Science.gov

Sample records for accelerator system atlas

  1. ATLAS accelerator laboratory report

    SciTech Connect

    Den Hartog, P.

    1986-01-01

    The operation of the ATLAS Accelerator is reported. Modifications are reported, including the installation of conductive tires for the Pelletron chain pulleys, installation of a new high frequency sweeper system at the entrance to the linac, and improvements to the rf drive ports of eight resonators to correct failures in the thermally conductive ceramic insulators. Progress is reported on the positive-ion injector upgrade for ATLAS. Also reported are building modifications and possible new uses for the tandem injector. (LEW)

  2. Report to users of ATLAS (Argonne Tandem-Line Accelerator System)

    SciTech Connect

    Ahmad, I.; Glagola, B.

    1987-03-01

    The operation and development of ATLAS are reported, including accelerator improvements. Particularly noted is an upgrade to extend the mass range of projectiles up to uranium and to increase the beam intensity by at least two orders of magnitude for all ions. Meetings are discussed, particularly of the Program Advisory Committee and the User Group Executive Committee. Some basic information is provided for users planning to run experiments at ATLAS, including a table of beams available. The data acquisition system for ATLAS, DAPHNE, is discussed, as are the following experimental facilities: the Argonne-Notre Dame Gamma Ray Facility, a proposal submitted for constructing a large-acceptance Fragment Mass Analyzer. Brief summaries are provided of some recent experiments for which data analysis is complete. Experiments performed during the period from June 1, 1986 to January 31, 1987 are tabulated, providing the experiment number, scientists, institution, experiment name, number of days, beam, and energy. (LEW)

  3. Automated Loads Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  4. Completion of the ATLAS control system upgrade.

    SciTech Connect

    Munson, F. H.

    1998-11-30

    In the fall of 1992 at the SNEAP(Symposium of North Eastern Accelerator Personnel) a project to up grade the ATLAS (Argonne Tandem Linear Accelerator System) control system was first reported. Not unlike the accelerator it services the control system will continue to evolve. However, the first of this year has marked the completion of this most recent upgrade project. Since the control system upgrade took place during a period when ATLAS was operating at a record number of hours, special techniques were necessary to enable the development of the new control system ''on line'' while still saving the needs of normal operations. This paper reviews the techniques used for upgrading the ATLAS control system while the system was in use. In addition a summary of the upgrade project and final configuration, as well as some of the features of the new control system is provided.

  5. Accelerator development for a radioactive beam facility based on ATLAS.

    SciTech Connect

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  6. Multiple brain atlas database and atlas-based neuroimaging system.

    PubMed

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies. PMID:9148878

  7. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  8. The ATLAS distributed analysis system

    NASA Astrophysics Data System (ADS)

    Legger, F.; Atlas Collaboration

    2014-06-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  9. The ATLAS Detector Control System

    NASA Astrophysics Data System (ADS)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  10. Space Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.

  11. Glance Information System for ATLAS Management

    NASA Astrophysics Data System (ADS)

    Grael, F. F.; Maidantchik, C.; Évora, L. H. R. A.; Karam, K.; Moraes, L. O. F.; Cirilli, M.; Nessi, M.; Pommès, K.; ATLAS Collaboration

    2011-12-01

    ATLAS Experiment is an international collaboration where more than 37 countries, 172 institutes and laboratories, 2900 physicists, engineers, and computer scientists plus 700 students participate. The management of this teamwork involves several aspects such as institute contribution, employment records, members' appointment, authors' list, preparation and publication of papers and speakers nomination. Previously, most of the information was accessible by a limited group and developers had to face problems such as different terminology, diverse data modeling, heterogeneous databases and unlike users needs. Moreover, the systems were not designed to handle new requirements. The maintenance has to be an easy task due to the long lifetime experiment and professionals turnover. The Glance system, a generic mechanism for accessing any database, acts as an intermediate layer isolating the user from the particularities of each database. It retrieves, inserts and updates the database independently of its technology and modeling. Relying on Glance, a group of systems were built to support the ATLAS management and operation aspects: ATLAS Membership, ATLAS Appointments, ATLAS Speakers, ATLAS Analysis Follow-Up, ATLAS Conference Notes, ATLAS Thesis, ATLAS Traceability and DSS Alarms Viewer. This paper presents the overview of the Glance information framework and describes the privilege mechanism developed to grant different level of access for each member and system.

  12. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  13. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  14. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  15. KEKB accelerator control system

    NASA Astrophysics Data System (ADS)

    Akasaka, Nobumasa; Akiyama, Atsuyoshi; Araki, Sakae; Furukawa, Kazuro; Katoh, Tadahiko; Kawamoto, Takashi; Komada, Ichitaka; Kudo, Kikuo; Naito, Takashi; Nakamura, Tatsuro; Odagiri, Jun-ichi; Ohnishi, Yukiyoshi; Sato, Masayuki; Suetake, Masaaki; Takeda, Shigeru; Takeuchi, Yasunori; Yamamoto, Noboru; Yoshioka, Masakazu; Kikutani, Eji

    2003-02-01

    The KEKB accelerator control system including a control computer system, a timing distribution system, and a safety control system are described. KEKB accelerators were installed in the same tunnel where the TRISTAN accelerator was. There were some constraints due to the reused equipment. The control system is based on Experimental Physics and Industrial Control System (EPICS). In order to reduce the cost and labor for constructing the KEKB control system, as many CAMAC modules as possible are used again. The guiding principles of the KEKB control computer system are as follows: use EPICS as the controls environment, provide a two-language system for developing application programs, use VMEbus as frontend computers as a consequence of EPICS, use standard buses, such as CAMAC, GPIB, VXIbus, ARCNET, RS-232 as field buses and use ergonomic equipment for operators and scientists. On the software side, interpretive Python and SAD languages are used for coding application programs. The purpose of the radiation safety system is to protect personnel from radiation hazards. It consists of an access control system and a beam interlock system. The access control system protects people from strong radiation inside the accelerator tunnel due to an intense beam, by controlling access to the beamline area. On the other hand, the beam interlock system prevents people from radiation exposure by interlocking the beam operation. For the convenience of accelerator operation and access control, the region covered by the safety system is divided into three major access control areas: the KEKB area, the PF-AR area, and the beam-transport (BT) area. The KEKB control system required a new timing system to match a low longitudinal acceptance due to a low-alpha machine. This timing system is based on a frequency divider/multiply technique and a digital delay technique. The RF frequency of the KEKB rings and that of the injector Linac are locked with a common divisor frequency. The common

  16. MBAT: A scalable informatics system for unifying digital atlasing workflows

    PubMed Central

    2010-01-01

    Background Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. Results The MouseBIRN Atlasing Toolkit (MBAT) project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. Conclusions MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context. Through its extensible

  17. The Database Driven ATLAS Trigger Configuration System

    NASA Astrophysics Data System (ADS)

    Chavez, Carlos; Gianelli, Michele; Martyniuk, Alex; Stelzer, Joerg; Stockton, Mark; Vazquez, Will

    2015-12-01

    The ATLAS trigger configuration system uses a centrally provided relational database to store the configurations for all levels of the ATLAS trigger system. The configuration used at any point during data taking is maintained in this database. A interface to this database is provided by the TriggerTool, a Java-based graphical user interface. The TriggerTool has been designed to work as both a convenient browser and editor of configurations in the database for both general users and experts. The updates to the trigger system necessitated by the upgrades and changes in both hardware and software during the first long shut down of the LHC will be explored.

  18. Evolution of the ATLAS Nightly Build System

    NASA Astrophysics Data System (ADS)

    Undrus, A.

    2012-12-01

    The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.

  19. RFQ accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  20. RFQ accelerator tuning system

    DOEpatents

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  1. Multilevel Workflow System in the ATLAS Experiment

    NASA Astrophysics Data System (ADS)

    Borodin, M.; De, K.; Garcia Navarro, J.; Golubkov, D.; Klimentov, A.; Maeno, T.; Vaniachine, A.; ATLAS Collaboration

    2015-05-01

    The ATLAS experiment is scaling up Big Data processing for the next LHC run using a multilevel workflow system comprised of many layers. In Big Data processing ATLAS deals with datasets, not individual files. Similarly a task (comprised of many jobs) has become a unit of the ATLAS workflow in distributed computing, with about 0.8M tasks processed per year. In order to manage the diversity of LHC physics (exceeding 35K physics samples per year), the individual data processing tasks are organized into workflows. For example, the Monte Carlo workflow is composed of many steps: generate or configure hard-processes, hadronize signal and minimum-bias (pileup) events, simulate energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, reconstruct data, convert the reconstructed data into ROOT ntuples for physics analysis, etc. Outputs are merged and/or filtered as necessary to optimize the chain. The bi-level workflow manager - ProdSys2 - generates actual workflow tasks and their jobs are executed across more than a hundred distributed computing sites by PanDA - the ATLAS job-level workload management system. On the outer level, the Database Engine for Tasks (DEfT) empowers production managers with templated workflow definitions. On the next level, the Job Execution and Definition Interface (JEDI) is integrated with PanDA to provide dynamic job definition tailored to the sites capabilities. We report on scaling up the production system to accommodate a growing number of requirements from main ATLAS areas: Trigger, Physics and Data Preparation.

  2. System administration of ATLAS TDAQ computing environment

    NASA Astrophysics Data System (ADS)

    Adeel-Ur-Rehman, A.; Bujor, F.; Benes, J.; Caramarcu, C.; Dobson, M.; Dumitrescu, A.; Dumitru, I.; Leahu, M.; Valsan, L.; Oreshkin, A.; Popov, D.; Unel, G.; Zaytsev, A.

    2010-04-01

    This contribution gives a thorough overview of the ATLAS TDAQ SysAdmin group activities which deals with administration of the TDAQ computing environment supporting High Level Trigger, Event Filter and other subsystems of the ATLAS detector operating on LHC collider at CERN. The current installation consists of approximately 1500 netbooted nodes managed by more than 60 dedicated servers, about 40 multi-screen user interface machines installed in the control rooms and various hardware and service monitoring machines as well. In the final configuration, the online computer farm will be capable of hosting tens of thousands applications running simultaneously. The software distribution requirements are matched by the two level NFS based solution. Hardware and network monitoring systems of ATLAS TDAQ are based on NAGIOS and MySQL cluster behind it for accounting and storing the monitoring data collected, IPMI tools, CERN LANDB and the dedicated tools developed by the group, e.g. ConfdbUI. The user management schema deployed in TDAQ environment is founded on the authentication and role management system based on LDAP. External access to the ATLAS online computing facilities is provided by means of the gateways supplied with an accounting system as well. Current activities of the group include deployment of the centralized storage system, testing and validating hardware solutions for future use within the ATLAS TDAQ environment including new multi-core blade servers, developing GUI tools for user authentication and roles management, testing and validating 64-bit OS, and upgrading the existing TDAQ hardware components, authentication servers and the gateways.

  3. ATLAS, an integrated structural analysis and design system. Volume 1: ATLAS user's guide

    NASA Technical Reports Server (NTRS)

    Dreisbach, R. L. (Editor)

    1979-01-01

    Some of the many analytical capabilities provided by the ATLAS Version 4.0 System in the logical sequence are described in which model-definition data are prepared and the subsequent computer job is executed. The example data presented and the fundamental technical considerations that are highlighted can be used as guides during the problem solving process. This guide does not describe the details of the ATLAS capabilities, but provides an introduction to the new user of ATLAS to the level at which the complete array of capabilities described in the ATLAS User's Manual can be exploited fully.

  4. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  5. Progress of laser ablation for accelerator mass spectroscopy at ATLAS utilizing an ECRIS

    NASA Astrophysics Data System (ADS)

    Scott, R.; Palchan, T.; Pardo, R.; Vondrasek, R.; Kondev, F.; Nusair, O.; Peters, C.; Paul, M.; Bauder, W.; Collon, P.

    2014-02-01

    Beams of ions from the laser ablation method of solid materials into an electron cyclotron resonance ion source (ECRIS) plasma have been used for the first time in experiments at ATLAS. Initial accelerator mass spectroscopy experiments using laser ablation for actinides and samarium have been performed. Initial results of coupling the laser system to the ECR source have guided us in making a number of changes to the original design. The point of laser impact has been moved off axis from the center of the ECR injection side. Motor control of the laser positioning mirror has been replaced with a faster and more reliable piezo-electric system, and different raster scan patterns have been tested. The use of the laser system in conjunction with a multi-sample changer has been implemented. Two major problems that are being confronted at this time are beam stability and total beam intensity. The status of the development will be presented and ideas for further improvements will be discussed.

  6. High acceleration cable deployment system

    NASA Technical Reports Server (NTRS)

    Canning, T. N.; Barns, C. E.; Murphy, J. P.; Gin, B.; King, R. W. (Inventor)

    1981-01-01

    A deployment system that will safely pay one cable from a ballistic forebody when the forebody is separated from an afterbody (to which the cable is secured and when the separation is marked by high acceleration and velocity) is described.

  7. Advanced Technology Lifecycle Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  8. Control systems for Coline accelerators

    NASA Astrophysics Data System (ADS)

    Baczewski, Artur; Latała, Agata; Ceglińska, Kaja; Andrasiak, Michał

    2008-01-01

    Medical linear accelerators are the largest group of devices for therapy of cancer diseases because of their compact design, relatively low operating costs, advanced features and broad range of treatment procedures. Their reliability and ease of operation are very important but the most crucial is to ensure personnel and patient safety. For this reason the development of control and safety systems is the current "leading edge" in medical linear accelerators technology. Provided internal monitoring, machine control and steering, interlock system as well as the automatic recording of the device and patient parameters are nowadays fully controlled by the computer. This paper describes in details projects connected to advanced development of Coline accelerators. As it is crucial to assure reliable steering and monitoring of all the machine settings and actual dose delivered to the patient, advanced control systems composed of steering, control and interlock systems, communication protocol as well as data management system have been developed.

  9. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  10. Integration of the Eventlndex with other ATLAS systems

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Gallas, E. J.; Prokoshin, F.

    2015-12-01

    The ATLAS EventIndex System, developed for use in LHC Run 2, is designed to index every processed event in ATLAS, replacing the TAG System used in Run 1. Its storage infrastructure, based on Hadoop open-source software framework, necessitates revamping how information in this system relates to other ATLAS systems. It will store more indexes since the fundamental mechanisms for retrieving these indexes will be better integrated into all stages of data processing, allowing more events from later stages of processing to be indexed than was possible with the previous system. Connections with other systems (conditions database, monitoring) are fundamentally critical to assess dataset completeness, identify data duplication, and check data integrity, and also enhance access to information in EventIndex by user and system interfaces. This paper gives an overview of the ATLAS systems involved, the relevant metadata, and describe the technologies we are deploying to complete these connections.

  11. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  12. AGIS: Evolution of Distributed Computing information system for ATLAS

    NASA Astrophysics Data System (ADS)

    Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.

    2015-12-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  13. ATLAS Grid Data Processing: system evolution and scalability

    NASA Astrophysics Data System (ADS)

    Golubkov, D.; Kersevan, B.; Klimentov, A.; Minaenko, A.; Nevski, P.; Vaniachine, A.; Walker, R.

    2012-12-01

    The production system for Grid Data Processing handles petascale ATLAS data reprocessing and Monte Carlo activities. The production system empowered further data processing steps on the Grid performed by dozens of ATLAS physics groups with coordinated access to computing resources worldwide, including additional resources sponsored by regional facilities. The system provides knowledge management of configuration parameters for massive data processing tasks, reproducibility of results, scalable database access, orchestrated workflow and performance monitoring, dynamic workload sharing, automated fault tolerance and petascale data integrity control. The system evolves to accommodate a growing number of users and new requirements from our contacts in ATLAS main areas: Trigger, Physics, Data Preparation and Software & Computing. To assure scalability, the next generation production system architecture development is in progress. We report on scaling up the production system for a growing number of users providing data for physics analysis and other ATLAS main activities.

  14. The ATLAS Facility at Argonne National Laboratory

    SciTech Connect

    1997-07-01

    The Argonne Tandem Linac Accelerator System (ATLAS) is a superconducting low-energy heavy ion accelerator. Its primary purpose is to provide beams for research in nuclear structure physics. This report begins with a brief history of ATLAS and then describes the current design of the facility. Also summarized are the experimental equipment and research programs. It concludes with a proposal for turning ATLAS into a radioactive beam facility.

  15. 26. PULLEY SYSTEM FOR ERECTION OF ATLAS H LAUNCH VEHICLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. PULLEY SYSTEM FOR ERECTION OF ATLAS H LAUNCH VEHICLES AT SOUTH SIDE OF MST, FROM STATION 93 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Trends in accelerator control systems

    SciTech Connect

    Crowley-Milling, M.C.

    1984-04-01

    Over the years, we have seen a revolution in control systems that has followed the ever decreasing cost of computer power and memory. It started with the data gathering, when people distrusted the computer to perform control actions correctly, through the stage of using a computer to perform control actions correctly, through the stage of using a computer system to provide a convenient remote look and adjust facility, to the present day, when more and more emphasis is being placed on using a computer system to simulate or model all or parts of the accelerator, feed in the required performance and calling for the computers to set the various parameters and then measure the actual performance, with iteration if necessary. The progress that has been made in the fields of architecture, communications, computers, interface, software design and operator interface is reviewed.

  17. Mobile accelerator neutron radiography system

    NASA Astrophysics Data System (ADS)

    Dance, W. E.; Carollo, S. F.; Bumgardner, H. M.

    1984-10-01

    The use of neutron radiography for the inspection and maintenance of large structures such as aircraft has been delayed by the absence of a mobile system particularly suited to the requirements of field use. This report describes the production, extensive field testing, evaluation and disposition of the first mobile neutron radiography system to satisfy the majority of requirements for field use. The system is based upon the concept of a mobile on-off neutron radiography system based on a sealed-tube ion accelerator as neutron source demonstrated earlier by the Vought Corporation. Primary features of the system are its self-propelled mobility, versatile positioning capability scaled to Army helicopter dimensions, an on-off beam capability, exposure capability measured in minutes, and suitability for AMMRC laboratory and field use. Included in the report are a description of all components of the system, an evaluation of the operation of the system, an evaluation of its radiographic capabilities, a description of installation elements for the AMMRC site, and recommendations for next-generation systems.

  18. TRIDAQ systems in HEP experiments at LHC accelerator

    NASA Astrophysics Data System (ADS)

    Zagozdzińska, Agnieszka; Romaniuk, Ryszard S.; Poźniak, Krzysztof T.; Zalewski, Piotr

    2013-01-01

    The paper describes Trigger and Data Acquisition (TRIDAQ) systems of accelerator experiments for High Energy Physics. The background for physics research comprises assumptions of the Standard Model theory with basic extensions. On this basis, a structure of particle detector system is described, with emphasis on the following functional blocks: Front-End Electronics, Trigger and DAQ systems. The described solutions are used in the LHC experiments: ATLAS, ALICE, CMS and LHCb. They are also used in other accelerator experiments. Data storage and processing functionality is divided into two hardware systems: Trigger and Data Acquisition, that are dependent on each other. High input data rate impose relevant choices for the architecture and parameters of both systems. The key parameters include detailed system structure and its overall latency. Trigger structure is defined by the physics requirements and the storage capability of DAQ system. Both systems are designed to achieve the highest possible space and time resolution for particle detection. Trigger references are reviewed [1-43] as well as chosen accelerator research efforts origination in this country [44-83].

  19. ATLAS LTCS Vertically Challenged System Lessons Learned

    NASA Technical Reports Server (NTRS)

    Patel, Deepak; Garrison, Matt; Ku, Jentung

    2014-01-01

    Re-planning of LTCS TVAC testing and supporting RTA (Receiver Telescope Assembly) Test Plan and Procedure document preparation. The Laser Thermal Control System (LTCS) is designed to maintain the lasers onboard Advanced Topographic Laser Altimeter System (ATLAS) at their operational temperatures. In order to verify the functionality of the LTCS, a thermal balance test of the thermal hardware was performed. During the first cold start of the LTCS, the Loop Heat Pipe (LHP) was unable to control the laser mass simulators temperature. The control heaters were fully on and the loop temperature remained well below the desired setpoint. Thermal analysis of the loop did not show these results. This unpredicted behavior of the LTCS was brought up to a panel of LHP experts. Based on the testing and a review of all the data, there were multiple diagnostic performed in order to narrow down the cause. The prevailing theory is that gravity is causing oscillating flow within the loop, which artificially increased the control power needs. This resulted in a replan of the LTCS test flow and the addition of a GSE heater to allow vertical operation.

  20. Design and Performance of the ATLAS Muon Detector Control System

    NASA Astrophysics Data System (ADS)

    Polini, Alessandro; ATLAS Muon Collaboration

    2011-12-01

    Muon detection plays a key role at the Large Hadron Collider. The ATLAS Muon Spectrometer includes Monitored Drift Tubes (MDT) and Cathode Strip Chambers (CSC) for precision momentum measurement in the toroidal magnetic field. Resistive Plate Chambers (RPC) in the barrel region, and Thin Gap Chambers (TGC) in the end-caps, provide the level-1 trigger and a second coordinate used for tracking in conjunction with the MDT. The Detector Control System of each subdetector is required to monitor and safely operate tens of thousand of channels, which are distributed on several subsystems, including low and high voltage power supplies, trigger and front-end electronics, currents and thresholds monitoring, alignment and environmental sensors, gas and electronic infrastructure. The system is also required to provide a level of abstraction for ease of operation as well as expert level actions and detailed analysis of archived data. The hardware architecture and software solutions adopted are shown along with results from the commissioning phase and the routine operation with colliding beams at 3.5 + 3.5 TeV. Design peculiarities of each subsystem and their use to monitor the detector and the accelerator performance are discussed along with the effort for a simple and coherent operation in a running experiment. The material presented can be a base to future test facilities and projects.

  1. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  2. The Message Reporting System in the ATLAS DAQ System

    NASA Astrophysics Data System (ADS)

    Caprini, M.; Fedorko, I.; Kolos, S.

    2008-06-01

    The Message Reporting System (MRS) in the ATLAS data acquisition system (DAQ) is one package of the Online Software which acts as a glue of various elements of DAQ, High Level Trigger (HLT) and Detector Control System (DCS). The aim of the MRS is to provide a facility which allows all software components in ATLAS to report messages to other components of the distributed DAQ system. The processes requiring a MRS are on one hand applications that report error conditions or information and on the other hand message processors that receive reported messages. A message reporting application can inject one or more messages into the MRS at any time. An application wishing to receive messages can subscribe to a message group according to defined criteria. The application receives messages that fulfill the subscription criteria when they are reported to MRS. The receiver message processing can consist of anything from simply logging the messages in a file/terminal to performing message analysis. The inter-process communication is achieved using the CORBA technology. The design, architecture and the used technology of MRS are reviewed in this paper.

  3. The ATLAS Data Acquisition and High Level Trigger system

    NASA Astrophysics Data System (ADS)

    The ATLAS TDAQ Collaboration

    2016-06-01

    This paper describes the data acquisition and high level trigger system of the ATLAS experiment at the Large Hadron Collider at CERN, as deployed during Run 1. Data flow as well as control, configuration and monitoring aspects are addressed. An overview of the functionality of the system and of its performance is presented and design choices are discussed.

  4. ATLAS V, Launch System for the Next Millenium

    NASA Astrophysics Data System (ADS)

    Sowers, George

    2002-01-01

    The premise behind the Atlas V launch system family is to provide a single system that can accommodate medium-lift to heavy-lift payloads. Lockheed Martin invested significant resources to develop the Atlas V launch vehicle featuring--a Common Core Booster using the RD-180 engine, an advanced solid rocket booster strap-on, advanced fault-tolerant avionics, the Common Element Centaur, and two payload fairings (PLF) sizes--an aluminum 4 meter and a composite 5 meter. With this "mix-and-match" approach, Lockheed Martin can accommodate payloads ranging from 10,900-19,000 lbm to geosynchronous transfer orbit (GTO) and up to 29,000 lbm to low-Earth orbit (LEO) in a single booster configuration. For heavy-lift missions (> 41,000 lbm to geosynchronous orbit), Lockheed Martin has designed a three-body configuration system to place satellites directly into their final orbit. Reliability, producibility, and operability were optimized for this new family while using heritage, flight- proven hardware wherever practical (booster engine, Centaur, payload adapters, payload fairings). With this approach, Lockheed Martin is able to offer a new family of vehicles, with minimum development risk and cost. It is also possible to reduce recurring cost without sacrificing Mission Success accomplishment due to the economies of scale of producing the system and the advanced use of automation during manufacturing and pre-launch processing. Atlas V development, while mainly funded by Lockheed Martin, also received a significant (500M) investment from the USAF under the EELV program. This investment ensures that USAF requirements are an integral part of the Atlas V system, such as standard payload interfaces, and a bracket of USAF and DoD payload performance needs. Lockheed Martin demonstrated the validity of this evolutionary approach on May 24, 2000, when its Atlas III vehicle, AC-201, performed flawlessly placing the EUTELSAT W4 satellite into final orbit. 80% of the Atlas V subsystems were

  5. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  6. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  7. System Architecture Modeling for Technology Portfolio Management using ATLAS

    NASA Technical Reports Server (NTRS)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  8. ATLAS, an integrated structural analysis and design system. Volume 2: System design document

    NASA Technical Reports Server (NTRS)

    Erickson, W. J. (Editor)

    1979-01-01

    ATLAS is a structural analysis and design system, operational on the Control Data Corporation 6600/CYBER computers. The overall system design, the design of the individual program modules, and the routines in the ATLAS system library are described. The overall design is discussed in terms of system architecture, executive function, data base structure, user program interfaces and operational procedures. The program module sections include detailed code description, common block usage and random access file usage. The description of the ATLAS program library includes all information needed to use these general purpose routines.

  9. Accelerator System Development at High Voltage Engineering

    SciTech Connect

    Klein, M. G.; Gottdang, A.; Haitsma, R. G.; Mous, D. J. W.

    2009-03-10

    Throughout the years, HVE has continuously extended the capabilities of its accelerator systems to meet the rising demands from a diverse field of applications, among which are deep level ion implantation, micro-machining, neutron production for biomedical research, isotope production or accelerator mass spectrometry. Characteristic for HVE accelerators is the coaxial construction of the all solid state power supply around the acceleration tubes. With the use of solid state technology, the accelerators feature high stability and very low ripple. Terminal voltages range from 1 to 6 MV for HVE Singletrons and Tandetrons. The high-current versions of these accelerators can provide ion beams with powers of several kW. In the last years, several systems have been built with terminal voltages of 1.25 MV, 2 MV and 5 MV. Recently, the first system based on a 6 MV Tandetron has passed the factory tests. In this paper we describe the characteristics of the HVE accelerator systems and present as example recent systems.

  10. Planetary Data Systems (PDS) Imaging Node Atlas II

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  11. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  12. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  13. Tectono-thermal evolution of the Atlas system - SW Morocco

    NASA Astrophysics Data System (ADS)

    Ruiz, G.; Negro, F.; Babault, J.; Foeken, J.; Stuart, F.; Kober, F.; Ivy-Ochs, S.

    2009-04-01

    In Morocco, the High and Middle Atlas of Morocco are intra-continental fold-thrust belts situated in the southern foreland of the Rif orogen. The High Atlas and its eastern continuation in Algeria and Tunisia is an ENE-WSW to E-W trending belt about 2000kms long and 100kms wide. It is a key natural laboratory because it 1) is the southern and westernmost expression of Alpine-Himalayan orogeny, and 2) encompasses Pre-Cambrian to recent evolution of the region. Phases of shortening and exhumation of this orogen remain however ill constrained and the few available quantitative, data do not allow the present-day high topography (over 4000m) to be explained. In order to put constrains on the recent orogenic growth of the Atlas system, we investigated the temperature-time history of rocks combining extensive low-temperature thermochronological analysis (Fission tracks and (U-Th)/He on zircon and apatite), and sub-recent denudation rates using cosmogenic Neon and Beryllium analysis. The target area is a NE-SW oriented transect between Marrakech and Igherm crossing the different structural segments of the western Atlas away from present-day fault systems. Results are much contrasted from one domain to the other: Pre-Cambrian bedrocks from the Anti-Atlas domain yield old Fission-Track ages on zircon (380-300 Ma), apatite (180-120 Ma) but also U-Th/He (150-110 Ma) still on apatite that are discussed in another contribution. U-Th/He ages on apatite are many from the High-Atlas (#>20) and much younger ranging between ~35 and 5 Ma. We performed a detailed vertical profile in the axial zone of the High-Atlas. Age-elevation relationship suggests that exhumation increased towards 1.0 km/my by the Late Miocene (~13-12 Ma). Further, continental series of Cretaceous age from the adjacent Sub-Atlas domains indicate total resetting to temperatures greater than 80°C suggesting that a post Cretaceous sedimentary pile of at least 3 kilometres in thickness is missing. The timing of the

  14. ATLAS TDAQ System Administration: evolution and re-design

    NASA Astrophysics Data System (ADS)

    Ballestrero, S.; Bogdanchikov, A.; Brasolin, F.; Contescu, C.; Dubrov, S.; Fazio, D.; Korol, A.; Lee, C. J.; Scannicchio, D. A.; Twomey, M. S.

    2015-12-01

    The ATLAS Trigger and Data Acquisition system is responsible for the online processing of live data, streaming from the ATLAS experiment at the Large Hadron Collider at CERN. The online farm is composed of ∼3000 servers, processing the data read out from ∼100 million detector channels through multiple trigger levels. During the two years of the first Long Shutdown there has been a tremendous amount of work done by the ATLAS Trigger and Data Acquisition System Administrators, implementing numerous new software applications, upgrading the OS and the hardware, changing some design philosophies and exploiting the High- Level Trigger farm with different purposes. The OS version has been upgraded to SLC6; for the largest part of the farm, which is composed of net booted nodes, this required a completely new design of the net booting system. In parallel, the migration to Puppet of the Configuration Management systems has been completed for both net booted and local booted hosts; the Post-Boot Scripts system and Quattor have been consequently dismissed. Virtual Machine usage has been investigated and tested and many of the core servers are now running on Virtual Machines. Virtualisation has also been used to adapt the High-Level Trigger farm as a batch system, which has been used for running Monte Carlo production jobs that are mostly CPU and not I/O bound. Finally, monitoring the health and the status of ∼3000 machines in the experimental area is obviously of the utmost importance, so the obsolete Nagios v2 has been replaced with Icinga, complemented by Ganglia as a performance data provider. This paper serves for reporting of the actions taken by the Systems Administrators in order to improve and produce a system capable of performing for the next three years of ATLAS data taking.

  15. Report to users of ATLAS

    SciTech Connect

    Ahmad, I.; Glagola, B.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web.

  16. ATLAS computing on CSCS HPC

    NASA Astrophysics Data System (ADS)

    Filipcic, A.; Haug, S.; Hostettler, M.; Walker, R.; Weber, M.

    2015-12-01

    The Piz Daint Cray XC30 HPC system at CSCS, the Swiss National Supercomputing centre, was the highest ranked European system on TOP500 in 2014, also featuring GPU accelerators. Event generation and detector simulation for the ATLAS experiment have been enabled for this machine. We report on the technical solutions, performance, HPC policy challenges and possible future opportunities for HEP on extreme HPC systems. In particular a custom made integration to the ATLAS job submission system has been developed via the Advanced Resource Connector (ARC) middleware. Furthermore, a partial GPU acceleration of the Geant4 detector simulations has been implemented.

  17. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    NASA Astrophysics Data System (ADS)

    Glatzer, Julian

    2015-12-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of two with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the factor of two increase in the number of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to three different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis on the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition system. Trigger and dead-time rates are monitored coherently at all stages of processing and are logged by the online computing system for physics analysis, data quality assurance and operational debugging. In addition, the synchronisation of trigger inputs is watched based on bunch-by-bunch trigger information. Several software tools allow for efficient display of the relevant information in the control room in a way useful for shifters and experts. The design of the framework aims at reliability, flexibility, and robustness of the system and takes into account the operational experience gained during Run 1. The Level-1 Central Trigger was successfully operated with high efficiency during the cosmic-ray, beam-splash and first Run 2 data taking with the full ATLAS detector.

  18. Task Management in the New ATLAS Production System

    NASA Astrophysics Data System (ADS)

    De, K.; Golubkov, D.; Klimentov, A.; Potekhin, M.; Vaniachine, A.; Atlas Collaboration

    2014-06-01

    This document describes the design of the new Production System of the ATLAS experiment at the LHC [1]. The Production System is the top level workflow manager which translates physicists' needs for production level processing and analysis into actual workflows executed across over a hundred Grid sites used globally by ATLAS. As the production workload increased in volume and complexity in recent years (the ATLAS production tasks count is above one million, with each task containing hundreds or thousands of jobs) there is a need to upgrade the Production System to meet the challenging requirements of the next LHC run while minimizing the operating costs. In the new design, the main subsystems are the Database Engine for Tasks (DEFT) and the Job Execution and Definition Interface (JEDI). Based on users' requests, DEFT manages inter-dependent groups of tasks (Meta-Tasks) and generates corresponding data processing workflows. The JEDI component then dynamically translates the task definitions from DEFT into actual workload jobs executed in the PanDA Workload Management System [2]. We present the requirements, design parameters, basics of the object model and concrete solutions utilized in building the new Production System and its components.

  19. Advanced Microgravity Acceleration Measurement Systems Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2002-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project at the NASA Glenn Research Center is part of the Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical (MEMS) acceleration sensor systems to replace existing electromechanical-sensor-based systems presently used to assess relative gravity levels aboard spacecraft. These systems are used in characterizing both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data has cross-disciplinary utility to the microgravity life and physical sciences and the structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, while providing enhanced stability.

  20. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  1. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  2. HRIBF Tandem Accelerator Radiation Safety System Upgrade

    SciTech Connect

    Blankenship, J.L.; Juras, R.C.

    1998-11-04

    The HRIBF Tandem Accelerator Radiation Safety System was designed to permit experimenters and operations staff controlled access to beam transport and experiment areas with accelerated beam present. Neutron-Gamma detectors are mounted in eaeh area at points of maximum dose rate and the resulting signals are integrated by redundan~ circuitry; beam is stopped if dose rate or integrated dose exceeds established limits. This paper will describe the system, in use for several vears at the HRIBF, and discuss changes recently made to modernize the system and to make the system compliant with DOE Order 5480.25 and related ORNL updated safety rules.

  3. HRIBF Tandem Accelerator Radiation Safety System Upgrade

    NASA Astrophysics Data System (ADS)

    Juras, R. C.; Blankenship, J. L.

    1999-06-01

    The HRIBF Tandem Accelerator Radiation Safety System was designed to permit experimenters and operations staff controlled access to beam transport and experiment areas with accelerated beam present. Neutron-Gamma detectors are mounted in each area at points of maximum dose rate and the resulting signals are integrated by redundant circuitry; beam is stopped if dose rate or integrated dose exceeds established limits. This paper will describe the system, in use for several years at the HRIBF, and discuss changes recently made to modernize the system and to make the system compliant with DOE Order 5480.25 and related ORNL updated safety rules.

  4. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  5. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  6. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  7. The EMMA Accelerator, a Diagnostic Systems Overview

    SciTech Connect

    Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

    2011-09-04

    The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

  8. Long-term operating experience for the ATLAS superconducting resonators

    SciTech Connect

    Pardo, R.; Zinkann, G.

    1999-12-21

    Portions of the ATLAS accelerator have been operating now for over 21 years. The facility has accumulated several million resonator-hours of operation at this point and has demonstrated the long-term reliability of RF superconductivity. The overall operating performance of the ATLAS facility has established a level of beam quality, flexibility, and reliability not previously achieved with heavy-ion accelerator facilities. The actual operating experience and maintenance history of ATLAS are presented for ATLAS resonators and associated electronics systems. Solutions to problems that appeared in early operation as well as current problems needing further development are discussed.

  9. ATLAS, an integrated structural analysis and design system. Volume 5: System demonstration problems

    NASA Technical Reports Server (NTRS)

    Samuel, R. A. (Editor)

    1979-01-01

    One of a series of documents describing the ATLAS System for structural analysis and design is presented. A set of problems is described that demonstrate the various analysis and design capabilities of the ATLAS System proper as well as capabilities available by means of interfaces with other computer programs. Input data and results for each demonstration problem are discussed. Results are compared to theoretical solutions or experimental data where possible. Listings of all input data are included.

  10. Experiments of interest to nuclear astrophysics using 17F, 18F and 56NI beams from the ATLAS accelerator

    SciTech Connect

    Rehm, K.E.

    1997-12-31

    First experiments with radioactive beams of 17F, 18F and 56Ni have been performed at the superconducting accelerator ATLAS at Argonne National laboratory. The experiments address several questions related to the hot CNO cycle and the breakout into the rp process, in particular the production of 19Ne via the 18F(p,gamma) and of 17F via the 14O(4He,p) reactions. The beams were produced by using either the two-accelerator method (18F, 56Ni) or (for 17F) by bombarding a hydrogen (deuterium) target with 17O or 16O, respectively. Special high-efficiency detection techniques were developed to perform experiments with low beam intensities and sometimes considerable isobar impurities. Planned measurements with other radioactive ion beams will be discussed.

  11. Accurate GPS Time-Linked data Acquisition System (ATLAS II) user's manual.

    SciTech Connect

    Jones, Perry L.; Zayas, Jose R.; Ortiz-Moyet, Juan

    2004-02-01

    The Accurate Time-Linked data Acquisition System (ATLAS II) is a small, lightweight, time-synchronized, robust data acquisition system that is capable of acquiring simultaneous long-term time-series data from both a wind turbine rotor and ground-based instrumentation. This document is a user's manual for the ATLAS II hardware and software. It describes the hardware and software components of ATLAS II, and explains how to install and execute the software.

  12. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  13. Fermilab accelerator control system: Analog monitoring facilities

    SciTech Connect

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  14. The LUCID detector ATLAS luminosity monitor and its electronic system

    NASA Astrophysics Data System (ADS)

    Manghi, F. Lasagni

    2016-07-01

    In 2015 LHC is starting a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely rebuilt, both the detector and the electronics, in order to cope with the new running conditions. The new detector electronics features a new read-out board (LUCROD) for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and a revisited LUMAT board for combination of signals from the two detectors. This note describes the new board design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  15. The BNL Accelerator Test Facility control system

    SciTech Connect

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

  16. Design and development of the redundant launcher stabilization system for the Atlas 2 launch vehicle

    NASA Technical Reports Server (NTRS)

    Nakamura, M.

    1991-01-01

    The Launcher Stabilization System (LSS) is a pneumatic/hydraulic ground system used to support an Atlas launch vehicle prior to launch. The redesign and development activity undertaken to achieve an LSS with increased load capacity and a redundant hydraulic system for the Atlas 2 launch vehicle are described.

  17. Cesium monitoring system for ATLAS Tile Hadron Calorimeter

    NASA Astrophysics Data System (ADS)

    Starchenko, E.; Blanchot, G.; Bosman, M.; Cavalli-Sforza, M.; Karyukhin, A.; Kopikov, S.; Miagkov, A.; Nessi, M.; Shalimov, A.; Shalanda, N.; Soldatov, M.; Solodkov, A.; Soloviev, A.; Tsoupko-Sitnikov, V.; Zaitsev, A.

    2002-11-01

    A system to calibrate and monitor ATLAS Barrel Hadronic Calorimeter (TileCal) is under construction at CERN Laboratory. A movable radioactive source driven by a liquid flow travels through the calorimeter body deposing a known energy to the calorimeter cells. Extensive R&D studies have been carried out and the main system parameters are evaluated. The prototypes are currently used for quality check and inter-calibration of the TileCal modules. A distributed control system, hardware as well as corresponding on-line and off-line software is developed.

  18. ATCA-based ATLAS FTK input interface system

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Liu, T.; Olsen, J.; Iizawa, T.; Mitani, T.; Korikawa, T.; Yorita, K.; Annovi, A.; Beretta, M.; Gatta, M.; Sotiropoulou, C.-L.; Gkaitatzis, S.; Kordas, K.; Kimura, N.; Cremonesi, M.; Yin, H.; Xu, Z.

    2015-04-01

    The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker are clustered and organized into overlapping η-phi trigger towers before being sent to the tracking engines. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over full mesh backplanes and optic fibers. The board and system level design concepts and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented.

  19. PARTS: (Plasma Accelerated Reusable Transport System)

    NASA Astrophysics Data System (ADS)

    Aherne, Michael; Davis, Phil; England, Matt; Gustavsson, Jake; Pankow, Steve; Sampaio, Chere; Savella, Phil

    2002-01-01

    The Plasma Accelerated Reusable Transport System (PARTS) is an unmanned cargo shuttle intended to ferry large payloads to and from Martian orbit using a highly efficient VAriable Specific Impulse Magnetoplasma Rocket (VASIMR). The design of PARTS focuses on balancing cost and minimizing transit time for a chosen payload consisting of vehicles, satellites, and other components provided by interested parties.

  20. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  1. The ATLAS Trigger System: Ready for Run-2

    NASA Astrophysics Data System (ADS)

    Nakahama, Yu

    2015-12-01

    The ATLAS trigger system has been used very successfully for the online event selection during the LHC's first run (Run-1) between 2009 and 2013 at centre-of-mass energies (√s) between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 (L1) and a software-based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. During the next data-taking period (Run-2) starting in early 2015, the LHC will operate at √s = 13 TeV, resulting in roughly five times higher trigger rates. We will review the upgrades to the ATLAS trigger system that have been implemented during the long shutdown and that will allow us to cope with these increased trigger rates while maintaining or even improving our efficiencies to select relevant physics processes. These include changes to the L1 calorimeter trigger, the introduction of new L1 topological trigger modules, improvements in the L1 muon system and the merging of the previous two-level HLT system into a single event-filter farm. Finally, we will summarize the commissioning status of the trigger system in view of the imminent restart of data-taking.

  2. A molecular atlas of Xenopus respiratory system development

    PubMed Central

    Rankin, Scott A.; Tran, Hong Thi; Wlizla, Marcin; Mancini, Pamela; Shifley, Emily T.; Bloor, Sean D.; Han, Lu; Vleminckx, Kris; Wert, Susan E.; Zorn, Aaron M.

    2014-01-01

    Background Respiratory system development is regulated by a complex series of endoderm – mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. Results In this study we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, FGF, and BMP signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using a number of functional experiments we refine the epistatic relationships between FGF, Wnt and BMP signaling in early Xenopus respiratory system development. Conclusions We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between E8.5 to E10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development. PMID:25156440

  3. Acceleration by pulsar winds in binary systems

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Gaisser, T. K.

    1990-01-01

    In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.

  4. Acceleration by pulsar winds in binary systems

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Gaisser, T. K.

    1990-01-01

    In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation, and the spin-down power will drive a wind of relativistic electron-position pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. This paper investigates the possibility of particle acceleration at such a pulsar wind shock and the production of VHE and UHE gamma-rays from interactions of accelerated protons in the companion star's wind or atmosphere. It is found that, in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma-rays. The application of the pulsar wind model to binary sources such as Cygnus X-3 is discussed, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.

  5. Evolution of the ATLAS Trigger and Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Pozo Astigarraga, M. E.; ATLAS Collaboration

    2015-05-01

    ATLAS is a Physics experiment that explores high-energy particle collisions at the Large Hadron Collider at CERN. It uses tens of millions of electronics channels to capture the outcome of the particle bunches crossing each other every 25 ns. Since reading out and storing the complete information is not feasible (˜100 TB/s), ATLAS makes use of a complex and highly distributed Trigger and Data Acquisition (TDAQ) system, in charge of selecting only interesting data and transporting those to permanent mass storage (˜1 GB/s) for later analysis. The data reduction is carried out in two stages: first, custom electronics performs an initial level of data rejection for each bunch crossing based on partial and localized information. Only data corresponding to collisions passing this stage of selection will be actually read-out from the on-detector electronics. Then, a large computer farm (˜17 k cores) analyses these data in real-time and decides which ones are worth being stored for Physics analysis. A large network allows moving the data from ˜2000 front-end buffers to the location where they are processed and from there to mass storage. The overall TDAQ system is embedded in a common software framework that allows controlling, configuring and monitoring the data taking process. The experience gained during the first period of data taking of the ATLAS experiment (Run I, 2010-2012) has inspired a number of ideas for improvement of the TDAQ system that are being put in place during the so-called Long Shutdown 1 of the Large Hadron Collider (LHC), in 2013/14. This paper summarizes the main changes that have been applied to the ATLAS TDAQ system and highlights the expected performance and functional improvements that will be available for the LHC Run II. Particular emphasis will be put on the evolution of the software-based data selection and of the flow of data in the system. The reasons for the modified architectural and technical choices will be explained, and details

  6. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    SciTech Connect

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  7. Induction accelerators for the phase rotator system

    SciTech Connect

    Reginato, Lou; Yu, Simon; Vanecek, Dave

    2001-07-30

    The principle of magnetic induction has been applied to the acceleration of high current beams in betatrons and a variety of induction accelerators. The linear induction accelerator (LIA) consists of a simple nonresonant structure where the drive voltage is applied to an axially symmetric gap that encloses a toroidal ferromagnetic material. The change in flux in the magnetic core induces an axial electric field that provides particle acceleration. This simple nonresonant (low Q) structure acts as a single turn transformer that can accelerate from hundreds of amperes to tens of kiloamperes, basically only limited by the drive impedance. The LIA is typically a low gradient structure that can provide acceleration fields of varying shapes and time durations from tens of nanoseconds to several microseconds. The efficiency of the LIA depends on the beam current and can exceed 50% if the beam current exceeds the magnetization current required by the ferromagnetic material. The acceleration voltage available is simply given by the expression V=A dB/dt. Hence, for a given cross section of material, the beam pulse duration influences the energy gain. Furthermore, a premium is put on minimizing the diameter, which impacts the total weight or cost of the magnetic material. The diameter doubly impacts the cost of the LIA since the power (cost) to drive the cores is proportional to the volume as well. The waveform requirements during the beam pulse makes it necessary to make provisions in the pulsing system to maintain the desired dB/dt during the useful part of the acceleration cycle. This is typically done two ways, by using the final stage of the pulse forming network (PFN) and by the pulse compensation network usually in close proximity of the acceleration cell. The choice of magnetic materials will be made by testing various materials both ferromagnetic and ferrimagnetic. These materials will include the nickel-iron, silicon steel amorphous and various types of ferrites not

  8. The Error Reporting in the ATLAS TDAQ System

    NASA Astrophysics Data System (ADS)

    Kolos, Serguei; Kazarov, Andrei; Papaevgeniou, Lykourgos

    2015-05-01

    The ATLAS Error Reporting provides a service that allows experts and shift crew to track and address errors relating to the data taking components and applications. This service, called the Error Reporting Service (ERS), gives to software applications the opportunity to collect and send comprehensive data about run-time errors, to a place where it can be intercepted in real-time by any other system component. Other ATLAS online control and monitoring tools use the ERS as one of their main inputs to address system problems in a timely manner and to improve the quality of acquired data. The actual destination of the error messages depends solely on the run-time environment, in which the online applications are operating. When an application sends information to ERS, depending on the configuration, it may end up in a local file, a database, distributed middleware which can transport it to an expert system or display it to users. Thanks to the open framework design of ERS, new information destinations can be added at any moment without touching the reporting and receiving applications. The ERS Application Program Interface (API) is provided in three programming languages used in the ATLAS online environment: C++, Java and Python. All APIs use exceptions for error reporting but each of them exploits advanced features of a given language to simplify the end-user program writing. For example, as C++ lacks language support for exceptions, a number of macros have been designed to generate hierarchies of C++ exception classes at compile time. Using this approach a software developer can write a single line of code to generate a boilerplate code for a fully qualified C++ exception class declaration with arbitrary number of parameters and multiple constructors, which encapsulates all relevant static information about the given type of issues. When a corresponding error occurs at run time, the program just need to create an instance of that class passing relevant values to one

  9. Control system for the NBS microtron accelerator

    NASA Astrophysics Data System (ADS)

    Martin, E. Ray; Trout, Robert E.; Wilson, Bonnie L.; Ayres, Robert L.; Yoder, Neil R.

    1986-06-01

    As various subsystems of the National Bureau of Standards/Los Alamos racetrack microtron accelerator are being brought on-line, experience has been gained with some of the innovations implemented in the control system. Foremost among these are the joystick-based operator controls, the hierarchical distribution of control system intelligence, and the independent secondary stations, permitting sectional stand-alone operation. The result of the distributed database philosophy and parallel data links has been very fast data updates, permitting joystick interaction with system elements. The software development was greatly simplified by using the hardware arbitration of several parallel processors in the Multibus system to split the software tasks into independent modules.

  10. The ATLAS PanDA Monitoring System and its Evolution

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.

    2011-12-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  11. ATLAS, an integrated structural analysis and design system. Volume 4: Random access file catalog

    NASA Technical Reports Server (NTRS)

    Gray, F. P., Jr. (Editor)

    1979-01-01

    A complete catalog is presented for the random access files used by the ATLAS integrated structural analysis and design system. ATLAS consists of several technical computation modules which output data matrices to corresponding random access file. A description of the matrices written on these files is contained herein.

  12. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  13. Fermilab tevatron high level RF accelerating systems

    SciTech Connect

    Kerns, Q.; Kerns, C.; Miller, H.; Reid, J.; Tawzer, S.; Webber, R.; Wildman, D.

    1985-10-01

    Eight tuned rf cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an rf signal representing the amplitude and phase as ''seen by the beam,'' separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer. A cavity consists of two quarter-wave resonators placed back to back with a coaxial drift tube separating the two accelerating gaps by ..pi.. radians. The cavities are very similar to the prototype which has been previously described/sup 3/ and is operating as Station 8 in the Tevatron. Only additional water cooling around the high current region of the drift tube supports and a double loop used to monitor the unbalance current through the Hipernom mode damping resistor have been added. Each cavity has a Q of about7100, a shunt impedance of 1.2 M..cap omega.., and is capable of running cw with a peak accelerating voltage of 360

  14. Accelerated degradation of silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.

  15. Vacuum system for Advanced Test Accelerator

    SciTech Connect

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  16. Pulsed power systems for the DARHT accelerators

    SciTech Connect

    Downing, J.N.; Parsons, W.M.; Earley, L.M.; Melton, J.G.; Moir, D.C.; Carlson, R.L.; Barnes, G.A.; Builta, L.A.; Eversole, S.A.; Keel, G.I.; Rader, D.C.; Romero, J.A.; Shurter, R.P.

    1991-01-01

    The Dual-Axis Radiographic Hydro Test (DARHT) Facility is being designed to produce high-resolution flash radiographs of hydrodynamics experiments. Two 16- to 20-MeV linear induction accelerators (LIA), with an included angle of 90{degree}, are used to produce intense bremsstrahlung x-ray pulses of short duration (60-ns flat-top). Each accelerator has a 4-MeV electron source that injects an electron beam into a series of 250-kV induction cells. The three major pulsed-power systems are the injectors, the induction-cell pulsed-power (ICPP) units, and the ICPP trigger systems, and are discussed in this paper. 11 refs., 5 figs, 3 tabs.

  17. gLExec Integration with the ATLAS PanDA Workload Management System

    NASA Astrophysics Data System (ADS)

    Karavakis, E.; Barreiro, F.; Campana, S.; De, K.; Di Girolamo, A.; Litmaath, M.; Maeno, T.; Medrano, R.; Nilsson, P.; Wenaus, T.

    2015-12-01

    ATLAS user jobs are executed on Worker Nodes (WNs) by pilots sent to sites by pilot factories. This paradigm serves to allow a high job reliability and although it has clear advantages, such as making the working environment homogeneous, the approach presents security and traceability challenges. To address these challenges, gLExec can be used to let the payloads for each user be executed under a different UNIX user id that uniquely identifies the ATLAS user. This paper describes the recent improvements and evolution of the security model within the ATLAS PanDA system, including improvements in the PanDA pilot, in the PanDA server and their integration with MyProxy, a credential caching system that entitles a person or a service to act in the name of the issuer of the credential. Finally, it presents results from ATLAS user jobs running with gLExec and describes the deployment campaign within ATLAS.

  18. The NASA atlas of the solar system

    USGS Publications Warehouse

    Greeley, Ronald; Batson, Raymond M.

    1997-01-01

    Describes every planet, moon, and body that has been the subject of a NASA mission, including images of 30 solar system objects and maps of 26 objects. The presentation includes geologic history, geologic and reference maps, and shaded relief maps.

  19. Fermilab Tevatron high level rf accelerating systems

    SciTech Connect

    Kerns, Q.; Kerns, C.; Miller, H.; Tawser, S.; Reid, J.; Webber, R.; Wildman, D.

    1985-06-01

    Eight tuned rf cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an rf signal representing the amplitude and phase as ''seen by the beam,'' separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer.

  20. Open Hardware for CERN's accelerator control systems

    NASA Astrophysics Data System (ADS)

    van der Bij, E.; Serrano, J.; Wlostowski, T.; Cattin, M.; Gousiou, E.; Alvarez Sanchez, P.; Boccardi, A.; Voumard, N.; Penacoba, G.

    2012-01-01

    The accelerator control systems at CERN will be upgraded and many electronics modules such as analog and digital I/O, level converters and repeaters, serial links and timing modules are being redesigned. The new developments are based on the FPGA Mezzanine Card, PCI Express and VME64x standards while the Wishbone specification is used as a system on a chip bus. To attract partners, the projects are developed in an `Open' fashion. Within this Open Hardware project new ways of working with industry are being evaluated and it has been proven that industry can be involved at all stages, from design to production and support.

  1. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  2. Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    1999-01-01

    Experimenters from the fluids, combustion, materials, and life science disciplines all use the microgravity environment of space to enhance their understanding of fundamental physical phenomena caused by disturbances from events such as spacecraft maneuvers, equipment operations, atmospheric drag, and (for manned flights) crew movement. Space conditions reduce gravity but do not eliminate it. To quantify the level of these disturbances, NASA developed the Space Acceleration Measurement System (SAMS) series to collect data characterizing the acceleration environment on the space shuttles. This information is provided to investigators so that they can evaluate how the microgravity environment affects their experiments. Knowledge of the microgravity environment also helps investigators to plan future experiments. The original SAMS system flew 20 missions on the shuttle as well as on the Russian space station Mir. Presently, Lewis is developing SAMS-II for the International Space Station; it will be a distributed system using digital output sensor heads. The latest operational version of SAMS, SAMS-FF, was originally designed for free flyer spacecraft and unmanned areas. SAMS-FF is a flexible, modular system, housed in a lightweight package, and it uses advances in technology to improve performance. The hardware package consists of a control and data acquisition module, three different types of sensors, data storage devices, and ground support equipment interfaces. Three different types of sensors are incorporated to measure both high- and low-frequency accelerations and the roll rate velocity. Small, low-power triaxial sensor heads (TSH's) offer high resolution and selectable bandwidth, and a special low-frequency accelerometer is available for high-resolution, low-frequency applications. A state-of-the-art, triaxial fiberoptic gyroscope that measures extremely low roll rates is housed in a compact package. The versatility of the SAMS-FF system is shown in the three

  3. Uncertainty assessment for accelerator-driven systems.

    SciTech Connect

    Finck, P. J.; Gomes, I.; Micklich, B.; Palmiotti, G.

    1999-06-10

    The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been reached in adopting for the subcritical component a fast spectrum liquid metal cooled configuration. Both a lead-bismuth eutectic, sodium and gas are being considered as a coolant; each has advantages and disadvantages. The major expected advantage is that subcriticality avoids reactivity induced transients. The potentially large subcriticality margin also should allow for the introduction of very significant quantities of waste products (minor Actinides and Fission Products) which negatively impact the safety characteristics of standard cores. In the U.S. these arguments are the basis for the development of the Accelerator Transmutation of Waste (ATW), which has significant potential in reducing nuclear waste levels. Up to now, neutronic calculations have not attached uncertainties on the values of the main nuclear integral parameters that characterize the system. Many of these parameters (e.g., degree of subcriticality) are crucial to demonstrate the validity and feasibility of this concept. In this paper we will consider uncertainties related to nuclear data only. The present knowledge of the cross sections of many isotopes that are not usually utilized in existing reactors (like Bi, Pb-207, Pb-208, and also Minor Actinides and Fission Products) suggests that uncertainties in the integral parameters will be significantly larger than for conventional reactor systems, and this raises concerns on the neutronic performance of those systems.

  4. Improving Security in the ATLAS PanDA System

    NASA Astrophysics Data System (ADS)

    Caballero, J.; Maeno, T.; Nilsson, P.; Stewart, G.; Potekhin, M.; Wenaus, T.

    2011-12-01

    The security challenges faced by users of the grid are considerably different to those faced in previous environments. The adoption of pilot jobs systems by LHC experiments has mitigated many of the problems associated with the inhomogeneities found on the grid and has greatly improved job reliability; however, pilot jobs systems themselves must then address many security issues, including the execution of multiple users' code under a common 'grid' identity. In this paper we describe the improvements and evolution of the security model in the ATLAS PanDA (Production and Distributed Analysis) system. We describe the security in the PanDA server which is in place to ensure that only authorized members of the VO are allowed to submit work into the system and that jobs are properly audited and monitored. We discuss the security in place between the pilot code itself and the PanDA server, ensuring that only properly authenticated workload is delivered to the pilot for execution. When the code to be executed is from a 'normal' ATLAS user, as opposed to the production system or other privileged actor, then the pilot may use an EGEE developed identity switching tool called gLExec. This changes the grid proxy available to the job and also switches the UNIX user identity to protect the privileges of the pilot code proxy. We describe the problems in using this system and how they are overcome. Finally, we discuss security drills which have been run using PanDA and show how these improved our operational security procedures.

  5. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Püllen, Lukas; Boek, Jennifer; Kersten, Susanne; Kind, Peter; Mättig, Peter; Zeitnitz, Christian

    2013-12-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  6. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Boek, J.; Kersten, S.; Kind, P.; Mättig, P.; Püllen, L.; Zeitnitz, C.

    2013-03-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerators luminosity by a factor of 10. In the context of this upgrade, the inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  7. The ATLAS integrated structural analysis and design software system

    NASA Technical Reports Server (NTRS)

    Dreisbach, R. L.; Giles, G. L.

    1978-01-01

    The ATLAS system provides an extensive set of integrated technical computer-program modules for the analysis and design of general structural configurations, as well as capabilities that are particularly suited for the aeroelastic design of flight vehicles. The system is based on the stiffness formulation of the finite element structural analysis method and can be executed in batch and interactive computing environments on CDC 6600/CYBER computers. Problem-definition input data are written in an engineering-oriented language using a free field format. Input-data default values, generation options, and data quality checks provided by the preprocessors minimize the amount of data and flowtime for problem definition/verfication. Postprocessors allow selected input and calculated data to be extracted, manipulated, and displayed via on-line and off-line prints or plots for monitoring and verifying problem solutions. The sequence and mode of execution of selected program modules are controlled by a common user-oriented language.

  8. Digital hand atlas for web-based bone age assessment: system design and implementation

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente

    2000-04-01

    A frequently used assessment method of skeletal age is atlas matching by a radiological examination of a hand image against a small set of Greulich-Pyle patterns of normal standards. The method however can lead to significant deviation in age assessment, due to a variety of observers with different levels of training. The Greulich-Pyle atlas based on middle upper class white populations in the 1950s, is also not fully applicable for children of today, especially regarding the standard development in other racial groups. In this paper, we present our system design and initial implementation of a digital hand atlas and computer-aided diagnostic (CAD) system for Web-based bone age assessment. The digital atlas will remove the disadvantages of the currently out-of-date one and allow the bone age assessment to be computerized and done conveniently via Web. The system consists of a hand atlas database, a CAD module and a Java-based Web user interface. The atlas database is based on a large set of clinically normal hand images of diverse ethnic groups. The Java-based Web user interface allows users to interact with the hand image database form browsers. Users can use a Web browser to push a clinical hand image to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, is then extracted and compared with patterns from the atlas database to assess the bone age.

  9. Reliable timing systems for computer controlled accelerators

    NASA Astrophysics Data System (ADS)

    Knott, Jürgen; Nettleton, Robert

    1986-06-01

    Over the past decade the use of computers has set new standards for control systems of accelerators with ever increasing complexity coupled with stringent reliability criteria. In fact, with very slow cycling machines or storage rings any erratic operation or timing pulse will cause the loss of precious particles and waste hours of time and effort of preparation. Thus, for the CERN linac and LEAR (Low Energy Antiproton Ring) timing system reliability becomes a crucial factor in the sense that all components must operate practically without fault for very long periods compared to the effective machine cycle. This has been achieved by careful selection of components and design well below thermal and electrical limits, using error detection and correction where possible, as well as developing "safe" decoding techniques for serial data trains. Further, consistent structuring had to be applied in order to obtain simple and flexible modular configurations with very few components on critical paths and to minimize the exchange of information to synchronize accelerators. In addition, this structuring allows the development of efficient strategies for on-line and off-line fault diagnostics. As a result, the timing system for Linac 2 has, so far, been operating without fault for three years, the one for LEAR more than one year since its final debugging.

  10. Accelerator-based neutron radioscopic systems

    NASA Astrophysics Data System (ADS)

    Berger, Harold; Dance, William E.

    1999-06-01

    There is interest in non-reactor source, thermal neutron inspection systems for applications in aircraft maintenance, explosive devices, investment-cast turbine blades, etc. Accelerator sources, (d-T), RFQ accelerators and cyclotrons as examples, are available for either transportable or fixed neutron inspection systems. Sources are reviewed for neutron output, portability, ease of use and cost, and for use with an electronic neutron imaging camera (image intensifier or scintillator-camera system) to provide a prompt response, neutron inspection system. Particular emphasis is given to the current aircraft inspection problem to detect and characterize corrosion. Systems are analyzed to determine usefulness in providing an on-line inspection technique to detect corrosion in aluminum honeycomb aircraft components, either on-aircraft or in a shop environment. The neutron imaging sensitivity to hydrogenous aluminum corrosion product offers early detection advantages for aircraft corrosion, to levels of aluminum metal loss as small as 25 μm. The practical capability for a continuous scan thermal neutron radioscopic system to inspect up to 500 square feet of component surface per day is used as an evaluation criterion, with the system showing contrast sensitivity of at least 5% and image detail in the order of 4 mm for parts 10 cm thick. Under these practical conditions and 3-shift operation, the source must provide an incident thermal neutron flux of 5.6×104n cm-2 s-1 at an L/D of 30. A stop and go inspection approach, offering improved resolution, would require a source with similar characteristics.

  11. Integrated System for Performance Monitoring of the ATLAS TDAQ Network

    NASA Astrophysics Data System (ADS)

    Octavian Savu, Dan; Al-Shabibi, Ali; Martin, Brian; Sjoen, Rune; Batraneanu, Silvia Maria; Stancu, Stefan

    2011-12-01

    The ATLAS TDAQ Network consists of three separate networks spanning four levels of the experimental building. Over 200 edge switches and 5 multi-blade chassis routers are used to interconnect 2000 processors, adding up to more than 7000 high speed interfaces. In order to substantially speed-up ad-hoc and post mortem analysis, a scalable, yet flexible, integrated system for monitoring both network statistics and environmental conditions, processor parameters and data taking characteristics was required. For successful up-to-the-minute monitoring, information from many SNMP compliant devices, independent databases and custom APIs was gathered, stored and displayed in an optimal way. Easy navigation and compact aggregation of multiple data sources were the main requirements; characteristics not found in any of the tested products, either open-source or commercial. This paper describes how performance, scalability and display issues were addressed and what challenges the project faced during development and deployment. A full set of modules, including a fast polling SNMP engine, user interfaces using latest web technologies and caching mechanisms, has been designed and developed from scratch. Over the last year the system proved to be stable and reliable, replacing the previous performance monitoring system and extending its capabilities. Currently it is operated using a precision interval of 25 seconds (the industry standard is 300 seconds). Although it was developed in order to address the needs for integrated performance monitoring of the ATLAS TDAQ network, the package can be used for monitoring any network with rigid demands of precision and scalability, exceeding normal industry standards.

  12. The Compact NASA Atlas of the Solar System

    NASA Astrophysics Data System (ADS)

    Greeley, Ronald; Batson, Raymond

    2002-01-01

    Without sacrificing any of the detail or breadth of the full-size edition, the essential reference source for maps of every planet, moon, or small body investigated by NASA missions is now available in a convenient, portable format. Featuring over 150 maps, 214 color illustrations and a gazetteer that lists the names of all features officially approved by the International Astronomical Union, The Compact NASA Atlas of the Solar System includes the full range of information gathered from NASA missions throughout the Solar System. Compiled by the US Geological Survey, this atlas includes: -Geological maps -Reference maps -Shaded relief maps -Synthetic aperture radar mosaics -Color photo-mosaics that present the features of planets and their satellites This 'road map' of the solar system is the definitive guide for planetary science and should be part of every cartographers and astonomer's collection. Ronald Greeley is a Regent Professor in the Department of Geological Sciences at Arizona State University. He is a team member of the Galileo mission to Jupiter and of the Mars Pathfinder lander. Greeley is currently a co-investigator for the European Mars Express mission. Raymond Batson spent his 35-year career with the United States Geological Survey. He has worked in terrestrial mapping and in lunar and planetary mapping. Batson served as co-investigator or team member on most NASA planetary missions, including the Apollo lunar lander missions, the Mariner Mars and Venus/Mercury mapping missions, the Viking 1 and 2 Mars mapping missions, the Voyager missions to the outer planets, and the Magellan Venus radar mapping mission.

  13. Critical Systems Engineering Accelerator: Aerospace Demonstrator

    NASA Astrophysics Data System (ADS)

    Moreno, Ricardo; Fernandez, Gonzalo; Regada, Raul; Basanta, Luis; Alana, Elena; Del Carmen Lomba, Maria

    2014-08-01

    Nowadays, the complexity and functionality of space systems is increasing more and more. Safety critical systems have to guarantee strong safety and dependability constraints. This paper presents CRYSTAL (Critical sYSTem engineering AcceLeration), a cross-domain ARTEMIS project for increasing the efficiency of the embedded software development in the industry through the definition of an integrated tool chain. CRYSTAL involves four major application domains: Aerospace, Automotive, Rail and Medical Healthcare. The impact in the Space Domain will be evaluated through a demonstrator implemented using CRYSTAL framework: the Low Level Software for an Avionics Control Unit, capable to run Application SW for autonomous navigation, image acquisition control, data compression and/or data handling. Finally, the results achieved will be evaluated taking into account the ECSS (European Committee for Space Standardization) standards and procedures.

  14. Report to users of ATLAS

    SciTech Connect

    Ahmad, I.; Glagola, B.

    1997-03-01

    This report covers the following topics: (1) status of the ATLAS accelerator; (2) progress in R and D towards a proposal for a National ISOL Facility; (3) highlights of recent research at ATLAS; (4) the move of gammasphere from LBNL to ANL; (5) Accelerator Target Development laboratory; (6) Program Advisory Committee; (7) ATLAS User Group Executive Committee; and (8) ATLAS user handbook available in the World Wide Web. A brief summary is given for each topic.

  15. Microgravity acceleration modeling for orbital systems

    NASA Technical Reports Server (NTRS)

    Knabe, Walter; Baugher, Charles R. (Editor)

    1990-01-01

    In view of the decisive importance of a disturbance-free environment on the Space Station, and on other orbital systems, for materials processing experiments, a theoretical and semi-experimental analysis of the acceleration environment to be expected on large orbiting spacecraft was undertaken. A unified model of such spacecraft cannot be established; therefore, a number of sub-models representing major components of typical large spacecraft must be investigated. In order to obtain experimental data of forces, a typical spacecraft - an engineering model of the Spacelab - was suspended on long ropes in a high-bay hangar, and equipped with a number of accelerometers. Active components on the Spacelab (fans, pumps, air conditioners, valves, levers) were operated, and astronautics moved boxes, drawers, sleds, and their own bodies. Generally speaking, the response of the Spacelab structure was very similar to the environment measured on Spacelabs SL-1, SL-2, and D-1. At frequencies in the broad range between 1 and about 100 Hz, acceleration peaks reached values of 10(exp -3) and 10(exp -2) g sub o, and even higher.

  16. The role of space charge in the performance of the bunching system for the ATLAS Positive Ion Injector

    SciTech Connect

    Pardo, R.C.; Smith, R.

    1995-07-01

    The bunching system of the ATLAS Positive Ion Injector consists of a four-frequency harmonic buncher, a beam-tail removing chopper, and a 24.25 MHz spiral resonator sine-wave rebuncher. The system is designed to efficiently create beam pulses of approximately 0.25 nsec FWHM for injection into mid acceleration by the ATLAS superconducting linac. Studies of the effect of space charge on the performance of the system have been undertaken and compared to simulations as part of the design process for a new bunching system to be developed for a second ion source. Results of measurements and modeling studies indicate that the present system suffers significant bunching performance deterioration at beam currents as low as 5 e{mu}A for {sup 238}U{sup 26+} at a velocity of {beta}=0.0085. The low beam current tolerance of the present system is in reasonable agreement with computer simulation. Studies of two alternatives to the present bunching system are discussed and their limitations are explored.

  17. Integration of the Trigger and Data Acquisition Systems in ATLAS

    SciTech Connect

    Abolins, M.; Adragna, P.; Aleksandrov, E.; Aleksandrov, I.; Amorim, A.; Anderson, K.; Anduaga, X.; Aracena, I.; Asquith, L.; Avolio, G.; Backlund, S.; Badescu, E.; Baines, J.; Barria, P.; Bartoldus, R.; Batreanu, S.; Beck, H.P.; Bee, C.; Bell, P.; Bell, W.H.; Bellomo, M.; /more authors..

    2011-11-09

    During 2006 and the first half of 2007, the installation, integration and commissioning of trigger and data acquisition (TDAQ) equipment in the ATLAS experimental area have progressed. There have been a series of technical runs using the final components of the system already installed in the experimental area. Various tests have been run including ones where level 1 preselected simulated proton-proton events have been processed in a loop mode through the trigger and dataflow chains. The system included the readout buffers containing the events, event building, level 2 and event filter trigger algorithms. The scalability of the system with respect to the number of event building nodes used has been studied and quantities critical for the final system, such as trigger rates and event processing times, have been measured using different trigger algorithms as well as different TDAQ components. This paper presents the TDAQ architecture, the current status of the installation and commissioning and highlights the main test results that validate the system.

  18. RHIC 28 MHZ ACCELERATING CAVITY SYSTEM.

    SciTech Connect

    ROSE,J.; BRENNAN,J.M.; CAMPBELL,A.; KWIATKOWSKI,S.; RATTI,A.; PIRKL,W.

    2001-06-18

    The 28 MHz accelerating system consists of a quarter wave cavity driven by an inductively coupled 100kW tetrode amplifer and 1kW solid state driver amplifer. 40dB of rf feedback closed around the cavity and amplifers reduces small perturbations within the loop by a factor of 100, and reduces the time required to shift the phase at transition by a factor of 10, limited by the saturation of the drive chain. The cavity is tuned over a 200kHz range by a mechanical tuner which varies the gap capacitance. Broadband HOM damping is provided by two orthogonal loop coupled high pass filters. Design parameters and commissioning results are presented.

  19. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOEpatents

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  20. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  1. Role Based Access Control system in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Valsan, M. L.; Dobson, M.; Lehmann Miotto, G.; Scannicchio, D. A.; Schlenker, S.; Filimonov, V.; Khomoutnikov, V.; Dumitru, I.; Zaytsev, A. S.; Korol, A. A.; Bogdantchikov, A.; Avolio, G.; Caramarcu, C.; Ballestrero, S.; Darlea, G. L.; Twomey, M.; Bujor, F.

    2011-12-01

    The complexity of the ATLAS experiment motivated the deployment of an integrated Access Control System in order to guarantee safe and optimal access for a large number of users to the various software and hardware resources. Such an integrated system was foreseen since the design of the infrastructure and is now central to the operations model. In order to cope with the ever growing needs of restricting access to all resources used within the experiment, the Roles Based Access Control (RBAC) previously developed has been extended and improved. The paper starts with a short presentation of the RBAC design, implementation and the changes made to the system to allow the management and usage of roles to control access to the vast and diverse set of resources. The RBAC implementation uses a directory service based on Lightweight Directory Access Protocol to store the users (~3000), roles (~320), groups (~80) and access policies. The information is kept in sync with various other databases and directory services: human resources, central CERN IT, CERN Active Directory and the Access Control Database used by DCS. The paper concludes with a detailed description of the integration across all areas of the system.

  2. Common Accounting System for Monitoring the ATLAS Distributed Computing Resources

    NASA Astrophysics Data System (ADS)

    Karavakis, E.; Andreeva, J.; Campana, S.; Gayazov, S.; Jezequel, S.; Saiz, P.; Sargsyan, L.; Schovancova, J.; Ueda, I.; Atlas Collaboration

    2014-06-01

    This paper covers in detail a variety of accounting tools used to monitor the utilisation of the available computational and storage resources within the ATLAS Distributed Computing during the first three years of Large Hadron Collider data taking. The Experiment Dashboard provides a set of common accounting tools that combine monitoring information originating from many different information sources; either generic or ATLAS specific. This set of tools provides quality and scalable solutions that are flexible enough to support the constantly evolving requirements of the ATLAS user community.

  3. Radio frequency systems for present and future accelerators

    SciTech Connect

    Raka, E.C.

    1987-01-01

    Rf systems are described for the FNAL Main Ring and Tevatron Ring, CERN SPS and LEP, and HERA proton acceleration system, CERN PS e/sup +/e/sup minus/ acceleration system, and CERN EPA monochromatic cavity. Low impedance rf systems in CERN ISR, the Brookhaven CBA, and SSC are also discussed.

  4. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Astrophysics Data System (ADS)

    Doyle, Monica M.; O'Neil, Daniel A.; Christensen, Carissa B.

    2005-02-01

    Forecasting technology capabilities requires a tool and a process for capturing state-of-the-art technology metrics and estimates for future metrics. A decision support tool, known as the Advanced Technology Lifecycle Analysis System (ATLAS), contains a Technology Tool Box (TTB) database designed to accomplish this goal. Sections of this database correspond to a Work Breakdown Structure (WBS) developed by NASA's Exploration Systems Research and Technology (ESRT) Program. These sections cover the waterfront of technologies required for human and robotic space exploration. Records in each section include technology performance, operations, and programmatic metrics. Timeframes in the database provide metric values for the state of the art (Timeframe 0) and forecasts for timeframes that correspond to spiral development milestones in NASA's Exploration Systems Mission Directorate (ESMD) development strategy. Collecting and vetting data for the TTB will involve technologists from across the agency, the aerospace industry and academia. Technologists will have opportunities to submit technology metrics and forecasts to the TTB development team. Semi-annual forums will facilitate discussions about the basis of forecast estimates. As the tool and process mature, the TTB will serve as a powerful communication and decision support tool for the ESRT program.

  5. Survey of Electronic Safety Systems in Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Mahoney, K.

    1997-05-01

    This paper presents the preliminary results and analysis of a comprehensive survey of the implementation of accelerator safety interlock systems at over 20 international labs. At the present time there is not a self consistent means to evaluate both the experience and level of protection provided by electronic safety interlock systems. This research is intended to analyze the strengths and weaknesses of several different types of interlock system implementation methodologies. Research, medical, and industrial accelerators are compared. The CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) was one of the first large particle accelerators to implement a safety interlock system using programmable logic controllers. Since that time all of the major new U.S. accelerator construction projects plan to use some form of programmable electronics as part of a safety interlock system in some capacity. To the author's knowledge such a compilation has not been presented before.

  6. Thermal mechanical analyses of large diameter ion accelerator systems

    SciTech Connect

    Brophy, J.R.; Aston, G.

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size. 8 refs.

  7. Thermal mechanical analyses of large diameter ion accelerator systems

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size.

  8. Tripartite entanglement of fermionic system in accelerated frames

    SciTech Connect

    Khan, Salman

    2014-09-15

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. The degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.

  9. Advanced Microgravity Acceleration Measurement Systems (AMAMS) Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2003-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project is part of NASA s Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical systems (MEMS) for acceleration sensor systems to replace existing electromechanical sensor systems presently used to assess relative gravity levels aboard spacecraft. These systems are used to characterize both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data is useful to the microgravity life sciences, microgravity physical sciences, and structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, with enhanced long-term calibration stability.

  10. Presentation on a Space Acceleration Measurement System (SAMS)

    NASA Technical Reports Server (NTRS)

    Chase, Theodore L.

    1990-01-01

    The primary objective of the Space Acceleration Measurement Systems (SAMS) project is to provide an acceleration measurement system capable of serving a wide variety of space experiments. The design of the system being developed under this project takes into consideration requirements for experiments located in the middeck, in the orbiter bay, and in Spacelab. In addition to measuring, conditioning, and recording accelerations, the system will be capable of performing complex calculations and interactive control. The main components consist of a remote triaxial optical storage device. In operation, the triaxial sensor head produces output signals in response to acceleration inputs. These signals are preamplified, filtered and converted into digital data which is then transferred to optical memory. The system design is modular, facilitating both software and hardware upgrading as technology advances. Two complete acceleration measurement flight systems will be build and tested under this project.

  11. ATLAS, an integrated structural analysis and design system. Volume 3: User's manual, input and execution data

    NASA Technical Reports Server (NTRS)

    Dreisbach, R. L. (Editor)

    1979-01-01

    The input data and execution control statements for the ATLAS integrated structural analysis and design system are described. It is operational on the Control Data Corporation (CDC) 6600/CYBER computers in a batch mode or in a time-shared mode via interactive graphic or text terminals. ATLAS is a modular system of computer codes with common executive and data base management components. The system provides an extensive set of general-purpose technical programs with analytical capabilities including stiffness, stress, loads, mass, substructuring, strength design, unsteady aerodynamics, vibration, and flutter analyses. The sequence and mode of execution of selected program modules are controlled via a common user-oriented language.

  12. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  13. Design of MEMS accelerometer based acceleration measurement system for automobiles

    NASA Astrophysics Data System (ADS)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  14. Lessons from Adaptive Level One Accelerator (ALOA) System Implementation

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Brambora, Clifford; Ghuman, Parminder; Day, John H. (Technical Monitor)

    2001-01-01

    The Adaptive Level One Accelerator (ALOA) system was developed as part of the Earth Science Data and Information System (ESDIS) project. The reconfigurable computing technologies were investigated for Level 1 satellite telemetry data processing to achieve computing acceleration and cost reduction for the next-generation Level 1 data processing systems. The MODIS instrument calibration algorithm was implemented using reconfigurable a computer. The system development process and the lessons learned throughout the design cycle are summarized in this paper.

  15. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  16. Evolution of the ATLAS distributed computing system during the LHC long shutdown

    NASA Astrophysics Data System (ADS)

    Campana, S.; Atlas Collaboration

    2014-06-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R&D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.

  17. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  18. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  19. Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations

    SciTech Connect

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-11-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

  20. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  1. Integration of Globus Online with the ATLAS PanDA Workload Management System

    NASA Astrophysics Data System (ADS)

    Contreras, C.; Deng, W.; Maeno, T.; Nilsson, P.; Potekhin, M.

    2012-12-01

    The PanDA Workload Management System is the basis for distributed production and analysis for the ATLAS experiment at the LHC. In this role, it relies on sophisticated dynamic data movement facilities developed in ATLAS. In certain scenarios, such as small research teams in ATLAS Tier-3 sites and non-ATLAS Virtual Organizations, the overhead of installation and operation of these components makes their use not very cost effective. Globus Online is an emerging new tool from the Globus Alliance, which already proved popular within the research community. It provides the users with fast and robust file transfer capabilities that can also be managed from a Web interface, and in addition to grid sites, can have individual workstations and laptops serving as data transmission endpoints. We will describe the integration of the Globus Online functionality into the PanDA suite of software, in order to give more flexibility in choosing the method of data transfer to ATLAS Tier-3 and Open Science Grid (OSG) users.

  2. MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera

    NASA Astrophysics Data System (ADS)

    Wang, Hongkai; Stout, David B.; Taschereau, Richard; Gu, Zheng; Vu, Nam T.; Prout, David L.; Chatziioannou, Arion F.

    2012-10-01

    This paper introduces a mouse atlas registration system (MARS), composed of a stationary top-view x-ray projector and a side-view optical camera, coupled to a mouse atlas registration algorithm. This system uses the x-ray and optical images to guide a fully automatic co-registration of a mouse atlas with each subject, in order to provide anatomical reference for small animal molecular imaging systems such as positron emission tomography (PET). To facilitate the registration, a statistical atlas that accounts for inter-subject anatomical variations was constructed based on 83 organ-labeled mouse micro-computed tomography (CT) images. The statistical shape model and conditional Gaussian model techniques were used to register the atlas with the x-ray image and optical photo. The accuracy of the atlas registration was evaluated by comparing the registered atlas with the organ-labeled micro-CT images of the test subjects. The results showed excellent registration accuracy of the whole-body region, and good accuracy for the brain, liver, heart, lungs and kidneys. In its implementation, the MARS was integrated with a preclinical PET scanner to deliver combined PET/MARS imaging, and to facilitate atlas-assisted analysis of the preclinical PET images.

  3. Accelerated Superposition State Molecular Dynamics for Condensed Phase Systems.

    PubMed

    Ceotto, Michele; Ayton, Gary S; Voth, Gregory A

    2008-04-01

    An extension of superposition state molecular dynamics (SSMD) [Venkatnathan and Voth J. Chem. Theory Comput. 2005, 1, 36] is presented with the goal to accelerate timescales and enable the study of "long-time" phenomena for condensed phase systems. It does not require any a priori knowledge about final and transition state configurations, or specific topologies. The system is induced to explore new configurations by virtue of a fictitious (free-particle-like) accelerating potential. The acceleration method can be applied to all degrees of freedom in the system and can be applied to condensed phases and fluids. PMID:26620930

  4. Techniques for increasing the reliability of accelerator control system electronics

    SciTech Connect

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics.

  5. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview

    NASA Astrophysics Data System (ADS)

    de Lamotte, Dominique Frizon; Leturmy, Pascale; Missenard, Yves; Khomsi, Sami; Ruiz, Geoffrey; Saddiqi, Omar; Guillocheau, Francois; Michard, André

    2009-09-01

    The E-W trending Atlas System of Maghreb consists of weakly shortened, intra-continental fold belts associated with plateau areas ("Mesetas"), extending between the south-westernmost branch of the Mediterranean Alpine Belt (Rif-Tell) and the Sahara Platform. Although the Atlas system has been erected contemporaneously from Morocco to Algeria and Tunisia during the Middle Eocene to Recent, it displays a conspicuous longitudinal asymmetry, with i) Paleozoic outcrops restricted to its western part; ii) highest elevation occurring in the west, both in the Atlas System and its foreland (Anti-Atlas); iii) low elevation corridors (e.g. Hodna) and depressed foreland (Tunisian Chotts and Sahel area) in the east. We analyse the origin of these striking contrasts in relation with i) the Variscan heritage; ii) crustal vertical movements during the Mesozoic; iii) crustal shortening during the Cenozoic and finally, iv) the occurrence of a Miocene-Quaternary hot mantle anomaly in the west. The Maghreb lithosphere was affected by the Variscan orogeny, and thus thickened only in its western part. During the Late Permian-Triassic, a paleo-high formed in the west between the Central Atlantic and Alpine Tethys rift systems, giving birth to the emergent/poorly subsident West Moroccan Arch. During the late Middle Jurassic-Early Cretaceous, Morocco and western Algeria were dominantly emergent whereas rifting lasted on in eastern Algeria and Tunisia. We ascribe the uplift of the western regions to thermal doming, consistent with the Late Jurassic and Barremian gabbroic magmatism observed there. After the widespread transgression of the high stand Cenomanian-Turonian seas, the inversion of the Atlas System began during the Senonian as a consequence of the Africa-Eurasia convergence. Erosion affected three ENE-trending uplifted areas of NW Africa, which we consider as lithospheric anticlines related to the incipient Africa-Europe convergence. In contrast, in eastern Algeria and Tunisia a NW

  6. Detector control system for the ATLAS Transition Radiation Tracker: architecture and development techniques

    NASA Astrophysics Data System (ADS)

    Banaś, ElŻbieta; Hajduk, Zbigniew; Olszowska, Jolanta

    2012-05-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three sub-systems of the ATLAS Inner Detector at the Large Hadron Collider at CERN. With ~300000 drift tube proportional counters (straws) filled with stable gas mixture and high voltage biased it provides precise quasi-continuous tracking and particles identification. Safe, coherent and efficient operation of the TRT is fulfilled with the help of the Detector Control System (DCS) running on 11 computers as PVSS (industrial SCADA) projects. Standard industrial and custom developed server applications and protocols are used for reading hardware parameters. Higher level control system layers based on the CERN JCOP framework allow for automatic control procedures, efficient error recognition and handling and provide a synchronization mechanism with the ATLAS data acquisition system. Different data bases are used to store the detector online parameters, the configuration parameters and replicate a subset of them used to flag data quality for physics reconstruction. The TRT DCS is fully integrated with the ATLAS Detector Control System.

  7. Accelerated detection of intracranial space-occupying lesions with CUDA based on statistical texture atlas in brain HRCT.

    PubMed

    Liu, Wei; Feng, Huanqing; Li, Chuanfu; Huang, Yufeng; Wu, Dehuang; Tong, Tong

    2009-01-01

    In this paper, we present a method that detects intracranial space-occupying lesions in two-dimensional (2D) brain high-resolution CT images. Use of statistical texture atlas technique localizes anatomy variation in the gray level distribution of brain images, and in turn, identifies the regions with lesions. The statistical texture atlas involves 147 HRCT slices of normal individuals and its construction is extremely time-consuming. To improve the performance of atlas construction, we have implemented the pixel-wise texture extraction procedure on Nvidia 8800GTX GPU with Compute Unified Device Architecture (CUDA) platform. Experimental results indicate that the extracted texture feature is distinctive and robust enough, and is suitable for detecting uniform and mixed density space-occupying lesions. In addition, a significant speedup against straight forward CPU version was achieved with CUDA. PMID:19963990

  8. Planetary atlases

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Inge, J. L.; Morgan, H. F.

    1991-01-01

    Two kinds of planetary map atlases are in production. Atlases of the first kind contain reduced-scale versions of maps in hard-bound books with dimensions of 11 x 14 inches. These new atlases are intended to: (1) provide concise but comprehensive references to the geography of the planets needed by planetary scientists and others; and (2) allow inexpensive access to the planetary map dataset without requiring acquisition and examination of tens or hundreds of full-size map sheets. Two such atlases have been published and a third is in press. Work was begun of an Atlas of the Satellite of the Outer Planets. The second kind of atlas is a popular or semi-technical version designed for commercial publication and distribution. The first edition, The Atlas of the Solar System, is nearly ready for publication. New funding and contracting constraints now make it unlikely that the atlas can be published in the format originally planned. Currently, the possibility of publishing the maps through the U.S. Geological Survey as a series of folios in the I-map series is being explored. The maps are global views of each solid-surface body of the Solar System. Each map shows airbrushed relief, albedo, and, where available, topography. A set of simplified geologic maps is also included. All of the maps are on equal-area projections. Scales are 1:40,000,000 for the Earth and Venus; 1:2,000,000 for the Saturnian satellites Mimas and Enceladus and the Uranian satellite Miranda; 1:100,000 for the Martian satellites, Phobos and Deimos; and 1:10,000,000 for all other bodies.

  9. Development and test of the DAQ system for a Micromegas prototype to be installed in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Bianco, M.; Martoiu, S.; Sidiropoulou, O.; Zibell, A.

    2015-12-01

    A Micromegas (MM) quadruplet prototype with an active area of 0.5 m2 that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible Read Out Driver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Software, a dedicated Micromegas segment has been implemented, in order to include the detector inside the main ATLAS DAQ partition. A full set of tests, on the hardware and software aspects, is presented.

  10. Glance traceability - Web system for equipment traceability and radiation monitoring for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Évora, L. H. R. A.; Molina-Pérez, J.; Pommès, K.; Galvão, K. K.; Maidantchik, C.

    2010-04-01

    During the operation, maintenance, and dismantling periods of the ATLAS Experiment, the traceability of all detector equipment must be guaranteed for logistic and safety matters. The running of the Large Hadron Collider will expose the ATLAS detector to radiation. Therefore, CERN must follow specific regulations from both the French and Swiss authorities for equipment removal, transport, repair, and disposal. GLANCE Traceability, implemented in C++ and Java/Java3D, has been developed to fulfill the requirements. The system registers and associates each equipment part to either a functional position in the detector or a zone outside the underground area through a 3D graphical user interface. Radiation control of the equipment is performed using a radiation monitor connected to the system: the local background gets stored and the threshold is automatically calculated. The system classifies the equipment as non radioactive if its radiation dose does not exceed that limit value. History for both location traceability and radiation measurements is ensured, as well as simultaneous management of multiples equipment. The software is fully operational, being used by the Radiation Protection Experts of ATLAS and trained users since the first beam of the LHC. Initially developed for the ATLAS detector, the flexibility of the system has allowed its adaptation for the LHCb detector.

  11. Failure Mode Effects Analysis for an Accelerator Control System

    SciTech Connect

    Hartman, Steven M

    2009-01-01

    Failure mode effects analysis (FMEA) has been used in industry for design, manufacturing and assembly process quality control. It describes a formal approach for categorizing how a process may fail and for prioritizing failures based on their severity, frequency and likelihood of detection. Experience conducting a partial FMEA of an accelerator subsystem and its related control system will be reviewed. The applicability of the FMEA process to an operational accelerator control system will be discussed.

  12. Accelerator control system at KEKB and the linac

    NASA Astrophysics Data System (ADS)

    Akiyama, Atsuyoshi; Furukawa, Kazuro; Kadokura, Eiichi; Kurashina, Miho; Mikawa, Katsuhiko; Nakamura, Tatsuro; Odagiri, Jun-ichi; Satoh, Masanori; Suwada, Tsuyoshi

    2013-03-01

    KEKB has completed all of the technical milestones and has offered important insights into the flavor structure of elementary particles, especially CP violation. The accelerator control system at KEKB and the injector linac was initiated by a combination of scripting languages at the operation layer and EPICS (experimental physics and industrial control system) at the equipment layer. During the project, many features were implemented to achieve extreme performance from the machine. In particular, the online linkage to the accelerator simulation played an essential role. In order to further improve the reliability and flexibility, two major concepts were additionally introduced later in the project, namely, channel access everywhere and dual-tier controls. Based on the improved control system, a virtual accelerator concept was realized, allowing the single injector linac to serve as three separate injectors to KEKB's high-energy ring, low-energy ring, and Photon Factory, respectively. These control technologies are indispensable for future particle accelerators.

  13. Scaling up ATLAS production system for the LHC Run 2 and beyond: project ProdSys2

    NASA Astrophysics Data System (ADS)

    Borodin, M.; De, K.; Garcia, J.; Navarro; Golubkov, D.; Klimentov, A.; Maeno, T.; Vaniachine, A.

    2015-12-01

    The Big Data processing needs of the ATLAS experiment grow continuously, as more data and more use cases emerge. For Big Data processing the ATLAS experiment adopted the data transformation approach, where software applications transform the input data into outputs. In the ATLAS production system, each data transformation is represented by a task, a collection of many jobs, submitted by the ATLAS workload management system (PanDA) and executed on the Grid. Our experience shows that the rate of task submission grows exponentially over the years. To scale up the ATLAS production system for new challenges, we started the ProdSys2 project. PanDA has been upgraded with the Job Execution and Definition Interface (JEDI). Patterns in ATLAS data transformation workflows composed of many tasks provided a scalable production system framework for template definitions of the many-tasks workflows. These workflows are being implemented in the Database Engine for Tasks (DEfT) that generates individual tasks for processing by JEDI. We report on the ATLAS experience with many-task workflow patterns in preparation for the LHC Run 2.

  14. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  15. Arctic transitions in the Land - Atmosphere System (ATLAS): Background, objectives, results, and future directions

    USGS Publications Warehouse

    McGuire, A.D.; Sturm, M.; Chapin, F. S., III

    2003-01-01

    This paper briefly reviews the background, objectives, and results of the Arctic Transitions in the Land-Atmosphere System (ATLAS) Project to date and provides thoughts on future directions. The key goal of the ATLAS Project is to improve understanding of controls over spatial and temporal variability of terrestrial processes in the Arctic that have potential consequences for the climate system, i.e., processes that affect the exchange of water and energy with the atmosphere, the exchange of radiatively active gases with the atmosphere, and the delivery of freshwater to the Arctic Ocean. Three important conclusions have emerged from research associated with the ATLAS Project. First, associated with the observation that the Alaskan Arctic has warmed significantly in the last 30 years, permafrost is warming, shrubs are expanding, and there has been a temporary release of carbon dioxide from tundra soils. Second, the winter is a more important period of biological activity than previously appreciated. Biotic processes, including shrub expansion and decomposition, affect snow structure and accumulation and affect the annual carbon budget of tundra ecosystems. Third, observed vegetation changes can have a significant positive feedback to regional warming. These vegetation effects are, however, less strong than those exerted by land-ocean heating contrasts and the topographic constraints on air mass movements. The papers of this special section provide additional insights related to these conclusions and to the overall goal of ATLAS.

  16. Atlas performance and imploding liner parameter space

    SciTech Connect

    Reinovsky, R.; Lindemuth, I. R.; Atchison, W. L.; Cochrane, J. C. , Jr.; Faehl, R. J.

    2002-01-01

    Ultra-high magnetic fields have many applications in the confining and controlling plasmas and in exploring electron physics as manifested in the magnetic properties of materials. Another application of high fields is the acceleration of metal conductors to velocities higher than that achievable with conventional high explosive drive or gas guns. The Atlas pulse power system is the world's first pulse power system specifically designed to implode solid and near-solid density metal liners for use in pulse power hydrodynamic experiments. This paper describes the Atlas system during the first year of its operational life at Los Alamos, (comprising 10-15 implosion experiments); describes circuit models that adequately predicted the bulk kinematic behavior of liner implosions; and shows how those (now validated) models can be used to describe the range of parameters accessible through Atlas implosions.

  17. RFQ design for the RAON accelerator's ISOL system

    NASA Astrophysics Data System (ADS)

    Choi, Bong Hyuk; Hong, In-Seok

    2015-10-01

    The heavy-ion accelerator RAON has the advantage of having both an in-flight (IF) and an isotope separator on-line (ISOL) system. Two radio frequency quadrupoles (RFQs) will be installed in the RAON: the main linear accelerator (LINAC) RFQ will be used to accelerate the two-charge state 238U for the IF system, while the post-accelerator RFQ will be used to accelerate low-current isotope beams from the ISOL system. In this paper, the post-accelerator RFQ design for the ISOL system is reported. A beam current of 1 pμA was used, and the input beam and the output beam energies were 5 keV/u and 400 keV/u, respectively. Moreover, the design was optimized by reducing the total length and power, adjusting the beam quality. To quantify the influence of thermal expansion on the frequency, we calculated the frequency difference according to deference between the vane's tip and the body's diameter.

  18. Optical system for measurement of pyrotechnic test accelerations

    NASA Astrophysics Data System (ADS)

    Lieberman, Paul; Czajkowski, John; Rehard, John

    1992-12-01

    This effort was directed at comparing the response of several different accelerometer and amplifier combinations to the pyrotechnic pulse simulating the ordnance separation of stages of multistage missiles. These pyrotechnic events can contain peak accelerations in excess of 100,000 G and a frequency content exceeding 100,000 Hz. The main thrust of this work was to compare the several accelerometer systems with each other and with a very accurate laser Doppler displacement meter in order to establish the frequency bands and acceleration amplitudes where the accelerometer systems are in error. The comparisons were made in simple sine-wave and low-acceleration amplitude environments, as well as in very severe pyroshock environments. An optical laser Doppler displacement meter (LDDM) was used to obtain the displacement velocity and acceleration histories, as well as the corresponding shock spectrum.

  19. A new tool for accelerator system modeling and analysis

    SciTech Connect

    Gillespie, G.H.; Hill, B.W.; Jameson, R.A.

    1994-09-01

    A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators. The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in assessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were sued to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Codes (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version (1.1) of ASM is briefly described and an example of the modeling and analysis capabilities is illustrated.

  20. Helium refrigeration systems for super-conducting accelerators

    SciTech Connect

    Ganni, V.

    2015-12-04

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  1. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    SciTech Connect

    Cornacchia, M.; Humphrey, J.W.; Niederer, J.; Poole, J.H.

    1981-01-01

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario.

  2. Compact all-fiber interferometer system for shock acceleration measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  3. An accelerated forth data-acquisition system

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.; Rennier, A. D.

    1986-01-01

    A new data acquisition system was put into operation at Urbana in August 1984. It uses a standard Apple 2 microcomputer with 48 k RAM and a standard 5 1/4 inch floppy disk. Design criteria for the system is given. The system was implemented using fig-FORTH, a threaded interpretive language which permits easy interfacing to machine code. The throughput of this system is better by a factor of 6 than the PDP-15 minicomputer system previously used, and it has the real time display feature and provides the data in much more convenient form. The features which contribute to this improved performance is listed.

  4. Concise Atlas of the Solar System (11): Petrographic Textures and Evolutionary Processes from the Chondritic Parent Bodies, Moon and Mars

    NASA Astrophysics Data System (ADS)

    Bérczi, Sz.; Gucsik, A.; Hargitai, H.; Józsa, S.; Kereszturi, A.; Nagy, Sz.; Szakmány, J.

    2009-03-01

    The 11th atlas of the Solar System helps students in a systematic approach to petrographic textures of planetary materials of processes on asteroids, Moon and Mars, arranged in their igneous units of their geological settings in the parent body.

  5. Development of a wireless displacement measurement system using acceleration responses.

    PubMed

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  6. The Pig PeptideAtlas: A resource for systems biology in animal production and biomedicine.

    PubMed

    Hesselager, Marianne O; Codrea, Marius C; Sun, Zhi; Deutsch, Eric W; Bennike, Tue B; Stensballe, Allan; Bundgaard, Louise; Moritz, Robert L; Bendixen, Emøke

    2016-02-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM assays, which are equally important for progress in research that supports farm animal production and veterinary health, as for developing pig models with relevance to human health research. PMID:26699206

  7. The Pig PeptideAtlas: a resource for systems biology in animal production and biomedicine

    PubMed Central

    Hesselager, Marianne O.; Codrea, Marius C.; Sun, Zhi; Deutsch, Eric W.; Bennike, Tue B.; Stensballe, Allan; Bundgaard, Louise; Moritz, Robert L.; Bendixen, Emøke

    2016-01-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system wide observations, and cross species observational studies, but pigs have so far been underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within the veterinary proteomics domain, and this manuscript demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM assays, which are equally important for progress in research that supports farm animal production and veterinary health, as for developing pig models with relevance to human health research. PMID:26699206

  8. ACCELERATORS: Timing system of HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Dong, Jin-Mei; Yuan, You-Jin; Qiao, Wei-Min; Jing, Lan; Zhang, Wei

    2009-05-01

    The national science project HIRFL-CSR has recently been officially accepted. As a cyclotron and synchrotron complex, it puts some particularly high demands on the control system. There are hundreds of pieces of equipment that need to be synchronized. An integrated timing control system is built to meet these demands. The output rate and the accuracy of the controller are 16 bit/μs. The accuracy of the time delay reaches 40 ns. The timing control system is based on a typical event distribution system, which adopts the new event generation and the distribution scheme. The scheme of the timing control system with innovation points, the architecture and the implemented method are presented in the paper.

  9. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  10. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

    NASA Astrophysics Data System (ADS)

    Evans, T.

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

  11. Small Accelerators for the Next Generation of BNCT Irradiation Systems

    SciTech Connect

    Kobayashi, T.; Tanaka, K.; Bengua, G.; Hoshi, M.; Nakagawa, Y.

    2005-01-15

    The neutron irradiation system for boron neutron capture therapy (BNCT) using compact accelerators installed at hospitals was mainly investigated for the usage of direct neutrons from near-threshold {sup 7}Li(p,n){sup 7}Be, and moderated neutrons from 2.5 MeV {sup 7}Li(p,n){sup 7}Be reactions and other reactions. This kind of system can supply the medical doctors and patients with convenience to carry out BNCT in hospitals. The accelerator system would be regarded as the next-generation of BNCT in the near future.

  12. Emerging Standards with Application to Accelerator Safety System Design

    NASA Astrophysics Data System (ADS)

    Mahoney, K.; Robertson, H.

    1997-05-01

    This paper addresses international standards which can be applied to the requirements for accelerator personnel safety systems. Particular emphasis is given to standards which specify requirements for safety interlock systems which employ programmable electronic subsystems. The work draws on methodologies currently under development for the medical, process control, and aerospace industries. The paper then goes on to show how these methods may be applied to accelerator safety system design. Detailed examples are drawn from the recently approved standard ``ISA-S84'' and the draft standard ``IEC1508''.

  13. An RFQ accelerator system for MeV ion implantation

    NASA Astrophysics Data System (ADS)

    Hirakimoto, Akira; Nakanishi, Hiroaki; Fujita, Hiroyuki; Konishi, Ikuo; Nagamachi, Shinji; Nakahara, Hiroshi; Asari, Masatoshi

    1989-02-01

    A 4-vane-type Radio-Frequency Quadrupole (RFQ) accelerator system for MeV ion implantation has been constructed and ion beams of boron and nitrogen have been accelerated successfully up to an energy of 1.01 and 1.22 MeV, respectively. The acceleration of phosphorus is now ongoing. The design was performed with two computer codes called SUPERFISH and PARMTEQ. The energy of the accelerated ions was measured by Rutherford backscattering spectroscopy. The obtained values agreed well with the designed ones. Thus we have confirmed the validity of our design and have found the possibility that the present RFQ will break through the production-use difficulty of MeV ion implantation.

  14. Preliminary description of the ground test accelerator cryogenic cooling system

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.

    1988-01-01

    The Ground Test Accelerator (GTA) under construction at the Los Alamos National Laboratory is part of the Neutral Particle Beam Program supported by the Strategic Defense Initiative Office. The GTA is a full-sized test facility to evaluate the feasibility of using a negative ion accelerator to produce a neutral particle beam (NPB). The NPB would ultimately be used outside the earth's atmosphere as a target discriminator or as a directed energy weapon. The operation of the GTA at cryogenic temperature is advantageous for two reasons: first, the decrease of temperature caused a corresponding decrease in the rf heating of the copper in the various units of the accelerator, and second, at the lower temperature the decrease in the thermal expansion coefficient also provides greater thermal stability and consequently, better operating stability for the accelerator. This paper discusses the cryogenic cooling system needed to achieve these advantages. 5 figs., 3 tabs.

  15. COMMISSIONING OF THE SPALLATION NEUTRON SOURCE ACCELERATOR SYSTEMS

    SciTech Connect

    Plum, Michael A

    2007-01-01

    The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H- front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. The linac was commissioned in five discrete runs, starting in 2002 and completed in 2005. The accumulator ring and associated beam transport lines were commissioned in two runs from January to April 2006. With the completed commissioning of the SNS accelerator, the facility has begun initial low-power operations. In the course of beam commissioning, most beam performance parameters and beam intensity goals have been achieved at low duty factor. A number of beam dynamics measurements have been performed, including emittance evolution, transverse coupling in the ring, beam instability thresholds, and beam distributions on the target. The commissioning results, achieved beam performance and initial operating experience of the SNS will be discussed

  16. A new approach to modeling linear accelerator systems

    SciTech Connect

    Gillespie, G.H.; Hill, B.W.; Jameson, R.A.

    1994-07-22

    A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in accessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are to be modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were used to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Code (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version of ASM is described and examples of the modeling and analysis capabilities are illustrated. The results of an example study, for an accelerator concept typical of ADTT applications, is presented and sample displays from the computer interface are shown.

  17. A new approach to modeling linear accelerator systems

    SciTech Connect

    Gillespie, George H.; Hill, Barrey W.; Jameson, Robert A.

    1995-09-15

    A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in assessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are to be modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were used to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Code (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version of ASM is described and examples of the modeling and analysis capabilities are illustrated. The results of an example parameter trade study, for an accelerator concept typical of ADTT applications, is presented and sample displays from the computer interface are shown.

  18. dc power system for deuteron accelerator

    SciTech Connect

    Creek, K.O.; Liska, D.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility dc power system provides excitation current for all linac and High-Energy Beam Transport (HEBT) quadrupole and bending magnets, excitation for horizontal and vertical beam steering, and current-bypass shunts.

  19. Emerging standards with application to accelerator safety systems

    SciTech Connect

    Mahoney, K.L.; Robertson, H.P.

    1997-08-01

    This paper addresses international standards which can be applied to the requirements for accelerator personnel safety systems. Particular emphasis is given to standards which specify requirements for safety interlock systems which employ programmable electronic subsystems. The work draws on methodologies currently under development for the medical, process control, and nuclear industries.

  20. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  1. Versatile Low Level RF System For Linear Accelerators

    SciTech Connect

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360 deg. range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  2. Space Launch System Accelerated Booster Development Cycle

    NASA Technical Reports Server (NTRS)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  3. Accelerator-Feasible N-Body Nonlinear Integrable System

    SciTech Connect

    Danilov, V.; Nagaitsev, S.

    2014-12-23

    Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, attract the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.

  4. A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain.

    PubMed

    Güntürkün, Onur; Verhoye, Marleen; De Groof, Geert; Van der Linden, Annemie

    2013-01-01

    Pigeons are classic animal models for learning, memory, and cognition. The majority of the current understanding about avian neurobiology outside of the domain of the song system has been established using pigeons. Since MRI represents an increasingly relevant tool for comparative neuroscience, a 3-dimensional MRI-based atlas of the pigeon brain becomes essential. Using multiple imaging protocols, we delineated diverse ascending sensory and descending motor systems as well as the hippocampal formation. This pigeon brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. In addition, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. This pigeon brain atlas is freely available for the scientific community. PMID:22367250

  5. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    NASA Astrophysics Data System (ADS)

    Sivolella, A.; Maidantchik, C.; Ferreira, F.

    2012-12-01

    The Tile Calorimeter (TileCal) is one of the ATLAS sub-detectors. The read-out is performed by about 10,000 PhotoMultiplier Tubes (PMTs). The signal of each PMT is digitized by an electronic channel. The Monitoring and Calibration Web System (MCWS) supports the data quality analysis of the electronic channels. This application was developed to assess the detector status and verify its performance. It can provide to the user the list of TileCal known problematic channels, that is stored in the ATLAS condition database (COOL DB). The bad channels list guides the data quality validator in identifying new problematic channels and is used in data reconstruction and the system allows to update the channels list directly in the COOL database. MCWS can generate summary results, such as eta-phi plots and comparative tables of the masked channels percentage. Regularly, during the LHC (Large Hadron Collider) shutdown a maintenance of the detector equipments is performed. When a channel is repaired, its calibration constants stored in the COOL database have to be updated. Additionally MCWS system manages the update of these calibration constants values in the COOL database. The MCWS has been used by the Tile community since 2008, during the commissioning phase, and was upgraded to comply with ATLAS operation specifications. Among its future developments, it is foreseen an integration of MCWS with the TileCal control Web system (DCS) in order to identify high voltage problems automatically.

  6. Fine grained event processing on HPCs with the ATLAS Yoda system

    NASA Astrophysics Data System (ADS)

    Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre

    2015-12-01

    High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.

  7. Design of a ram accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  8. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  9. SYSTEMS TO ACCELERATE IN SITU STABILIZATION OF WASTE DEPOSITS

    EPA Science Inventory

    In-situ systems to accelerate the stabilization of waste deposits involve three essential elements: selection of a chemical or biological agent (reactant) which can react with and stabilize the waste, a method for delivery of the reactant to the deposit and a method for recovery ...

  10. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1993-06-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  11. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F. ); Spulgis, I. )

    1993-01-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH[sub 2]) storage Dewar with a transfer line to an LH[sub 2] run tank containing an LH[sub 2]/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  12. Cryogenic cooling system for the Ground Test Accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1994-12-31

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  13. Nuclear data needs for accelerator-driven transmutation systems

    SciTech Connect

    Arthur, E.D.; Wilson, W.B.; Young, P.G.

    1994-07-01

    The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

  14. Evolution of the ATLAS PanDA workload management system for exascale computational science

    NASA Astrophysics Data System (ADS)

    Maeno, T.; De, K.; Klimentov, A.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.; Yu, D.; Atlas Collaboration

    2014-06-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated at a very large scale the value of automated dynamic brokering of diverse workloads across distributed computing resources. The next generation of PanDA will allow other data-intensive sciences and a wider exascale community employing a variety of computing platforms to benefit from ATLAS' experience and proven tools.

  15. Implementation of nonlinear registration of brain atlas based on piecewise grid system

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Gu, Lixu; Xu, Jianrong

    2007-12-01

    In this paper, a multi-step registration method of brain atlas and clinical Magnetic Resonance Imaging (MRI) data based on Thin-Plate Splines (TPS) and Piecewise Grid System (PGS) is presented. The method can help doctors to determine the corresponding anatomical structure between patient image and the brain atlas by piecewise nonlinear registration. Since doctors mostly pay attention to particular Region of Interest (ROI), and a global nonlinear registration is quite time-consuming which is not suitable for real-time clinical application, we propose a novel method to conduct linear registration in global area before nonlinear registration is performed in selected ROI. The homogenous feature points are defined to calculate the transform matrix between patient data and the brain atlas to conclude the mapping function. Finally, we integrate the proposed approach into an application of neurosurgical planning and guidance system which lends great efficiency in both neuro-anatomical education and guiding of neurosurgical operations. The experimental results reveal that the proposed approach can keep an average registration error of 0.25mm in near real-time manner.

  16. Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis.

    PubMed

    Nehme, Ali; Cerutti, Catherine; Dhaouadi, Nedra; Gustin, Marie Paule; Courand, Pierre-Yves; Zibara, Kazem; Bricca, Giampiero

    2015-01-01

    Tissue renin-angiotensin-aldosterone system (RAAS) has attracted much attention because of its physiological and pharmacological implications; however, a clear definition of tissue RAAS is still missing. We aimed to establish a preliminary atlas for the organization of RAAS across 23 different normal human tissues. A set of 37 genes encoding classical and novel RAAS participants including gluco- and mineralo-corticoids were defined as extended RAAS (extRAAS) system. Microarray data sets containing more than 10 normal tissues were downloaded from the GEO database. R software was used to extract expression levels and construct dendrograms of extRAAS genes within each data set. Tissue co-expression modules were then extracted from reproducible gene clusters across data sets. An atlas of the maps of tissue-specific organization of extRAAS was constructed from gene expression and coordination data. Our analysis included 143 data sets containing 4933 samples representing 23 different tissues. Expression data provided an insight on the favored pathways in a given tissue. Gene coordination indicated the existence of tissue-specific modules organized or not around conserved core groups of transcripts. The atlas of tissue-specific organization of extRAAS will help better understand tissue-specific effects of RAAS. This will provide a frame for developing more effective and selective pharmaceuticals targeting extRAAS. PMID:25992767

  17. Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis

    PubMed Central

    Nehme, Ali; Cerutti, Catherine; Dhaouadi, Nedra; Gustin, Marie Paule; Courand, Pierre-Yves; Zibara, Kazem; Bricca, Giampiero

    2015-01-01

    Tissue renin-angiotensin-aldosterone system (RAAS) has attracted much attention because of its physiological and pharmacological implications; however, a clear definition of tissue RAAS is still missing. We aimed to establish a preliminary atlas for the organization of RAAS across 23 different normal human tissues. A set of 37 genes encoding classical and novel RAAS participants including gluco- and mineralo-corticoids were defined as extended RAAS (extRAAS) system. Microarray data sets containing more than 10 normal tissues were downloaded from the GEO database. R software was used to extract expression levels and construct dendrograms of extRAAS genes within each data set. Tissue co-expression modules were then extracted from reproducible gene clusters across data sets. An atlas of the maps of tissue-specific organization of extRAAS was constructed from gene expression and coordination data. Our analysis included 143 data sets containing 4933 samples representing 23 different tissues. Expression data provided an insight on the favored pathways in a given tissue. Gene coordination indicated the existence of tissue-specific modules organized or not around conserved core groups of transcripts. The atlas of tissue-specific organization of extRAAS will help better understand tissue-specific effects of RAAS. This will provide a frame for developing more effective and selective pharmaceuticals targeting extRAAS. PMID:25992767

  18. An overview of the Atlas pulsed-power systems

    SciTech Connect

    Parsons, W.M.; Baldwin, C.; Ballard, E.

    1997-12-01

    Atlas is a facility being designed at Los Alamos National Laboratory (LANL) to perform high energy-density experiments in support of weapon-physics and basic-research programs. It is designed to be an international user facility, providing experimental opportunities to researchers from national laboratories and academic institutions. For hydrodynamic experiments, it will be capable of achieving pressures exceeding 20-Mbar in a several cm{sup 3} volume. With the development of a suitable opening switch, it will also be capable of producing soft x-rays. The 36-MJ capacitor bank will consist of 240-kV Marx modules arranged around a central target chamber. The Marx modules will be discharged through vertical triplate transmission lines to a parallel plate collector inside the target chamber. The capacitor bank is designed to deliver a peak current of 45 to 50 MA with a 4- to 5-{micro}s risetime. The Marx modules are designed to be reconfigured to a 480-kV configuration for opening switch development. Predicted performance with a typical load is presented. Descriptions of the major subsystems are also presented.

  19. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    SciTech Connect

    Claus, R.; /SLAC

    2015-10-27

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  20. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGESBeta

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less

  1. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGESBeta

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; et al

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less

  2. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    NASA Astrophysics Data System (ADS)

    Claus, R.

    2016-07-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  3. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    SciTech Connect

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  4. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    NASA Astrophysics Data System (ADS)

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.

  5. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  6. Simultaneous injection of stable and radioactive ions into upgraded multi-user atlas

    NASA Astrophysics Data System (ADS)

    Perry, Amichay

    Argonne Tandem Linac Accelerator System (ATLAS) is a Department of Energy (DOE) national user research facility, located at Argonne National Laboratory (ANL). Presently, Radioactive Ion Beams (RIBs) produced in the Californium Rare Isotope Breeder Upgrade (CARIBU) facility are charge bred in an Electron Cyclotron Resonance (ECR) charge breeder prior to post acceleration in ATLAS. A new state of the art Electron Beam Ion Source charge breeder, the CARIBU-EBIS charge breeder, has been developed (not in the scope of the work presented here) at ANL to replace the existing ECR charge breeder for charge breeding RIBs generated in CARIBU. The CARIBU-EBIS charge breeder is now in the final stages of offline at the Accelerator Development Test Facility (ADTF). A significant part of the commissioning effort has been devoted to testing the source by breeding singly-charged cesium ions injected from a surface ionization source. Characterization of the CARIBU-EBIS performance has been accomplished through a comparison between the measured properties of extracted beams and simulation results. Following its offline commissioning, CARIBU-EBIS will be relocated to its permanent location in ATLAS. An electrostatic transport line has been designed to transport RIBs from CARIBU and inject them into CARIBU-EBIS. In addition, modifications to the existing ATLAS Low Energy Beam Transport (LEBT) were required in order to transport the charge bred RIBs from CARIBU-EBIS to ATLAS. A proposal for upgrading ATLAS to a multi-user facility has been explored as well. In this context, beam dynamics simulations show that further modifications to the ATLAS LEBT will enable the simultaneous injection and acceleration of RIBs and stable beams in ATLAS. Furthermore, a novel technique proposed by Ostroumov et al. will allow for the acceleration of multiple charge states from CARIBU-EBIS, thereby increasing the intensity of available RIBs by up to 60%.

  7. Upgrade of the Laser calibration system for the ATLAS hadronic calorimeter TileCal

    NASA Astrophysics Data System (ADS)

    van Woerden, Marius Cornelis

    2016-07-01

    We present in this contribution the new system for Laser calibration of the ATLAS hadronic calorimeter TileCal. The Laser system is a part of the three stage calibration apparatus designed to compute the calibration factors of the individual cells of TileCal. The Laser system is mainly used to correct for short term drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration factors is required. To achieve this goal in the LHC Run2 conditions, a new Laser system was designed. The architecture of the system is described with details on the new optical line used to distribute Laser pulses in each individual detector module and on the new electronics used to drive the Laser, to read out optical monitors and to interface the system with the ATLAS readout, trigger and slow control. The LaserII system has been fully integrated into the framework used for measuring calibration factors and for monitoring data quality. First results on the Laser system performances studied are presented.

  8. STS-45 ATLAS-1 in Atlantis, Orbiter Vehicle (OV) 104, payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Atmospheric Laboratory for Applications and Science 1 (ATLAS-1) pallet mounted instruments are documented in the payload bay (PLB) of the Earth-orbiting Atlantis, Orbiter Vehicle (OV) 104. The forward portion of the ATLAS-1 payload package is visible and includes the spacelab (SL) igloo (with U.S. flag, NASA, ATLAS, and European Space Agency (ESA) insignias), the Space Experiments with Particle Accelerators (SEPAC) spheres, and the Millimeter-Wave Atmospheric Sounder (MAS) (near center top). In the background against the blackness of space are the vertical tail and the orbital maneuvering system (OMS) pods.

  9. Lessons learned on the Ground Test Accelerator control system

    SciTech Connect

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.

  10. Positron Injector Accelerator and RF System for the ILC

    SciTech Connect

    Wang, J.W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G.; Jongewaard, E.; Li, Z.; Miller, R.; Sheppard, J.C.; /SLAC

    2007-03-28

    Due to the extremely high energy deposition from positrons, electrons, photons and neutrons behind the positron target, and because a solenoid is required to focus the large emittance positron beam, the 1.3 GHz preaccelerator has to use normal conducting structures up to energy of 400 MeV. There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as obtaining high positron yield with required emittance, achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. Considering issues of feasibility, reliability and cost savings for the ILC, the proposed design for the positron injector contains both standing-wave (SW) and traveling-wave (TW) L-band accelerator structures. A short version of the new type of the SW section is under fabrication and testing. An updated status report is given. This paper also covers acceleration vs. deceleration for pre-accelerator sections, SW vs. TW structures, as well as longitudinal matching from target to linac and linac to damping ring.

  11. Systems approach to measuring short-duration acceleration transients

    NASA Astrophysics Data System (ADS)

    Schelby, F.

    It is common for failures to occur when attempting to acquire acceleration structural response measurements during crash, impact, and pyrotechnic testing. The structural response of a mechanical system to severe transient loading is commonly measured by accelerometers which are less than ideal. In particular, their amplitude-frequency response has one or more resonant peaks so that the output of the accelerometer may not be an exact replica of the input if the transient input stimulus contains frequencies near these resonant peaks, signal distortion, over-ranging of signal conditioning electronics, or even failure of the sensing element may occur. These and other problems have spurred the development of a new acceleration-measuring system which incorporates the following features; Transduction Element; Connectors; Mounting; Electronics; and Transducer Resonance.

  12. Classroom performance system use in an accelerated graduate nursing program.

    PubMed

    Grimes, Corinne; Joiner Rogers, Glenda; Volker, Deborah; Ramberg, Elizabeth

    2010-01-01

    Many students who enter accelerated nursing programs have not been exposed to the analysis, prediction, and decision-making skills needed by today's RN. To foster practice with complex concepts in the classroom and to give teachers immediate feedback about student in-class mastery of core material, use of an audience participation system within the classroom may be useful. This article reports the implementation of a classroom performance system and the results ofa program evaluation project designed to capture the system's impact on student and faculty satisfaction and student learning outcomes. Project results and implications for further work are presented. PMID:20182157

  13. Hardware-accelerated Components for Hybrid Computing Systems

    SciTech Connect

    Chavarría-Miranda, Daniel; Nieplocha, Jaroslaw; Gorton, Ian

    2008-10-31

    We present a study on the use of component technology for encapsulating platform-specific hardwareaccelerated algorithms on hybrid HPC systems. Our research shows that component technology can have significant benefits from a software engineering pointof- view to increase encapsulation, portability and reduce or eliminate platform dependence for hardwareaccelerated algorithms. As a demonstration of this concept, we discuss our experience in designing, implementing and integrating an FPGA-accelerated kernel for Polygraph, an application in computational proteomics.

  14. Space acceleration measurement system triaxial sensor head error budget

    NASA Astrophysics Data System (ADS)

    Thomas, John E.; Peters, Rex B.; Finley, Brian D.

    1992-01-01

    The objective of the Space Acceleration Measurement System (SAMS) is to measure and record the microgravity environment for a given experiment aboard the Space Shuttle. To accomplish this, SAMS uses remote triaxial sensor heads (TSH) that can be mounted directly on or near an experiment. The errors of the TSH are reduced by calibrating it before and after each flight. The associated error budget for the calibration procedure is discussed here.

  15. Accelerator mass spectrometry with a coupled tandem-linac system

    SciTech Connect

    Kutschera, W.

    1984-01-01

    A coupled system provides higher energies, which allows one to extend AMS to hitherto untouched mass regions. Another important argument is that the complexity, although bothersome for the operation, increases the selectivity of detecting a particular isotope. The higher-energy argument holds for any heavy-ion accelerator which is capable of delivering higher energy than a tandem. The present use of tandem-linac combinations for AMS, rather than cyclotrons, linacs or combinations of these machines, has mainly to do with the fact that this technique was almost exclusively developed around tandem accelerators. Therefore the tandem-linac combination is a natural extension to higher energies. The use of negative ions has some particular advantages in suppressing background from unwanted elements that do not form stable negative ions (e.g., N, Mg, Ar). On the other hand, this limits the detection of isotopes to elements which do form negative ions. For particular problems it may therefore be advantageous to use a positive-ion machine. What really matters most for choosing one or the other machine is to what extent the entire accelerator system can be operated in a truly quantiative way from the ion source to the detection system. 20 references, 4 figures.

  16. Quick setup of unit test for accelerator controls system

    SciTech Connect

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-03-28

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  17. SEU-tolerant IQ detection algorithm for LLRF accelerator system

    NASA Astrophysics Data System (ADS)

    Grecki, M.

    2007-08-01

    High-energy accelerators use RF field to accelerate charged particles. Measurements of effective field parameters (amplitude and phase) are tasks of great importance in these facilities. The RF signal is downconverted in frequency but keeping the information about amplitude and phase and then sampled in ADC. One of the several tasks for LLRF control system is to estimate the amplitude and phase (or I and Q components) of the RF signal. These parameters are further used in the control algorithm. The XFEL accelerator will be built using a single-tunnel concept. Therefore electronic devices (including LLRF control system) will be exposed to ionizing radiation, particularly to a neutron flux generating SEUs in digital circuits. The algorithms implemented in FPGA/DSP should therefore be SEU-tolerant. This paper presents the application of the WCC method to obtain immunity of IQ detection algorithm to SEUs. The VHDL implementation of this algorithm in Xilinx Virtex II Pro FPGA is presented, together with results of simulation proving the algorithm suitability for systems operating in the presence of SEUs.

  18. Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria

    PubMed Central

    Ibarra-Arellano, Miguel A.; Campos-González, Adrián I.; Treviño-Quintanilla, Luis G.; Tauch, Andreas; Freyre-González, Julio A.

    2016-01-01

    The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708

  19. Accelerate!

    PubMed

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves. PMID:23155997

  20. Ram accelerator direct launch system for space cargo

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new method of efficiently accelerating relatively large masses (up to several metric tons) to velocities of 0.6 km/sec up to 12 km/sec using chemical energy has been developed. The vehicle travels through a tube filled with a premixed gaseous fuel and oxidizer mixture. There is no propellant on-board the vehicle. The tube acts as the outer cowling of a ram jet and the energy release process travels with the vehicle. The ballistic efficiency remains high up to extremely high velocities and the acceleration can be maintained at a nearly constant level. Five modes of ram accelerator operation have been investigated; these modes differ primarily in the method of chemical heat release and the operational velocity range, and include two subsonic combustion modes (one of which involves thermally choke a combustion behind the vehicle) and three detonation drive modes. These modes of propulsion are capable of efficient acceleration in the range of 0.6-12 km/sec, although aerodynamic heating becomes severe above about 8 km/sec. Experiments carried out to date at the University of Washington up to 2 km/sec have established proof of principle of the ram accelerator concept and have shown close agreement between predicted and measured performance. A launch system capable of delivering two metric tons into low earth orbit was selected for the purposes of the present study. The preliminary analysis indicates that the overall dimensions of a restricted acceleration (less than approx. 1000 g) launch facility would require a tube 1 m in diameter, with an overall length of approximately 4 km. As in any direct launch scheme, a small on-board rocket is required to circularize the otherwise highly elliptical orbit which intersects the Earth. Various orbital insertion scenarios have been explored for the case of a 9 km/sec ram accelerator launch. These include direct insertion through a single circularization maneuver (i.e., on rocket burn), insertion involving two burns, and a

  1. Assembly, Installation, and Commissioning of the Atlas Upgrade Cryomodule

    NASA Astrophysics Data System (ADS)

    Fuerst, J. D.; Gerbick, S. M.; Kelly, M. P.; Kedzie, M.; MacDonald, S.; Ostroumov, P. N.; Pardo, R. C.; Sharamentov, S.; Shepard, K. W.; Zinkann, G. P.

    2010-04-01

    A new cryomodule containing seven low-beta superconducting radio frequency (SRF) cavities has been added to the ATLAS heavy ion linac, providing an additional 15 MV accelerating potential to the existing accelerator. We describe the final stages of cryomodule assembly, commissioning, and installation in the ATLAS accelerator. The clean techniques used to achieve low-particulate rf surfaces are presented, as are the module design features which enable clean assembly and reliable high-gradient operation. The thermal performance of the cryomodule is described, along with performance data for the SRF cavities. Details on subsystem performance including helium and nitrogen systems, vacuum systems, thermal and magnetic shields, slow and fast tuners, and survey/alignment systems are given.

  2. Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria.

    PubMed

    Ibarra-Arellano, Miguel A; Campos-González, Adrián I; Treviño-Quintanilla, Luis G; Tauch, Andreas; Freyre-González, Julio A

    2016-01-01

    The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy ( A: cross- BA: cteria SY: stems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing

  3. A flexible and configurable system to test accelerator magnets

    SciTech Connect

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  4. Cryogenic system for the MYRRHA superconducting linear accelerator

    SciTech Connect

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  5. Workflow and atlas system for brain-wide mapping of axonal connectivity in rat.

    PubMed

    Zakiewicz, Izabela M; van Dongen, Yvette C; Leergaard, Trygve B; Bjaalie, Jan G

    2011-01-01

    Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve overviews of brain connectivity. To explore more efficient ways of mapping, analyzing, and sharing detailed axonal connectivity data from the rodent brain, we have implemented a workflow for data production and developed an atlas system tailored for online presentation of axonal tracing data. The system is available online through the Rodent Brain WorkBench (www.rbwb.org; Whole Brain Connectivity Atlas) and holds experimental metadata and high-resolution images of histological sections from experiments in which axonal tracers were injected in the primary somatosensory cortex. We here present the workflow and the data system, and exemplify how the online image repository can be used to map different aspects of the brain-wide connectivity of the rat primary somatosensory cortex, including not only presence of connections but also morphology, densities, and spatial organization. The accuracy of the approach is validated by comparing results generated with our system with findings reported in previous publications. The present study is a contribution to a systematic mapping of rodent brain connections and represents a starting point for further large-scale mapping efforts. PMID:21829640

  6. ATLAS from Data Research Associates: A Fully Integrated Automation System.

    ERIC Educational Resources Information Center

    Mellinger, Michael J.

    1987-01-01

    This detailed description of a fully integrated, turnkey library system includes a complete profile of the system (functions, operational characteristics, hardware, operating system, minimum memory and pricing); history of the technologies involved; and descriptions of customer services and availability. (CLB)

  7. Comparing current cluster, massively parallel, and accelerated systems

    SciTech Connect

    Barker, Kevin J; Davis, Kei; Hoisie, Adolfy; Kerbyson, Darren J; Pakin, Scott; Lang, Mike; Sancho Pitarch, Jose C

    2010-01-01

    Currently there is large architectural diversity in high perfonnance computing systems. They include 'commodity' cluster systems that optimize per-node performance for small jobs, massively parallel processors (MPPs) that optimize aggregate perfonnance for large jobs, and accelerated systems that optimize both per-node and aggregate performance but only for applications custom-designed to take advantage of such systems. Because of these dissimilarities, meaningful comparisons of achievable performance are not straightforward. In this work we utilize a methodology that combines both empirical analysis and performance modeling to compare clusters (represented by a 4,352-core IB cluster), MPPs (represented by a 147,456-core BG/P), and accelerated systems (represented by the 129,600-core Roadrunner) across a workload of four applications. Strengths of our approach include the ability to compare architectures - as opposed to specific implementations of an architecture - attribute each application's performance bottlenecks to characteristics unique to each system, and to explore performance scenarios in advance of their availability for measurement. Our analysis illustrates that application performance is essentially unrelated to relative peak performance but that application performance can be both predicted and explained using modeling.

  8. Ion accelerator systems for high power 30-cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    An investigation of two- and three-grid accelerator systems for high power ion thruster operation has been performed. Two-grid translation tests show that overcompensation of the 30-cm thruster SHAG (Small Hole Accelerator Grid) leads to a premature impingement limit. By better matching the SHAG grid set spacing to the 30-cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30-cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  9. Microgravity Acceleration Measurement System (MAMS) Flight Configuration Verification and Status

    NASA Technical Reports Server (NTRS)

    Wagar, William

    2000-01-01

    The Microgravity Acceleration Measurement System (MAMS) is a precision spaceflight instrument designed to measure and characterize the microgravity environment existing in the US Lab Module of the International Space Station. Both vibratory and quasi-steady triaxial acceleration data are acquired and provided to an Ethernet data link. The MAMS Double Mid-Deck Locker (DMDL) EXPRESS Rack payload meets all the ISS IDD and ICD interface requirements as discussed in the paper which also presents flight configuration illustrations. The overall MAMS sensor and data acquisition performance and verification data are presented in addition to a discussion of the Command and Data Handling features implemented via the ISS, downlink and the GRC Telescience Center displays.

  10. Hollow cathode and ion accelerator system for current ion sources

    SciTech Connect

    Aston, G.

    1981-01-01

    A small self-heating hollow cathode has been designed and tested which uses a novel flowing plasma starting concept to eliminate the need for cathode heating elements and low work function insert materials. In a magnetic field free ion source, this cathode has reliably and repeatedly produced arc currents, using argon, of 100 ampere (the power supply limit) at arc voltages of 22 volts. The cathode operates with a high gas stagnation pressure and plasma density to produce field enhanced thermionic emission from the electron emitting surface, a 0.02mm thick rolled tungsten foil cylinder, without appreciable erosion of this surface. Possible applications of larger versions of this hollow cathode for use in neutral beam injector ion sources are discussed. An ion accelerator system has also been designed and tested which combines a unique arrangement of multiple hole and slit apertures to amplify the extracted ion current density by a factor of four during the ion acceleration process.

  11. Reliable-linac design for accelerator-driven subcritical reactor systems.

    SciTech Connect

    Wangler, Thomas P.,

    2002-01-01

    Accelerator reliability corresponding to a very low frequency of beam interrupts is an important new accelerator requirement for accelerator-driven subcritical reactor systems. In this paper we review typical accelerator-reliability requirements and discuss possible methods for meeting these goals with superconducting proton-linac technology.

  12. Status and Future Developments in Large Accelerator Control Systems

    SciTech Connect

    Karen S. White

    2006-10-31

    Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today's control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries.

  13. Large high-vacuum systems for CERN accelerators

    NASA Astrophysics Data System (ADS)

    Strubin, P.

    2008-05-01

    CERN operated over the more than 50 years of its existence particle accelerators and storage rings ranging from a few tens of metre to 27 km, the size of its latest project, the Large Hadron Collider (LHC) which is under construction and will be started in 2008. The challenges began with the Intersection Storage Rings (ISR) in the seventies. With a beam pipe length of 2 × 1 km, this accelerator required innovative solutions like bake-out and glow discharge to achieve the required static vacuum level, fight against beam-induced pressure increases and cancel beam neutralisation by trapped electrons. The vacuum system of the Large Electron Positron (LEP) storage ring (in operation between 1989 and 2001) of a total length of 27 km had to cope with very high levels of synchrotron power. The beam vacuum system of LHC (2 × 27 km) integrates some parts at 1.9 K and others at room temperature and will also have to cope with dynamic effects. In addition to the beam vacuum system, LHC requires insulation vacuum for the superconducting magnets and the helium distribution line. Whereas the required pressure is not very low, the leak detection and localisation is significantly more demanding for the insulation vacuum than for the beam vacuum because of the large volumes and the thermal insulation. When the size of an accelerator grows, the difficulties are not only to get a clean and leak tight vacuum system, but also to be able to measure reliably pressure or gas composition over long distances. Furthermore, in the case of LHC the integration of the beam vacuum system was particularly difficult because of the complexity induced by a superconducting magnet scheme and the reduced space available for the beam pipes. Planning and logistics aspects during installation, including the usage of mobile pumping and diagnostic means, were much more difficult to manage in LHC than in previous projects.

  14. Ongoing studies for the control system of a serially powered ATLAS pixel detector at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Kersten, S.; Püllen, L.; Zeitnitz, C.

    2016-02-01

    In terms of the phase-2 upgrade of the ATLAS detector, the entire inner tracker (ITk) of ATLAS will be replaced. This includes the pixel detector and the corresponding detector control system (DCS). The current baseline is a serial powering scheme of the detector modules. Therefore a new detector control system is being developed with emphasis on the supervision of serially powered modules. Previous chips had been designed to test the radiation hardness of the technology and the implementation of the modified I2C as well as the implementation of the logic of the CAN protocol. This included tests with triple redundant registers. The described chip is focusing on the implementation in a serial powering scheme. It was designed for laboratory tests, aiming for the proof of principle. The concept of the DCS for ATLAS pixel after the phase-2 upgrade is presented as well as the status of development including tests with the prototype ASIC.

  15. Intelligent operations of the data acquisition system of the ATLAS experiment at LHC

    NASA Astrophysics Data System (ADS)

    Anders, G.; Avolio, G.; Lehmann Miotto, G.; Magnoni, L.

    2015-05-01

    The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select particle collision data obtained at unprecedented energy and rates. The Run Control (RC) system is the component steering the data acquisition by starting and stopping processes and by carrying all data-taking elements through well-defined states in a coherent way. Taking into account all the lessons learnt during LHC's Run 1, the RC has been completely re-designed and re-implemented during the LHC Long Shutdown 1 (LS1) phase. As a result of the new design, the RC is assisted by the Central Hint and Information Processor (CHIP) service that can be truly considered its “brain”. CHIP is an intelligent system able to supervise the ATLAS data taking, take operational decisions and handle abnormal conditions. In this paper, the design, implementation and performances of the RC/CHIP system will be described. A particular emphasis will be put on the way the RC and CHIP cooperate and on the huge benefits brought by the Complex Event Processing engine. Additionally, some error recovery scenarios will be analysed for which the intervention of human experts is now rendered unnecessary.

  16. Radiation Safety System for SPIDER Neutral Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Sandri, S.; Coniglio, A.; D'Arienzo, M.; Poggi, C.

    2011-12-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  17. Radiation Safety System for SPIDER Neutral Beam Accelerator

    SciTech Connect

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  18. Livestock systems and rangeland degradation in the new World Atlas of Desertification

    NASA Astrophysics Data System (ADS)

    Zucca, Claudio; Reynolds, James F.; Cherlet, Michael

    2015-04-01

    Livestock systems and rangeland degradation in the new World Atlas of Desertification Land degradation and desertification (LDD), which are widespread in global rangelands, are complex processes. They are caused by multiple (but limited) number of biophysical and socioeconomic drivers that lead to an unbalance in the capacity of the land to sustainably produce ecosystem services and economic value. Converging evidence indicates that the key biophysical and socioeconomic drivers include agricultural or pastoral land use and management practices, population growth, societal demands (e.g., urbanization), and climate change (e.g., increasing aridity and drought). The new World Atlas of Desertification (WAD) describes these global issues, documents their spatial change, and highlights the importance of these drivers in relation to land degradation processes. The impacts of LDD on the atmosphere, on water and on biodiversity are also covered. The WAD spatially illustrates relevant types of livestock and rangeland management systems, related (over-under) use of resources, various management activities, and some of the common features and transitions that contribute to LDD. For example, livestock grazing in marginal areas is increasing due to competition with agricultural encroachment and, hence, vulnerable lands are under threat. The integration of stratified global data layers facilitates identifying areas where stress on the land system can be linked to underlying causal issues. One of the objectives of the new WAD is to provide synthesis and tools for scientists and stakeholders to design sustainable solutions for efficient land use in global rangelands.

  19. Accelerator-Driven Systems for Nuclear Waste Transmutation

    NASA Astrophysics Data System (ADS)

    Bowman, Charles D.

    The renewed interest since 1990 in accelerator-driven subcritical systems for transmutation of commercial nuclear waste has evolved to focus on the issue of whether fast- or thermal-spectrum systems offer greater promise. This review addresses the issue by comparing the performance of the more completely developed thermal- and fast-spectrum designs. Substantial design information is included to allow an assessment of the viability of the systems compared. The performance criteria considered most important are (a) the rapidity of reduction of the current inventory of plutonium and minor actinide from commercial spent fuel, (b) the cost, and (c) the complexity. The liquid-fueled thermal spectrum appears to offer major advantages over the solid-fueled fast-spectrum system, making waste reduction possible with about half the capital requirement on a substantially shorter time scale and with smaller separations requirements.

  20. Preparing accelerator systems for the RHIC sextant commissioning

    SciTech Connect

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-07-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  1. Preparing Accelerator Systems for the RHIC Sextant Commissioning

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.; Barton, D.; Clifford, T.; Connoly, R.; Fischer, W.; Harrison, M.; Mackay, W.; Olsen, B.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C.; Witkover, R.

    1997-05-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards the beginning of the 1999 when beams will first be circulated in both collider rings. One of the major tests of the RHIC project is the commissioning of the first sextant with gold ion beams. This is a report on the preparation of the RHIC accelerator systems during the first sextant test, including beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, ``flags'' and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the CYBASE data base system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  2. Improving and Accelerating Drug Development for Nervous System Disorders

    PubMed Central

    Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.

    2014-01-01

    Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933

  3. The physics design of accelerator-driven transmutation systems

    SciTech Connect

    Venneri, F.

    1995-02-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power.

  4. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  5. The auto-tuned land data assimilation system (ATLAS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilation systems are tasked with the merging remotely-sensed soil moisture retrievals with information derived from a soil water balance model driven (principally) by observed rainfall. The performance of such systems is frequently degraded by the imprecise specification of parameters ...

  6. A CAD system and quality assurance protocol for bone age assessment utilizing digital hand atlas

    NASA Astrophysics Data System (ADS)

    Gertych, Arakadiusz; Zhang, Aifeng; Ferrara, Benjamin; Liu, Brent J.

    2007-03-01

    Determination of bone age assessment (BAA) in pediatric radiology is a task based on detailed analysis of patient's left hand X-ray. The current standard utilized in clinical practice relies on a subjective comparison of the hand with patterns in the book atlas. The computerized approach to BAA (CBAA) utilizes automatic analysis of the regions of interest in the hand image. This procedure is followed by extraction of quantitative features sensitive to skeletal development that are further converted to a bone age value utilizing knowledge from the digital hand atlas (DHA). This also allows providing BAA results resembling current clinical approach. All developed methodologies have been combined into one CAD module with a graphical user interface (GUI). CBAA can also improve the statistical and analytical accuracy based on a clinical work-flow analysis. For this purpose a quality assurance protocol (QAP) has been developed. Implementation of the QAP helped to make the CAD more robust and find images that cannot meet conditions required by DHA standards. Moreover, the entire CAD-DHA system may gain further benefits if clinical acquisition protocol is modified. The goal of this study is to present the performance improvement of the overall CAD-DHA system with QAP and the comparison of the CAD results with chronological age of 1390 normal subjects from the DHA. The CAD workstation can process images from local image database or from a PACS server.

  7. SynapSense Wireless Environmental Monitoring System of the RHIC & ATLAS Computing Facility at BNL

    NASA Astrophysics Data System (ADS)

    Casella, K.; Garcia, E.; Hogue, R.; Hollowell, C.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, A.

    2014-06-01

    RHIC & ATLAS Computing Facility (RACF) at BNL is a 15000 sq. ft. facility hosting the IT equipment of the BNL ATLAS WLCG Tier-1 site, offline farms for the STAR and PHENIX experiments operating at the Relativistic Heavy Ion Collider (RHIC), the BNL Cloud installation, various Open Science Grid (OSG) resources, and many other small physics research oriented IT installations. The facility originated in 1990 and grew steadily up to the present configuration with 4 physically isolated IT areas with the maximum rack capacity of about 1000 racks and the total peak power consumption of 1.5 MW. In June 2012 a project was initiated with the primary goal to replace several environmental monitoring systems deployed earlier within RACF with a single commercial hardware and software solution by SynapSense Corporation based on wireless sensor groups and proprietary SynapSense™ MapSense™ software that offers a unified solution for monitoring the temperature and humidity within the rack/CRAC units as well as pressure distribution underneath the raised floor across the entire facility. The deployment was completed successfully in 2013. The new system also supports a set of additional features such as capacity planning based on measurements of total heat load, power consumption monitoring and control, CRAC unit power consumption optimization based on feedback from the temperature measurements and overall power usage efficiency estimations that are not currently implemented within RACF but may be deployed in the future.

  8. Commodity multi-processor systems in the ATLAS level-2 trigger

    SciTech Connect

    Abolins, M.; Blair, R.; Bock, R.; Bogaerts, A.; Dawson, J.; Ermoline, Y.; Hauser, R.; Kugel, A.; Lay, R.; Muller, M.; Noffz, K.-H.; Pope, B.; Schlereth, J.; Werner, P.

    2000-05-23

    Low cost SMP (Symmetric Multi-Processor) systems provide substantial CPU and I/O capacity. These features together with the ease of system integration make them an attractive and cost effective solution for a number of real-time applications in event selection. In ATLAS the authors consider them as intelligent input buffers (active ROB complex), as event flow supervisors or as powerful processing nodes. Measurements of the performance of one off-the-shelf commercial 4-processor PC with two PCI buses, equipped with commercial FPGA based data source cards (microEnable) and running commercial software are presented and mapped on such applications together with a long-term program of work. The SMP systems may be considered as an important building block in future data acquisition systems.

  9. Evolution of the ATLAS PanDA Production and Distributed Analysis System

    NASA Astrophysics Data System (ADS)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Walker, R.; Stradling, A.; Fine, V.; Potekhin, M.; Panitkin, S.; Compostella, G.

    2012-12-01

    The PanDA (Production and Distributed Analysis) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at LHC data processing scale. PanDA has performed well with high reliability and robustness during the two years of LHC data-taking, while being actively evolved to meet the rapidly changing requirements for analysis use cases. We will present an overview of system evolution including automatic rebrokerage and reattempt for analysis jobs, adaptation for the CernVM File System, support for the multi-cloud model through which Tier-2 sites act as members of multiple clouds, pledged resource management and preferential brokerage, and monitoring improvements. We will also describe results from the analysis of two years of PanDA usage statistics, current issues, and plans for the future.

  10. Novel Approach to Linear Accelerator Superconducting Magnet System

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  11. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    PubMed

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload. PMID:24432777

  12. Improved VLBI measurement of the solar system acceleration

    NASA Astrophysics Data System (ADS)

    Titov, O.; Lambert, S.

    2013-11-01

    Aims: We propose new estimates of the secular aberration drift, which is mainly caused by the rotation of the solar system about the Galactic center, based on up-to-date VLBI observations and improved method of outlier elimination. Methods: We fitted degree-2 vector spherical harmonics to the extragalactic radio source proper motion field derived from geodetic VLBI observations during 1979-2013. We paid particular attention to the outlier elimination procedure that removes outliers from (i) radio source coordinate time series and (ii) the proper motion sample. Results: We obtain more accurate values of the Solar system acceleration than in our previous paper. The acceleration vector is oriented towards the Galactic center within ~7°. The component perpendicular to the Galactic plane is statistically insignificant. We show that an insufficient cleaning of the data set can lead to strong variations in the dipole amplitude and orientation, and hence to statistically biased results. Proper motion data used for the DR solution is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A95

  13. A Nuclear-Powered Laser-Accelerated Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    2003-01-01

    Recent experiments at the University of Michigan and other laboratories throughout the world have demonstrated that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. The terrawatt laser at the University of Michigan has generated a beam of protons containing more than 1010 particles at a mean energy of over one Mev while the petawatt laser at the Lawrence Livermore National Laboratory has produced proton beams containing more than 1014 particles with maximum energy of 58 Mev and a mean energy of about 6 Mev. Using the latter data as a basis for a present-day LAPPS (Laser Accelerated Plasma Propulsion System) propulsion device we show that it can produce a specific impulse of several million seconds albeit at a fraction of a Newton of thrust. We show that if the thrust can be increased to a modest 25 Newtons a fly-by robotic interstellar mission to 10,000 AU can be achieved in about 26 years, while a round trip to Mars will be accomplished in about 6 months. In both instances a one MWe nuclear power system with a mass of about 5 MT will be needed to drive the laser, and the recently announced NASA's Nuclear Space Initiative should be able to address such reactors in the near future.

  14. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  15. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    NASA Astrophysics Data System (ADS)

    Feizi, H.; Ranjbar, A. H.

    2016-02-01

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ-n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies.

  16. A large distributed digital camera system for accelerator beam diagnostics

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  17. The evaluation of multi-structure, multi-atlas pelvic anatomy features in a prostate MR lymphography CAD system

    NASA Astrophysics Data System (ADS)

    Meijs, M.; Debats, O.; Huisman, H.

    2015-03-01

    In prostate cancer, the detection of metastatic lymph nodes indicates progression from localized disease to metastasized cancer. The detection of positive lymph nodes is, however, a complex and time consuming task for experienced radiologists. Assistance of a two-stage Computer-Aided Detection (CAD) system in MR Lymphography (MRL) is not yet feasible due to the large number of false positives in the first stage of the system. By introducing a multi-structure, multi-atlas segmentation, using an affine transformation followed by a B-spline transformation for registration, the organ location is given by a mean density probability map. The atlas segmentation is semi-automatically drawn with ITK-SNAP, using Active Contour Segmentation. Each anatomic structure is identified by a label number. Registration is performed using Elastix, using Mutual Information and an Adaptive Stochastic Gradient optimization. The dataset consists of the MRL scans of ten patients, with lymph nodes manually annotated in consensus by two expert readers. The feature map of the CAD system consists of the Multi-Atlas and various other features (e.g. Normalized Intensity and multi-scale Blobness). The voxel-based Gentleboost classifier is evaluated using ROC analysis with cross validation. We show in a set of 10 studies that adding multi-structure, multi-atlas anatomical structure likelihood features improves the quality of the lymph node voxel likelihood map. Multiple structure anatomy maps may thus make MRL CAD more feasible.

  18. Test-to-Failure of a Two-Grid, 30-cm-dia. Ion Accelerator System

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Polk, J. E.; Pless, L. C.

    1993-01-01

    To determine the failure mechanism and erosion characteristics of an ion accelerator system due to erosion by charge-exchange ions a test was performed in which a 30-cm-diameter, 2-grid ion accelerator system was tested to failure. The erosion charcteristics observed in this test, however, imply significantly shorter accelerator grid life times than typically stated in the literature. Finally, the test suggests that structural failure is probably not the most likely first failure mechanism for the accelerator grid.

  19. An Integration Framework Tool for ATCA Chassis in the ATLAS Detector Control System

    NASA Astrophysics Data System (ADS)

    Reed, Robert Graham

    2015-10-01

    The Large Hadron Collider at CERN is scheduled to undergo a major upgrade in 2022. The ATLAS collaboration will do major modifications to the detector to account for the increased luminosity. More specifically, a large proportion of the current front-end electronics, on the Tile Calorimeter sub-detector, will be upgraded and relocated to the backend. A Demonstrator program has been established as a proof of principle. A new system will be required to house, manage and connect this new hardware. The proposed solution will be an Advanced Telecommunication Computing Architecture (ATCA) which will not only house but also allow advanced management features and control at a hardware level by integrating the ATCA chassis into the Detector Control System.

  20. Development of noSQL data storage for the ATLAS PanDA Monitoring System

    NASA Astrophysics Data System (ADS)

    Potekhin, M.; ATLAS Collaboration

    2012-06-01

    For several years the PanDA Workload Management System has been the basis for distributed production and analysis for the ATLAS experiment at the LHC. Since the start of data taking PanDA usage has ramped up steadily, typically exceeding 500k completed jobs/day by June 2011. The associated monitoring data volume has been rising as well, to levels that present a new set of challenges in the areas of database scalability and monitoring system performance and efficiency. These challenges are being met with a R&D effort aimed at implementing a scalable and efficient monitoring data storage based on a noSQL solution (Cassandra). We present our motivations for using this technology, as well as data design and the techniques used for efficient indexing of the data. We also discuss the hardware requirements as they were determined by testing with actual data and realistic loads.

  1. A new 14 GHz Electron-Cyclotron-Resonance Ion Source (ECRIS) for the heavy ion accelerator facility ATLAS

    SciTech Connect

    Schlapp, M.; Pardo, R.C.; Vondrasek, R.C.; Billquist, P.J.; Szczech, J.

    1997-11-01

    A 14 GHz Electron-Cyclotron-Resonance Ion Source (ECRIS) has been designed and built at Argonne National Laboratory. The source is a modification of the AECR at Berkeley and incorporates the latest results from ECR developments to produce intense beams of highly charged ions, including an improved magnetic confinement of the plasma electrons with an axial mirror ratio of 3.5. The aluminum plasma chamber and extraction electrode as well as a biased disk on axis at the microwave injection side donates additional electrons to the plasma, making use of the large secondary electron yield from aluminum oxide. The source is capable of ECR plasma heating using two different frequencies simultaneously to increase the electron energy gain for the production of high charge states. The main design goal is to produce several e{mu}A of at least {sup 238}U{sup 35+} in order to accelerate the beam to coulomb-barrier energies without further stripping. First charge state distributions for gaseous elements have been measured and 210 e{mu}A {sup 16}O{sup 7+} has been achieved. A normalized 90% emittance from 0.1 to 0.2 {pi} mm{sm_bullet}mrad for krypton and oxygen beam has been found.

  2. An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems

    SciTech Connect

    Seal, Sudip K

    2014-01-01

    Block tridiagonal systems of linear equations arise in a wide variety of scientific and engineering applications. Recursive doubling algorithm is a well-known prefix computation-based numerical algorithm that requires O(M^3(N/P + log P)) work to compute the solution of a block tridiagonal system with N block rows and block size M on P processors. In real-world applications, solutions of tridiagonal systems are most often sought with multiple, often hundreds and thousands, of different right hand sides but with the same tridiagonal matrix. Here, we show that a recursive doubling algorithm is sub-optimal when computing solutions of block tridiagonal systems with multiple right hand sides and present a novel algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement when solving block tridiagonal systems with R distinct right hand sides. Since R is typically about 100 1000, this improvement translates to very significant speedups in practice. Detailed complexity analyses of the new algorithm with empirical confirmation of runtime improvements are presented. To the best of our knowledge, this algorithm has not been reported before in the literature.

  3. Recent performance of the Intense Pulsed Neutron Source accelerator system

    SciTech Connect

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.; Donley, L.

    1987-03-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has now been in operation as part of a national user program for over five years. During that period steady progress has been made in both beam intensity and reliability. Almost 1.8 billion pulses totaling 4 x 10/sup 21/ protons have now been delivered to the spallation neutron target. Recent weekly average currents have reached 15 ..mu..A (3.2 x 10/sup 12/ protons per pulse, 30 pulses per second) and short-term peaks of almost 17 ..mu..A have been reached. In fact, the average current for the last two years is up 31% over the average for the first three years of operation.

  4. Accelerated Vascular Disease in Systemic Lupus Erythematosus: Role of Macrophage

    PubMed Central

    Al Gadban, Mohammed M.; Alwan, Mohamed M.; Smith, Kent J.; Hammad, Samar M.

    2015-01-01

    Atherosclerosis is a chronic inflammatory condition that is considered a major cause of death worldwide. Striking phenomena of atherosclerosis associated with systemic lupus erythematosus (SLE) is its high incidence in young patients. Macrophages are heterogeneous cells that differentiate from hematopoietic progenitors and reside in different tissues to preserve tissue integrity. Macrophages scavenge modified lipids and play a major role in the development of atherosclerosis. When activated, macrophages secret inflammatory cytokines. This activation triggers apoptosis of cells in the vicinity of macrophages. As such, macrophages play a significant role in tissue remodeling including atherosclerotic plaque formation and rupture. In spite of studies carried on identifying the role of macrophages in atherosclerosis, this role has not been studied thoroughly in SLE-associated atherosclerosis. In this review, we address factors released by macrophages as well as extrinsic factors that may control macrophage behavior and their effect on accelerated development of atherosclerosis in SLE. PMID:25638414

  5. A high power accelerator driver system for spallation neutron sources

    SciTech Connect

    Jason, A.; Blind, B.; Channell, P.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). For several years, the Los Alamos Meson Physics Facility (LAMPF) and the Proton Storage Ring (PSR) have provided a successful driver for the nearly 100-kW Los Alamos Neutron Scattering Center (LANSCE) source. The authors have studied an upgrade to this system. The goal of this effort was to establish a credible design for the accelerator driver of a next-generation source providing 1-MW of beam power. They have explored a limited subset of the possible approaches to a driver and have considered only the low 1-MW beam power. The next-generation source must utilize the optimum technology and may require larger neutron intensities than they now envision.

  6. Radiological Hazard of Spallation Products in Accelerator-Driven System

    SciTech Connect

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-09-15

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.

  7. RFQ (radio-frequency quadrupole) accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1988-04-12

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.

  8. Integrated Enterprise Accelerator Database for the SLC Control System

    NASA Astrophysics Data System (ADS)

    Lahey, T.; Rock, J.; Sass, R.; Shoaee, H.; Underwood, K.

    2002-08-01

    Since its inception in the early 1980's, the SLC Control System has been driven by a highly structured memory-resident real-time database. While efficient, its rigid structure and file-based sources makes it difficult to maintain and extract relevant information. The goal of transforming the sources for this database into a relational form is to enable it to be part of a Control System Enterprise Database that is an integrated central repository for SLC accelerator device and Control System data with links to other associated databases. We have taken the concepts developed for the NLC Enterprise Database and used them to create and load a relational model of the online SLC Control System database. This database contains data and structure to allow querying and reporting on beamline devices, their associations and parameters. queries tend to retrieve large numbers of rows and attribute tables can become large, adversely affecting performance. In addition, this model does not allow optimal use of database features such as constraints and joins, nor the standard set of database query and

  9. ATLAS: an airborne active linescan system for high-resolution topographic mapping

    NASA Astrophysics Data System (ADS)

    Willetts, David V.; Kightley, Peter J.; Mole, S. G.; Pearson, Guy N.; Pearson, P.; Coffey, Adrian S.; Stokes, Tim J.; Tapster, Paul R.; Westwood, M.

    2004-12-01

    High resolution ground mapping is of interest for survey and management of long linear features such as roads, railways and pipelines, and for georeferencing of areas such as flood plains for hydrological purposes. ATLAS (Airborne Topographic Laser System) is an active linescan system operating at the eyesafe wavelength of 1.5μm. Built for airborne survey, it is currently certified for use on a Twin Squirrel helicopter for operation from low levels to heights above 500 feet allowing commercial survey in built up areas. The system operates at a pulse repetition frequency of 56kHz with a line completed in 15ms, giving 36 points/m2 at the surface at the design flight speed. At each point the range to the ground is measured together with the scan angle of the system. This data is combined with a system attitude measurement from an integrated inertial navigation system and with system position derived from differential GPS data aboard the platform. A recording system captures the data with a synchronised time-stamp to enable post-processed reconstruction of a cloud of data points that will give a three-dimensional representation of the terrain, allowing the points to be located with respect to absolute Earth referenced coordinates to a precision of 5cm in three axes. This paper summarises the design, harmonisation, evaluation and performance of the system, and shows examples of survey data.

  10. Scalable and fail-safe deployment of the ATLAS Distributed Data Management system Rucio

    NASA Astrophysics Data System (ADS)

    Lassnig, M.; Vigne, R.; Beermann, T.; Barisits, M.; Garonne, V.; Serfon, C.

    2015-12-01

    This contribution details the deployment of Rucio, the ATLAS Distributed Data Management system. The main complication is that Rucio interacts with a wide variety of external services, and connects globally distributed data centres under different technological and administrative control, at an unprecedented data volume. It is therefore not possible to create a duplicate instance of Rucio for testing or integration. Every software upgrade or configuration change is thus potentially disruptive and requires fail-safe software and automatic error recovery. Rucio uses a three-layer scaling and mitigation strategy based on quasi-realtime monitoring. This strategy mainly employs independent stateless services, automatic failover, and service migration. The technologies used for deployment and mitigation include OpenStack, Puppet, Graphite, HAProxy and Apache. In this contribution, the interplay between these components, their deployment, software mitigation, and the monitoring strategy are discussed.

  11. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    NASA Astrophysics Data System (ADS)

    Bates, Richard L.; Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J.; Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I.; Brown, S.; Pater, J.

    2013-12-01

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm-2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  12. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  13. Accelerated Molecular Dynamics Simulations of Reactive Hydrocarbon Systems

    SciTech Connect

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  14. A Validation System for the Complex Event Processing Directives of the ATLAS Shifter Assistant Tool

    NASA Astrophysics Data System (ADS)

    Santos, A.; Anders, G.; Avolio, G.; Kazarov, A.; Lehmann Miotto, G.; Soloviev, I.

    2015-12-01

    Complex Event Processing (CEP) is a methodology that combines data from many sources in order to identify events or patterns that need particular attention. It has gained a lot of momentum in the computing world in the past few years and is used in ATLAS to continuously monitor the behaviour of the data acquisition system, to trigger corrective actions and to guide the experiment's operators. This technology is very powerful, if experts regularly insert and update their knowledge about the system's behaviour into the CEP engine. Nevertheless, writing or modifying CEP rules is not trivial since the used programming paradigm is quite different with respect to what developers are normally familiar with. In order to help experts verify that the rules work as expected, we have thus developed a complete testing and validation environment. This system consists of three main parts: the first is the data reader from existing storage of all relevant data streams that are produced during data taking, the second is a playback tool that allows to re-inject data of specific data taking sessions from the past into the CEP engine, and the third is a reporting tool that shows the output that the rules loaded into the engine would have produced in the live system. In this paper we describe the design and implementation of this validation system, highlight its strengths and shortcomings and indicate how such a system could be reused in similar projects.

  15. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  16. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    SciTech Connect

    Dr. Robert Westervelt; Dr. William Klein; Dr. Michael Kroupa; Eric Olsson; Rick Rothrock

    1999-06-28

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms.

  17. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  18. A study of beam chopping options for the ATLAS Positive Ion Linac

    SciTech Connect

    Pardo, R.C.; Bogaty, J.M.; Clifft, B.E.

    1996-10-01

    Unbunched beam components from the injection beam bunching system must be removed prior to acceleration in the ATLAS Positive Ion Injector Linac (PII). A sine wave chopper has been used for this purpose up to now. Such a device can have a significant detrimental effect on the longitudinal and transverse beam emittance of heavy-ion beams which can be sufficiently severe to limit the overall beam quality from the ATLAS accelerator. A study of the optimum chopper configuration and chopper type was undertaken as part of a new ion source project for ATLAS. A transmission line chopper and a two harmonic chopper were investigated as alternatives to the conventional sine wave chopper. This paper reports the results of that investigation and discusses the design of the selected transmission line chopper.

  19. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    PubMed Central

    Sharma, S. D.; Kumar, Sudhir; Dagaonkar, S. S.; Bisht, Geetika; Dayanand, S.; Devi, Reena; Deshpande, S. S.; Chaudhary, S.; Bhatt, B. C.; Kannan, S.

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well. PMID:21217914

  20. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  1. Novel learning accelerates systems consolidation of a contextual fear memory.

    PubMed

    Haubrich, Josue; Cassini, Lindsey Freitas; Diehl, Felipe; Santana, Fabiana; Fürstenau de Oliveira, Lucas; de Oliveira Alvares, Lucas; Quillfeldt, Jorge Alberto

    2016-07-01

    After initial encoding memories may undergo a time-dependent reorganization, becoming progressively independent from the hippocampus (HPC) and dependent on cortical regions such as the anterior cingulate cortex (ACC). Although the mechanisms underlying systems consolidation are somewhat known, the factors determining its temporal dynamics are still poorly understood. Here, we studied the influence of novel learning occurring between training and test sessions on the time-course of HPC- and ACC-dependency of contextual fear conditioning (CFC) memory expression. We found that muscimol was disruptive when infused into the HPC up to 35 days after training, while the ACC is vulnerable only after 45 days. However, when animals were subjected to a series of additional, distinct tasks to be learned within the first 3 weeks, muscimol became effective sooner. Muscimol had no effect in the HPC at 20 days after training, exactly when the ACC becomes responsive to this treatment. Thus, our data indicates that the encoding of new information generates a tight interplay between distinct memories, accelerating the reorganization of previously stored long term memories between the hippocampal and cortical areas. © 2016 Wiley Periodicals, Inc. PMID:26860633

  2. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems

    SciTech Connect

    Doolen, G.D.; Venneri, F.; Li, N.; Williamson, M.A.; Houts, M.; Lawrence, G.

    1998-06-27

    ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes an intense source-driven neutron flux for transmutation in a heterogeneous (solid fuel) core. The concept is the result of many years of development at LANL as well as other major international research centers. Once demonstrated and developed, ATW could be an essential part of a global non-proliferation strategy for countries that could build up large quantities of plutonium from their commercial reactor waste. ATW technology, initially proposed in the US, has received wide and rapidly increasing attention abroad, especially in Europe and the Far East with major programs now being planned, organized and tided. Substantial convergence presently exists on the technology choices among the programs, opening the possibility of a strong and effective international collaboration on the phased development of the ATW technology.

  3. Second edition of 'The Bethesda System for reporting cervical cytology' - atlas, website, and Bethesda interobserver reproducibility project.

    PubMed

    Nayar, Ritu; Solomon, Diane

    2004-10-21

    A joint task force of the American Society of Cytopathology (ASC) and the National Cancer Institute (NCI) recently completed a 2-year effort to revise the Bethesda System "blue book" atlas and develop a complementary web-based collection of cervical cytology images. The web-based collection of images is housed on the ASC website, which went live on November 5th, 2003; it can be directly accessed at http://www.cytopathology.org/NIH/. PMID:15504231

  4. Rucio - The next generation of large scale distributed system for ATLAS Data Management

    NASA Astrophysics Data System (ADS)

    Garonne, V.; Vigne, R.; Stewart, G.; Barisits, M.; eermann, T. B.; Lassnig, M.; Serfon, C.; Goossens, L.; Nairz, A.; Atlas Collaboration

    2014-06-01

    Rucio is the next-generation Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 140 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio will deal with these issues by relying on a conceptual data model and new technology to ensure system scalability, address new user requirements and employ new automation framework to reduce operational overheads. We present the key concepts of Rucio, including its data organization/representation and a model of how to manage central group and user activities. The Rucio design, and the technology it employs, is described, specifically looking at its RESTful architecture and the various software components it uses. We show also the performance of the system.

  5. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    SciTech Connect

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09

    inspections of materials, in-process fabrications, non-destructive tests, and acceptance test. (3) Documentation, traceability, and accountability must be maintained for each unique pressure vessel or system, including descriptions of design, pressure conditions, testing, inspection, operation, repair, and maintenance. The purpose of this guideline is to establish a set of expectations and recommendations which will satisfy the requirements for vacuum vessels in general and particularly when an equivalent level of safety as required by 10 CFR 851 must be provided. It should be noted that these guidelines are not binding on DOE Accelerator Laboratories and that other approaches may be equally acceptable in addressing the Part 851 requirements.

  6. The digital anatomist information system and its use in the generation and delivery of Web-based anatomy atlases.

    PubMed

    Brinkley, J F; Bradley, S W; Sundsten, J W; Rosse, C

    1997-12-01

    Advances in network and imaging technology, coupled with the availability of 3-D datasets such as the Visible Human, provide a unique opportunity for developing information systems in anatomy that can deliver relevant knowledge directly to the clinician, researcher or educator. A software framework is described for developing such a system within a distributed architecture that includes spatial and symbolic anatomy information resources, Web and custom servers, and authoring and end-user client programs. The authoring tools have been used to create 3-D atlases of the brain, knee and thorax that are used both locally and throughout the world. For the one and a half year period from June 1995-January 1997, the on-line atlases were accessed by over 33,000 sites from 94 countries, with an average of over 4000 "hits" per day, and 25,000 hits per day during peak exam periods. The atlases have been linked to by over 500 sites, and have received at least six unsolicited awards by outside rating institutions. The flexibility of the software framework has allowed the information system to evolve with advances in technology and representation methods. Possible new features include knowledge-based image retrieval and tutoring, dynamic generation of 3-D scenes, and eventually, real-time virtual reality navigation through the body. Such features, when coupled with other on-line biomedical information resources, should lead to interesting new ways for managing and accessing structural information in medicine. PMID:9466836

  7. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    SciTech Connect

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; Mead, Joseph; Liu, Shu -Bin; An, Qi

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272 is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).

  8. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    DOE PAGESBeta

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; Mead, Joseph; Liu, Shu -Bin; An, Qi

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272more » is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).« less

  9. ATLAS, an integrated structural analysis and design system. Volume 6: Design module theory

    NASA Technical Reports Server (NTRS)

    Backman, B. F.

    1979-01-01

    The automated design theory underlying the operation of the ATLAS Design Module is decribed. The methods, applications and limitations associated with the fully stressed design, the thermal fully stressed design and a regional optimization algorithm are presented. A discussion of the convergence characteristics of the fully stressed design is also included. Derivations and concepts specific to the ATLAS design theory are shown, while conventional terminology and established methods are identified by references.

  10. Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code

    SciTech Connect

    Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi

    2005-05-24

    A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations since the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.

  11. Application of Burnable Absorbers in an Accelerator-Driven System

    SciTech Connect

    Wallenius, Jan; Tucek, Kamil; Carlsson, Johan; Gudowski, Waclaw

    2001-01-15

    The application of burnable absorbers (BAs) to minimize power peaking, reactivity loss, and capture-to-fission probabilities in an accelerator-driven waste transmutation system has been investigated. Boron-10-enriched B{sub 4}C absorber rods were introduced into a lead-bismuth-cooled core fueled with transuranic (TRU) discharges from light water reactors to achieve the smallest possible power peakings at beginning-of-life (BOL) subcriticality level of 0.97. Detailed Monte Carlo simulations show that a radial power peaking equal to 1.2 at BOL is attainable using a four-zone differentiation in BA content. Using a newly written Monte Carlo burnup code, reactivity losses were calculated to be 640 pcm per percent TRU burnup for unrecycled TRU discharges. Comparing to corresponding values in BA-free cores, BA introduction diminishes reactivity losses in TRU-fueled subcritical cores by {approx}20%. Radial power peaking after 300 days of operation at 1200-MW thermal power was <1.75 at a subcriticality level of {approx}0.92, which appears to be acceptable, with respect to limitations in cladding and fuel temperatures. In addition, the use of BAs yields significantly higher fission-to-capture probabilities in even-neutron-number nuclides. Fission-to-absorption probability ratio for {sup 241}Am equal to 0.33 was achieved in the configuration studied. Hence, production of the strong alpha-emitter {sup 242}Cm is reduced, leading to smaller fuel-swelling rates and pin pressurization. Disadvantages following BA introduction, such as increase of void worth and decrease of Doppler feedback in conjunction with small values of {beta}{sub eff}, need to be addressed by detailed studies of subcritical core dynamics.

  12. Development of a low-energy beam transport system at KBSI heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Lee, Byoung-Seob; Sato, Yoichi; Ok, Jung-Woo; Park, Jin Yong; Yoon, Jang-Hee; Choi, Seyong; Won, Mi-Sook; Kim, Eun-San

    2015-01-01

    The Korea Basic Science Institute has developed a heavy ion accelerator for fast neutron radiography [1]. To meet the requirements for fast neutron generation, we have developed an accelerator system that consists of an electron cyclotron resonance ion source (ECR-IS), low-energy beam transport (LEBT) system, radio-frequency quadrupole (RFQ), medium-energy beam transport system, and drift tube linac. In this paper, we present the development of the LEBT system as a part of the heavy ion accelerator system, which operates from the ECR-IS to the RFQ entrance.

  13. ASIC Wafer Test System for the ATLAS Semiconductor Tracker Front-End Chip

    SciTech Connect

    Anghinolfi, F.; Bialas, W.; Busek, N.; Ciocio, A.; Cosgrove, D.; Fadeyev, V.; Flacco, C.; Gilchriese, M.; Grillo, A.A.; Haber, C.; Kaplon, J.; Lacasta, C.; Murray, W.; Niggli, H.; Pritchard, T.; Rosenbaum, F.; Spieler, H.; Stezelberger, T.; Vu, C.; Wilder, M.; Yaver, H.; Zetti, F.

    2002-03-19

    An ASIC wafer test system has been developed to provide comprehensive production screening of the ATLAS Semiconductor Tracker front-end chip (ABCD3T). The ABCD3T[1] features a 128-channel analog front-end, a digital pipeline, and communication circuitry, clocked at 40 MHz, which is the bunch crossing frequency at the LHC (Large Hadron Collider). The tester measures values and tolerance ranges of all critical IC parameters, including DC parameters, electronic noise, time resolution, clock levels and clock timing. The tester is controlled by an FPGA (ORCA3T) programmed to issue the input commands to the IC and to interpret the output data. This allows the high-speed wafer-level IC testing necessary to meet the production schedule. To characterize signal amplitudes and phase margins, the tester utilizes pin-driver, delay, and DAC chips, which control the amplitudes and delays of signals sent to the IC under test. Output signals from the IC under test go through window comparator chips to measure their levels. A probe card has been designed specifically to reduce pick-up noise that can affect the measurements. The system can operate at frequencies up to 100 MHz to study the speed limits of the digital circuitry before and after radiation damage. Testing requirements and design solutions are presented.

  14. Development of noSQL data storage for the ATLAS PanDA Monitoring System

    NASA Astrophysics Data System (ADS)

    Ito, H.; Potekhin, M.; Wenaus, T.

    2012-12-01

    For several years the PanDA Workload Management System has been the basis for distributed production and analysis for the ATLAS experiment at the LHC. Since the start of data taking PanDA usage has ramped up steadily, typically exceeding 500k completed jobs/day by June 2011. The associated monitoring data volume has been rising as well, to levels that present a new set of challenges in the areas of database scalability and monitoring system performance and efficiency. These challenges are being met with an R&D effort aimed at implementing a scalable and efficient monitoring data storage based on a noSQL solution (Cassandra). We present our motivations for using this technology, as well as data design and the techniques used for efficient indexing of the data. We also discuss the hardware requirements as they were determined by testing with actual data and realistic rate of queries. In conclusion, we present our experience with operating a Cassandra cluster over an extended period of time and with data load adequate for planned application.

  15. Mid-infrared Laser System Development for Dielectric Laser Accelerators

    NASA Astrophysics Data System (ADS)

    Jovanovic, Igor; Xu, Guibao; Wandel, Scott

    Laser-driven particle accelerators based on dielectric laser acceleration are under development and exhibit unique and challenging pump requirements. Operation in the mid-infrared (5 μm) range with short pulses (<1 ps FWHM), high pulse energy (>500 μJ) and good beam quality is required. We present our progress on the design and development of a novel two- stage source of mid-infrared pulses for this application, which is based on optical parametric amplification. Beta barium borate and zinc germanium phosphide crystals are used, and are pumped by a Ti:sapphire ultrashort laser and seeded by self-phase modulation and parametric generation-based sources.

  16. Acceleration units for the Induction Linac Systems Experiment (ILSE)

    SciTech Connect

    Faltens, A.; Brady, V.; Brodzik, D.; Hansen, L.; Laslett, L.J.; Mukherjee, S.; Bubp, D.; Ravenscroft, D.; Reginato, L.

    1989-03-01

    The design of a high current heavy ion induction linac driver for inertial confinement fusion is optimized by adjusting the acceleration units along the length of the accelerator to match the beam current, energy, and pulse duration at any location. At the low energy end of the machine the optimum is a large number of electrostatically focused parallel beamlets, whereas at higher energies the optimum is a smaller number of magnetically focused beams. ILSE parallels this strategy by using 16 electrostatically focused beamlets at the low end followed by 4 magnetically focused beams after beam combining. 3 refs., 2 figs.

  17. ATLAS@AWS

    NASA Astrophysics Data System (ADS)

    Gehrcke, Jan-Philip; Kluth, Stefan; Stonjek, Stefan

    2010-04-01

    We show how the ATLAS offline software is ported on the Amazon Elastic Compute Cloud (EC2). We prepare an Amazon Machine Image (AMI) on the basis of the standard ATLAS platform Scientific Linux 4 (SL4). Then an instance of the SLC4 AMI is started on EC2 and we install and validate a recent release of the ATLAS offline software distribution kit. The installed software is archived as an image on the Amazon Simple Storage Service (S3) and can be quickly retrieved and connected to new SL4 AMI instances using the Amazon Elastic Block Store (EBS). ATLAS jobs can then configure against the release kit using the ATLAS configuration management tool (cmt) in the standard way. The output of jobs is exported to S3 before the SL4 AMI is terminated. Job status information is transferred to the Amazon SimpleDB service. The whole process of launching instances of our AMI, starting, monitoring and stopping jobs and retrieving job output from S3 is controlled from a client machine using python scripts implementing the Amazon EC2/S3 API via the boto library working together with small scripts embedded in the SL4 AMI. We report our experience with setting up and operating the system using standard ATLAS job transforms.

  18. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-03-01

    We report the following transients found by the ATLAS survey (Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is robotically operational on Haleakala (see http://www.fallingstar.com).

  19. RADIATION PROTECTION SYSTEM INSTALLATION FOR THE ACCELERATOR PRODUCTION OF TRITIUM/LOW ENERGY DEMONSTRATION ACCELERATOR PROJECT (APT/LEDA)

    SciTech Connect

    J. WILMARTH; M. SMITH; T. TOMEI

    1999-07-01

    The APT/LEDA personnel radiation protection system installation was accomplished using a flexible, modular proven system which satisfied regulatory orders, project design criteria, operational modes, and facility requirements. The goal of providing exclusion and safe access of personnel to areas where prompt radiation in the LEDA facility is produced was achieved with the installation of a DOE-approved Personnel Access Control System (PACS). To satisfy the facility configuration design, the PACS, a major component of the overall radiation safety system, conveniently provided five independent areas of personnel access control. Because of its flexibility and adaptability the Los Alamos Neutron Science Center (LANSCE) designed Radiation Security System (RSS) was efficiently configured to provide the desired operational modes and satisfy the APT/LEDA project design criteria. The Backbone Beam Enable (BBE) system based on the LANSCE RSS provided the accelerator beam control functions with redundant, hardwired, tamper-resistant hardware. The installation was accomplished using modular components.

  20. Laser Tomographic AO system for an Integral Field Spectrograph on the E-ELT : the ATLAS project

    NASA Astrophysics Data System (ADS)

    Fusco, Thierry; Meimon, Serge; Thatte, N.; Shnetler, H.; Clénet, Yann; Cohen, M.; Paufique, J.; Ammans, J. P.; Clarke, F.; Dournaux, J. L.; Ferrari, M.; Gratadour, D.; Hubin, N.; Jagourel, P.; Michau, V.; Petit, C.; Tecza, M.

    2011-09-01

    ATLAS (Advanced Tomography with Laser for AO system) is the LTAO module of the E-ELT. It should be combined with an Integral Field Spectrograph (HARMONI). It aims at providing a diffraction limited PSF (SR around 50% in K band) in a small scientific FoV for a very significant part of the sky (more than 60% of the whole sky). 6 Laser Guide Stars (located on a 4.3 arcmin ring) will be used together with 2 Natural Guide Stars to be picked off in a 2 arcmin FoV. A MMSE-based RTC algorithm will be considered to obtain an optimal tomographic reconstruction of the turbulent volume and correct for Laser defects (cone effects). A first concept of the module combined with opto-mechanical implementation and associated performance has been proposed in the frame of the E-ELT instrumentation phase A study. Further modifications and optimisations have been proposed to account for IFS-HARMONI specificities. In this presentation, the main ATLAS components are described and their specificities and innovation highlighted. In particular, a new concept for the natural guide star wavefront sensor (based on a focal plane measurement scheme) is proposed providing extremely good sky coverage. In addition, the impact of Cn^2 mis-calibrations is analyzed and solutions to mitigate this error are proposed. In addition, the specific HARMONI requirements are presented as well as their impacts on ATLAS design, calibration procedures and operational concept. An integrated approach for a common implementation of ATLAS-HARMONI is presented. Results show the feasibility of the concept, its versatility and a relative simplicity which is a good first step toward a potential implementation in the early years of the E-ELT.

  1. Calorimetry Triggering in ATLAS

    SciTech Connect

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; /UC, Irvine /AGH-UST, Cracow /Birmingham U. /Barcelona, IFAE /CERN /Birmingham U. /Rutherford /Montreal U. /Santa Maria U., Valparaiso /DESY /DESY, Zeuthen /Geneva U. /City Coll., N.Y. /Barcelona, IFAE /CERN /Birmingham U. /Kirchhoff Inst. Phys. /Birmingham U. /Lisbon, LIFEP /Rio de Janeiro Federal U. /City Coll., N.Y. /Birmingham U. /Copenhagen U. /Copenhagen U. /Brookhaven /Rutherford /Royal Holloway, U. of London /Pennsylvania U. /Montreal U. /SLAC /CERN /Michigan State U. /Chile U., Catolica /City Coll., N.Y. /Oxford U. /La Plata U. /McGill U. /Mainz U., Inst. Phys. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Queen Mary, U. of London /CERN /Rutherford /Rio de Janeiro Federal U. /Birmingham U. /Montreal U. /CERN /Kirchhoff Inst. Phys. /Liverpool U. /Royal Holloway, U. of London /Pennsylvania U. /Kirchhoff Inst. Phys. /Geneva U. /Birmingham U. /NIKHEF, Amsterdam /Rutherford /Royal Holloway, U. of London /Rutherford /Royal Holloway, U. of London /AGH-UST, Cracow /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Birmingham U. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Kirchhoff Inst. Phys. /Michigan State U. /Stockholm U. /Stockholm U. /Birmingham U. /CERN /Montreal U. /Stockholm U. /Arizona U. /Regina U. /Regina U. /Rutherford /NIKHEF, Amsterdam /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /City Coll., N.Y. /University Coll. London /Humboldt U., Berlin /Queen Mary, U. of London /Argonne /LPSC, Grenoble /Arizona U. /Kirchhoff Inst. Phys. /Birmingham U. /Antonio Narino U. /Hamburg U. /DESY /DESY, Zeuthen /Kirchhoff Inst. Phys. /Birmingham U. /Chile U., Catolica /Indiana U. /Manchester U. /Kirchhoff Inst. Phys. /Rutherford /City Coll., N.Y. /Stockholm U. /La Plata U. /Antonio Narino U. /Queen Mary, U. of London /Kirchhoff Inst. Phys. /Antonio Narino U. /Pavia U. /City Coll., N.Y. /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Pennsylvania U. /Barcelona, IFAE /Barcelona, IFAE /Chile U., Catolica /Genoa U. /INFN, Genoa /Rutherford /Barcelona, IFAE /Nevis Labs, Columbia U. /CERN /Antonio Narino U. /McGill U. /Rutherford /Santa Maria U., Valparaiso /Rutherford /Chile U., Catolica /Brookhaven /Oregon U. /Mainz U., Inst. Phys. /Barcelona, IFAE /McGill U. /Antonio Narino U. /Antonio Narino U. /Kirchhoff Inst. Phys. /Sydney U. /Rutherford /McGill U. /McGill U. /Pavia U. /Genoa U. /INFN, Genoa /Kirchhoff Inst. Phys. /Kirchhoff Inst. Phys. /Mainz U., Inst. Phys. /Barcelona, IFAE /SLAC /Stockholm U. /Moscow State U. /Stockholm U. /Birmingham U. /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /Birmingham U. /Geneva U. /Oregon U. /Barcelona, IFAE /University Coll. London /Royal Holloway, U. of London /Birmingham U. /Mainz U., Inst. Phys. /Birmingham U. /Birmingham U. /Oregon U. /La Plata U. /Geneva U. /Chile U., Catolica /McGill U. /Pavia U. /Barcelona, IFAE /Regina U. /Birmingham U. /Birmingham U. /Kirchhoff Inst. Phys. /Oxford U. /CERN /Kirchhoff Inst. Phys. /UC, Irvine /UC, Irvine /Wisconsin U., Madison /Rutherford /Mainz U., Inst. Phys. /CERN /Geneva U. /Copenhagen U. /City Coll., N.Y. /Wisconsin U., Madison /Rio de Janeiro Federal U. /Wisconsin U., Madison /Stockholm U. /University Coll. London

    2011-12-08

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  2. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    SciTech Connect

    Kephart, Robert; Chattopadhyay, Swaapan; Milton, Stephen

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  3. Low-cost tape system measures velocity of acceleration

    NASA Technical Reports Server (NTRS)

    Hartenstein, R.

    1964-01-01

    By affixing perforated magnetic recording tape to the falling end of a body, acceleration and velocity were measured. The measurement was made by allowing the tape to pass between a light source and a photoelectric sensor. Data was obtained from a readout device.

  4. Applications of advanced data analysis and expert system technologies in the ATLAS Trigger-DAQ Controls framework

    NASA Astrophysics Data System (ADS)

    Avolio, G.; Corso Radu, A.; Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.

    2012-12-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment is a very complex distributed computing system, composed of more than 20000 applications running on more than 2000 computers. The TDAQ Controls system has to guarantee the smooth and synchronous operations of all the TDAQ components and has to provide the means to minimize the downtime of the system caused by runtime failures. During data taking runs, streams of information messages sent or published by running applications are the main sources of knowledge about correctness of running operations. The huge flow of operational monitoring data produced is constantly monitored by experts in order to detect problems or misbehaviours. Given the scale of the system and the rates of data to be analyzed, the automation of the system functionality in the areas of operational monitoring, system verification, error detection and recovery is a strong requirement. To accomplish its objective, the Controls system includes some high-level components which are based on advanced software technologies, namely the rule-based Expert System and the Complex Event Processing engines. The chosen techniques allow to formalize, store and reuse the knowledge of experts and thus to assist the shifters in the ATLAS control room during the data-taking activities.

  5. The Geogenomic Mutational Atlas of Pathogens (GoMAP) Web System

    PubMed Central

    Sargeant, David P.; Hedden, Michael W.; Deverasetty, Sandeep; Strong, Christy L.; Alaniz, Izua J.; Bartlett, Alexandria N.; Brandon, Nicholas R.; Brooks, Steven B.; Brown, Frederick A.; Bufi, Flaviona; Chakarova, Monika; David, Roxanne P.; Dobritch, Karlyn M.; Guerra, Horacio P.; Levit, Kelvy S.; Mathew, Kiran R.; Matti, Ray; Maza, Dorothea Q.; Mistry, Sabyasachy; Novakovic, Nemanja; Pomerantz, Austin; Rafalski, Timothy F.; Rathnayake, Viraj; Rezapour, Noura; Ross, Christian A.; Schooler, Steve G.; Songao, Sarah; Tuggle, Sean L.; Wing, Helen J.; Yousif, Sandy; Schiller, Martin R.

    2014-01-01

    We present a new approach for pathogen surveillance we call Geogenomics. Geogenomics examines the geographic distribution of the genomes of pathogens, with a particular emphasis on those mutations that give rise to drug resistance. We engineered a new web system called Geogenomic Mutational Atlas of Pathogens (GoMAP) that enables investigation of the global distribution of individual drug resistance mutations. As a test case we examined mutations associated with HIV resistance to FDA-approved antiretroviral drugs. GoMAP-HIV makes use of existing public drug resistance and HIV protein sequence data to examine the distribution of 872 drug resistance mutations in ∼502,000 sequences for many countries in the world. We also implemented a broadened classification scheme for HIV drug resistance mutations. Several patterns for geographic distributions of resistance mutations were identified by visual mining using this web tool. GoMAP-HIV is an open access web application available at http://www.bio-toolkit.com/GoMap/project/ PMID:24675726

  6. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema

    None

    2011-10-06

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  7. Nuclear Effects of Supernova-Accelerated Cosmic Rays on Early Solar System Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; The, L.-S.; Johnson, J.

    2008-03-01

    The solar system apparently formed in the neighborhood of massive stars. Supernova explosions of these stars accelerate cosmic rays to 100s of TeVs. These cosmic rays could accelerate the beta decay of certain radioactive species in meteorite parent bodies.

  8. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    SciTech Connect

    2010-12-17

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  9. Design and test results of the Low Energy Demonstration Accelerator (LEDA) RF systems

    SciTech Connect

    Rees, D.; Bradley, J. III; Cummings, K.; Lynch, M.; Regan, A.; Rohlev, T.; Roybal, W.; Wang, Y.M.

    1998-12-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos will serve as the prototype for the low energy section of the Accelerator Production of Tritium (APT) accelerator. The APT accelerator requires over 200 RF systems each with a continuous wave output power of 1 MW. The reliability and availability of these RF systems is critical to the successful operation of the APT plant and prototypes of these systems are being developed and demonstrated on LEDA. The RF system design for LEDA includes three, 1.2 MW, 350 MHz continuous wave (CW), RF systems driving a radio frequency quadrupole (RFQ) and one, 1.0 MW, CW, RF system driving a coupled-cavity drift tube linac (CCDTL). This paper presents the design and test results for these RF systems including the klystrons, cathode power supply, circulators, RF vacuum windows, accelerator field and resonance control system, and RF transmission components. The three RF systems driving the RFQ use the accelerating structure as a power combiner, and this places some unique requirements on the RF system. These requirements and corresponding operational implications will be discussed.

  10. Operation of the accelerator

    SciTech Connect

    Pardo, R.C.; Batzka, B.; Billquist, P.J.

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  11. A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Palchan, T.; Pardo, R.; Peters, C.; Power, M.; Scott, R.

    2014-02-01

    A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples.

  12. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  13. Performance of the Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Dumont Dayot, N.

    2016-01-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS LAr Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, which are grouped into 34000 so-called Super Cells, with 12 bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which extracts the Super Cell energies. A demonstrator version of the complete system has now been installed and operated on the ATLAS detector. Results from the commissioning and performance measurements are reported.

  14. Distributed analysis in ATLAS

    NASA Astrophysics Data System (ADS)

    Dewhurst, A.; Legger, F.

    2015-12-01

    The ATLAS experiment accumulated more than 140 PB of data during the first run of the Large Hadron Collider (LHC) at CERN. The analysis of such an amount of data is a challenging task for the distributed physics community. The Distributed Analysis (DA) system of the ATLAS experiment is an established and stable component of the ATLAS distributed computing operations. About half a million user jobs are running daily on DA resources, submitted by more than 1500 ATLAS physicists. The reliability of the DA system during the first run of the LHC and the following shutdown period has been high thanks to the continuous automatic validation of the distributed analysis sites and the user support provided by a dedicated team of expert shifters. During the LHC shutdown, the ATLAS computing model has undergone several changes to improve the analysis workflows, including the re-design of the production system, a new analysis data format and event model, and the development of common reduction and analysis frameworks. We report on the impact such changes have on the DA infrastructure, describe the new DA components, and include recent performance measurements.

  15. Characterization of ion accelerating systems on NASA LeRC's ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1992-01-01

    An investigation is conducted regarding ion-accelerating systems for two NASA thrusters to study the limits of ion-extraction capability or perveance. A total of nine two-grid ion-accelerating systems are tested with the 30- and 50-cm-diam ring-cusp inert-gas ion thrusters emphasizing the extension of ion-extraction. The vacuum-tank testing is described using xenon, krypton, and argon propellants, and thruster performance is computed with attention given to theoretical design considerations. Reductions in perveance are noted with decreasing accelerator-hole-to-screen-hole diameter ratios. Perveance values vary indirectly with the ratio of discharge voltage to total accelerating voltage, and screen/accelerator electrode hole-pair alignment is also found to contribute to perveance values.

  16. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  17. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  18. Power Supply System for the Atlas Experiment: Design Specifications, Implementation, Test and First Results

    NASA Astrophysics Data System (ADS)

    Lazzaroni, M.; Citterio, M.; Latorre, S.; Lanza, A.; Cova, P.; Delmonte, N.; Giuliani, F.

    2014-06-01

    The planned upgrade of instrumentation sensitivity in the ATLAS experiment of the Large Hadron Collider (LHC), at CERN, calls for a new type of power distribution architecture. Moreover, power supplies require DC-DC power converters able to work in very hostile environment and maintaining high level of Reliability, Availability, Maintainability and Safety (denoted as RAMS requirements) during the experimental activity. Two main issues need to be discussed: first, electronic devices and equipment must operate in very high background of both charged and neutral particles and high static magnetic field and, second, the increase of the radiation background and the requirements of new front-end electronics are indeed incompatible with the current capability of the actual distribution system. The APOLLO R&D collaboration, funded by the Italian Istituto Nazionale di Fisica Nucleare (INFN), aims to study dedicated topologies of both distribution system and DC-DC power converters and to design, build and test demonstrators, developing the needed technology for the industrialization phase. The collaboration has designed a 3kW, 280V-12V converter (MC) based on the Switch in Line architecture (SIL), a DC to DC phase-shifted converter characterized by a disposition in line of the MOSFETs with good soft switching performances, and in the last year many steps have been taken to enhance the power dissipation and the reliability and to improve the general features of the designed converter. In particular a new water heat sink was designed on the basis of TFD simulation accounting for the layout of the specific converter. Experimental activities in order to characterize both thermal and electrical features of the MC confirm the correctness of the adopted design criteria.

  19. TRI-SERVICE SITE CHARACTERIZATION AND ANALYSIS PENETROMETER SYSTEM (SCAPS) ACCELERATED SENSOR DEVELOPMENT PROJECT

    EPA Science Inventory

    In 1994, the Strategic Environmental Research and Development Program (SERDP) funded a Tri-Service effort to accelerate the development and fielding of environmental sensing technologies to extend the capabilities of the Site Characterization and Analysis Penetrometer System (SCA...

  20. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    SciTech Connect

    Oda, Y.; Onozuka, M.; Azuma, K.; Kasai, S.; Hasegawa, K.

    1995-12-31

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament.

  1. Optimization of accelerator system performance at the NSLS

    SciTech Connect

    Krinsky, S.

    1994-10-01

    There is an active program of accelerator development at the NSLS aimed at improving reliability, stability and brightness. Work is primarily focused on providing improved performance for the NSLS user community, however, important elements of our work have a generic character and should be of value to other synchrotron radiation facilities. In particular, we have successfully operated a small gap undulator with a full vertical beam aperture of only 3.8 mm, with no degradation of beam lifetime. This provides strong support for the belief that small gap, short period devices will play an important role in the future.

  2. The Compact Accelerator System for Performing Astrophysical Research Underground - CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Wells, Doug; Wiescher, Michael

    2014-03-01

    An accelerator laboratory (CASPAR) to be installed at the Sanford Underground Research Facility (SURF) is being constructed by a collaboration lead by South Dakota School of Mines and Technology. The study of alpha induced reactions of astrophysical interest in a quasi-background free environment is the goal of the laboratory. Specifically, neutron producing reactions for the s-process will be investigated. This process is responsible for the nucleosynthesis of half of the the elements heavier than iron. An outline of CASPAR, its timeline and scientific goals will be presented.

  3. Fast Neutron Radiography at an RFQ Accelerator System

    NASA Astrophysics Data System (ADS)

    Daniels, G. C.; Franklyn, C. B.; Dangendorf, V.; Buffler, A.; Bromberger, B.

    This work introduces the Necsa Radio Frequency Quadrupole (RFQ) accelerator facility and its work concerning fast neutron radiography (FNR). Necsa operates a 4-5 MeV, up to 50 mA deuteron RFQ. The previous deuterium gas target station has been modified to enable producing a white neutron beam employing a solid B4C target. Furthermore, the high energy beam transport (HEBT) section is under adjustment to achieve a longer flight-path and a better focus. This work presents an overview of the facility, the modifications made, and introduces past and ongoing neutron radiography investigations.

  4. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  5. Mercury-Atlas Test Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A NASA Project Mercury spacecraft was test launched at 11:15 AM EST on April 25, 1961 from Cape Canaveral, Florida, in a test designed to qualify the Mercury Spacecraft and all systems, which must function during orbit and reentry from orbit. The Mercury-Atlas vehicle was destroyed by Range Safety Officer about 40 seconds after liftoff. The spacecraft was recovered and appeared to be in good condition. Atlas was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. NASA first launched Atlas as a space launch vehicle in 1958. Project SCORE, the first communications satellite that transmitted President Eisenhower's pre-recorded Christmas speech around the world, was launched on an Atlas. For all three robotic lunar exploration programs, Atlas was used. Atlas/ Centaur vehicles launched both Mariner and Pioneer planetary probes. The current operational Atlas II family has a 100% mission success rating. For more information about Atlas, please see Chapter 2 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  6. Power-conditioning system for the Advanced Test Accelerator

    SciTech Connect

    Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L.; Lee, F.D.; Reginato, L.L.; Rogers, D.; Speckert, G.C.

    1982-06-01

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.

  7. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  8. Los Alamos Neutron Science Center (LANSCE) accelerator timing system upgrade

    SciTech Connect

    Rybarcyk, L.J.; Shelley, F.E. Jr.

    1997-10-01

    The Los Alamos Neutron Science Center (LANSCE) 800 MeV proton linear accelerator (linac) operates at a maximum repetition rate of twice the AC power line frequency, i.e. 120 Hz. The start of each machine cycle occurs a fixed delay after each zero-crossing of the AC line voltage. Fluctuations in the AC line frequency and phase are therefore present on all linac timing signals. Proper beam acceleration along the linac requires that the timing signals remain well synchronized to the AC line. For neutron chopper spectrometers, e.g., PHAROS at the Manuel Lujan Jr. Neutron Scattering Center, accurate neutron energy selection requires that precise synchronization be maintained between the beam-on-target arrival time and the neutron chopper rotor position. This is most easily accomplished when the chopper is synchronized to a stable, fixed frequency signal. A new zero-crossing circuit which employs a Phase-Locked Loop (PLL) has been developed to increase the phase and frequency stability of the linac timing signals and thereby improve neutron chopper performance while simultaneously maintaining proper linac operation. Results of timing signal data analysis and modeling and a description of the PLL circuit are presented.

  9. Method for direct measurement of cosmic acceleration by 21-cm absorption systems.

    PubMed

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-25

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively. PMID:25105607

  10. Lightning First Pulses Used in the "Last" (Time-of-Arrival) and "Atlas" (Single Station) Total Lightning Mapping Systems

    NASA Technical Reports Server (NTRS)

    Markson, Ralph; Ruhnke, Lothar

    1999-01-01

    The first RF pulse from "total lightning' discharges (cloud and ground flashes) has been used in different ways to locate the origin of flashes in two new types of lightning detection systems. The multisensor LASI time-of-arrival (TOA) system uses GPS timing of the first pulse. The ATLAS single sensor system uses the amplitude of the first pulse, which is invariant in magnitude and polarization for all lightning discharges, to determine distance from the sensor. It is significantly more accurate than past single sensor lightning mapping systems. The polarity of the first pulse generally identifies lightning type (IC or CG). Both systems utilize only the first pulse which makes signal processing much simpler than with previous lightning locating systems. Knowing the position where lightning begins (maximum electric fields, mixed phase hydrometeors and updrafts) is valuable for identifying convective cells producing the hazardous meteorological conditions caused by thunderstorms. It is also important for research studying thunderstorm electrification and associated microphysical problems.

  11. ATLAS-1 Logo

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary payload for the Space Shuttle mission STS-45, launched March 24, 1992, was the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1)which was mounted on nondeployable Spacelab pallets in the orbiter cargo bay. Eight countries, th U.S., France, Germany, Belgium, United Kingdom, Switzerland, The Netherlands, and Japan, provided 12 instruments designed to perform 14 investigations in four fields. Atmospheric science instruments/investigations: Atmospheric Lyman-Alpha Emissions (ALAE); Atmospheric Trace Molecule Spectroscopy (ATMOS); Grille Spectrometer (GRILLE); Imaging Spectrometric Observatory (ISO); Millimeter-Wave Atmospheric Sounder (MAS). Solar Science: Active Cavity Radiometer Irradiance Monitor (ACRIM); Measurement of the Solar Constant (SOLCON); Solar Spectrum from 180 to 3,200 Nanometers (SOLSPEC); Solar Ultraviolet Spectral Irradiance Monitor (SUSIM). Space Plasma Physics: Atmospheric Emissions Photometric Imaging (AEPI); Space Experiments with Particle Accelerators (SEPAC). Ultraviolet astronomy: Far Ultraviolet Space Telescope (FAUST). This is the logo or emblem that was designed to represent the ATLAS-1 payload.

  12. About the scheme of the infrared FEL system for the accelerator based on HF wells

    SciTech Connect

    Kabanov, V.S.; Dzergach, A.I.

    1995-12-31

    Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.

  13. Extending PowerPack for Profiling and Analysis of High Performance Accelerator-Based Systems

    SciTech Connect

    Li, Bo; Chang, Hung-Ching; Song, Shuaiwen; Su, Chun-Yi; Meyer, Timmy; Mooring, John; Cameron, Kirk

    2014-12-01

    Accelerators offer a substantial increase in efficiency for high-performance systems offering speedups for computational applications that leverage hardware support for highly-parallel codes. However, the power use of some accelerators exceeds 200 watts at idle which means use at exascale comes at a significant increase in power at a time when we face a power ceiling of about 20 megawatts. Despite the growing domination of accelerator-based systems in the Top500 and Green500 lists of fastest and most efficient supercomputers, there are few detailed studies comparing the power and energy use of common accelerators. In this work, we conduct detailed experimental studies of the power usage and distribution of Xeon-Phi-based systems in comparison to the NVIDIA Tesla and at SandyBridge.

  14. Non-linear stochastic optimal control of acceleration parametrically excited systems

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Jin, Xiaoling; Huang, Zhilong

    2016-02-01

    Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.

  15. An active target for the accelerator-based transmutation system

    SciTech Connect

    Grebyonkin, K. F.

    1995-09-15

    Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket--the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the proton beam and, hence considerably improve economic characteristics of the electronuclear reactor.

  16. Data federation strategies for ATLAS using XRootD

    NASA Astrophysics Data System (ADS)

    Gardner, Robert; Campana, Simone; Duckeck, Guenter; Elmsheuser, Johannes; Hanushevsky, Andrew; Hönig, Friedrich G.; Iven, Jan; Legger, Federica; Vukotic, Ilija; Yang, Wei; Atlas Collaboration

    2014-06-01

    In the past year the ATLAS Collaboration accelerated its program to federate data storage resources using an architecture based on XRootD with its attendant redirection and storage integration services. The main goal of the federation is an improvement in the data access experience for the end user while allowing more efficient and intelligent use of computing resources. Along with these advances come integration with existing ATLAS production services (PanDA and its pilot services) and data management services (DQ2, and in the next generation, Rucio). Functional testing of the federation has been integrated into the standard ATLAS and WLCG monitoring frameworks and a dedicated set of tools provides high granularity information on its current and historical usage. We use a federation topology designed to search from the site's local storage outward to its region and to globally distributed storage resources. We describe programmatic testing of various federation access modes including direct access over the wide area network and staging of remote data files to local disk. To support job-brokering decisions, a time-dependent cost-of-data-access matrix is made taking into account network performance and key site performance factors. The system's response to production-scale physics analysis workloads, either from individual end-users or ATLAS analysis services, is discussed.

  17. Low-level RF control system issues for an ADTT accelerator

    SciTech Connect

    Ziomek, C.D.; Regan, A.H.; Lynch, M.T.; Bowling, P.S.

    1994-09-01

    The RF control system for a charged-particle accelerator must maintain the correct amplitude and phase of RF field inside the accelerator cavity in the presence of perturbations, noises, and time varying system components. For an accelerator with heavy beam-loading, fluctuations in the beam current cause large perturbations to the RF field amplitude and phase that must be corrected by the RF control system. The ADTT applications require a high-current, heavily beam-loaded, continuous-wave (CW) accelerator. Additional concerns created by the CW operation include system start-up, beam interruption, and fault recovery. Also, the RF control system for an ADTT facility must include sophisticated automation to reduce the operator interaction and support. This paper describes an RF control system design that addresses these various issues by evaluation a combination of feedback and feed forward control techniques. Experience from the high-current Ground Test Accelerator (GTA) is drawn upon for this RF control system design. Comprehensive computer modeling with the Matrix{sub x} software has been used to predict the performance of this RF control system.

  18. Low-level RF control system issues for an ADTT accelerator

    SciTech Connect

    Ziomek, C. D.; Regan, A. H.; Lynch, M. T.; Bowling, P. S.

    1995-09-15

    The RF control system for a charged-particle accelerator must maintain the correct amplitude and phase of the RF field inside the accelerator cavity in the presence of perturbations, noises, and time varying system components. For an accelerator with heavy beam-loading, fluctuations in the beam current cause large perturbations to the RF field amplitude and phase that must be corrected by the RF control system. The ADTT applications require a high-current, heavily beam-loaded, continuous-wave (CW) accelerator. Additional concerns created by the CW operation include system start-up, beam interruption, and fault recovery. Also, the RF control system for an ADTT facility must include sophisticated automation to reduce the operator interaction and support. This paper describes an RF control system design that addresses these various issues by evaluation a combination of feedback and feedforward control techniques. Experience from the high-current Ground Test Accelerator (GTA) is drawn upon for this RF control system design. Comprehensive computer modeling with the Matrixx software has been used to predict the performance of this RF control system.

  19. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-11-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  20. Unsupervised classification of Space Acceleration Measurement System (SAMS) data using ART2-A

    NASA Technical Reports Server (NTRS)

    Smith, A. D.; Sinha, A.

    1999-01-01

    The Space Acceleration Measurement System (SAMS) has been developed by NASA to monitor the microgravity acceleration environment aboard the space shuttle. The amount of data collected by a SAMS unit during a shuttle mission is in the several gigabytes range. Adaptive Resonance Theory 2-A (ART2-A), an unsupervised neural network, has been used to cluster these data and to develop cause and effect relationships among disturbances and the acceleration environment. Using input patterns formed on the basis of power spectral densities (psd), data collected from two missions, STS-050 and STS-057, have been clustered.

  1. Atlas Regeneration, Inc.

    PubMed

    Makarev, Eugene; Isayev, Olexandr; Atala, Anthony

    2016-03-01

    Atlas Regeneration is dedicated to the development of novel data-driven solutions for regenerative medicine, adapting proven technologies, and analysis strategies to take a multiomics-wide view of stem cell quality and cell fate design. Our core offering is a global comprehensive map of stem cell differentiation, Universal Signalome Atlas for Regenerative Medicine, reflecting the pathway activation states across all characterized stem cells and their differentiated products. Key applications of Universal Signalome Atlas for Regenerative Medicine will include quality assurance for engineered cell products, and directed regeneration pharmacology, where we will screen and identify compounds that can efficiently convert pluripotent cells into desired subtypes. Another marketable piece of IP is development of specialized signaling pathway analysis systems Regeneration Intelligence which supposed to target the unmet needs of determination and prediction of stem cell signaling pathway activation to govern cell differentiation in specific directions. PMID:26925598

  2. The ATLAS Positron Experiment -- APEX

    SciTech Connect

    Ahmad, I.; Back, B.B.; Betts, R.R.; Dunford, R.; Kutschera, W.; Rhein, M.D.; Schiffer, J.P.; Wilt, P.; Wuosmaa, A.; Austin, S.M.; Kashy, E.; Winfield, J.S.; Yurkon, J.E.; Bazin, D.; Calaprice, F.P.; Young, A.; Chan, K.C.; Chisti, A.; Chowhury, P.; Greenberg, J.S.; Kaloskamis, N.; Lister, C.J.; Fox, J.D.; Roa, E.; Freedman, S.; Maier, M.R.; Freer, M.; Gazes, S.; Hallin, A.L.; Liu, M.; Happ, T.; Perera, A.; Wolfs, F.L.H.; Trainor, T.; Wolanski, M. |

    1994-03-01

    APEX -- the ATLAS Positron Experiment -- is designed to measure electrons and positrons emitted in heavy-ion collisions. Its scientific goal is to gain insight into the puzzling positron-line phenomena observed at the GSI Darmstadt. It is in operation at the ATLAS accelerator at Argonne National Lab. The assembly of the apparatus is finished and beginning 1993 the first positrons produced in heavy-ion collisions were observed. The first full scale experiment was carried out in December 1993, and the data are currently being analyzed. In this paper, the principles of operation are explained and a status report on the experiment is given.

  3. System modeling for the longitudinal beam dynamics control problem in heavy ion induction accelerators

    SciTech Connect

    Payne, A.N.

    1993-05-17

    We address the problem of developing system models that are suitable for studying the control of the longitudinal beam dynamics in induction accelerators for heavy ions. In particular, we present the preliminary results of our efforts to devise a general framework for building detailed, integrated models of accelerator systems consisting of pulsed power modular circuits, induction cells, beam dynamics, and control system elements. Such a framework will permit us to analyze and design the pulsed power modulators and the control systems required to effect precise control over the longitudinal beam dynamics.

  4. Histology Atlas of the Developing Mouse Hepatobiliary Hemolymphatic Vascular System with Emphasis on Embryonic Days 11.5-18.5 and Early Postnatal Development.

    PubMed

    Swartley, Olivia M; Foley, Julie F; Livingston, David P; Cullen, John M; Elmore, Susan A

    2016-07-01

    A critical event in embryo development is the proper formation of the vascular system, of which the hepatobiliary system plays a pivotal role. This has led researchers to use transgenic mice to identify the critical steps involved in developmental disorders associated with the hepatobiliary vascular system. Vascular development is dependent upon normal vasculogenesis, angiogenesis, and the transformation of vessels into their adult counterparts. Any alteration in vascular development has the potential to cause deformities or embryonic death. Numerous publications describe specific stages of vascular development relating to various organs, but a single resource detailing the stage-by-stage development of the vasculature pertaining to the hepatobiliary system has not been available. This comprehensive histology atlas provides hematoxylin & eosin and immunohistochemical-stained sections of the developing mouse blood and lymphatic vasculature with emphasis on the hepatobiliary system between embryonic days (E) 11.5-18.5 and the early postnatal period. Additionally, this atlas includes a 3-dimensional video representation of the E18.5 mouse venous vasculature. One of the most noteworthy findings of this atlas is the identification of the portal sinus within the mouse, which has been erroneously misinterpreted as the ductus venosus in previous publications. Although the primary purpose of this atlas is to identify normal hepatobiliary vascular development, potential embryonic abnormalities are also described. PMID:26961180

  5. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  6. A Study of the Design of Acceleration Control System for Missiles

    NASA Astrophysics Data System (ADS)

    Kajita, Takanori; Eguchi, Hirofumi

    A 2-degrees of freedom PID controller is designed for a maneuvering acceleration control system. This design method is based on the combination of PID and IPD controller. Results show that (1) IP controller is superior to PI controller for the damper loop controller, (2) the selection of PI or IP controller as for the acceleration controller depends on the tradeoffs between the responsibility and the reduction of inverse response.

  7. Tunnel radio communications system at Stanford Linear Accelerator Center

    SciTech Connect

    Struven, W.C.

    1980-07-01

    A unique single frequency, dual daisy chain tunnel radio communication system has been developed for use in our new Positron-Electron Storage Ring. Communications are possible between portables in the underground ring and between a portable in the ring and all control rooms on the site. The system is designed as a wide band facility and therefore can carry many simplex and duplex transmissions. This system utilizes TV twinlead as a distributed antenna and repeater amplifiers to cover more than 7000 feet of underground tunnel. The design philosophy, tests and initial design are discussed and contrasted with the final implementation of the system. Future uses of the system are discussed.

  8. ACCELERATORS: RF system design and measurement of HIRF-CSRe

    NASA Astrophysics Data System (ADS)

    Xu, Zhe; Zhao, Hong-Wei; Wang, Chun-Xiao; Xia, Jia-Wen; Zhan, Wen-Long; Bian, Zhi-Bin

    2009-05-01

    An RF system for the CSRe (cooling storage experimental ring) is designed and manufactured domestically. The present paper mainly describes the RF system design in five main sections: ferrite ring, RF cavity, RF generator, low level system and cavity cooling. The cavity is based on a type of coaxial resonator which is shorted at the end with one gap and loaded with domestic ferrite rings. The RF generator is designed in the push-pull mode and the low level control system is based on a DSP+FGPA+DDS+USB interface and has three feedback loops. Finally we give the results of the measurement on our system.

  9. The Machine Protection System for the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Wu, Jinyuan; Warner, Arden; Liu, Ning; Neswold, Richard; Carmichael, Linden

    2015-11-15

    The Machine Protection System (MPS) for the Fermilab Accelerator Science and Technology Facility (FAST) has been implemented and tested. The system receives signals from several subsystems and devices which conveys the relevant status needed to the safely operate the accelerator. Logic decisions are made based on these inputs and some predefined user settings which in turn controls the gate signal to the laser of the photo injector. The inputs of the system have a wide variety of signal types, encoding methods and urgencies for which the system is designed to accommodate. The MPS receives fast shutdown (FSD) signals generated by the beam loss system and inhibits the beam or reduces the beam intensity within a macropulse when the beam losses at several places along the accelerator beam line are higher than acceptable values. TTL or relay contact signals from the vacuum system, toroids, magnet systems etc., are chosen with polarities that ensure safe operation of the accelerator from unintended events such as cable disconnection in the harsh industrial environment of the experimental hall. A RS422 serial communication scheme is used to interface the operation permit generator module and a large number of movable devices each reporting multi-bit status. The system also supports operations at user defined lower beam levels for system conunissioning. The machine protection system is implemented with two commercially available off-the-shelf VMEbus based modules with on board FPGA devices. The system is monitored and controlled via the VMEbus by a single board CPU

  10. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-09-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  11. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-06-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  12. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-03-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  13. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-08-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  14. Artificial intelligence research in particle accelerator control systems for beam line tuning

    SciTech Connect

    Pieck, Martin

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  15. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  16. The Datacon Master -- Renovation of a Datacon field bus communications system for accelerator control

    SciTech Connect

    Kerner, T.M.

    1995-05-01

    The Datacon system is a serial coaxial transformer isolated communication field bus system used to control and monitor accelerator remote devices. The Datacon field bus has been a BNL accelerator standard since its initial use in 1965. A single Datacon field bus supports up to 256 devices on a multidrop RG62A/U coaxial cable with up to 33 devices or 2,000 feet between repeaters or buffered branches. The forcing factor to renovate was the inability to repair the aging PDP-8E and PDP10 computers. The maintenance on this aging system was costly and the large number of accelerator devices dependent on the Datacon system could not be converted in a reasonable period of time to a new modern field bus. A commercial VMEbus host CPU mated with a custom designed VMEbus SBC event driven serial communications engine featuring a superscaler RISC 32-bit Intel i960 CPU met the design challenge. The commercial VMEbus host runs the VxWorks real-time operating system and connects to UNIX workstations over a Ethernet LAN. The V110 Datacon Master is the custom designed front end computer that integrates an accelerator event time line system with accelerator devices for up to 8 ppm users adding new capabilities.

  17. An Overview of the Low Energy Demonstration Accelerator (LEDA)= Project RF=20 Systems

    NASA Astrophysics Data System (ADS)

    Bradley, Joseph T., III; Rees, Daniel E.; Lynch, Michael T.; Cummings, Karen A.; Roybal, William T.; Tallerico, Paul J.; Toole, Loren L.

    1997-05-01

    Successful operation of the Accelerator Production of Tritium (APT) plant will require that accelerator downtime be kept to an absolute minimum. Over 200 separate 1 MW RF systems are expected to be used in the APT plant, making the efficiency and reliability of these systems two of the most critical factors in plant operation. The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for APT. The design of the RF systems used in LEDA has been driven by the need for high efficiency and extremely high system reliability. We present details of the High Voltage Power Supply and transmitter systems as well as detailed descriptions of the waveguide layout between the klystrons and the accelerating cavities. The first stage of LEDA operations will use as many as six 1 MW klystrons to test the RFQ and a single CCDTL section. Each accelerating cavity will serve as a power combiner for multiple RF systems. We present some of the unique challenges expected in the use of this concep t.

  18. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    NASA Astrophysics Data System (ADS)

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-01

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  19. The ATLAS Software Installation System v2: a highly available system to install and validate Grid and Cloud sites via Panda

    NASA Astrophysics Data System (ADS)

    De Salvo, A.; Kataoka, M.; Sanchez Pineda, A.; Smirnov, Y.

    2015-12-01

    The ATLAS Installation System v2 is the evolution of the original system, used since 2003. The original tool has been completely re-designed in terms of database backend and components, adding support for submission to multiple backends, including the original Workload Management Service (WMS) and the new PanDA modules. The database engine has been changed from plain MySQL to Galera/Percona and the table structure has been optimized to allow a full High-Availability (HA) solution over Wide Area Network. The servlets, running on each frontend, have been also decoupled from local settings, to allow an easy scalability of the system, including the possibility of an HA system with multiple sites. The clients can also be run in multiple copies and in different geographical locations, and take care of sending the installation and validation jobs to the target Grid or Cloud sites. Moreover, the Installation Database is used as source of parameters by the automatic agents running in CVMFS, in order to install the software and distribute it to the sites. The system is in production for ATLAS since 2013, having as main sites in HA the INFN Roma Tier 2 and the CERN Agile Infrastructure. The Light Job Submission Framework for Installation (LJSFi) v2 engine is directly interfacing with PanDA for the Job Management, the Atlas Grid Information System (AGIS) for the site parameter configurations, and CVMFS for both core components and the installation of the software itself. LJSFi2 is also able to use other plugins, and is essentially Virtual Organization (VO) agnostic, so can be directly used and extended to cope with the requirements of any Grid or Cloud enabled VO. In this work we will present the architecture, performance, status and possible evolutions to the system for the LHC Run2 and beyond.

  20. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  1. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  2. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    SciTech Connect

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-19

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 Multiplication-Sign 300 mm{sup 2}. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  3. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  4. Monitoring of D-T accelerator neutron output in a PGNAA system using silicon carbide detectors

    NASA Astrophysics Data System (ADS)

    Dulloo, Abdul R.; Ruddy, Frank H.; Seidel, John G.; Petrović, Bojan

    2001-07-01

    Silicon carbide (SiC) detectors are being employed to monitor the neutron output of the D-T accelerator in a pulsed Prompt Gamma Neutron Activation Analysis (PGNAA) system. Detection of the source neutrons relies on energetic neutron reactions in the detector material. Experimental testing has been performed to confirm that the detector response is caused by fast neutrons from the accelerator source. Modeling calculations have also been carried out to provide additional verification. Use of the SiC detectors in the PGNAA system is expected to assist in evaluating system performance as well as ensuring accurate data interpretation and analysis.

  5. ACCELERATORS Control system for the CSNS ion source test stand

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Hua; Li, Gang; Ouyang, Hua-Fu

    2010-12-01

    A penning plasma surface H- ion source test stand for the CSNS has just been constructed at the IHEP. In order to achieve a safe and reliable system, nearly all devices of the ion source are designed to have the capability of both local and remote operation function. The control system consists of PLCs and EPICS real-time software tools separately serving device control and monitoring, PLC integration and OPI support. This paper summarizes the hardware and software implementation satisfying the requirements of the ion source control system.

  6. The electron-optical system of the LIU-2 induction accelerator

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. I.; Batazova, M. A.

    2014-09-01

    The electron-optical system (EOS) of an induction accelerator for generation of an electron beam with an energy of 2 MeV, a current of 2 kA, an impulse duration of 2 × 10-7 s, and a geometric output emittance not exceeding the thermal value of it is described. The EOS consists of two parts. The first part is a diode gun with a perveance of 2 × 10-6 A/B3/2 and a cathode-anode voltage of 1 MeV. The second part is an accelerating tube with uniform distribution of the same accelerating voltage. A beam is transported at a distance of about 4 m from the cathode and focused on a spot with a diameter of about 1 mm. The compliance tests results of the linear-induction accelerator precisely conform to the calculated design parameters.

  7. Systems approach to measuring short-duration acceleration transients

    NASA Astrophysics Data System (ADS)

    Schelby, F.

    A shock measurement system was developed in which the quartz seismic system, two poole active filter and an FET source follower are incorporated in a transducer housing. It is shown that the system will survive + or 100,000g without damage. The PCB can supply different ranges as required. The PCB Model 305M23, can obtain data comparable to those of standard piezoelectric and piezoresistive accelerometers when high frequencies are absent. In the presence of high frequency stimuli, the accelerometer has obtained data without over ranging its data channel and without introducing error signals from excitation of the resonant frequency of its seismic system. It is useful for impact and pyrotechnic measurements. The development effort and test program have enhanced the probability of acquiring successful structural measurements in harsh mechanical loading environments.

  8. Distributed UHV system for the folded tandem ion accelerator facility at BARC

    NASA Astrophysics Data System (ADS)

    Gupta, S. K.; Agarwal, A.; Singh, S. K.; Basu, A.; P, Sapna; Sarode, S. P.; Singh, V. P.; Subrahmanyam, N. B. V.; Bhatt, J. P.; Pol, S. S.; Raut, P. J.; Ware, S. V.; Singh, P.; Choudhury, R. K.; Kailas, S.

    2008-05-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) Facility at the Nuclear Physics Division, BARC is operational and accelerated beams of both light and heavy ions are being used extensively for basic and applied research. An average vacuum of the order of 10-8-10-9 Torr is maintained for maximum beam transmission and minimum beam energy spreads. The FOTIA vacuum system comprises of about 55 meter long, 100 mm diameter beam lines including various diagnostic devices, two accelerating tubes and four narrow vacuum chambers. The cross sections of the vacuum chambers are 14mm × 24mm for 180°, 38mm × 60mm and 19 × 44 mm for the and 70° & 90° bending magnets and Switching chambers respectively. All the beam line components are UHV compatible, fabricated from stainless steel 304L grade material fitted with metal gaskets. The total volume ~5.8 × 105 cm3 and surface area of 4.6 × 104 cm2, interspersed with total 18 pumping stations. The accelerating tubes are subjected to very high voltage gradient, 20.4 kV/cm, which requires a hydrocarbon free and clean vacuum for smooth operation of the accelerator. Vacuum interlocks are provided to various devices for safe operation of the accelerator. Specially designed sputter ion pumps for higher environmental pressure of 8 atmospheres are used to pump the accelerating tubes and the vacuum chamber for the 180° bending magnet. Fast acting valves are provided for isolating main accelerator against accidental air rush from rest of the beam lines. All the vacuum readings are displayed locally and are also available remotely through computer interface to the Control Room. Vacuum system details are described in this paper.

  9. 10-GW CO{sub 2} laser system at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.; Fischer, J.; Fisher, A.S.

    1993-12-31

    Design and performance of a high peak-power CO{sub 2} laser system to produce subnanosecond IR pulses for electron acceleration experiment are presented. We discuss theoretical aspects of the picosecond laser pulse propagation in a molecular amplifier and a design approach towards compact Terawatt CO{sub 2} laser systems.

  10. Modeling of accelerator systems and experimental verification of Quarter-Wave Resonator steering

    NASA Astrophysics Data System (ADS)

    Benatti, Carla

    Increasingly complicated accelerator systems depend more and more on computing power and computer simulations for their operation as progress in the field has led to cutting-edge advances that require finer control and better understanding to achieve optimal performance. Greater ambitions coupled with the technical complexity of today's state-of-the-art accelerators necessitate corresponding advances in available accelerator modeling resources. Modeling is a critical component of any field of physics, accelerator physics being no exception. It is extremely important to not only understand the basic underlying physics principles but to implement this understanding through the development of relevant modeling tools that provide the ability to investigate and study various complex effects. Moreover, these tools can lead to new insight and applications that facilitate control room operations and enable advances in the field that would not otherwise be possible. The ability to accurately model accelerator systems aids in the successful operation of machines designed specifically to deliver beams to experiments across a wide variety of fields, ranging from material science research to nuclear astrophysics. One such accelerator discussed throughout this work is the ReA facility at the National Superconducting Cyclotron Laboratory (NSCL) which re-accelerates rare isotope beams for nuclear astrophysics experiments. A major component of the ReA facility, as well as the future Facility for Rare Isotope Beams (FRIB) among other accelerators, is the Quarter-Wave Resonator (QWR), a coaxial accelerating cavity convenient for efficient acceleration of low-velocity particles. This device is very important to model accurately as it operates in the critical low-velocity region where the beam's acceleration gains are proportionally larger than they are through the later stages of acceleration. Compounding this matter, QWRs defocus the beam, and are also asymmetric with respect to the

  11. Status of the Advanced Photon Source and its accelerator control system

    SciTech Connect

    McDowell, W.; Knott, M.; Kraimer, K.M.

    1993-11-01

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  12. On designing a control system for a new generation of accelerators

    SciTech Connect

    Schaller, S.C.; Schultz, D.E.

    1987-01-01

    A well-conceived plan of attack is essential to the task of designing a control system for a large accelerator. Several aspects of such a plan have been investigated during recent work at LAMPF on design strategies for an Advanced Hadron Facility control system. Aspects discussed in this paper include: identification of requirements, creation and enforcement of standards, interaction with users, consideration of commercial controls products, integration with existing control systems, planning for continual change, and establishment of design reviews. We emphasize the need for the controls group to acquire and integrate accelerator design information from the start of the design process. We suggest that a controls design for a new generation of accelerators be done with a new generation of software tools. 12 refs.

  13. Systems approach to measuring short-duration acceleration transients

    SciTech Connect

    Schelby, F.

    1983-01-01

    A shock measurement system has been developed in which the quartz seismic system, two-poole active filter and an FET source follower are incorporated in a transducer housing measuring 5/16'' hex.x 5/8''. Tests have shown that the system will survive +- 100,000g without damage. Although the results reported here are for accelerometers ranged to +- 20,000g, there is no reason to limit the accelerometers to that range and PCB can supply different ranges as required. The PCB Model 305M23, developed to Sandia's specifications, has proved capable of obtaining data comparable to that of standard piezoelectric and piezoresistive accelerometers when high frequencies are absent. In the presence of high frequency stimuli, the accelerometer has obtained data without over-ranging its data channel and without introducing error signals from excitation of the resonant frequency of its seismic system. It should, therefore, be especially useful for impact and pyrotechnic measurements. These shock accelerometers are in the process of being fielded in earth penetrator vehicles; in shale rubblization experiments will soon be available. It appears this joint development effort and test program has greatly enhanced the probability of acquiring successful structural measurements in harsh mechanical loading environments.

  14. Cryogenic molecular separation system for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.

    2015-12-01

    A 11C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. In the ISOL system, 11CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive 12CH4 gases, which can simulate the chemical characteristics of 11CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  15. Dynamics of the accelerator-driven system as a variable gain amplifier

    SciTech Connect

    Woosley, M.L. Jr.; Rydin, R.A.

    1995-12-31

    Historically, subcritical accelerator-driven systems have been called electronuclear devices. Interest in these devices has been revived for numerous nuclear applications, such as boron neutron capture therapy, accelerator transmutation of waste (ATW), and accelerator-based conversion (ABC). The latter systems are being investigated at Los Alamos National Laboratory for energy production and radioactive waste transmutation. The ATW and ABC in particular are accelerator-(source)-driven subcritical fluid-fueled systems. System dynamics are affected by movement of delayed neutron precursors and poisons into and out of the active multiplying region, giving both a reactivity effect and reduced {Beta} (called {Beta}{sub eff}). A salient dynamic characteristic of the system is that the neutron population (power) is very sensitive to the level of subcritical reactivity, which can depend on poisoning, depletion, and thermal feedback over short operational time scales. Ruby has pointed out that the dynamic behavior of systems containing sources is not fully appreciated. It is our purpose here to illustrate some of the more interesting dynamic characteristics of systems like ATW or ABC.

  16. Calibration and data quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    NASA Astrophysics Data System (ADS)

    Ženiš, T.

    2016-07-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as the results on their performance in terms of calibration factors, linearity and stability is given. The data quality procedures and efficiency of the Tile Calorimeter during the LHC Run-1 data-taking period are presented as well.

  17. Reliability and availability considerations in the RF systems of ATW-class accelerators

    NASA Astrophysics Data System (ADS)

    Tallerico, Paul J.; Lynch, Michael T.; Lawrence, George

    1995-09-01

    In an RF-driven, ion accelerator for waste transmutation or nuclear material production, the overall availability is perhaps the most important specification. The synchronism requirements in an ion accelerator, as contrasted to an electron accelerator, cause a failure of an RF source to have a greater consequence. These large machines also are major capital investments, so the availability determines the return on this capital. RF system design methods to insure a high availability without paying a serious cost penalty are the subject of this paper. The overall availability goal in our present designs is 75% for the entire ATW complex, and from 25 to 35% of the unavailability is allocated to the RF system, since it is one of the most complicated subsystems in the complex. The allowed down time for the RF system (including the linac and all other subsystems) is then only 7 to 9% of the operating time per year, or as little as 613 hours per year, for continuous operation. Since large accelerators consume large amounts of electrical power, excellent efficiency is also required with the excellent availability. The availability also influences the sizes of the RF components: smaller components may fail and yet the accelerator may still meet all specifications. Larger components are also attractive, since the cost of an RF system usually increases as the square root of the number of RF systems utilized. In some cases, there is a reliability penalty that accompanies the cost savings from using larger components. We discuss these factors, and present an availability model that allows one to examine these trade offs, and make rational choices in the RF and accelerator system designs.

  18. The CEBAF (Continuous Electron Beam Accelerator Facility) fast shutdown system

    SciTech Connect

    Perry, J.; Woodworth, E.

    1990-09-01

    Because of the high power in the CEBAF beam, equipment must be protected in the event of beam loss. The policy that has been adopted is to require a positive permissive signal from each of several inputs in order to operate the gun that starts the beam. If the permissive is removed, the gun shuts off within 20 {mu}s. The inputs that are now monitored include radiation monitors that detect beam loss directly, vacuum monitors (which also observe the status of various in-line valves), and general input from the rf system, which combines detection of klystron failure, arcs, and rf window high temperature. The system is expandable, so other fault detectors can be added if experience shows their necessity.

  19. FPGA-accelerated algorithm for the regular expression matching system

    NASA Astrophysics Data System (ADS)

    Russek, P.; Wiatr, K.

    2015-01-01

    This article describes an algorithm to support a regular expressions matching system. The goal was to achieve an attractive performance system with low energy consumption. The basic idea of the algorithm comes from a concept of the Bloom filter. It starts from the extraction of static sub-strings for strings of regular expressions. The algorithm is devised to gain from its decomposition into parts which are intended to be executed by custom hardware and the central processing unit (CPU). The pipelined custom processor architecture is proposed and a software algorithm explained accordingly. The software part of the algorithm was coded in C and runs on a processor from the ARM family. The hardware architecture was described in VHDL and implemented in field programmable gate array (FPGA). The performance results and required resources of the above experiments are given. An example of target application for the presented solution is computer and network security systems. The idea was tested on nearly 100,000 body-based viruses from the ClamAV virus database. The solution is intended for the emerging technology of clusters of low-energy computing nodes.

  20. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  1. Optimizing a mobile robot control system using GPU acceleration

    NASA Astrophysics Data System (ADS)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  2. Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks

    SciTech Connect

    Hartman, Steven M

    2012-01-01

    Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

  3. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  4. Alignment strategy for the ATLAS tracker

    SciTech Connect

    ATLAS; Golling, T.

    2007-09-23

    The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle collisions produced by the Large Hadron Collider. For the reconstruction of charged particles, and their production and their decay vertices, ATLAS is equipped with a sophisticated tracking system, unprecedented in size and complexity. Full exploitation of both the Inner Detector and the muon spectrometer requires an accurate alignment. The challenge of aligning the ATLAS tracking devices is discussed, and the ATLAS alignment strategy is presented and illustrated with both data and Monte Carlo results.

  5. Commissioning of the ATLAS pixel detector

    SciTech Connect

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  6. Vacuum system of the 3MeV industrial electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  7. Accelerating Cancer Systems Biology Research through Semantic Web Technology

    PubMed Central

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S.

    2012-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute’s caBIG®, so users can not only interact with the DMR through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers’ intellectual property. PMID:23188758

  8. Accelerating cancer systems biology research through Semantic Web technology.

    PubMed

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. PMID:23188758

  9. Progress towards accelerating HOMME on hybrid multi- core systems

    SciTech Connect

    Archibald, Richard K; Carpenter, Ilene L; Evans, Katherine J; Larkin, Jeff; Micikevicius, Paulius; Rosinski, James; Schwarzmeier, James L; Taylor, Mark

    2011-01-01

    The suitability of a spectral element based dynamical core (HOMME) within the Community Atmospheric Model (CAM) for GPU-based architectures is examined and initial performance results are reported. This work was done within a project to enable CAM to run at high resolution on next generation, multi-petaflop systems. The dynamical core is the present focus because it dominates the performance profile of our target problem. HOMME enjoys good scalability due to its underlying cubed-sphere mesh with full two-dimensional decomposition and the localization of all computational work within each element. The thread blocking and code changes that allow HOMME to effectively use GPUs are described along with a rewritten vertical remapping scheme which improves performance on both CPUs and GPUs. Validation of results in the full HOMME model is also described. Remaining issues affecting performance include optimizing the boundary exchanges for the case of multiple spectral elements being computed on the GPU and using multiple CUDA streams to overlap data transfers with computations.

  10. Image database for digital hand atlas

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente; Dey, Partha S.; Gertych, Arkadiusz; Pospiech-Kurkowska, Sywia

    2003-05-01

    Bone age assessment is a procedure frequently performed in pediatric patients to evaluate their growth disorder. A commonly used method is atlas matching by a visual comparison of a hand radiograph with a small reference set of old Greulich-Pyle atlas. We have developed a new digital hand atlas with a large set of clinically normal hand images of diverse ethnic groups. In this paper, we will present our system design and implementation of the digital atlas database to support the computer-aided atlas matching for bone age assessment. The system consists of a hand atlas image database, a computer-aided diagnostic (CAD) software module for image processing and atlas matching, and a Web user interface. Users can use a Web browser to push DICOM images, directly or indirectly from PACS, to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, are then extracted and compared with patterns from the atlas image database to assess the bone age. The digital atlas method built on a large image database and current Internet technology provides an alternative to supplement or replace the traditional one for a quantitative, accurate and cost-effective assessment of bone age.

  11. Rad-hard vertical JFET switch for the HV-MUX system of the ATLAS upgrade Inner Tracker

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, P.; Ullán, M.; Flores, D.; Hidalgo, S.; Quirion, D.; Lynn, D.

    2016-01-01

    This work presents a new silicon vertical JFET (V-JFET) device, based on the trenched 3D-detector technology developed at IMB-CNM, to be used as a switch for the High-Voltage powering scheme of the ATLAS upgrade Inner Tracker. The optimization of the device characteristics is performed by 2D and 3D TCAD simulations. Special attention has been paid to the on-resistance and the switch-off and breakdown voltages to meet the specific requirements of the system. In addition, a set of parameter values has been extracted from the simulated curves to implement a SPICE model of the proposed V-JFET transistor. As these devices are expected to operate under very high radiation conditions during the whole experiment life-time, a study of the radiation damage effects and the expected degradation of the device performance is also presented at the end of the paper.

  12. Asynchronous data change notification between database server and accelerator controls system

    SciTech Connect

    Fu, W.; Morris, J.; Nemesure, S.

    2011-10-10

    Database data change notification (DCN) is a commonly used feature. Not all database management systems (DBMS) provide an explicit DCN mechanism. Even for those DBMS's which support DCN (such as Oracle and MS SQL server), some server side and/or client side programming may be required to make the DCN system work. This makes the setup of DCN between database server and interested clients tedious and time consuming. In accelerator control systems, there are many well established software client/server architectures (such as CDEV, EPICS, and ADO) that can be used to implement data reflection servers that transfer data asynchronously to any client using the standard SET/GET API. This paper describes a method for using such a data reflection server to set up asynchronous DCN (ADCN) between a DBMS and clients. This method works well for all DBMS systems which provide database trigger functionality. Asynchronous data change notification (ADCN) between database server and clients can be realized by combining the use of a database trigger mechanism, which is supported by major DBMS systems, with server processes that use client/server software architectures that are familiar in the accelerator controls community (such as EPICS, CDEV or ADO). This approach makes the ADCN system easy to set up and integrate into an accelerator controls system. Several ADCN systems have been set up and used in the RHIC-AGS controls system.

  13. Radiation Safety System of the B-Factory at the Stanford Linear Accelerator Center

    SciTech Connect

    Liu, James C

    1998-10-12

    The radiation safety system (RSS) of the B-Factory accelerator facility at the Stanford Linear Accelerator Center (SLAC) is described. The RSS, which is designed to protect people from prompt radiation exposure due to beam operation, consists of the access control system (ACS) and the radiation containment system (RCS). The ACS prevents people from being exposed to the very high radiation levels inside a beamline shielding housing. The ACS consists of barriers, a standard entry module at every entrance, and beam stoppers. The RCS prevents people from being exposed to the radiation outside a shielding housing, due to either normal or abnormal operation. The RCS consists of power limiting devices, shielding, dump/collimator, and an active radiation monitor system. The inter-related system elements for the ACS and RCS, as well as the associated interlock network, are described. The policies and practices in setting up the RSS are also compared with the regulatory requirements.

  14. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  15. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope. This standard establishes requirements for the return of a vehicle's throttle to the idle position...

  16. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope. This standard establishes requirements for the return of a vehicle's throttle to the idle position...

  17. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Standard No. 124; Accelerator control systems. 571.124 Section 571.124 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards...

  18. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.124 Standard No. 124; Accelerator control systems. S1. Scope. This standard establishes requirements for the return of a vehicle's throttle to the idle position...

  19. Tracking and Data Relay Satellite System configuration and tradeoff study. Volume 3: Atlas Centaur launched TDRSS. Part 2: Final Report, 22 August 1972 - 1 April 1973

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Configuration data and design information for the Atlas Centaur launched configuration are presented. Overall system definition, operations and control, and telecommunication service system, including link budgets, are discussed. A brief description of the user telecommunications equipment and ground station is presented. A summary description of the TDR spacecraft and all the subsystems is included. The data presented are largely in tabular form. A brief treatment of an optional configuration with enhanced telecommunications service is described.

  20. Numerical simulation of reacting flow in a thermally choked ram accelerator projectile launch system

    NASA Astrophysics Data System (ADS)

    Nusca, Michael J.

    1991-06-01

    CFD solutions for the Navier-Stokes equations are presently applied to a ram-accelerator projectile launcher's reacting and nonreacting turbulent flowfields. The gases in question are a hydrocarbon such as CH4, an oxidizer such as O2, and an inert gas such as N2. Numerical simulations are presented which highlight in-bore flowfield details and allow comparisons with measured launch tube wall pressures and projectile thrust as a function of velocity. The computation results thus obtained are used to ascertain the operational feasibility of a proposed 120-mm-bore ram accelerator system.

  1. THE ENEA ADS PROJECT:. Accelerator Driven System Prototype R&D and Industrial Program

    NASA Astrophysics Data System (ADS)

    Gherardi, Giuseppe

    2001-11-01

    Hybrid reactors (Accelerator Driven Sub-critical Systems, ADS), coupling an accelerator with a target and a sub-critical reactor, could simultaneously burn minor actinides and transmute long-lived fission products, while producing a consistent amount of electrical energy. A group of Italian research and development (R&D) organizations and industries have set up a team, which is studying the design issues related to the construction of an 80 MWth Experimental Facility. The planned activities and the (tentative) time schedule of the Italian program are presented.

  2. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  3. MarsAtlas: A cortical parcellation atlas for functional mapping.

    PubMed

    Auzias, Guillaume; Coulon, Olivier; Brovelli, Andrea

    2016-04-01

    An open question in neuroimaging is how to develop anatomical brain atlases for the analysis of functional data. Here, we present a cortical parcellation model based on macroanatomical information and test its validity on visuomotor-related cortical functional networks. The parcellation model is based on a recently developed cortical parameterization method (Auzias et al., [2013]: IEEE Trans Med Imaging 32:873-887), called HIP-HOP. This method exploits a set of primary and secondary sulci to create an orthogonal coordinate system on the cortical surface. A natural parcellation scheme arises from the axes of the HIP-HOP model running along the fundus of selected sulci. The resulting parcellation scheme, called MarsAtlas, complies with dorsoventral/rostrocaudal direction fields and allows inter-subject matching. To test it for functional mapping, we analyzed a MEG dataset collected from human participants performing an arbitrary visuomotor mapping task. Single-trial high-gamma activity, HGA (60-120 Hz), was estimated using spectral analysis and beamforming techniques at cortical areas arising from a Talairach atlas (i.e., Brodmann areas) and MarsAtlas. Using both atlases, we confirmed that visuomotor associations involve an increase in HGA over the sensorimotor and fronto-parietal network, in addition to medial prefrontal areas. However, MarsAtlas provided: (1) crucial functional information along both the dorsolateral and rostrocaudal direction; (2) an increase in statistical significance. To conclude, our results suggest that the MarsAtlas is a valid anatomical atlas for functional mapping, and represents a potential anatomical framework for integration of functional data arising from multiple techniques such as MEG, intracranial EEG and fMRI. PMID:26813563

  4. The ATLAS energy upgrade cryomodule.

    SciTech Connect

    Fuerst, J. D.; Physics

    2009-01-01

    A new cryomodule containing seven drift-tube-loaded quarter-wave resonant cavities has been added to the ATLAS heavy ion linac at Argonne National Laboratory. Initial operation with beam took place this summer. The module provided a stable 14.7 MV of accelerating potential (2.1 MV/cavity), a record for cavities at this beta. This paper describes cavity, cryomodule, and subsystem performance. A report on the final assembly, commissioning and operational experience is also given.

  5. Development of and flight results from the Space Acceleration Measurement System (SAMS)

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.; Baugher, Charles R.

    1992-01-01

    Described here is the development of and the flight results from the Space Acceleration Measurement System (SAMS) flight units used in the Orbiter middeck, Spacelab module, and the Orbitercargo bay. The SAMS units are general purpose microgravity accelerometers designed to support a variety of science experiments with microgravity acceleration measurements. A total of six flight units have been fabricated; four for use in the Orbiter middeck and Spacelab module, and two for use in the Orbiter cargo bay. The design of the units is briefly described. The initial two flights of SAMS units on STS-40 (June 1991) and STS-43 (August 1991) resulted in 371 megabytes and 2.6 gigabytes of data respectively. Analytical techniques developed to examine this quantity of acceleration data are described and sample plots of analyzed data are illustrated. Future missions for the SAMS units are listed.

  6. INSTRUMENTS AND METHODS OF INVESTIGATION: An accelerator-driven system for the destruction of nuclear waste

    NASA Astrophysics Data System (ADS)

    Revol, Jean-Pierre

    2003-07-01

    Progress in particle accelerator technology makes it possible to use a proton accelerator to produce energy and to destroy nuclear waste efficiently. The energy amplifier (EA) proposed by Carlo Rubbia and his group is a subcritical fast neutron system driven by a proton accelerator. It is particularly attractive for destroying, through fission, transuranic elements produced by presently operating nuclear reactors. The EA could also efficiently and at minimal cost transform long-lived fission fragments using the concept of adiabatic resonance crossing (ARC), recently tested at CERN with the TARC experiment. The ARC concept can be extended to several other domains of application (production of radioactive isotopes for medicine and industry, neutron research applications, etc.).

  7. Exposure of Polymeric Glazing Materials Using NREL's Ultra-Accelerated Weathering System (UAWS)

    SciTech Connect

    Bingham, C.; Jorgensen, G.; Wylie, A.

    2010-01-01

    NREL's Ultra-Accelerated Weathering System (UAWS) selectively reflects and concentrates natural sunlight ultraviolet irradiance below 475 nm onto exposed samples to provide accelerated weathering of materials while keeping samples within realistic temperature limits. This paper will explain the design and implementation of the UAWS which allow it to simulate the effect of years of weathering in weeks of exposure. Exposure chamber design and instrumentation will be discussed for both a prototype UAWS used to test glazing samples as well as a commercial version of UAWS. Candidate polymeric glazing materials have been subjected to accelerated exposure testing at a light intensity level of up to 50 UV suns for an equivalent outdoor exposure in Miami, FL exceeding 15 years. Samples include an impact modified acrylic, fiberglass, and polycarbonate having several thin UV-screening coatings. Concurrent exposure is carried out for identical sample sets at two different temperatures to allow thermal effects to be quantified along with resistance to UV.

  8. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    SciTech Connect

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-07-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  9. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    SciTech Connect

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-05-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned.

  10. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    SciTech Connect

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  11. Digital atlas for spinal x rays

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Pillemer, Stanley R.; Goh, Gin-Hua; Berman, Lewis E.; Neve, Leif; Thoma, George R.; Premkumar, Ahalya; Ostchega, Yechiam; Lawrence, Reva C.; Altman, Roy D.; Lane, Nancy E.; Scott, William W., Jr.

    1997-05-01

    At the National Library of Medicine we are developing a digital atlas to serve as a reference tool for the interpretation of cervical and lumbar spine x-rays. The atlas contains representative images for four grades of severity for cervical/lumbar spondylolisthesis. A prototype version of the atlas has been built using images for which expert rheumatologist readers reached exact agreement in grading. The atlas functionality includes the ability to display cervical and lumbar anatomy, display of single images or multiple simultaneous images, image processing functions, and capability to ad user-defined images to the atlas. Images are selected for display by the user specifying feature and grade. Currently, the atlas runs on a Sun SPARC workstation under the Solaris operating system. THe initial use of the atlas is to aid in reading a collection of 17,000 NHANES II digitized x-rays. The atlas may also be used as a general digital reference tool for the standardized interpretation of digital x-rays for osteoarthritis. We are investigating further development of the atlas to accommodate a wider set of images, to operate on multiple platforms, and to be accessible via the WWW.

  12. New insights on the deep structure and evolution of the Gibraltar Arc System and Atlas Mountains: results from TOPOMED-TOPOEUROPE Project

    NASA Astrophysics Data System (ADS)

    Fernandez, Manel; Jones, Alan G.; Grevemeyer, Ingo; Terrinha, Pedro; Faccenna, Claudio; Wortel, Rinus; Topomed Team

    2013-04-01

    One of the target areas of the TOPO-MED CRP within the ESF TOPO-EUROPE EUROCORES Project is the westernmost Mediterranean region, which includes the Gibraltar Arc System (Betic-Rif orogen, Guadalquivir and Rharb foreland basins, Alboran back-arc basin and Gulf of Cadiz imbricated accretionary wedge) and the Atlas Mountains (High and Middle Atlas). Within this framework, several geological and geophysical surveys have been carried out including, among others, a 6-month deployment of OBSes in the Gulf of Cadiz and the Alboran basin, active seismic surveys combining MCS and OBS along five profiles on the Alboran and Algerian basins, a wide angle seismic profile across the Atlas Mountains, a deep MCS survey on the Alboran basin and the Gulf of Cadiz totaling 2560 km, a high resolution seismic survey on the Alboran basin, a back-scatter and high resolution topography survey on the Alboran Basin and several MT profiles across the Atlas mountains. The results of these surveys - some of them still preliminary and under processing - together with integrated models allow us to better define the geometries and properties of the crust and upper mantle structures and to link them with surface processes and the geodynamic evolution of the region. Outstanding results are the large crustal thickness variations between the Betic-Rif orogen and the Alboran basin, the very moderate crustal root beneath the Atlas Mountains and a conspicuous crust/mantle strain partitioning affecting most of the region. These results, together with those coming from the TOPO-IBERIA Spanish project, have allowed to propose different geodynamic models to explain the tectonic evolution of the region where the leading mechanism implies twisted mantle slab roll-back. In addition, modeling the Messinian salinity crisis including both the closure of the Mediterranean and desiccation and the re-opening and flooding have also been proposed.

  13. gLExec and MyProxy integration in the ATLAS/OSG PanDA workload management system

    NASA Astrophysics Data System (ADS)

    Caballero, J.; Hover, J.; Litmaath, M.; Maeno, T.; Nilsson, P.; Potekhin, M.; Wenaus, T.; Zhao, X.

    2010-04-01

    Worker nodes on the grid exhibit great diversity, making it difficult to offer uniform processing resources. A pilot job architecture, which probes the environment on the remote worker node before pulling down a payload job, can help. Pilot jobs become smart wrappers, preparing an appropriate environment for job execution and providing logging and monitoring capabilities. PanDA (Production and Distributed Analysis), an ATLAS and OSG workload management system, follows this design. However, in the simplest (and most efficient) pilot submission approach of identical pilots carrying the same identifying grid proxy, end-user accounting by the site can only be done with application-level information (PanDA maintains its own end-user accounting), and end-user jobs run with the identity and privileges of the proxy carried by the pilots, which may be seen as a security risk. To address these issues, we have enabled PanDA to use gLExec, a tool provided by EGEE which runs payload jobs under an end-user's identity. End-user proxies are pre-staged in a credential caching service, MyProxy, and the information needed by the pilots to access them is stored in the PanDA DB. gLExec then extracts from the user's proxy the proper identity under which to run. We describe the deployment, installation, and configuration of gLExec, and how PanDA components have been augmented to use it. We describe how difficulties were overcome, and how security risks have been mitigated. Results are presented from OSG and EGEE Grid environments performing ATLAS analysis using PanDA and gLExec.

  14. G-NetMon: a GPU-accelerated network performance monitoring system

    SciTech Connect

    Wu, Wenji; DeMar, Phil; Holmgren, Don; Singh, Amitoj; /Fermilab

    2011-06-01

    At Fermilab, we have prototyped a GPU-accelerated network performance monitoring system, called G-NetMon, to support large-scale scientific collaborations. In this work, we explore new opportunities in network traffic monitoring and analysis with GPUs. Our system exploits the data parallelism that exists within network flow data to provide fast analysis of bulk data movement between Fermilab and collaboration sites. Experiments demonstrate that our G-NetMon can rapidly detect sub-optimal bulk data movements.

  15. ATLAS Cloud R&D

    NASA Astrophysics Data System (ADS)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  16. Design of a Normal Acceleration and Angle of Attack Control System for a Missile Having Front and Rear Control Surfaces

    NASA Astrophysics Data System (ADS)

    Ochi, Yoshimasa

    Precise normal acceleration control is essential for missile guidance. Missiles with both front and rear control surfaces have a higher ability to control normal acceleration than missiles with front or rear control surfaces only. From the viewpoint of control, however, the control problem becomes a two-input-one-output problem, where generally control input cannot be determined uniquely. This paper proposes controlling angle of attack as well as normal acceleration, which makes the problem a two-input-two-output one and determines the controls uniquely. Normal acceleration command is given by a guidance system, but angle of attack command must be generated in accordance to the acceleration command without affecting the normal acceleration control. This paper also proposes such a command generator for angle of attack. Computer simulation is conducted using a nonlinear missile model to investigate the effectiveness of the control system along with control systems designed using three other methods.

  17. Acceleration of heavy ions with a new RF system at HIMAC synchrotron

    NASA Astrophysics Data System (ADS)

    Fujimoto, T.; Kanazawa, M.; Shirai, T.; Iwata, Y.; Uchiyama, H.; Noda, K.

    2011-12-01

    A fast three-dimensional scanning irradiation method is under development at the Heavy Ion Medical Accelerator in Chiba (HIMAC) as the next stage of heavy ion cancer therapy. This method requires highly accurate control of the beam size, energy, and intensity. To improve the accelerated beam's quality, a new scheme for the synchrotron RF system has been developed. The new system adopts a periodic time clock system (T-clock) instead of an ordinary B-clock system. The new T-clock system is synchronized with a power line frequency of 50 Hz for synchronization with the synchrotron power supply. An ordinary B-clock system results in error pulses owing to the small analog signal of the magnetic field of the main dipole magnet, and the errors cause dipole oscillation of the beam in the RF bucket. Using the new T-clock generator at 192 kHz, we have observed an improvement in the acceleration efficiency and bunch shape compared to the B-clock generator.

  18. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…

  19. Centrifugal accelerator, system and method for removing unwanted layers from a surface

    DOEpatents

    Foster, Christopher A.; Fisher, Paul W.

    1995-01-01

    A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

  20. Broad beam gas ion source with hollow cathode discharge and four-grid accelerator system

    NASA Astrophysics Data System (ADS)

    Tang, Deli; Pu, Shihao; Huang, Qi; Tong, Honghui; Cui, Xirong; Chu, Paul K.

    2007-04-01

    A broad beam gas ion source based on low-pressure hollow cathode glow discharge is described. An axial magnetic filed produced by AlNiCo permanent magnets enhances the glow discharge in the ion source as a result of the magnetizing electrons between the hollow cathode and rod anode. The gas plasma is produced by magnetron hollow cathode glow discharge in the hollow cathode and a collimated broad ion beam is extracted by a four-grid accelerator system. A weak magnetic field of several millitesla is enough to ignite the magnetron glow discharge at pressure lower than 0.1 Pa, thereby enabling stable and continuous high-current discharge to form the homogeneous plasma. A four-grid accelerator, which separates the extraction and acceleration of the ion beam, is used in this design to generate the high-energy ion beam from 10 keV to 60 keV at a working pressure of 10-4 Torr. Although a higher gas pressure is necessary to maintain the low-pressure glow discharge when compared to hot filament discharge, the hollow cathode ion source is operational with reactive gases such as oxygen in the high-voltage continuous mode. A laterally uniform ion beam can be achieved by using the four-grid accelerator system. The effects of the rod anode length on the characteristics of the plasma discharge as well as ion beam extraction from the ion source are discussed.

  1. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    SciTech Connect

    Gene Golub; Kwok Ko

    2009-03-30

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  2. An improved 8 GeV beam transport system for the Fermi National Accelerator Laboratory

    SciTech Connect

    Syphers, M.J.

    1987-06-01

    A new 8 GeV beam transport system between the Booster and Main Ring synchrotrons at the Fermi National Accelerator Laboratory is presented. The system was developed in an effort to improve the transverse phase space area occupied by the proton beam upon injection into the Main Ring accelerator. Problems with the original system are described and general methods of beamline design are formulated. Errors in the transverse properties of a beamline at the injection point of the second synchrotron and their effects on the region in transverse phase space occupied by a beam of particles are discussed. Results from the commissioning phase of the project are presented as well as measurements of the degree of phase space dilution generated by the transfer of 8 GeV protons from the Booster synchrotron to the Main Ring synchrotron.

  3. Materials considerations for molten salt accelerator-based plutonium conversion systems

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF{sub 2} molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized.

  4. Materials considerations for molten salt accelerator-based plutonium conversion systems

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF{sub 2} molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized.

  5. Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system

    SciTech Connect

    Williamson, M.A.

    1997-12-01

    This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

  6. Multi-charged heavy ion acceleration from the ultra-intense short pulse laser system interacting with the metal target

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Maeda, S.; Sagisaka, A.; Pirozhkov, A. S.; Pikuz, T.; Faenov, A.; Ogura, K.; Kanasaki, M.; Matsukawa, K.; Kusumoto, T.; Tao, A.; Fukami, T.; Esirkepov, T.; Koga, J.; Kiriyama, H.; Okada, H.; Shimomura, T.; Tanoue, M.; Nakai, Y.; Fukuda, Y.; Sakai, S.; Tamura, J.; Nishio, K.; Sako, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.

    2014-02-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. Al ions are accelerated up to 12 MeV/u (324 MeV total energy). To our knowledge, this is far the highest energy ever reported for the case of acceleration of the heavy ions produced by the <10 J laser energy of 200 TW class Ti:sapphire laser system. Adding to that, thanks to the extraordinary high intensity laser field of ˜1021 W cm-2, the accelerated ions are almost fully stripped, having high charge to mass ratio (Q/M).

  7. LLRF and timing system for the SCSS test accelerator at SPring-8

    NASA Astrophysics Data System (ADS)

    Otake, Yuji; Ohshima, Takashi; Hosoda, Naoyasu; Maesaka, Hirokazu; Fukui, Toru; Kitamura, Masanobu; Shintake, Tsumoru

    2012-12-01

    The 250 MeV SCSS test accelerator as an extreme-ultra violet (EUV) laser source has been built at SPring-8. The accelerator comprises a 500 kV thermionic gun, a velocity bunching system using multi-sub-harmonic bunchers (SHB) in an injector and a magnetic bunch compressor using a chicane of 4 bending magnets, a 5712 MHz main accelerator to accelerate an electron beam up to 250 MeV, and undulators to radiate the EUV laser. These bunch compression processes make short bunched electrons with a 300 A peak current and a 300 fs pulse width. The pulse width and peak current of an electron beam, which strongly affect the pulse width and intensity of the laser light, are mainly decided by the pulse compression ratio of the velocity bunching and the magnetic bunch compressing processes. The compression ratio is also determined due to an energy chirp along the beam bunch generated by an off-crest rf field at the SHB and cavities before the chicane. To constantly keep the beam pulse-width conducted by rf and timing signals, which are temporally controlled within subpicoseconds of the designed value, the low-level rf and timing system of the test accelerator has been developed. The system comprises a very low-noise and temporally stable reference signal source, in-phase and quadrature (IQ) modulators and demodulators, as well as VME type 12 bits analog-to-digital and digital-to-analog converter modules to manipulate an rf phase and amplitude by IQ functions for the cavity. We achieved that the SSB noise of the 5712 MHz reference signal source was less than -120 dBc/Hz at 1 kHz offset from the reference frequency; the phase setting and detecting resolution of the IQ-modulators and demodulators were within +/-0.5° at 5712 MHz. A master trigger VME module and a trigger delay VME module were also developed to activate the components of the test accelerator. The time jitter of the delay module was less than 0.7 ps, sufficient for our present requirement. As a result, a beam energy

  8. The ATLAS All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Denneau, L.

    The Asteroid Terrestrial-impact Last Alert System (ATLAS) is a small project with an ambitious goal: early warning of asteroid impacts on Earth. We aim to provide one day warning for the smallest "town-killer" 30-kiloton asteroids up to three weeks for a 100-megaton impactor. ATLAS will execute a wide-field all-sky survey with four visits per footprint per night down to a sensitivity limit of V=20, suitable for detection dangerous asteroids and enabling other exciting time-domain astronomy. ATLAS is currently under construction and expects to be fully operational in late 2015. We provide an overview of the ATLAS system and discuss how ATLAS can participate in the emerging community of time-domain astronomy.

  9. Renewable Energy Atlas of the United States

    SciTech Connect

    Kuiper, J.; Hlava, K.; Greenwood, H.; Carr, A.

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  10. A prototype beam delivery system for the proton medical accelerator at Loma Linda (US)

    SciTech Connect

    Coutrakon, G.; Bauman, M.; Lesyna, D.; Miller, D.; Nusbaum, J.; Slater, J.; Johanning, J.; Miranda, J. ); DeLuca, P.M. Jr.; Siebers, J. ); Ludewigt, B. )

    1991-11-01

    A variable energy proton accelerator was commissioned at Fermi National Accelerator Laboratory for use in cancer treatment at the Loma Linda University Medical Center. The advantages of precise dose localization by proton therapy, while sparing nearby healthy tissue, are well documented (R. R. Wilson, Radiology {bold 47}, 487 (1946); M. Wagner, Med. Phys. {bold 9}, 749 (1982); M. Goitein and F. Chen, Med. Phys. {bold 10}, 831 (1983)). One of the components of the proton therapy facility is a beam delivery system capable of delivering precise dose distributions to the target volume in the patient. To this end, a prototype beam delivery system was tested during the accelerator's commissioning period. The beam delivery system consisted of a beam spreading device to produce a large, uniform field, a range modulator to generate a spread out Bragg peak (SOBP), and various beam detectors to measure intensity, beam centering, and dose distributions. The beam delivery system provided a uniform proton dose distribution in a cylindrical volume of 20-cm-diam area and 9-cm depth. The dose variations throughout the target volume were found to be less then {plus minus}5%. Modifications in the range modulator should reduce this considerably. The central axis dose rate in the region of the SOBP was found to be 0.4 cGy/spill with an incident beam intensity of 6.7{times}10{sup 9} protons/spill. With an accelerator repetition rate of 30 spills/min and expected intensity of 2.5{times}10{sup 10} protons/spills for patient treatment, this system can provide 50 cGy/min for a 20-cm-diam field and 9-cm range modulation. The distal edge of the spread out Bragg peak was observed at 27.5-cm depth with an incident proton energy of 235 MeV. The dose at the distal edge falls from 90% to 10% of peak value in 7 mm.

  11. A prototype beam delivery system for the proton medical accelerator at Loma Linda.

    PubMed

    Coutrakon, G; Bauman, M; Lesyna, D; Miller, D; Nusbaum, J; Slater, J; Johanning, J; Miranda, J; DeLuca, P M; Siebers, J

    1991-01-01

    A variable energy proton accelerator was commissioned at Fermi National Accelerator Laboratory for use in cancer treatment at the Loma Linda University Medical Center. The advantages of precise dose localization by proton therapy, while sparing nearby healthy tissue, are well documented [R. R. Wilson, Radiology 47, 487 (1946); M. Wagner, Med. Phys. 9, 749 (1982); M. Goitein and F. Chen, Med. Phys. 10, 831 (1983)]. One of the components of the proton therapy facility is a beam delivery system capable of delivering precise dose distributions to the target volume in the patient. To this end, a prototype beam delivery system was tested during the accelerator's commissioning period. The beam delivery system consisted of a beam spreading device to produce a large, uniform field, a range modulator to generate a spread out Bragg peak (SOBP), and various beam detectors to measure intensity, beam centering, and dose distributions. The beam delivery system provided a uniform proton dose distribution in a cylindrical volume of 20-cm-diam area and 9-cm depth. The dose variations throughout the target volume were found to be less than +/- 5%. Modifications in the range modulator should reduce this considerably. The central axis dose rate in the region of the SOBP was found to be 0.4 cGy/spill with an incident beam intensity of 6.7 x 10(9) protons/spill. With an accelerator repetition rate of 30 spills/min and expected intensity of 2.5 x 10(10) protons/spill for patient treatment, this system can provide 50 cGy/min for a 20-cm-diam field and 9-cm range modulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1661367

  12. Requirements and Development of an Acceleration Measurement System for International Space Station Microgravity Science Payloads

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1997-01-01

    The International Space Station is being developed by NASA and international partners as a versatile user platform to allow long term on-orbit investigations of a variety of scientific and technology arenas. In particular, scientific studies are planned within a research class known as microgravity science in areas such as biotechnology, combustion, fluid physics, and materials sciences. An acceleration measurement system is in development to aid such research conducted in the on-orbit conditions of apparent weightlessness. This system provides a general purpose acceleration measurement capability in support of these payloads and investigators. Such capability allows for systematic study of scientific phenomena by obtaining information regarding the local accelerations present during experiment operations. Preparations for implementing this flight measurement system involves two distinct stages: requirements development prior to initiating the design activity, and the design activity itself. This paper defines the requirements definition approach taken, provides an overview of the results of the requirements phase, and outlines the initial design considerations being addressed for this measurement system. Some preliminary engineering approaches are also described.

  13. Design And Performance Of A 3 MV Tandetron Accelerator System For High-Current Applications

    SciTech Connect

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2011-06-01

    The Saha Institute of Nuclear Physics, Kolkata, India will commission in 2011 a 3 MV Tandetron accelerator system. Hi-flux neutron production, nuclear reaction cross-section measurements and time of flight experiments are among the research activities to be performed with this system. Features such as high beam currents, high beam energy stability and low beam energy spread are necessary when conducting these types of experiments. At the same time, the beam energy must be known with high accuracy. This article reports the early results obtained during the in-house testing of the system. H beam currents of 500 {mu}A have been transported through the system. The so-called ''Q-snout'' electrode lens ensures high particle transmission ({approx}70%) through the accelerator even at 7% of the rated terminal voltage (TV). At present, the negative H ion beam current output of the SO120 multicusp ion source, rated at only 2 mA, combined with the Tandetron accelerators (with terminal voltage ranging from 1 to 6 MV) provides H beam powers of up to 10 kW.

  14. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    SciTech Connect

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; /SLAC /TechX Corp. /Fermilab

    2008-08-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

  15. Evidence of source dominance in the dynamic behavior of accelerator-driven systems

    SciTech Connect

    Rydin, R.A.; Woosley, M.L. Jr.

    1997-07-01

    In a dynamic simulation method recently developed for accelerator-driven subcritical waste transmutation systems, power levels are renormalized dynamically based on the changing reactivity of the flowing system. For such systems, the power varies directly with the source strength, and inversely with the reactivity. The prompt-jump form of the point-kinetics equations has been used to provide the dynamic renormalization factor for the spatially dependent flowing-fuel system. A unique characteristic of the source-dominated system has been discovered. In the traditional reactor system, power changes are controlled by the half-life for decay of the longest-lived delayed neutron precursors. For the source-dominated system, the delayed neutron precursors do not appreciably slow the response of the system.

  16. Comparison of Lead-Bismuth and Lead as Coolants for Accelerator Driven Systems

    SciTech Connect

    Bianchi, F.; Mattioda, F.; Meloni, P.

    2002-07-01

    In the framework of the Italian research program TRASCO (TRAsmutazione SCOrie, namely transmutation of radioactive wastes) and of the European research program PDS-XADS (Preliminary Design Study on an eXperimental Accelerator Driven System) the feasibility and operability of gas or liquid metal cooled accelerator driven system prototypes are currently under investigation. Initially the attention of the thermal-hydraulics group of ENEA research centre in Bologna has been focussed toward a lead-bismuth cooled subcritical system under natural or enhanced natural circulation according to the prototype design proposed. The interest in using lead as a coolant, which is characterized by a higher melting point, is explained by the need to increase the plant efficiency for the economic competitiveness, though the higher temperatures pose some technological problems. Moreover, the amount of activation products should result significantly lower. Of course the results obtained and the experience gained analysing the dynamical behaviour of the lead-bismuth cooled system cannot be directly transferred to lead cooled systems. This paper aims at presenting a preliminary comparison of lead-bismuth and lead in a simplified liquid metal cooled subcritical system, mainly from the thermal-hydraulics and system dynamics points of view. By means of the modified RELAP5 version, the dynamical behavior of a lead-bismuth or lead cooled system, which is intended to be a quite accurate representation of the Italian accelerator driven prototype XADS, has been studied. Although a more exhaustive comparison should take into account the necessarily different structural characteristics of lead-bismuth and lead cooled systems, the neutronic feedback on reactor power and also the slightly different neutronic properties of lead-bismuth and lead, the purely thermal-hydraulic analysis presented in this paper has shown that the dynamical behaviour of the XADS does not differ noticeable when lead is used

  17. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  18. The LLNL Accelerator Mass Spectrometry System for Biochemical 14C-Measurements

    SciTech Connect

    Ognibene, T J; Bench, G; Brown, T A; Vogel, J S

    2002-10-31

    We report on recent improvements made to our 1 MV accelerator mass spectrometry system that is dedicated to {sup 14}C quantification of biochemical samples. Increased vacuum pumping capacity near the high voltage terminal has resulted in a 2-fold reduction of system backgrounds to 0.04 amol {sup 14}C/mg carbon. Carbon ion transmission through the accelerator has also improved a few percent. We have also developed tritium measurement capability on this spectrometer. The {sup 3}H/{sup 1}H isotopic ratio of a milligram-sized processed tap water sample has been measured at 4 {+-} 1 x 10{sup -16} (430 {+-} 110 {micro}Bq/mg H). Measurement throughput for a typical biochemical {sup 3}H sample is estimated to be {approx}10 minutes/sample.

  19. Improving atlas methodology

    USGS Publications Warehouse

    Robbins, C.S.; Dowell, B.A.; O'Brien, J.

    1987-01-01

    We are studying a sample of Maryland (2 %) and New Hampshire (4 %) Atlas blocks and a small sample in Maine. These three States used different sampling methods and block sizes. We compare sampling techniques, roadside with off-road coverage, our coverage with that of the volunteers, and different methods of quantifying Atlas results. The 7 1/2' (12-km) blocks used in the Maine Atlas are satisfactory for coarse mapping, but are too large to enable changes to be detected in the future. Most states are subdividing the standard 7 1/2' maps into six 5-km blocks. The random 1/6 sample of 5-km blocks used in New Hampshire, Vermont (published 1985), and many other states has the advantage of permitting detection of some changes in the future, but the disadvantage of leaving important habitats unsampled. The Maryland system of atlasing all 1,200 5-km blocks and covering one out of each six by quarterblocks (2 1/2-km) is far superior if enough observers can be found. A good compromise, not yet attempted, would be to Atlas a 1/6 random sample of 5-km blocks and also one other carefully selected (non-random) block on the same 7 1/2' map--the block that would include the best sample of habitats or elevations not in the random block. In our sample the second block raised the percentage of birds found from 86% of the birds recorded in the 7 1/2' quadrangle to 93%. It was helpful to list the expected species in each block and to revise this list annually. We estimate that 90-100 species could be found with intensive effort in most Maryland blocks; perhaps 95-105 in New Hampshire. It was also helpful to know which species were under-sampled so we could make a special effort to search for these. A total of 75 species per block (or 75% of the expected species in blocks with very restricted habitat diversity) is considered a practical and adequate goal in these States. When fewer than 60 species are found per block, a high proportion of the rarer species are missed, as well as some of

  20. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Mustapha, B.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G.

    2016-02-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

  1. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU.

    PubMed

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Mustapha, B; Perry, A; Sharamentov, S I; Vondrasek, R C; Zinkann, G

    2016-02-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year. PMID:26932059

  2. Cavity control system advanced modeling and simulations for TESLA linear accelerator and free electron laser

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced. The elementary analysis of the cavity resonator on RF (radio frequency) level and low level frequency with signal and power considerations is presented. For the field vector detection the digital signal processing is proposed. The electromechanical model concerning Lorentz force detuning is applied for analyzing the basic features of the system performance. For multiple cavities driven by one klystron the field vector sum control is considered. Simulink model implementation is developed to explore the feedback and feed-forward system operation and some experimental results for signals and power considerations are presented.

  3. Conceptual configurations of an accelerator-driven subcritical system utilizing minor actinides

    SciTech Connect

    Cao, Y.; Gohar, Y.

    2012-07-01

    This paper purposes an Accelerator-Driven Subcritical (ADS) system which utilizes the Minor Actinides (MAs) from the US spent nuclear fuel inventory. A mobile fuel concept with micro-particles suspended in the liquid metal is adopted in the purposed system to avoid difficulties of developing and testing new MAs solid fuel forms. Three ADS configurations were developed and analyzed using the Monte Carlo fuel burnup methodology. The analyses demonstrated the capabilities of the proposed system to utilize the MAs and to dispose of the US spent nuclear fuels. (authors)

  4. Investigation of Lead Target Nuclei Used on Accelerator-Driven Systems for Tritium Production

    NASA Astrophysics Data System (ADS)

    Tel, E.; Aydin, A.

    2012-02-01

    High-current proton accelerators are being researched at Los Alamos National Laboratory and other laboratories for accelerator production of tritium, transmuting long-lived radioactive waste into shorter-lived products, converting excess plutonium, and producing energy. These technologies make use of spallation neutrons produced in ( p,xn) and ( n,xn) nuclear reactions on high-Z targets. Through ( p,xn) and ( n,xn) nuclear reactions, neutrons are produced and are moderated by heavy water. These moderated neutrons are subsequently captured on 3He to produce tritium via the ( n,p) reaction. Tritium self-sufficiency must be maintained for a commercial fusion power plant. Rubbia succeeded in a proposal of a full scale demonstration plant of the Energy Amplifier. This plant is to be known the accelerator-driven system (ADS). The ADS can be used for production of neutrons in spallation neutron source and they can act as an intense neutron source in accelerator-driven subcritical reactors, capable of incinerating nuclear waste and of producing energy. Thorium and Uranium are nuclear fuels and Lead, Bismuth, Tungsten are the target nuclei in these reactor systems. The spallation targets can be Pb, Bi, W, etc. isotopes and these target material can be liquid or solid. Naturally Lead includes the 204Pb (%1.42), 206Pb (%24.1), 207Pb (%22.1) and 208Pb (%52.3) isotopes. The design of ADS systems and also a fusion-fission hybrid reactor systems require the knowledge of a wide range of better data. In this study, by using Hartree-Fock method with an effective nucleon-nucleon Skyrme interactions rms nuclear charge radii, rms nuclear mass radii, rms nuclear proton, neutron radii and neutron skin thickness were calculated for the 204, 206, 208Pb isotopes . The calculated results have been compared with those of the compiled experimental and theoretical values of other studies.

  5. The ATLAS Forward Calorimeter

    NASA Astrophysics Data System (ADS)

    Artamonov, A.; Bailey, D.; Belanger, G.; Cadabeschi, M.; Chen, T.-Y.; Epshteyn, V.; Gorbounov, P.; Joo, K. K.; Khakzad, M.; Khovanskiy, V.; Krieger, P.; Loch, P.; Mayer, J.; Neuheimer, E.; Oakham, F. G.; O'Neill, M.; Orr, R. S.; Qi, M.; Rutherfoord, J.; Savine, A.; Schram, M.; Shatalov, P.; Shaver, L.; Shupe, M.; Stairs, G.; Strickland, V.; Tompkins, D.; Tsukerman, I.; Vincent, K.

    2008-02-01

    Forward calorimeters, located near the incident beams, complete the nearly 4π coverage for high pT particles resulting from proton-proton collisions in the ATLAS detector at the Large Hadron Collider at CERN. Both the technology and the deployment of the forward calorimeters in ATLAS are novel. The liquid argon rod/tube electrode structure for the forward calorimeters was invented specifically for applications in high rate environments. The placement of the forward calorimeters adjacent to the other calorimeters relatively close to the interaction point provides several advantages including nearly seamless calorimetry and natural shielding for the muon system. The forward calorimeter performance requirements are driven by events with missing ET and tagging jets.

  6. ATLAS Large Scale Thin Gap Chambers

    SciTech Connect

    Soha, Aria

    2014-04-29

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of the ATLAS sTGC New Small Wheel collaboration who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program.

  7. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  8. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  9. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  10. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator.

    PubMed

    Bahng, Jungbae; Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob; Kim, Eun-San

    2016-02-01

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source. PMID:26932105

  11. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob; Kim, Eun-San

    2016-02-01

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source.

  12. Heavy-ion acceleration with a superconducting linac

    SciTech Connect

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a /sup 19/F beam from the tandem, and by September 1978 a 5-resonator linac provided an /sup 16/O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs.

  13. Accelerator systems and instrumentation for the NuMI neutrino beam

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert Miles

    The Neutrinos at the Main Injector (NuMI) neutrino beam facility began operating at the Fermi National Accelerator Laboratory in 2005. NuMI produces an intense, muon-neutrino beam to a number of experiments. Fore most of these experiments is MINOS---the Main Injector Neutrino Oscillation Search---that uses two neutrino detectors in the beam, one at Fermilab and one in northern Minnesota, to investigate the phenomenon of neutrino oscillations. NuMI is a conventional, horn-focused neutrino beam. It is designed to accept a 400 kW, 120 GeV proton beam from the Fermilab Main Injector accelerator. The proton beam is steered onto a target, producing a secondary beam of mesons which are focused into a long evacuated volume where they decay to muons and neutrinos. Pulsed toroidal magnets (horns) focus an adjustable meson momentum range. Design of the beamline and its components is challenged by the 400 kW average proton beam power. To achieve such high proton power, the Fermilab Main Injector (MI) must store and accelerate ˜ 4x1013 protons per acceleration cycle. This requires the MI to be loaded with 6 or more batches of protons from the 8 GeV Booster accelerator. Such multiple-batch injection involves a synchronization of the two machines not previously required by the Fermilab accelerators. In this dissertation, we investigate timing errors that can arise between the two accelerators, and a feedback system which enables multiple Booster transfers into the Main Injector without significant loss of beam. Using this method of synchronous transfer, the Main Injector has delivered as many as 3x1013 protons per pulse to the NuMI beam. The instrumentation to assess the quality of the neutrino beam includes arrays of radiation-tolerant ionization chambers downstream of the decay volume. These arrays detect the remnant hadrons and tertiary muons produced with the neutrinos. This thesis discusses measurements using the arrays, including diagnostics of potential beam errors and

  14. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-01-01

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations. PMID

  15. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems: Technology Choices and Implementation Scenarios

    SciTech Connect

    Venneri, Francesco; Williamson, Mark A.; Li Ning; Houts, Michael G.; Morley, Richard A.; Beller, Denis E.; Sailor, William; Lawrence, George

    2000-10-15

    Los Alamos National Laboratory has led the development of accelerator-driven transmutation of waste (ATW) to provide an alternative technological solution to the disposition of nuclear waste. While ATW will not eliminate the need for a high-level waste repository, it offers a new technology option for altering the nature of nuclear waste and enhancing the capability of a repository. The basic concept of ATW focuses on reducing the time horizon for the radiological risk from hundreds of thousands of years to a few hundred years and on reducing the thermal loading. As such, ATW will greatly reduce the amount of transuranic elements that will be disposed of in a high-level waste repository. The goal of the ATW nuclear subsystem is to produce three orders of magnitude reduction in the long-term radiotoxicity of the waste sent to a repository, including losses through processing. If the goal is met, the radiotoxicity of ATW-treated waste after 300 yr would be less than that of untreated waste after 100 000 yr.These objectives can be achieved through the use of high neutron fluxes produced in accelerator-driven subcritical systems. While critical fission reactors can produce high neutron fluxes to destroy actinides and select fission products, the effectiveness of the destruction is limited by the criticality requirement. Furthermore, a substantial amount of excess reactivity would have to be supplied initially and compensated for by control poisons. To overcome these intrinsic limitations, we searched for solutions in subcritical systems freed from the criticality requirement by taking advantage of the recent breakthroughs in accelerator technology and the release of liquid lead/bismuth nuclear coolant technology from Russia. The effort led to the selection of an accelerator-driven subcritical system that results in the destruction of the actinides and fission products of concern as well as permitting easy operational control through the external control of the neutron

  16. Introducing a new paradigm for accelerators and large experimental apparatus control systems

    NASA Astrophysics Data System (ADS)

    Catani, L.; Zani, F.; Bisegni, C.; Di Pirro, G.; Foggetta, L.; Mazzitelli, G.; Stecchi, A.

    2012-11-01

    The integration of web technologies and web services has been, in the recent years, one of the major trends in upgrading and developing distributed control systems for accelerators and large experimental apparatuses. Usually, web technologies have been introduced to complement the control systems with smart add-ons and user friendly services or, for instance, to safely allow access to the control system to users from remote sites. Despite this still narrow spectrum of employment, some software technologies developed for high-performance web services, although originally intended and optimized for these particular applications, deserve some features suggesting a deeper integration in a control system and, eventually, their use to develop some of the control system’s core components. In this paper, we present the conceptual design of a new control system for a particle accelerator and associated machine data acquisition system, based on a synergic combination of a nonrelational key/value database and network distributed object caching. The use of these technologies, to implement respectively continuous data archiving and data distribution between components, brought about the definition of a new control system concept offering a number of interesting features such as a high level of abstraction of services and components and their integration in a framework that can be seen as a comprehensive service provider that both graphical user interface applications and front-end controllers join for accessing and, to some extent, expanding its functionalities.

  17. ATLAS: Big Data in a Small Package

    NASA Astrophysics Data System (ADS)

    Denneau, Larry; Tonry, John

    2015-08-01

    For even small telescope projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry 2011) will robotically survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids (NEAs) on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards -- two 0.5 m F/2.0 telescopes -- each year the ATLAS system will obtain ~103 measurements of 109 astronomical sources to a photometric accuracy of <5%. This ever-growing dataset must be searched in real-time for moving objects then archived for further analysis, and alerts for newly discovered near-Earth NEAs disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many ``rifle shot'' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of satellites and pieces of space junk that ATLAS will see each night. Additional interrogation will identify interesting phenomena from beyond the solar system occurring over millions of transient sources per night. The data processing and storage requirements for ATLAS demand a ``big data'' approach typical of commercial Internet enterprises. We describe our approach to deploying a nimble, scalable and reliable data processing infrastructure, and promote ATLAS as steppingstone to eventual processing scales in the era of LSST.

  18. A table-top x-ray FEL based on a laser wakefield accelerator-undulator system

    SciTech Connect

    Nakajima, K.; Kawakubo, T.; Nakanishi, H.

    1995-12-31

    Ultrahigh-gradient electron acceleration has been confirmed owing to the laser wakefield acceleration mechanism driven by an intense short laser wakefield acceleration mechanism driven by an intense short laser pulse in an underdense plasma. The laser wakefield acceleration makes it possible to build a compact electron linac capable of producing an ultra-short bunched electron beam. While the accelerator is attributed to longitudinal wakefields, transverse wakefields simultaneously generated by a short laser pulse can serve as a plasma undulator with a very short wavelength equal to a half of the plasma wavelength. We propose a new FEL concept for X-rays based on a laser wakefield accelerator-undulator system driven by intense short laser pulses delivered from table-top terawatt lasers. The system is composed of the accelerator stage and the undulator stage in a table-top size. A low energy electron beam is accelerated an bunched into microbunches due to laser wakefields in the accelerator stage. A micro-bunched beam travelling to the opposite direction of driving laser pulses produces coherent X-ray radiation in the undulator stage. A practical configuration and its analyses are presented.

  19. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    SciTech Connect

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  20. Capture, acceleration and bunching rf systems for the MEIC booster and storage rings

    SciTech Connect

    Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei; Morozov, Vasiliy; Rimmer, Robert A.; Wang, Haipeng; Zhang, Yuhong

    2015-09-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energy ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.

  1. Forceful pulsatile local infusion of enzyme accelerates thrombolysis: in vivo evaluation of a new delivery system.

    PubMed

    Kandarpa, K; Drinker, P A; Singer, S J; Caramore, D

    1988-09-01

    Forceful local pulsatile infusion of fibrinolytic enzyme disrupts thrombi, increases clot surface area, and thereby hastens enzyme action compared with conventional constant infusion methods, which are time consuming and therefore expensive. Prolonged thrombolytic therapy is associated with increased patient morbidity. A prototype for a clinically applicable pulsatile jet infusion system for accelerating thrombolysis was designed. The system is adaptable to standard angiographic catheters and techniques. The core of the system is a reciprocating syringe pump that delivers small volumes of thrombolytic enzyme in short, rapid, frequent pulses at high exit-jet velocity through any side-hole catheter (the smallest used was a 3-F catheter). Comparison of this system with a constant infusion system was made in vivo in a 48-hour-old thrombus model in rabbit inferior vena cava (IVC). One hour of lysis by streptokinase was conducted with each of the methods. In the first experiment, the IVC thrombi were left intact before chemical lysis. Pulsatile infusion lysed 61% of the thrombus by weight in an hour, whereas constant infusion lysed only 15% (P less than .001). In the second experiment, IVC thrombi were subjected initially to standardized mechanical perturbation by a guide wire before chemical lysis. In the latter experiment, pulsatile infusion lysed 54% of the thrombus by weight, and constant infusion lysed only 26% (P less than .005). The difference in percentage of lysis by weight between pulsatile infusion groups in the two experiments (61% vs 54%) was not significant (P greater than .1). The same was true of the difference between the two constant infusion groups (26% vs 15%, P greater than .05). The effect of initial perturbation of the thrombus by a guide wire appears to be less important than the thrombus disruption and accelerated thrombolysis caused by the pulsatile delivery system. No angiographic or macroscopically visible damage was seen in any IVC

  2. Charged-particle acceleration through laser irradiation of thin foils at Prague Asterix Laser System

    NASA Astrophysics Data System (ADS)

    Torrisi, Lorenzo; Cutroneo, Maria; Cavallaro, Salvatore; Musumeci, Paolo; Calcagno, Lucia; Wolowski, Jerzy; Rosinski, Marcin; Zaras-Szydlowska, Agnieszka; Ullschmied, Jiri; Krousky, Eduard; Pfeifer, Miroslav; Skala, Jiri; Velyhan, Andreiy

    2014-05-01

    Thin foils, 0.5-50 μm in thickness, have been irradiated in vacuum at Prague Asterix Laser System in Prague using 1015-16 W cm-2 laser intensity, 1315 nm wavelength, 300 ps pulse duration and different focal positions. Produced plasmas from metals and polymers films have been monitored in the forward and backward directions. Ion and electron accelerations have been investigated by using Thomson parabola spectrometer, x-ray streak camera, ion collectors and SiC semiconductor detectors, the latter employed in time-of-flight configuration. Ion acceleration up to about 3 MeV per charge state was measured in the forward direction. Ion and electron emissions were detected at different angles as a function of the irradiation conditions.

  3. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  4. Brighter H/sup -/ source for the intense pulsed neutron source accelerator system

    SciTech Connect

    Stipp, V.; DeWitt, A.; Madsen, J.

    1983-01-01

    Further increases in the beam intensity of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory required the replacement of the H/sup -/ source with a higher current source. A magnetron ion source of Fermi National Accelerator Laboratory (FNAL) design was adapted with a grooved cathode to provide a stable 40 to 50 mA of beam operating at 30 Hz for up to a 90 ..mu..s pulse duration. Problems of space charge blowup due to the lack of neutralization of the H/sup -/ beam were solved by injecting additional gs into the 20 keV transport system. The source has recently been installed in the machine and the available input to the accelerator has more than doubled.

  5. Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility

    SciTech Connect

    Parsa, Z.; Ko, S.K.

    1995-10-01

    We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given.

  6. WESTCARB Carbon Atlas

    DOE Data Explorer

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  7. Frequency conversion in field stabilization system for application in SC cavity of linear accelerator

    NASA Astrophysics Data System (ADS)

    Filipek, Tomasz A.

    2005-09-01

    The paper concerns frequency conversion circuits of electromagnetic field stabilization system in superconductive cavity of linear accelerator. The stabilization system consists of digital part (based on FPGA) and analog part (frequency conversions, ADC/DAC, filters). Frequency conversion circuit is analyzed. The main problem in the frequency conversion for the stabilization system are: linearity of conversion and stability. Also, second order problems are subject of analysis: control of local oscillator parameters and fluctuation of actuated signal (exposing conversion). The following work was done: analysis of individual stage parameters on field stability and external influence, simulation. The work was closed with conclusions of the major frequency conversion parameters for field stabilization. The results have been applied for field stabilization system (RF Feedback System) in TESLA Test Facility 2 and preliminary research on X-Ray Free Electron Laser.

  8. Acceleration of multiple solution of a boundary value problem involving a linear algebraic system

    NASA Astrophysics Data System (ADS)

    Gazizov, Talgat R.; Kuksenko, Sergey P.; Surovtsev, Roman S.

    2016-06-01

    Multiple solution of a boundary value problem that involves a linear algebraic system is considered. New approach to acceleration of the solution is proposed. The approach uses the structure of the linear system matrix. Particularly, location of entries in the right columns and low rows of the matrix, which undergo variation due to the computing in the range of parameters, is used to apply block LU decomposition. Application of the approach is considered on the example of multiple computing of the capacitance matrix by method of moments used in numerical electromagnetics. Expressions for analytic estimation of the acceleration are presented. Results of the numerical experiments for solution of 100 linear systems with matrix orders of 1000, 2000, 3000 and different relations of variated and constant entries of the matrix show that block LU decomposition can be effective for multiple solution of linear systems. The speed up compared to pointwise LU factorization increases (up to 15) for larger number and order of considered systems with lower number of variated entries.

  9. Histology atlas of the developing mouse hepatobiliary system with emphasis on embryonic days 9.5-18.5.

    PubMed

    Crawford, Laura Wilding; Foley, Julie F; Elmore, Susan A

    2010-10-01

    Animal model phenotyping, in utero exposure toxicity studies, and investigation into causes of embryonic, fetal, or perinatal deaths have required pathologists to recognize and diagnose developmental disorders in spontaneous and engineered mouse models of disease. In mammals, the liver is the main site of hematopoiesis during fetal development, has endocrine and exocrine functions important for maintaining homeostasis in fetal and adult life; and performs other functions including waste detoxification, production and removal of glucose, glycogen storage, triglyceride and fatty acid processing, and serum protein production. Due to its role in many critical functions, alterations in the size, morphology, or function(s) of the liver often lead to embryonic lethality. Many publications and websites describe individual aspects of hepatobiliary development at defined stages. However, no single resource provides a detailed histological evaluation of H&E-stained sections of the developing murine liver and biliary systems using high-magnification and high-resolution color images. The work herein provides a histology atlas of hepatobiliary development between embryonic days 9.5-18.5. Although the focus of this work is normal hepatobiliary development, common defects in liver development are also described as a reference for pathologists who may be asked to phenotype mice with congenital, inherited, or treatment-related hepatobiliary defects. Authors' note: All digital images can be viewed online at https://niehsimagesepl-inc.com with the username "ToxPathLiver" and the password "embryolivers." PMID:20805319

  10. Measurement of the relative width difference of the {B}^0-{overline{B}}^0 system with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-06-01

    This paper presents the measurement of the relative width difference ΔΓ d /Γ d of the {B}^0-{overline{B}}^0 system using the data collected by the ATLAS experiment at the LHC in pp collisions at √{s}=7 TeV and √{s}=8 TeV and corresponding to an integrated luminosity of 25.2 fb-1. The value of ΔΓ d /Γ d is obtained by comparing the decay-time distributions of B 0 → J/ ψK S and B 0 → J/ ψK *0(892) decays. The result is ΔΓ d /Γ d = (-0.1±1.1 (stat.)± 0.9 (syst.)) × 10-2. Currently, this is the most precise single measurement of ΔΓ d /Γ d . It agrees with the Standard Model prediction and the measurements by other experiments. [Figure not available: see fulltext.

  11. A PowerPC-based control system for the Read-Out-Driver module of the ATLAS IBL

    NASA Astrophysics Data System (ADS)

    Balbi, G.; Bruni, G.; Bruschi, M.; D'Antone, I.; Dopke, J.; Falchieri, D.; Flick, T.; Gabrielli, A.; Grosse-Knetter, J.; Heim, T.; Joseph, J.; Krieger, N.; Kugel, A.; Morettini, P.; Neumann, M.; Polini, A.; Schroer, N.; Rizzi, M.; Travaglini, R.; Zannoli, S.; Zoccoli, A.

    2012-02-01

    The ATLAS experiment at LHC planned to upgrade the existing Pixel Detector with the insertion of an innermost silicon layer, called Insertable B-layer (IBL). A new front-end ASIC has been foreseen (named FE-I4) and it will be read out with improved off-detector electronics. In particular, the new Read-Out Driver card (ROD) is a VME-based board designed to process a four-fold data throughput. Moreover, the ROD hosts the electronics devoted to control operations whose main tasks are providing setup busses to access configuration registers on several FPGAs, receiving configuration data from external PCs, managing triggers and running calibration procedures. In parallel with a backward-compatible solution with a Digital Signal Processor (DSP), a new ROD control circuitry with a PowerPC embedded into an FPGA has been implemented. In this paper the status of the PowerPC-based control system will be outlined with major focus on firmware and software development strategies.

  12. Measurement of the relative width difference of the $$$ {B}^0\\hbox{-} {\\overline{B}}^0 $$$ system with the ATLAS detector

    DOE PAGESBeta

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; et al

    2016-06-14

    This study presents the measurement of the relative width difference ΔΓ d /Γ d of the B0-B¯¯¯¯0 system using the data collected by the ATLAS experiment at the LHC in pp collisions at √s=7 TeV and √s=8 TeV and corresponding to an integrated luminosity of 25.2 fb-1. The value of ΔΓ d /Γ d is obtained by comparing the decay-time distributions of B 0 → J/ψK S and B 0 → J/ψK *0(892) decays. The result is ΔΓ d /Γ d = (-0.1±1.1 (stat.)± 0.9 (syst.)) × 10-2. Currently, this is the most precise single measurement of ΔΓ d /Γmore » d . Finally, it agrees with the Standard Model prediction and the measurements by other experiments.« less

  13. Angular Impact Mitigation system for bicycle helmets to reduce head acceleration and risk of traumatic brain injury.

    PubMed

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M; Bottlang, Michael

    2013-10-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p<0.001), a 34% reduction in peak angular acceleration (p<0.001), and a 22-32% reduction in neck loading (p<0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  14. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    PubMed Central

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  15. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    SciTech Connect

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10/sup 12/ protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10/sup 12/ ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses.

  16. Unifying inflation with late-time acceleration by a BIonic system

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Rahaman, Farook; Setare, Mohammad Reza; Pradhan, Anirudh; Capozziello, Salvatore; Sardar, Iftikar Hossain

    2015-07-01

    We propose a cosmological model that unifies inflation, deceleration and acceleration phases of expansion history by a BIonic system. At the beginning, there are k black fundamental strings that transited to the BIon configuration at a given corresponding point. Here, two coupled universes, brane and antibrane, are created interacting each other through a wormhole and inflate. With decreasing temperature, the energy of this wormhole flows into the universe branes and leads to inflation. After a short time, the wormhole evaporates, the inflation ends and a deceleration epoch starts. By approaching the brane and antibrane universes together, a tachyon is born, grows and causes the creation of a new wormhole. At this time, the brane and antibrane universes result connected again and the late-time acceleration era of the universe begins. We compare our model with previous unified phantom models and observational data obtaining some cosmological parameters like temperature in terms of time. We also find that deceleration parameter is negative during inflation and late-time acceleration epochs, while it is positive during the deceleration era. This means that the model is consistent, in principle, with cosmological observations.

  17. Atlas-based identification of cortical sulci

    NASA Astrophysics Data System (ADS)

    Nowinski, Wieslaw L.; Raphel, Jose K.; Nguyen, Bonnie T.

    1996-04-01

    The identification of cortical sulci is of great importance. In neurosurgical procedures any target in the cranium can be accessed by following the corridors of the sulci and fissures. The fusion of functional and anatomical data also requires the identification of sulci. Several approaches have been proposed for segmentation of the cortical surface and identification of sulci and fissures. Most of them are bottom-up. They work satisfactorily provided that the sulci are well discernible on MRI images, limiting their use to some major sulci and fissures, such as the central sulcus, interhemispheric fissure, or Sylvian fissure. We propose a sulcal model based approach, overcoming some of the above limitations. The sulcal model is derived from two brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach- Tournoux (TT), and Atlas of Cerebral Sulci by Ono-Kubik-Abernathey (OKA). The OKA atlas contains 403 patterns for 55 sulci along with their incidence rates of interruptions, side branches, and connections. An electronic version of the OKA atlas was constructed, quantitatively enhanced by placing the sulcal patterns in a stereotactic space. The original patterns from the OKA atlas were digitized, converted into geometric representation, placed in the Talairach stereotactic space, preregistered with the TT atlas, and integrated with a multi- atlas, multi-dimensional neuroimaging system developed by our group. The registration of any atlas with the clinical data automatically registers all atlases with this data. This way the sulcal patterns can be superimposed on data, indicating approximate locations of sulci on images. The approach proposed here provides a simple and real-time registration of the sulcal patterns with clinical data, and an interactive identification and labeling of sulci. This approach assists rather the medical professional, instead of providing a complete automated extraction of a few, primary sulci with certain accuracy, where a

  18. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  19. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  20. Evaluation of a new IR-guided system for mechanical QA of linear accelerators

    SciTech Connect

    Lyatskaya, Yulia; Kadam, Dnyanesh; Levitsky, Gennady; Hacker, Fred; Chin, Lee

    2008-11-15

    The authors report the development of a new procedure for mechanical quality assurance of linear accelerators using an infrared-guided system. The system consists of an infrared (IR) camera and an IR-reflective marker that can be attached to a gantry, a collimator, or a treatment table. The trace of this marker can be obtained in three dimensions (3D) for a full or partial rotation of the mechanical devices. The software is written to localize rotational axes of the gantry, collimator, and the treatment table based on the marker traces. The separation of these axes characterizes the size of the sphere defining the mechanical isocenter. Additional information on anomalies in gantry movement such as degree of gantry sag and hysteresis can also be obtained. An intrinsic uncertainty of the system to localize rotational axis is 0.35 mm or less. Tests on a linear accelerator demonstrated the ability of this system to detect the separation between rotational axes of less than 1 mm and to confirm orthogonality of the planes of gantry, collimator, and table rotation.

  1. Photonuclear target systems for producing clinically useful quantities of 11C using an electron linear accelerator.

    PubMed

    Piltingsrud, H V; Robbins, P J

    1985-01-01

    Described in this paper are what we believe to be the first practical photonuclear target systems for production of 11C containing CO and CO2 using bremsstrahlung produced from an electron linear accelerator similar to certain radiotherapy accelerators. This is a continuation of work reported earlier concerning a similar target system presently being used for production of 15O-O2. The 11C producing systems utilized liquid carbon dioxide, liquid cyclohexane, and liquid glacial acetic acid target materials. The carbon dioxide and glacial acetic acid target materials produced principally a 11C-CO product material. The cyclohexane target material produced a 11C-hydrocarbon product which was then oxidized to CO2. Target activity yields for these systems, normalized to a 20-cm-long by 10-cm-diam target chamber irradiated in a bremsstrahlung field produced by a 26-MeV, 100-microA electron beam, were 1.9 X 10(8) Bq (5 mCi) at 7.4 X 10(8) Bq g-1 (20 mCi g-1) for carbon dioxide, 1.4 X 10(8) Bq (3.8 mCi) at 3.7 X 10(10) Bq g-1 (1 Ci g-1) for cyclohexane, and 7.4 X 10(8) Bq (20 mCi) at 3.7 X 10(10) Bq g-1 (1 Ci g-1) for glacial acetic acid. PMID:3930932

  2. The physics of sub-critical lattices in accelerator driven hybrid systems: The MUSE experiments in the MASURCA facility

    SciTech Connect

    Chauvin, J. P.; Lebrat, J. F.; Soule, R.; Martini, M.; Jacqmin, R.; Imel, G. R.; Salvatores, M.

    1999-06-10

    Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment is planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties.

  3. ATLAS DQ2 Deletion Service

    NASA Astrophysics Data System (ADS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-12-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  4. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    SciTech Connect

    Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  5. Acceleration of Acid-Catalyzed Hydrolysis in a Biphasic System by Sodium Tetracyanocyclopentadienides.

    PubMed

    Sakai, Takeo; Bito, Mariko; Itakura, Makoto; Sato, Honami; Mori, Yuji

    2016-01-01

    The hydrolysis of tert-butyldimethylsilyl L-menthyl ether (3) in a CH2Cl2-1 M HCl biphasic solvent system was accelerated by the addition of sodium tetracyanocyclopentadienides 1. Particularly, the reaction rate was enhanced using sodium salt 1a-c with a lipophilic substituent on the cyclopentadienide ring. From the results obtained by a triphasic experiment, hydrolysis proceeds via the formation of hydronium ion 2 in the aqueous phase by ion exchange, followed by the transfer of 2 to the CH2Cl2 phase. PMID:27373648

  6. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    NASA Astrophysics Data System (ADS)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  7. A permanent magnet electron beam spread system used for a low energy electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Huang, Jiang; Xiong, Yong-Qian; Chen, De-Zhi; Liu, Kai-Feng; Yang, Jun; Li, Dong; Yu, Tiao-Qin; Fan, Ming-Wu; Yang, Bo

    2014-10-01

    The development of irradiation processing industry brings about various types of irradiation objects and expands the irradiation requirements for better uniformity and larger areas. This paper proposes an innovative design of a permanent magnet electron beam spread system. By clarifying its operation principles, the author verifies the feasibility of its application in irradiation accelerators for industrial use with the examples of its application in electron accelerators with energy ranging from 300 keV to 1 MeV. Based on the finite element analyses of electromagnetic fields and the charged particle dynamics, the author also conducts a simulation of electron dynamics in magnetic field on a computer. The results indicate that compared with the traditional electron beam scanning system, this system boosts the advantages of a larger spread area, non-power supply, simple structure and low cost, etc., which means it is not only suitable for the irradiation of objects with the shape of tubes, strips and panels, but can also achieve a desirable irradiation performance on irregular constructed objects of large size.

  8. ATLAS discovery of an optical transient

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-08-01

    We report the following transient found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  9. Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems

    PubMed Central

    Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.

    2014-01-01

    The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545

  10. Scaled Accelerator Test for the DARHT-II Downstream Transport System

    SciTech Connect

    Chen, Y; Blackfield, D T; Caporaso, G J; Guethlein, G; McCarrick, J F; Paul, A C; Watson, J A; Weir, J T

    2005-10-03

    The second axis of the Dual Axial radiography Hydrodynamic Test (DARHT-II) facility at LANL is currently in the commissioning phase[1]. The beam parameters for the DARHT-II machine will be nominally 18 MeV, 2 kA and 1.6 {micro}s. This makes the DARHT-II downstream system the first system ever designed to transport a high current, high energy and long pulse beam [2]. We will test these physics issues of the downstream transport system on a scaled DARHT-II accelerator with a 7.8-MeV and 660-A beam at LANL before commissioning the machine at its full energy and current. The scaling laws for various physics concerns and the beam parameters selection is discussed in this paper.

  11. An intracavitary cone system for electron beam therapy using a Therac 20 linear accelerator.

    PubMed

    Wilson, D L; Sharma, S C; Jose, B

    1986-06-01

    The Therac 20 is an AECL medical linear accelerator that produces electron and photon beams. Electron fields are produced by a scanned beam; collimation is provided by two sets of primary collimators and further collimated by external electron trimmers located 11 cm above the plane of isocenter (100 cm). These collimators are not suitable for intracavitary treatment. To overcome this limitation, we have designed an intracavitary cone system that attaches to the electron trimmers. Since the trimmers do not have to be removed while this system is in use, there is no need to bypass the associated interlock system. The apparatus consists of a platform which slides onto the lower set of trimmers, onto which a lead insert is attached. Dosimetry measurements for 9, 13, and 17 MeV electron beams are reported for three different treatment cones. PMID:3721928

  12. A hybrid data acquisition system for magnetic measurements of accelerator magnets

    SciTech Connect

    Wang, X.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Martchevsky, M.; Sabbi, G. L.

    2011-06-03

    A hybrid data acquisition system was developed for magnetic measurement of superconducting accelerator magnets at LBNL. It consists of a National Instruments dynamic signal acquisition (DSA) card and two Metrolab fast digital integrator (FDI) cards. The DSA card records the induced voltage signals from the rotating probe while the FDI cards records the flux increment integrated over a certain angular step. This allows the comparison of the measurements performed with two cards. In this note, the setup and test of the system is summarized. With a probe rotating at a speed of 0.5 Hz, the multipole coefficients of two magnets were measured with the hybrid system. The coefficients from the DSA and FDI cards agree with each other, indicating that the numerical integration of the raw voltage acquired by the DSA card is comparable to the performance of the FDI card in the current measurement setup.

  13. ATLAS job monitoring in the Dashboard Framework

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Campana, S.; Karavakis, E.; Kokoszkiewicz, L.; Saiz, P.; Sargsyan, L.; Schovancova, J.; Tuckett, D.

    2012-12-01

    Monitoring of the large-scale data processing of the ATLAS experiment includes monitoring of production and user analysis jobs. The Experiment Dashboard provides a common job monitoring solution, which is shared by ATLAS and CMS experiments. This includes an accounting portal as well as real-time monitoring. Dashboard job monitoring for ATLAS combines information from the PanDA job processing database, Production system database and monitoring information from jobs submitted through GANGA to Workload Management System (WMS) or local batch systems. Usage of Dashboard-based job monitoring applications will decrease load on the PanDA database and overcome scale limitations in PanDA monitoring caused by the short job rotation cycle in the PanDA database. Aggregation of the task/job metrics from different sources provides complete view of job processing activity in ATLAS scope.

  14. STS-45 ATLAS-1 pallets and SSBUV canisters in OV-104's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 payload bay (PLB) configuration onboard Atlantis, Orbiter Vehicle (OV) 104, includes the Shuttle Solar Backscatter Ultraviolet 4 (SSBUV-4) and Atmospheric Laboratory for Applications and Science 1 (ATLAS-1) instruments. The SSBUV get away special (GAS) canisters are mounted on a GAS adapter beam on the starboard PLB sill longeron. THE SSBUV support canister is in the foreground and the SSBUV instrument canister with motorized door assembly (MDA) is next to it. ATLAS-1 equipment includes the igloo (center - decorated with several insignias), the Space Experiments with Particle Accelerators (SEPAC) spheres, and additional instruments mounted on unpressurized spacelab pallets. In the background, are the orbital maneuvering system (OMS) pods and vertical tail highlighted against the cloud-covered surface of the Earth.

  15. Impact of a New Medical Record System for Emergency Departments Designed to Accelerate Clinical Documentation

    PubMed Central

    Inokuchi, Ryota; Sato, Hajime; Iwagami, Masao; Komaru, Yohei; Iwai, Satoshi; Gunshin, Masataka; Nakamura, Kensuke; Shinohara, Kazuaki; Kitsuta, Yoichi; Nakajima, Susumu; Yahagi, Naoki

    2015-01-01

    Abstract Recording information in emergency departments (EDs) constitutes a major obstacle to efficient treatment. A new electronic medical records (EMR) system focusing on clinical documentation was developed to accelerate patient flow. The aim of this study was to examine the impact of a new EMR system on ED length of stay and physician satisfaction. We integrated a new EMR system at a hospital already using a standard system. A crossover design was adopted whereby residents were randomized into 2 groups. Group A used the existing EMR system first, followed by the newly developed system, for 2 weeks each. Group B followed the opposite sequence. The time required to provide overall medical care, length of stay in ED, and degree of physician satisfaction were compared between the 2 EMR systems. The study involved 6 residents and 526 patients (277 assessed using the standard system and 249 assessed with the new system). Mean time for clinical documentation decreased from 133.7 ± 5.1 minutes to 107.5 ± 5.4 minutes with the new EMR system (P < 0.001). The time for overall medical care was significantly reduced in all patient groups except triage level 5 (nonurgent). The new EMR system significantly reduced the length of stay in ED for triage level 2 (emergency) patients (145.4 ± 13.6 minutes vs 184.3 ± 13.6 minutes for standard system; P = 0.047). As for the degree of physician satisfaction, there was a high degree of satisfaction in terms of the physical findings support system and the ability to capture images and enter negative findings. The new EMR system shortened the time for overall medical care and was associated with a high degree of resident satisfaction. PMID:26131837

  16. Report to users of ATLAS - September 1998.

    SciTech Connect

    Ahmad, I.; Hofman, D.

    1998-11-18

    The ATLAS facility has provided a total of 5749 hours of beam for research in FY1998. The accelerator operation had a very high 93% reliability factor during that period. With the startup of Gammasphere in January, our schedule has attempted to minimize scheduled downtime and maximize beam-time for research. Our best performance so far occurred during the month of May when a total of 639 hours was provided for research. From the accelerator point-of-view, recent major highlights have included first operation of a new production configuration for our {sup 17}F beams which increased the beam current on-target to 2 x 10{sup 6} {sup 17}F ions/see. The {sup 17}F production target was moved approximately 4 meters upstream and a new superconducting solenoid was added to the system to refocus the highly divergent secondary beam. This new location also places the target upstream of a new superconducting resonator which was used to reduce the energy spread of the beam delivered to the spectrograph to less than 300 keV (FWHM). An improved, liquid nitrogen cooled, multiple gas cell has also significantly contributed to better performance.

  17. Mobile-accelerator neutron-radiography system. Final report, February 1978-December 1983

    SciTech Connect

    Dance, W.E.; Carollo, S.F.; Bumgardner, H.M.

    1984-10-01

    The use of neutron radiography for the inspection and maintenance of large structures such as aircraft has been delayed by the absence of a mobile system particularly suited to the requirements of field use. This report describes the production, extensive field testing, evaluation and disposition of the first mobile neutron radiography system to satisfy the majority of requirements for field use. The system is based upon the concept of a mobile on-off neutron radiography system based on a sealed-tube ion accelerator as neutron source demonstrated earlier by the Vought Corporation. Primary features of the system are its self-propelled mobility, versatile positioning capability scaled to Army helicopter dimensions, an on-off beam capability, exposure capability measured in minutes, and suitability for AMMRC laboratory and field use. Included in the report are a description of all components of the system, an evaluation of the operation of the system, an evaluation of its radiographic capabilities, a description of installation elements for the AMMRC site, and recommendations for next-generation systems.

  18. Incipient fault detection and identification in process systems using accelerating neural network learning

    SciTech Connect

    Parlos, A.G.; Muthusami, J.; Atiya, A.F. . Dept. of Nuclear Engineering)

    1994-02-01

    The objective of this paper is to present the development and numerical testing of a robust fault detection and identification (FDI) system using artificial neural networks (ANNs), for incipient (slowly developing) faults occurring in process systems. The challenge in using ANNs in FDI systems arises because of one's desire to detect faults of varying severity, faults from noisy sensors, and multiple simultaneous faults. To address these issues, it becomes essential to have a learning algorithm that ensures quick convergence to a high level of accuracy. A recently developed accelerated learning algorithm, namely a form of an adaptive back propagation (ABP) algorithm, is used for this purpose. The ABP algorithm is used for the development of an FDI system for a process composed of a direct current motor, a centrifugal pump, and the associated piping system. Simulation studies indicate that the FDI system has significantly high sensitivity to incipient fault severity, while exhibiting insensitivity to sensor noise. For multiple simultaneous faults, the FDI system detects the fault with the predominant signature. The major limitation of the developed FDI system is encountered when it is subjected to simultaneous faults with similar signatures. During such faults, the inherent limitation of pattern-recognition-based FDI methods becomes apparent. Thus, alternate, more sophisticated FDI methods become necessary to address such problems. Even though the effectiveness of pattern-recognition-based FDI methods using ANNs has been demonstrated, further testing using real-world data is necessary.

  19. A Parametric Study of Accelerations of an Airplane Due to a Wake Vortex System

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1999-01-01

    A study was conducted using strip theory to systematically investigate the effects of progressively more complete descriptions of the interaction of an airplane with a wake vortex system. The emphasis was in roll-dominant, parallel, vortex encounters. That is, the simulated airplane's longitudinal axis was nearly parallel to the rotation axis of the vortex system for most of the results presented. The study began with a drag-less rectangular wing in the flow field of a single vortex and progressed to a complete airplane with aerodynamic surfaces possessing taper, sweep, dihedral, and stalling and immersed in the flow field of a vortex pair in ground effect. The effects of the pitch, roll, and yaw attitudes of the airplane on the calculated accelerations were also investigated. The airplane had the nominal characteristics of a Boeing 757, and the vortex flow field had the nominal characteristics of the wake of a Boeing 767. The Bumham-Hallock model of a vortex flow field was used throughout the study. The data are presented mainly in terms of contours of equal acceleration in a two-dimensional area centered on the vortex pair and having dimensions of 300 feet by 300 feet.

  20. Detector positioning for the initial subcriticality level determination in accelerator-driven systems

    SciTech Connect

    Uyttenhove, W.; Van Den Eynde, G.; Baeten, P.; Kochetkov, A.; Vittiglio, G.; Wagemans, J.; Lathouwers, D.; Kloosterman, J. L.; Van Der Hagen, T. J. H. H.; Wols, F.; Billebaud, A.; Chabod, S.; Thybault, H. E.

    2012-07-01

    Within the GUINEVERE project (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) carried out at SCK-CEN in Mol, the continuous deuteron accelerator GENEPI-3C was coupled to the VENUS-F fast simulated lead-cooled reactor. Today the FREYA project (Fast Reactor Experiments for hYbrid Applications) is ongoing to study the neutronic behavior of this Accelerator Driven System (ADS) during different phases of operation. In particular the set-up of a monitoring system for the subcriticality of an ADS is envisaged to guarantee safe operation of the installation. The methodology for subcriticality monitoring in ADS takes into account the determination of the initial subcriticality level, the monitoring of reactivity variations, and interim cross-checking. At start-up, the Pulsed Neutron Source (PNS) technique is envisaged to determine the initial subcriticality level. Thanks to its reference critical state, the PNS technique can be validated on the VENUS-F core. A detector positioning methodology for the PNS technique is set up in this paper for the subcritical VENUS-F core, based on the reduction of higher harmonics in a static evaluation of the Sjoestrand area method. A first case study is provided on the VENUS-F core. This method can be generalised in order to create general rules for detector positions and types for full-scale ADS. (authors)