commentary provides a brief review of what achievements in prevention have been made and identifies the gaps that limit the potential for greater impact on population health. A plan is then offered with specific action steps to accelerate progress in high-impact prevention, most compellingly by promoting a shift in priorities to policy translation research and training for scholars through the adoption of a triggers-to-action framework. Finally, the commentary provides an example of the application of the triggers-to-action framework as practiced at the Strategic Training Initiative for the Prevention of Eating Disorders, a program based at the Harvard T. H. Chan School of Public Health and Boston Children's Hospital. Much has been achieved in the nearly 30 years of research carried out for the prevention of eating disorders and body image problems, but several critical limitations undermine the field's potential for meaningful impact. Through a shift in the field's priorities to policy translation research and training with an emphasis on macro-environmental influences, the pace of progress in prevention can be accelerated and the potential for large-scale impact substantially improved. PMID:25880718

  8. Parameterizations for shielding electron accelerators based on Monte Carlo studies

    SciTech Connect

    P. Degtyarenko; G. Stapleton

    1996-10-01

    Numerous recipes for designing lateral slab neutron shielding for electron accelerators are available and each generally produces rather similar results for shield thicknesses of about 2 m of concrete and for electron beams with energy in the 1 to 10 GeV region. For thinner or much thicker shielding the results tend to diverge and the standard recipes require modification. Likewise for geometries other than lateral to the beam direction further corrections are required so that calculated results are less reliable and hence additional and costly conservatism is needed. With the adoption of Monte Carlo (MC) methods of transporting particles a much more powerful way of calculating radiation dose rates outside shielding becomes available. This method is not constrained by geometry, although deep penetration problems need special statistical treatment, and is an excellent approach to solving any radiation transport problem providing the method has been properly checked against measurements and is free from the well known errors common to such computer methods. This present paper utilizes the results of MC calculations based on a nuclear fragmentation model named DINREG using the MC transport code GEANT and models them with the normal two parameter shielding expressions. Because the parameters can change with electron beam energy, angle to the electron beam direction and target material, the parameters are expressed as functions of some of these variables to provide a universal equations for shielding electron beams which can used rather simply for deep penetration problems in simple geometry without the time consuming computations needed in the original MC programs. A particular problem with using simple parameterizations based on the uncollided flux is that approximations based on spherical geometry might not apply to the more common cylindrical cases used for accelerator shielding. This source of error has been discussed at length by Stevenson and others. To study

  9. Management systems research study

    NASA Technical Reports Server (NTRS)

    Bruno, A. V.

    1975-01-01

    The development of a Monte Carlo simulation of procurement activities at the NASA Ames Research Center is described. Data cover: simulation of the procurement cycle, construction of a performance evaluation model, examination of employee development, procedures and review of evaluation criteria for divisional and individual performance evaluation. Determination of the influences and apparent impact of contract type and structure and development of a management control system for planning and controlling manpower requirements.

  10. The influence of combined alignments on lateral acceleration on mountainous freeways: a driving simulator study.

    PubMed

    Wang, Xuesong; Wang, Ting; Tarko, Andrew; Tremont, Paul J

    2015-03-01

    Combined horizontal and vertical alignments are frequently used in mountainous freeways in China; however, design guidelines that consider the safety impact of combined alignments are not currently available. Past field studies have provided some data on the relationship between road alignment and safety, but the effects of differing combined alignments on either lateral acceleration or safety have not systematically examined. The primary reason for this void in past research is that most of the prior studies used observational methods that did not permit control of the key variables. A controlled parametric study is needed that examines lateral acceleration as drivers adjust their speeds across a range of combined horizontal and vertical alignments. Such a study was conducted in Tongji University's eight-degree-of-freedom driving simulator by replicating the full range of combined alignments used on a mountainous freeway in China. Multiple linear regression models were developed to estimate the effects of the combined alignments on lateral acceleration. Based on these models, domains were calculated to illustrate the results and to assist engineers to design safer mountainous freeways. PMID:25626165

  11. Study of a national 2-GeV continuous beam electron accelerator

    SciTech Connect

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1980-08-01

    Current trends in research in medium energy physics with electromagnetic probes are reviewed briefly and design objectives are proposed for a continuous beam 2 GeV electron accelerator. Various types of accelerator systems are discussed and exploratory designs developed for two concepts, the linac-stretcher ring and a double-sided microtron system. Preliminary cost estimates indicate that a linac-ring system which meets all the design objectives with the exception of beam quality and uses state-of-the-art technology can be built for approximately $29 million. However, the double-sided microtron shows promise for development into a substantially less expensive facility meeting all design objectives. Its technical feasibility remains to be established. Specific areas requiring additional engineering studies are discussed, and current efforts at Argonne and elsewhere are identified.

  12. Charge-exchange erosion studies of accelerator grids in ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    A particle simulation model is developed to study the charge-exchange grid erosion in ion thrusters for both ground-based and space-based operations. Because the neutral gas downstream from the accelerator grid is different for space and ground operation conditions, the charge-exchange erosion processes are also different. Based on an assumption of now electric potential hill downstream from the ion thruster, the calculations show that the accelerator grid erosion rate for space-based operating conditions should be significantly less than experimentally observed erosion rates from the ground-based tests conducted at NASA Lewis Research Center (LeRC) and NASA Jet Propulsion Laboratory (JPL). To resolve this erosion issue completely, we believe that it is necessary to accurately measure the entire electric potential field downstream from the thruster.

  13. [Anti-aging studies on the senescence accelerated mouse (SAM) strains].

    PubMed

    Takahashi, Ryoya

    2010-01-01

    Senescence accelerated mouse (SAM), a murine model of accelerated senescence, was established by Toshio Takeda and colleagues. SAM consists of series of SAMP (prone) and SAMR (resistant) lines. All SAMP lines (from SAMP1 to SAMP11) are characterized by accelerated accumulation of senile features, earlier onset and faster progress of age-associated pathological phenotypes, such as amyloidosis, impaired immune response, senile osteoporosis and deficits in learning and memory. These SAMP lines are useful for evaluation of putative anti-aging therapies. For example, SAMP1 line is used to study the anti-aging effect of the antioxidant containing foods and various anti-oxidants, such as coenzyme Q10, vitamin C, lycopene. SAMP8 line exhibiting an early onset of impaired learning and memory is often used for test strategies for therapeutic intervention of dementia of early onset. SAMP6 is used as an animal model for developing new strategies for the treatment of osteoporosis in humans. Various lines of SAM (P1, P6, P8, P10 and R1) are now commercially available for research. In this review, I will briefly introduce various usages of SAM in anti-aging research. PMID:20046059

  14. Research Studies & Networks

    Cancer.gov

    These epidemiological studies may assist in evaluating associations between certain pharmaceuticals and disease risk and contain detailed information on pharmaceutical use and disease risk, including cancer.

  15. High transformer ratio drive beams for wakefield accelerator studies

    SciTech Connect

    England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W.

    2012-12-21

    For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

  16. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    SciTech Connect

    Nitschke, J.M.

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor.

  17. Accelerating Translation of Physical Activity and Cancer Survivorship Research into Practice: Recommendations for a More Integrated and Collaborative Approach

    PubMed Central

    Phillips, Siobhan M.; Alfano, Catherine M.; Perna, Frank M.; Glasgow, Russell E.

    2015-01-01

    Physical activity has been deemed safe and effective in reducing many negative side effects of treatment for cancer survivors and promoting better overall health. However, most of this research has focused on highly controlled randomized trials and little of this research has been translated into care or policy for survivors. The purpose of the present paper is to present a research agenda for the field to accelerate the dissemination and implementation of empirically-supported physical activity interventions into care. We provide rationale for the role of basic, behavioral, clinical implementation and population scientists in moving this science forward and call for a more coordinated effort across different phases of research. In addition, we provide key strategies and examples for ongoing and future studies using the RE-AIM (Reach, Efficacy/Effectiveness, Adoption, Implementation and Maintenance) framework and pose recommendations for collaborations between researchers and stakeholders to enhance the integration of this research into policy and practice. Overall, we recommend that physical activity and cancer survivorship research employ additional study designs, include relevant stakeholders and be more collaborative, integrated, contextual, and representative in terms of both setting and participants. PMID:24599577

  18. The Project Data Sphere Initiative: Accelerating Cancer Research by Sharing Data

    PubMed Central

    Reeder-Hayes, Katherine E.; Corty, Robert W.; Basch, Ethan; Milowsky, Mathew I.; Dusetzina, Stacie B.; Bennett, Antonia V.; Wood, William A.

    2015-01-01

    Background. In this paper, we provide background and context regarding the potential for a new data-sharing platform, the Project Data Sphere (PDS) initiative, funded by financial and in-kind contributions from the CEO Roundtable on Cancer, to transform cancer research and improve patient outcomes. Given the relatively modest decline in cancer death rates over the past several years, a new research paradigm is needed to accelerate therapeutic approaches for oncologic diseases. Phase III clinical trials generate large volumes of potentially usable information, often on hundreds of patients, including patients treated with standard of care therapies (i.e., controls). Both nationally and internationally, a variety of stakeholders have pursued data-sharing efforts to make individual patient-level clinical trial data available to the scientific research community. Potential Benefits and Risks of Data Sharing. For researchers, shared data have the potential to foster a more collaborative environment, to answer research questions in a shorter time frame than traditional randomized control trials, to reduce duplication of effort, and to improve efficiency. For industry participants, use of trial data to answer additional clinical questions could increase research and development efficiency and guide future projects through validation of surrogate end points, development of prognostic or predictive models, selection of patients for phase II trials, stratification in phase III studies, and identification of patient subgroups for development of novel therapies. Data transparency also helps promote a public image of collaboration and altruism among industry participants. For patient participants, data sharing maximizes their contribution to public health and increases access to information that may be used to develop better treatments. Concerns about data-sharing efforts include protection of patient privacy and confidentiality. To alleviate these concerns, data sets are

  19. Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing

    SciTech Connect

    Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.

    1995-12-31

    A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed.

  20. Current Research Studies

    MedlinePlus

    ... generation of massively parallel DNA sequencers and sophisticated computational methods, the initiative studies the complex role that ... complications of severe disease. CCFA’s Professional KIIDS Pediatric Network is committed to identifying the genetic, microbiological, and ...

  1. Applied Research Study

    NASA Technical Reports Server (NTRS)

    Leach, Ronald J.

    1997-01-01

    The purpose of this project was to study the feasibility of reusing major components of a software system that had been used to control the operations of a spacecraft launched in the 1980s. The study was done in the context of a ground data processing system that was to be rehosted from a large mainframe to an inexpensive workstation. The study concluded that a systematic approach using inexpensive tools could aid in the reengineering process by identifying a set of certified reusable components. The study also developed procedures for determining duplicate versions of software, which were created because of inadequate naming conventions. Such procedures reduced reengineering costs by approximately 19.4 percent.

  2. Wake-field studies on photonic band gap accelerator cavities

    NASA Astrophysics Data System (ADS)

    Li, Derun; Kroll, N.; Smith, D. R.; Schultz, S.

    1997-03-01

    We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode.

  3. Study of spin resonances in the accelerators with snakes

    SciTech Connect

    Lee, S.Y.

    1988-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength epsilon/sub c/ as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that epsilon/sub c/ is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength epsilon/sub c/ is found to vary linearly with N/sub S/ as = (1/..pi..)sin/sup /minus/1/(/vert bar/cos ..pi nu../sub z//vert bar//sup /1/2//)N/sub S/, where ..nu../sub z/ and N/sub S/ are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., epsilonless than or equal to0.1 for two snakes case) to maintain proper polarization. 23 refs., 25 figs.

  4. Proposed Dark Current Studies at the Argonne Wakefield Accelerator Facility

    SciTech Connect

    Antipov, S.P.; Conde, Manoel Eduardo; Gai, Wei; Power, John Gorham; Yusof, Z.M.; Spentzouris, L.K.; Dolgashev, V.A.; /SLAC

    2008-01-18

    A study of dark currents has been initiated at the Argonne Wakefield Accelerator Facility (AWA). Emission of dark current is closely related to a breakdown. Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. An imaging system is being put together to identify single emitters on the cathode surface. This will allow us to study dark current properties in the gun. We also plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV). Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after can shed some light on a modification of metal surface after the breakdown.

  5. Studies of pear-shaped nuclei using accelerated radioactive beams.

    PubMed

    Gaffney, L P; Butler, P A; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bönig, S; Bree, N; Cederkäll, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; De Witte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kröll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-05-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on (220)Rn and (224)Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model. PMID:23657348

  6. The SuperB Accelerator: Overview and Lattice Studies

    SciTech Connect

    Biagini, M.E.; Boni, R.; Boscolo, M.; Drago, A.; Guiducci, S.; Preger, M.; Raimondi, P.; Tomassini, S.; Vaccarezza, C.; Zobov, M.; Cai, Y.; Fisher, A.; Heifets, S.; Novokhatski, A.; Pivi, M.T.; Seeman, J.; Sullivan, M.; Wienands, U.; Paoloni, E.; Marchiori, G.; Koop, I.; /Novosibirsk, IYF /Daresbury /LBL, Berkeley /CERN /Orsay, LAL /KEK, Tsukuba

    2011-11-22

    SuperB aims at the construction of a very high luminosity (10{sup 36} cm{sup -2} s{sup -1}) asymmetric e{sup +}e{sup -} Flavour Factory, with possible location at the campus of the University of Rome Tor Vergata, near the INFN Frascati National Laboratory. In this paper the basic principles of the design and details on the lattice are given. SuperB is a new machine that can exploit novel very promising design approaches: (1) large Piwinski angle scheme will allow for peak luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1}, well beyond the current state-of-the-art, without a significant increase in beam currents or shorter bunch lengths; (2) 'crab waist' sextupoles will be used for suppression of dangerous resonances; (3) the low beam currents design presents reduced detector and background problems, and affordable operating costs; (4) a polarized electron beam can produce polarized {tau} leptons, opening an entirely new realm of exploration in lepton flavor physics. SuperB studies are already proving useful to the accelerator and particle physics communities. The principle of operation is being tested at DAFNE. The baseline lattice, based on the reuse of all PEP-II hardware, fits in the Tor Vergata University campus site, near Frascati. A CDR is being reviewed by an International Review Committee, chaired by J. Dainton (UK). A Technical Design Report will be prepared to be ready by beginning of 2010.

  7. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    SciTech Connect

    Ullmann, C. Kester, O.; Chauvin, N.; Delferriere, O.

    2014-02-15

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms)

  8. Surface wave accelerator based on silicon carbide: theoretical study

    SciTech Connect

    Kalmykov, S.; Korobkin, D.; Neuner, B.; Shvets, G.

    2009-01-22

    Compact near-field solid-state accelerating structure powered by a carbon dioxide (CO{sub 2}) laser is considered. The accelerating luminous transverse magnetic mode is excited in a few-micron wide evacuated planar channel between two silicon carbide (SiC) films grown on silicon (Si) wafers. Laser coupling to this mode is accomplished through the properly designed Si gratings. Operating wavelength is dictated by the frequency-dependent dielectric permittivity of SiC and the channel width. The geometric loss factor {kappa} of the accelerating mode is computed. It is found that the unwanted excitation of the guided modes in Si wafers reduces the laser coupling efficiency and increases the fields inside the Si wafer.

  9. Adult student satisfaction in an accelerated RN-to-BSN program: a follow-up study.

    PubMed

    Boylston, Mary T; Jackson, Christina

    2008-01-01

    This mixed-method study revealed accelerated RN-to-BSN (bachelor of science in nursing) students' levels of satisfaction with a wide range of college services in a small university. Building on seminal research on the topic [Boylston, M. T., Peters, M. A., & Lacey, M. (2004). Adult student satisfaction in traditional and accelerated RN-to-BSN programs. Journal of Professional Nursing, 20, 23-32.], the Noel-Levitz Adult Student Priorities Survey (ASPS) and qualitative interview data revealed primary factors involved in nontraditional (adult) accelerated RN-to-BSN student satisfaction. The ASPS assesses both satisfaction with and importance of the following factors: academic advising effectiveness, academic services, admissions and financial aid effectiveness, campus climate, instructional effectiveness, registration effectiveness, safety and security, and service excellence. Of these factors, participants considered instructional effectiveness and academic advising effectiveness as most important and concomitantly gave high satisfaction ratings to each. In contrast, convenience of the bookstore, counseling services, vending machines, and computer laboratories were given low importance ratings. The participants cited convenience as a strong marketing factor. Loss of financial aid or family crisis was given as a reason for withdrawal and, for most students, would be the only reason for not completing the BSN program. Outcomes of this investigation may guide faculty, staff, and administrators in proactively creating an educational environment in which a nontraditional student can succeed. PMID:18804082

  10. SERVICE RESEARCH OUTCOME STUDY (SROS)

    EPA Science Inventory

    The Services Research Outcome Study (SROS) is a follow-up to the 1990 Drug Services Research Survey (DSRS). The SROS provided for a five year post-discharge follow-up of a broadly representative sample of approximately 3,000 drug clients treated during 1989 to 1990. The study asc...

  11. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect

    Downer, Michael C.

    2014-12-19

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10

  12. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing and implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.

  13. Medical research and multidisciplinary applications with laser-accelerated beams: the ELIMED netwotk at ELI-Beamlines

    NASA Astrophysics Data System (ADS)

    Tramontana, A.; Anzalone, A.; Candiano, G.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F.; Pisciotta, P.; Raffaele, L.; Romano, F.; Romano, F. P.; Stancampiano, C.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Tudisco, S.

    2014-04-01

    Laser accelerated proton beams represent nowadays an attractive alternative to the conventional ones and they have been proposed in different research fields. In particular, the interest has been focused in the possibility of replacing conventional accelerating machines with laser-based accelerators in order to develop a new concept of hadrontherapy facilities, which could result more compact and less expensive. With this background the ELIMED (ELIMED: ELI-Beamlines MEDical applications) research project has been launched by LNS-INFN researchers (Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare, Catania, IT) and ASCR-FZU researchers (Academy of Sciences of the Czech Republic-Fyzikální ústar, Prague, Cz), within the pan-European ELI-Beamlines facility framework. Its main purposes are the demonstration of future applications in hadrontherapy of optically accelerated protons and the realization of a laser-accelerated ion transport beamline for multidisciplinary applications. Several challenges, starting from laser-target interaction and beam transport development, up to dosimetric and radiobiological issues, need to be overcome in order to reach the final goals. The design and the realization of a preliminary beam handling and dosimetric system and of an advanced spectrometer for high energy (multi-MeV) laser-accelerated ion beams will be shortly presented in this work.

  14. Development of an H- ion source for Japan Proton Accelerator Research Complex upgradea)

    NASA Astrophysics Data System (ADS)

    Ohkoshi, K.; Namekawa, Y.; Ueno, A.; Oguri, H.; Ikegami, K.

    2010-02-01

    A cesium (Cs) free H- ion source driven with a lanthanum hexaboride (LaB6) filament was adopted as an ion source for the first stage of the Japan Proton Accelerator Research Complex (J-PARC). At present, the maximum H- ion current produced by the ion source is 38 mA, using which J-PARC can produce a proton beam power of 0.6 MW by accelerating it with the 181 MeV linac and the 3 GeV rapid cycling synchrotron. In order to satisfy the beam power of 1 MW required for the second stage of the J-PARC in the near future, we have to increase the ion current to more than 60 mA. Therefore, we have started to develop a Cs-seeded ion source by adding an external Cs-seeding system to a J-PARC test ion source that has a structure similar to that of the J-PARC ion source except for the fact that the plasma chamber is slightly larger. As a result, a H- ion current of more than 70 mA was obtained from the ion source using a tungsten filament instead of a LaB6 filament with a low arc discharge power of 15 kW (100 V, 150 A).

  15. Inclined Planes and Motion Detectors: A Study of Acceleration.

    ERIC Educational Resources Information Center

    Tracy, Dyanne M.

    2001-01-01

    Presents an activity in which students work in cooperative groups and roll balls down inclined planes, collect data with the help of an electronic motion detector, and represent data with a graphing calculator to explore concepts such as mass, gravity, velocity, and acceleration. (Contains 12 references.) (Author/ASK)

  16. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    SciTech Connect

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf; Auer, Siegfried; Baust, Guenter; Matt, Guenter; Otto, Katharina; Colette, Andrew; Drake, Keith; Kempf, Sascha; Munsat, Tobin; Shu, Anthony; Sternovsky, Zoltan; Fiege, Katherina; Postberg, Frank; Gruen, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Mellert, Tobias; and others

    2011-09-15

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and

  17. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research.

    PubMed

    Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf

    2011-09-01

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and

  18. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    NASA Astrophysics Data System (ADS)

    Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf

    2011-09-01

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s-1. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s-1 and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is

  19. Recirculation acceleration of high current relativistic electron beams--a feasibility study. Final report

    SciTech Connect

    Wilson, M.

    1981-06-01

    One of the advanced accelerator concepts under study at NBS involves multiplying the energy gained by a long-pulse, high current relativistic electron beam by directing the beam several times through the same induction accelerator during the time of one voltage pulse. Should this concept of the recirculation acceleration of intense electron beams be proven feasible, the savings in cost, size, and weight of a high current accelerator would be considerable. Energy gain by recirculation acceleration through a small-scale proof-of principle facility has been demonstrated at NBS. The study employs a 750A, 750keV electron beam pulse, 2 microsec long, generated by a linear induction accelerator of unique design which was also developed at NBS.

  20. International Research and Studies Program

    ERIC Educational Resources Information Center

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The International Research and Studies Program supports surveys, studies, and instructional materials development to improve and strengthen instruction in modern foreign languages, area studies, and other international fields. The purpose of the program is to improve and strengthen instruction in modern foreign languages, area studies and other…

  1. Chemical Accelerator Studies of Ion-Molecule Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Jingfeng

    1995-01-01

    A chemical accelerator instrument has been used to study the dynamics of ion-molecule reaction processes in the gas phase. Specifically, the following reactions are investigated: eqalign{rm CO^+ + H_2&longrightarrowrm HCO ^+ + Hcrrm CO^+ + D_2& longrightarrowrm DCO^+ + Dcrrm CO^+ + HDlongrightarrow &rm HCO ^+ (DCO^+) + D (H)cr} . Both angular and velocity distributions of reactively scattered product ions are measured, as well as reaction cross sections as a function of reactant relative translational energy. Formation of HCO^+ ion from rm CO^+ + H_2 over the collision energy range from 0.35 to 3.02 eV (c.m.) follows closely the predictions of the spectator stripping model, and results in highly excited HCO^+ product ions. This reaction is found to proceed via a direct impulsive mechanism, without any long-lived intermediate complexes involved. The reaction cross section is proportional to E_{T} ^{-1/2}, where E_ {rm T} is the reactant ion relative translational energy. Deuterium atom transfer from D_2 to CO^+ over the collision energy range from 0.41 to 5.14 eV (c.m.) occurs also in a direct process. Reaction cross section is proportional to rm E_{T}^{ -1/2}. The results are very similar to those of the reaction rm CO^+ + H_2. The reaction CO^+ + HD has two product channels, leading to the formation of HCO ^+ and DCO^+, respectively. The reaction is studied over the energy range from 0.88 to 5.00 eV (c.m.). It is found that the production of HCO^+ is consistently the slightly favored reaction channel, which is attributed to the orientation isotope effect. The translational exoergicity for both reaction channels follows closely the prediction of spectator stripping model. Product DCO^+ ions are in higher excited states than HCO ^+ ions. Product velocity distribution contour maps indicate that, at the lowest energies, the DCO ^+ production channel has a longer reaction duration than the HCO^+ production channel, but both reaction channels are dominated by direct

  2. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery

    PubMed Central

    Trifiletti, Daniel M.; Showalter, Timothy N.

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of “big data,” it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy. PMID:26697409

  3. Radioactive microsphere study of cerebral blood flow under acceleration. Technical report

    SciTech Connect

    Greenlees, K.J.; Yoder, J.E.; Toth, D.M.; Oloff, C.M.; Karl, A.

    1980-11-01

    A study using radioactive microspheres for the investigation of cerebral blood flow during acceleration is described. Details of a technique for the blunt dissection of cerebral tissues are included. Results of flow studies at 3 and 5 G sub z acceleration stress indicate there is no selective regional preservation of cerebral tissue. (Author)

  4. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    NASA Astrophysics Data System (ADS)

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  5. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  6. A tracking code for injection and acceleration studies in synchrotrons

    SciTech Connect

    Lessner, E.; Symon, K. |

    1996-11-01

    CAPTURE-SPC is a Monte-Carlo-based tracking program that simulates the injection and acceleration processes in proton synchrotrons. The time evolution of a distribution of charged particles is implemented by a symplectic, second-order-accurate integration algorithm. The recurrence relations follow a time-stepping leap--frog method. The time-step can be varied optionally to reduce computer time. Space-charge forces are calculated by binning the phase-projected particle distribution. The statistical fluctuations introduced by the binning process are reduced by presmoothing the data by the cloud-in-cell method and by filtering. Both the bin size and amount of filtering can be varied during the acceleration cycle so that the bunch fine structure is retained while the short wavelength noise is attenuated. The initial coordinates of each macro particle together with its time of injection are retained throughout the calculations. This information is useful in determining low-loss injection schemes.

  7. Case study: Accelerated schedule for MULTI LIMS installation

    SciTech Connect

    Ibsen, T.G.

    1994-05-01

    This presentation focuses on the steps taken by the Westinghouse Hanford Company to meet an accelerated schedule for configuration and implementation of the MULTI LIMS in a multiple laboratory environment. The Westinghouse Hanford Company purchased the MULTI LIMS Laboratory Information Management System in August, 1993. Hardware delivery began in October, 1993. Less than four months later, the initial configuration was released for use in two Westinghouse Hanford Company laboratories. Several major obstacles were overcome during implementation. These include information gathering for base table loading, user training, acceptance of the new system by users of a legacy system, and hardware configuration issues. In summary, steps needed to be taken to meet the accelerated implementation schedule of the MULTI LIMS at the Hanford Site. The obstacles faced were overcome through the in-depth knowledge and help of the vendor and the dedication and drive of the technical staff.

  8. Transverse effects in plasma wakefield acceleration at FACET - Simulation studies

    SciTech Connect

    Adli, E.; Hogan, M.; Frederico, J.; Litos, M. D.; An, W.; Mori, W.

    2012-12-21

    We investigate transverse effects in the plasma-wakefield acceleration experiments planned and ongoing at FACET. We use PIC simulation tools, mainly QuickPIC, to simulate the interaction of the drive electron beam and the plasma. In FACET a number of beam dynamics knobs, including dispersion and bunch length knobs, can be used to vary the beam transverse characteristics in the plasma. We present simulation results and the status of the FACET experimental searches.

  9. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research

    PubMed Central

    Seiler, Catherine Y.; Park, Jin G.; Sharma, Amit; Hunter, Preston; Surapaneni, Padmini; Sedillo, Casey; Field, James; Algar, Rhys; Price, Andrea; Steel, Jason; Throop, Andrea; Fiacco, Michael; LaBaer, Joshua

    2014-01-01

    The mission of the DNASU Plasmid Repository is to accelerate research by providing high-quality, annotated plasmid samples and online plasmid resources to the research community through the curated DNASU database, website and repository (http://dnasu.asu.edu or http://dnasu.org). The collection includes plasmids from grant-funded, high-throughput cloning projects performed in our laboratory, plasmids from external researchers, and large collections from consortia such as the ORFeome Collaboration and the NIGMS-funded Protein Structure Initiative: Biology (PSI:Biology). Through DNASU, researchers can search for and access detailed information about each plasmid such as the full length gene insert sequence, vector information, associated publications, and links to external resources that provide additional protein annotations and experimental protocols. Plasmids can be requested directly through the DNASU website. DNASU and the PSI:Biology-Materials Repositories were previously described in the 2010 NAR Database Issue (Cormier, C.Y., Mohr, S.E., Zuo, D., Hu, Y., Rolfs, A., Kramer, J., Taycher, E., Kelley, F., Fiacco, M., Turnbull, G. et al. (2010) Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res., 38, D743–D749.). In this update we will describe the plasmid collection and highlight the new features in the website redesign, including new browse/search options, plasmid annotations and a dynamic vector mapping feature that was developed in collaboration with LabGenius. Overall, these plasmid resources continue to enable research with the goal of elucidating the role of proteins in both normal biological processes and disease. PMID:24225319

  10. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  11. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  12. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  13. Discovering the Meaning of Unity of Purpose: A Case Study of Fourteen Accelerated Schools.

    ERIC Educational Resources Information Center

    Davidson, Betty M.; Dell, Geralyn L.

    This paper presents findings of a study that examined how teachers restructuring schools came to understand the meaning of the term "unity of purpose." Fourteen Louisiana schools, comprised primarily of high-risk student populations, implemented the accelerated-schools model of restructuring. The accelerated school model is based on three…

  14. Accelerator and Fusion Research Division annual report, October 1980-September 1981. Fiscal year, 1981

    SciTech Connect

    Johnson, R.K.; Thomson, H.A.

    1982-04-01

    Major accomplishments during fiscal year 1981 are presented. During the Laboratory's 50th anniversary celebrations, AFRD and the Nuclear Science Division formally dedicated the new (third) SuperHILAC injector that adds ions as heavy as uranium to the ion repertoire at LBL's national accelerator facilities. The Bevalac's new multiparticle detectors (the Heavy Ion Spectrometer System and the GSI-LBL Plastic Ball/Plastic Wall) were completed in time to take data before the mid-year shutdown to install the new vacuum liner, which passed a milestone in-place test with flying colors in September. The Bevalac biomedical program continued patient treatment with neon beams aimed at establishing a complete data base for a dedicated biomedical accelerator, the design of which NCI funded during the year. Our program to develop alternative Isabelle superconducting dipole magnets, which DOE initiated in FY80, proved the worth of a new magnet construction technique and set a world record - 7.6 Tesla at 1.8 K - with a model magnet in our upgraded test facility. Final test results at LBL were obtained by the Magnetic Fusion Energy Group on the powerful neutral beam injectors developed for Princeton's TFTR. The devices exceeded the original design requirements, thereby completing the six-year, multi-million-dollar NBSTF effort. The group also demonstrated the feasibility of efficient negative-ion-based neutral beam plasma heating for the future by generating 1 A of negative ions at 34 kV for 7 seconds using a newly developed source. Collaborations with other research centers continued, including: (1) the design of LBL/Exxon-dedicated beam lines for the Stanford Synchrotron Radiation Laboratory; (2) beam cooling tests at Fermilab and the design of a beam cooling system for a proton-antiproton facility there; and (3) the development of a high-current betatron for possible application to a free electron laser.

  15. Cosmic-Ray Accelerators in Milky Way studied with the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park

    2012-05-04

    High-energy gamma-ray astrophysics is now situated at a confluence of particle physics, plasma physics and traditional astrophysics. Fermi Gamma-ray Space Telescope (FGST) and upgraded Imaging Atmospheric Cherenkov Telescopes (IACTs) have been invigorating this interdisciplinary area of research. Among many new developments, I focus on two types of cosmic accelerators in the Milky-Way galaxy (pulsar, pulsar wind nebula, and supernova remnants) and explain discoveries related to cosmic-ray acceleration.

  16. Road Map for Studies to Produce Consistent and High Performance SRF Accelerator Structures

    SciTech Connect

    Ganapati Rao Myneni; John F. O’Hanlon

    2007-06-20

    Superconducting Radio Frequency (SRF) accelerator structures made from high purity niobium are becoming the technological choice for a large number of future accelerators and energy recovery LINAC’s (ERL). Most of the presently planned accelerators and ERL requirements will be met with some effort by the current SRF technology where accelerating gradients of about 20 MV/m can be produced on a routine basis with an acceptable yield. However, the XFEL at DESY and the planned ILC require acceleration gradients more than 28 MV/m and 35 MV/m respectively. At the recent ILC meeting at Snowmass (2005) concern was expressed regarding the wide spread in the achieved accelerator gradients and the relatively low yields. For obtaining accelerating gradients of 35 MV/m in SRF accelerator structures consistently, a deeper understanding of the causes for the spread has to be gained and advances have to be made in many scientific and high technology fields, including materials, surface and vacuum sciences, application of reliable processes and procedures, which provide contamination –free surfaces and avoid recontamination and cryogenics related technologies. In this contribution a road map for studies needed to produce consistent and high performance SRF accelerator structures from the needed materials development to clean and non-recontaminating processes and procedures will be presented.

  17. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex

    SciTech Connect

    Jin, Xinzhe; Nakamoto, Tatsushi; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Harjo, Stefanus; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki; Hemmi, Tsutomu; Umeno, Takahiro

    2013-06-15

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.

  18. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex.

    PubMed

    Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki

    2013-06-01

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire. PMID:23822332

  19. Pre-design of MYRRHA, A Multipurpose Accelerator Driven System for Research and Development

    NASA Astrophysics Data System (ADS)

    D'hondt, P.; Abderrahim, H. Aït; Kupschus, P.; Malambu, E.; Aoust, Th.; Benoit, Ph.; Sobolev, V.; Van Tichelen, K.; Arien, B.; Vermeersch, F.; Jongen, Y.; Ternier, S.; Vandeplassche, D.

    2003-08-01

    One of the main SCK•CEN research facility, namely BR2, is nowadays arriving at an age of 40 years just like the major materials testing reactors (MTR) in the world and in Europe (i.e. BR2 (B-Mol), HFR (EU-Petten), OSIRIS (F-Saclay), R2 (S-Studsvik)). The MYRRHA facility in planning has been conceived as potentially replacing BR2 and to be a fast spectrum facility complementary to the thermal spectrum RJH (Réacteur Jules Horowitz) facility, in planning in France. This situation would give Europe a full research capability in terms of nuclear R&D. Furthermore, the disposal of radioactive wastes resulting from industrial nuclear energy production has still to find a fully satisfactory solution, especially in terms of environmental and social acceptability. Scientists are looking for ways to drastically reduce (by a factor of 100 or more) the radio-toxicity of the High Level Waste (HLW) to be stored in a deep geological repository. This can be achieved via burning of minor actinides (MA) and to a less extent of long-lived fission products (LLFP) in Accelerator Driven Systems. The MYRRHA project contribution will be in helping to demonstrate the ADS concept at reasonable power level and the demonstration of the technological feasibility of MA and LLFP transmutation under real conditions.

  20. Pre-design of MYRRHA, A Multipurpose Accelerator Driven System for Research and Development

    SciTech Connect

    D'hondt, P.; Abderrahim, H. Aiet; Kupschus, P.; Malambu, E.; Aoust, Th.; Benoit, Ph.; Sobolev, V.; Tichelen, K. van; Arien, B.; Vermeersch, F.; Jongen, Y.; Ternier, S.; Vandeplassche, D.

    2003-08-26

    One of the main SCKCEN research facility, namely BR2, is nowadays arriving at an age of 40 years just like the major materials testing reactors (MTR) in the world and in Europe (i.e. BR2 (B-Mol), HFR (EU-Petten), OSIRIS (F-Saclay), R2 (S-Studsvik)). The MYRRHA facility in planning has been conceived as potentially replacing BR2 and to be a fast spectrum facility complementary to the thermal spectrum RJH (Reacteur Jules Horowitz) facility, in planning in France. This situation would give Europe a full research capability in terms of nuclear R and D. Furthermore, the disposal of radioactive wastes resulting from industrial nuclear energy production has still to find a fully satisfactory solution, especially in terms of environmental and social acceptability. Scientists are looking for ways to drastically reduce (by a factor of 100 or more) the radio-toxicity of the High Level Waste (HLW) to be stored in a deep geological repository. This can be achieved via burning of minor actinides (MA) and to a less extent of long-lived fission products (LLFP) in Accelerator Driven Systems. The MYRRHA project contribution will be in helping to demonstrate the ADS concept at reasonable power level and the demonstration of the technological feasibility of MA and LLFP transmutation under real conditions.

  1. Researching in English: Document Study

    ERIC Educational Resources Information Center

    Sawyer, Wayne

    2015-01-01

    In this article I argue for the defining importance of document study for researchers in curriculum. Two examples of previous analyses are provided, one demonstrating an approach to language analysis of the "Australian Curriculum: English" from the Literature strand, the other a study of the relationship of curricula to each other in…

  2. A study of light ion accelerators for cancer treatment

    SciTech Connect

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer.

  3. Research on acceleration method of reactor physics based on FPGA platforms

    SciTech Connect

    Li, C.; Yu, G.; Wang, K.

    2013-07-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  4. Particle acceleration studies with intense lasers and advanced light sources

    NASA Astrophysics Data System (ADS)

    Murphy, C. D.; Gray, R. J.; MacLellan, D. A.; Rusby, D.; McKenna, P.; Ridgers, C. P.; Booth, N.; Robinson, A. P. L.; Wilson, L.; Green, J. S.

    2013-10-01

    The interaction of lasers with matter is a subject which has progressed rapidly over the last two decades as higher intensity lasers are found to have possible applications in inertial fusion, laboratory astrophysics and ion acceleration for oncology or ultrafast proton probing. All of these applications require a good understanding of laser-electron coupling and fast electron transport in solid targets which has proven difficult to diagnose. Here we present data from an experiment carried out on the Astra Gemini laser system at STFC-Rutherford Appleton Laboratory, where novel targets and diagnostics illuminate the complex processes at play. An outline of how x-ray free electron lasers may further expand our understanding of such processes will also be described.

  5. Dating Studies of Elephant Tusks Using Accelerator Mass Spectrometry

    SciTech Connect

    Sideras-Haddad, E; Brown, T A

    2002-10-03

    A new method for determining the year of birth, the year of death, and hence, the age at death, of post-bomb and recently deceased elephants has been developed. The technique is based on Accelerator Mass Spectrometry radiocarbon analyses of small-sized samples extracted from along the length of a ge-line of an elephant tusk. The measured radiocarbon concentrations in the samples from a tusk can be compared to the {sup 14}C atmospheric bomb-pulse curve to derive the growth years of the initial and final samples from the tusk. Initial data from the application of this method to two tusks will be presented. Potentially, the method may play a significant role in wildlife management practices of African national parks. Additionally, the method may contribute to the underpinnings of efforts to define new international trade regulations, which could, in effect, decrease poaching and the killing of very young animals.

  6. Experimental study of a shock accelerated thin gas layer

    SciTech Connect

    Jacobs, J.W.; Jenkins, D.G.; Klein, D.L.; Benjamin, R.F.

    1993-08-01

    Planar laser-induced fluorescence imaging is utilized in shock-tube experiments to visualize the development of a shock-accelerated thin gas layer. The Richtmyer-Meshkov instability of both sides of the heavy gas layer causes perturbations initially imposed on the two interfaces to develop into one of three distinct flow patterns. Two of the patterns exhibit vortex pairs which travel either upstream or downstream in the shock tube, while the third is a sinuous pattern that shows no vortex development until late in its evolution. The development of the observed patterns as well as the growth in the layer thickness is modeled by considering the dynamics of vorticity deposited in the layer by the shock interaction process. This model yields an expression for the layer growth which is in good agreement with measurements.

  7. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies.

    PubMed

    Mühlbach, Adrian H; Vaucher, Alain C; Reiher, Markus

    2016-03-01

    The inherently high computational cost of iterative self-consistent field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to 30% as a consequence of a reduced number of SCF iterations. PMID:26788887

  8. Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code

    SciTech Connect

    Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi

    2005-05-24

    A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations since the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.

  9. A curated and standardized adverse drug event resource to accelerate drug safety research

    PubMed Central

    Banda, Juan M.; Evans, Lee; Vanguri, Rami S.; Tatonetti, Nicholas P.; Ryan, Patrick B.; Shah, Nigam H.

    2016-01-01

    Identification of adverse drug reactions (ADRs) during the post-marketing phase is one of the most important goals of drug safety surveillance. Spontaneous reporting systems (SRS) data, which are the mainstay of traditional drug safety surveillance, are used for hypothesis generation and to validate the newer approaches. The publicly available US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) data requires substantial curation before they can be used appropriately, and applying different strategies for data cleaning and normalization can have material impact on analysis results. We provide a curated and standardized version of FAERS removing duplicate case records, applying standardized vocabularies with drug names mapped to RxNorm concepts and outcomes mapped to SNOMED-CT concepts, and pre-computed summary statistics about drug-outcome relationships for general consumption. This publicly available resource, along with the source code, will accelerate drug safety research by reducing the amount of time spent performing data management on the source FAERS reports, improving the quality of the underlying data, and enabling standardized analyses using common vocabularies. PMID:27193236

  10. Heavy ion fusion accelerator research (HIFAR) half-year report: October 1, 1986-March 31, 1987

    SciTech Connect

    Not Available

    1987-04-01

    For this report we have collected the papers presented by the HIFAR group at the IEEE Particle Accelerator Conference held in Washington, DC, on March 16-19, 1987, which essentially coincides with the end of the reporting period. In addition, we report on research to determine the cause of the failures of Re-X insulator that are used as the high-voltage feed-through for the electrostatic quadrupoles on MBE-4. This report contains papers on the following topics: LBL multiple beam experiments, pulsers for the induction linac experiment (MBE-4), HIF insulator failure, experimental measurement of emittance growth in mismatched space-charge dominated beams, the effect of nonlinear forces on coherently oscillating space-charge dominated beams, space-charge effects in a bending magnet system, transverse combining of nonrelativistic beams in a multiple beam induction linac, comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF driver. Eight individual papers have been indexed separately. (LSP)

  11. A curated and standardized adverse drug event resource to accelerate drug safety research.

    PubMed

    Banda, Juan M; Evans, Lee; Vanguri, Rami S; Tatonetti, Nicholas P; Ryan, Patrick B; Shah, Nigam H

    2016-01-01

    Identification of adverse drug reactions (ADRs) during the post-marketing phase is one of the most important goals of drug safety surveillance. Spontaneous reporting systems (SRS) data, which are the mainstay of traditional drug safety surveillance, are used for hypothesis generation and to validate the newer approaches. The publicly available US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) data requires substantial curation before they can be used appropriately, and applying different strategies for data cleaning and normalization can have material impact on analysis results. We provide a curated and standardized version of FAERS removing duplicate case records, applying standardized vocabularies with drug names mapped to RxNorm concepts and outcomes mapped to SNOMED-CT concepts, and pre-computed summary statistics about drug-outcome relationships for general consumption. This publicly available resource, along with the source code, will accelerate drug safety research by reducing the amount of time spent performing data management on the source FAERS reports, improving the quality of the underlying data, and enabling standardized analyses using common vocabularies. PMID:27193236

  12. Taking Control of Castleman Disease: Leveraging Precision Medicine Technologies to Accelerate Rare Disease Research

    PubMed Central

    Newman, Samantha Kass; Jayanthan, Raj K.; Mitchell, Grant W.; Carreras Tartak, Jossie A.; Croglio, Michael P.; Suarez, Alexander; Liu, Amy Y.; Razzo, Beatrice M.; Oyeniran, Enny; Ruth, Jason R.; Fajgenbaum, David C.

    2015-01-01

    Castleman disease (CD) is a rare and heterogeneous disorder characterized by lymphadenopathy that may occur in a single lymph node (unicentric) or multiple lymph nodes (multicentric), the latter typically occurring secondary to excessive proinflammatory hypercytokinemia. While a cohort of multicentric Castleman disease (MCD) cases are caused by Human Herpes Virus-8 (HHV-8), the etiology of HHV-8 negative, idiopathic MCD (iMCD), remains unknown. Breakthroughs in “omics” technologies that have facilitated the development of precision medicine hold promise for elucidating disease pathogenesis and identifying novel therapies for iMCD. However, in order to leverage precision medicine approaches in rare diseases like CD, stakeholders need to overcome several challenges. To address these challenges, the Castleman Disease Collaborative Network (CDCN) was founded in 2012. In the past 3 years, the CDCN has worked to transform the understanding of the pathogenesis of CD, funded and initiated genomics and proteomics research, and united international experts in a collaborative effort to accelerate progress for CD patients. The CDCN’s collaborative structure leverages the tools of precision medicine and serves as a model for both scientific discovery and advancing patient care. PMID:26604862

  13. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  14. The study of two-dimensional oscillations using a smartphone acceleration sensor: example of Lissajous curves

    NASA Astrophysics Data System (ADS)

    Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.

    2015-08-01

    A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for three experiments. This work introduces an example of how two-dimensional oscillations can be easily studied with a smartphone acceleration sensor.

  15. Simulation of launch and re-entry acceleration profiles for testing of Shuttle and unmanned microgravity research payloads

    NASA Technical Reports Server (NTRS)

    Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, D. K.

    1988-01-01

    A procedure was developed for the simulation of the launch and reentry acceleration profiles of the Space Shuttle (3.3 and 1.7 g maximum, respectively) and of two versions of NASA's proposed materials research Reusable Reentry Satellite (RRS) (8 and 4 g maximum, respectively). With a 7-m centrifuge, the time dependence of five different acceleration episodes was simulated for payload masses up to 59 kg. Test results obtained for the Materials Dispersion Apparatus, a commercial low-cost payload device, are presented.

  16. Induction accelerators and free-electron lasers at LLNL: Beam Research Program

    SciTech Connect

    Briggs, R.J.

    1989-02-15

    Linear induction accelerators have been developed to produce pulses of charged particles at voltages exceeding the capabilities of single-stage, diode-type accelerators and at currents too high rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multistage induction machine. The advent of magnetic pulse power systems makes sustained operation at high repetition rates practical, and high-average-power capability is very likely to open up many new applications of induction machines. In Part A of this paper, we survey the US induction linac technology, emphasizing electron machines. We also give a simplified description of how induction machines couple energy to the electron beam to illustrate many general issues that designers of high-brightness and high-average-power induction linacs must consider. We give an example of the application of induction accelerator technology to the relativistic klystron, a power source for high-gradient accelerators. In Part B we address the application of LIAs to free-electron lasers. The multikiloampere peak currents available from linear induction accelerators make high-gain, free-electron laser amplifier configurations feasible. High extraction efficiencies in a single mass of the electron beam are possible if the wiggler parameters are appropriately ''tapered'', as recently demonstrated at millimeter wavelengths on the 4-MeV ELF facility. Key issues involved in extending the technology to shorter wavelengths and higher average powers are described. Current FEL experiments at LLNL are discussed. 5 refs., 16 figs.

  17. Comparative study of medium damped and detuned linear accelerator structures

    SciTech Connect

    Jean-Francois Ostiguy et al.

    2001-08-22

    Long range wakefields are a serious concern for a future linear collider based on room temperature accelerating structures. They can be suppressed either by detuning and or local damping or with some combination of both strategies. Detuning relies on precisely phasing the contributions of the dipole modes excited by the passage of a single bunch. This is accomplished by controlling individual mode frequencies, a process which dictates individual cell dimensional tolerances. Each mode must be excited with the correct strength; this in turn, determines cell-to-cell alignment tolerances. In contrast, in a locally damped structure, the modes are attenuated at the cell level. Clearly, mode frequencies and relative excitation become less critical in that context; mechanical fabrication tolerances can be relaxed. While local damping is ideal from the stand-point of long range wakefield suppression, this comes at the cost of reducing the shunt impedance and possibly unacceptable localized heating. Recently, the Medium Damped Structure (MDS), a compromise between detuning and local damping, has generated some interest. In this paper, we compare a hypothetical MDS to the NLC Rounded Damped Detuned Structure (RDDS) and investigate possible advantages from the standpoint fabrication tolerances and their relation to beam stability and emittance preservation.

  18. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  19. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    NASA Astrophysics Data System (ADS)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  20. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1985-March 31, 1986

    SciTech Connect

    Not Available

    1986-05-01

    The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification - both new features in a linac - without significant dilution of the optical quality of the beams; (4) fianl bunching, transport, and accurate focussing on a small target.

  1. Experimental Study of a Single-Coil Induced-Electromotive-Force Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Matthews, Clarence W.; Cuddihy, William F.

    1961-01-01

    An experimental study was made of a single-coil induced-electromotive-force plasma accelerator which used a capacitor discharge for the driving force. A strong shock was observed from the first pulse with a velocity of 10(exp 6) centimeters per second. This shock was followed by three or four discharges which produced plasmoids moving at about 5 x 10(exp 6) centimeters per second. The efficiency of the accelerator was estimated to be about 3 percent in the production of the high-velocity plasmoids. Suggestions are made for the improvement of this type of accelerator.

  2. HADRON ACCELERATORS: Study on CYCIAE-100 radiation field and residual radioactivity

    NASA Astrophysics Data System (ADS)

    Bi, Yuan-Jie; Zhang, Tian-Jue; Jia, Xian-Lu; Zhou, Zheng-He; Wang, Feng; Wei, Su-Min; Zhong, Jun-Qing; Tang, Chuan-Xiang

    2009-06-01

    The accelerators should be properly designed to make the radiation field produced by beam loss satisfy the dose limits. The radiation field for high intensity H- cyclotron includes prompt radiation and residual radiation field. The induced radioactivity in accelerator components is the dominant source of occupational radiation exposure if the accelerator is well shielded. The source of radiation is the beam loss when cyclotron is operating. In this paper, the radiation field for CYCIAE-100 is calculated using Monte Carlo method and the radioactive contamination near stripping foil is studied. A method to reduce the dose equivalent rate of maintenance staff is also given.

  3. Accelerated aging studies and environmental stability of prototype tamper tapes

    SciTech Connect

    Wright, B.W.; Wright, C.W.; Bunk, A.R.

    1995-05-01

    This report describes the results of accelerated aging experiments (weathering) conducted on prototype tamper tapes bonded to a variety of surface materials. The prototype tamper tapes were based on the patented Confirm{reg_sign} tamper-indicating technology developed and produced by 3M Company. Tamper tapes bonded to surfaces using pressure sensitive adhesive (PSA) and four rapid-set adhesives were evaluated. The configurations of the PSA-bonded tamper tapes were 1.27-cm-wide Confirm{reg_sign} 1700 windows with vinyl underlay and 2.54-cm-wide Confirm{reg_sign} 1700 windows with vinyl and polyester underlays. The configurations of the rapid-set adhesive-bonded tamper tapes were 2.54-cm-wide Confirm{reg_sign} (1700, 1500 with and without primer, and 1300) windows with vinyl underlay. Surfaces used for bonding included aluminum, steel, stainless steel, Kevlar{reg_sign}, brass, copper, fiberglass/resin with and without gel coat, polyurethane-painted steel, acrylonitrile:butadiene:styrene plastic, polyester fiberglass board, Lexan polycarbonate, and cedar wood. Weathering conditions included a QUV cabinet (ultraviolet light at 60{degrees}C, condensing humidity at 40{degrees}C), a thermal cycling cabinet (-18{degrees}C to 46{degrees}C), a Weather-O-Meter (Xenon lamp), and exposure outdoors in Daytona Beach, Florida. Environmental aging exposures lasted from 7 weeks to 5 months. After exposure, the tamper tapes were visually examined and tested for transfer resistance. Tamper tapes were also exposed to a variety of chemical liquids (including organic solvents, acids, bases, and oxidizing liquids) to determine chemical resistance and to sand to determine abrasion resistance.

  4. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1985-September 30, 1985

    SciTech Connect

    Not Available

    1985-10-01

    The heavy ion accelerator is profiled. Energy losses, currents, kinetic energy, beam optics, pulse models and mechanical tolerances are included in the discussion. In addition, computational efforts and an energy analyzer are described. 37 refs., 27 figs. (WRF)

  5. Experimental Research on the Laser Cyclotron Auto-Resonance Accelerator “LACARA”

    SciTech Connect

    Marshall, T C

    2008-11-11

    The Laser Cyclotron Auto-Resonant Accelerator LACARA has successfully operated this year. Results are summarized, an interpretation of operating data is provided in the body of the report, and recommendations are made how the experiment should be carried forward. The Appendix A contains a description of the LACARA apparatus, currently installed at the Accelerator Test Facility, Brookhaven National Laboratory. This report summarizes the project, extending over three grant-years.

  6. Interesting experimental results in Japan Proton Accelerator Research Complex H- ion-source development (invited).

    PubMed

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K

    2010-02-01

    The following interesting experimental results observed in Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source developments are reviewed. It was proven that almost all of H(-) ions were produced with surface reactions in cesium (Cs)-free J-PARC H(-) ion-sources. The world's most intense class H(-) ion current of 38 mA in Cs-free ion sources for a high-energy linac was attained by an optimal shape and high temperature of the plasma electrode (PE), usage of a lanthanum hexaboride (LaB(6)) filament, and a newly devised high-power constant-current pulsed-arc power supply indispensable for it. It was also proven that the H(-) ion current could be increased to more than 40 mA by optimizing LaB(6)-filament shape. The surface elemental analysis of the PE after operation with a LaB(6)-filament showed that it was coated by boron (B) 95.5%, lanthanum (La) 2.5%, and oxygen (O) 1.9%. The H(-) ion current decreased by about 20% when a tungsten (W) filament was used instead of a LaB(6)-filament. The H(-) ion current could not be increased by seeding cesium (Cs) if the LaB(6)-filament was used. On the other hand, it was increased to more than 70 mA with much lower arc current of 150 A if Cs was seeded when a W-filament was used. PMID:20192389

  7. Progress towards the development of transient ram accelerator simulation as part of the U.S. Air Force Armament Directorate Research Program

    NASA Astrophysics Data System (ADS)

    Sinha, N.; York, B. J.; Dash, S. M.; Drabczuk, R.; Rolader, G. E.

    1992-07-01

    This paper describes the development of an advanced CFD simulation capability in support of the U.S. Air Force Armament Directorate's ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, high pressure thermochemistry, etc. Selected ram accelerator simulations are presented which serve to exhibit the CRAFT code's capabilities and identify some of the principal research/design issues.

  8. Using Music to Accelerate Language Learning: An Experimental Study

    ERIC Educational Resources Information Center

    Legg, Robert

    2009-01-01

    In recent years there has been considerable public interest in the extra-musical effects of music education, but this has been accompanied by sustained scholarly investigation only to some extent. Research findings have tentatively suggested, however, that a relationship exists between musical learning and language development. This empirical…

  9. Characterization techniques for fixed-field alternating gradient accelerators and beam studies using the KURRI 150 MeV proton FFAG

    NASA Astrophysics Data System (ADS)

    Sheehy, S. L.; Kelliher, D. J.; Machida, S.; Rogers, C.; Prior, C. R.; Volat, L.; Haj Tahar, M.; Ishi, Y.; Kuriyama, Y.; Sakamoto, M.; Uesugi, T.; Mori, Y.

    2016-07-01

    In this paper we describe the methods and tools used to characterize a 150 MeV proton scaling fixed field alternating gradient (FFAG) accelerator at Kyoto University Research Reactor Institute. Many of the techniques used are unique to this class of machine and are thus of relevance to any future FFAG accelerator. For the first time we detail systematic studies undertaken to improve the beam quality of the FFAG. The control of beam quality in this manner is crucial to demonstrating high power operation of FFAG accelerators in future.

  10. Accelerator mass spectrometry in the study of vitamin and mineral metabolism in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accelerator mass spectrometry is an isotopic ratio method that can estimate the concentrations of long-lived radioisotopes such as carbon-14 and calcium-41, making it useful in biochemical and physiological research. It is capable of measuring radio-labeled nutrients and their metabolites in attomol...

  11. Communicating Qualitative Research Study Designs to Research Ethics Review Boards

    ERIC Educational Resources Information Center

    Ells, Carolyn

    2011-01-01

    Researchers using qualitative methodologies appear to be particularly prone to having their study designs called into question by research ethics or funding agency review committees. In this paper, the author considers the issue of communicating qualitative research study designs in the context of institutional research ethics review and offers…

  12. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  13. The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations

    SciTech Connect

    Ashour-Abdalla, Maha

    2011-01-04

    To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R{sub E} to 23 R{sub E} in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R{sub E} and x = -15 R{sub E}. In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x {approx}-10 R{sub E}) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.

  14. Accelerating Struggling Readers' Progress: A Comparative Analysis of Expert Opinion and Current Research Recommendations

    ERIC Educational Resources Information Center

    Reutzel, D. Ray; Smith, John A.

    2004-01-01

    In this article, we review the findings of Rona Flippo's (1998) "Expert Study" within the comparative context of recently published reading research reports such as the National Reading Panel report (National Institute of Child Health and Human Development, 2000) and Preventing Reading Difficulties in Young Children (Snow, Burns, & Griffin, 1998).…

  15. Development of the CRISP Package for Spallation Studies and Accelerator-Driven Systems

    SciTech Connect

    Anefalos, S.; Deppman, A.; Silva, Gilson da; Maiorino, J.R.; Santos, A. dos; Garcia, F.

    2005-09-15

    Power generation from nuclear reactors provides an almost inexhaustive power source due to the huge quantities of nuclear fuel existent in our planet, which guarantees its utilization for thousands of years. Interest has been shifted to the so-called hybrid reactors [accelerator-driven systems (ADS)] as an alternative technology for power generation and transmutation, thus requiring precise knowledge about nuclear structure and nuclear reaction characteristics. Research groups from Instituto de Fisica, Universidade de Sao Paulo and Brazilian Center for Research in Physics made a joint effort to develop a computer program, CRISP, to calculate the intranuclear cascade proprieties and the nuclear evaporation process, present in all nuclear reactions with energies above a few tens of mega-electron-volts, using Monte Carlo techniques. Some reaction channels were included in these programs, resulting in a more realistic representation of the processes involved, aiming at reactor physics studies and academic studies about hadron and meson properties in nuclear matter. Some results obtained with this code and a comparison with experimental data are presented. Although all these results are preliminary, they are very consistent with the available experimental data. Since the applicability of the CRISP package has a wide range of options, especially in ADS, some results describing the effectiveness of the code were achieved.

  16. Motion sickness and otolith sensitivity - A pilot study of habituation to linear acceleration

    NASA Technical Reports Server (NTRS)

    Potvin, A. R.; Sadoff, M.; Billingham, J.

    1977-01-01

    Astronauts, particularly in Skylab flights, experienced varying degrees of motion sickness lasting 3-5 days. One possible mechanism for this motion sickness adaptation is believed to be a reduction in otolith sensitivity with an attendant reduction in sensory conflict. In an attempt to determine if this hypothesis is valid, a ground-based pilot study was conducted on a vertical linear accelerator. The extent of habituation to accelerations which initially produced motion sickness was evaluated, along with the possible value of habituation training to minimize the space motion sickness problem. Results showed that habituation occurred for 6 of the 8 subjects tested. However, in tests designed to measure dynamic and static otolith function, no significant differences between pre- and post-habituation tests were observed. Cross habituation effects to a standard Coriolis acceleration test were not significant. It is unlikely that ground-based pre-habituation to linear accelerations of the type examined would alter susceptibility to space motion sickness.

  17. Theoretical study of self-balancing missiles. [design for maximum vertical or lateral accelerations

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.

    1976-01-01

    A theoretical study based on linear theory is presented for two types of 'self-balancing' missiles, designed to accelerate vertically or laterally without pitching or yawing. One type of missile had a variable-incidence wing and the other type had wing flaps to provide acceleration. The main objective of this investigation is to compare the maximum available acceleration for these self-balancing missiles with that of conventional pitching-type missiles. Ten different configurations were considered. The results indicate that self-balancing missiles with either variable wing incidence or wing flaps are feasible, but that the maximum available acceleration for these missiles is less than for a conventional pitching-type missile having the same wing and tail surfaces.

  18. Genetic studies in alcohol research

    SciTech Connect

    Karp, R.W.

    1994-12-15

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) supports research to elucidate the specific genetic factors, now largely unknown, which underlie susceptibility to alcoholism and its medical complications (including fetal alcohol syndrome). Because of the genetic complexity and heterogeneity of alcoholism, identification of the multiple underlying factors will require the development of new study designs and methods of analysis of data from human families. While techniques of genetic analysis of animal behavioral traits (e.g., targeted gene disruption, quantitative trait locus (QTL) mapping) are more powerful that those applicable to humans (e.g., linkage and allelic association studies), the validation of animal behaviors as models of aspects of human alcoholism has been problematic. Newly developed methods for mapping QTL influencing animal behavioral traits can not only permit analyses of human family data to be directly informed by the results of animal studies, but can also serve as a novel means of validating animal models of aspects of alcoholism. 55 refs.

  19. A Non-scaling Fixed Field Alternating Gradient Accelerator for the Final Acceleration Stage of the International Design Study of the Neutrino Factory.

    SciTech Connect

    Berg, J.S.; Aslaninejad, M.; Pasternak, J.; Witte, H.; Bliss, N. Cordwell M.; Jones, T.; Muir, A., Kelliher, D.; Machida, S.

    2011-09-04

    The International Design Study of the Neutrino Factory (IDS-NF) has recently completed its Interim Design Report (IDR), which presents our current baseline design of the neutrino factory. To increase the efficiency and reduce the cost of acceleration, the IDR design uses a linear non-scaling fixed field alternating gradient accelerator (FFAG) for its final acceleration stage. We present the current lattice design of that FFAG, including the main ring plus its injection and extraction systems. We describe parameters for the main ring magnets, kickers, and septa, as well as the power supplies for the kickers. We present a first pass at an engineering layout for the ring and its subsystems.

  20. Simulation of launch and re-entry acceleration profiles for testing of shuttle and unmanned microgravity research payloads

    NASA Astrophysics Data System (ADS)

    Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.

    Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.

  1. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research.

    PubMed

    Takeda, T

    1999-01-01

    The senescence-accelerated mouse (SAM), consisting of 14 senescence-prone inbred strains (SAMP) and 4 senescence-resistant inbred strains (SAMR) has been under development since 1970 through the selective inbreeding of AKR/J strain mice donated by the Jackson laboratory in 1968, based on the data of the grading score of senescence, life span, and pathologic phenotypes. The characteristic feature of aging common to all SAMP and SAMR mice is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains manifest various pathobiological phenotypes which include such neurobiological phenotypes as deficits in learning and memory, emotional disorders, abnormal circadian rhythms, brain atrophy, hearing impairment, etc., and are often characteristic enough to differentiate the strains. Various efforts are currently being made using the SAM model to clarify the underlying mechanisms in accelerated senescence as well as the etiopathogenic mechanisms in age-associated pathobiologies. Genetic background and significance of SAM development are discussed. PMID:10537019

  2. The application of electrostatic accelerators in research and industry—A summary

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Klody, G. M.

    1997-02-01

    The applications of electrostatic accelerators span fields from art history to zoology. The applications fit into two main groups, materials analysis and materials modification. Materials analysis includes routine use of Rutherford Backscattering (RBS) for quality control in semiconductor manufacturing and other areas. Particle Induced X-Ray Emission (PIXE) is used in fields from art history through the environmental sciences. X-ray imaging using 5 MeV dc electron beams and Pulsed Fast Neutron Analysis (PFNA) for plastic explosive and drug detection provide promise in the area of security. Accelerator based mass spectrometry (AMS) is having a profound effect on a wide variety of fields which rely on counting extremely rare isotopes in small samples. Accelerators used for materials modification continue to have a significant economic impact in the field of semiconductors. Fabrication of virtually all semiconductor devices now relies on ion implantation with ion beam energies ranging from a few kilovolts to several MeV.

  3. Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259

    SciTech Connect

    Kramer, W.

    2011-10-01

    This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

  4. Plasma wakefield acceleration studies using the quasi-static code WAKE

    SciTech Connect

    Jain, Neeraj; Palastro, John; Antonsen, T. M.; Mori, Warren B.; An, Weiming

    2015-02-15

    The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas 4, 217 (1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. Spec. Top. Accel. Beams 3, 061301 (2000)] and the quasi-static code QuickPIC [Huang et al., J. Comput. Phys. 217, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at Facilities for Accelerator Science and Experimental Test Beams. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.

  5. Comparison of acceleration and impact stress as possible loading factors in phonation: a computer modeling study.

    PubMed

    Horácek, Jaromír; Laukkanen, Anne-Maria; Sidlof, Petr; Murphy, Peter; Svec, Jan G

    2009-01-01

    Impact stress (the impact force divided by the contact area of the vocal folds) has been suspected to be the main traumatizing mechanism in voice production, and the main cause of vocal fold nodules. However, there are also other factors, such as the repetitive acceleration and deceleration, which may traumatize the vocal fold tissues. Using an aeroelastic model of voice production, the present study quantifies the acceleration and impact stress values in relation to lung pressure, fundamental frequency (F0) and prephonatory glottal half-width. Both impact stress and acceleration were found to increase with lung pressure. Compared to impact stress, acceleration was less dependent on prephonatory glottal width and, thus, on voice production type. Maximum acceleration values were about 5-10 times greater for high F0 (approx. 400 Hz) compared to low F0 (approx. 100 Hz), whereas maximum impact stress remained nearly unchanged. This suggests that acceleration, i.e. the inertia forces, may present at high F0 a greater load for the vocal folds, and in addition to the collision forces may contribute to the fact that females develop vocal fold nodules and other vocal fold traumas more frequently than males. PMID:19571548

  6. Studies of a hybrid Trojan Horse wakefield accelerator with high transformer ratio

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Bruhwiler, David; Hidding, Bernhard; Vay, Jean-Luc; Webb, Stephen

    2015-11-01

    Plasma wakefield acceleration uses relativistic high-charge electron bunches to generate a plasma blowout supporting intense electric fields for trapping and acceleration. Dramatic improvements in emittance, peak current and brightness are achievable through laser-controlled ionization in the plasma blowout, which is the premise of the Trojan Horse approach. The hybrid Trojan Horse concept extends this approach to use the output beam from a laser plasma accelerator to drive a Trojan Horse, resulting in a compact system that can produce higher brightness bunches with order-of-magnitude lower energy spread. We are exploring the use of multiple, shaped laser pulses to resonantly inject a shaped electron drive bunch. The resulting output bunch could generate wakes in PWFA or beam-driven dielectric structures with transformer ratios of 5 to 10 or larger. Hence, a hybrid Trojan Horse accelerator with bunch shaping may provide a compact source of nC bunches that can drive a variety of systems for studying high-gradient wakefields and lepton acceleration. Initial work will use previously simulated electron bunches from a laser plasma accelerator to drive the plasma wakefield stage. We present preliminary results from simulations using the parallel, particle-in-cell framework Warp. Work supported by the U.S. Department of Energy, Office of High Energy Physics, under Award Number DE-SC0013855.

  7. Spectroscopic evaluation of a freeze-dried vaccine during an accelerated stability study.

    PubMed

    Hansen, Laurent; Van Renterghem, Jeroen; Daoussi, Rim; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2016-07-01

    This research evaluates a freeze-dried live, attenuated virus vaccine during an accelerated stability study using Near Infrared (NIR) and Fourier Transform Infrared (FTIR) spectroscopy in addition to the traditional quality tests (i.e., potency assay and residual moisture analysis) and Modulated Differential Scanning Calorimetry (MDSC). Therefore, freeze-dried live, attenuated virus vaccines were stored during four weeks at 4°C (i.e., recommended storage condition) and at 37°C (i.e., accelerated storage condition) and weekly analyzed using these techniques. The potency assay showed that the virus titer decreased in two phases when the samples were stored at 37°C. The highest titer loss occurred during the first week storage at 37°C after which the degradation rate decreased. Both the residual moisture content and the relaxation enthalpy also increased according to this two-phase pattern during storage at 37°C. In order to evaluate the virus and its interaction with the amorphous stabilizer in the formulation (trehalose), the NIR spectra were analyzed via principal component analysis (PCA) using the amide A/II band (5029-4690cm(-1)). The FTIR spectra were also analyzed via PCA using the amide III spectral range (1350-1200cm(-1)). Analysis of the amide A/II band in the NIR spectra revealed that the titer decrease during storage was probably linked to a change of the hydrogen bonds (i.e., interaction) between the virus proteins and the amorphous trehalose. Analyzing the amide III band (FTIR spectra) showed that the virus destabilization was coupled to a decrease of the coated proteins β turn and an increase of α helix. During storage at 4°C, the titer remained constant, no enthalpic relaxation was observed and neither the Amide A/II band (NIR spectra) nor the Amide III band (FTIR spectra) varied. PMID:27102305

  8. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    PubMed

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices. PMID:25618819

  9. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  10. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE PAGESBeta

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  11. The Benefits of Acceleration: An Outcomes Analysis of Dual Enrollment

    ERIC Educational Resources Information Center

    Morrison, Michael C.

    2007-01-01

    This study adds to the growing body of research with a focus on (1) the characteristics of accelerated (dual enrolled) students versus their counterparts who did not participate in accelerated programs; (2) differences in academic outcomes of accelerated and non-accelerated students; and (3) differences in days to complete the associate degree for…

  12. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  13. Research and development for electropolishing of Nb for ILC accelerator cavities

    SciTech Connect

    Kelley, Michael J.

    2009-09-21

    The objectives of this project are to 1, Expand the scientific and technological understanding of the effect of post-treatment (electropolish, buffered chemical polish, low-temperature baking) on the surface of niobium; 2, Relate the knowledge to the performance of niobium superconducting radiofrequency accelerator cavities; and, 3, Thereby design and demonstrate an electropolish process that can be applied to complete cavities.

  14. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2002-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identity the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral SnapshoT (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data was used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and a long-system particle-in-cell simulation to model the magnetically connected region between the two satellites.

  15. A Study on Research Teaching

    ERIC Educational Resources Information Center

    Yan, Limei

    2010-01-01

    Starting with the significance and the conduction of research teaching, this paper further puts forward and analyzes several patterns of research teaching, discusses the particular role of teachers in these patterns and proposes some strategies as well as suggestions.

  16. A crystal routine for collimation studies in circular proton accelerators

    NASA Astrophysics Data System (ADS)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2015-07-01

    A routine has been developed to simulate interactions of protons with bent crystals in a version of SixTrack for collimation studies. This routine is optimized to produce high-statistics tracking simulations for a highly efficient collimation system, like the one of the CERN Large Hadron Collider (LHC). The routine has recently been reviewed and improved through a comparison with experimental data, benchmarked against other codes and updated by adding better models of low-probability interactions. In this paper, data taken with 400 GeV/c proton beams at the CERN-SPS North Area are used to verify the prediction of the routine, including the results of a more recent analysis.

  17. Promoting Acceleration of Comprehension and Content through Text in High School Social Studies Classes

    ERIC Educational Resources Information Center

    Wanzek, Jeanne; Swanson, Elizabeth A.; Roberts, Greg; Vaughn, Sharon; Kent, Shawn C.

    2015-01-01

    The purpose of this study was to evaluate the efficacy of Promoting Acceleration of Comprehension and Content Through Text intervention implemented with 11th-grade students enrolled in U.S. History classes. Using a within-teacher randomized design, the study was conducted in 41 classes (23 treatment classes) with 14 teachers providing the…

  18. Business Research Methods: A Study Guide.

    ERIC Educational Resources Information Center

    Dawson, George

    This study guide provides an overview and model of business research. First, introductory material defines research and discusses the benefits of studying business research methods for both producers and consumers of research. In the next section different types of research are discussed, including experimental, ex post facto, quasi-experimental,…

  19. Study of Spray Disintegration in Accelerating Flow Fields

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1972-01-01

    An analytical and experimental investigation was conducted to perform "proof of principlem experiments to establish the effects of propellant combustion gas velocity on propella'nt atomization characteristics. The propellants were gaseous oxygen (GOX) and Shell Wax 270. The fuel was thus the same fluid used in earlier primary cold-flow atomization studies using the frozen wax method. Experiments were conducted over a range in L* (30 to 160 inches) at two contraction ratios (2 and 6). Characteristic exhaust velocity (c*) efficiencies varied from SO to 90 percent. The hot fire experimental performance characteristics at a contraction ratio of 6.0 in conjunction with analytical predictions from the drovlet heat-up version of the Distributed Energy Release (DER) combustion computer proDam showed that the apparent initial dropsize compared well with cold-flow predictions (if adjusted for the gas velocity effects). The results also compared very well with the trend in perfomnce as predicted with the model. significant propellant wall impingement at the contraction ratio of 2.0 precluded complete evaluation of the effect of gross changes in combustion gas velocity on spray dropsize.

  20. Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies

    NASA Astrophysics Data System (ADS)

    Cipiccia, S.; Reboredo, D.; Vittoria, Fabio A.; Welsh, G. H.; Grant, P.; Grant, D. W.; Brunetti, E.; Wiggins, S. M.; Olivo, A.; Jaroszynski, D. A.

    2015-05-01

    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental results.

  1. Monte Carlo study of photon fields from a flattening filter-free clinical accelerator

    SciTech Connect

    Vassiliev, Oleg N.; Titt, Uwe; Kry, Stephen F.; Poenisch, Falk; Gillin, Michael T.; Mohan, Radhe

    2006-04-15

    In conventional clinical linear accelerators, the flattening filter scatters and absorbs a large fraction of primary photons. Increasing the beam-on time, which also increases the out-of-field exposure to patients, compensates for the reduction in photon fluence. In recent years, intensity modulated radiation therapy has been introduced, yielding better dose distributions than conventional three-dimensional conformal therapy. The drawback of this method is the further increase in beam-on time. An accelerator with the flattening filter removed, which would increase photon fluence greatly, could deliver considerably higher dose rates. The objective of the present study is to investigate the dosimetric properties of 6 and 18 MV photon beams from an accelerator without a flattening filter. The dosimetric data were generated using the Monte Carlo programs BEAMnrc and DOSXYZnrc. The accelerator model was based on the Varian Clinac 2100 design. We compared depth doses, dose rates, lateral profiles, doses outside collimation, total and collimator scatter factors for an accelerator with and without a flatteneing filter. The study showed that removing the filter increased the dose rate on the central axis by a factor of 2.31 (6 MV) and 5.45 (18 MV) at a given target current. Because the flattening filter is a major source of head scatter photons, its removal from the beam line could reduce the out-of-field dose.

  2. Accelerator-Driven Subcritical Reactors in Japanese Universities: Experimental Study Using the Kyoto University Critical Assembly

    SciTech Connect

    Shiroya, S.; Unesaki, H.; Misawa, T.

    2001-06-17

    A series of basic experiments for an accelerator-driven sub-critical reactor (ADSR) was officially launched in financial year 2000 at the Kyoto University Critical Assembly (KUCA) as a joint-use program among Japanese universities. These experiments are closely related to the future plan of the Kyoto University Research Reactor Institute. A final goal of this plan is to establish a next-generation neutron source as a substitute for the 5-MW Kyoto University Reactor and based on the ADSR concept to promote joint research among Japanese universities. An attractive point of the ADSR system is that either pulsed or steady neutrons can be provided depending on the accelerator's operation mode.

  3. Using Patterns for Multivariate Monitoring and Feedback Control of Linear Accelerator Performance: Proof-of-Concept Research

    SciTech Connect

    Cordes, Gail Adele; Van Ausdeln, Leo Anthony; Velasquez, Maria Elena

    2002-04-01

    The report discusses preliminary proof-of-concept research for using the Advanced Data Validation and Verification System (ADVVS), a new INEEL software package, to add validation and verification and multivariate feedback control to the operation of non-destructive analysis (NDA) equipment. The software is based on human cognition, the recognition of patterns and changes in patterns in time-related data. The first project applied ADVVS to monitor operations of a selectable energy linear electron accelerator, and showed how the software recognizes in real time any deviations from the optimal tune of the machine. The second project extended the software method to provide model-based multivariate feedback control for the same linear electron accelerator. The projects successfully demonstrated proof-of-concept for the applications and focused attention on the common application of intelligent information processing techniques.

  4. Efficiency of particle acceleration at interplanetary shocks: Statistical study of STEREO observations

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Theesen, S.; Klassen, A.; Heber, B.

    2016-04-01

    Context. Among others, shocks are known to be accelerators of energetic charged particles. However, many questions regarding the acceleration efficiency and the required conditions are not fully understood. In particular, the acceleration of electrons by shocks is often questioned. Aims: In this study we determine the efficiency of interplanetary shocks for <100 keV electrons, and for ions at ~0.1 and ~2 MeV energies, as measured by the Solar Electron and Proton Telescope (SEPT) instruments aboard the twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. Methods: We employ an online STEREO in situ shock catalog that lists all shocks observed between 2007 and mid 2014 (observed by STEREO A) and until end of 2013 (observed by STEREO B). In total 475 shocks are listed. To determine the particle acceleration efficiency of these shocks, we analyze the associated intensity increases (shock spikes) during the shock crossings. For the near-relativistic electrons, we take into account the issue of possible ion contamination in the SEPT instrument. Results: The highest acceleration efficiency is found for low energy ions (0.1 MeV), which show a shock-associated increase at 27% of all shocks. The 2 MeV ions show an associated increase only during 5% of the shock crossings. In the case of the electrons, the shocks are nearly ineffective. Only five shock-associated electron increases were found, which correspond to only 1% of all shock crossings.

  5. YOUNG SUPERNOVAE AS EXPERIMENTAL SITES FOR STUDYING THE ELECTRON ACCELERATION MECHANISM

    SciTech Connect

    Maeda, Keiichi

    2013-01-10

    Radio emissions from young supernovae ({approx}<1 year after the explosion) show a peculiar feature in the relativistic electron population at a shock wave, where their energy distribution is steeper than typically found in supernova remnants and than that predicted from the standard diffusive shock acceleration (DSA) mechanism. This has been especially established for the case for a class of stripped envelope supernovae (SNe IIb/Ib/Ic), where a combination of high shock velocity and low circumstellar material density makes it easier to derive the intrinsic energy distribution than in other classes of SNe. We suggest that this apparent discrepancy reflects a situation where the low energy electrons, before being accelerated by the DSA-like mechanism, are responsible for the radio synchrotron emission from young SNe, and that studying young SNe sheds light on the still-unresolved electron injection problem in the acceleration theory of cosmic rays. We suggest that the electron's energy distribution could be flattened toward high energy, most likely around 100 MeV, which marks a transition from inefficient to efficient acceleration. Identifying this feature will be a major advance in understanding the electron acceleration mechanism. We suggest two further probes: (1) millimeter/submillimeter observations in the first year after the explosion and (2) X-ray observations at about one year and thereafter. We show that these are reachable by ALMA and Chandra for nearby SNe.

  6. RESEARCH PLAN FOR PILOT STUDIES OF THE BIODIVERSITY RESEARCH CONSORTIUM

    EPA Science Inventory

    This report presents a research plan for an assessment of risks to biodiversity. he plan describes the theoretical basis of the research approach and the data and methods to be used in the assessment. nitial research activities are formulated as a set of pilot studies that will e...

  7. Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-06-01

    X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.

  8. Research plan for pilot studies of the biodiversity research consortium

    SciTech Connect

    Kiester, A.R.; White, D.; Preston, E.M.; Master, L.L.; Loveland, T.R.

    1993-06-03

    This report presents a research plan for an assessment of risks to biodiversity. The plan describes the theoretical basis of the research approach and the data and methods to be used in the assessment. Initial research activities are formulated as a set of pilot studies that will examine nine research questions concerning the assumptions, data, and methods of the approach. A collection of government, academic, and nongovernmental organizations, called the Biodiversity Research Consortium, has developed this research approach and prepared the plan. Authors of the plan represent current members of the Consortium.

  9. Multidisciplinary "Boot Camp" Training in Cellular Bioengineering to Accelerate Research Immersion for REU Participants

    ERIC Educational Resources Information Center

    Shreiber, David I.; Moghe, Prabhas V.; Roth, Charles M.

    2015-01-01

    Research Experiences for Undergraduates (REU) sites widely serve as the first major research gateway for undergraduates seeking a structured research experience. Given their lack of prior research skills, and the highly compressed duration of the REU programs, these students frequently encounter barriers to a seamless transition into a new…

  10. [A study of mandibular movement velocity and acceleration in young adults with normal people].

    PubMed

    Lu, P J

    1993-09-01

    The velocity and acceleration of mandibular movements including the border movement, habitual movement and functional movement were studied in 25 young adults by using D-SGG measuring instrument. The results showed that the conception of functional velocity and the maximum velocity of mandibular movement were developed. The physiological and clinical significance of the value of mandibular movement acceleration can be explained by Newton's Second law, F = ma. The author pointed out that in order to keep the necessary masticatory efficiency, the masticatory velocity enjoy the priority in matching with the masticatory force in mastication. PMID:8194415

  11. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2003-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identi@ the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral Snapshot (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data were used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and/or a long-system particle in cell simulation to model the magnetically connected region between the two satellites. Results from the study indicate that there are three main drivers of auroral acceleration: (1) field-aligned currents that lead to quasistatic parallel potential drops (parallel electric fields), (2) earthward flow of high-energy plasma beams from the magnetotail into the auroral zone that lead to quasistatic parallel potential drops, and (3) large-amplitude Alfven waves that propagate into the auroral region from the magnetotail. The events examined thus far confm the previously established invariant latitudinal dependence of the drivers and show a strong dependence on magnetic activity. Alfven waves tend to occur primarily at the poleward edge of the auroral region during more magnetically active times and are correlated with intense electron precipitation. At lower latitudes away

  12. Nylon 6.6 accelerated aging studies : thermal-oxidative degradation and its interaction with hydrolysis.

    SciTech Connect

    Bernstein, Robert; Derzon, Dora Kay; Gillen, Kenneth T.

    2004-06-01

    Accelerated aging of Nylon 6.6 fibers used in parachutes has been conducted by following the tensile strength loss under both thermal-oxidative and 100% relative humidity conditions. Thermal-oxidative studies (air circulating ovens) were performed for time periods of weeks to years at temperatures ranging from 37 C to 138 C. Accelerated aging humidity experiments (100% RH) were performed under both an argon atmosphere to examine the 'pure' hydrolysis pathway, and under an oxygen atmosphere (oxygen partial pressure close to that occurring in air) to mimic true aging conditions. As expected the results indicated that degradation caused by humidity is much more important than thermal-oxidative degradation. Surprisingly when both oxygen and humidity were present the rate of degradation was dramatically enhanced relative to humidity aging in the absence of oxygen. This significant and previously unknown phenomena underscores the importance of careful accelerated aging that truly mimics real world storage conditions.

  13. Feasibility study of an intense pulsed neutron source based on a powerful electron accelerator and a pulsed nuclear reactor

    SciTech Connect

    Bosamykin, V.S.; Voinov, M.A.; Gordeev, V.S.; Kuvshinov, M.I.; Morunov, K.A.; Pavlovskii, A.I.; Selemir, V.D.

    1995-12-31

    A promising candidate for a highly intense neutron source is a system coupling a powerful pulsed electron accelerator and a pulsed fast-neutron nuclear reactor. The LIU-10-GIR complex, located at the All-Russian Institute of Experimental Physics (VNIIEF), is described. Experiments were carried out during 1984--1990 to study the joint operation of these two widely differing physical systems and resolve basic scientific research problems. Experimental results are given, and the potential use of such a system as an intense neutron source is suggested.

  14. Accelerating rate calorimetry: A new technique for safety studies in lithium systems

    NASA Technical Reports Server (NTRS)

    Ebner, W. B.

    1982-01-01

    The role of exothermic reactions in battery test modes is discussed. The exothermic reactions are characterized with respect to their time-temperature and time-pressure behavior. Reactions occuring for any major exotherm were examined. The accelerating rate calorimetry methods was developed to study lithium cells susceptibility to thermal runaway reactions following certain abuse modes such as forced discharge into reversal and charging.

  15. The Study of Two-Dimensional Oscillations Using a Smartphone Acceleration Sensor: Example of Lissajous Curves

    ERIC Educational Resources Information Center

    Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.

    2015-01-01

    A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for…

  16. From Eighth Grade to Selective College in One Jump: Case Studies in Radical Acceleration.

    ERIC Educational Resources Information Center

    Keating, Daniel P.; Stanley, Julian C.

    The paper examines the problem of highly gifted junior high school students who are intellectually ready for college-level study before beginning high school. The term radical accelerates is used to describe gifted students who jump from junior high to college education, bypassing the high school years. Briefly described are two widely known and…

  17. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1986-September 30, 1986

    SciTech Connect

    Not Available

    1986-10-01

    Activities are reported on MBE-4, the four-beam proof-of-principle ion induction linear accelerator with the capability of beam-current amplification. Mechanical aspects of MBE-4, quadrupole insulator performance, and pulsers are discussed. The computer code, SLID, has been used to help understand the longitudinal beam dynamics in MBE-4. A computer-controlled emittance scanning system is in use in MBE-4. A systematic effort is under way to discover and correct all the defects peculiar to the low energy part of the linac design code. (LEW)

  18. Accelerator-Based Studies of Heavy Ion Interactions Relevant to Space Biomedicine

    NASA Technical Reports Server (NTRS)

    Miller, J.; Heilbronn, L.; Zeitlin, C.

    1999-01-01

    Evaluation of the effects of space radiation on the crews of long duration space missions must take into account the interactions of high energy atomic nuclei in spacecraft and planetary habitat shielding and in the bodies of the astronauts. These heavy ions (i.e. heavier than hydrogen), while relatively small in number compared to the total galactic cosmic ray (GCR) charged particle flux, can produce disproportionately large effects by virtue of their high local energy deposition: a single traversal by a heavy charged particle can kill or, what may be worse, severely damage a cell. Research into the pertinent physics and biology of heavy ion interactions has consequently been assigned a high priority in a recent report by a task group of the National Research Council. Fragmentation of the incident heavy ions in shielding or in the human body will modify an initially well known radiation field and thereby complicate both spacecraft shielding design and the evaluation of potential radiation hazards. Since it is impractical to empirically test the radiation transport properties of each possible shielding material and configuration, a great deal of effort is going into the development of models of charged particle fragmentation and transport. Accurate nuclear fragmentation cross sections (probabilities), either in the form of measurements with thin targets or theoretical calculations, are needed for input to the transport models, and fluence measurements (numbers of fragments produced by interactions in thick targets) are needed both to validate the models and to test specific shielding materials and designs. Fluence data are also needed to characterize the incident radiation field in accelerator radiobiology experiments. For a number of years, nuclear fragmentation measurements at GCR-like energies have been carried out at heavy ion accelerators including the LBL Bevalac, Saturne (France), the Synchrophasotron and Nuklotron (Dubna, Russia), SIS-18 (GSI, Germany), the

  19. A facility for studying irradiation accelerated corrosion in high temperature water

    NASA Astrophysics Data System (ADS)

    Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

    2014-08-01

    A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 μA/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

  20. Research proposal for development of an electron stripper using a thin liquid lithium film for rare isotope accelerator.

    SciTech Connect

    Momozaki, Y.; Nuclear Engineering Division

    2006-03-06

    Hydrodynamic instability phenomena in a thin liquid lithium film, which has been proposed for the first stripper in the driver linac of Rare Isotope Accelerator (RIA), were discussed. Since it was considered that film instability could significantly impair the feasibility of the liquid lithium film stripper concept, potential issues and research tasks in the RIA project due to these instability phenomena were raised. In order to investigate these instability phenomena, a research proposal plan was developed. In the theoretical part of this research proposal, a use of the linear stability theory was suggested. In the experimental part, it was pointed out that the concept of Reynolds number and Weber number scaling may allow conducting a preliminary experiment using inert simulants, hence reducing technical difficulty, complexity, and cost of the experiments. After confirming the thin film formation in the preliminary experiment using simulants, demonstration experiments using liquid lithium were proposed.

  1. Analytical and Computational Study of Flame Acceleration due to Wall Friction in Combustion Tubes and Channels

    NASA Astrophysics Data System (ADS)

    Demirgok, Berk; Akkerman, V'yacheslav

    2013-11-01

    Deflagration-to-detonation transition constitutes one of the fundamental problems within the studies of reacting flows. It occurs when a subsonic flamefront accelerates, with velocity jump by several orders of magnitude. According to the Shelkin model, the key element of the process is wall friction at non-slip walls, driving a flow of the fresh pre-mixture to be non-uniform, leading to a positive flame-flow feedback and thereby flame acceleration. We perform analytical and computational study of the phenomenon, with very good agreement between them in the domain of intrinsic accuracy of the theory. Theory assumes large Reynolds number (Re) and thermal expansion as well as plane-parallel flow ahead of flamefront. Simulations are performed for complete set of combustion and hydrodynamic equations. Analytical and computational results are also validated by recent experiments on ethylene-oxygen combustion. It is proven realistic flames with a large density drop at the front accelerate in a self-sustained manner and may initiate detonation in a sufficiently long tube. Before this event, the flame shape and the velocity profile remain self-similar. Acceleration rate grows with thermal expansion in the burning process but decreases with Re related to flame propagation.

  2. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    PubMed

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments. PMID:22852725

  3. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    SciTech Connect

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan; Collette, Andrew; Drake, Keith; Northway, Paige; Gruen, Eberhard; Mocker, Anna; Munsat, Tobin; Srama, Ralf; and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  4. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies.

    PubMed

    Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus; Hansen, Steen Honoré

    2015-05-15

    Microwave ovens have been used extensively in organic synthesis in order to accelerate reaction rates. Here, a set up comprising a microwave oven combined with silicon carbide (SiC) plates for the controlled microwave heating of model formulations has been applied in order to investigate, if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. In the accelerated stability studies, a design of experiments (DoE) approach was applied in order to be able to rank excipients regarding reactivity: Study A: cetirizine with PEG 400, sorbitol, glycerol and propylene glycol. Study B: 6-aminocaproic acid with citrate, acetate, tartrate and gluconate. Study C: atenolol with citric, tartaric, malic, glutaric, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating leading to temperatures between 150°C and 180°C as compared to accelerated stability studies performed at 40°C and 80°C using a conventional oven. Ranking of the reactivity of the excipients could be made in the DoE studies performed at 150-180°C, which was representative for the ranking obtained after storage at 40°C and 80°C. It was possible to reduce the time needed for drug-excipient compatibility testing of the three model formulations from weeks to less than an hour in the three case studies. The microwave oven is therefore considered to be an interesting alternative to conventional thermal techniques for the investigation of drug-excipient interactions during preformulation. PMID:25746946

  5. Accelerator development for the NRL (Naval Research Laboratory) free-electron-laser program. Final report, July 1981-April 1986

    SciTech Connect

    Lucey, R.; Putnam, S.

    1988-06-01

    Included in the report are descriptions of the final assembly and operation of the Linear Induction Accelerator(LIA), installation and testing of a new accelerating gap in the five-core stage of the accelerator to operate at 150 kV, and the moving of and modifications of the charging and firing controls for remote operation of the accelerator.

  6. Simulation studies of acceleration of heavy ions and their elemental compositions; IFSR--755

    SciTech Connect

    Toida, Mieko; Ohsawa, Yukiharu

    1996-07-01

    By using a one-dimensional, electromagnetic particle simulation code with full ion and electron dynamics, we have studied the acceleration of heavy ions by a nonlinear magnetosonic wave in a multi-ion-species plasma. First, we describe the mechanism of heavy ion acceleration by magnetosonic waves. We then investigate this by particle simulations. The simulation plasma contains four ion species: H, He, O, and Fe. The number density of He is taken to be 10% of that of H, and those of O and Fe are much lower. Simulations confirm that, as in a single-ion-species plasma, some of the hydrogens can be accelerated by the longitudinal electric field formed in the wave. Furthermore, they show that magnetosonic waves can accelerate all the particles of all the heavy species (He, O, and Fe) by a different mechanism, i.e., by the transverse electric field. The maximum speeds of the heavy species are about the same, of the order of the wave propagation speed. These are in good agreement with theoretical prediction. These results indicate that, if high-energy ions are produced in the solar corona through these mechanisms, the elemental compositions of these heavy ions can be similar to that of the background plasma, i.e., the corona.

  7. VERITAS observations of supernova remnants for studies of cosmic ray acceleration

    NASA Astrophysics Data System (ADS)

    Park, Nahee

    Supernova remnants (SNRs) have been suggested as the main sites for acceleration of cosmic rays (CRs) with energies up to the knee region ( 10(15) eV). Gamma-ray emission from SNRs can provide a unique window to observe the cosmic ray acceleration and to test existing acceleration models in these objects. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of atmospheric Cherenkov telescopes that measures gamma rays with energies higher than 100 GeV. Located in Arizona, USA, VERITAS has observed several SNRs in the northern hemisphere since the beginning of operations in 2007. These include two young SNRs of different types (Cassiopeia A and Tycho), as well as middle- to old-aged remnants with nearby target material such as molecular clouds. Gamma-ray data from different types of SNRs in different evolutionary stages are important to study SNRs as CR accelerators. Here we present a summary of VERITAS results on Galactic SNRs including Tycho, and discuss what these observations have taught us.

  8. Study of beamlet deflection and its compensations in a MeV accelerator

    SciTech Connect

    Kashiwagi, Mieko; Inoue, Takashi; Taniguchi, Masaki; Umeda, Naotaka; Dairaku, Masayuki; Takemoto, Jumpei; Tobari, Hiroyuki; Tsuchida, Kazuki; Watanabe, Kazuhiro; Yamanaka, Haruhiko; Sakamoto, Keishi; Grisham, Larry R.

    2011-09-26

    In a five stage multi-aperture and multi-grid (MAMuG) accelerator in JAEA, beam acceleration tests are in progress toward 1 MeV, 200 A/m{sup 2} H{sup -} ion beams for ITER. The 1 MV voltage holding has been successfully demonstrated for 4,000 s with the accelerator of expanded gap length that lowered local electric field concentrations. This led to increase of the beam energy up to 900 keV-level. However, it was found that beamlets were deflected more in long gaps and direct interceptions of the deflected beamlet caused breakdowns. The beamlet deflection and its compensation methods were studied utilizing a three-dimensional multi beamlet analysis. The analysis showed that the 1 MeV beam can be compensated by a combination of the aperture offset of 0.8 mm applied in the electron suppression (ESG) and the metal bar called a field shaping plate with a thickness of 1 mm attached beneath the ESG. The paper reports these compensation methods and analytical predictions, with experimental results of the MAMuG accelerator in which those compensation techniques have been applied.

  9. Defining and Designing Mixed Research Synthesis Studies

    PubMed Central

    Sandelowski, Margarete; Voils, Corrine I.; Barroso, Julie

    2009-01-01

    Mixed research synthesis is the latest addition to the repertoires of mixed methods research and systematic review. Mixed research synthesis requires that the problems generated by the methodological diversity within and between qualitative and quantitative studies be resolved. Three basic research designs accommodate this diversity, including the segregated, integrated, and contingent designs. Much work remains to be done before mixed research synthesis can secure its place in the repertoires of mixed methods research and systematic review, but the effort is well worth it as it has the potential to enhance both the significance and utility for practice of the many qualitative and quantitative studies constituting shared domains of research. PMID:20098638

  10. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    SciTech Connect

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-15

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  11. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-01

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  12. Researching the Study Abroad Experience

    ERIC Educational Resources Information Center

    McLeod, Mark; Wainwright, Philip

    2009-01-01

    The authors propose a paradigm for rigorous scientific assessment of study abroad programs, with the focus being on how study abroad experiences affect psychological constructs as opposed to looking solely at study-abroad-related outcomes. Social learning theory is used as a possible theoretical basis for making testable hypotheses and guiding…

  13. Accelerating the paradigm shift toward inclusion of pregnant women in drug research: Ethical and regulatory considerations.

    PubMed

    White, Amina

    2015-11-01

    Although there has been long-standing reluctance to include pregnant women as clinical trial participants, increasing recognition of profound gaps in research on the safety and efficacy of drugs often prescribed to pregnant women calls into question the practice of routinely excluding them. This article presents compelling reasons for including pregnant women in clinical research, highlights certain regulatory barriers to the inclusion of pregnant women, and proposes that professional societies with expertise in obstetrics and maternal-fetal medicine can be instrumental in hastening the paradigm shift from the systematic exclusion of pregnant women in research to a one of responsible and fair inclusion. PMID:26385413

  14. Successfully accelerating translational research at an academic medical center: The University of Michigan-Coulter Translational Research Partnership Program.

    PubMed Central

    Pienta, Kenneth J.

    2010-01-01

    Translational research encompasses the effective movement of new knowledge and discoveries into new approaches for prevention, diagnosis, and treatment of disease. There are many roadblocks to successful bench to bedside research, but few have received as much recent attention as the “valley of death”. The valley of death refers to the lack of funding and support for research that moves basic science discoveries into diagnostics, devices, and treatments in humans, and is ascribed to be the result of companies unwilling to fund research development that may not result in a drug or device that will be utilized in the clinic and conversely, the fact that researchers have no access to the funding needed to carry out preclinical and early clinical development to demonstrate potential efficacy in humans. The valley of death also exists because bridging the translational gap is dependent on successfully managing an additional four risks: Scientific, Intellectual Property, Market, and Regulatory. The University of Michigan (UM) has partnered with the Wallace H. Coulter Foundation (CF) to create a model providing an infrastructure to overcome these risks. This model is easily adoptable to other academic medical centers. PMID:21167009

  15. Successfully accelerating translational research at an academic medical center: the University of Michigan-Coulter translational research partnership program.

    PubMed

    Pienta, Kenneth J

    2010-12-01

    Translational research encompasses the effective movement of new knowledge and discoveries into new approaches for prevention, diagnosis, and treatment of disease. There are many roadblocks to successful bench to bedside research, but few have received as much recent attention as the "valley of death". The valley of death refers to the lack of funding and support for research that moves basic science discoveries into diagnostics, devices, and treatments in humans, and is ascribed to be the result of companies unwilling to fund research development that may not result in a drug or device that will be utilized in the clinic and conversely, the fact that researchers have no access to the funding needed to carry out preclinical and early clinical development to demonstrate potential efficacy in humans. The valley of death also exists because bridging the translational gap is dependent on successfully managing an additional four risks: scientific, intellectual property, market, and regulatory. The University of Michigan (UM) has partnered with the Wallace H. Coulter Foundation (CF) to create a model providing an infrastructure to overcome these risks. This model is easily adoptable to other academic medical centers (AMCs). PMID:21167009

  16. Characterization of senescence-accelerated mouse prone 6 (SAMP6) as an animal model for brain research.

    PubMed

    Niimi, Kimie; Takahashi, Eiki

    2014-01-01

    The senescence-accelerated mouse (SAM) was developed by selective breeding of the AKR/J strain, based on a graded score for senescence, which led to the development of both senescence-accelerated prone (SAMP), and senescence-accelerated resistant (SAMR) strains. Among the SAMP strains, SAMP6 is well characterized as a model of senile osteoporosis, but its brain and neuronal functions have not been well studied. We therefore decided to characterize the central nervous system of SAMP6, in combination with different behavioral tests and analysis of its biochemical and pharmacological properties. Multiple behavioral tests revealed higher motor activity, reduced anxiety, anti-depressant activity, motor coordination deficits, and enhanced learning and memory in SAMP6 compared with SAMR1. Biochemical and pharmacological analyses revealed several alterations in the dopamine and serotonin systems, and in long-term potentiation (LTP)-related molecules. In this review, we discuss the possibility of using SAMP6 as a model of brain function. PMID:24521858

  17. A proposal to protect privacy of health information while accelerating comparative effectiveness research.

    PubMed

    Peddicord, Douglas; Waldo, Ann B; Boutin, Marc; Grande, Tina; Gutierrez, Luis

    2010-11-01

    Current laws, practices, and concerns about privacy inhibit access to health data for research. Barriers include inconsistent Institutional Review Board policies and complicated and costly procedures to obtain the consent of patients for release of their information. To realize the promise of comparative effectiveness research, it is essential to develop a new policy framework that will allow and encourage the use of health information in all forms--fully identifiable, partially anonymized, and deidentified. We propose that health data be made available for information-based research under a so-called research safe harbor. The arrangement would include strict data security controls, standards, and practices to be promulgated by the secretary of health and human services, and an annual third-party audit to ensure compliance. PMID:21041752

  18. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  19. A 12 GHZ 50 MW Klystron for Support of Accelerator Research

    SciTech Connect

    Sprehn, Daryl; Haase, Andrew; Jensen, Aaron; Jongewaard, Erik; Nantista, Christopher; Vlieks, Arnold; /SLAC

    2011-05-31

    A 12 GHz 50MW X-band klystron is under development at the SLAC National Accelerator Laboratory Klystron Department. The klystron will be fabricated to support programs currently underway at three European Labs; CERN, PSI, and INFN Trieste. The choice of frequency selection was due to the CLIC RF frequency changing from 30 GHz to the European X-band frequency of 11.99 GHz in 2008. Since the Klystron Department currently builds 50MW klystrons at 11.424 GHz known collectively as the XL4 klystrons, it was deemed cost-effective to utilize many XL4 components by leaving the gun, electron beam transport, solenoid magnet and collector unchanged. To realize the rf parameters required, the rf cavities and rf output hardware were necessarily altered. Some improvements to the rf design have been made to reduce operating gradients and increase reliability. Changes in the multi-cell output structure, waveguide components, and the window will be discussed along with testing of the devices. Five klystrons known as XL5 klystrons are scheduled for production over the next two years.

  20. A feasibility study on porting the community land model onto accelerators using OpenACC

    DOE PAGESBeta

    Wang, Dali; Wu, Wei; Winkler, Frank; Ding, Wei; Hernandez, Oscar R.

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less

  1. A feasibility study on porting the community land model onto accelerators using OpenACC

    SciTech Connect

    Wang, Dali; Wu, Wei; Winkler, Frank; Ding, Wei; Hernandez, Oscar R.

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflow procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.

  2. First high-power model of the annular-ring coupled structure for use in the Japan Proton Accelerator Research Complex linac

    NASA Astrophysics Data System (ADS)

    Ao, Hiroyuki; Yamazaki, Yoshishige

    2012-01-01

    A prototype cavity for the annular-ring coupled structure (ACS) for use in the Japan Proton Accelerator Research Complex (J-PARC) linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cells in total. The ACS cavity is formed by the silver brazing of ACS half-cell pieces stacked in a vacuum furnace. The accelerating cell of the ACS is surrounded by a coupling cell. We, therefore, tuned the frequencies of the accelerating and coupling cells by an ultraprecision lathe before brazing, taking into account the frequency shift due to brazing. The prototype buncher module was successfully conditioned up to 600 kW, which corresponds to an accelerating field that is higher than the designed field of 4.1MV/m by 30%. We describe the frequency-tuning results for the prototype buncher module and its high-power conditioning.

  3. Early Acceleration of Mathematics Students and its Effect on Growth in Self-esteem: A Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    2002-11-01

    The Longitudinal Study of American Youth (LSAY) database was employed to examine the educational practice of early acceleration of students of mathematics on the development of their self-esteem across the entire secondary grade levels. Students were classified into three different academic categories (gifted, honors, and regular). Results indicated that, in terms of the development of their self-esteem, gifted students benefited from early acceleration, honors students neither benefited nor were harmed by early acceleration, and regular students were harmed by early acceleration. Early acceleration in mathematics promoted significant growth in self-esteem among gifted male students and among gifted, honors, and regular minority students. When students were accelerated, schools showed similar average growth in self-esteem among gifted students and regular students and a large effect of general support for mathematics on the average growth in self-esteem among honors students.

  4. Study of electron acceleration and x-ray radiation as a function of plasma density in capillary-guided laser wakefield accelerators

    SciTech Connect

    Ju, J.; Döpp, A.; Cros, B.; Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Ferrari, H.

    2013-08-15

    Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-ray radiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beam distribution to map the acceleration process; the number of betatron oscillations performed by the electrons was inferred from the correlation between measured X-ray fluence and beam charge. A study of the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation.

  5. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  6. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    SciTech Connect

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  7. Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine.

    PubMed

    Green, Robert C; Goddard, Katrina A B; Jarvik, Gail P; Amendola, Laura M; Appelbaum, Paul S; Berg, Jonathan S; Bernhardt, Barbara A; Biesecker, Leslie G; Biswas, Sawona; Blout, Carrie L; Bowling, Kevin M; Brothers, Kyle B; Burke, Wylie; Caga-Anan, Charlisse F; Chinnaiyan, Arul M; Chung, Wendy K; Clayton, Ellen W; Cooper, Gregory M; East, Kelly; Evans, James P; Fullerton, Stephanie M; Garraway, Levi A; Garrett, Jeremy R; Gray, Stacy W; Henderson, Gail E; Hindorff, Lucia A; Holm, Ingrid A; Lewis, Michelle Huckaby; Hutter, Carolyn M; Janne, Pasi A; Joffe, Steven; Kaufman, David; Knoppers, Bartha M; Koenig, Barbara A; Krantz, Ian D; Manolio, Teri A; McCullough, Laurence; McEwen, Jean; McGuire, Amy; Muzny, Donna; Myers, Richard M; Nickerson, Deborah A; Ou, Jeffrey; Parsons, Donald W; Petersen, Gloria M; Plon, Sharon E; Rehm, Heidi L; Roberts, J Scott; Robinson, Dan; Salama, Joseph S; Scollon, Sarah; Sharp, Richard R; Shirts, Brian; Spinner, Nancy B; Tabor, Holly K; Tarczy-Hornoch, Peter; Veenstra, David L; Wagle, Nikhil; Weck, Karen; Wilfond, Benjamin S; Wilhelmsen, Kirk; Wolf, Susan M; Wynn, Julia; Yu, Joon-Ho

    2016-06-01

    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine. PMID:27181682

  8. Job Placement Services Research Study.

    ERIC Educational Resources Information Center

    McLeod, Pat N.; Tobias, Jeanette

    A mailout questionnaire was used in a study which focused on three areas of inquiry: (1) Needs assessment for job placement programs in public schools as viewed by superintendents of school districts and vocational administrators of occupational programs, (2) assessment of the perceived and established benefits of a placement program from the…

  9. Review of Research in Social Studies: 1968

    ERIC Educational Resources Information Center

    Johnson, William D.; and others

    1969-01-01

    Annual review of 121 research studies in the social sciences. Categorized on the basis of four major headings: (1) subject area studies, (2) preparing for instruction, (3) conduct of instruction, and (4) the preparation of social studies teachers. (MF)

  10. A computational study of dielectric photonic-crystal-based accelerator cavities

    NASA Astrophysics Data System (ADS)

    Bauer, C. A.

    Future particle accelerator cavities may use dielectric photonic crystals to reduce harmful wakefields and increase the accelerating electric field (or gradient). Reduced wakefields are predicted based on the bandgap property of some photonic crystals (i.e. frequency-selective reflection/transmission). Larger accelerating gradients are predicted based on certain dielectrics' strong resistance to electrical breakdown. Using computation, this thesis investigated a hybrid design of a 2D sapphire photonic crystal and traditional copper conducting cavity. The goals were to test the claim of reduced wakefields and, in general, judge the effectiveness of such structures as practical accelerating cavities. In the process, we discovered the following: (1) resonant cavities in truncated photonic crystals may confine radiation weakly compared to conducting cavities (depending on the level of truncation); however, confinement can be dramatically increased through optimizations that break lattice symmetry (but retain certain rotational symmetries); (2) photonic crystal cavities do not ideally reduce wakefields; using band structure calculations, we found that wakefields are increased by flat portions of the frequency dispersion (where the waves have vanishing group velocities). A complete comparison was drawn between the proposed photonic crystal cavities and the copper cavities for the Compact Linear Collider (CLIC); CLIC is one of the candidates for a future high-energy electron-positron collider that will study in greater detail the physics learned at the Large Hadron Collider. We found that the photonic crystal cavity, when compared to the CLIC cavity: (1) can lower maximum surface magnetic fields on conductors (growing evidence suggests this limits accelerating gradients by inducing electrical breakdown); (2) shows increased transverse dipole wakefields but decreased longitudinal monopole wakefields; and (3) exhibits lower accelerating efficiencies (unless

  11. Relating clinical study design to basic research.

    PubMed

    Choh, V; Priolo, S

    1999-07-01

    Devising any research study involves careful attention to its design, as well as the development of an appropriate research question and hypothesis. Together, these attributes ensure the validity of the study in question. In most clinical or epidemiological studies, the types of research designs are often explicitly noted, whereas in papers describing basic or biological research, they are couched in different terms or, more often, are ignored, thus potentially hindering communication between basic and clinical researchers. However, given that the framework for all valid scientific research is based on sound logic, it is proposed that for each study design, a direct homology exists between clinical and basic research paradigms, despite the problem of relating epidemiological vernacular to basic research. By applying examples of basic research protocols to traditional clinical study designs, this paper shows that parallels can be drawn between the two strategies, suggesting that in the absence of a conventional nomenclature to describe basic research study designs, the use of traditional clinical design jargon is valid in describing basic research protocols. PMID:10445637

  12. Fuels research studies at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1982-01-01

    Fuels research studies carried out in a variety of areas related to aviation propulsion, ground transportation, and stationary power generation systems are discussed. The major efforts are directed to studies on fuels for jet aircraft. These studies involve fuels preparation, fuels analysis, and fuel quality evaluations. The scope and direction of research activities in these areas is discussed, descriptions of Lewis capabilities and facilities given, and results of recent research efforts reported.

  13. Harnessing person-generated health data to accelerate patient-centered outcomes research: the Crohn's and Colitis Foundation of America PCORnet Patient Powered Research Network (CCFA Partners).

    PubMed

    Chung, Arlene E; Sandler, Robert S; Long, Millie D; Ahrens, Sean; Burris, Jessica L; Martin, Christopher F; Anton, Kristen; Robb, Amber; Caruso, Thomas P; Jaeger, Elizabeth L; Chen, Wenli; Clark, Marshall; Myers, Kelly; Dobes, Angela; Kappelman, Michael D

    2016-05-01

    The Crohn's and Colitis Foundation of America Partners Patient-Powered Research Network (PPRN) seeks to advance and accelerate comparative effectiveness and translational research in inflammatory bowel diseases (IBDs). Our IBD-focused PCORnet PPRN has been designed to overcome the major obstacles that have limited patient-centered outcomes research in IBD by providing the technical infrastructure, patient governance, and patient-driven functionality needed to: 1) identify, prioritize, and undertake a patient-centered research agenda through sharing person-generated health data; 2) develop and test patient and provider-focused tools that utilize individual patient data to improve health behaviors and inform health care decisions and, ultimately, outcomes; and 3) rapidly disseminate new knowledge to patients, enabling them to improve their health. The Crohn's and Colitis Foundation of America Partners PPRN has fostered the development of a community of citizen scientists in IBD; created a portal that will recruit, retain, and engage members and encourage partnerships with external scientists; and produced an efficient infrastructure for identifying, screening, and contacting network members for participation in research. PMID:26911821

  14. Research studies with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The IUE research studies comprises 118 separate research programs involving observations, data analysis, and research conducted of the IUE satellite and the NASA Astrophysics Data Program. Herein are presented 92 programs. For each program there is a title, program ID, name of the investigator, statement of work, summary of results, and list of publications.

  15. Status and Plans for the Accelerator Working Group of the International Design Study of the Neutrino Factory

    SciTech Connect

    Berg, J. Scott

    2010-03-30

    The purpose of the International Design Study of the Neutrino Factory (IDS-NF) is to produce a design report for a neutrino factory in 2013. I report the status of the accelerator design and plans for future studies.

  16. Feasibility study of accelerator based production of molybdenum-99/technetium-99m

    NASA Astrophysics Data System (ADS)

    Tchelidze, Lali

    Stability of supply in the medical radioisotope market is now of overriding importance. One of the most commonly used radioisotopes is 99mTc, which is produced from 99Mo decay. 99Mo has been produced in nuclear reactors before, however these reactors are aging and have been not reliable lately and there is a great need to find an alternative for the production. In the current project, photo-neutron production of 99Mo/ 99mTc was investigated. An electron linear accelerator at the Idaho Accelerator Center was used to study the feasibility of 99mTc production using bremsstrahlung photon beams from the accelerator. The kinematic recoil process that occurs with every photo nuclear reaction was exploited. With the emission of a neutron in a photo nuclear reaction, the parent nucleus recoils in order to conserve momentum. This recoil can be used to separate 99Mo from 100Mo, at which point one has a very pure and very high specific activity source of 99Mo. We verified the photo-neutron production rates for 99Mo. Also, the kinematic recoil process was modeled and separation efficiencies were measured experimentally. We concluded that it is feasible to produce high 99Mo activities, however nano-particles of molybdenum have to be used and a clean nano-particle separation method has to be achieved.

  17. To study the emittance dilution in Superconducting Linear Accelerator Design for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Solyak, Nikolay; Tenenbaum, Peter

    2005-04-01

    Recently the particle physics community has chosen a single technology for the new accelerator, opening the way for the world community to unite and concentrate resources on the design of an International Linear collider (ILC) using superconducting technology. One of the key operational issues in the design of the ILC will be the preservation of the small beam emittances during passage through the main linear accelerator (linac). Sources of emittance dilution include incoherent misalignments of the quadrupole magnets and rf-structure misalignments. In this work, the study of emittance dilution for the 500-GeV center of mass energy main linac of the Superconducting Linear Accelerator design, based on adaptation of the TESLA TDR design is performed using LIAR simulation program. Based on the tolerances of the present design, effect of two important Beam-Based steering algorithms, Flat Steering and Dispersion Free Steering, are compared with respect to the emittance dilution in the main linac. We also investigated the effect of various misalignments on the emittance dilution for these two steering algorithms.

  18. Results from recent hydrogen pellet acceleration studies with a 2-m railgun

    SciTech Connect

    Kim, K.; Zhang, D.J.; King, T.; Haywood, R.; Manns, W.; Venneri, F.

    1989-12-01

    A new 3.2-mm-diameter, two-stage, fuseless, plasma-arc-driven electromagnetic railgun has been designed, constructed, and successfully operated to achieve a record velocity of 2.67 km/s({sup b}) for 3.2 mmD {times} 4 mmL solid hydrogen pellet. The first stage of this hydrogen pellet injector is a combination of a hydrogen pellet generator and a gas fun. The second stage is a 2-m-long railgun which serves as a booster accelerator. The gas fun accelerates a frozen hydrogen pellet to a medium velocity and injects it into the railgun through a perforated coupling piece, which also serves a pressure-relieving mechanism. An electrical breakdown of the propellant gas, which has followed the pellet from the gas fun into the railgun, forms a conducting plasma-arc armature immediately behind the pellet allowing for fuseless operation of the railgun. Study of the pressure profile and the behavior of the plasma-arc armature inside the railgun bore led to elimination of spurious arcing, which prevents operation of the railgun at high voltages (and, therefore, at high currents). A timing circuit that can automatically measure the pellet input velocity and allows for accurate control of arc initiation behind the pellet helps prevent pellet disintegration and mistriggering of the arc initiation circuit. Results from the recent cryogenic operation of the two-stage pellet acceleration system are reported. 11 refs., 2 figs., 1 tab.

  19. Study on beam emittance evolution in a nonlinear plasma wake field accelerator with mobile plasma ions

    NASA Astrophysics Data System (ADS)

    An, Weiming; Joshi, Chan; Mori, Warren; Lu, Wei

    2014-10-01

    We study the electron beam evolution in a nonlinear blowout PWFA when the accelerated beam has a very small matched spot size that can cause the plasma ions collapsing towards the beam. Contrary to the common belief, very small emittance growth of the accelerated electron beam is found when the plasma ion collapsing destroys the perfect linear focusing force in the plasma wake field. The improved quasi-static PIC code QuickPIC also allows us to use very high resolution and to model asymmetric spot sizes. Simulation results show that the accelerated beam will reach a steady state after several cm propagation in the plasma (which is why we can do simulations and not let the drive beam evolve). We find that for round beams the ion density (which is Li+) enhancement is indeed by factors of 100, but that the emittance only grows by around 20 percent. For asymmetric spot sizes, the ion collapse is less and emittance growth is zero in the plane with the largest emittance and about 20 percent in the other plane.

  20. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations

  1. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  2. The NASA Short-term Prediction Research and Transition (SPoRT) Center: A Collaborative Model for Accelerating Research into Operations

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; Jedlovec, G.; Dodge, J.; Bradshaw, T.

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama was created to accelerate the infusion of NASA earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The principal focus of experimental products is on the regional scale with an emphasis on forecast improvements on a time scale of 0-24 hours. The SPoRT Center research is aligned with the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues ranging from convective initiation to 24-hr quantitative precipitation forecasting. The SPoRT Center, together with its other interagency partners, universities, and the NASA/NOAA Joint Center for Satellite Data Assimilation, provides a means and a process to effectively transition NASA Earth Science Enterprise observations and technology to National Weather Service operations and decision makers at both the global/national and regional scales. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future.

  3. Program for transfer research and impact studies

    NASA Technical Reports Server (NTRS)

    Rusnak, J.; Staskin, E. R.; Hartley, J. M.

    1973-01-01

    Research activities conducted under the program for Transfer Research and impact studies are reviewed. Programs include: Tech Brief - Technical Support Package (TSP) Program; transfer documentation; and technology transfer profiles. An analysis of user behavior patterns is made by studying questionnaires filled out by users of the Tech Brief - TSP program. The process of technology transfer is discussed in terms of improving its effectiveness.

  4. Lesson Study for Professional Development and Research

    ERIC Educational Resources Information Center

    Pierce, Robyn; Stacey, Kaye

    2011-01-01

    In this paper we demonstrate that "lesson study" may be adapted from its primary use as a professional development strategy for use as a research strategy, especially to identify principles of good lesson design. We report on a project undertaken in two Australian secondary schools where lesson study research was used to investigate the design of…

  5. Summer Undergraduate Research Program: Environmental studies

    SciTech Connect

    McMillan, J.

    1994-12-31

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

  6. Microwave and accelerator research. Final report on Grant DE-FG02-92ER40731

    SciTech Connect

    Nation, John A.

    2002-09-01

    This report summarizes the main technical objectives and accomplishments during the life of the grant, and concludes with data on publications describing the research. The main activity was the development of very high power microwave sources, initially in X-band, and recent initial work on a Ka band TWT amplifier. There was additional activity on ferroelectric emitters. Highlights include the following: (1) The development of a relatively broad band microwave source yielding approx. 75 MW power at a power efficiency of 54% and an energy conversion efficiency of 43%. (2) The development of a ferroelectric cathode electron gun which yielded a beam current of up to 350 A at 500 kV. The device was shown to operate satisfactorily at a low repetition rate, limited by the available power supplies. The final beam power obtained exceeds that achieved elsewhere by several orders of magnitude. The gun development achieved was shown to give an electron beam suitable for high power X-band microwave sources with the demonstration of a 5-MW tunable X-band TWT single-stage amplifier. (3) Work was initiated on a Ka-Band TWT amplifier. Gains of over 30 dB were achieved at peak output powers of about 4 MW. Appendices include two submitted papers: Symmetric and asymmetric mode interaction in high-power traveling wave amplifiers: experiments and theory and High power microwave generation using a ferroelectric cathode electron gun.

  7. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1989--March 31, 1990

    SciTech Connect

    Not Available

    1990-03-01

    This report discusses the following topics: Transverse Emittance Studies on MBE-4; MBE-4 Simulations; Beam Centroid Motion and Misalignments in MBE-4; Survey and Alignment of MBE-4; Energy Analysis of the 5mA MBE-4 Beam; An Improved 10 mA Ion Source for MBE-4; Emittance Degradation via a Wire Grid; Ion Source Development; 2 MV Injector; Electrostatic Quadrupole Prototype Development Activity; Magnetic Induction Core Studies; A Preliminary Consideration of Beam Splitting in Momentum Space; and Status of the Optimization Code HILDA.

  8. The 3MV Hypervelocity Dust Accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Shu, A.; Collette, A.; Drake, K.; Horanyi, M.; Kempf, S.; Munsat, T.; Northway, P.; Robertson, S.; Sternovsky, Z.; Thomas, E.; Gruen, E.; Srama, R.

    2011-11-01

    Micrometeorite impacts and dusty plasma phenomena can be found in a wide variety of subjects. In many extraplanetary systems, such as in deep space and on airless bodies such as asteroids or the moon, dusty plasmas play a large role in the basic scientific evolution of the environment. Dust can also be captured and studied in dust astronomy in order to better understand the evolution of our universe, similarly to how photons are used in traditional astronomy. At the Colorado Center for Lunar Dust and Atmospheric Studies, we have developed a 3MV hypervelocity dust accelerator in order to study these and other applications of dust and dusty plasmas. This facility is capable of accelerating micron sized dust particles up to 10's of km/s. In addition to this we have several vacuum chambers used for dusty plasma experiments. The large Lunar Environment Impact Laboratory (LEIL) test chamber will be used to study dust levitation, space weathering, and lunar exosphere evolution. A smaller ultrahigh vacuum chamber will be used to detect neutral species in micrometeorite impact ejecta and detect and analyze impact flashes. In addition to this work, graphite tokamak wall tile material will be placed into the beam path to determine damage characteristics from dust in fusion systems.

  9. Heavy ion fusion accelerator research (HIFAR) year-end report, April 1, 1991--September 30, 1991

    SciTech Connect

    Not Available

    1991-09-01

    This report discusses the following topics: ion source for the final focusing scaling experiment; reference ILSE physics design; injector and ion source development; the injector matching section; beam merging in ILSE; short quadrupole magnet design; ILSE concept induction cell studies; fast split-harp emittance measurements using a multichannel waveform analyzer; and HIFAR staff roster.

  10. Comparative sensitivity study and reading correction of various albedo dosimeters in neutron fields on the U-400M accelerator

    NASA Astrophysics Data System (ADS)

    Mokrov, Yu. V.; Morozov, S. V.; Shchegolev, V. Yu.

    2013-03-01

    The sensitivities of three types of albedo dosimeters are experimentally studied in U-400M accelerator radiation fields in the experimental hall (one point) and behind its shielding (three points). It is shown that the ratios of the sensitivity of the albedo dosimeter (AD) and the combined personal dosimeter (CPD) used earlier at the Joint Institute for Nuclear Research (JINR) to the sensitivity of the DVGN-01 dosimeter are constant within 25%. This allows the AD and CPD sensitivities obtained earlier at the JINR facilities to be used for correcting readings of the DVGN-01 now used at JINR for personal radiation monitoring. Correction coefficients are found for DVGN-01 readings behind the U-400M shielding. This has allowed a more reliable correction coefficient to be established for the Flerov Laboratory of Nuclear Reactions (FLNR).

  11. Application of convergence acceleration to the reactor kinetic equations: A comparative study

    SciTech Connect

    Picca, P.; Furfaro, R.; Ganapol, B. D.

    2013-07-01

    This presentation provides a comparison of two methodologies for the solution of reactor kinetic equations, namely for a standard finite difference and a semi-analytical approach. The above-mentioned methods are implemented in a convergence acceleration framework to enhance their efficiency and a comparative study is reported to verify whether it is more convenient to use a rudimentary but fast algorithm (finite difference) with respect to the more refined but computationally intense approach of the semi-analytical method. Performance on several test cases from the literature are compared. (authors)

  12. Numerical simulation study of positron production by intense laser-accelerated electrons

    SciTech Connect

    Yan, Yonghong; Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 ; Dong, Kegong; Wu, Yuchi; Zhang, Bo; Gu, Yuqiu; Yao, Zeen

    2013-10-15

    Positron production by ultra-intense laser-accelerated electrons has been studied with two-dimensional particle-in-cell and Monte Carlo simulations. The dependence of the positron yield on plasma density, plasma length, and converter thickness was investigated in detail with fixed parameters of a typical 100 TW laser system. The results show that with the optimal plasma and converter parameters a positron beam containing up to 1.9 × 10{sup 10} positrons can be generated, which has a small divergence angle (10°), a high temperature (67.2 MeV), and a short pulse duration (1.7 ps)

  13. Study of the near-electrode processes in quasi-steady plasma accelerators with impenetrable electrodes

    NASA Astrophysics Data System (ADS)

    Kozlov, A. N.

    2012-01-01

    Near-electrode processes in a coaxial plasma accelerator with equipotential impenetrable electrodes are simulated using a two-dimensional (generally, time-dependent) two-fluid MHD model with allowance for the Hall effect and the plasma conductivity tensor. The simulations confirm the theoretically predicted mechanism of the so-called "crisis of current" caused by the Hall effect. The simulation results are compared with available experimental data. The influence of both the method of plasma supply to the channel and an additional longitudinal magnetic field on the development of near-electrode instabilities preceding the crisis of current is studied.

  14. Longitudinal painting with large amplitude second harmonic rf voltages in the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Tamura, Fumihiko; Yamamoto, Masanobu; Yoshii, Masahito; Ohmori, Chihiro; Nomura, Masahiro; Schnase, Alexander; Toda, Makoto; Suzuki, Hiromitsu; Shimada, Taihei; Hara, Keigo; Hasegawa, Katsushi

    2009-04-01

    In the rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC), the longitudinal painting is important to alleviate the space-charge effects. It is known that the momentum offset injection and applying the second harmonic rf voltage improves the bunching factor, which is defined as the ratio of average and peak current. Our simulation studies show that the large-amplitude second harmonic, 80% to the fundamental, is optimum, and the second harmonic phase sweep improves the bunching factor at the beginning of the injection period. We performed the beam tests of longitudinal painting in the J-PARC RCS. We proved that the longitudinal painting with the 80% second harmonic, the momentum offset of -0.2%, and the second harmonic phase sweep improved bunching factors significantly.

  15. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  16. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  17. A Parametric Study of Accelerations of an Airplane Due to a Wake Vortex System

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1999-01-01

    A study was conducted using strip theory to systematically investigate the effects of progressively more complete descriptions of the interaction of an airplane with a wake vortex system. The emphasis was in roll-dominant, parallel, vortex encounters. That is, the simulated airplane's longitudinal axis was nearly parallel to the rotation axis of the vortex system for most of the results presented. The study began with a drag-less rectangular wing in the flow field of a single vortex and progressed to a complete airplane with aerodynamic surfaces possessing taper, sweep, dihedral, and stalling and immersed in the flow field of a vortex pair in ground effect. The effects of the pitch, roll, and yaw attitudes of the airplane on the calculated accelerations were also investigated. The airplane had the nominal characteristics of a Boeing 757, and the vortex flow field had the nominal characteristics of the wake of a Boeing 767. The Bumham-Hallock model of a vortex flow field was used throughout the study. The data are presented mainly in terms of contours of equal acceleration in a two-dimensional area centered on the vortex pair and having dimensions of 300 feet by 300 feet.

  18. Compatibility and accelerated aging study for Li(Si)/FeS/sub 2 thermally activated batteries

    NASA Astrophysics Data System (ADS)

    Mead, J. W.; Searcy, J. Q.; Neiswander, P. N.; Poole, R. L.

    1983-12-01

    Thermally activated batteries using the lithium (silicon) iron disulfide (Li(Si)/FeS2) electrochemical system are used in weapons having a required storage life of 25 years and high reliability. A review of known data revealed no information on the compatibility of Li(Si)/FeS2 with the organic materials used in the system. The compatibility question is studied. Accelerated-aging data on pairs of materials were produced. In addition, a group of production batteries was aged and tested. Three aging temperatures were used during the one-year study. Gas analyses, electrical tests and mechanical tests were compared for control and aged samples. Two results, the depletion of oxygen and an increase in hydrogen in the compatibility and accelerated-aging samples, stimulated additional studies. No unexpected or significant changes were observed in the electrical or mechanical properties of the organic materials. Calorific output and chloride ion content of heat pellets indicated no degradation with aging. Ignition sensitivity and burn rate measurements suggested no heat pellet degradation. Oxygen content in aged lithium (silicon) anodes remained within acceptable limits. Single-cell tests and battery test results showed no degradation with aging.

  19. Implementing Common Data Elements Across Studies to Advance Research

    PubMed Central

    Cohen, Marlene Z.; Thompson, Cheryl Bagley; Yates, Bernice; Zimmerman, Lani; Pullen, Carol H.

    2014-01-01

    Challenges arise in building the knowledge needed for evidence based practice partially because obtaining clinical research data is expensive and complicated, and many studies have small sample sizes. Combining data from several studies may have the advantage of increasing the impact of the findings, or expanding the population to which findings may be generalized. The use of common data elements will allow this combining and, in turn, create big data, which is an important approach that may accelerate knowledge development. This article discusses the philosophy of using common data elements across research studies and illustrates their use by the processes in a Developmental Center grant funded by the National Institutes of Health. The researchers identified a set of data elements and used them across several pilot studies. Issues that need to be considered in the adoption and implementation of common data elements across pilot studies include theoretical framework, purpose of the common measures, respondent burden, team work, managing large data sets, grant writing, and unintended consequences. We describe these challenges and solutions that can be implemented to manage them. PMID:25771192

  20. Future HEP Accelerators: The US Perspective

    SciTech Connect

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  1. A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor

    NASA Astrophysics Data System (ADS)

    Ji, Xiangfeng; Zhou, Xuemei; Ran, Bin

    2013-04-01

    Pedestrian speed in a transfer station corridor is faster than usual and sometimes running can be found among some of them. In this paper, pedestrians are divided into two categories. The first one is aggressive, and the other is conservative. Aggressive pedestrians weaving their way through crowd in the corridor are the study object of this paper. During recent decades, much attention has been paid to the pedestrians' behavior, such as overtaking (also deceleration) and collision avoidance, and that continues in this paper. After sufficiently analyzing the characteristics of pedestrian flow in transfer station corridor, a cell-based model is presented in this paper, including the acceleration (also deceleration) and overtaking analysis. Acceleration (also deceleration) in a corridor is fixed according to Newton's Law and then speed calculated with a kinematic formula is discretized into cells based on the fuzzy logic. After the speed is updated, overtaking is analyzed based on updated speed and force explicitly, compared to rule-based models, which herein we call implicit ones. During the analysis of overtaking, a threshold value to determine the overtaking direction is introduced. Actually, model in this paper is a two-step one. The first step is to update speed, which is the cells the pedestrian can move in one time interval and the other is to analyze the overtaking. Finally, a comparison between the rule-based cellular automata, the model in this paper and data in HCM 2000 is made to demonstrate our model can be used to achieve reasonable simulation of acceleration (also deceleration) and overtaking among pedestrians.

  2. Solar energy storage researchers information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  3. Quality Assurance Plan for Field Activities at the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge, Tennessee

    SciTech Connect

    Brandt, C.C.

    2002-02-28

    The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) has established a Natural and Accelerated Bioremediation Research (NABIR) program Field Research Center (FRC) for the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. The FRC is located in Bear Creek Valley within the Y-12 Plant area of responsibility on DOE's Oak Ridge Reservation in Tennessee. The NABIR program is a long-term effort designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. The FRC provides a site for investigators in the NABIR program to conduct research and obtain samples related to in situ bioremediation. The FRC is integrated with existing and future laboratory and field research and provides a means of examining the biogeochemical processes that influence bioremediation under controlled small-scale field conditions. This Quality Assurance Plan (QAP) documents the quality assurance protocols for field and laboratory activities performed by the FRC staff. It supplements the requirements in the ORNL Nuclear Quality Assurance Program and the ESD Quality Assurance Program. The QAP addresses the requirements in Title 10 CFR, Part 830 Subpart A, ''Quality Assurance Requirements'', using a graded approach appropriate for Research and Development projects based on guidance from ''Implementation Guide for Quality Assurance Programs for Basic and Applied Research'' (DOE-ER-STD-6001-92). It also supports the NABIR FRC Management Plan (Watson and Quarles 2000a) which outlines the overall procedures, roles and responsibilities for conducting research at the FRC. The QAP summarizes the organization, work activities, and qualify assurance and quality control protocols that will be used to generate scientifically defensible data at the FRC. The QAP pertains to field measurements and sample collection conducted by the

  4. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    SciTech Connect

    N /A

    2000-04-18

    The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediation under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or

  5. Experimental stand for studying the impact of laser-accelerated protons on biological objects

    NASA Astrophysics Data System (ADS)

    Burdonov, K. F.; Eremeev, A. A.; Ignatova, N. I.; Osmanov, R. R.; Sladkov, A. D.; Soloviev, A. A.; Starodubtsev, M. V.; Ginzburg, V. N.; Kuz'min, A. A.; Maslennikova, A. V.; Revet, G.; Sergeev, A. M.; Fuchs, J.; Khazanov, E. A.; Chen, S.; Shaykin, A. A.; Shaikin, I. A.; Yakovlev, I. V.

    2016-04-01

    An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.

  6. Nurse researchers in corrections: a qualitative study.

    PubMed

    Ferszt, Ginette G; Hickey, Joyce

    2013-01-01

    The United States has more people, per capita, in prisons and jails than any other country in the world. Because the prison population is largely composed of people who have been economically and socially disadvantaged, a very high percentage enter correctional facilities in poor health. Because of the large concentrated numbers of women, men, and youth in prisons and jails, an exceptional opportunity exists for nurses and other researchers to conduct creative and innovative research to improve the health care of this hard-to-reach population. The purpose of this study was to explore the experiences of nurse researchers who have been successful in conducting studies in different correctional settings. A qualitative descriptive design was used, and telephone interviews with 16 participants were completed. The participants described how they established credibility, the challenges they faced, and the unexpected personal and professional rewards they received. Recommendations for potential researchers will hopefully lead to an increase in research with this invisible population. PMID:24256982

  7. Study of the accelerating effect of shikonin and alkannin on the proliferation of granulation tissue in rats.

    PubMed

    Ozaki, Y; Sakaguchi, I; Tujimura, M; Ikeda, N; Nakayama, M; Kato, Y; Suzuki, H; Satake, M

    1998-04-01

    The present study was carried out to compare the accelerating effect of shikonin and alkannin and to elucidate the expression of CD antigen and histological changes on the proliferation of granulation tissue in rats. Shikonin and alkannin produced a dose-dependent acceleration of the cotton pellet-induced granuloma formation and this accelerating potency of both compounds on the proliferation of granulation tissue was about the same 5 and 10 d after implantation of the cotton pellet. Also, both compounds increased the ratio of CD11b+ cells in the granulation tissue 5 and 10 d after implantation of the cotton pellet. Both compounds increased the expression of CD11b+ cells with granulocytes such as macrophages and histiocytes, and then accelerated the proliferation of fibroblasts and collagen fiber. On the other hand, neither compound increased the ratio of CD3+ cells in the granulation tissue after 5 and 10 d. These results suggest that shikonin and alkannin accelerate the proliferation of granulation tissue induced by the cotton pellet and this accelerating effect may be attributed to an increase in the expression of CD11b+ cells, and the acceleration of the proliferation of fibroblasts and collagen fiber in the granulation tissue. PMID:9586574

  8. DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY (DEARS)

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) is a residential and personal exposure field monitoring study that is being conducted in Detroit MI over a three-year period from 2004 to 2007. The primary goal of the study is to evaluate and describe the relationship betw...

  9. Studies in Teaching: 2008 Research Digest

    ERIC Educational Resources Information Center

    McCoy, Leah P., Ed.

    2008-01-01

    Proceedings of Annual Research Forum. 34 studies. Cultural Awareness in Secondary Spanish (Amy Allen), Writing in Mathematics (Lindsey L. Bakewell), Homework: Assignment Methods and Student Engagement (Lia Beresford), Current Events and Social Studies (Jennie Marie Biser), Authentic Assessments in Social Studies (Carl Boland), Assessment in High…

  10. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  11. Study of proton acceleration at the target front surface in laser-solid interactions by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Proton acceleration inside solid LiF and CH-LiF targets irradiated by a 450-fs, 20-J, 1053-nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} has been studied via neutron spectroscopy. Neutron spectra produced through the {sup 7}Li(p,n){sup 7}Be reaction that occurs between accelerated protons, at the front surface, and background {sup 7}Li ions inside the target. From measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, total number, and slope temperature of the accelerated protons are investigated. The study indicates that protons originate at the front surface and are accelerated to a maximum energy that is reasonably consistent with the calculated one due to the ponderomotive force.

  12. Accelerated Learning Options: Moving the Needle on Access and Success. A Study of State and Institutional Policies and Practices

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    This document was designed to inform members of the policy, education, and research communities about existing state and institutional policies and practices associated with four accelerated learning programs: Advanced Placement (AP), dual/concurrent enrollment, the International Baccalaureate (IB) Diploma Program, and Tech-Prep. This effort was…

  13. Speeding up CRMs for cloud-climate interaction studies by acceleration of mean state tendencies

    NASA Astrophysics Data System (ADS)

    Jones, C. R.; Bretherton, C. S.

    2014-12-01

    Cloud-resolving models (CRMs) are routinely used to simulate boundary-layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. CRMs are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We use this time scale separation to accelerate the time-integration of a CRM, the System for Atmospheric Modelling. Our approach uses a large time step to evolve the horizontally averaged state variables, followed by a short time step to calculate the turbulent fluctuations about the mean state. Using this approach, we are able to accelerate the model evolution by a factor of 8 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. We show how to adapt the approach to challenges arising from rapidly falling precipitation and from advecting scalars with a variety of lifetimes.

  14. Numerical study of a linear accelerator using laser-generated proton beams as a source

    SciTech Connect

    Antici, P.; Fazi, M.; Migliorati, M.; Palumbo, L.; Lombardi, A.; Audebert, P.; Fuchs, J.

    2008-12-15

    The injection of laser-generated protons through conventional drift tube linear accelerators (linacs) has been studied numerically. For this, we used the parameters of the proton source produced by ultraintense lasers, i.e., with an intrinsic high beam quality. The numerical particle tracing code PARMELA[L. M. Young and J. H. Billen, LANL Report No. LA-UR-96-1835, 2004] is then used to inject experimentally measured laser-generated protons with energies of 7{+-}0.1 MeV and rms un-normalized emittance of 0.180 mm mrad into one drift tube linac tank that accelerated them to more than 14 MeV. The simulations exhibit un-normalized emittance growths of 8 in x direction and 22.6 in y direction, with final emittances lower than those produced using conventional sources, allowing a potential luminosity gain for the final beam. However, the simulations also exhibit a limitation in the allowed injected proton charge as, over 0.112 mA, space charge effect worsens significantly the beam emittance.

  15. Experimental study of temperature fields and thermal fluxes in the electrode walls of an MGD accelerator

    SciTech Connect

    Alferov, V.I.; Vitkovskaya, O.N.; Panfilova, O.V.; Rudakova, A.P.; Sukhobokov, A.D.; Shcherbakov, G.I.

    1980-07-01

    Results are presented of an experimental study of the features of heat transfer from a flow of air with KNa admixture to the electrode walls of an MGD accelerator in a wide range of operating modes (B=1--2.5 T,j=4--45 A/cm/sup 2/,P/sub st/0.2=(en-dash0.5)x10/sup 5/ Pa). Data are obtained on the size and distribution of the thermal fluxes in different zones of an MGD channel and over the electrodes, taken separately. Methods are chosen for calculating the convective thermal flux on the electrode walls over the entire length of the accelerator channel, and the values of the thermal flux in the discharge zone due to processes at the electrodes are determined. A possible explanation is proposed for the difference between the values of the thermal fluxes at the electrode walls over different portions of the MGD channel, which is based on features of the behavior of microarcs on the surface of the electrodes.

  16. Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2015-11-01

    Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  17. Radiation shielding and patient organ dose study for an accelerator- based BNCT Facility at LBNL

    SciTech Connect

    Costes, S.V.; Vujic, J.; Donahue, R.J.

    1996-10-24

    This study considers the radiation safety aspects of several designs discussed in a previous report of an accelerator-based source of neutrons, based on the [sup 7]Li(p,n) reaction, for a Boron Neutron Capture Therapy (BNCT) Facility at Lawrence Berkeley National Laboratory (LBNL). determines the optimal radiation shield thicknesses for the patient treatment room. Since this is an experimental facility no moderator or reflector is considered in the bulk wall shield design. This will allow the flexibility of using any postulated moderator/reflector design and assumes sufficient shielding even in the absence of a moderator/reflector. In addition the accelerator is assumed to be capable of producing 100 mA of 2.5 MeV proton beam current. The addition of 1% and 2% [sup 10]B (by weight) to the concrete is also investigated. The second part of this paper determines the radiation dose to the major organs of a patient during a treatment. Simulations use the MIRD 5 anthropomorphic phantom to calculate organ doses from a 20 mA proton beam assuming various envisioned moderator/reflector in place. Doses are tabulated by component and for a given uniform [sup 10]B loading in all organs. These are presented in for a BeO moderator and for an Al/AlF[sub 3] moderator. Dose estimates for different [sup 10]B loadings may be scaled.

  18. Emotional states of drivers and the impact on speed, acceleration and traffic violations - a simulator study.

    PubMed

    Roidl, Ernst; Frehse, Berit; Höger, Rainer

    2014-09-01

    Maladjusted driving, such as aggressive driving and delayed reactions, is seen as one cause of traffic accidents. Such behavioural patterns could be influenced by strong emotions in the driver. The causes of emotions in traffic are divided into two distinct classes: personal factors and properties of the specific driving situation. In traffic situations, various appraisal factors are responsible for the nature and intensity of experienced emotions. These include whether another driver was accountable, whether goals were blocked and whether progress and safety were affected. In a simulator study, seventy-nine participants took part in four traffic situations which each elicited a different emotion. Each situation had critical elements (e.g. slow car, obstacle on the street) based on combinations of the appraisal factors. Driving parameters such as velocity, acceleration, and speeding, together with the experienced emotions, were recorded. Results indicate that anger leads to stronger acceleration and higher speeds even for 2 km beyond the emotion-eliciting event. Anxiety and contempt yielded similar but weaker effects, yet showed the same negative and dangerous driving pattern as anger. Fright correlated with stronger braking momentum and lower speeds directly after the critical event. PMID:24836476

  19. Tumor-Associated Glycans and Their Role in Gynecological Cancers: Accelerating Translational Research by Novel High-Throughput Approaches

    PubMed Central

    Pochechueva, Tatiana; Jacob, Francis; Fedier, Andre; Heinzelmann-Schwarz, Viola

    2012-01-01

    Glycans are important partners in many biological processes, including carcinogenesis. The rapidly developing field of functional glycomics becomes one of the frontiers of biology and biomedicine. Aberrant glycosylation of proteins and lipids occurs commonly during malignant transformation and leads to the expression of specific tumor-associated glycans. The appearance of aberrant glycans on carcinoma cells is typically associated with grade, invasion, metastasis and overall poor prognosis. Cancer-associated carbohydrates are mostly located on the surface of cancer cells and are therefore potential diagnostic biomarkers. Currently, there is increasing interest in cancer-associated aberrant glycosylation, with growing numbers of characteristic cancer targets being detected every day. Breast and ovarian cancer are the most common and lethal malignancies in women, respectively, and potential glycan biomarkers hold promise for early detection and targeted therapies. However, the acceleration of research and comprehensive multi-target investigation of cancer-specific glycans could only be successfully achieved with the help of a combination of novel high-throughput glycomic approaches. PMID:24957768

  20. Microwave and accelerator research

    SciTech Connect

    Nation, J.A.

    1993-01-01

    This report describes work carried out on DOE grant number DE-FG02- 92ER40731 during the period June 1, 1992 to the present. The report provides a brief summary of the program objectives, summarizes the main accomplishments and concludes with listings of conference and refereed publications.

  1. [Choosing study design in urologic research].

    PubMed

    Barreales Tolosa, Laura; Mato Chaín, Gloria; Mariano Lázaro, Alberto; Fernández Pérez, Cristina; Rodríguez Caravaca, Gil; Fereres Castiel, José

    2003-01-01

    The design of an epidemiological study includes the procedures, methods and techniques by which the researcher tries to obtain valid (avoiding systematic errors or bias) and precise (avoiding random errors) answers to the research question posed. This principal question aimed to be answered is the specific objective of the study, which guides the election of an adequate type of design. The objective of this article is to describe the classification criteria (finality, temporal sequence, directionality, and control of the assignation of different study factors) of the different types of epidemiological studies (experimental, almost-experimental, and observational) and the main advantages, disadvantages, utilities and objectives of each investigation design. PMID:12958995

  2. Ocean energy researchers information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on ocean energy systems. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Only high-priority groups were examined. Results from 2 groups of researchers are analyzed in this report: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  3. Preliminary study of using pipetron-type magnets for a pre-accelerator for the LHC

    SciTech Connect

    de Rijk, G.; Rossi, L.; Piekarz, H.; /Fermilab

    2006-06-01

    One of the luminosity limitations of the LHC is the rather low injection energy (0.45 TeV) with respect to the collision energy (7 TeV). The magnetic multipoles in the main dipoles at low field and their dynamic behavior are considered to limit the achievable bunch intensity and emittance. We report on a preliminary study to increase the injection energy to 1.5 TeV using a two-beam pre-accelerator (LER) in the LHC tunnel. The LER is based on ''Pipetron'' magnets as originally proposed for the VLHC. The aim of the study is to assess the feasibility and to identify the critical processes or systems that need to be investigated and developed to render such a machine possible.

  4. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R.E.

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  5. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  6. The impact of immersion training on complementing organizational goals and accelerating culture change - a field study

    SciTech Connect

    Hayes, S.M.

    1996-02-01

    At Los Alamos National Laboratory, a national defense laboratory with a history of working in seclusion and secrecy, scientists and engineers have received an important new mission to partner with industry. The scientists and engineers need to expand their skill base beyond science and understand the business of innovation to be successful in this new environment. An administrative field experiment of conducting intensive, immersion training about the commercialization process was piloted at Los Alamos in September, 1992. This Field Research Project addresses the following research question: {open_quotes}Does {open_quotes}immersion{close_quotes} commercialization training complement organizational goals and does the method accelerate cultural change?{close_quotes} The field experiment first began as a pilot Commercialization Workshop conducted for twelve scientists in September, 1992. The objective was to create commercialization action plans for promising environmental technologies. The immersion method was compared to the indoctrination method of training also. The indoctrination training was a one-day lecture style session conducted for one hundred and fifty scientists in July, 1993. The impact of the training was measured by perceived attitude change and the amount of subsequent industrial partnerships that followed the training. The key management question addressed on the job was, {open_quotes}With a limited budget, how do we maximize the impact of training and achieve the best results?{close_quotes}

  7. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  8. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  9. Studies of the Mirrortron ion accelerator concept and its application to heavy-ion drivers

    SciTech Connect

    Post, R.F.; Schwager, L.A. ); Douglass, S.R.; Jones, B.R.; Lambert, M.A.; Larson, D.L. . Dept. of Applied Science)

    1990-11-30

    The Mirrortron accelerator is a plasma-based ion accelerator concept that, when implemented, should permit both higher acceleration gradients and higher peak-current capabilities than is possible with conventional induction-type accelerators. Control over the acceleration and focussing of an accelerated beam should approach that achieved in vacuum-field-based ion accelerators. In the Mirrortron a low density (10{sup 10} to 10{sup 11} cm{sup {minus}3}) hot electron'' plasma is confined by a long solenoidal magnetic field capped by mirrors.'' Acceleration of pre-bunched ions is accomplished by activating a series of fast-pulsed mirror coils spaced along the acceleration tube. The hot electrons, being repelled by mirror action, leave the plasma ions behind to create a localized region of high electrical gradient (up to of order 100 MV/m). At the laboratory an experiment and analyses to elucidate the concept and its scaling laws as applied to heavy-ion drivers are underway and will be described. 4 refs., 5 figs.

  10. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  11. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  12. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. PMID:26474209

  13. Study of the beam breakup mode in linear induction accelerators for heavy ions

    SciTech Connect

    Chattopadhyay, S.; Faltens, A.; Smith, L.

    1981-03-01

    A simple theoretical study and numerical estimate is presented for the transverse amplitude growth of a nonrelativistic heavy ion beam in an induction linac, as envisaged for use in commercial power plants, due to the nonregenerative coherent beam breakup mode. An equivalent electrical circuit has been used to represent the accelerating induction modules. Our calculation shows that for the parameters of interest, the beam breakup amplitude for a heavy ion beam grows extremely slowly in the time scales of interest, to magnitudes insignificant for transport purposes. It is concluded that the coherent beam breakup mode does not pose any serious threat to the stability of a high current (kA) heavy ion beam in an induction linac.

  14. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Cavenago, M.

    2011-09-26

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  15. Study of electron acceleration through the ? mode in a collisional plasma-filled cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Moghaddasi, M.

    2016-07-01

    Acceleration of an externally injected electron inside the collisional plasma-filled cylindrical waveguide during its motion in the fields of the ? mode excited by microwave radiation is studied. The effect of the electron collision frequency with background ions on the deflection angle and energy gain of electron, when it is injected along the direction of the mode propagation is investigated. The fields for the mode, the deflection angle of electron trajectory, due to these fields, and the electron energy gradient are obtained. The results for collisionless and collisional plasma are graphically presented. The numerical results illustrate that the presence of the electron collision term in the dielectric permittivity can reduce the electron's energy gain in the configuration.

  16. (Theory of elementary particles studies in weak interaction and grand unification and studies in accelerator design)

    SciTech Connect

    Not Available

    1991-01-01

    This report discusses research in high energy physics on the following topics: rare b decays; flavor changing top decays;neutrino physics; standard model; cp violation; heavy ion collisions; electron-positron interactions; electron-hadron interactions; hadron-hadron interactions; deep inelastic scattering; and grand unified models. (LSP)

  17. Electron acceleration associated with the magnetic flux pileup regions in the near-Earth plasma sheet: A multicase study

    NASA Astrophysics Data System (ADS)

    Tang, C. L.; Zhou, M.; Yao, Z. H.; Shi, F.

    2016-05-01

    Using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations, we study electron acceleration (<30 keV) in the magnetic flux pileup regions (FPRs) in the near-Earth plasma sheet (X ~ -10 RE). We present three cases of FRPs associated with dipolarization fronts and substorm dipolarization. Based on the characteristics of the magnetic field, we defined the magnetic field enhancement region (MFER) as the magnetic field with significant ramp that is usually observed near the dipolarization front boundary layer. On the other side, the increased magnetic field without a significant ramp is the rest of a FPR. Our results show that betatron acceleration dominates for 10-30 keV electrons inside the MFER, whereas Fermi acceleration dominates for 10-30 keV electrons inside the rest of the FPR. Betatron acceleration is caused by the enhancement of the local magnetic field, whereas Fermi acceleration is related to the shrinking length of magnetic field line. These accelerated electrons inside the FPRs in the near-Earth tail play a potentially important role in the evolution of the Earth's electron radiation belt and substorms.

  18. Implosion dynamics and radiation characteristics of wire-array Z pinches on the Cornell Beam Research Accelerator

    SciTech Connect

    McBride, R. D.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Greenly, J. B.; Kusse, B. R.; Douglass, J. D.; Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.

    2009-01-15

    Experimental results are presented that characterize the implosion dynamics and radiation output of wire-array Z pinches on the 1-MA, 100-ns rise-time Cornell Beam Research Accelerator (COBRA) [J. B. Greenly et al., Rev. Sci. Instrum. 79, 073501 (2008)]. The load geometries investigated include 20-mm-tall cylindrical arrays ranging from 4 to 16 mm in diameter, and consisting of 8, 16, or 32 wires of either tungsten, aluminum, or Invar (64% iron, 36% nickel). Diagnostics fielded include an optical streak camera, a time-gated extreme-ultraviolet framing camera, a laser shadowgraph system, time-integrated pinhole cameras, an x-ray wide-band focusing spectrograph with spatial resolution, an x-ray streak camera, a load voltage monitor, a Faraday cup, a bolometer, silicon diodes, and diamond photoconducting detectors. The data produced by the entire suite of diagnostics are analyzed and presented to provide a detailed picture of the overall implosion process and resulting radiation output on COBRA. The highest x-ray peak powers (300-500 GW) and total energy yields (6-10 kJ) were obtained using 4-mm-diameter arrays that stagnated before peak current. Additional findings include a decrease in soft x-ray radiation prior to stagnation as the initial wire spacing was changed from 1.6 mm to 785 {mu}m, and a timing correlation between the onset of energetic electrons, hard x-ray generation, and the arrival of trailing current on axis - a correlation that is likely due to the formation of micropinches. The details of these and other findings are presented and discussed.

  19. Superconducting and microstructural studies on sputtered niobium thin films for accelerating cavity applications

    NASA Astrophysics Data System (ADS)

    Bemporad, E.; Carassiti, F.; Sebastiani, M.; Lanza, G.; Palmieri, V.; Padamsee, H.

    2008-12-01

    The aim of the present research activity was to verify the influence of the applied bias voltage on the microstructural and functional properties of magnetron sputtering physical vapour deposition (MS-PVD) niobium thin films for use in superconducting resonant cavities for particle accelerators. Four different sets of samples were produced, by varying both the applied bias voltage and the nature of the substrate (copper or quartz). The morphological, microstructural, and mechanical properties of the coatings were experimentally determined by focused ion beam scanning electron microscopy (FIB-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and nanoindentation techniques, and then correlated to the applied bias and nature of the substrate. The superconducting properties (critical temperature Tc and residual resistivity) were determined by a calibrated four-contact probe and a cryogenic apparatus. The microstructures and surface properties of biased films grown on copper and quartz were compared. The observed differences are likely connected to the low conductivity of quartz that induces a re-sputtering effect and a consequent modification of the superconducting performances.

  20. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    SciTech Connect

    Soong, Ken; Peralta, E.A.; Byer, R.L.; Colby, E.; /SLAC

    2011-08-12

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry, as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a

  1. A Computational Study of a Capillary Discharge Pellet Accelerator Concept for Magnetic Fusion Fueling

    NASA Astrophysics Data System (ADS)

    Winfrey, A. Leigh; Gilligan, John G.; Bourham, Mohamed A.

    2013-04-01

    An ablation-dominated capillary discharge using low atomic number elements for plasma formation to flow into an ablation-free extension barrel is a concept that provides a high energy-density plasma flow sufficient to propel fuel pellets into the tokamak fusion plasma chamber. In this concept, the extension barrel is made from a non-ablating material by coating the interior wall of the barrel with nanocrystalline diamond to eliminate mixing the propelling plasma with any impurities evolving from the barrel ablation. The electrothermal plasma code ETFLOW models the plasma formation and flow in the capillary discharge and the flow into the extension barrel to accelerate frozen deuterium pellets. The code includes governing equations for both the capillary and the extension barrel, with the addition of the pellet's terms. It also includes ideal and non-ideal plasma conductivity models. The joule heating term in the energy conservation equation is only valid in the capillary section. The pellet momentum and kinetic energy are included in the governing equations of the barrel, with the addition of the effect of viscous drag terms. The electrothermal capillary source generates the plasma via the ablation of a sleeve inside the main capillary housing. The acceleration of the pellet starts in the extension barrel when the pressure of the plasma flow from the capillary reaches the release limit. The code results show pellet exit velocities in excess of 2 km/s for source/barrel systems with low-Z liner materials in the source for 5, 20, 45, and 80 mg pellets. The study shows that an increase in the length of both the source and the extension barrel increases the pellet exit velocity with the limitation of slowdown effects for plasma expansion and cooling off inside the barrel.

  2. Accelerated bone mineral loss following a hip fracture: a prospective longitudinal study.

    PubMed

    Dirschl, D R; Henderson, R C; Oakley, W C

    1997-07-01

    The purpose of this prospective study was to monitor the bone mineral density (BMD) of the lumbar spine and contralateral femoral neck in the first year following an osteoporosis-related fracture of the hip. Eighty-three elderly patients (mean age 77 years) who had sustained a hip fracture had determinations of BMD made at the time of fracture; 49 of these patients were available for reassessment of BMD 1 year later. The change in BMD was correlated with pre- and postinjury variables, such as ambulatory ability, dietary intake of calcium, serum vitamin D levels, mental status, and routine serologies. The mean decrease in BMD in the year following fracture was 5.4% from the contralateral femoral neck and 2.4% from the lumbar spine. Calcium intake correlated with the loss of BMD from the femoral neck (p = 0.015), but not the lumbar spine. Patients with daily calcium intakes of less than 500 mg/day had a more than 10% decrease in femoral neck BMD in the year following their hip fracture. Serum 1,25-dihydroxy vitamin D level correlated with loss of MBD from the lumbar spine (p = 0.001), but not from the femoral neck. There was no correlation between the loss of bone mineral from either measurement site and age, sex, level of ambulation, or mental status. The loss of BMD from the femoral neck in the year following a hip fracture is more than five times that reported in the nonfractured population. This accelerated rate of loss can have drastic consequences in an elderly population already exhibiting osteopenia and propensity to fall. Investigation of pharmacologic or other interventions in the first critical year following a hip fracture may potentially blunt this accelerated rate of bone loss and lessen the risk of subsequent fractures. PMID:9213011

  3. Particle acceleration and plasma energization in substorms: MHD and test particle studies

    SciTech Connect

    Birn, Joachim

    2015-07-16

    The author organizes his slide presentation under the following topics: background, MHD simulation, orbit integration, typical orbits, spatial and temporal features, acceleration mechanisms, source locations, and source energies. Field-­aligned energetic particle fluxes are shown for 45-keV electrons and 80-keV protons. It is concluded that the onset from local thin current sheet is electron tearing. Acceleration is mainly from field collapse, governed by Ey = -vxXBz: importance of localization; betatron acceleration (similar if nonadiabatic); 1st order Fermi, type B (or A; current sheet acceleration). There are two source regions (of comparable importance in magnetotail): - flanks, inner tail - drift entry - early, higher energy - outer plasma sheet - reconnection entry - later, lower energy. Both thermal and suprathermal sources are important, with limited energy range for acceleration

  4. GUIDANCE FOR RESEARCH HOUSE STUDIES OF THE FLORIDA RADON RESEARCH PROGRAM, VOLUME 1: RESEARCH PLAN

    EPA Science Inventory

    The report provides guidance and a readily available reference to groups involved with the Florida Radon Research Program's (FRRP's) research house studies. t includes: 1): Lists of Parameters for continuous and periodic high and low resolution measurements; (2) Protocols for cha...

  5. Conducting a pilot study: case study of a novice researcher.

    PubMed

    Doody, Owen; Doody, Catriona M

    Pilot studies play a vital role in health research, but are often misused, mistreated and misrepresented. A well-conducted pilot study with clear aims and objectives within a formal framework ensures methodological rigour, can lead to higher-quality research and scientifically valid work that is publishable and can benefit patients and health service delivery. A pilot study contributes valuable information to assist researchers in the conduct of their study. Conducting a pilot study provides the researcher with the opportunity to develop and enhance the skills necessary before commencing the larger study. By conducting a pilot the researcher obtains preliminary data, can evaluate their data-analysis method and clarify the financial and human resources required. This article presents an overview of pilot studies, why they are conducted, what to consider when reporting pilot studies and the authors' experience of conducting a pilot study. To conduct a successful study, researchers need to develop their skills, choose the right methods and carefully plan for all aspects of the process. PMID:26618678

  6. Sustained linear acceleration

    NASA Technical Reports Server (NTRS)

    Fraser, T. M.

    1973-01-01

    The subjective effects of sustained acceleration are discussed, including positive, negative, forward, backward, and lateral acceleration effects. Physiological effects, such as retinal and visual response, unconsciousness and cerebral function, pulmonary response, and renal output, are studied. Human tolerance and performance under sustained acceleration are ascertained.

  7. Qualitative Research: Studying How Things Work

    ERIC Educational Resources Information Center

    Stake, Robert E.

    2010-01-01

    This book provides invaluable guidance for thinking through and planning a qualitative study. Rather than offering recipes for specific techniques, master storyteller Robert Stake stimulates readers to discover "how things work" in organizations, programs, communities, and other systems. Topics range from identifying a research question to…

  8. Postgraduate Students' Experiences in Interdisciplinary Research Studies

    ERIC Educational Resources Information Center

    Winberg, C.; Barnes, V.; Ncube, K.; Tshinu, S.

    2011-01-01

    Many postgraduate interdisciplinary research (IDR) candidates in the applied disciplines work across two or more traditional areas of study. Such candidates often spend considerable time on knowledge-building activities outside their home (or undergraduate) disciplines; IDR candidates venture into new fields and are exposed to the cultures and…

  9. American Indian Studies. Library Research Guide.

    ERIC Educational Resources Information Center

    White, Phillip M.

    This guide to sources for students at San Diego State University doing library research in topics related to American Indian Studies begins by noting that information on North American Indians can be found in a variety of subject disciplines including history, anthropology, education, sociology, health care, law, business, and politics. The…

  10. Reye's Syndrome: A Review of Research Studies.

    ERIC Educational Resources Information Center

    Lopez, Thomas P.; And Others

    1982-01-01

    Clinical and pathological studies of Reye's syndrome indicate that symptoms range from influenza-related encephalitis-type disease to cranial pressure, cerebral edema, hemorrhage, and coma. Biochemical research on the blood, ammonia, and the liver is increasing in sophistication, and hopes for future insight into the etiology of Reye's syndrome…

  11. Jupiter Environmental Research & Field Studies Academy.

    ERIC Educational Resources Information Center

    Huttemeyer, Bob

    1996-01-01

    Describes the development and workings of the Jupiter Environmental Research and Field Studies Academy that focuses on enabling both teachers and students to participate in real-life learning experiences. Discusses qualifications for admittance, curriculum, location, ongoing projects, students, academics, preparation for life, problem solving, and…

  12. Endotoxin Studies And Biosolids Stabilization Research

    EPA Science Inventory

    This presentation has three parts; a review of bench-scale endotoxin research, a review of observations from a field scale endotoxin release study, and discussion of biosolids stabilization and characterization by PLFA/FAME microbial community analysis. Endotoxins are part of th...

  13. An International Study of Research Misconduct Policies

    PubMed Central

    Resnik, David B.; Rasmussen, Lisa M.; Kissling, Grace E.

    2015-01-01

    Research misconduct is an international concern. Misconduct policies can play a crucial role in preventing and policing research misconduct, and many institutions have developed their own policies. While institutional policies play a key role in preventing and policing misconduct, national policies are also important to ensure consistent promulgation and enforcement of ethical standards. The purpose of this study was to obtain more information about research misconduct policies across the globe. We found that twenty-two of the top forty research and development funding countries (55%) had a national misconduct policy. Four countries (18.2%) are in the process of developing a policy, and four (18.2%) have a national research ethics code but no misconduct policy. All twenty-two countries (100%) with national policies included fabrication, falsification, and plagiarism in the definition of misconduct, but beyond that there was considerable diversity. Unethical authorship was mentioned in 54.6% of the misconduct definitions, followed by unethical publication practices (36.4%), conflict of interest mismanagement (36.4%), unethical peer review (31.8%), misconduct related to misconduct investigations (27.3%), poor record keeping (27.3%), other deception (27.3%), serious deviations (22.7%), violating confidentiality (22.7%), and human or animal research violations (22.7%). Having a national policy was positively associated with research and development funding ranking and intensiveness. To promote integrity in international research collaborations, countries should seek to harmonize and clarify misconduct definitions and develop procedures for adjudicating conflicts when harmonization does not occur. PMID:25928177

  14. Decentralized energy studies: compendium of international studies and research

    SciTech Connect

    Wallace, C.

    1980-03-01

    The purpose of the compendium is to provide information about research activities in decentralized energy systems to researchers, government officials, and interested citizens. The compendium lists and briefly describes a number of studies in other industrialized nations that involve decentralized energy systems. A contact person is given for each of the activities listed so that interested readers can obtain more information.

  15. Menopause accelerates biological aging.

    PubMed

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  16. Analytical bunch compression studies for a linac-based electron accelerator

    NASA Astrophysics Data System (ADS)

    Schreck, M.; Wesolowski, P.

    2015-10-01

    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general.

  17. Evolution of Research - A Case Study

    NASA Astrophysics Data System (ADS)

    Skews, Beric

    Many complex and fascinating flow features occur when a shock wave impinges on or around a surface. Understanding of these is important in view of the increasing application in a variety of fields, such as medicine and material modification, besides the more conventional fields of blast loading of structures and supersonic aerodynamics. This paper deals with some of the developments of research in the field of shock wave studies at the Flow Research Unit of the University of the Witwatersrand. It covers both successful and unsuccessful investigations and suggests those that still need further work.

  18. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma.

    PubMed

    Kahaly, S; Sylla, F; Lifschitz, A; Flacco, A; Veltcheva, M; Malka, V

    2016-01-01

    Ion acceleration from intense (Iλ(2) > 10(18) Wcm(-2) μm(2)) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies. PMID:27531755

  19. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma

    PubMed Central

    Kahaly, S.; Sylla, F.; Lifschitz, A.; Flacco, A.; Veltcheva, M.; Malka, V.

    2016-01-01

    Ion acceleration from intense (Iλ2 > 1018 Wcm−2 μm2) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies. PMID:27531755

  20. Recent US target-physics-related research in heavy-ion inertial fusion: target gains and constraints on accelerator design

    SciTech Connect

    Mark, J.W.K.

    1982-03-09

    Inertial-fusion targets were designed for use with heavy-ion accelerators as drivers in fusion energy power plants. In the interest of providing inputs for understanding the trade-offs among accelerator designs, an initial survey was carried out regarding target gain versus parameters of relevance. This was done in two stages, firstly target gain was related to the beam energy, power, focal radius, and ion range. Secondly, a more comprehensive discussion was made by posing target gain constraints on the beam-occupied phase-space volume of the linacs. This latter discussion had included some rather simplified models of accelerator final focus and beam transport in near-vacuum fusion reaction chambers. Some further analyses of the basic assumptions of this summary are also described.

  1. Muscle contributions to centre of mass acceleration during turning gait in typically developing children: A simulation study.

    PubMed

    Dixon, Philippe C; Jansen, Karen; Jonkers, Ilse; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B

    2015-12-16

    Turning while walking requires substantial joint kinematic and kinetic adaptations compared to straight walking in order to redirect the body centre of mass (COM) towards the new walking direction. The role of muscles and external forces in controlling and redirecting the COM during turning remains unclear. The aim of this study was to compare the contributors to COM medio-lateral acceleration during 90° pre-planned turns about the inside limb (spin) and straight walking in typically developing children. Simulations of straight walking and turning gait based on experimental motion data were implemented in OpenSim. The contributors to COM global medio-lateral acceleration during the approach (outside limb) and turn (inside limb) stance phase were quantified via an induced acceleration analysis. Changes in medio-lateral COM acceleration occurred during both turning phases, compared to straight walking (p<0.001). During the approach, outside limb plantarflexors (soleus and medial gastrocnemius) contribution to lateral (away from the turn side) COM acceleration was reduced (p<0.001), whereas during the turn, inside limb plantarflexors (soleus and gastrocnemii) contribution to lateral acceleration (towards the turn side) increased (p≤0.013) and abductor (gluteus medius and minimus) contribution medially decreased (p<0.001), compared to straight walking, together helping accelerate the COM towards the new walking direction. Knowledge of the changes in muscle contributions required to modulate the COM position during turning improves our understanding of the control mechanisms of gait and may be used clinically to guide the management of gait disorders in populations with restricted gait ability. PMID:26555714

  2. Schools and Neighborhoods Research Study: School Building Use Study.

    ERIC Educational Resources Information Center

    Eismann, Donald; And Others

    This report documents the findings related to Objective 2 of the Schools and Neighborhoods Research Study. The task was to identify community services provided by the neighborhood school. The study staff reviewed the existing facilities use information from the Seattle Public Schools. Results from the Facilities Utilization Study Survey and the…

  3. Space Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.

  4. Systematic Study of Spin Effects at SPASCHARM Experiment at 70-GeV Accelerator in Protvino

    NASA Astrophysics Data System (ADS)

    Mochalov, V. V.; Abramov, V. V.; Bazhanov, N. A.; Borisov, N. S.; Derevschikov, A. A.; Evdokimova, A. S.; Meshchanin, A. P.; Minaev, N. G.; Morozov, D. A.; Nurushev, S. B.; Ryzhikov, S. V.; Semenov, P. A.; Ryazantsev, A. V.; Strikhanov, M. N.; Rykov, V. L.; Usov, Y. A.; Vasiliev, A. N.

    2016-02-01

    A new experiment SPASCHARM for systematic study of polarization phenomena in the inclusive and exclusive hadronic reactions in the energy range of IHEP accelerator U-70 (12-50GeV) is currently under development. The universal experimental setup will detect dozens of various resonances and stable particles produced in collisions of unpolarized beams with the polarized target, and at the next stage, using polarized proton and antiproton beams. At the beginning, the final states consisting of light quarks (u, d, s) will be reconstructed, and later on the charmonium states will be studied. Measurements are planned for a variety of beams: π±,K±,p, antiprotons. Hyperon polarization and spin density matrix elements of the vector mesons will be measured along with the single-spin asymmetry (SSA). The 2π-acceptance in azimuth, which is extremely useful for reduction of systematic errors in measurements of spin observables, will be implemented in the experiment. The solid angle acceptance of the setup, Δθ ≈ 250 mrad vertically and 350 mrad horizontally in the beam fragmentation region, covers a wide range of kinematic variables pT and xF. This provides the opportunity for separating dependences on these two variables which is usually not possible in the setups with a small solid angle acceptance. Unlike some previous polarization experiments, the SPASCHARM will be able to simultaneously accumulate and record data on the both, charged and neutral particle production.

  5. Qualitative Studies: Developing Good Research Questions

    ERIC Educational Resources Information Center

    Bufkin, Melissa A.

    2006-01-01

    Qualitative research is a type of research process that is widely used to give people a voice while researching a particular subject matter. In using this research process, one must understand how important it is to develop research questions within the qualitative research process. The purpose of this article is to aid researchers in the…

  6. [The research protocol III. Study population].

    PubMed

    Arias-Gómez, Jesús; Villasís-Keever, Miguel Ángel; Miranda-Novales, María Guadalupe

    2016-01-01

    The study population is defined as a set of cases, determined, limited, and accessible, that will constitute the subjects for the selection of the sample, and must fulfill several characteristics and distinct criteria. The objectives of this manuscript are focused on specifying each one of the elements required to make the selection of the participants of a research project, during the elaboration of the protocol, including the concepts of study population, sample, selection criteria and sampling methods. After delineating the study population, the researcher must specify the criteria that each participant has to comply. The criteria that include the specific characteristics are denominated selection or eligibility criteria. These criteria are inclusion, exclusion and elimination, and will delineate the eligible population. The sampling methods are divided in two large groups: 1) probabilistic or random sampling and 2) non-probabilistic sampling. The difference lies in the employment of statistical methods to select the subjects. In every research, it is necessary to establish at the beginning the specific number of participants to be included to achieve the objectives of the study. This number is the sample size, and can be calculated or estimated with mathematical formulas and statistic software. PMID:27174763

  7. A Study of the Design of Acceleration Control System for Missiles

    NASA Astrophysics Data System (ADS)

    Kajita, Takanori; Eguchi, Hirofumi

    A 2-degrees of freedom PID controller is designed for a maneuvering acceleration control system. This design method is based on the combination of PID and IPD controller. Results show that (1) IP controller is superior to PI controller for the damper loop controller, (2) the selection of PI or IP controller as for the acceleration controller depends on the tradeoffs between the responsibility and the reduction of inverse response.

  8. Study on the radiation problem caused by electron beam loss in accelerator tubes

    NASA Astrophysics Data System (ADS)

    Li, Quan-Feng; Guo, Bing-Qi; Zhang, Jie-Xi; Chen, Huai-Bi

    2008-07-01

    The beam dynamic code PARMELA was used to simulate the transportation process of accelerating electrons in S-band SW linacs with different energies of 2.5, 6 and 20 MeV. The results indicated that in the ideal condition, the percentage of electron beam loss was 50% in accelerator tubes. Also we calculated the spectrum, the location and angular distribution of the lost electrons. Calculation performed by Monte Carlo code MCNP demonstrated that the radiation distribution of lost electrons was nearly uniform along the tube axis, the angular distributions of the radiation dose rates of the three tubes were similar, and the highest leaking dose was at the angle of 160° with respect to the axis. The lower the energy of the accelerator, the higher the radiation relative leakage. For the 2.5 MeV accelerator, the maximum dose rate reached 5% of the main dose and the one on the head of the electron gun was 1%, both of which did not meet the eligible protection requirement for accelerators. We adopted different shielding designs for different accelerators. The simulated result showed that the shielded radiation leaking dose rates fulfilled the requirement. Supported by National Natural Science Foundation of China (10135040)

  9. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    NASA Astrophysics Data System (ADS)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  10. Efficient Heterogeneous Execution on Large Multicore and Accelerator Platforms: Case Study Using a Block Tridiagonal Solver

    SciTech Connect

    Park, Alfred J; Perumalla, Kalyan S

    2013-01-01

    The algorithmic and implementation principles are explored in gainfully exploiting GPU accelerators in conjunction with multicore processors on high-end systems with large numbers of compute nodes, and evaluated in an implementation of a scalable block tridiagonal solver. The accelerator of each compute node is exploited in combination with multicore processors of that node in performing block-level linear algebra operations in the overall, distributed solver algorithm. Optimizations incorporated include: (1) an efficient memory mapping and synchronization interface to minimize data movement, (2) multi-process sharing of the accelerator within a node to obtain balanced load with multicore processors, and (3) an automatic memory management system to efficiently utilize accelerator memory when sub-matrices spill over the limits of device memory. Results are reported from our novel implementation that uses MAGMA and CUBLAS accelerator software systems simultaneously with ACML for multithreaded execution on processors. Overall, using 940 nVidia Tesla X2090 accelerators and 15,040 cores, the best heterogeneous execution delivers a 10.9-fold reduction in run time relative to an already efficient parallel multicore-only baseline implementation that is highly optimized with intra-node and inter-node concurrency and computation-communication overlap. Detailed quantitative results are presented to explain all critical runtime components contributing to hybrid performance.

  11. Initial Results of Catheter-Directed Ultrasound-Accelerated Thrombolysis for Thromboembolic Obstructions of the Aortofemoral Arteries: A Feasibility Study

    SciTech Connect

    Schrijver, A. Marjolein; Reijnen, Michel M. P. J.; Oostayen, Jacques A. van; Hoksbergen, Arjan W. J.; Lely, Rutger J.; Leersum, Marc van; Vries, Jean-Paul P. M. de

    2012-04-15

    Purpose: This article reports the 30-day technical and clinical outcome of ultrasound (US)-accelerated thrombolysis in patients with aortofemoral arterial thromboembolic obstructions. Methods: A prospective cohort study was conducted from December 2008 to December 2009 of patients who were treated with US-accelerated thrombolysis for thromboembolic obstructions of aortofemoral arteries or bypasses. Urokinase was infused in a dosage of 100,000 IU per hour. Twice daily, a control angiography was performed. Thirty-day follow-up consisted of duplex scanning, combined with magnetic resonance angiography. Results: The study included 21 consecutive patients (20 men; median age, 66 (range, 52-80) years) with 24% artery versus 76% bypass occlusions. Median duration of symptoms was 11 (range, 7-140) days. Median occlusion length was 32 (range, 6-80) cm. In 20 patients (95%), an US-accelerated thrombolysis catheter could be successfully placed. In one patient, placement of an US-accelerated thrombolysis catheter was technically not feasible, and therefore a standard catheter was placed. Median thrombolysis time was 26.5 (range, 8.5-72) hours. Complete thrombolysis (>95% lysis of thrombus) was achieved in 20 patients; in 9 patients within 24 hours. Median ankle-brachial index (ABI) increased from 0.28 (range, 0-0.85) to 0.91 (range, 0.58-1.35). One patient had a thromboembolic complication and needed surgical intervention. No hemorrhagic complications, and no deaths occurred. At 30-day follow-up, 17 of 21 patients (81%) had a patent artery or bypass. Conclusions: This feasibility study showed a high technical success rate of US-accelerated thrombolysis for aortofemoral arterial obstructions. US-accelerated thrombolysis led to complete lysis within 24 hours in almost half of patients, with a low 30-day major complication rate.

  12. Studies of beam dynamics in relativistic klystron two-beam accelerators

    SciTech Connect

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional

  13. Research and quality management studies: ethical considerations.

    PubMed

    Mayhew, P A

    1994-04-01

    Federal legislation requires that an IRB must review all research studies receiving federal funding and involving human subjects for the protection of human rights. In addition there must be a provision for informed consent so that subjects can freely choose whether or not to participate. Most health care agencies have adopted this as the standard for conducting research. The ethical principles of respect for persons, beneficence, and justice, guide review boards in making decisions for protecting human subjects. The standards for conducting QM studies have not been as explicit, but it seems that similar ethical principles could provide a guiding framework. To protect human subjects in QM studies, it has been suggested that studies be submitted to an IRB when they: (a) are prospective, (b) have potential scientific merit, and/or (c) may have application beyond the study setting. In addition even when data are coming from existing sources or patient records and used only for evaluation purposes within the study setting, mechanisms for ensuring privacy, confidentiality, and consent need consideration. PMID:8173626

  14. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data

  15. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory

    NASA Astrophysics Data System (ADS)

    Xia, G.; Nie, Y.; Mete, O.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.; Pacey, T.; Li, Y.; Wei, Y.; Welsch, C.

    2016-09-01

    A plasma accelerator research station (PARS) has been proposed to study the key issues in electron driven plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. In this paper, the quasi-nonlinear regime of beam driven plasma wakefield acceleration is analysed. The wakefield excited by various CLARA beam settings are simulated by using a 2D particle-in-cell (PIC) code. For a single drive beam, an accelerating gradient up to 3 GV/m can be achieved. For a two bunch acceleration scenario, simulation shows that a witness bunch can achieve a significant energy gain in a 10-50 cm long plasma cell.

  16. [The research protocol IV: study variables].

    PubMed

    Villasís-Keever, Miguel Ángel; Miranda-Novales, María Guadalupe

    2016-01-01

    The variables in a research study are all that is measured, the information collected, or the data that is collected in order to answer the research questions, which are specified in the objectives. Their selection is essential to the research protocol. This article aims to point out the elements to be considered in the section of the variables. To avoid ambiguity, it is necessary to select only those that will help achieve the study objectives. It should subsequently be defined how they will be measured to ensure that the findings can be replicated; it is therefore desirable to include conceptual and operational definitions. From the methodological point of view, the classification of variables helps us understand how the relationship between them is conceptualized. Depending on the study design, the independent, dependent, universal, and confounding variables should be noted. Another indispensable element for planning statistical analyses is the scale of variable measurement. Therefore, one must specify whether the variables correspond to one of the following four: qualitative nominal, qualitative ordinal, quantitative range, or quantitative ratio. Finally, we should detail the measurement units of each variable. PMID:27560918

  17. Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model.

    PubMed

    Lü, Xing; Peng, Mingshu

    2013-03-01

    In this paper, the nonautonomous Lenells-Fokas (LF) model is studied with the bilinear method and symbolic computation. Such analytical solutions of the nonautonomous LF model as one-soliton, two-soliton, and earthwormons are derived. Nonautonomous characteristics are then symbolically and graphically investigated, and it is finally found that the soliton velocity is time-dependent, and there exist soliton accelerating and decelerating motions. Further, two necessary conditions for the occurrence of earthwormon acceleration and deceleration (and their alternation) are pointed out. PMID:23556959

  18. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  19. A Study of Laminar Compressible Viscous Pipe Flow Accelerated by an Axial Body Force, with Application to Magnetogasdynamics

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.

  20. Kinetic Study of Radiation-Reaction-Limited Particle Acceleration During the Relaxation of Force-Free Equilibria

    NASA Astrophysics Data System (ADS)

    Yuan, Yajie; Nalewajko, Krzysztof; Blandford, Roger D.; East, William E.; Zrake, Jonathan

    2016-01-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over short time scales. This might be due to prodigal dissipation in a highly magnetized outflow. In order to understand the generic behavior of relativistic plasma with high magnetization, we consider a class of prototypical force-free equilibria which are shown to be unstable to ideal modes (East et al 2015 PRL 115, 095002). Kinetic simulations are carried out to follow the evolution of the instability and to study the basic mechanisms of particle acceleration, especially in the radiation-reaction-limited regime. We find that the instability naturally produces current layers and these are sites for efficient particle acceleration. Detailed calculations of the gamma ray spectrum, the evolution of the particle distribution function and the dynamical consequences of radiation reaction will be presented.

  1. Antioxidative properties of Murraya koenigii leaf extracts in accelerated oxidation and deep-frying studies.

    PubMed

    Nor, Fatihanim Mohd; Suhaila, Mohamed; Aini, Idris Nor; Razali, Ismail

    2009-01-01

    Murraya koenigii leaf extract antioxidant potentials were evaluated in palm olein using accelerated oxidation storage and deep-frying studies at 180 degrees C for up to 40 h. The extracts (0.2%) retarded oil oxidation and deterioration significantly (P<0.05), slightly less effectively than 0.02% butylated hydroxytoluene in tests such as the peroxide value, anisidine value, iodine value, free fatty acid, Oxidative Stability Index, and polar and polymer compound content. Sensory evaluation on French fries indicated that the extract was useful in improving colour, flavour and overall acceptability and the quality of the fried product. All samples were more acceptable by panellists, especially after the 40th hour frying, compared with those similarly fried in the control oils and the oil containing butylated hydroxytoluene. M. koenigii leaf extract, had a polyphenol content of 109.5+/-0.3 mg gallic acid equivalents/g extract, and contain a heat-stable antioxidant that could be a natural alternative to synthetic antioxidants for the industry. PMID:19488917

  2. Improving Bone Microarchitecture in Aging with Diosgenin Treatment: A Study in Senescence-Accelerated OXYS Rats.

    PubMed

    Tikhonova, Maria A; Ting, Che-Hao; Kolosova, Nataliya G; Hsu, Chao-Yu; Chen, Jian-Horng; Huang, Chi-Wen; Tseng, Ging-Ting; Hung, Ching-Sui; Kao, Pan-Fu; Amstislavskaya, Tamara G; Ho, Ying-Jui

    2015-10-31

    Osteoporosis is a major disease associated with aging. We have previously demonstrated that diosgenin prevents osteoporosis in both menopause and D-galactose-induced aging rats. OXYS rats reveal an accelerated senescence and are used as a suitable model of osteoporosis. The aim of the present study was to analyze microarchitecture and morphological changes in femur of OXYS rats using morphological tests and microcomputed tomography scanning, and to evaluate the effects of oral administration of diosgenin at 10 and 50 mg/kg/day on femur in OXYS rats. The result showed that, compared with age-matched Wistar rats, the femur of OXYS rats revealed lower bone length, bone weight, bone volume, frame volume, frame density, void volume, porosity, external and internal diameters, cortical bone area, BV/TV, Tb.N, and Tb.Th, but higher Tb.Sp. Eight weeks of diosgenin treatment decreased porosity and Tb.Sp, but increased BV/TV, cortical bone area, Tb.N and bone mineral density, compared with OXYS rats treated with vehicle. These data reveal that microarchitecture and morphological changes in femur of OXYS rats showed osteoporotic aging features and suggest that diosgenin may have beneficial effects on aging-induced osteoporosis. PMID:26387656

  3. A study on leakage radiation dose at ELV-4 electron accelerator bunker

    SciTech Connect

    Chulan, Mohd Rizal Md E-mail: redzuwan@ukm.my; Yahaya, Redzuwan E-mail: redzuwan@ukm.my; Ghazali, Abu BakarMhd

    2014-09-03

    Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker’s door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5μSv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.

  4. An accelerated carbonation procedure for studies of corrosion in reinforced concrete

    SciTech Connect

    Al-Kadhimi, T.K.H.; Banfill, P.F.G.; Millard, S.G.; Bungey, J.H.

    1995-10-01

    Carbonation of the concrete leading to reduced alkalinity around the steel is one of the main reasons for the corrosion of reinforced concrete. Studies of carbonation induced corrosion and of rehabilitation methods, such as electrochemical realkalization, require the convenient preparation of realistically large specimens of carbonated concrete in a sufficiently short time. This paper describes a rapid method of preparing carbonated concrete by exposing concrete, which has been dried to an internal relative humidity of 60%, to a pure atmosphere of carbon dioxide gas at 15 bar pressure (1,500 kPa). The pressure chamber used can accommodate specimens up to 150mm diameter or 100 x 100 mm section and such specimens can be fully carbonated in 2 weeks, much more quickly than by other methods. Carbonation increases the electrical resistivity and strength of the concrete and reduces the water absorption. Optical and electron microscopical investigations on the carbonated concrete confirm that the microstructure is no different from that produced in concrete by carbonation under natural exposure. The accelerated carbonation method can be used for development work on materials and repair methods and has been used by the authors in preparing carbonated concrete specimens for re-alkalization tests.

  5. A study on leakage radiation dose at ELV-4 electron accelerator bunker

    NASA Astrophysics Data System (ADS)

    Chulan, Mohd Rizal Md; Yahaya, Redzuwan; Ghazali, Abu BakarMhd

    2014-09-01

    Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker's door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5μSv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.

  6. Study of antineutrino oscillations using accelerator and atmospheric data in MINOS

    SciTech Connect

    Cao, Son Van

    2014-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline experiment that was built for studying the neutrino oscillation phenomena. The MINOS experiment uses high intensity muon neutrino and antineutrino beams created by Neutrinos at the Main Injector facility (NuMI) at the Fermi National Accelerator Laboratory (Fermilab). Neutrino interactions are recorded by two sampling steel-scintillator tracking calorimeters: 0.98\\,kton Near Detector at Fermilab, IL and 5.4\\,kton Far Detector at the Soudan Underground Laboratory, MN. These two detectors are functionally identical, which helps to reduce the systematic uncertainties in the muon neutrino and antineutrino disappearance measurements. The Near Detector, located 1.04\\,km from the neutrino production target, is used to measure the initial beam composition and neutrino energy proximal to the neutrino source. The collected data at the Near Detector is then used to predict energy spectrum in the Far Detector. By comparing this prediction to collected data at the Far Detector, which is 735\\,km away from the target, it enables a measurement of a set of parameters that govern the neutrino oscillation phenomenon. \\\\ \\indent The flexibility of the NuMI beam configuration and the magnetization of the MINOS detectors facilitate the identification of $\

  7. Low-emittance uniform density Cs sup + sources for heavy ion fusion accelerators studies

    SciTech Connect

    Eylon, S.; Henestroza, E.; Garvey, T.; Johnson, R.; Chupp, W.

    1991-04-01

    Low-emittance (high-brightness) Cs{sup +} thermionic sources were developed for the heavy ion induction linac experiment MBE-4 at LBL. The MBE-4 linac accelerates four 10 mA beams from 200 ke V to 900 ke V while amplifying the current up to a factor of nine. Recent studies of the transverse beam dynamics suggested that characteristics of the injector geometry were contributing to the normalized transverse emissions growth. Phase-space and current density distribution measurements of the beam extracted from the injector revealed overfocusing of the outermost rays causing a hollow density profile. We shall report on the performance of a 5 mA scraped beam source (which eliminates the outermost beam rays in the diode) and on the design of an improved 10 mA source. The new source is based on EGUN calculations which indicated that a beam with good emissions and uniform current density could be obtained by modifying the cathode Pierce electrodes and using a spherical emitting surface. The measurements of the beam current density profile on a test stand were found to be in agreement with the numerical simulations. 3 refs., 6 figs.

  8. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves

    NASA Astrophysics Data System (ADS)

    Si, T.; Zhai, Z.; Luo, X.; Yang, J.

    2014-01-01

    The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.

  9. Study on global cloud computing research trend

    NASA Astrophysics Data System (ADS)

    Ma, Feicheng; Zhan, Nan

    2014-01-01

    Since "cloud computing" was put forward by Google , it quickly became the most popular concept in IT industry and widely permeated into various areas promoted by IBM, Microsoft and other IT industry giants. In this paper the methods of bibliometric analysis were used to investigate the global cloud computing research trend based on Web of Science (WoS) database and the Engineering Index (EI) Compendex database. In this study, the publication, countries, institutes, keywords of the papers was deeply studied in methods of quantitative analysis, figures and tables are used to describe the production and the development trends of cloud computing.

  10. Direct observation of the phase space footprint of a painting injection in the Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Hayashi, N.; Takayanagi, T.; Harada, H.; Irie, Y.

    2009-04-01

    The 3 GeV Rapid Cycling Synchrotron (RCS) at Japan Proton Accelerator Research Complex is nearly at the operational stage with regard to the beam commissioning aspects. Recently, the design painting injection study has been commenced with the aim of high output beam power at the extraction. In order to observe the phase space footprint of the painting injection, a method was developed utilizing a beam position monitor (BPM) in the so-called single pass mode. The turn-by-turn phase space coordinates of the circulating beam directly measured using a pair of BPMs entirely positioned in drift space, and the calculated transfer matrices from the injection point to the pair of BPMs with several successive turns were used together in order to obtain the phase space footprint of the painting injection. There are two such pairs of BPMs placed in two different locations in the RCS, the results from which both agreed and were quite consistent with what was expected.

  11. J-PARC Accelerator

    SciTech Connect

    Yamazaki, Yoshishige

    2008-02-21

    The Japan Proton Accelerator Research Complex (J-PARC) is under construction in Tokai site. The linac beam commissioning started last fall, while the beam commissioning of the 3-GeV Rapid-Cycling Synchrotron (RCS) will start this fall. The status of the J-PARC accelerator is reported with emphasis on the technical development accomplished for the J-PARC.

  12. Systematic Study of Student Understanding of the Relationships between the Directions of Force, Velocity, and Acceleration in One Dimension

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.

    2011-01-01

    We developed an instrument to systematically investigate student conceptual understanding of the relationships between the directions of net force, velocity, and acceleration in one dimension and report on data collected on the final version of the instrument from over 650 students. Unlike previous work, we simultaneously studied all six possible…

  13. Teacher Leadership and School Reform: A Case Study of the Accelerating Student Achievement Project in a Central Kentucky School District

    ERIC Educational Resources Information Center

    Robinson, Jennifer B.

    2009-01-01

    In the study reported here, I explored the notion of teacher leadership as described by individuals participating in a district-wide school reform initiative, the Accelerating Student Achievement Project. Through the district-wide project, teacher leaders were identified at each of the middle and high schools to further develop the schools'…

  14. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  15. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV∕u proton∕deuteron low energy beam transport beam line.

    PubMed

    Vainas, B; Eliyahu, I; Weissman, L; Berkovits, D

    2012-02-01

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton∕deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum. PMID:22380317

  16. Ethical and practical challenges to studying patients who opt out of large-scale biorepository research

    PubMed Central

    Rosenbloom, S Trent; Madison, Jennifer L; Brothers, Kyle B; Bowton, Erica A; Clayton, Ellen Wright; Malin, Bradley A; Roden, Dan M; Pulley, Jill

    2013-01-01

    Large-scale biorepositories that couple biologic specimens with electronic health records containing documentation of phenotypic expression can accelerate scientific research and discovery. However, differences between those subjects who participate in biorepository-based research and the population from which they are drawn may influence research validity. While an opt-out approach to biorepository-based research enhances inclusiveness, empirical research evaluating voluntariness, risk, and the feasibility of an opt-out approach is sparse, and factors influencing patients’ decisions to opt out are understudied. Determining why patients choose to opt out may help to improve voluntariness, however there may be ethical and logistical challenges to studying those who opt out. In this perspective paper, the authors explore what is known about research based on the opt-out model, describe a large-scale biorepository that leverages the opt-out model, and review specific ethical and logistical challenges to bridging the research gaps that remain. PMID:23886923

  17. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats

    PubMed Central

    2014-01-01

    contribute to the development of cataract and retinopathy. Conclusions This study is the first RNA-Seq analysis of the rat retinal transcriptome generated with 40 mln sequencing read depth. The integration of QTL and transcriptomic analyses in our study forms the basis of future research into the relationship between the candidate genes within the congenic regions and specific changes in the retinal transcriptome as possible causal mechanisms that underlie age-associated disorders. PMID:25563673

  18. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  19. Program for transfer research and impact studies

    NASA Technical Reports Server (NTRS)

    Rusnak, J. J.; Freeman, J. E.; Hartley, J. M.; Kottenstette, J. P.; Staskin, E. R.

    1973-01-01

    Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication.

  20. Study of the transverse beam motion in the DARHT Phase II accelerator

    SciTech Connect

    Chen, Yu-Jiuan; Fawley, W M; Houck, T L

    1998-08-20

    The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will accelerate a 4-kA, 3-MeV, 2--µs long electron current pulse to 20 MeV. The energy variation of the beam within the flat-top portion of the current pulse is (plus or equal to) 0.5%. The performance of the DARHT Phase II radiographic machine requires the transverse beam motion to be much less than the beam spot size which is about 1.5 mm diameter on the x-ray converter. In general, the leading causes of the transverse beam motion in an accelerator are the beam breakup instability (BBU) and the corkscrew motion. We have modeled the transverse beam motion in the DARHT Phase II accelerator with various magnetic tunes and accelerator cell configurations by using the BREAKUP code. The predicted sensitivity of corkscrew motion and BBU growth to different tuning algorithms will be presented.