Science.gov

Sample records for accelerator technology superconductivity

  1. Cryogenic Technology for Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2012-01-01

    Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes -- the liquefier and refrigerator modes -- will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.

  2. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  3. Comparisons of radio frequency technology for superconducting accelerating structures

    NASA Astrophysics Data System (ADS)

    Kimber, Andrew J.

    2015-12-01

    Since the introduction of radiofrequency (RF) accelerating cavities, normal conducting as well as superconducting, there has been a need to drive them with RF power. At first glance, the function of an RF drive system may seem simple and straightforward, but this belies subtleties that greatly affect the performance of the cavity itself, diminishing efforts in perfecting techniques in design and manufacture. It can also contribute to a significant portion of the initial capital and ongoing running costs of a facility, maintenance labor, downtime and future expenditure as the system ages. The RF `system', should be thought of as just that, the entire collection of components from wall plug to cavity. Following this integrated approach will enable the system to meet or exceed its design goals. This paper seeks to review the current state of RF technology for superconducting structures and to compare these technologies, looking at what has traditionally been used, developments that have enabled higher efficiencies and higher reliabilities as well as looking towards future technologies. It will concentrate on superconducting applications, but much of the narrative is equally applicable to normal conducting structures as well.

  4. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  5. Accelerator Science and Technology in Canada — From the Microtron to TRIUMF, Superconducting Cyclotrons and the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Craddock, M. K.; Laxdal, R. E.

    As elsewhere, accelerators in Canada have evolved from modest beginnings to major facilities such as TRIUMF (currently with the highest-power driver for rare isotope beam production) and the third generation Canadian Light Source. Highlights along the way include construction of the first microtron, the first racetrack microtron and the first superconducting cyclotron (to which list might have been added the first pulse stretcher ring, had it been funded sooner). This article will summarize the history of accelerators in Canada, documenting both the successes and the near-misses. Besides the research accelerators, a thriving commercial sector has developed, manufacturing small cyclotrons and linacs, beam line components and superconducting rf cavities.

  6. Accelerator Science and Technology in Canada -- From the Microtron to TRIUMF, Superconducting Cyclotrons and the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Craddock, M. K.; Laxdal, R. E.

    As elsewhere, accelerators in Canada have evolved from modest beginnings to major facilities such as TRIUMF (currently with the highest-power driver for rare isotope beam production) and the third generation Canadian Light Source. Highlights along the way include construction of the first microtron, the first racetrack microtron and the first superconducting cyclotron (to which list might have been added the first pulse stretcher ring, had it been funded sooner). This article will summarize the history of accelerators in Canada, documenting both the successes and the near-misses. Besides the research accelerators, a thriving commercial sector has developed, manufacturing small cyclotrons and linacs, beam line components and superconducting rf cavities.

  7. Physics and Accelerator Applications of RF Superconductivity

    SciTech Connect

    H. Padamsee; K. W. Shepard; Ron Sundelin

    1993-12-01

    A key component of any particle accelerator is the device that imparts energy gain to the charged particle. This is usually an electromagnetic cavity resonating at a microwave frequency, chosen between 100 and 3000 MHz. Serious attempts to utilize superconductors for accelerating cavities were initiated more than 25 years ago with the acceleration of electrons in a lead-plated resonator at Stanford University (1). The first full-scale accelerator, the Stanford SCA, was completed in 1978 at the High Energy Physics Laboratory (HEPL) (2). Over the intervening one and a half decades, superconducting cavities have become increasingly important to particle accelerators for nuclear physics and high energy physics. For continuous operation, as is required for many applications, the power dissipation in the walls of a copper structure is quite substantial, for example, 0.1 megawatts per meter of structure operating at an accelerating field of 1 million volts/meter (MV/m). since losses increase as the square of the accelerating field, copper cavities become severely uneconomical as demand for higher fields grows with the higher energies called for by experimenters to probe ever deeper into the structure of matter. Rf superconductivity has become an important technology for particle accelerators. Practical structures with attractive performance levels have been developed for a variety of applications, installed in the targeted accelerators, and operated over significant lengths of time. Substantial progress has been made in understanding field and Q limitations and in inventing cures to advance performance. The technical and economical potential of rf superconductivity makes it an important candidate for future advanced accelerators for free electron lasers, for nuclear physics, and for high energy physics, at the luminosity as well as at the energy frontiers.

  8. Medium Beta Superconducting Accelerating Structures

    SciTech Connect

    Jean Delayen

    2001-09-01

    While, originally, the development of superconducting structures was cleanly divided between low-beta resonators for heavy ions and beta=1 resonators for electrons, recent interest in protons accelerators (high and low current, pulsed and cw) has necessitated the development of structures that bridge the gap between the two. These activities have resulted both in new geometries and in the adaptation of well-known geometries optimized to this intermediate velocity range. Their characteristics and properties are reviewed.

  9. Superconducting Radio Frequency Technology: An Overview

    SciTech Connect

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  10. Helium refrigeration systems for super-conducting accelerators

    SciTech Connect

    Ganni, V.

    2015-12-04

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  11. Accelerators and Superconductivity: A Marriage of Convenience. Second John Adams Memorial Lecture

    NASA Astrophysics Data System (ADS)

    Wilson, Martin

    1987-06-01

    This lecture deals with the relationship between accelerator technology in high-energy-physics laboratories and the development of superconductors. It concentrates on synchrotron magnets, showing how their special requirements have brought about significant advances in the technology, particularly the development of filamentary superconducting composites. Such developments have made large superconducting accelerators an actuality: the Tevatron in routine operation, the Hadron Electron Ring Accelerator (HERA) under construction, and the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC) at the conceptual design stage. Other applications of superconductivity have also been facilitated - for example medical imaging and small accelerators for industrial and medical use.

  12. Accelerator magnet designs using superconducting magnetic shields

    SciTech Connect

    Brown, B.C.

    1990-10-01

    Superconducting dipoles and quadrupoles for existing accelerators have a coil surrounded by an iron shield. The shield limits the fringe field of the magnet while having minimal effect on the field shape and providing a small enhancement of the field strength. Shields using superconducting materials can be thinner and lighter and will not experience the potential of a large de-centering force. Boundary conditions for these materials, material properties, mechanical force considerations, cryostat considerations and some possible geometrical configurations for superconducting shields will be described. 7 refs., 3 figs., 3 tabs.

  13. Advantages and Challenges of Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Krischel, Detlef

    After a short review of the history toward high-energy superconducting (SC) accelerators for ion beam therapy (IBT), an overview is given on material properties and technical developments enabling to use SC components in a medical accelerator for full body cancer treatment. The design concept and the assembly of a commercially available SC cyclotron for proton therapy (PT) are described and the potential advantages for applying superconductivity are assessed. The discussion includes the first years of operation experience with regard to cryogenic and magnetic performance, automated beam control, and maintenance aspects. An outlook is given on alternative machine concepts for protons-only or for heavier ions. Finally, it is discussed whether the application of superconductivity might be expanded in the future to a broader range of subsystems of clinical IBT accelerators such as SC magnets for transfer beam lines or gantries.

  14. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    NASA Astrophysics Data System (ADS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  15. Calculating Beam Breakup in Superconducting Linear Accelerators

    SciTech Connect

    Geoffrey Krafft; Joseph Bisognano; Sharon Laubach

    1990-02-09

    As the intensity of a particle beam passing through a linear accelerator is raised, interactions between particles play an increasingly prominent role in determining the overall dynamics of the beam. These many body effects, known collectively as beam breakup, tend to degrade the quality of the transported beam, and hence they must be calculated to accurately predict the evolution of the beam as it traverses the accelerator. Several codes which compute various collective effects have been developed and used to simulate the dynamics of beams passing through superconducting accelerator structures. All the codes use the same basic algorithm: the beam is tracked through elements giving the focusing forces on the particles, and at the appropriate locations in the linac, localized forces are impressed on the particles which model the electromagnetic interactions. Here, a difficulty is that the usual ''Coulomb'' interaction between particles is changed by the electromagnetic environment of the accelerator. By such calculations it has been shown that recirculating linear accelerators such as the one being built at the Continuous Electron Beam Accelerator Facility (CEBAF) should remain stable against multipass beam breakup instability as long as the average current does not exceed about 20 mA, that the beam quality at CEBAF will be degraded when the single bunch charge approaches 10{sup 9} electrons, and that the beam quality of superconducting linacs that are optimized for high current transport begins to decrease at around 10{sup 10} electrons per bunch. The latter result is of interest to individuals who would use superconducting linacs as beam sources for free electron lasers or for superconducting colliders for high energy physics research.

  16. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  17. Breakthrough: Fermilab Accelerator Technology

    SciTech Connect

    2012-04-23

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  18. Accelerator Technology Division progress report, FY 1992

    SciTech Connect

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  19. Superconducting Cavities for the APT Accelerator

    NASA Astrophysics Data System (ADS)

    Krawczyk, Frank L.; Gentzlinger, Robert C.; Montoya, Debbie I.; Rusnak, Brian; Shapiro, Alan H.

    1997-05-01

    One type of design for an Accelerator Production of Tritium (APT) facility being investigated at LANL consists mainly of a linear accelerator using superconducting rf cavities for the acceleration of a high current cw proton beam. For electron accelerators with particles moving at almost the speed of light (β=1.0), resonators with a rounded shape, consisting of elliptical, circular and straight sections, are well established. They are referred to as ``elliptical'' cavities. For the APT-design, this shape has been adapted for much slower proton beams from a β of less than 0.64 to slightly above 0.82. This is a new energy range, in which resonators of an elliptical type have never been used before. Simulations with the well-proven electromagnetic modeling tools MAFIA and SUPERFISH were performed. The structures have been optimized for their rf properties as well as for beam dynamics requirements. Single cell test cavities are under construction and will be tested in our structures laboratory. Their performance in terms of obtainable gradients, Q and multipacting behavior, as well as a comparison of the major rf parameters with the results of the cavity simulations, will be reported.

  20. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGESBeta

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; Lukaszew, Rosa A.; Valente-Feliciano, Anne -Marie; Reece, Charles

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  1. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  2. Superconducting magnets for SCRF cryomodules at front end of linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Orlov, Y.; Orris, D.F.; Tartaglia, M.A.

    2010-05-01

    Linear accelerators based on a superconducting technology need various superconducting magnets mounted inside SCRF Cryomodules. Relatively weak iron-dominated magnets are installed at the front end of linear accelerators. The focusing quadrupoles have integrated gradients in the range of 1-4 T, and apertures in the range 35-90 mm. Superconducting dipole correctors and quadrupoles were designed at Fermilab for various projects. In this paper these magnet designs, and test results of a fabricated dipole corrector, are presented. Also briefly discussed are magnetic and mechanical designs, quench protection, cooling, fabrication, and assembly into cryomodule.

  3. The development of a TESLA recirculator with superconducting accelerating structures in Ukraine

    NASA Astrophysics Data System (ADS)

    Guk, I. S.; Dovbnya, A. N.

    2008-12-01

    The recirculator project, which is to be built at the National Science Center, Kharkov Institute of Physics and Technology (NSC KIPT), is presented. The basic solutions incorporated in the design are given. The TESLA superconducting section is chosen as the accelerating structure of an accelerating complex.

  4. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  5. Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

    SciTech Connect

    Solyak, N. A.

    2009-01-22

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx}10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R and D program.

  6. Gradient limitations in room temperature and superconducting acceleration structures

    SciTech Connect

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  7. Application of ILC superconducting cavities for acceleration of protons

    SciTech Connect

    Ostroumov, P.N.; Aseev, V.N.; Gonin, I.V.; Rusnak, B.; /LLNL, Livermore

    2007-10-01

    Beam acceleration in the International Linear Collider (ILC) will be provided by 9-cell 1300 MHz superconducting (SC) cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on {pi}-mode to provide maximum accelerating gradient. Significant R&D effort has been devoted to develop ILC SC technology and its RF system which resulted excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above {approx}1.2 GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC) cavities operating at 1300 MHz and designed for {beta}{sub G} = 0.81, geometrical beta, to accelerate protons or H{sup -} from {approx}420 MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new {beta}{sub G} = 0.81 cavities by operating ILC cavities on 8/9{pi}-mode of standing wave oscillations.

  8. Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC

    SciTech Connect

    Avrakhov, P.; Kanareykin, A.; Liu, Z.; Kazakov, S.; Solyak, N.; Yakovlev, V.; Gai, W.; /Argonne

    2007-06-01

    With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed.

  9. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  10. Superconducting rebalance acceleration and rate sensor

    NASA Technical Reports Server (NTRS)

    Torti, R.; Gerver, M.; Gondhalekar, V.; Maxwell, B.

    1994-01-01

    The goal of this program is the development of a high precision multisensor based on a high T(sub c) superconducting proof mass. The design of a prototype is currently underway. Key technical issues appear resolvable. High temperature superconductors have complicated, hysteretic flux dynamics but the forces on them can be linearly controlled for small displacements. Current data suggests that the forces on the superconductors decay over a short time frame and then stabilize, though very long term data is not available. The hysteretic force characteristics are substantial for large scale excursions, but do not appear to be an issue for the very small displacements required in this device. Sufficient forces can be exerted for non-contact suspension of a centimeter sized proof mass in a vacuum sealed nitrogen jacket cryostat. High frequency capacitive sensing using stripline technology will yield adequate position resolution for 0.1 micro-g measurements at 100 Hz. Overall, a reasonable cost, but very high accuracy, system is feasible with this technology.

  11. Latest Development in Superconducting RF Structures for beta=1 Particle Acceleration

    SciTech Connect

    Peter Kneisel

    2006-06-26

    Superconducting RF technology is since nearly a decade routinely applied to different kinds of accelerating devices: linear accelerators, storage rings, synchrotron light sources and FEL's. With the technology recommendation for the International Linear Collider (ILC) a year ago, new emphasis has been placed on improving the performance of accelerating cavities both in Q-value and in accelerating gradients with the goal to achieve performance levels close to the fundamental limits given by the material parameters of the choice material, niobium. This paper will summarize the challenges to SRF technology and will review the latest developments in superconducting structure design. Additionally, it will give an overview of the newest results and will report on the developments in alternative materials and technologies.

  12. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  13. Development of a dedicated superconducting accelerator for positron production

    NASA Astrophysics Data System (ADS)

    O'Rourke, B. E.; Oshima, N.; Kuroda, R.; Suzuki, R.; Ohdaira, T.; Kinomura, A.; Hayashizaki, N.; Minehara, E.; Yamauchi, H.; Fukamizu, Y.; Shikibu, M.; Kawamoto, T.; Minehara, Y.

    2011-01-01

    We report on the current status of a project to develop a dedicated superconducting accelerator for slow positron production at AIST. Two 500 MHz, 5 cell cavities will form the basis of the new accelerator. Initial set-up and preliminary design activities are reported.

  14. Quench detector for superconducting elements of the NICA accelerator complex

    NASA Astrophysics Data System (ADS)

    Ivanov, E. V.; Svetov, L. A.; Smirnova, Z. I.

    2014-07-01

    A universal quench detector is designed for new superconducting accelerators of the NICA accelerator complex under construction at JINR. The presence of a two-channel digital input permits the detector to be used both for comparing voltage across two nearest magnets by a bridge scheme and for separating a resistive constituent of the voltage across a controlled element.

  15. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  16. Heavy-ion acceleration with a superconducting linac

    SciTech Connect

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a /sup 19/F beam from the tandem, and by September 1978 a 5-resonator linac provided an /sup 16/O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs.

  17. Development of high magnetic field superconducting magnet technology and applications in China

    NASA Astrophysics Data System (ADS)

    Wang, Qiuliang; Dai, Yingming; Zhao, Baozhi; Song, Shouseng; Lei, Yuanzhong; Wang, Houseng; Ye, Bai; Hu, Xinning; Huang, Tianbing; Wang, Hui; He, Chu; Shang, Muxi; Wang, Chao; Cui, Chunyan; Zhao, Shangwu; Zhang, Quan; Diao, Yanhua; Peng, Yan; Xu, Guoxin; Deng, Fanping; Weng, Peide; Kuang, Guangli; Gao, Bingjun; Lin, Liangzhen; Yan, Luguang

    2007-07-01

    High magnetic field superconducting magnet technology has been developed in the recent years for all kinds of applications in China. The superconducting magnets on the basis of the conduction-cooled high (HTS) and lower temperature superconductor (LTS) through GM cryocooler are designed, fabricated and operated for the magnetic separator, superconducting magnet energy storage system (SMES), material processing, gyrotron, electromagnetic launcher, space anti-matter detection, magnetic surgery system (MSS), heavy ion accelerator dipole magnet and test bed for characteristics of superconducting material in Institute of Electrical Engineering, Chinese Academy of Sciences (IEECAS). The EAST superconducting Tokamak is being fabricated in Institute of Plasma Physics, Chinese Academy of Sciences. In the paper, we report the successful development of high magnetic field superconducting magnet technology in China. Some new research projects, such as 40 T hybrid magnet, 25 T high magnetic field superconducting magnet, split-pair magnets for the pallation Neutron Source, high temperature superconducting coils for MSS and MRI are introduced.

  18. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    SciTech Connect

    Dhakal, Pashupati Ciovati, Gianluigi Myneni, Ganapati R.

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  19. Designing focusing solenoids for superconducting RF accelerators

    SciTech Connect

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  20. Superconducting travelling wave ring with high gradient accelerating section

    SciTech Connect

    Avrakhov, P.; Solyak, N.; /Fermilab

    2007-06-01

    Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.

  1. Novel Approach to Linear Accelerator Superconducting Magnet System

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  2. Thermo-magnetic instabilities in Nb3Sn superconducting accelerator magnets

    SciTech Connect

    Bordini, Bernardo; /Pisa U.

    2006-09-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb{sub 3}Sn. Several laboratories in the US and Europe are currently working on developing Nb{sub 3}Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb{sub 3}Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb{sub 3}Sn; a description of the manufacturing process of Nb{sub 3}Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb{sub 3}Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis.

  3. Superconducting accelerator magnets: A review of their design and training

    SciTech Connect

    Palmer, R.B. |

    1992-08-01

    This paper reviews the basic mechanical designs of most of the superconducting magnets developed for high energy hadron accelerators. The training performance of these magnets is compared with an instability factor defined by the square of the current density in the stabilizing copper divided by the surface-to-volume ratio of the strands. A good correlation is observed.

  4. Survey of high field superconducting material for accelerator magnets

    SciTech Connect

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  5. Superconducting technology program Sandia 1996 annual report

    SciTech Connect

    Roth, E.P.

    1997-02-01

    Sandia`s Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas.

  6. Superconducting accelerating structures for very low velocity ion beams

    SciTech Connect

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  7. Space applications of high temperature superconductivity technology

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Aron, P. R.; Leonard, R. F.; Wintucky, E. G.

    1991-01-01

    A review is presented of the present status of high temperature superconductivity (HTS) technology and related areas of potential space application. Attention is given to areas of application that include microwave communications, cryogenic systems, remote sensing, and space propulsion and power. Consideration is given to HTS phase shifters, miniaturization of microwave filters, far-IR bolometers, and magnetic refrigeration using flux compression.

  8. Subranging technique using superconducting technology

    DOEpatents

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  9. Superconducting technology for electric propulsion. Master's thesis

    SciTech Connect

    Keamy, E.F.

    1988-06-01

    This thesis analyzes the superconducting technology for a shipboard electric propulsion system. Superconductor operational operational limits, and magnet-design requirements were established. The magnetic-field requirements for a large-scale superconducting propulsion plant were analyzed from experimental information on copper and aluminum-stabilized NbTi superconductors. Experimental results were followed with a feasibility study in the conversion of a DD963 Spruance Class Destroyer from mechanical to superconducting electric drive. The results of the conversion are an increase in survivability, speed, usable deck area (4,954 ftS, maintainability, propeller efficiency and endurance range (+71%) along with a decrease in displacement (-2.83%) and self-radiated noise without compromising existing mission capabilities. The estimated cost of the conversion is $118.8 million dollars.

  10. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    SciTech Connect

    Kephart, Robert; Chattopadhyay, Swaapan; Milton, Stephen

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  11. The use of linear superconducting electron accelerator for subcritical reactor driving

    NASA Astrophysics Data System (ADS)

    Guk, I. S.; Dovbnya, A. N.; Kononenko, S. G.; Peev, F. A.; Tarasenko, A. S.; van der Wiel, M.; Botman, J. I. M.

    2008-12-01

    At the National Science Centre, Kharkiv Institute of Physics and Technology (NSC KIPT) the possibility of creating an installation with a subcritical reactor driven by an electron accelerator is examined. To obtain the maximal stream of neutrons from a neutron-producing target at a minimal density of energy emission, the electron energy should be in the range of 100-200 MeV and the size of the target should be as large as possible. Other important requirements are beam continuity with time and long-term stability of the accelerator parameters. The variants of using the superconducting linear accelerator on the basis of a TESLA accelerating structure as of subcritical reactor driver are considered. The basic design parameters and characteristics of this installation are presented.

  12. Lorentz Force Accelerator Technology Investigated

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; LaPointe, Michael R.; Arrington, Lynn A.; Kamhawi, Hani; Benson, Scott W.; Hoskins, W. Andrew

    2004-01-01

    The NASA Glenn Research Center is developing Lorenz force accelerators (LFAs) for a wide variety of space applications. These range from the precision control of formation-flying spacecraft to the primary propulsion system for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters (PPT) and magnetoplasmadynamic (MPD) thrusters.

  13. INJECTOR UPGRADE FOR THE SUPERCONDUCTING ELECTRON ACCELERATOR S-DALINAC

    SciTech Connect

    Kuerzeder, T.; Conrad, J.; Eichhorn, R.; Garcia, B. Bravo; Graef, H.-D.; Liebig, C.; Richter, A.; Schlander, F.; Sievers, S.; Fuerst, J. D.; Mueller, W. F. O.; Weiland, T.

    2010-04-09

    Since 1991 the superconducting Darmstadt linear accelerator S-DALINAC provides an electron beam of up to 130 MeV for nuclear and astrophysical experiments. The accelerator consists of an injector and four main linac cryostats, where the superconducting cavities are operated in a liquid helium bath at 2 K. Currently, the injector delivers beams of up to 10 MeV with a current of up to 60 muA. The upgrade aims to increase both parameters, the energy to 14 MeV and the current to 150 muA. Due to an increase in the required RF power to 2 kW the old coaxial RF input couplers, being designed for a maximum power of 500 W, have to be replaced by new waveguide couplers. Consequently, modifications to the cryostat-module had become necessary. We review the design principles, the necessary changes in RF components (i.e. couplers, transition line, stub tuner), the production of the SRF cavities and the new magnetic shielding. A report on the status will be given.

  14. Technology of magnetically driven accelerators

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-03-26

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability. 8 figs., 1 tab.

  15. Technology of magnetically driven accelerators

    SciTech Connect

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-10-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  16. An electomagnetic lunar launcher utilizing superconductivity technology

    NASA Technical Reports Server (NTRS)

    Bilby, Curt; Nozette, Stewart; Kolm, Henry

    1989-01-01

    The application of superconductivity technology to the lunar launcher problem was considered, and a quenchgun concept was formulated to reduce the mass of the launcher system by incorporating the energy storage in the launcher itself and using the efficiency of the quenchgun to reduce the power requirements. A conceptual design for the quenchgun launcher is presented, and the integration of the system into a lunar base logistics model for evaluation is addressed. The results of these evaluations under the NASA Office of Exploration lunar base scenarios are reported.

  17. Cryogenic system for the MYRRHA superconducting linear accelerator

    SciTech Connect

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  18. To study the emittance dilution in Superconducting Linear Accelerator Design for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Solyak, Nikolay; Tenenbaum, Peter

    2005-04-01

    Recently the particle physics community has chosen a single technology for the new accelerator, opening the way for the world community to unite and concentrate resources on the design of an International Linear collider (ILC) using superconducting technology. One of the key operational issues in the design of the ILC will be the preservation of the small beam emittances during passage through the main linear accelerator (linac). Sources of emittance dilution include incoherent misalignments of the quadrupole magnets and rf-structure misalignments. In this work, the study of emittance dilution for the 500-GeV center of mass energy main linac of the Superconducting Linear Accelerator design, based on adaptation of the TESLA TDR design is performed using LIAR simulation program. Based on the tolerances of the present design, effect of two important Beam-Based steering algorithms, Flat Steering and Dispersion Free Steering, are compared with respect to the emittance dilution in the main linac. We also investigated the effect of various misalignments on the emittance dilution for these two steering algorithms.

  19. Accelerator Technology Division annual report, FY 1989

    SciTech Connect

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  20. Minimization of power consumption during charging of superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-11-01

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  1. Conceptual design of industrial free electron laser using superconducting accelerator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  2. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  3. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    SciTech Connect

    Haire, M.J.

    2000-07-11

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  4. Design and test of superconducting RF cavity prototypes for high intensity proton accelerators

    NASA Astrophysics Data System (ADS)

    Junquera, T.; Biarrotte, J. L.; Saugnac, H.; Gassot, H.; Lesrel, J.; Olry, G.; Bousson, S.; Safa, H.; Charrier, J. P.; Devanz, G.

    2002-05-01

    High intensity proton beams, in the multi-MW range (typically 1 GeV and a few mA) are considered today for different applications: neutron sources, nuclear waste transmutation, radioactive ion beams and neutrino factories. All the foreseen projects are based on superconducting RF cavities for the high energy part of the linac accelerator between 100 MeV and 1 GeV. In this paper we present conceptual and experimental work made by the French group in the R&D preliminary phase. The aim of this study was to design an optimized cavity prototype integrating the more recent progress on RF superconductivity in terms of fabrication and preparation techniques. To reach high accelerating gradients while keeping safety margins and good reliability imposes careful cavity geometry optimization and detailed study of some important technological issues. The most relevant results obtained with several cavity prototypes (accelerating gradient, multipactor,…) are presented. Some other important components of the cavity (helium tank and cold tuner) are also discussed.

  5. Ferroelectric Based Technologies for Accelerators

    SciTech Connect

    Kanareykin, A.; Jing, C.; Nenasheva, E.; Kazakov, S.; Tagantsev, A.; Yakovlev, V.

    2009-01-22

    Ferroelectrics have unique intrinsic properties that make them extremely attractive for high-energy accelerator applications. Low loss ferroelectric materials can be used as key elements in RF tuning and phase shifting components to provide fast, electronic control. These devices are under development for different accelerator applications for the X, Ka and L-frequency bands. The exact design of these devices depends on the electrical parameters of the particular ferroelectric material to be used--its dielectric constant, loss tangent and tunability. BST based ferroelectric-oxide compounds have been found to be suitable materials for a fast electrically-controlled tuners. We present recent results on the development of BST based ferroelectric compositions synthesized for use in high power technology components. The BST(M) ferroelectrics have been tested using both transverse and parallel dc bias fields to control the permittivity. Fast switching of a newly developed material has been shown and the feasibility of using of ferroelectric-based accelerator components in vacuum and in air has been demonstrated.

  6. Research needs of the new accelerator technologies

    SciTech Connect

    Sessler, A.M.

    1982-08-01

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research.

  7. Superconducting Accelerating Cavity Pressure Sensitivity Analysis and Stiffening

    SciTech Connect

    Rodnizki, J; Ben Aliz, Y; Grin, A; Horvitz, Z; Perry, A; Weissman, L; Davis, G Kirk; Delayen, Jean R.

    2014-12-01

    The Soreq Applied Research Accelerator Facility (SARAF) design is based on a 40 MeV 5 mA light ions superconducting RF linac. Phase-I of SARAF delivers up to 2 mA CW proton beams in an energy range of 1.5 - 4.0 MeV. The maximum beam power that we have reached is 5.7 kW. Today, the main limiting factor to reach higher ion energy and beam power is related to the HWR sensitivity to the liquid helium coolant pressure fluctuations. The HWR sensitivity to helium pressure is about 60 Hz/mbar. The cavities had been designed, a decade ago, to be soft in order to enable tuning of their novel shape. However, the cavities turned out to be too soft. In this work we found that increasing the rigidity of the cavities in the vicinity of the external drift tubes may reduce the cavity sensitivity by a factor of three. A preliminary design to increase the cavity rigidity is presented.

  8. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-12-31

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm{sup 2}) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-{Tc} superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it.

  9. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm{sup 2}) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-{Tc} superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it.

  10. Acceleration technologies for charged particles: an introduction

    NASA Astrophysics Data System (ADS)

    Carter, Richard G.

    2011-01-01

    Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.

  11. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant

  12. A Survey of Hadron Therapy Accelerator Technologies.

    SciTech Connect

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  13. Analysis of Voltage Signals from Superconducting Accelerator Magnets

    SciTech Connect

    Lizarazo, J.; Caspi, S.; Ferracin, P.; Joseph, J.; Lietzke, A. F.; Sabbi, G. L.; Wang, X.

    2009-10-30

    We present two techniques used in the analysis of voltage tap data collected during recent tests of superconducting magnets developed by the Superconducting Magnet Program at Lawrence Berkeley National Laboratory. The first technique was used on a quadrupole to provide information about quench origins that could not be obtained using the time-of-flight method. The second technique illustrates the use of data from transient flux imbalances occurring during magnet ramping to diagnose changes in the current-temperature margin of a superconducting cable. In both cases, the results of this analysis contributed to make improvements on subsequent magnets.

  14. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  15. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGESBeta

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  16. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  17. Superconducting RF Linac Technology for ERL Light Sources

    SciTech Connect

    Tennant, Chris

    2005-08-01

    Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity's Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

  18. Trends in accelerator technology for hadron therapy

    NASA Astrophysics Data System (ADS)

    Kostromin, S. A.; Syresin, E. M.

    2013-12-01

    Hadron therapy with protons and carbon ions is one of the most effective branches in radiation oncology. It has advantages over therapy using gamma radiation and electron beams. Fifty thousand patients a year need such treatment in Russia. A review of the main modern trends in the development of accelerators for therapy and treatment techniques concerned with respiratory gated irradiation and scanning with the intensity modulated pencil beams is given. The main stages of formation, time structure, and the main parameters of the beams used in proton therapy, as well as the requirements for medicine accelerators, are considered. The main results of testing with the beam of the C235-V3 cyclotron for the first Russian specialized hospital proton therapy center in Dimitrovgrad are presented. The use of superconducting accelerators and gantry systems for hadron therapy is considered.

  19. New Trends in Induction Accelerator Technology

    SciTech Connect

    Caporaso, G J

    2002-12-05

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed.

  20. Application of FPGA technology for control of superconducting TESLA cavities in free electron laser

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2006-10-01

    Contemporary fundamental research in physics, biology, chemistry, pharmacology, material technology and other uses frequently methods basing on collision of high energy particles or penetration of matter with ultra-short electromagnetic waves. Kinetic energy of involved particles, considerably greater than GeV, is generated in accelerators of unique construction. The paper presents a digest of working principles of accelerators. There are characterized research methods which use accelerators. A method to stabilize the accelerating EM field in superconducting (SC) resonant cavity was presented. An example was given of usage of TESLA cavities in linear accelerator propelling the FLASH free electron laser (FEL) in DESY, Hamburg. Electronic and photonic control system was debated. The system bases on advanced FPGA circuits and cooperating fast DSP microprocessor chips. Examples of practical solutions were described. Test results of the debated systems in the real-time conditions were given.

  1. Performance of Conduction Cooled Splittable Superconducting Magnet Package for Linear Accelerators

    SciTech Connect

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; DiMarco, J.; Kimura, N.; Makarov, A.; Orlov, Y.; Poloubotko. V., Poloubotko. V.; Tartaglia, M.; Yamamoto, A.

    2015-01-01

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. The effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.

  2. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    SciTech Connect

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; Ballard, Joshua T.; Young, Glenn R.; Elouadrhiri, Latifa; Rode, Claus H.

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located in close proximity.

  3. Recent developments in rf superconductivity for high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    Recent progress in on-going development program leading to the design of superconducting continuous-wave (cw) linear accelerators for high-brightness ion beams is reviewed. A new spoke-resonator geometry incorporating a half-wavelength resonant line was fabricated and tested. This geometry serves as the basis for the constituent cavities of a superconducting section being designed for high-current testing with a deuterium beam. Considerable progress has been made in the design of this section. A multi-phased program leading to the development of a superconducting radio-frequency quadrupole (SCRFQ) has been initiated. Design considerations and test results from the various activities are presented.

  4. Recent developments in rf superconductivity for high-brightness and high-gradient ion beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1992-02-01

    Recent progress in on-going development program leading to the design of superconducting continuous-wave (cw) linear accelerators for high-brightness ion beams is reviewed. A new spoke-resonator geometry incorporating a half-wavelength resonant line was fabricated and tested. This geometry serves as the basis for the constituent cavities of a superconducting section being designed for high-current testing with a deuterium beam. Considerable progress has been made in the design of this section. A multi-phased program leading to the development of a superconducting radio-frequency quadrupole (SCRFQ) has been initiated. Design considerations and test results from the various activities are presented.

  5. Superconducting Technology Program Sandia 1994 Annual Report

    SciTech Connect

    Roth, E.P.

    1995-10-01

    Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) Process research on the material synthesis of high-temperature superconductors, (2) Investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films, (3) Process development and characterization of high-temperature superconducting wire and tape, and (4) Cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY94 in each of these four areas. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

  6. Superconducting Technology Program: Sandia 1993 annual report

    SciTech Connect

    Roth, E.P.

    1994-05-01

    Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

  7. Accelerator Technology Division progress report, FY 1993

    SciTech Connect

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-12-31

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

  8. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-11-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  9. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  10. Recent improvements in superconducting cable for accelerator dipole magnets

    SciTech Connect

    Scanlan, R.M.; Royet, J.M.

    1991-05-01

    The superconducting magnets required for the SSC have provided a focus and substantial challenge for the development of superconducting wire and cable. The number of strands in the cables have been increased from 23 for the Tevatron to 30 for the SSC inner layer cable and 36 for the SSC outer cable. Critical current degradation associated with cabling has been reduced from 15% for the Tevatron to less than 5%. R D which has led to these improvements will be described and the opportunities for further advances will be discussed. 11 refs., 2 figs., 1 tab.

  11. Superconducting linacs: some recent developments

    SciTech Connect

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  12. Materials for Accelerator Technologies Beyond the Niobium Family

    SciTech Connect

    Cooley, Lance; Larbalestier, David; Ghosh, Arup; Tollestrup, Alvin; /Fermilab

    2009-01-01

    Three niobium-based materials make up the entire present portfolio of superconducting technology for accelerators: Nb-Ti and Nb{sub 3}Sn magnet wires and pure niobium for RF cavities. Because these materials are at a high level of maturity, limits imposed by the boundaries of their superconductivity constrain the energy reach of accelerators to several TeV. We sketch here a plan for targeted development of emerging higher field and higher temperature superconductors that could enable accelerators at significantly higher energies. Niobium-based superconductors are the crucial enablers of present accelerators. The Nb-Ti LHC dipole and quadrupole wires, with transition temperature T{sub c} of 9 K and upper critical field H{sub c2} of 15 T, represent the highest form of superconductor strand art: massive, quarter-ton conductor billets are drawn from 300 mm diameter to {approx}1 mm as a single, multi-kilometer-long piece, while retaining uniformity of the several thousand Nb-Ti filaments to within 5% at the scale of a few micrometers. Strands are twisted into fully transposed cables with virtually no loss, preserving a carefully tuned nanostructure that generates the high flux-pinning forces and high current densities to enable high magnetic fields. Nb{sub 3}Sn, with twice the T{sub c} and H{sub c2}, is now approaching this level of conductor art, where over the last 5 years the LHC Accelerator Research Program (LARP) and the Next European Dipole (NED) program have demonstrated that Nb{sub 3}Sn can be made into 4 meter long quadrupoles with 12 T fields and 250 T/m gradients. Linear accelerators at TJNAF, ORNL (SNS), and under construction for the European XFEL exploit niobium superconducting radio-frequency (SRF) technology, with gradients at {approx}20 MV/m. Tremendous research and development is underway to realize high-power goals for Project X at FNAL and for a possible ILC at 35 MV/m gradients. Despite these impressive achievements, the very maturity of these

  13. Suppressed Superconductivity on the Surface of Superconducting RF Quality Niobium for Particle Accelerating Cavities

    SciTech Connect

    Sung, Z. H.; Polyanskii, A. A.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2011-03-31

    Significant performance degradation of superconducting RF (radio frequency) niobium cavities in high RF field is strongly associated with the breakdown of superconductivity on localized multi-scale surface defects lying within the 40 nm penetration depth. These defects may be on the nanometer scale, like grain boundaries and dislocations or even at the much larger scale of surface roughness and welding pits. By combining multiple superconducting characterization techniques including magneto-optical (MO) imaging and direct transport measurement with non-contact characterization of the surface topology using scanning confocal microscopy, we were able to show clear evidence of suppression of surface superconductivity at chemically treated RF-quality niobium. We found that pinning of vortices along GBs is weaker than pinning of vortices in the grains, which may indicate suppressed superfluid density on GBs. We also directly measured the local magnetic characteristics of BCP-treated Nb sample surface using a micro-Hall sensor in order to further understanding of the effect of surface topological features on the breakdown of superconducting state in RF mode.

  14. A facility to test short superconducting accelerator magnets at Fermilab

    SciTech Connect

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J.; Butteris, J.; McInturff, A.D.; Coulter, K.J.

    1992-10-01

    During the past four years the Superconducting Magnet R&D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-{beta} Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented.

  15. A facility to test short superconducting accelerator magnets at Fermilab

    SciTech Connect

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J. ); Butteris, J.; McInturff, A.D. ); Coulter, K.J. )

    1992-10-01

    During the past four years the Superconducting Magnet R D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-[beta] Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented.

  16. The First Observation of Intra Beam Stripping of Negative Hydrogen in a Superconducting Linear Accelerator

    SciTech Connect

    Aleksandrov, Alexander V; Plum, Michael A; Shishlo, Andrei P; Galambos, John D

    2012-01-01

    We report on an experiment in which a negative hydrogen ions beam in the Spallation Neutron Source (SNS) linear accelerator was replaced with a beam of protons with similar size and dynamics. Beam loss in the superconducting part of the SNS accelerator was at least an order of magnitude lower for the proton beam. Also beam loss has a stronger dependence on intensity with H- than with proton beams. These measurements verify a recent theoretical explanation of unexpected beam losses in the SNS superconducting linear accelerator based on an intra beam stripping mechanism for negative hydrogen ions. An identification of the new physics mechanism for beam loss is important for the design of new high current linear ion accelerators and the performance improvement of existing machines

  17. First Observation of Intrabeam Stripping of Negative Hydrogen in a Superconducting Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Shishlo, A.; Galambos, J.; Aleksandrov, A.; Lebedev, V.; Plum, M.

    2012-03-01

    We report on an experiment in which a negative hydrogen ion beam in the Spallation Neutron Source (SNS) linear accelerator was replaced with a beam of protons with similar size and dynamics. Fractional beam loss in the superconducting part of the SNS accelerator was measured to be at least 2×10-5 for the H- beam, and it was an order of magnitude lower for the protons. Also beam loss has a stronger dependence on intensity with H- than with proton beams. These measurements verify a recent theoretical explanation of unexpected beam losses in the SNS superconducting linear accelerator based on an intrabeam stripping mechanism for negative hydrogen ions. This previously unidentified mechanism for beam loss is important for the design of new high current linear ion accelerators and the performance improvement of existing machines.

  18. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  19. High temperature superconductive microwave technology for space applications

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.; Connolly, D. J.; Bhasin, K. B.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    Progress being made on space application technology research on film fabrication, passive microwave circuits, and semiconductor devices for cryogenic circuits is reviewed. Achievements in YBCO and TCBCO films are addressed along with circuit evaluations of microstrip resonators, phase shifters, microstrip filters, dielectric resonator filters, and superconducting antennas.

  20. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    NASA Astrophysics Data System (ADS)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  1. Comparison of accelerator technologies for use in ADSS

    SciTech Connect

    Weng, W.T.; Ludewig, H.; Raparia, D.; Trbojevic, D.; Todosow, M.; McIntyre, P.; Sattarov, A.

    2011-03-28

    candidates for accelerators that can provide intense CW proton beams are isochronous cyclotrons (IC) and superconducting linacs. We have examined a case study using a hypothetical ADS core configuration to guide our thinking in evaluating those two accelerator technologies for use in ADS systems. Issues of accelerator power, multiplicity of accelerators, and options for core neutronics and fuel form are discussed.

  2. Voltage spike detection in high field superconducting accelerator magnets

    SciTech Connect

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

    2004-12-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

  3. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE PAGESBeta

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; et al

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  4. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE PAGESBeta

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; DiMarco, J.; Kimura, N.; Makarov, A.; Orlov, Y.; V. Poloubotko; Tartaglia, M.; Yamamoto, A.

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  5. Superconducting Magnet Technology for the Upgrade

    SciTech Connect

    Todesco, E.; Ambrosio, G.; Ferracin, P.; Rifflet, J. M.; Sabbi, G. L.; Segreti, M.; Nakamoto, T.; van Weelderen, R.; Xu, Q.

    2015-10-01

    In this section we present the magnet technology for the High Luminosity LHC. After a short review of the project targets and constraints, we discuss the main guidelines used to determine the technology, the field/gradients, the operational margins, and the choice of the current density for each type of magnet. Then we discuss the peculiar aspects of each class of magnet, with special emphasis on the triplet.

  6. Passive correction of persistent current multipoles in superconducting accelerator dipoles

    SciTech Connect

    Fisk, H.E.; Hanft, R.A.; Kuchnir, M.; McInturff, A.D.

    1986-07-01

    Correction of the magnetization sextupole and decapole fields with strips of superconductor placed just inside the coil winding is discussed. Calculations have been carried out for such a scheme, and tests have been conducted on a 4 cm aperture magnet. The calculated sextupole correction at the injection excitation of 330 A, 5% of full field, was expected to be 77% effective, while the measured correction is 83%, thus suggesting the scheme may be useful for future accelerators such as SSC and LHC.

  7. Acoustic emission during quench training of superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Marchevsky, M.; Sabbi, G.; Bajas, H.; Gourlay, S.

    2015-07-01

    Acoustic emission (AE) sensing is a viable tool for superconducting magnet diagnostics. Using in-house developed cryogenic amplified piezoelectric sensors, we conducted AE studies during quench training of the US LARP's high-field quadrupole HQ02 and the LBNL's high-field dipole HD3. For both magnets, AE bursts were observed, with spike amplitude and frequency increasing toward the quench current during current up-ramps. In the HQ02, the AE onset upon current ramping is distinct and exhibits a clear memory of the previously-reached quench current (Kaiser effect). On the other hand, in the HD3 magnet the AE amplitude begins to increase well before the previously-reached quench current (felicity effect), suggesting an ongoing progressive mechanical motion in the coils. A clear difference in the AE signature exists between the untrained and trained mechanical states in HD3. Time intervals between the AE signals detected at the opposite ends of HD3 coils were processed using a combination of narrow-band pass filtering; threshold crossing and correlation algorithms, and the spatial distributions of AE sources and the mechanical energy release were calculated. Both distributions appear to be consistent with the quench location distribution. Energy statistics of the AE spikes exhibits a power-law scaling typical for the self-organized critical state.

  8. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    SciTech Connect

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  9. America's Overview of Superconducting Science and Technology of Ingot Niobium

    SciTech Connect

    Gianluigi Ciovati, Peter Kneisel, Ganapati Myneni

    2011-03-01

    This contribution will present an overview of the results from R&D programs in the USA over the past four years towards the development of ingot Niobium as a viable alternative material to fabricate SRF cavities for particle accelerators. Activities at several laboratories and universities include fabrication, surface treatment and RF testing of single- and multi-cell cavities and studies of the thermal, mechanical and superconducting properties of samples from ingots of different purity. Possible advantages of ingot niobium over standard fine-grain (ASTM 6) are discussed and a streamlined treatment procedure to fully exploit those advantages is proposed.

  10. Improving the design and analysis of superconducting magnets for particle accelerators

    SciTech Connect

    Gupta, R C

    1996-11-01

    High energy particle accelerators are now the primary means of discovering the basic building blocks of matter and understanding the forces between them. In order to minimize the cost of building these machines, superconducting magnets are used in essentially all present day high energy proton and heavy ion colliders. The cost of superconducting magnets is typically in the range of 20--30% of the total cost of building such machines. The circulating particle beam goes through these magnets a large number of times (over hundreds of millions). The luminosity performance and life time of the beam in these machines depends significantly on the field quality in these magnets. Therefore, even a small error in the magnetic field shape may create a large cumulative effect in the beam trajectory to throw the particles of the magnet aperture. The superconducting accelerator magnets must, therefore, be designed and constructed so that these errors are small. In this thesis the research and development work will be described 3which has resulted in significant improvements in the field quality of the superconducting magnets for the Relativistic Heavy Ion Collider (RHIC). The design and the field quality improvements in the prototype of the main collider dipole magnet for the Superconducting Super Collider (SSC) will also be presented. RHIC will accelerate and collide two counter rotating beams of heavy ions up to 100 GeV/u and protons up to 250 GeV. It is expected that RHIC will create a hot, dense quark-gluon plasma and the conditions which, according to the Big Bang theory, existed in the early universe.

  11. Isogeometric simulation of Lorentz detuning in superconducting accelerator cavities

    NASA Astrophysics Data System (ADS)

    Corno, Jacopo; de Falco, Carlo; De Gersem, Herbert; Schöps, Sebastian

    2016-04-01

    Cavities in linear accelerators suffer from eigenfrequency shifts due to mechanical deformation caused by the electromagnetic radiation pressure, a phenomenon known as Lorentz detuning. Estimating the frequency shift up to the needed accuracy by means of standard Finite Element Methods, is a complex task due to the non exact representation of the geometry and due to the necessity for mesh refinement when using low order basis functions. In this paper, we use Isogeometric Analysis for discretizing both mechanical deformations and electromagnetic fields in a coupled multiphysics simulation approach. The combined high-order approximation of both leads to high accuracies at a substantially lower computational cost.

  12. Superstructure for high current applications in superconducting linear accelerators

    DOEpatents

    Sekutowicz, Jacek; Kneisel, Peter

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  13. Technology development for high power induction accelerators

    SciTech Connect

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  14. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  15. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Blomberg, Ben; Mihalcea, Daniel; Panuganti, Harsha; Piot, Philippe; Brau, Charles; Choi, Bo; Gabella, William; Ivanov, Borislav; Mendenhall, Marcus; Lynn, Christopher; Sen, Tanaji; Wagner, Wolfgang

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  16. Numerical Simulations for the Cool-Down of the XFEL and TTF Superconducting Linear Accelerators

    SciTech Connect

    Jensch, K.; Lange, R.; Petersen, B.

    2004-06-23

    The alignment of the superconducting RF-cavities and the magnet packages of the cryomodules of the future XFEL linear accelerator and the existing TTF linear accelerator at DESY can be affected by the mechanical stress caused by thermal gradients during the cool-down and warm-up. Also the design of the XFEL cryogenic system has to include the cool-down and warm-up procedures. An object-oriented software concept is applied to analyze the cool-down procedures for the TTF and the XFEL linear accelerators by numerical simulations. The numerical results are compared to measurements taken during the first cool-down of the TTF linear accelerator. Some results for the XFEL cryogenic system are presented.

  17. Superconductivity

    SciTech Connect

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries.

  18. Conceptual design of a superconducting magnet ECR ion source for the Korean rare isotope accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Byung-Hoon; In, Sang-Ryul; Lee, Kwang-Won; Lee, Cheol Ho; Jeong, Seung-Ho; Chang, Dae-Sik; Seo, Chang Seog

    2013-11-01

    Based on proven technology, an upgraded 28-GHz superconducting electron cyclotron resonance ion source is suggested to produce a wide range of different ion beams from protons for isotope separator on-line to uranium for in-flight fragmentation. The suggested ion source has the following characteristics: (1) The shapes of the minimum B z layer can be controlled using five superconducting solenoid coils. (2) Two solenoid lenses, the first one side a cryostat and the second one outside it, control the beam envelope at the entrance of the analyzing magnet.

  19. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    SciTech Connect

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  20. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    NASA Astrophysics Data System (ADS)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  1. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator.

    PubMed

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project. PMID:26931935

  2. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGESBeta

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  3. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    SciTech Connect

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current, 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.

  4. Multipass beam breakup in the CEBAF (Continuous Electron Beam Accelerator Facility) superconducting linac

    SciTech Connect

    Bisognano, J.J.; Krafft, G.A.

    1986-06-02

    Multipass beam breakup can severely limit current in superconducting linear accelerators due to the inherently high Q's of transverse deflecting modes of the rf cavities. The success of higher-order-mode damping in increasing threshold currents for the 4-pass CEBAF SRF linac design is investigated with computer modeling. This simulation is shown to be in agreement with theoretical analyses which have successfully described beam breakup in the Stanford superconducting, recirculating linac. Numerical evaluation of an analytic treatment by Gluckstern of multipass beam breakup with distributed cavities is also found to be consistent with the computer model. Application of the simulation to the design array of 400 five-cell CEBAF/Cornell cavities with measured higher-order-mode damping indicates that the beam breakup threshold current is at least an order of magnitude above the CEBAF design current of 200 ..mu..A.

  5. ORNL Superconducting Technology Program for Electric Energy Systems

    SciTech Connect

    Hawsey, R.A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  6. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  7. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    SciTech Connect

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  8. Laser Processing on the Surface of Niobium Superconducting Radio-Frequency Accelerator Cavities

    NASA Astrophysics Data System (ADS)

    Singaravelu, Senthilraja; Klopf, Michael; Krafft, Geoffrey; Kelley, Michael

    2011-03-01

    Superconducting Radio frequency (SRF) niobium cavities are at the heart of an increasing number of particle accelerators.~ Their performance is dominated by a several nm thick layer at the interior surface. ~Maximizing its smoothness is found to be critical and aggressive chemical treatments are employed to this end.~ We describe laser-induced surface melting as an alternative ``greener'' approach.~ Modeling guided selection of parameters for irradiation with a Q-switched Nd:YAG laser.~ The resulting topography was examined by SEM, AFM and Stylus Profilometry.

  9. SCREAMm - modified code SCREAM to sumulate the acceleration of a pulsed beam through the superconducting linac

    SciTech Connect

    Eidelman, Yu.; Nagaitsev, S.; Solyak, N.; /Fermilab

    2011-07-01

    The code SCREAM - SuperConducting RElativistic particle Accelerator siMulation - was significantly modified and improved. Some misprints in the formulae used have been fixed and a more realistic expression for the vector-sum introduced. The realistic model of Lorentz-force detuning (LFD) is developed and will be implemented to the code. A friendly GUI allows various parameters of the simulated problem to be changed easily and quickly. Effective control of various output data is provided. A change of various parameters during the simulation process is controlled by plotting the corresponding graphs 'on the fly'. A large collection of various graphs can be used to illustrate the results.

  10. Fabrication of Planar Gradiometers by Using Superconducting Integrated Circuit Technology

    NASA Astrophysics Data System (ADS)

    Maezawa, Masaaki; Ying, Liliang; Gorwadkar, Sucheta; Zhang, Guofeng; Wang, Hai; Kong, Xiangyan; Wang, Zhen; Xie, Xiaoming

    We present fabrication technology for planar-type superconducting quantum interference devices (SQUIDs) comprising trilayer Nb/AlOx/Nb Josephson junctions and thin-film pick-up coils integrated on a single chip. A well-established superconducting integrated circuit technology that was originally developed for digital applications has been modified for developing SQUID fabrication processes with high reliability and controllability. Combination of two photolithography techniques, a high-resolution stepper and a large-shot-area mask aligner, has been introduced to fabricate fine-scale patterns such as 2-μm-square junctions and large-scale patterns such as 10-mm-square pick-up coils with a 2.5- or 3.0-cm baseline on the same chip. We successfully fabricated planar gradiometers and confirmed the operation with typical modulation amplitude of 50 μV, achieving gradient field resolutions as small as 3.5 fT/Hz1/2cm.

  11. Stability of bellows used as expansion joints between superconducting magnets in accelerators

    SciTech Connect

    Shutt, R.P.; Rehak, M.L.

    1991-01-01

    For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines. There could be approximately 20,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed, internally pressurized, or insufficiently supported at their ends, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in a magnet assembly, failure modes might interact. If designed properly large bellows can be used to connect the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We investigate here bellows design features and end supports to insure that instabilities will not occur in the bellows pressure operating region, including some margin. A model of three superconducting accelerator magnets connected by two large bellows is analyzed in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Specific details of large and small bellows design and reliability for our application will be addressed.

  12. Superconducting and microstructural studies on sputtered niobium thin films for accelerating cavity applications

    NASA Astrophysics Data System (ADS)

    Bemporad, E.; Carassiti, F.; Sebastiani, M.; Lanza, G.; Palmieri, V.; Padamsee, H.

    2008-12-01

    The aim of the present research activity was to verify the influence of the applied bias voltage on the microstructural and functional properties of magnetron sputtering physical vapour deposition (MS-PVD) niobium thin films for use in superconducting resonant cavities for particle accelerators. Four different sets of samples were produced, by varying both the applied bias voltage and the nature of the substrate (copper or quartz). The morphological, microstructural, and mechanical properties of the coatings were experimentally determined by focused ion beam scanning electron microscopy (FIB-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and nanoindentation techniques, and then correlated to the applied bias and nature of the substrate. The superconducting properties (critical temperature Tc and residual resistivity) were determined by a calibrated four-contact probe and a cryogenic apparatus. The microstructures and surface properties of biased films grown on copper and quartz were compared. The observed differences are likely connected to the low conductivity of quartz that induces a re-sputtering effect and a consequent modification of the superconducting performances.

  13. First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab

    SciTech Connect

    Crawford, Darren; et al.

    2015-06-01

    The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.

  14. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    DOEpatents

    Hull, John R.

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  15. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  16. Method and Apparatus for measuring Gravitational Acceleration Utilizing a high Temperature Superconducting Bearing

    SciTech Connect

    Hull, John R.

    1998-11-06

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operative temperature at or below 77K, whereby cooling maybe accomplished with liquid nitrogen.

  17. A fiber optic strain measurement and quench localization for use in superconducting accelerator dipole magnets

    NASA Astrophysics Data System (ADS)

    Vanoort, Johannes M.; Scanlan, Ronald M.; Tenkate, Herman H. J.

    1994-10-01

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb3Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  18. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  19. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    NASA Astrophysics Data System (ADS)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  20. LINAC for ADS application - accelerator technologies

    SciTech Connect

    Garnett, Robert W; Sheffreld, Richard L

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  1. Novel technologies and configurations of superconducting magnets for MRI

    NASA Astrophysics Data System (ADS)

    Lvovsky, Yuri; Stautner, Ernst Wolfgang; Zhang, Tao

    2013-09-01

    A review of non-traditional approaches and emerging trends in superconducting magnets for MRI is presented. Novel technologies and concepts have arisen in response to new clinical imaging needs, changes in market cost structure, and the realities of newly developing markets. Among key trends are an increasing emphasis on patient comfort and the need for ‘greener’ magnets with reduced helium usage. The paper starts with a brief overview of the well-optimized conventional MR magnet technology that presently firmly occupies the dominant position in the imaging market up to 9.4 T. Non-traditional magnet geometries, with an emphasis on openness, are reviewed. The prospects of MgB2 and high-temperature superconductors for MRI applications are discussed. In many cases the introduction of novel technologies into a cost-conscious commercial market will be stimulated by growing needs for advanced customized procedures, and specialty scanners such as orthopedic or head imagers can lead the way due to the intrinsic advantages in their design. A review of ultrahigh-field MR is presented, including the largest 11.7 T Iseult magnet. Advanced cryogenics approaches with an emphasis on low-volume helium systems, including hermetically sealed self-contained cryostats requiring no user intervention, as well as future non-traditional non-helium cryogenics, are presented.

  2. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R&D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q0 was 1.5×1010 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni-Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and permeability

  3. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    SciTech Connect

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  4. Generation and measurement of ultrashort pulses from the Stanford Superconducting Accelerator free-electron laser

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-11-01

    The authors present results of frequency resolved optical gating (FROG) measurements on the Superconducting Accelerator (SCA) mid-IR free-electron laser (FEL) at Stanford. FROG retrieves complete amplitude and phase content of an optical pulse. First, they review the properties of FELs including the ability to tune wavelength and pulse length. In addition, the electron beam driving the FEL often affects the optical pulse shape. The SCA mid-IR FEL currently operates at wavelengths between 4 {micro}m and 10 {micro}m and its pulse length can be varied from 700 fs to 2 ps. They then describe details of the experimental layout and procedures particular to FELs and to the mid-IR. Finally, they show FROG measurements on the FEL including examples of nearly transform limited pulses, frequency chirped pulses, and pulses distorted by atmospheric water vapor absorption.

  5. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    SciTech Connect

    Zhao, Liang; Klopf, John M.; Reece, Charles E.; Kelley, Michael J.

    2014-08-01

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  6. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    DOE PAGESBeta

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  7. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    SciTech Connect

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  8. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    SciTech Connect

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  9. Free-electron laser multiplex driven by a superconducting linear accelerator.

    PubMed

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented. PMID:27577757

  10. Development of integrated superconducting quadrupole doublet modules for operation in the SIS100 accelerator

    NASA Astrophysics Data System (ADS)

    Meier, J.; Bleile, A.; Ceballos Velasco, J.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.

    2015-12-01

    The FAIR project (Facility for Antiproton and Ion Research) evolves and builds an international accelerator- and experimental facility for basic research activities in various fields of modern physics. Within the course of this project, integrated quadrupole doublet modules are in development. The quadrupole doublet modules provide a pair of superconducting main quadrupoles (focusing and defocusing), corrector magnets, cryogenic collimators and beam position monitors as integrated sets of ion-optical elements. Furthermore LHe cooled beam pipes and vacuum cold-warm transitions are used as ultra-high vacuum components for beam transportation. Superconducting bus bars are used for 13 kA current supply of the main quadrupole magnets. All components are integrated as one common cold mass into one cryostat. High temperature super conductor local current leads will be applied for the low current supply of corrector magnets. The quadrupole doublet modules will be operated in the SIS100 heavy ion accelerator, the core component of the FAIR project. A first version of a corrector magnet has already been manufactured at the Joint Institute for Nuclear Research (JINR), Russia, and is now ready for testing. The ion-optical lattice structure of SIS100 requires multiple configurations of named components. Eleven different configurations, organized in four categories, provide the required quadrupole doublet module setups. The high integration level of multiple ion-optical, mechanical and cryogenic functions, based on requirements of operation safety, is leading towards a sophisticated mechanical structure and cooling solution, to satisfy the demanding requirements on position preservation during thermal cycling. The mechanical and cryogenic design solutions will be discussed.

  11. New technologies for a future superconducting proton collider

    SciTech Connect

    Malamud, E.; Foster, G.W.

    1996-06-01

    New more economic approaches are required to continue the dramatic exponential rise in particle accelerator energies as represented by the well- known Livingston plot. The old idea of low-cost, low-field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) high T{sub c} superconductors operating at liquid N{sub 2} or H{sub 2} temperatures, (2) advanced tunneling technologies for small diameter, non human accessible tunnels, (3) accurate remote guidance systems for boring machine steering, (4) industrial applications of remote manipulation and robotics, and (5) digitally multiplexed electronics to minimize cables There is an opportunity for mutually beneficial partnerships between the High Energy Physics community and the commercial sector to develop the necessary technology. This will gain public support, a necessary part of the challenge of building a new, very high energy collider.

  12. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  13. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  14. Accelerating Technologies: Consequences for the Future Wellbeing of Students

    ERIC Educational Resources Information Center

    Saltinski, Ronald

    2015-01-01

    Today's students, K-12 and beyond, will face an ominous future unless educators quickly invest in preparing student perspectives for the accelerating technologies that will have global implications for the wellbeing of all humanity. Accelerating technologies are quietly, almost insidiously, transforming the world with little fanfare and certainly…

  15. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2011-06-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  16. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2010-08-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  17. Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi

    NASA Astrophysics Data System (ADS)

    Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar

    The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.

  18. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper. PMID:26931953

  19. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    NASA Astrophysics Data System (ADS)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  20. Future accelerators using micro-fabrication technology

    SciTech Connect

    Maschke, A.W.

    1983-01-01

    Historically, each generation of new accelerators has produced a thousand-fold increase over their predecessors. Thus, the d.c. accelerators were surpassed by weak focusing cyclotrons and synchrotrons. Then strong focusing machines surpassed the weak focusing ones, and now we are in the process of designing machines for 10 to 20 TeV. This paper is devoted to the study of the next generation of accelerators which we can contemplate will be in the range of 1000 TeV. The radiation loss in a circular machine would correspond to approximately 20 TeV/turn. It is clear then that the future generation of accelerators will have to be linear accelerators. Furthermore, since the center of mass energy of a 1000 TeV machine is only approximately 1.5 TeV, these linacs will be built in pairs and operated primarily as linear colliders. This meas that the average beam power in one of the devices will be quite large. This in turn leads us toward high efficiency acceleration schemes, capable of high repetition rates. The poor efficiency of laser accelerators and other exotic proposals make them poor candidates for a future generation collider.

  1. High temperature superconductivity technology for advanced space power systems

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Myers, Ira T.; Connolly, Denis J.

    1990-01-01

    In 1987, the Lewis Research center of the NASA and the Argonne National Laboratory of the Department of Energy joined in a cooperative program to identify and assess high payoff space and aeronautical applications of high temperature superconductivity (HTSC). The initial emphasis of this effort was limited, and those space power related applications which were considered included microwave power transmission and magnetic energy storage. The results of these initial studies were encouraging and indicated the need of further studies. A continuing collaborative program with Argonne National Laboratory has been formulated and the Lewis Research Center is presently structuring a program to further evaluate HTSC, identify applications and define the requisite technology development programs for space power systems. This paper discusses some preliminary results of the previous evaluations in the area of space power applications of HTSC which were carried out under the joint NASA-DOE program, the future NASA-Lewis proposed program, its thrusts, and its intended outputs and give general insights on the anticipated impact of HTSC for space power applications of the future.

  2. New Pulsed Power Technology for High Current Accelerators

    SciTech Connect

    Caporaso, G J

    2002-06-27

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed.

  3. Accelerator Technology Program. Status report, April-September 1985

    SciTech Connect

    Jameson, R.A.; Schriber, S.O.

    1986-09-01

    This report presents highlights of major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Radio-frequency and microwave technology are dealt with. The p-bar gravity experiment, accelerator theory and simulation activities, the Proton Storage Ring, and the Fusion Materials Irradiation Test accelerator are discussed. Activities on the proposed LAMPF II accelerator, the BEAR (Beam Experiment Aboard Rocket) project, beam dynamics, the National Bureau of Standards racetrack microtron, and the University of Illinois racetrack microtron are covered. Papers published by AT-Division personnel during this reporting period are listed.

  4. Technologies using accelerator-driven targets under development at BNL

    SciTech Connect

    Van Tuyle, G.J.

    1994-08-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications.

  5. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  6. Induction linear accelerator technology for SDIO applications

    SciTech Connect

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser. (LEW)

  7. Enabling Technologies for Petascale Electromagnetic Accelerator Simulation

    SciTech Connect

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Li-Xin; Prudencio, Ernesto; Schussman, Greg; Uplenchwar, Ravi; Ng, Cho; Ko, Kwok; Luo, Xiaojun; Shephard, Mark; /Rensselaer Poly.

    2007-11-09

    The SciDAC2 accelerator project at SLAC aims to simulate an entire three-cryomodule radio frequency (RF) unit of the International Linear Collider (ILC) main Linac. Petascale computing resources supported by advances in Applied Mathematics (AM) and Computer Science (CS) and INCITE Program are essential to enable such very large-scale electromagnetic accelerator simulations required by the ILC Global Design Effort. This poster presents the recent advances and achievements in the areas of CS/AM through collaborations.

  8. Unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation in normal and supercritical helium conditions

    NASA Astrophysics Data System (ADS)

    Pietrowicz, S.; Four, A.; Baudouy, B.; Kimura, N.; Yamamoto, A.

    2014-01-01

    To investigate the unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation, two experimental mock-ups reproducing the thermal and the mechanical conditions of a superconducting coils were produced. The mock-ups with compressive load of 10 MPa and 20 MPa were tested at normal (T = 4.23 K and p = 1 bar) and supercritical helium conditions (T = 4.23 K and p = 2.0 to 3.75 bar) during unsteady heat dissipation. The paper presents the experimental results of temperature rise in both superconducting coils as a function of time for a wide range of a localized heat load varying from 0.1 kJ/m3 up to 12.8 MJ m-3 per pulse. A numerical model of the transient process in these coils has been developed and the computations are compared with the experimental results.

  9. Unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation in normal and supercritical helium conditions

    SciTech Connect

    Pietrowicz, S.; Four, A.; Baudouy, B.

    2014-01-29

    To investigate the unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation, two experimental mock-ups reproducing the thermal and the mechanical conditions of a superconducting coils were produced. The mock-ups with compressive load of 10 MPa and 20 MPa were tested at normal (T = 4.23 K and p = 1 bar) and supercritical helium conditions (T = 4.23 K and p = 2.0 to 3.75 bar) during unsteady heat dissipation. The paper presents the experimental results of temperature rise in both superconducting coils as a function of time for a wide range of a localized heat load varying from 0.1 kJ/m{sup 3} up to 12.8 MJ m{sup −3} per pulse. A numerical model of the transient process in these coils has been developed and the computations are compared with the experimental results.

  10. Usage of scientific and technological information in developing superconducting materials

    NASA Astrophysics Data System (ADS)

    Inamura, Takahiro

    An experience of successful scientific information acquisition through the JICST File at an earliest stage of superconductivity boom, when only newspaper articles were source of information, is described. The results of the online retrieval of the JICST File told us that the crystal structure of the superconducting materials in question is K2NiF4 type, which was new information not known yet in research community in common.

  11. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    SciTech Connect

    Gianluigi Ciovati

    2004-03-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models

  12. Static and dynamic parasitic magnetizations and their control in superconducting accelerator dipoles

    NASA Astrophysics Data System (ADS)

    Collings, E. W.; Sumption, M. D.

    2001-05-01

    Long dipole magnets guide the particle beams in synchrotron-type high energy accelerators. In principal Cu-wound DC-excited dipoles could be designed to deliver a very uniform transverse bore field, i.e. with small or negligible harmonic (multipolar) distortion. But if the Cu is replaced by (a) superconducting strand that is (b) wound into a Rutherford cable carrying a time-varying transport current, extra magnetizations present within the windings cause distortions of the otherwise uniform field. The static (persistent-current) strand magnetization can be reduced by reducing the filament diameter, and the residue compensated or corrected by strategically placed active or passive components. The cable’s interstrand coupling currents can be controlled by increasing the interstrand contact resistance by: adjusting the level of native oxidation of the strand, coating it, or by inserting a ribbon-like core into the cable itself. Methods of locally compensating the magnetization of NbTi and Nb 3Sn strand and cable are discussed, progress in coupling-current suppression through the use of coatings and cores is reviewed, and a method of simultaneously reducing both the static and dynamic magnetizations of a NbTi cable by means of a thin Ni core is suggested.

  13. Design considerations for fast-cycling superconducting accelerator magnets of 2 T B-field generated by a transmission line conductor of up to 100 kA current

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; Huang, Yuenian; Kashikhin, Vadim; de Rijk, Gijsbert; Rossi, Lucio; /CERN

    2007-08-01

    Recently proposed synchrotrons, SF-SPS at CERN and DSF-MR at Fermilab, would operate with a 0.5 Hz cycle (or 2 second time period) while accelerating protons to 480 GeV. We examine possibilities of superconducting magnet technology that would allow for an accelerator quality magnetic field sweep of 2 T/s. For superconducting magnets the cryogenic cooling power demand due to AC losses in the superconductor leads to a high operational cost. We outline a novel magnet technology based on HTS superconductors that may allow to reduce AC losses in the magnet coil possibly up to an order of magnitude as compared to similar applications based on LTS type superconductors.

  14. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  15. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, Panagiotis; Cary, John; Mcinnes, Lois Curfman; Mori, Warren; Ng, Cho; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  16. Community petascale project for accelerator science and simulation : Advancing computational science for future accelerators and accelerator technologies.

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L. C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R & D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  17. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect

    Spentzouris, Panagiotis; Cary, John; Mcinnes, Lois Curfman; Mori, Warren; Ng, Cho; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  18. Financial impact of technology acceleration on semiconductor masks

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.; Kimmel, Kurt R.; Grenon, Brian J.

    2002-03-01

    The Semiconductor Industry has been on a historic productivity growth curve that is due to the feature increase based on size reductions. The pace of technology introduction is accelerating as evidenced by the shortening of time from the introduction of the 180nm node and the introduction of the 130nm node. Historically, the introduction of new nodes had been on a three-year cycle. This raises the question of the impact of this acceleration on the manufacture of masks. This paper examines the impact on semiconductor masks by considering the process steps involved in manufacturing masks and the related cots and cycle time. As technology accelerates, the tools available may not maintain a similar pace of introduction. The consequences of this possible non-compliance with the technology acceleration will have an impact on the cost of masks. An example is employed to demonstrate the financial impact of the technology acceleration. Projections can be made of the continuing impact of technology acceleration on the mask manufacturing process. The conclusions drawn are that several identified, critical processes must be the focus of improvement to allow the industry to continue on the productivity growth curve.

  19. Materials technology applied to nuclear accelerator targets

    SciTech Connect

    Barthell, B.L.

    1986-11-10

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology.

  20. Microwave power coupler for a superconducting multiple-cell cavity for accelerator application and its testing procedures

    SciTech Connect

    Li, Jianjian; /IIT, Chicago

    2008-12-01

    Superconducting cavity resonators offer the advantage of high field intensity for a given input power, making them an attractive contender for particle accelerator applications. Power coupling into a superconducting cavity employed in a particle accelerator requires unique provisions to maintain high vacuum and cryogenic temperature on the cavity side, while operating with ambient conditions on the source side. Components introduced to fulfill mechanical requirements must show negligible obstruction of the propagation of the microwave with absence of critical locations that may give rise to electron multipaction, leading to a multiple section design, instead of an aperture, a probe, or a loop structure as found in conventional cavities. A coaxial power coupler for a superconducting multiple-cell cavity at 3.9 GHz has been developed. The cavity is intended to be employed as an accelerator to provide enhanced electron beam quality in a free-electron laser in Hamburg (FLASH) user facility. The design of the coupler called for two windows to sustain high vacuum in the cavity and two bellows to accommodate mechanical dimensional changes resulting from cryogenics. Suppression of multipacting was accomplished by the choice of conductor dimensions and materials with low second yield coefficients. Prior to integration with the cavity, the coupler was tested for intrinsic properties in a back-to-back configuration and conditioned for high-power operation with increasing power input. Maximum incident power was measured to be 61 kW. When integrated with the superconducting cavity, a loaded quality factor of 9 x 10{sup 5} was measured by transient method. Coupler return loss and insertion loss were estimated to be around -21 dB and -0.2 dB, respectively.

  1. Accelerator science and technology in Europe 2008-2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, Eu

  2. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    SciTech Connect

    Willis, J.O.; Newnam, B.E.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  3. Flux trapping in superconducting accelerating cavities during cooling down with a spatial temperature gradient

    NASA Astrophysics Data System (ADS)

    Kubo, Takayuki

    2016-05-01

    During the cool-down of a superconducting accelerating cavity, a magnetic flux is trapped as quantized vortices, which yield additional dissipation and contribute to the residual resistance. Recently, cooling down with a large spatial temperature gradient has attracted much attention for successfully reducing the number of trapped vortices. The purpose of the present paper is to propose a model to explain the observed efficient flux expulsions and the role of spatial temperature gradient during the cool-down of the cavity. In the vicinity of a region with a temperature close to the critical temperature T_c, the critical fields are strongly suppressed and can be smaller than the ambient magnetic field. A region with a lower critical field smaller than the ambient field is in the vortex state. As the material is cooled down, a region with a temperature close to T_c associated with the vortex state domain sweeps and passes through the material. In this process, vortices contained in the vortex state domain are trapped by pinning centers that randomly distribute in the material. The number of trapped vortices can be naively estimated by analogy with a beam-target collision event. Based on this result, the residual resistance is evaluated. We find that the number of trapped vortices and the residual resistance are proportional to the strength of the ambient magnetic field and the inverse of the temperature gradient. The residual resistance obtained agrees well with experimental results. A material property dependence of the number of trapped vortices is also discussed.

  4. Overview of superconducting RF technology and its application to high-current linacs

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.

    1994-08-01

    Superconducting linacs may be a viable option for high-current applications such as copious neutron production like that needed for transmutation of radioactive waste. These linacs must run reliably for many years and allow easy routine maintenance. superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs. However, cost effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement.

  5. Cost and Performance Report Accelerated Site Technology Deployment Program

    SciTech Connect

    P. S. Morris

    2002-05-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Environmental Restoration Division (ERD) Industrial Sites Project Deactivation and Decommissioning (D and D) source group has limited budget and is constantly searching for new technologies to reduce programmatic costs. Partnering with the DOE Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA) reduces NNSA/NV programmatic risk and encourages accelerated deployment of potentially beneficial technologies to the Nevada Test Site (NTS).

  6. Planned High-gradient Flat-beam-driven Dielectric Wakefield Experiments at the Fermilab’s Advanced Superconducting Test Accelerator

    SciTech Connect

    Lemery, Francois; Mihalcea, Daniel; Piot, Philippe; Zhu, Jun

    2014-07-01

    In beam driven dielectric wakefield acceleration (DWA), high-gradient short-wavelength accelerating fields are generally achieved by employing dielectric-lined waveguides (DLWs)  with small aperture which constraints the beam sizes. In this paper we investigate the possibility of using a low-energy (50-MeV) flat beams to induce high-gradient wakes in a slab-symmetric DLW. We demonstrate via numerical simulations the possibility to produce axial electric field with peak amplitude close to 0.5 GV/m. Our studies are carried out using the Fermilab's Advanced Superconducting Test Accelerator (ASTA) photoinjector beamline. We finally discuss a possible experiment that could be performed in the ASTA photoinjector and eventually at higher energies.  

  7. Accelerator technology program. Progress report, January-June 1981

    SciTech Connect

    Knapp, E.A.; Jameson, R.A.

    1982-05-01

    This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report.

  8. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    SciTech Connect

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  9. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac

  10. Geospace simulations using modern accelerator processor technology

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.

    2009-12-01

    OpenGGCM (Open Geospace General Circulation Model) is a well-established numerical code simulating the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is currently limited by computational constraints on grid resolution. OpenGGCM has been ported to make use of the added computational powerof modern accelerator based processor architectures, in particular the Cell processor. The Cell architecture is a novel inhomogeneous multicore architecture capable of achieving up to 230 GFLops on a single chip. The University of New Hampshire recently acquired a PowerXCell 8i based computing cluster, and here we will report initial performance results of OpenGGCM. Realizing the high theoretical performance of the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallelization approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We use a modern technique, automatic code generation, which shields the application programmer from having to deal with all of the implementation details just described, keeping the code much more easily maintainable. Our preliminary results indicate excellent performance, a speed-up of a factor of 30 compared to the unoptimized version.

  11. Accelerator technology program. Status report, October 1984-March 1985

    SciTech Connect

    Jameson, R.A.; Schriber, S.O.

    1986-04-01

    Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period.

  12. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  13. Separations technology development to support accelerator-driven transmutation concepts

    SciTech Connect

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-10-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems.

  14. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  15. Vacuum technology issues for the SSC (Superconducting Super Collider)

    SciTech Connect

    Joestlein, H.

    1989-10-23

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab.

  16. Accelerating innovation in information and communication technology for health.

    PubMed

    Crean, Kevin W

    2010-02-01

    Around the world, inventors are creating novel information and communication technology applications and systems that can improve health for people in disparate settings. However, it is very difficult to find investment funding needed to create business models to expand and develop the prototype technologies. A comprehensive, long-term investment strategy for e-health and m-health is needed. The field of social entrepreneurship offers an integrated approach to develop needed investment models, so that innovations can reach more patients, more effectively. Specialized financing techniques and sustained support from investors can spur the expansion of mature technologies to larger markets, accelerating global health impacts. PMID:20348074

  17. Progress in Wind-and-React Bi-2212 Accelerator Magnet Technology

    SciTech Connect

    Godeke, A.; Cheng, D.; Dietderich, D.R.; Hannaford, C.R.; Prestemon, S.O.; Sabbi, G.; Wang, X.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.

    2009-08-16

    We report on our progress in the development of the technology for the application of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}(Bi-2212) in Wind-and-React accelerator magnets. A series of superconducting subscale coils has been manufactured at LBNL and reacted at the wire manufacturer SWCC. Selected coils are impregnated and tested in self-field, even though the coils exhibited leakage during the partial melt heat treatment. Other coils have been disassembled after reaction and submitted to critical current (Ic) tests on individual cable sections. We report on the results of the current carrying capacity of the coils. Voltage-current (VI) transitions were reproducibly measured up to a quench currents around 1400 A, which is 25% of the expected performance. The results indicate that the coils are limited by the inner windings. We further compare possibilities to use Bi-2212 and Nb{sub 3}Sn tilted solenoid, and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) racetrack inserts to increase the magnetic field in HD2, a 36 mm bore Nb{sub 3}Sn dipole magnet which recently achieved a bore magnetic field of 13.8 T. The application of Bi-2212 and/or YBCO in accelerator type magnets, if successful, will open the road to higher magnetic fields, far surpassing the limitations of Nb{sub 3}Sn magnet technology.

  18. Advanced visualization technology for terascale particle accelerator simulations

    SciTech Connect

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-11-16

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements.

  19. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    SciTech Connect

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs.

  20. Accelerator Technology Program. Progress report, January-June 1980

    SciTech Connect

    Knapp, E.A.; Jameson, R.A.

    1980-03-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the first six months of calendar 1980 are discussed. This report is organized around major projects of the Division, reflecting a wide variety of applications and sponsors. The first section summarizes progress on the Proton Storage Ring to be located between LAMPF and the LASL Pulsed Neutron Research facility, followed by a section on the gyrocon, a new type of high-power, high-efficiency radio-frequency (rf) amplifier. The third section discusses the racetrack microtron being developed jointly by AT Division and the National Bureau of Standards; the fourth section concerns the free-electron studies. The fifth section covers the radio-frequency quadrupole linear accelerator, a new concept for the acceleration of low-velocity particles; this section is followed by a section discussing heavy ion fusion accelerator development. The next section reports activities in the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory. The final section deals first with development of H/sup -/ ion sources and injectors, then with accelerator instrumentation and beam dynamics.

  1. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    SciTech Connect

    1995-05-01

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor.

  2. The final technical report of the CRADA, 'Medical Accelerator Technology'

    SciTech Connect

    Chu, W.T.; Rawls, J.M.

    2000-06-12

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation.

  3. Technology benefits resulting from accelerator production of tritium

    SciTech Connect

    1998-12-31

    One of the early and most dramatic uses of nuclear transformations was in development of the nuclear weapons that brought World War II to an end. Despite that difficult introduction, nuclear weapons technology has been used largely as a deterrent to war throughout the latter half of the twentieth century. The Accelerator Production of Tritium (APT) offers a clean, safe, and reliable means of producing the tritium (a heavy form of hydrogen) needed to maintain the nuclear deterrent. Tritium decays away naturally at a rate of about 5.5% per year; therefore, the tritium reservoirs in nuclear weapons must be periodically replenished. In recent years this has been accomplished by recycling tritium from weapons being retired from the stockpile. Although this strategy has served well since the last US tritium production reactor was shut down in 1988, a new tritium production capability will be required within ten years. Some benefits will result from direct utilization of some of the APT proton beam; others could result from advances in the technologies of particle accelerators and high power spallation targets. The APT may save thousands of lives through the production of medical isotopes, and it may contribute to solving the nation`s problem in disposing of long-lived nuclear wastes. But the most significant benefit may come from advancing the technology, so that the great potential of accelerator applications can be realized during our lifetimes.

  4. Accelerator technology program. Progress report, July-December 1980

    SciTech Connect

    Knapp, E.A.; Jameson, R.A.

    1982-01-01

    The activities of Los Alamos National Laboratory's Accelerator Technology Division are discussed. This report covers the last six months of calendar 1980 and is organized around the Division's major projects. These projects reflect a wide variety of applications and sponsors. The major technological innovations promoted by the Pion Generator for Medical Irradiation (PIGMI) program have been developed; accelerator technologies relevant to the design of a medically practical PIGMI have been identified. A new group in AT Division deals with microwave and magnet studies; we describe the status of some of their projects. We discuss the prototype gyrocon, which has been completed, and the development of the radio-frequency quadrupole linear accelerator, which continues to stimulate interest for many possible applications. One section of this report briefly describes the results of a design study for an electron beam ion source that is ideally suited as an injector for a heavy ion linac; another section reports on a turbine engine test facility that will expose operating turbine engines to simulated maneuver forces. In other sections we discuss various activities: the Fusion Materials Irradiation Test program, the free-electron laser program, the racetrack microtron project, the Proton Storage ring, and H/sup -/ ion sources and injectors.

  5. Accelerator technology program. Progress report, July-December 1981

    SciTech Connect

    Knapp, E.A.; Jameson, R.A.

    1982-08-01

    We report on the major projects of the Los Alamos National Laboratory's Accelerator Technology Division during the last 6 months of calendar year 1981. We have continued work on the radio-frequency quadrupole linear accelerator; we are doing studies of octupole focusing. We have completed the design study on an unusual electron-linear radiographic machine that could obtain x rays of turbine engines operating under simulated flight-maneuver conditions on a centrifuge. In September we completed the 5-y PIon Generator for Medical Irradiation (PIGMI) program to develop the concept and technology for an accelerator-based facility to treat cancer in a hospital environment. The design and construction package for the site, building, and utilities for the Fusion Materials Irradiation Test (FMIT) facility has been completed, and we have begun to concentrate on tests of the rf power equipment and on the design, procurement, and installation of the 2-MeV proto-type accelerator. The Proton Storage Ring project has continued to mature. The main effort on the racetrack microtron (RTM) has been on the design and construction of various components for the demonstration RTM. On the gyrocon radio-frequency generator project, the gyrocon was rebuilt with a new electron gun and new water-cooled gun-focus coil; these new components have performed well. We have initiated a project to produce a klystron analysis code that will be useful in reducing the electrical-energy demand for accelerators. A free-electron laser amplifier experiment to test the performance of a tapered wiggler at high optical power has been successfully completed.

  6. Optimization of accelerator-driven technology for LWR waste transmutation

    SciTech Connect

    Bowman, C.D.

    1996-12-31

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan.

  7. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998

    SciTech Connect

    Hawsey, R.A.; Murphy, A.W.

    1999-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  8. Surface Characterization of Nb Samples Electro-polished Together With Real Superconducting Radio-frequency Accelerator Cavities

    DOE PAGESBeta

    Xin Zhao; Geng, Rongli; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-01

    We report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules withmore » a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  9. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have been conducted with a grid-less three-dimensional space-charge algorithm.

  10. Analysis of accelerants and fire debris using aroma detection technology

    SciTech Connect

    Barshick, S.A.

    1997-01-17

    The purpose of this work was to investigate the utility of electronic aroma detection technologies for the detection and identification of accelerant residues in suspected arson debris. Through the analysis of known accelerant residues, a trained neural network was developed for classifying suspected arson samples. Three unknown fire debris samples were classified using this neural network. The item corresponding to diesel fuel was correctly identified every time. For the other two items, wide variations in sample concentration and excessive water content, producing high sample humidities, were shown to influence the sensor response. Sorbent sampling prior to aroma detection was demonstrated to reduce these problems and to allow proper neural network classification of the remaining items corresponding to kerosene and gasoline.

  11. Alternative concepts for structurally supporting the cold mass of a superconducting accelerator magnet

    SciTech Connect

    Sondericker, J.H. ); Wolf, L.J. )

    1991-03-01

    Experimental and analytical studies toward the goal of replacing the fiberglass reentrant support posts and their end restraint systems with lower cost injection molded posts are described. Thermoplastic resins with chopped fiberglass reinforcement having lower thermal conductivity were investigated. Experimentally obtained data from creep, shear, and tensile tests on actual injection molded posts of Ultem and Noryl are included. Discussion of flaws and quality control is included. These studies for the Relativistic Heavy Ion Collider (RHIC) and the Superconducting Super Collider (SSC) are continuing at Brookhaven National Laboratory and at the SSC Laboratory. 6 refs., 13 figs.

  12. Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators

    SciTech Connect

    Hui Tian, Charles Reece, Michael Kelley, G. Ribeill

    2009-05-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro-and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface chemical polishing (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the Nb surface as a function of different steps of EP is reported, resulting in a novel qualitative and quantitative description of Nb surface topography.

  13. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    SciTech Connect

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  14. IMPROVING THE DESIGN AND ANALYSIS OF SUPERCONDUCTING MAGNETS FOR PARTICLE ACCELERATORS

    SciTech Connect

    GUPTA,R.C.

    1996-11-01

    The field quality in superconducting magnets has been improved to a level that it does not appear to be a limiting factor on the performance of RHIC. The many methods developed, improved and adopted during the course of this work have contributed significantly to that performance. One can not only design and construct magnets with better field quality than in one made before but can also improve on that quality after construction. The relative field error ({Delta}B/B) can now be made as low as a few parts in 10{sup {minus}5} at 2/3 of the coil radius. This is about an order of magnitude better than what is generally expected for superconducting magnets. This extra high field quality is crucial to the luminosity performance of RHIC. The research work described here covers a number of areas which all must be addressed to build the production magnets with a high field quality. The work has been limited to the magnetic design of the cross section which in most cases essentially determines the field quality performance of the whole magnet since these magnets are generally long. Though the conclusions to be presented in this chapter have been discussed at the end of each chapter, a summary of them might be useful to present a complete picture. The lessons learned from these experiences may be useful in the design of new magnets. The possibilities of future improvements will also be presented.

  15. Advanced superconducting technology for global science: The Large Hadron Collider at CERN

    NASA Astrophysics Data System (ADS)

    Lebrun, Ph.

    2002-05-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology-high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system-to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2ṡs-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling the physics goals, performance challenges and design choices of the machine, we describe its major technical systems, with particular emphasis on relevant advances in the key technologies of superconductivity and cryogenics, and report on its construction progress.

  16. Accelerated UV weathering device based on integrating sphere technology

    SciTech Connect

    Chin, Joannie; Byrd, Eric; Embree, Ned; Garver, Jason; Dickens, Brian; Finn, Tom; Martin, Jonathan

    2004-11-01

    An ultraviolet (UV) weathering device based on integrating sphere technology has been designed, fabricated, and implemented for studying the accelerated weathering of polymers. This device has the capability of irradiating multiple test specimens with uniform, high intensity UV radiation while simultaneously subjecting them to a wide range of precisely and independently controlled temperature and relative humidity environments. This article describes the integrating sphere-based weathering system, its ability to precisely control temperature and relative humidity, and its ability to produce a highly uniform UV irradiance.

  17. Use of permanent magnets in accelerator technology: Present and future

    SciTech Connect

    Halbach, K.

    1987-05-01

    This report is a collection of viewgraphs discussing accelerator magnets. Permanent magnet systems have some generic properties that, under some circumstances, make them not only mildly preferable over electromagnets, but make it possible to do things that can not be done with any other technology. After a general discussion of these generic advantages, some specific permanent magnet systems will be described. Special emphasis will be placed on systems that have now, or are likely to have in the future, a significant impact on how some materials research is conducted. 4 refs., 33 figs.

  18. Technologies For A Superconducting Sampling Oscilloscope/Time Domain Reflectometer

    NASA Astrophysics Data System (ADS)

    Whiteley, S. R.; Hanson, E. R.; Hohenwarter, G. K. G.; Kuo, F.; Faris, S. M.

    1988-09-01

    HYPRES, Inc. has introduced to the commercial marketplace a Sampling Oscilloscope/Time Domain Reflectometer (TDR) based on Josephson junction technology. The unit offers measurement performance commensurate with the inherent high speed of the Josephson elements, e.g., bandwidths in excess of 70 GHz and rise times on the order of 5 ps. A Josephson {rigger recognizer and delay circuit allows triggering of the sampling oscilloscope from the signal itself, with full view of the trigger point. Input modules offering different sensitivities or TDR capability are quickly interchangeable, and operating temperature is achieved in less than one minute. The technical details of the cooling technique and the chip circuitry will be described in this paper .

  19. Workshop on technology issues of superconducting Maglev transportation systems

    SciTech Connect

    Wegrzyn, J.E. ); Shaw, D.T. )

    1991-09-27

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.

  20. FPGA technology application in a fast measurement and control system for the TESLA superconducting cavity of a FLASH free electron laser

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Contemporary basic research in physics, biology, chemistry, pharmacology, material technology and other branches uses methods based on sample penetration (and the effect measurement) with pulsed ultra-short EM waves of very high beam intensity. This paper is an overview of a free electron laser (FEL) used in such methods. A method for the stabilization of the EM field in a superconducting 'TESLA' cavity accelerator for electrons is presented. This requires precise measurements of the field. The SC accelerator is a basic part of the FEL. The given example concerns the FLASH machine in DESY. The presented, high power EM field stabilization system is based on FPGA circuits with embedded fast hardware multiplication blocks. Examples of a few families of such new generation practically designed and constructed system realizations are given. The system is referred to as the SIMCON (from the microwave superconducting cavity SIMulator and CONtroller). SIMCONs consist of either single-module, multi-module configurable or multichannel distributed units. The SIMCON system stabilizes the EM field by a very fast feedback loop with an adaptation process, supplemented with a feed-forward. The following are presented: a parametric hardware description (firmware) in the form of behavioural VHDL algorithms; implementation results in VirtexIIPro circuits; examples of measurements of high power EM field stability performed under the nominal conditions of accelerator work.

  1. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    SciTech Connect

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  2. Accelerator technology program. Progress report, January-December 1979

    SciTech Connect

    Knapp, E.A.; Jameson, R.A.

    1980-11-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H/sup -/ ion sources and injectors, and linear accelerator instrumentation and beam dynamics.

  3. 3.9 GHz superconducting accelerating 9-cell cavity vertical test results

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charles; Dhanaraj, Nandhini; Edwards, Helen; Foley, Mike; Harms, Elvin; Mitchell, Donald; Rowe, Allan; Solyak, Nikolay; Moeller, Wolf-Dietrich; /DESY

    2007-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility [1]. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient [2]. The main problem was a multipactor in the HOM couplers, which lead to overheating and quenching of the HOM couplers. New HOM couplers with improved design are integrated in the next 9-cell cavities. In this paper we present all results of the vertical tests.

  4. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project

    NASA Astrophysics Data System (ADS)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  5. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    PubMed

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation. PMID:26931946

  6. Superconducting magnet design for Fixed-Field Alternating-Gradient (FFAG) accelerator

    SciTech Connect

    Abdelsalam, M.; Kustom, R.

    1993-11-01

    The FFAG accelerator requires static fields that increase with radius along the accelerator midplane according to B = B{sub 0} (R/R{sub 0}){sup 13.4}. The field is generated by equally spaced magnets around the circumference and varies from a maximum of 4.1 T to a minimum of {minus}1.9 T. The general coil design employs cryostable magnets wound with aluminum stabilized superconductor. Each magnet has resistive pole face windings outside of the cryostat to allow for field fine tuning after construction. A set of iron-free coil windings generate the required field distribution.

  7. The story of the Tevatron accelerators: Accelerator science and technology breakthroughs, achievements and lessons

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2012-01-01

    For almost a quarter of a century, the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program - since it began operation in December of 1985, until it was overtaken by LHC in 2011. The aim of this unique scientific instrument was to explore the elementary particle physics reactions with center of mass collision energies of up to 1.96 TeV. The initial design luminosity of the Tevatron was 10{sup 30} cm{sup -2} s{sup -1}, however as a result of two decades of upgrades, the accelerator has been able to deliver 430 times higher luminosities to each of two high luminosity experiments, CDF and D0. The Tevatron has been shut off since September 30, 2011. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for many technological breakthroughs and numerous physics discoveries. In this paper, we briefly present the history of the Tevatron, major advances in accelerator physics, technology implemented during the long quest for better and better performance, and the lessons learned from our experience.

  8. Analysis of coupled electromagnetic-thermal effects in superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Kurnyshov, R.; Shcherbakov, P.

    2008-02-01

    FAIR will built 5 magnet rings including two superconducting synchotrons. The SIS100 is the core component of the facility and will be equipped with 2 Tesla dipole magnets pulsed with 4 Tesla/s. The cable of the magnet coils is made of a hollow NbTi composite cable of about 7 mm outer diameter, cooled with two phase helium flow at 4.5 K. We calculate the heat load, the eddy and the hysteresis losses, investigate the impact of the ramping on the magnetic field, on the safety margin of the conductor and the required cooling for all different elements of the magnet including: the coil, the yoke, the bus bars and the beam pipe. This analysis is based on properties measured at cryogenic temperatures and fine detailed FEM models.

  9. Influence of azimuthal coil size variations on magnetic field harmonics of superconducting particle accelerator magnets

    SciTech Connect

    Ogitsu, T. ); Devred, A. )

    1994-06-01

    The superconducting super collider (SSC) would have required dipole and quadrupole magnets with a very high field quality. The field quality is determined mainly by the dimensions of the magnet coils and their positions with respect to the iron yoke. It is thus very sensitive to manufacturing errors. A model is here developed to estimate the field distortions in a dipole magnet due to azimuthal coil size variations. This model is applied to the data collected during the fabrication and testing of a series of 5 cm aperture, 15 m long SSC dipole magnet prototypes. A clear correlation is observed between the predicted field distortions from the azimuthal coil sizes and the measured skew quadrupole and skew sextupole coefficients.

  10. Education in a rapidly advancing technology: Accelerators and beams

    NASA Astrophysics Data System (ADS)

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A&B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A&B is described and addressed. The solution proposed, a type of "distance" education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A&B, primarily but not exclusively the national laboratories. The field of A&B is briefly summarized. The need for education outside the university framework, the raison d'être for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities.

  11. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology

    SciTech Connect

    Harris, F.A.

    1998-09-17

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components.

  12. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Dzyuba, A.; Romanenko, A.; Cooley, L. D.

    2010-12-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was

  13. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    SciTech Connect

    Hawsey, R.A.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  14. ORNL Superconducting Technology Program for electric power systems: Annual report for FY 1997

    SciTech Connect

    Koncinski, W.S.; O`Hara, L.M.; Hawsey, R.A.; Murphy, A.W.

    1998-03-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and developments activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1997 Annual Program Review held July 21--23, 1997. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  15. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    SciTech Connect

    Koncinski, W.S.; Hawsey, R.A.

    1997-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  16. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    SciTech Connect

    Hawsey, R.A.; Turner, J.W.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  17. ORNL Superconducting Technology Program for Electric Energy Systems. Annual report for FY 1992

    SciTech Connect

    Hawsey, R.A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s (DOE`s) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE`s Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  18. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    SciTech Connect

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  19. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    SciTech Connect

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  20. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect

    Krasnykh, A.; Kardo-Sysoev, A.; Arntz, F.; /Diversified Tech., Bedford

    2009-12-09

    The conclusions of this paper are: (1) The gradient of the SLIM-based technology is believed to be achievable in the same range as it is for the gradient of a modern rf-linac technology ({approx}100 MeV per meter). (2) The SLIM concept is based on the nsec TEM pulse mode operation with no laser or rf systems. (3) Main components of SLIM are not stressed while the energy is pumped into the induction system. Components can accept the hard environment conditions such as a radiation dose, mismatch, hard electromagnetic nose level, etc. Only for several nanoseconds the switch is OFF and produces a stress in the induction system. At that time, the delivery of energy to the beam takes place. (4) The energy in the induction system initially is storied in the magnetic field when the switch is ON. That fact makes another benefit: a low voltage power supplies can be used. The reliability of a lower voltage power supply is higher and they are cheaper. (5) The coreless SLIM concept offers to work in the MHz range of repetition rate. The induction system has the high electric efficiency (much higher than the DWA). (6) The array of lined up and activated SLIM cells is believed to be a solid state structure of novel accelerating technology. The electron-hole plasma in the high power solid state structure is precisely controlled by the electromagnetic process of a pulsed power supply.

  1. Superconducting accelerator cavity with a heat affected zone having a higher RRR

    DOEpatents

    Brawley, John; Phillips, H. Lawrence

    2000-01-01

    An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.

  2. An L-Band Superconducting Traveling Wave Accelerating Structure With Feedback

    SciTech Connect

    Kanareykin, A.; Avrakhov, P.; Yakovlev, V. P.; Solyak, N.; Kazakov, S.

    2009-01-22

    The most severe problem of the International Linear Collider is its high cost, resulting in part from the enormous length of the collider. This length is determined mainly by the achievable accelerating gradient in the RF system of the ILC. In the ILC project the required accelerating gradient is higher than 30 MeV/m. Further improvement of the coupling to the beam may be achieved by using a Traveling Wave SC structure [1]. We have demonstrated that an additional gradient increase of up to 46% may be possible if a {pi}/2 TW SC structure is employed. However, a TW SC structure requires a SC feedback waveguide to return the few GW of circulating RF power from the structure output back to the structure input. The test cavity with feedback is designed to demonstrate the possibility of achieving a significantly higher gradient than existing SC structures. The double-coupler powering excitation and tuning have been studied numerically and the corresponding model results are presented. The proposed double-coupler powering scheme significantly reduces the tuning requirements as long as any of the partial modes of given magnitude and phase are excited independently, providing a clear traveling wave regime of structure operation.

  3. In-situ plasma processing to increase the accelerating gradients of superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Doleans, M.; Tyagi, P. V.; Afanador, R.; McMahan, C. J.; Ball, J. A.; Barnhart, D. L.; Blokland, W.; Crofford, M. T.; Degraff, B. D.; Gold, S. W.; Hannah, B. S.; Howell, M. P.; Kim, S.-H.; Lee, S.-W.; Mammosser, J.; Neustadt, T. S.; Saunders, J. W.; Stewart, S.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2016-03-01

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed.

  4. Accelerating technology development through integrated computation and experimentation

    SciTech Connect

    Shekhawat, Dushyant; Srivastava, Rameshwar

    2013-01-01

    This special section of Energy & Fuels comprises a selection of papers presented at the topical conference “Accelerating Technology Development through Integrated Computation and Experimentation”, sponsored and organized by the United States Department of Energy’s National Energy Technology Laboratory (NETL) as part of the 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting held in Pittsburgh, PA, Oct 28−Nov 2, 2012. That topical conference focused on the latest research and development efforts in five main areas related to fossil energy, with each area focusing on the utilization of both experimental and computational approaches: (1) gas separations (membranes, sorbents, and solvents for CO{sub 2}, H{sub 2}, and O{sub 2} production), (2) CO{sub 2} utilization (enhanced oil recovery, chemical production, mineralization, etc.), (3) carbon sequestration (flow in natural systems), (4) advanced power cycles (oxy-combustion, chemical looping, gasification, etc.), and (5) fuel processing (H{sub 2} production for fuel cells).

  5. Theoretical and technological building blocks for an innovation accelerator

    NASA Astrophysics Data System (ADS)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  6. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    SciTech Connect

    Sumption, Mike; Collings, E.

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  7. Reliable-linac design for accelerator-driven subcritical reactor systems.

    SciTech Connect

    Wangler, Thomas P.,

    2002-01-01

    Accelerator reliability corresponding to a very low frequency of beam interrupts is an important new accelerator requirement for accelerator-driven subcritical reactor systems. In this paper we review typical accelerator-reliability requirements and discuss possible methods for meeting these goals with superconducting proton-linac technology.

  8. Microfluidic technologies for accelerating the clinical translation of nanoparticles

    PubMed Central

    Valencia, Pedro M.; Farokhzad, Omid C.; Karnik, Rohit; Langer, Robert

    2013-01-01

    Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent ‘batch-to-batch’, and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine. PMID:23042546

  9. Microfluidic technologies for accelerating the clinical translation of nanoparticles

    NASA Astrophysics Data System (ADS)

    Valencia, Pedro M.; Farokhzad, Omid C.; Karnik, Rohit; Langer, Robert

    2012-10-01

    Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.

  10. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators

    PubMed Central

    Ricker, R. E.; Myneni, G. R.

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles. PMID:27134791

  11. Model for Initiation of Quality Factor Degradation at High Accelerating Fields in Superconducting Radio-Frequency Cavaties

    SciTech Connect

    Dzyuba, A.; Romanenko, A.; Cooley, L.D.; /Fermilab

    2010-07-13

    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H{sub pen}. Such defects were argued to be the worst case by Buzdin and Daumens, [1998 Physica C 294 257], whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter {kappa}. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H{sub pen} when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H{sub pen} was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of {kappa}. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by {approx}20%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model

  12. Hidden Correlations in Indivisible Qudits as a Resource for Quantum Technologies on Examples of Superconducting Circuits

    NASA Astrophysics Data System (ADS)

    Man'ko, M. A.; Man'ko, V. I.

    2016-03-01

    We show that the density-matrix states of noncomposite qudit systems satisfy entropic and information relations like the subadditivity condition, strong subadditivity condition, and Araki-Lieb inequality, which characterize hidden quantum correlations of observables associated with these indivisible systems. We derive these relations employing a specific map of the entropic inequalities known for density matrices of multiqudit systems to the inequalities for density matrices of single-qudit systems. We present the obtained relations in the form of mathematical inequalities for arbitrary Hermitian N × N-matrices. We consider examples of superconducting qubits and qudits. We discuss the hidden correlations in single- qudit states as a new resource for quantum technologies analogous to the known resource in correlations associated with the entanglement in multiqudit systems.

  13. JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    NASA Technical Reports Server (NTRS)

    Shelton, Duane; Gamota, George

    1989-01-01

    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.

  14. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  15. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  16. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-08-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  17. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 1

    SciTech Connect

    Krishen, K.; Burnham, C.

    1994-12-31

    The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately.

  18. CO{sub 2} laser technology for advanced particle accelerators

    SciTech Connect

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO{sub 2} lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of {lambda}=10 {mu}m CO{sub 2} laser radiation over the more widely exploited solid state lasers with {lambda}{approximately}1 {mu}m are based on a {lambda}{sup 2}-proportional ponderomotive potential, {lambda}-proportional phase slippage, and {lambda}-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO{sub 2} laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF`s experimental program of testing far-field, near-field, and plasma accelerator schemes.

  19. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  20. On the development of an ion-beam stochastic cooling system for the nuclotron superconducting accelerator complex

    NASA Astrophysics Data System (ADS)

    Kobets, A. G.; Sidorin, A. O.; Trubnikov, G. V.; Shurkhno, N. A.

    2012-07-01

    The Joint Institute for Nuclear Research (JINR) initiated the creation of a unique heavy-ion collider, the Nuclotron-based ion collider facility (NICA), which is planned to be put into commission in 2016. According to the calculation data, the collider luminosity, which should be kept at a record high level of 1027 cm-2 s-1, will gradually decrease, mainly due to intrabeam scattering. To maintain luminosity at a high level, it is necessary to include a cooling system in the base project of the accelerator. Among the two cooling methods (electron and stochastic) most frequently used for heavy ion beams, stochastic cooling seems more attractive. However, there has been a lack of experience in the development and commissioning of such systems in Russia. For this reason, an experiment on stochastic cooling on the Nuclotron accelerator is being prepared to explore the technology and possibilities of this method. In this work, the method of stochastic cooling, the technique for calculating the cooling dynamics, and the experimental setup under development are briefly described.

  1. Beating liquid helium: the technologies of cryogen-free superconducting magnets

    NASA Astrophysics Data System (ADS)

    Burgoyne, John

    2015-03-01

    Cryogen-free superconducting magnets have been available now for almost 15 years, but have only become standard commercial products in more recent years. In this review we will consider the pros and cons of ``dry'' design including superconducting wire development and selection, thermal budgeting, and the alternative methods for achieving magnet cooling.

  2. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  3. DEVELOPMENT OF A COMPACT RADIOGRAPHY ACCELERATOR USING DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Hawkins, S; Holmes, C; Krogh, M; McCarrick, J; Nelson, S; Nunnally, W; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2005-06-02

    We are developing an inexpensive compact accelerator system primarily intended for pulsed radiography. Design characteristics are an 8 MeV endpoint energy, 2 kA beam current, a cell gradient of approximately 3 MV/m (for an overall accelerator length is 2-3 m), and <$1/Volt capital costs. Such designs have been made possible with the development of high specific energy dielectrics (>10J/cm{sup 3}), specialized transmission line designs and multi-gap laser triggered low jitter (<1 ns) gas switches. In this geometry, the pulse forming lines, switches, and insulator/beam pipe are fully integrated within each cell to form a compact, stand-alone, stackable unit. We detail our research and modeling to date, recent high voltage test results, and the integration concept of the cells into a radiographic system.

  4. Oak Ridge National Laboratory (ORNL) Superconducting Technology Program for electric power systems. Annual report for FY 1994

    SciTech Connect

    Koncinski, W.S.; Hawsey, R.A.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The three major elements of this program are conductor development, applications development, and the Superconductivity Partnership Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1994 Annual Program Review held July 19--20, 2994. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  5. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    SciTech Connect

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goal of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.

  6. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  7. Design considerations of a pair of power leads for fast-cycling superconducting accelerator magnets operating at 2 Tesla and 100 kA

    SciTech Connect

    Huang, Yuenian; Hays, Steven; Piekarz, Henryk; de Rijk, Gijsbert; Rossi, L.; /Fermilab /CERN

    2007-08-01

    Recently proposed injector accelerator, Low Energy Ring (LER) for the LHC and fast cycling accelerators for the proton drivers (SF-SPS at CERN and DSF-MR at Fermilab) require that a new magnet technology be developed. In support of this accelerator program, a pair of power leads needs to be developed to close the loop between the power supply and accelerator system. The magnet proposed to be used will be a modified transmission line magnet technology that would allow for accelerator quality magnetic field sweep of 2 T/s. The transmission line conductor will be using HTS technology and cooled with supercritical helium at 5 K. The power leads consist of two sections; upper one is a copper and lower section will be using HTS tapes. The accelerator magnet will be ramped to 100 kA in a second and almost immediately ramped down to zero in one second. This paper outlines the design considerations for the power leads to meet the operational requirements for the accelerator system. The power leads thermal analysis during the magnet powering cycle will be included.

  8. Advanced metaheuristic algorithms for laser optimization in optical accelerator technologies

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    2011-10-01

    Lasers are among the most important experimental tools for user facilities, including synchrotron radiation and free electron lasers (FEL). In the synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for X-ray-FELs, lasers play important roles as seed light sources or photocathode-illuminating light sources to generate a high-brightness electron bunch. For future accelerators, laser-based techonologies such as electro-optic (EO) sampling to measure ultra-short electron bunches and optical-fiber-based femtosecond timing systems have been intensively developed in the last decade. Therefore, controls and optimizations of laser pulse characteristics are strongly required for many kinds of experiments and improvement of accelerator systems. However, people believe that lasers should be tuned and customized for each requirement manually by experts. This makes it difficult for laser systems to be part of the common accelerator infrastructure. Automatic laser tuning requires sophisticated algorithms, and the metaheuristic algorithm is one of the best solutions. The metaheuristic laser tuning system is expected to reduce the human effort and time required for laser preparations. I have shown some successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles, and a hill-climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each machine requirement.

  9. 15 Years of R&D on High Field Accelerator Magnets at FNAL

    SciTech Connect

    Barzi, Emanuela; Zlobin, Alexander V.

    2015-12-10

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  10. 15 Years of R&D on high field accelerator magnets at FNAL

    DOE PAGESBeta

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  11. Development of superconductive magnets

    NASA Technical Reports Server (NTRS)

    Laurence, J. C.

    1970-01-01

    Survey of superconductive magnets considers - stabilization problems, advances in materials and their uses, and design evolution. Uses of superconducting magnets in particle accelerators and bubble chambers, as well as possible applications in magnetohydrodynamic and thermonuclear power generation and levitation are discussed.

  12. R&D of Accelerator Structures at SLAC

    SciTech Connect

    Wang, J.W.; /SLAC

    2007-01-17

    The research activities for accelerator structures at SLAC are reviewed including the achievement via the main linac design for the Next Linear Collider (NLC), the program adjustment after the decision of the International Linear Collider (ILC) to be based on superconducting technology, and the work progress for the ILC, photon science at SLAC and basic accelerator structure studies.

  13. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  14. Proceedings of the 4th International Conference and Exhibition: World Congress on Superconductivity, volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Editor); Burnham, Calvin (Editor)

    1995-01-01

    The papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, are contained in this document and encompass the research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges, and power and energy applications.

  15. Proceedings of the 4th International Conference and Exhibition: World Congress on Superconductivity, Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Editor); Burnham, Calvin (Editor)

    1995-01-01

    This document contains papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held June 27-July 1, 1994 in Orlando, Florida. These documents encompass research, technology, applications, funding, political, and social aspects of superconductivity. The areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges; and power and energy applications.

  16. Construction of cold mass assembly for full-length dipoles for the SSC (Superconducting Super Collider) accelerator

    SciTech Connect

    Dahl, P.; Cottingham, J.; Garber, M.; Ghosh, A.; Goodzeit, C.; Greene, A.; Herrera, J.; Kahn, S.; Kelly, E.; Morgan, G.

    1986-10-01

    Four of the initial six 17m long demonstration dipole magnets for the proposed Superconducting Super Collider have been constructed, and the first one is now being tested. This paper describes the magnet design and construction of the cold mass assembly. The magnets are cold iron (and cold bore) 1-in-1 dipoles, wound with partially keystoned current density-graded high homogeneity NbTi cable in a two-layer cos theta coil of 40 mm inner diameter. The magnetic length is 16.6 m. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported by a cylindrical yoke (and helium) containment vessel of stainless steel. The magnet bore tube assembly incorporates superconducting sextupole trim coils produced by an industrial, automatic process akin to printed circuit fabrication.

  17. From Innovation Clusters to Datapalooza: Accelerating Innovation in Educational Technology

    ERIC Educational Resources Information Center

    Culatta, Richard

    2012-01-01

    Education in the United States is entering a very exciting moment. For the first time, all of the digital stars are aligning n such a way that the technology is available to design truly transformational learning experiences. The ubiquity of inexpensive and powerful mobile devices is creating the potential for all students to learn at any time and…

  18. A proton medical accelerator by the SBIR route: An example of technology transfer

    SciTech Connect

    Martin, R.L.

    1988-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig.

  19. The overview and history of permanent magnet devices in accelerator technology

    SciTech Connect

    Kraus, R.H. Jr.

    1993-10-01

    This paper reviews the early history of accelerator development with a particular focus on the important discoveries that opened the door for the application of permanent-magnet materials to this area of science. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, that showed magnetic fields could be used to control the transverse envelope of charged-particle beams. Since that time, permanent-magnet materials have found wide application in the modern charged particle accelerator. The history of permanent-magnet use in accelerator physics and technology is outlined, general design considerations are presented, and material properties of concern for particle accelerator applications are discussed.

  20. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Baboi, Nicoleta; Jones, Roger M.

    2014-01-01

    Beam-excited higher order modes (HOMs) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 μm can be achieved by DLR and SVD, while k-means clustering suggests 70 μm.

  1. Evaluation of a commercial system for CAMAC-based control of the Chalk River Laboratories tandem-accelerator-superconducting-cyclotron complexcomplex

    SciTech Connect

    Greiner, B.F.; Caswell, D.J.; Slater, W.R. )

    1992-04-01

    This paper discusses the control system of the Tandem Accelerator Superconducting Cyclotron (TASCC) of AECL Research at its Chalk River Laboratories which is presently based on a PDP-11 computer and the IAS operating system. The estimated expense of a custom conversion of the system to a current, equivalent operating system is prohibitive. The authors have evaluated a commercial control package from VISTA Control Systems based on VAX microcomputers and the VMS operating system. Vsystem offers a modern, graphical operator interface, an extensive software toolkit for configuration of the system and a multi-feature data-logging capability, all of which far surpass the functionality of the present control system. However, the implementation of some familiar, practical features that TASCC operators find to be essential has proven to be challenging. The assessment of Vsystem, which is described in terms of presently perceived strengths and weaknesses, is, on balance, very positive.

  2. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    SciTech Connect

    Zhang Pei; Baboi, Nicoleta; Jones, Roger M.; Shinton, Ian R. R.; Flisgen, Thomas; Glock, Hans-Walter

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  3. Technological Issues and High Gradient Test Results on X-Band Molybdenum Accelerating Structures

    SciTech Connect

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Haase, A.; Tantawi, S.G.; Higashi, Y.; Marrelli, C.; Mostacci, A.; Parodi, R.; Yeremian, A.D.; /SLAC

    2012-04-24

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC (Stanford Linear Accelerator Center) and KEK (Ko Enerugi Kasokuki Kenkyu Kiko). The technological issues to build both sections are discussed.

  4. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  5. Accelerating Cancer Systems Biology Research through Semantic Web Technology

    PubMed Central

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S.

    2012-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute’s caBIG®, so users can not only interact with the DMR through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers’ intellectual property. PMID:23188758

  6. Accelerating cancer systems biology research through Semantic Web technology.

    PubMed

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. PMID:23188758

  7. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  8. Connectivity of diagnostic technologies: improving surveillance and accelerating tuberculosis elimination.

    PubMed

    Andre, E; Isaacs, C; Affolabi, D; Alagna, R; Brockmann, D; de Jong, B C; Cambau, E; Churchyard, G; Cohen, T; Delmee, M; Delvenne, J-C; Farhat, M; Habib, A; Holme, P; Keshavjee, S; Khan, A; Lightfoot, P; Moore, D; Moreno, Y; Mundade, Y; Pai, M; Patel, S; Nyaruhirira, A U; Rocha, L E C; Takle, J; Trébucq, A; Creswell, J; Boehme, C

    2016-08-01

    In regard to tuberculosis (TB) and other major global epidemics, the use of new diagnostic tests is increasing dramatically, including in resource-limited countries. Although there has never been as much digital information generated, this data source has not been exploited to its full potential. In this opinion paper, we discuss lessons learned from the global scale-up of these laboratory devices and the pathway to tapping the potential of laboratory-generated information in the field of TB by using connectivity. Responding to the demand for connectivity, innovative third-party players have proposed solutions that have been widely adopted by field users of the Xpert(®) MTB/RIF assay. The experience associated with the utilisation of these systems, which facilitate the monitoring of wide laboratory networks, stressed the need for a more global and comprehensive approach to diagnostic connectivity. In addition to facilitating the reporting of test results, the mobility of digital information allows the sharing of information generated in programme settings. When they become easily accessible, these data can be used to improve patient care, disease surveillance and drug discovery. They should therefore be considered as a public health good. We list several examples of concrete initiatives that should allow data sources to be combined to improve the understanding of the epidemic, support the operational response and, finally, accelerate TB elimination. With the many opportunities that the pooling of data associated with the TB epidemic can provide, pooling of this information at an international level has become an absolute priority. PMID:27393530

  9. Connectivity of diagnostic technologies: improving surveillance and accelerating tuberculosis elimination

    PubMed Central

    Isaacs, C.; Affolabi, D.; Alagna, R.; Brockmann, D.; de Jong, B. C.; Cambau, E.; Churchyard, G.; Cohen, T.; Delmee, M.; Delvenne, J-C.; Farhat, M.; Habib, A.; Holme, P.; Keshavjee, S.; Khan, A.; Lightfoot, P.; Moore, D.; Moreno, Y.; Mundade, Y.; Pai, M.; Patel, S.; Nyaruhirira, A. U.; Rocha, L. E. C.; Takle, J.; Trébucq, A.; Creswell, J.; Boehme, C.

    2016-01-01

    SUMMARY In regard to tuberculosis (TB) and other major global epidemics, the use of new diagnostic tests is increasing dramatically, including in resource-limited countries. Although there has never been as much digital information generated, this data source has not been exploited to its full potential. In this opinion paper, we discuss lessons learned from the global scale-up of these laboratory devices and the pathway to tapping the potential of laboratory-generated information in the field of TB by using connectivity. Responding to the demand for connectivity, innovative third-party players have proposed solutions that have been widely adopted by field users of the Xpert® MTB/RIF assay. The experience associated with the utilisation of these systems, which facilitate the monitoring of wide laboratory networks, stressed the need for a more global and comprehensive approach to diagnostic connectivity. In addition to facilitating the reporting of test results, the mobility of digital information allows the sharing of information generated in programme settings. When they become easily accessible, these data can be used to improve patient care, disease surveillance and drug discovery. They should therefore be considered as a public health good. We list several examples of concrete initiatives that should allow data sources to be combined to improve the understanding of the epidemic, support the operational response and, finally, accelerate TB elimination. With the many opportunities that the pooling of data associated with the TB epidemic can provide, pooling of this information at an international level has become an absolute priority. PMID:27393530

  10. Multi-cavity complex controller with vector simulator for TESLA technology linear accelerator

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Szewinski, Jaroslaw

    2008-01-01

    A digital control, as the main part of the Low Level RF system, for superconducting cavities of a linear accelerator is presented. The FPGA based controller, supported by MATLAB system, was developed to investigate a novel firmware implementation. The complex control algorithm based on the non-linear system identification is the proposal verified by the preliminary experimental results. The general idea is implemented as the Multi-Cavity Complex Controller (MCC) and is still under development. The FPGA based controller executes procedure according to the prearranged control tables: Feed-Forward, Set-Point and Corrector unit, to fulfill the required cavity performance: driving in the resonance during filling and field stabilization for the flattop range. Adaptive control algorithm is applied for the feed-forward and feedback modes. The vector Simulator table has been introduced for an efficient verification of the FPGA controller structure. Experimental results of the internal simulation, are presented for a cavity representative condition.

  11. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    SciTech Connect

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  12. Stress management as an enabling technology for high-field superconducting dipole magnets

    NASA Astrophysics Data System (ADS)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  13. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  14. Does one need a 4.5 K screen in cryostats of superconducting accelerator devices operating in superfluid helium? lessons from the LHL

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Parma, Vittorio; Tavian, Laurent

    2014-01-01

    Superfluid helium is increasingly used as a coolant for superconducting devices in particle accelerators: the lower temperature enhances the performance of superconductors in high-field magnets and reduces BCS losses in RF acceleration cavities, while the excellent transport properties of superfluid helium can be put to work in efficient distributed cooling systems. The thermodynamic penalty of operating at lower temperature however requires careful management of the heat loads, achieved inter alia through proper design and construction of the cryostats. A recurrent question appears to be that of the need and practical feasibility of an additional screen cooled by normal helium at around 4.5 K surrounding the cold mass at about 2 K, in such cryostats equipped with a standard 80 K screen. We introduce the issue in terms of first principles applied to the configuration of the cryostats, discuss technical constraints and economical limitations, and illustrate the argumentation with examples taken from large projects confronted with this issue, i.e. CEBAF, SPL, ESS, LHC, TESLA, European X-FEL, ILC.

  15. Does one need a 4.5 K screen in cryostats of superconducting accelerator devices operating in superfluid helium? lessons from the LHL

    SciTech Connect

    Lebrun, Philippe; Parma, Vittorio; Tavian, Laurent

    2014-01-29

    Superfluid helium is increasingly used as a coolant for superconducting devices in particle accelerators: the lower temperature enhances the performance of superconductors in high-field magnets and reduces BCS losses in RF acceleration cavities, while the excellent transport properties of superfluid helium can be put to work in efficient distributed cooling systems. The thermodynamic penalty of operating at lower temperature however requires careful management of the heat loads, achieved inter alia through proper design and construction of the cryostats. A recurrent question appears to be that of the need and practical feasibility of an additional screen cooled by normal helium at around 4.5 K surrounding the cold mass at about 2 K, in such cryostats equipped with a standard 80 K screen. We introduce the issue in terms of first principles applied to the configuration of the cryostats, discuss technical constraints and economical limitations, and illustrate the argumentation with examples taken from large projects confronted with this issue, i.e. CEBAF, SPL, ESS, LHC, TESLA, European X-FEL, ILC.

  16. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2012-01-01

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ˜700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.

  17. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    SciTech Connect

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.

  18. Educating the next generation in the science and technology of plasmas, beams and accelerators

    NASA Astrophysics Data System (ADS)

    Barletta, Wiliam

    2007-11-01

    Accelerators are essential tools for discovery in fundamental physics, biology, and chemistry. Particle beam based instruments in medicine, industry and national security constitute a multi-billion dollar per year industry. More than 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web. Yet only a handful of universities offer any formal training in accelerator science. Several reasons can be cited: 1) The science and technology of non-neutral plasmas cuts across traditional academic disciplines. 2) Electrical engineering departments have evolved toward micro- and nano-technology and computing science. 3) Nuclear physics departments have atrophied. 4) With few exceptions, interest at individual universities is not extensive enough to support a strong faculty line. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed an educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Governed and supported by a consortium of nine DOE laboratories and two NSF university laboratories, USPAS offers a responsive and balanced curriculum of science, engineering, and hands-on courses. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  19. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    SciTech Connect

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-09-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current.

  20. Accelerator Technology Program: Status report, October 1985--March 1986: Volume 1

    SciTech Connect

    Jameson, R.A.; Schriber, S.O.

    1988-07-01

    This report presents highlights of the major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first section details progress associated with the accelerator test stand. Following sections cover achievements in accelerator theory and simulation, LAMPF II accomplishments, and updates on BEAR, beam dynamics, the rf laboratory, p-bar gravity experiment, University of Illinois racetrack microtron, and NBS microtron. Also included are results from the Proton Storage Ring commissioning, developments in very high microwave systems, and advances in the Fusion Materials Irradiation Test rf technology. In addition, the Phoenix Project and the Krypton Fluoride Project are discussed. The report concludes with a listing of papers published by AT-Division personnel during this reporting period. 42 figs., 5 tabs.

  1. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  2. Nb3Sn accelerator magnet technology R&D at Fermilab

    SciTech Connect

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; DiMarco, J.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; /Fermilab

    2007-06-01

    Accelerator magnets based on Nb{sub 3}Sn superconductor are being developed at Fermilab. Six nearly identical 1-m long dipole models and several mirror configurations were built and tested demonstrating magnet performance parameters and their reproducibility. The technology scale up program has started by building and testing long dipole coils. The results of this work are reported in the paper.

  3. Design considerations of a power supply system for fast cycling superconducting accelerator magnets of 2 Tesla b-field generated by a conductor of 100 kA current

    SciTech Connect

    Hays, Steve; Piekarz, Henryk; Pfeffer, Howie; Claypool, Brad; /Fermilab

    2007-06-01

    Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020 H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.

  4. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE PAGESBeta

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  5. Results of Measurements of Accelerations of Technological Devices onboard the FotonSpacecraft

    NASA Astrophysics Data System (ADS)

    Barmin, I. V.; Volkov, M. V.; Egorov, A. V.; Reut, E. F.; Senchenkov, A. S.

    2001-07-01

    This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1 500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise “Barmin Design Bureau of General Machine Building” (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0 1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1 500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1 3) × 10 3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1 7) × 10 6 gin the steady-state regime in the zone of technological activity.

  6. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe

    SciTech Connect

    Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Stoeri, H.

    2012-02-15

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H{sup -} volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e{sup -} and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H{sup -} ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H{sup -} ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  7. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probea)

    NASA Astrophysics Data System (ADS)

    Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Störi, H.

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H- volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e- and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H- ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H- ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  8. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    PubMed

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed. PMID:22380224

  9. Stability and Resolution Studies of HOMBPMs for the 1.3 GHz Superconducting Accelerating Cavities at FLASH

    NASA Astrophysics Data System (ADS)

    Shi, L.; Baboi, N.; Jones, R. M.

    HOMBPMs (HOM based Beam Position Monitors) are installed at the FLASH facility at DESY, Hamburg. These are aimed at aligning the beam and monitoring the beam position. Over time, the accuracy of beam position prediction is degraded. This is due to instability issues in the 1.3 GHz and 3.9 GHz superconducting cavities and associated electronics. In this paper, we demonstrate for the first time a measurement technique which is stable and can be relied upon over a period of three months with unprecedented resolution (below 4 μm horizontally and 2 μm vertically). We attribute this improvement in stability to a focused campaign on various signal processing and analysis techniques. These techniques include SVD (Singular Value Decomposition), ANN (Artificial Neural Network) and PLS (Partial Least Square). We found the best resolution and computational power using the latter method, PLS. These techniques are directly applicable to the HOMBPM system at the European XFEL that is currently under construction. However, they are in many ways generic and hence applicable to other measurement methods.

  10. Pre-Implementation and Performance Plan for the Latino Development and Technology Accelerator Center

    SciTech Connect

    Quiroga, Marcelo

    2007-03-30

    This report discusses the Latino Development and Technology Accelerator Center (Center) and its innovative economic development program. The chapters describe the organization and the operations of a two-pillar model for training and business acceleration and how the program focuses on the economic development of a disadvantaged Chicago, Illinois, Hispanic community located in Humboldt Park. The Humboldt Park community is located 3 miles west of Chicago's affluent downtown. Humboldt Park residents have income levels below the poverty line and unemployment rates twice the national average.

  11. Overview on superconducting photoinjectors

    NASA Astrophysics Data System (ADS)

    Arnold, A.; Teichert, J.

    2011-02-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR-free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng.PSISDG0277-786X 5534, 22 (2004)10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1μmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang , in Proceedings of the 31st International Free Electron Laser Conference (FEL 09), Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009), p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  12. PREFACE: EUCAS '05: The 7th European Conference on Applied Superconductivity (Vienna University of Technology, Austria, 11 15 September 2005)

    NASA Astrophysics Data System (ADS)

    Donaldson, Gordon; Weber, Harald W.; Sauerzopf, Franz M.

    2006-03-01

    This issue of Superconductor Science and Technology contains the plenary and invited papers presented at the 7th European Conference on Applied Superconductivity (EUCAS '05) that was held at the Vienna University of Technology from 11-15 September 2005. All those contributed papers that were submitted to the Conference Proceedings will be published in the Journal of Physics: Conference Series. The scientific aims of EUCAS '05 followed the tradition established at the preceding conferences in Göttingen, Edinburgh, Eindhoven, Sitges (Barcelona), Lyngby (Copenhagen) and finally Sorrento (Napoli). The focus was placed on the interplay between the most recent developments in superconductor research and the positioning of applications of superconductivity in the marketplace. Although initially founded as an exchange forum mainly for European scientists, it has gradually developed into a truly international meeting with significant attendance from the Far East and the United States. The Vienna conference attracted 813 participants in the scientific programme and 90 accompanying persons. 59% of all participants came from Europe, 31% from the Far East, 6% from the United States and Canada as well as 4% from other nations worldwide. 27 companies presented their latest developments in the field. 32 plenary and invited lectures highlighted the state-of-the-art in the areas of materials, large-scale as well as small-scale applications; 625 contributed papers (among them 556 posters) demonstrated the broad range of exciting activities in all research areas of our field. EUCAS '05 spread a lot of optimism and enthusiasm for this fascinating field of research and for its well established technological potential, especially among the numerous young researchers attending this conference. We are grateful to all those who participated in the meeting and contributed to its success.

  13. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  14. Fiber Bragg grating sensor as valuable technological platform for new generation of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajko, M.; Perez, J. C.; Bajas, H.; Viret, P.; Consales, M.; Giordano, M.; Breglio, G.; Cusano, A.

    2014-05-01

    New generation of superconducting magnets for high energy applications designed, manufactured and tested at the European Organization for Nuclear Research (CERN) require the implementation of reliable sensors able to monitor the mechanical stresses affecting the winding from fabrication to operation in magnetic field of 13 T. This work deals with the embedding of Fiber Bragg Grating sensors in a short model Nb3Sn dipole magnet in order to monitor the strain developed in the coil during the cool down to 1.9 K, the powering up to 15.8 kA and the warm up, offering perspectives for the replacement of standard strain gauges.

  15. Application of superconducting technology to earth-to-orbit electromagnetic launch systems

    NASA Technical Reports Server (NTRS)

    Hull, J. R.; Carney, L. M.

    1988-01-01

    Benefits may occur by incorporating superconductors, both existing and those currently under development, in one or more parts of a large-scale electromagnetic launch (EML) system that is capable of delivering payloads from the surface of the Earth to space. The use of superconductors for many of the EML components results in lower system losses; consequently, reductions in the size and number of energy storage devices are possible. Applied high-temperature superconductivity may eventually enable novel design concepts for energy distribution and switching. All of these technical improvements have the potential to reduce system complexity and lower payload launch costs.

  16. Application of superconducting technology to earth-to-orbit electromagnetic launch systems

    SciTech Connect

    Hull, J.R.; Carney, L.M.

    1988-01-01

    Benefits may occur by incorporating superconductors, both existing and those currently under development, in one or more parts of a large-scale electromagnetic launch (EML) system that is capable of delivering payloads from the surface of the Earth to space. The use of superconductors for many of the EML components results in lower system losses; consequently, reductions in the size and number of energy storage devices are possible. Applied high-temperature superconductivity may eventually enable novel design concepts for energy distribtion and switching. All of these technical improvements have the potential to reduce system complexity and lower payload launch costs. 10 refs.

  17. Status of 3.9 GHz superconducting RF cavity technology at Fermilab

    SciTech Connect

    Harms, E.; Arkan, T.; Bellantoni, L.; Carter, H.; Edwards, H.; Foley, M.; Khabiboulline, T.; Mitchell, D.; Olis, D.; Rowe, A.; Solyak, N.; /Fermilab

    2007-06-01

    Fermilab is involved in an effort to assemble 3.9 GHz superconducting RF cavities into a four cavity cryomodule for use at the DESY TTF/FLASH facility as a third harmonic structure. The design gradient of the cavities is 14 MV/m. This effort involves design, fabrication, intermediate testing, assembly, and eventual delivery of the cryomodule. We report on all facets of this enterprise from design through future plans. Included will be test results of single 9-cell cavities, lessons learned, and current status.

  18. Reduction of helium loss from a superconducting accelerating cavity during initial cool-down and cryostat exchange by pre-cooling the re-condensing cryostat

    NASA Astrophysics Data System (ADS)

    O'Rourke, B. E.; Minehara, E. J.; Hayashizaki, N.; Oshima, N.; Suzuki, R.

    2015-03-01

    A Zero-Boil-Off (ZBO) cryostat is designed to realize a compact, stand-alone cryogenic system for the AIST superconducting accelerator (SCA). Under normal operation there is no evaporative helium loss from the cryomodule and therefore operating costs associated with the supply of liquid helium can be eliminated. The only significant loss of helium from the module occurs during the initial cavity cool-down procedure or when the re-condensing cryostat is replaced. It takes about 3 h to cool down the cryostat head from room temperature (300 K) to 4 K. During this time around 100 L of liquid helium is lost due to evaporation. By pre-cooling the cryostat inside a low heat load vacuum tube before transfer to the cryomodule, this evaporative loss could be essentially eliminated, significantly reducing the volume of liquid helium required for the initial cryomodule cool-down. The pre-cooling system also provides an efficient method to test the cryostat prior to use.

  19. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  20. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  1. In-situ proton irradiation and measurement of superconducting rf cavities under cryogenic conditions

    SciTech Connect

    Rusnak, B.; Haynes, W.B.; Chan, K.C.D.

    1997-08-01

    The Accelerator Production of Tritium (APT) Project is investigating using a superconducting linac for the high-energy portion of the accelerator. As this accelerator would be used to accelerate a high-current (100-mA) CW proton beam up to 1700 MeV, it is important to determine the effects of stray-beam impingement on the superconducting properties of a 700-MHz niobium cavity. To accomplish this, two 3000-MHz elliptical niobium cavities were placed in a cryostat, cooled to nominally 2 K in sub-atmospheric liquid helium, and irradiated with 798-MeV protons at up to 490 {pi}A average current. The elliptically shaped beam passed through the equatorial regions of both cavities in order to maximize sensitivity to any changes in the superconducting-surface resistance. Over the course of the experiment, 6x10{sup 16} protons were passed through the cavities. After irradiation, the cavities were warmed to 250 K, then recooled to investigate the effects of a room-temperature annealing cycle on the superconducting properties of the irradiated cavities. A detailed description of the experiment and the results shall be presented. These results are important to employing superconducting-rf technology to future high-intensity proton accelerators for use in research and transmutation technologies.

  2. Preliminary investigation of force-reduced superconducting magnet configurations for advanced technology applications

    SciTech Connect

    Bouillard, J.X.

    1992-12-01

    The feasibility of new high-field low specific weight superconducting magnet designs using force-free fields is being explored analytically and numerically. This report attempts to assess the technical viability of force-free field concepts to produce high-field, low specific weight and large bore volume magnets, which could promote the use of high temperature superconductors. Several force-free/force-reduced magnet configurations are first reviewed, then discussed and assessed. Force-free magnetic fields, fields for which the current flows parallel to the field, have well-known mathematical solutions extending upon infinite domains. These solutions, however, are no longer force-free everywhere for finite geometries. In this preliminary study, force-free solutions such as the Lundquist solutions truncated to a size where the internal field of the coil matches an externally cylindrical magnetic field (also called a Lundquist coil) are numerically modeled and explored. Significant force-reduction for such coils was calculated, which may have some importance for the design of lighter toroidal magnets used in thermonuclear fusion power generation, superconducting magnetic energy storage (SMES), and mobile MHD power generation and propulsion.

  3. Recent developments in superconducting cavity RF control

    NASA Astrophysics Data System (ADS)

    Simrock, Stefan

    2005-02-01

    Presently a large number of superconducting accelerators under construction or proposed impose stringent requirements on the rf control of the accelerating fields, operability, and reliability. The accelerator application range from linear colliders, UV-FELs and X-FELs, ERL based light sources, high power proton accelerators to heavy ion accelerators. Examples are TESLA and NLC, the European XFEL and Lux, the Cornell ERL based light source, the high power ERL based IR-FEL at JLAB, the neutron spallation source SNS, the heavy ion accelerator RIA, and the energy upgrade of the CEBAF accelerator at JLAB. The requirements on the rf systems range from low to high current, medium to high gradient, and relativistic to non-relativistics beam. With the technology in analog and digital electronics developing rapidly, the technology for rf feedback system is changing more and more from analog or hybrid systems towards fully digital systems. Todays DSPs and FPGAs can process sophisticated feedback algorithms on a time scale of some 100 ns to a few us with ADCs and DACs with about 100 MHz bandwidth at 14 bit and latencies less than 100 ns available to inter-face to the field detectors and field control actuators. Also fast analog multiplier technology allows for field detection and actuators for rf control with high linearity, measurement and control bandwidth while maintaining low noise levels.

  4. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project

    NASA Astrophysics Data System (ADS)

    Bowman, Charles D.

    1995-09-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the U.S. and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  5. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems: Technology Choices and Implementation Scenarios

    SciTech Connect

    Venneri, Francesco; Williamson, Mark A.; Li Ning; Houts, Michael G.; Morley, Richard A.; Beller, Denis E.; Sailor, William; Lawrence, George

    2000-10-15

    Los Alamos National Laboratory has led the development of accelerator-driven transmutation of waste (ATW) to provide an alternative technological solution to the disposition of nuclear waste. While ATW will not eliminate the need for a high-level waste repository, it offers a new technology option for altering the nature of nuclear waste and enhancing the capability of a repository. The basic concept of ATW focuses on reducing the time horizon for the radiological risk from hundreds of thousands of years to a few hundred years and on reducing the thermal loading. As such, ATW will greatly reduce the amount of transuranic elements that will be disposed of in a high-level waste repository. The goal of the ATW nuclear subsystem is to produce three orders of magnitude reduction in the long-term radiotoxicity of the waste sent to a repository, including losses through processing. If the goal is met, the radiotoxicity of ATW-treated waste after 300 yr would be less than that of untreated waste after 100 000 yr.These objectives can be achieved through the use of high neutron fluxes produced in accelerator-driven subcritical systems. While critical fission reactors can produce high neutron fluxes to destroy actinides and select fission products, the effectiveness of the destruction is limited by the criticality requirement. Furthermore, a substantial amount of excess reactivity would have to be supplied initially and compensated for by control poisons. To overcome these intrinsic limitations, we searched for solutions in subcritical systems freed from the criticality requirement by taking advantage of the recent breakthroughs in accelerator technology and the release of liquid lead/bismuth nuclear coolant technology from Russia. The effort led to the selection of an accelerator-driven subcritical system that results in the destruction of the actinides and fission products of concern as well as permitting easy operational control through the external control of the neutron

  6. Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system

    SciTech Connect

    Williamson, M.A.

    1997-12-01

    This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

  7. Environmental trends in Asia are accelerating the introduction of clean coal technologies and natural gas

    SciTech Connect

    Johnson, C.J.

    1997-09-01

    This paper examines the changing energy mix for Asia to 2020, and impacts of increased coal consumption on Asia`s share of world SO{sub 2} and CO{sub 2} emissions. Stricter SO{sub 2} emissions laws are summarized for eight Asian economies along with implications for fuel and technology choices. The paper compares the economics of different technologies for coal and natural gas in 1997 and in 2007. Trends toward introducing clean coal technologies and the use of natural gas will accelerate in response to tighter environmental standards by 2000. The most important coal conversion technology for Asia, particularly China, in the long term is likely to be integrated gasification combined-cycle (IGCC), but only under the assumption of multiple products.

  8. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  9. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  10. Overview of the development of the advanced power system by the applied superconductivity technologies programme in Korea

    NASA Astrophysics Data System (ADS)

    Ryu, Kang-Sik; Jo, Young-Sik; Park, Minwon

    2006-03-01

    At the end of July 2004, DAPAS (development of the advanced power system by applied superconductivity technologies), which is a 10 year long programme, finished the first of three phases. As a result of the first phase, a process for a metre long coated conductor and the core technologies of the distribution line voltage class high temperature superconductor (HTS) power systems including cables, transformers, fault current limiters (FCLs), and motors have been developed. The ultimate goal of the HTS cable project is to develop 1 GVA class HTS transmission cables. During the first phase, a three-phase 50 MVA/22.9 kV class HTS cable of 30 m length has been developed and tested successfully; it has been installed by LS Cable Ltd. In the second phase, grid-connected HTS cables will be developed and established in the real utility line. In case of FCLs, there were two types of FCL developed during the first phase: a reactive type and a resistive type. Both types had the same project targets with the specification of 6.6 kV/200 A for three-phase, and entered the second phase with the target of a 22.9 kV class. In the case of the HTS transformer project, a 1 MVA/22.9 kV class was developed, and after the second phase this project will be considered for practical application. Technically, the optimal design and the manufacturing technologies of HTS transformers as well as the analysis tools of electromagnetic field in the transformer were developed. Furthermore, a 100 hp class motor has been developed so that the key technologies for the utilization of superconducting motors could be obtained. The developed motor consists of Bi-2223 field coils of 100 A operating current at 30 K and a closed-loop cooling system, the results of which will lead us to develop 1 and 5 MVA motors in the second and third phase, respectively. In the case of the coated conductors (CCs) programme, a batch-type co-evaporation process and a reel-to-reel pulsed laser deposition process gave us 10 m

  11. The Machine Protection System for the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Wu, Jinyuan; Warner, Arden; Liu, Ning; Neswold, Richard; Carmichael, Linden

    2015-11-15

    The Machine Protection System (MPS) for the Fermilab Accelerator Science and Technology Facility (FAST) has been implemented and tested. The system receives signals from several subsystems and devices which conveys the relevant status needed to the safely operate the accelerator. Logic decisions are made based on these inputs and some predefined user settings which in turn controls the gate signal to the laser of the photo injector. The inputs of the system have a wide variety of signal types, encoding methods and urgencies for which the system is designed to accommodate. The MPS receives fast shutdown (FSD) signals generated by the beam loss system and inhibits the beam or reduces the beam intensity within a macropulse when the beam losses at several places along the accelerator beam line are higher than acceptable values. TTL or relay contact signals from the vacuum system, toroids, magnet systems etc., are chosen with polarities that ensure safe operation of the accelerator from unintended events such as cable disconnection in the harsh industrial environment of the experimental hall. A RS422 serial communication scheme is used to interface the operation permit generator module and a large number of movable devices each reporting multi-bit status. The system also supports operations at user defined lower beam levels for system conunissioning. The machine protection system is implemented with two commercially available off-the-shelf VMEbus based modules with on board FPGA devices. The system is monitored and controlled via the VMEbus by a single board CPU

  12. Accelerating the developing of carbon sequestration technologies. Electricity technology roadmap: limiting challenge No. 11. Final report

    SciTech Connect

    S. Dalton

    2003-12-15

    The report describes the R & D work needed to develop integrated carbon capture, transport, and storage technologies essential to reducing emissions associated with fossil fuel power generation. It incorporates extensive input from: representatives of the electric power industry, oil and gas companies, international research institutions, national laboratories, government agencies, environmental nonprofit organisations and academia. EPRI staff then worked intensively to interpret the inputs from this broad spectrum of contributors, and expand them into a systematic set of needs and recommendations. The document supports the 2003 Electricity Technology Roadmap. 10 figs., 2 tabs.

  13. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  14. Development of Wind-and-React Bi-2212 Accelerator Magnet Technology

    SciTech Connect

    Godeke, A.; Cheng, D.; Dietderich, D. R.; English, C. D.; Felice, H.; Hannaford, C. R.; Prestemon, S. O.; Sabbi, G.; Scanlan, R. M.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.

    2007-08-28

    We report on the progress in our R&D program, targeted to develop the technology for the application of Bi2Sr2CaCu2Ox (Bi-2212) in accelerator magnets. The program uses subscale coils, wound from insulated cables, to study suitable materials, heat treatment homogeneity, stability, and effects of magnetic field and thermal and electro-magnetic loads. We have addressed material and reaction related issues and report on the fabrication, heat treatment, and analysis of subscale Bi-2212 coils. Such coils can carry a current on the order of 5000 A and generate, in various support structures, magnetic fields from 2.6 to 9.9 T. Successful coils are therefore targeted towards a hybrid Nb3Sn-HTS magnet which will demonstrate the feasibility of Bi-2212 for accelerator magnets, and open a new magnetic field realm, beyond what is achievable with Nb3Sn.

  15. Recommendation for Supplemental Technologies for Hanford River Protection Project Potential Mission Acceleration (RPP-11838)

    SciTech Connect

    Allen, D. I.; Raymond, R. E.; CH2M Hill Hanford Group; Brouns, T. M.; Choho, A. F.; Numatec Hanford Corporation; Mauss, B. M.

    2003-02-26

    In May of 2002, the River Protection Project at Hanford proposed as part of the accelerated cleanup for the entire Hanford Site to ''accelerate waste stabilization by developing and deploying alternative treatment and immobilization solutions that are aligned with the waste characteristics to add assurance that overall waste treatment/immobilization will be completed 20 or more years sooner.'' This paper addresses one of these elements: development of recommendations for the supplemental technologies that have the greatest potential to supplement the River Protection Project's new Waste Treatment Plant throughput and achieve completion of waste processing by 2028. Low-activity waste treatment in the Waste Treatment Plant needs either to be enhanced or supplemented to enable the full amount of low-activity feed in the single-shell and double-shell tanks to be processed by 2028. The supplemental technologies are considered for low-activity waste feed that represents the maximum effectiveness of treatment compared with Waste Treatment Plant processing. During the Spring of 2002, over two dozen candidate technologies were assessed by staff from the U.S Department of Energy (DOE) Headquarters, Hanford Office of River Protection, representatives from the Washington State Department of Ecology and Region 10 of the Environmental Protection Agency, staff from many national laboratories, as well as contractor and independent experts.

  16. First charge breeding of a rare-isotope beam with the electron-beam ion trap of the ReA post-accelerator at the National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Lapierre, A.; Schwarz, S.; Baumann, T. M.; Cooper, K.; Kittimanapun, K.; Rodriguez, A. J.; Sumithrarachchi, C.; Williams, S. J.; Wittmer, W.; Leitner, D.; Bollen, G.

    2014-02-01

    An electron-beam ion trap (EBIT) charge breeder is being brought into operation at the National Superconducting Cyclotron Laboratory at Michigan State University. The EBIT is part of the ReA post-accelerator for reacceleration of rare isotopes, which are thermalized in a gas "stopping" cell after being produced at high energy by projectile fragmentation. The ReA EBIT has a distinctive design; it is characterized by a high-current electron gun and a two-field superconducting magnet to optimize the capture and charge-breeding efficiency of continuously injected singly charged ion beams. Following a brief overview of the reaccelerator system and the ReA EBIT, this paper presents the latest commissioning results, particularly, charge breeding and reacceleration of the highly charged rare isotopes, 76Ga24 +, 25 +.

  17. Fabrication and test results of a high field, Nb3Sn superconducting racetrack dipole magnet

    SciTech Connect

    Benjegerdes, R.; Bish, P.; Byford, D.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.; Hannaford, R.; Higley, H.; Jackson, A.; Lietzke, A.; Liggins, N.; McInturff, A.D.; O'Neill, J.; Palmerston, E.; Sabbi, G.; Scanlan, R.M.; Swanson, J.

    2001-06-15

    The LBNL Superconducting Magnet Program is extending accelerator magnet technology to the highest possible fields. A 1 meter long, racetrack dipole magnet, utilizing state-of-the-art Nb{sub 3}Sn superconductor, has been built and tested. A record dipole filed of 14.7 Tesla has been achieved. Relevant features of the final assembly and tested results are discussed.

  18. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  19. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGESBeta

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  20. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  1. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  2. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    SciTech Connect

    Cornacchia, M.; Humphrey, J.W.; Niederer, J.; Poole, J.H.

    1981-01-01

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario.

  3. Thickness dependence of superconducting properties in magnesium diboride thin films

    NASA Astrophysics Data System (ADS)

    Beringer, Douglas; Clavero, Cesar; Tan, Teng; Xi, Xiaoxing; Lukaszew, Rosa

    2013-03-01

    Thin film MgB2 is a promising material currently researched for improvements in superconducting radio frequency (SRF) technology and applications. At present, bulk niobium SRF accelerating cavities suffer from a fundamental upper limit in maximally sustained accelerating gradients; however, a scheme involving multi-layered superstructures consisting of superconducting-insulating-superconducting (SIS) layers has been proposed to overcome this fundamental material limit of 50 MV/m. The SIS multi-layer paradigm is reliant upon implementing a thin shielding material with a suitably high Hc1 which may prevent early field penetration in a bulk material layer and consequently delay the high field breakdown. It has been predicted that for thin superconducting films -- thickness less than the London penetration depth (~ 140 nm in the case of MgB2) -- the lower critical field Hc1 will be enhanced with decreasing thickness. Thus, MgB2, with a high bulk Hc1 value is a prime candidate for such SIS structures. Here we present our study on the structure, surface morphology and superconducting properties on a series of MgB2 thin films and correlate the effects of film thickness and surface morphology on Hc1. This work was supported in part by the U.S. Department of Energy (DE-SC0004410 and DE-AC05-06OR23177) and Defense Threat Reduction Agency (HDTRA1-10-1-0072).

  4. Superconducting Cavities for Proton and Ion Linacs

    SciTech Connect

    Jean Delayen

    2005-05-22

    In the last decade, one of the most active areas in the applications of the superconducting rf (SRF) technology has been for the acceleration of ions to medium energy ({approx}1 GeV/amu) and high power. One such accelerator is under construction in the US while others are being proposed in the US, Japan, and Europe. These new facilities require SRF accelerating structures operating in a velocity region that has until recently been unexplored, and new types of structures optimized for the velocity range from {approx}0.2 to {approx}0.8 c have been developed. We will review the requirements imposed by such applications, the properties of the low- and intermediate-velocity structures which have been developed for them and the status of their development.

  5. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    SciTech Connect

    Wang, Juwen; Lewandowski, James; Van Pelt, John; Yoneda, Charles; Gudkov, Boris; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu; /KEK, Tsukuba

    2012-07-03

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed.

  6. Pyrochemical separations technologies envisioned for the U. S. accelerator transmutation of waste system

    SciTech Connect

    Laidler, J. J.

    2000-02-17

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system.

  7. Surveying and optical tooling technologies combined to align a skewed beamline at the LAMPF accelerator

    SciTech Connect

    Bauke, W.; Clark, D.A.; Trujillo, P.B.

    1985-01-01

    Optical Tooling evolved from traditional surveying, and both technologies are sometimes used interchangeably in large industrial installations, since the instruments and their specialized adapters and supports complement each other well. A unique marriage of both technologies was accomplished in a novel application at LAMPF, the Los Alamos Meson Physics Facility. LAMPF consists of a linear accelerator with multiple target systems, one of which had to be altered to accommodate a new beamline for a neutrino experiment. The new line was to be installed into a crowded beam tunnel and had to be skewed and tilted in compound angles to avoid existing equipment. In this paper we describe how Optical Tooling was used in conjunction with simple alignment and reference fixtures to set fiducials on the magnets and other mechanical components of the beamline, and how theodolites and sight levels were then adapted to align these components along the calculated skew planes. Design tolerances are compared with measured alignment results.

  8. I-NET: interactive neuro-educational technology to accelerate skill learning.

    PubMed

    Raphael, Giby; Berka, Chris; Popovic, Djordje; Chung, Gregory K W K; Nagashima, Sam O; Behneman, Adrienne; Davis, Gene; Johnson, Robin

    2009-01-01

    The learning of a novel task currently rely heavily on conventional classroom instruction with qualitative assessment and observation. Introduction of individualized tutorials with integrated neuroscience-based evaluation techniques could significantly accelerate skill acquisition and provide quantitative evidence of successful training. We have created a suite of adaptive and interactive neuro-educational technologies (I-NET) to increase the pace and efficiency of skill learning. It covers four major themes: 1) Integration of brain monitoring into paced instructional tutorials, 2) Identifying psychophysiological characteristics of expertise using a model population, 3) Developing sensor-based feedback to accelerate novice-to-expert transition, 4) Identifying neurocognitive factors that are predictive of skill acquisition to allow early triage and interventions. We selected rifle marksmanship training as the field of application. Rifle marksmanship is a core skill for the Army and Marine Corps and it involves a combination of classroom instructional learning and field practice involving instantiation of a well-defined set of sensory, motor and cognitive skills. The instrumentation that incorporates the I-NET technologies is called the Adaptive Peak Performance Trainer (APPT). Preliminary analysis of pilot study data for performance data from a novice population that used this device revealed an improved learning trajectory. PMID:19963623

  9. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  10. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  11. Present status and probable future capabilities of heavy-ion linear accelerators

    SciTech Connect

    Bollinger, L.M.

    1984-04-30

    The general characteristics of heavy-ion linacs are summarized, with emphasis on the similarities and differences of systems based on different technologies. The main design considerations of superconducting linacs are outlined, the many projects based on this technology are listed, and a new concept for a superconducting injector linac is described. The role of RFQ structures for heavy-ion acceleration is summarized. A concluding section lists some probable applications of heavy-ion accelerators during the next decade. 17 references, 5 figures, 1 table.

  12. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  13. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  14. The APT Accelerator.*

    NASA Astrophysics Data System (ADS)

    Lawrence, George P.

    1996-05-01

    The accelerator for the Accelerator Production of Tritium (APT) project is a high-power RF linac designed to produce a 100-mA CW proton beam at an energy of 1300 MeV. A heavy-metal target produces large quantities of spallation neutrons, which are slowed to thermal energies and captured in a feed material to make tritium. The baseline accelerator design consists of a 75-keV proton injector, a 7-MeV radio-frequency quadrupole (RFQ), a 100-MeV coupled-cavity drift-tube linac (CCDTL), and a 1300-MeV side-coupled linac (SCL). The RFQ operates at a frequency of 350 MHz, while the CCDTL and SCL operate at 700-MHz. A quadrupole-magnet transport system conveys the 1300-MeV beam to production target/blanket assemblies where beam expanders using non-linear magnetic elements transform the linac output distribution into large-area rectangular distributions having a nearly uniform density. All the linac accelerating structures use conventional water-cooled copper technology. The SCL section is based on the well-proven 800-MeV LANSCE high-duty-factor linac at Los Alamos. The CCDTL is a new hybrid accelerating structure that combines the best features of the conventional drift-tube linac and the coupled-cavity linac to provide efficient and stable acceleration in the intermediate velocity range. Approximately 263 1-MW CW klystrons are needed to drive the 130-MW proton beam. The total ac-power requirement for the APT plant is about 438 MW, most of which is needed for the accelerator. An advanced-technology option is being considered that would replace the conventional SCL with a superconducting RF linac composed of sequences of 4-cell elliptical-type cavities. This option would reduce the electric power consumption significantly and would provide increased operational flexibility. * Work supported by the US Department of Energy.

  15. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  16. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group.

    PubMed

    Xiao, Ying; Kry, Stephen F; Popple, Richard; Yorke, Ellen; Papanikolaou, Niko; Stathakis, Sotirios; Xia, Ping; Huq, Saiful; Bayouth, John; Galvin, James; Yin, Fang-Fang

    2015-01-01

    This report describes the current state of flattening filter-free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high-dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out-of-field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical

  17. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  18. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  19. Space applications of superconductivity - Digital electronics

    NASA Technical Reports Server (NTRS)

    Harris, R. E.

    1980-01-01

    Superconducting electronics offers a variety of remarkable properties including high speed and low dissipation. The paper discusses fundamental considerations which appear to suggest that superconducting (cryogenic) technology will offer significant advantages for future digital devices. It shows how the active element in superconducting electronics, the Josephson junction, works and discusses the technology for fabricating the devices. The characteristics of published circuits are briefly reviewed, and the capabilities of future superconducting computers and instruments are projected.

  20. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  1. Ultracompact Accelerator Technology for a Next-Generation Gamma-Ray Source

    SciTech Connect

    Marsh, R A; Albert, F; Anderson, S G; Gibson, D J; Wu, S S; Hartemann, F V; Barty, C J

    2012-05-14

    This presentation reported on the technology choices and progress manufacturing and testing the injector and accelerator of the 250 MeV ultra-compact Compton Scattering gamma-ray Source under development at LLNL for homeland security applications. This paper summarizes the status of various facets of current accelerator activities at LLNL. The major components for the X-band test station have been designed, fabricated, and await installation. The XL-4 klystron has been delivered, and will shortly be dressed and installed in the ScandiNova modulator. High power testing of the klystron into RF loads will follow, including adjustment of the modulator for the klystron load as necessary. Assembly of RF transport, test station supports, and accelerator components will follow. Commissioning will focus on processing the RF gun to full operating power, which corresponds to 200 MV/m peak electric field on the cathode surface. Single bunch benchmarking of the Mark 1 design will provide confidence that this first structure operates as designed, and will serve as a solid starting point for subsequent changes, such as a removable photocathode, and the use of various cathode materials for enhanced quantum efficiency. Charge scaling experiments will follow, partly to confirm predictions, as well as to identify important causes of emittance growth, and their scaling with charge. Multi-bunch operation will conclude testing of the Mark 1 RF gun, and allow verification of code predictions, direct measurement of bunch-to-bunch effects, and initial implementation compensation mechanisms. Modeling will continue and focus on supporting the commissioning and experimental program, as well as seeking to improve all facets of linac produced Compton gamma-rays.

  2. Development of Wind-and-React Bi-2212 Accelerator Magnet Technology

    SciTech Connect

    Cheng, Daniel; Dietderich, Daniel R.; English, C.D.; Felice, Helene; Hannaford, Charles R.; Prestemon, Soren O.; Sabbi, GianLuca; Scanlan, Ron M.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.; Godeke, A.

    2007-06-01

    We report on the progress in our R&D program, targeted to develop the technology for the application of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (Bi-2212) in accelerator magnets. The program uses subscale coils, wound from insulated cables, to study suitable materials, heat treatment homogeneity, stability, and effects of magnetic field and thermal and electro-magnetic loads. We have addressed material and reaction related issues and report on the fabrication, heat treatment, and analysis of subscale Bi-2212 coils. Such coils can carry a current on the order of 5000 A and generate, in various support structures, magnetic fields from 2.6 to 9.9 T. Successful coils are therefore targeted towards a hybrid Nb{sub 3}Sn-HTS magnet which will demonstrate the feasibility of Bi-2212 for accelerator magnets, and open a new magnetic field realm, beyond what is achievable with Nb{sub 3}Sn.

  3. Development of Wind-and-React Bi-2212 Accelerator MagnetTechnology

    SciTech Connect

    Godeke, A.; Cheng, D.; Dietderich, D.R.; English, C.D.; Felice,H.; Hannaford, C.R.; Prestemon, S.O.; Sabbi, G.; Scanlan, R.M.; Hikichi,Y.; Nishioka, J.; Hasegawa, T.

    2007-08-28

    We report on the progress in our R&D program, targetedto develop the technology for the application of Bi2Sr2CaCu2Ox (Bi-2212)in accelerator magnets. The program uses subscale coils, wound frominsulated cables, to study suitable materials, heat treatmenthomogeneity, stability, and effects ofmagnetic field and thermal andelectro-magnetic loads. We have addressed material and reaction relatedissues and report onthe fabrication, heat treatment, and analysis ofsubscale Bi-2212 coils. Such coils can carry a current on the order of5000 A and generate, in various support structures, magnetic fields from2.6 to 9.9 T. Successful coils are therefore targeted towards a hybridNb3Sn-HTS magnet which will demonstrate the feasibility of Bi-2212 foraccelerator magnets, and open a new magnetic field realm, beyond what isachievable with Nb3Sn.

  4. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  5. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  6. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  7. Automated Technologies and Novel Techniques to Accelerate Protein Crystallography for Structrual Genomics

    SciTech Connect

    Manjasetty,B.; Turnbull, A.; Panjikar, S.; Bussow, K.; Chance, M.

    2008-01-01

    The sequence infrastructure that has arisen through large-scale genomic projects dedicated to protein analysis, has provided a wealth of information and brought together scientists and institutions from all over the world. As a consequence, the development of novel technologies and methodologies in proteomics research is helping to unravel the biochemical and physiological mechanisms of complex multivariate diseases at both a functional and molecular level. In the late sixties, when X-ray crystallography had just been established, the idea of determining protein structure on an almost universal basis was akin to an impossible dream or a miracle. Yet only forty years after, automated protein structure determination platforms have been established. The widespread use of robotics in protein crystallography has had a huge impact at every stage of the pipeline from protein cloning, over-expression, purification, crystallization, data collection, structure solution, refinement, validation and data management- all of which have become more or less automated with minimal human intervention necessary. Here, recent advances in protein crystal structure analysis in the context of structural genomics will be discussed. In addition, this review aims to give an overview of recent developments in high throughput instrumentation, and technologies and strategies to accelerate protein structure/function analysis.

  8. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.

  9. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  10. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  11. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  12. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    SciTech Connect

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.

  13. Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259

    SciTech Connect

    Kramer, W.

    2011-10-01

    This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

  14. Proc. of the workshop on pushing the limits of RF superconductivity.

    SciTech Connect

    Kim, K-J., Eyberger, C., editors

    2005-04-13

    For three days in late September last year, some sixty experts in RF superconductivity from around the world came together at Argonne to discuss how to push the limits of RF superconductivity for particle accelerators. It was an intense workshop with in-depth presentations and ample discussions. There was added excitement due to the fact that, a few days before the workshop, the International Technology Recommendation Panel had decided in favor of superconducting technology for the International Linear Collider (ILC), the next major high-energy physics accelerator project. Superconducting RF technology is also important for other large accelerator projects that are either imminent or under active discussion at this time, such as the Rare Isotope Accelerator (RIA) for nuclear physics, energy recovery linacs (ERLs), and x-ray free-electron lasers. For these accelerators, the capability in maximum accelerating gradient and/or the Q value is essential to limit the length and/or operating cost of the accelerators. The technological progress of superconducting accelerators during the past two decades has been truly remarkable, both in low-frequency structures for acceleration of protons and ions as well as in high-frequency structures for electrons. The requirements of future accelerators demand an even higher level of performance. The topics of this workshop are therefore highly relevant and timely. The presentations given at the workshop contained authoritative reviews of the current state of the art as well as some original materials that previously had not been widely circulated. We therefore felt strongly that these materials should be put together in the form of a workshop proceeding. The outcome is this report, which consists of two parts: first, a collection of the scholarly papers prepared by some of the participants and second, copies of the viewgraphs of all presentations. The presentation viewgraphs, in full color, are also available from the Workshop

  15. A Superconducting Linac Proton Driver at Fermilab

    NASA Astrophysics Data System (ADS)

    Foster, G. William

    2004-05-01

    A proton driver has emerged as the leading candidate for Fermilab's next near-term accelerator project. The preferred technical solution is an 8 GeV superconducting linac based on technology developed for TESLA and the Spallation Neutron Source (SNS). Its primary mission is to serve as a single-stage H- injector to prepare 2 MW "Super-Beams" for Neutrino experiments using the Fermilab Main Injector. The linac can also accelerate electrons, protons, and relativistic muons, permitting future applications such as a driver for an FEL, a long-pulse spallation source, the driver for an intense 8 GeV neutrino or kaon program, and potential applications to a neutrino factory or muon collider. The technical design of the 8 GeV linac, as well as the design of an alternative synchrotron based proton driver, will be described along with plans for project proposal and construction.

  16. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  17. Taking Control of Castleman Disease: Leveraging Precision Medicine Technologies to Accelerate Rare Disease Research

    PubMed Central

    Newman, Samantha Kass; Jayanthan, Raj K.; Mitchell, Grant W.; Carreras Tartak, Jossie A.; Croglio, Michael P.; Suarez, Alexander; Liu, Amy Y.; Razzo, Beatrice M.; Oyeniran, Enny; Ruth, Jason R.; Fajgenbaum, David C.

    2015-01-01

    Castleman disease (CD) is a rare and heterogeneous disorder characterized by lymphadenopathy that may occur in a single lymph node (unicentric) or multiple lymph nodes (multicentric), the latter typically occurring secondary to excessive proinflammatory hypercytokinemia. While a cohort of multicentric Castleman disease (MCD) cases are caused by Human Herpes Virus-8 (HHV-8), the etiology of HHV-8 negative, idiopathic MCD (iMCD), remains unknown. Breakthroughs in “omics” technologies that have facilitated the development of precision medicine hold promise for elucidating disease pathogenesis and identifying novel therapies for iMCD. However, in order to leverage precision medicine approaches in rare diseases like CD, stakeholders need to overcome several challenges. To address these challenges, the Castleman Disease Collaborative Network (CDCN) was founded in 2012. In the past 3 years, the CDCN has worked to transform the understanding of the pathogenesis of CD, funded and initiated genomics and proteomics research, and united international experts in a collaborative effort to accelerate progress for CD patients. The CDCN’s collaborative structure leverages the tools of precision medicine and serves as a model for both scientific discovery and advancing patient care. PMID:26604862

  18. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    SciTech Connect

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-04-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS`s) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS`s are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS`s and under consideration for the 1-5 MW SNS`s are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten.

  19. Research and development for electropolishing of Nb for ILC accelerator cavities

    SciTech Connect

    Kelley, Michael J.

    2009-09-21

    The objectives of this project are to 1, Expand the scientific and technological understanding of the effect of post-treatment (electropolish, buffered chemical polish, low-temperature baking) on the surface of niobium; 2, Relate the knowledge to the performance of niobium superconducting radiofrequency accelerator cavities; and, 3, Thereby design and demonstrate an electropolish process that can be applied to complete cavities.

  20. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  1. Cryogenic structural materials for superconducting magnets

    SciTech Connect

    Dalder, E.N.C.; Morris, J.W. Jr.

    1985-02-22

    This paper reviews research in the United States and Japan on structural materials for high-field superconducting magnets. Superconducting magnets are used for magnetic fusion energy devices and for accelerators that are used in particle-physics research. The cryogenic structural materials that we review are used for magnet cases and support structures. We expect increased materials requirements in the future.

  2. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  3. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  4. The advantages and challenges of superconducting magnets in particle therapy

    NASA Astrophysics Data System (ADS)

    Gerbershagen, Alexander; Calzolaio, Ciro; Meer, David; Sanfilippo, Stéphane; Schippers, Marco

    2016-08-01

    This paper provides an overview of the current developments in superconducting magnets for applications in proton and ion therapy. It summarizes the benefits and challenges regarding the utilization of these magnets in accelerating systems (e.g. superconducting cyclotrons) and gantries. The paper also provides examples of currently used superconducting particle therapy systems and proposed designs.

  5. Hadron accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  6. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  7. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2009-09-01

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  8. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    SciTech Connect

    Shin, Young Min; Lumpkin, Alex H.; Thangaraj, Jayakar Charles; Thurman-Keup, Randy Michael; Shiltsev, Vladimir D.

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  9. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  10. The ESS Superconducting RF Cavity and Cryomodule Cryogenic Processes

    NASA Astrophysics Data System (ADS)

    Darve, C.; Elias, N.; Molloy, S.; Bosland, P.; Renard, B.; Bousson, S.; Olivier, G.; Reynet, D.; Thermeau, J. P.

    The European Spallation Source (ESS) is one of Europe's largest research infrastructures, tobring new insights to the grand challenges of science and innovation in fields as diverse as material and life sciences, energy, environmental technology, cultural heritage,solid-state and fundamental physics by the end of the decade. The collaborative project is funded by a collaboration of 17 European countries and is under design and construction in Lund, Sweden. A 5 MW, long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms and the repetition frequency is 14 Hz (4% duty cycle). The choice of SRF technology is a key element in the development of the ESS linear accelerator (linac). The superconducting linacis composed of one section of spoke cavity cryomodules(352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K, cooled by the accelerator cryoplantthrough the cryogenic distribution system. This paper presents the superconducting RF cavity and cryomodule cryogenic processes, which are developed for the technology demonstrators and to be ultimately integrated for the ESS tunnel operation.

  11. Novel Design of Superconducting Helical Dipole Magnet

    NASA Astrophysics Data System (ADS)

    Meinke, R.; Senti, M.; Stelzer, G.

    1997-05-01

    Superconducting helical dipole magnets with a nominal field of 4 Tesla are needed for the spin physics program at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The magnets are required to operate at a relatively low current of 400 A since many of these magnets have to be independently controlled. The Advanced Magnet Lab, Inc., in Palm Bay, FL has designed and built two prototype magnets using advanced computer controlled coil winding technology. The AML design is extremely cost effective since it avoids magnet specific tooling despite the required complex coil pattern and any precision machined inserts or spacers. It is the first time an accelerator magnet of this technology has reached a field above 4 Tesla. Results from the prototype testing at BNL are presented.

  12. Design study for a superconducting proton linac from 20 to 100 MeV

    SciTech Connect

    Wangler, T.P.; Garnett, R.; Krawczyk, F.; Billen, J.; Bultman, N.; Christensen, K.; Fox, W.; Wood, R.

    1993-07-01

    Advances in superconducting radiofrequency technology during the past 15 years have made possible the large-scale application of superconducting niobium accelerators. So far this development has been restricted to rather low-current electron and heavy-ion accelerators. In addition to the power savings, the improved capability of superconducting cavities to provide acceleration of high currents with low beam losses, which follows from the ability to use larger beam apertures without a large economic penalty from increased rf losses, could make superconducting proton linacs very attractive for high-intensity applications, where activation of the accelerator is a major concern. During the past year, at Los Alamos, the authors have been looking at a possible upgrade to the 800-MeV LAMPF proton accelerator, to provide higher intensity injection into a new storage ring for a new high-intensity pulsed neutron source. As part of this upgrade to the LAMPF accelerator, the entire linac below 100 MeV would be rebuilt to provide improved beam quality, improved reliability, and to include funneling at 20 MeV for higher beam currents. Both a room-temperature and a superconducting option are being considered for the section from 20 to 100 MeV. At present, this section is a 201.25 MHz room-temperature copper drift-tube linac (DTL). For this new upgrade scenario the frequency from 20 to 100 MeV was fixed at 805 MHz. The new duty factor is assumed to be 7.2%, and the authors show some results at two currents, 30 mA and 150 mA, that span the range of interest. Their superconducting linac concept consists of individual multicell cavities, each driven by a klystrode. Focusing would be provided by superconducting quadrupole lenses between cavities. In the remainder of the paper they describe their study to evaluate the potential of a superconducting proton linac section for this application, and address some of the many design choices.

  13. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    SciTech Connect

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  14. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    NASA Astrophysics Data System (ADS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  15. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  16. Superconducting wire and cable for RHIC

    SciTech Connect

    Garber, M.; Ghosh, A.K.; Greene, A.; McChesney, D.; Morgillo, A.; Shah, R.; DelRe, S.; Epstein, G.; Hong, S.; Lichtenwalner, J.

    1994-06-01

    The superconducting dipole and quadrupole magnets in the RHIC accelerator ring are to be fabricated from 30-strand superconducting cable. The RHIC wire has a diameter of 0.65 mm, copper-to-superconductor ratio of 2.25, filament diameter of 6 {mu}m and high critical current density. Primary emphasis during manufacturing has been on uniformity of materials, processes and performance. Near final results are presented on a production program which has extended over two years. Measured parameters are described which are important for design of superconducting accelerator magnets.

  17. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 2

    SciTech Connect

    Krishen, K.; Burnham, C.

    1994-12-31

    This document contains papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, June 27--July 1, 1994. This conference encompassed research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas of research, technology, and development covered during the conference included high-temperature materials, thin films, C-60 based superconductors, persistent magnetic fields and shielding, fabrication methodology, space applications, physical applications, performance characterization, device applications, weak link effects and flux motion, accelerator technology, superconductivity energy, storage, future research and development directions, medical applications, granular superconductors, wire fabrication technology, computer applications, technical and commercial challenges, and power and energy applications. The key objective of this conference was to provide a forum for the world community to share technological results of recent advances made in the field of superconductivity and to discuss translation of the research to technology which will benefit humanity. More than 150 presentations were made at this conference. Individual papers are indexed separately on the Energy Data Bases.

  18. CO{sub 2} laser technology for advanced particle accelerators. Revision

    SciTech Connect

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO{sub 2} lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of {lambda}=10 {mu}m CO{sub 2} laser radiation over the more widely exploited solid state lasers with {lambda}{approximately}1 {mu}m are based on a {lambda}{sup 2}-proportional ponderomotive potential, {lambda}-proportional phase slippage distance, and {lambda}-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO{sub 2} laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF`s experimental program of testing far-field, near-field, and plasma accelerator schemes.

  19. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  20. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    PubMed

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation. PMID:20195442

  1. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  2. Influence of technological parameters on the mechanical properties of nt-50 superconducting multistrand conductors at low temperatures

    SciTech Connect

    Lototskaya, V.A.; Buryak, V.P.; Il'ichev, V.Y.; Matrosov, N.I.

    1986-04-01

    This paper studies the influence of thermomechanical working, strand diameter, and space factor on the mechanical characteristics of NT-50 alloy-base superconducting multistrand conductors in the 4.2-300 degrees K range. The method of experiment is discussed and the phase composition of the NT-50 alloy of the investigated specimens determined by x-ray diffraction analysis in filtered Cu radiation on a DRON-2 instrument is shown. Results show that a decrease in strand diameter to 0.2-0.2 mum leads to a steady change in elongation all the way to 4.2 degrees K and to high values of strength.

  3. Review of superconducting booster linacs

    NASA Astrophysics Data System (ADS)

    Storm, D. W.

    1993-04-01

    Several superconducting boosters have been built and more are planned or under construction. These all use a number of independently phased resonators to permit acceleration of a wide variety of ion masses. For heavy ions, vhf frequencies are involved, and operation of the superconductors at 4.3 K, the normal boiling point of He, is practical. (Because fundamental losses in superconductors depend on frequency, some electron accelerators using much higher frequencies require colder resonators.) For boosters the resonator technology has evolved toward the use of quarter wave resonators with straight loading arms. The superconducting material is either niobium or lead. The latter is deposited as a film on copper, while the former may be sheet metal, may be bonded to copper, or may be (in principle) applied as a film on copper. The trade-offs involved and the successes of the various techniques are discussed. The rf must be controlled accurately both with regard to amplitude and phase. Because of the high unloaded Q of the resonators, additional loading is provided at some temperature well above that of the superconductor, in order to increase the bandwidth to a manageable point. Most boosters provide active control of phase by shifting the driving phase, although at least one system uses a frequency switching technique. Cross talk between independent resonator control systems must be avoided. The cryogenic systems have evolved toward a system based on a large helium refrigerator using turbine expansion and providing gas cooling to heat shields. Conservative design provides excess capacity beyond the expected requirements of the accelerator. Cryogenic distribution must be done carefully to avoid losses, and the system should be designed with capacity to match that of anticipated upgrades of the refrigerator. Most boosters use an approximately periodic focusing system with radial phase advance near 90° per unit cell. At Legnaro, however, waist to waist focusing is

  4. Development of high purity niobium used in SRF accelerating cavity

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Xie, Wei-Ping; Li, Ming-Yang; He, Ji-Lin; Fan, Hui-Ru; Zhang, Bao-Cheng; He, Fei-Si; Zhao, Kui; Chen, Jia-Er; Liu, Ke-Xin

    2008-12-01

    Niobium is widely used in SRF (Superconducting Radio Frequency) cavities due to its excellent superconductivity and workability. With the continuous development of technology, higher demands of material are raised. One of the key issues is that RRR (Residual Resistance Ratio) of the Nb material should be more than 300, which requires that the Nb ingot have even higher RRR. This article introduces the development and the experimental results of high purity niobium in OTIC in Ningxia (Ningxia Orient Tantalum Industry Co. Ltd.), and the test results of the single cell TESLA (Tera Electron volt energy Superconducting Linear Accelerator) shaped cavity manufactured by Peking University using Nb material from OTIC. Supported by National Basic Research Program of China (2002CB713600)

  5. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  6. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  7. Project SUTOR Superconducting Speed-Controlled Torque Motor for 25.000Nm

    NASA Astrophysics Data System (ADS)

    Oswald, B.; de Waele, A. T. A. M.; Söll, M.; Reis, T.; Maier, T.; Oswald, J.; Teigelkötter, J.; Kowalski, T.

    SUTOR is a project that is supported by the german ministry of economy and technology (FKZ 0327866A). The partners working on this project are Oswald Elektromotoren and Hochschule Aschaffenburg. Oswald is responsible for the layout of the Motor and its cryostat. Together with the Hochschule Aschaffenburg, Oswald has build a number of coils to determine the loss rates of superconductors when used with AC current and in external, oscillating magnetic fields. These results are taken to proof the at Oswald developed calculations for superconducting motors. The Hochschule Aschaffenburg is measuring the loss rates in superconducting coils and builds an inverter to fit the special requests a motor has when running with superconducting wires. The aim of this project is to realize a high torque motor that has compared to conventional torque motors a lower volume and weight, a higher efficiency and an increased dynamic acceleration.

  8. Electrical Integrity and its Protection for Reliable Operation of Superconducting Machines

    NASA Astrophysics Data System (ADS)

    Stafiniak, A.; Szwangruber, P.; Freisleben, W.; Floch, E.

    The SIS100 synchrotron is the core accelerator of the FAIR project (Darmstadt, Germany). The long term operation of such an advanced superconducting machine requires adequate Electrical Integrity. Issues related to EI shall be taken into account at the design, production and commissioning stage respectively. In order to assure the safe and reliable operation of the superconducting magnets at cryogenic conditions, the facility shall be equipped with active protection systems. When using superconducting technology, quench detection and magnet protection are the most essential systems. Their design has a strong influence on the coordination of electrical insulation systems. This paper focuses on the correlation between EI and active protection systems. The presented study provides the basis for the development of adequate electrical integrity tests (including acceptance criteria) that should be performed at both the production and test stage. In this work, the case of SIS100 synchrotron is considered as an example.

  9. A novel design of iron dominated superconducting multipole magnets with circular coils

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2009-10-01

    Linear accelerators based on superconducting magnet technology use a large number of relatively weak superconducting quadrupoles. In this case an iron dominated quadrupole is the most cost effective solution. The field quality in this magnet is defined by iron poles; the magnet air gap is minimal as are coil ampere-turns. Nevertheless, it has long racetrack type coils, which must be rigid and fixed by a mechanical structure to provide the needed mechanical stability. The novel concept of using circular superconducting coils in such a quadrupole type is described, with a discussion of quadrupole parameters, and results of 3D magnetic designs. Variants of short and long sectional quadrupoles and multipoles are presented.

  10. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  11. Accelerating the commercialization on new technologies. [free market operation of federal alternate energy sources programs

    NASA Technical Reports Server (NTRS)

    Kuehn, T. J.; Nawrocki, P. M.

    1978-01-01

    It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.

  12. Development of millimeter-wave accelerating structures using precision metal forming technology

    SciTech Connect

    2003-06-03

    High gradients in radio-frequency (RF) driven accelerators require short wavelengths that have the concomitant requirements of small feature size and high tolerances, 1-2 {micro}m for millimeter wavelengths. Precision metal-forming stampling has the promise of meeting those tolerances with high production rates. This STI will evaluate that promise.

  13. Vibration isolation technology: Sensitivity of selected classes of experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1990-01-01

    The solution was sought of a 2-D axisymmetric moving boundary problem for the sensitivity of isothermal and nonisothermal liquid columns and the sensitivity of thermo-capillary flows to buoyancy driven convection caused by residual accelerations. The sensitivity of a variety of space experiments to residual accelerations are examined. In all the cases discussed, the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion (such as thermocapillary flow), or fluid motion must be suppressed or eliminated (such as in diffusion studies, or directional solidification experiments). The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt crystal interface. As far as the response to transient disturbances is concerned the sensitivity is determined by both the magnitude and frequency the acceleration and the characteristic momentum and solute diffusion times.

  14. Superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    An article of manufacture including a substrate, a patterned interlayer of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of oxides of Ce, Y, Cm, Dy, Er, Eu, Fe, Gd, Ho, In, La, Mn, Lu, Nd, Pr, Pu, Sm, Tb, Tl, Tm, Y, and Yb over the entire exposed surface of the intermediate article, and, a ceramic superconductive material layer as an overcoat upon the buffer layer whereby the ceramic superconductive material situated directly above the substrate has a crystal structure substantially different than the ceramic superconductive material situated above the overcoated patterned interlayer.

  15. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  16. National accelerated coated conductor initiative

    NASA Astrophysics Data System (ADS)

    Hawsey, Robert A.; Peterson, Dean E.

    2002-01-01

    The national Accelerated Coated Conductor Initiative (ACCI) is committed to assuring continued U.S. leadership in the development of high-temperature superconducting (HTS) wire for electric power and other applications of national interest. Increased energy efficiency, power density, and power-to-weight ratio are just a few of the tangible benefits that will be possible if today's meter lengths of HTS wire based upon the compound yttrium-barium-copper-oxygen (YBCO) can be scaled up by U.S. industry to kilometer lengths. This paper presents an evaluation of the current state of the development of coated conductor technology and a vision for its future. The challenges that U.S. Department of Energy (DOE) laboratories and their industrial and university partners face will be presented against the backdrop of the history of superconductivity program achievements. It is the purpose of this initiative to accelerate the development, commercialization, and application of high temperature superconductors through joint efforts among DOE laboratories, American industry, and universities, so that future challenges of the electric power industry can be met. Based on their advances in HTS coated conductor development in a program funded by the DOE's Office of Power Technologies, Los Alamos and Oak Ridge National Laboratories lead and support this effort by improving their own capabilities, including equipment, facilities, and technical expertise. Each laboratory has, in 2001, acquired new laboratory space, new capital equipment, and new personnel with the goal of working closely with U.S. companies to take technologies invented in the labs and demonstrated in 1-m lengths and transfer these technologies to the commercial sector. The present status of the performance of the second-generation YBCO wires will be described, and the future plans of the national laboratories will be presented. Opportunities for collaboration are discussed, as well. .

  17. Eccentric superconducting RF cavity separator structure

    DOEpatents

    Aggus, John R.; Giordano, Salvatore T.; Halama, Henry J.

    1976-01-01

    Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.

  18. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  19. Accelerator & Fusion Research Division: 1993 Summary of activities

    SciTech Connect

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  20. Accelerator and Fusion Research Division: 1993 Summary of activities

    NASA Astrophysics Data System (ADS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  1. VLHC accelerator physics

    SciTech Connect

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  2. Testing prototypes of high-temperature superconducting current leads of cryogenic stand for testing magnetic elements of the NICA accelerating complex

    NASA Astrophysics Data System (ADS)

    Kres, E. V.; Kadenko, I. N.; Bessheiko, O. A.; Belov, D. V.; Blinov, N. A.; Galimov, A. R.; Zorin, A. G.; Karpinsky, V. N.; Nikiforov, D. N.; Pivin, R. V.; Smirnov, A. V.; Shevchenko, E. V.; Smirnov, S. A.; Khodzhibagiyan, G. G.; Liu, Cheng Lian

    2014-09-01

    In the Laboratory of High Energies at the Joint Institute for Nuclear Research, as part of the NICA-MPD [1] project, tests of two prototypes of HTSC current leads prepared at ASIPP institute (Hefei, China) have been performed [2, 3] to measure electric and heat parameters and to search for structural and physical drawbacks. Based on the experimental results, necessary changes are made in the structure of HTSC current leads of the testing stand for the magnetic element testing of the NICA accelerating complex and its basic setups: the Nuclotron, Booster, and Collider.

  3. An R&D Approach to the Development of Long Nb3Sn Accelerator Magnets Using the key and Bladder Technology

    SciTech Connect

    Bartlett, S. E.; Caspi, S.; Dietderich, D. R.; Ferracin, P.; Gourlay, S. A.; Hannaford, C. R.; Hafalia, A. R.; Lietzke, A. F.; McInturff, A. D.; Mattafirri, S.; Sabbi, G.; Scanlan, R. M.

    2004-08-01

    Building accelerator quality magnets using Nb{sub 3}Sn for next generation facilities is the challenge of the next decade. The Superconducting Magnet Group at LBNL has developed an innovative support structure for high field magnets. The structure is based on an aluminum shell over iron yokes using hydraulic bladders and locking keys for applying the pre-stress. At cool down the pre-stress is almost doubled due to the differences of thermal contraction. This new structure allows precise control of the pre-stress with minimal spring back and conductor over-stress. At present the support structure has been used with prototype magnets up to one meter in length. In this paper, the design of a 4-meter long, 11 Tesla, wind-and-react racetrack dipole will be presented as a possible step toward the fabrication of long Nb{sub 3}Sn accelerator magnets.

  4. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  5. Fundamental Power Couplers for Superconducting Cavities

    SciTech Connect

    Isidoro E. Campisi

    2001-09-01

    Fundamental power couplers (FPC's) for superconducting cavities must meet very strict requirements to perform at high power levels (hundreds of kilowatts) and in a variety of conditions (CS, pulsed, travelling wave, standing wave) without adversely affecting the performance of the cavities they are powering. Producing good coupler designs and achieving operational performances in accelerator environments are challenging tasks that have traditionally involved large resources from many laboratories. The designs involve state-of-the-art activities in RF, cryogenic and mechanical engineering, materials science, vacuum technology, and electromagnetic field modeling. Handling, assembly and conditioning procedures have been developed to achieve ever-increasing power levels and more reliable operation. In this paper, the technical issues associated with the design, construction, assembly, processing, and operation of FPC's will be reviewed, together with the progress in FPC activities in several laboratories during the past few years.

  6. Critical mechanical structure of superconducting high current coils for fast ramped accelerator magnets with high repetition rates in long term operation

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Schnizer, P.; Weiss, K.; Nyilas, A.; Mierau, A.; Sikler, G.

    2010-06-01

    The heavy ion synchrotron SIS100 is the core component of the Facility for Antiproton and Ion Research (FAIR) currently under construction at GSI in Darmstadt. It is rapidly cycled with a ramp rate of 4 T/s up to 2 T maximum field and a repetition frequency of 1 Hz. The superconducting coils of the Nuclotron-type magnets utilise a hollow cable cooled with a forced two phase helium flow. These coils must operate reliably over a period of at least 20 years and thus survive 2 · 10 load cycles. Intensive R&D is necessary to find the optimal solution preventing any possible damage of the coils by the fast pulsing loads over the life time taking into account the complex fine structure of the cable and coil designs as well as its sensitive influence on the field quality, AC loss generation and quench protection. We used FEM codes to analyse critical aspects of various design options and had manufactured coils for detailed mechanical tests. These tests on samples extracted from the coil are: thermal expansion measurements in all three directions on the cable package itself and its composite elements, compression tests and investigation of the Inter Laminar Shear Stress (ILSS). The stress strain behaviour of the cable package was measured along the transversal direction; the most important one to sustain the cycling load by Lorentz forces. A second sample was fatigue tested. Successful integral operation test results for the coil mechanics have been obtained within our first experimental runs on the prototype dipole magnets already started at GSI in the end of 2008.

  7. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  8. Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Joseph Grames, Douglas Higinbotham, Hugh Montgomery

    2010-09-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  9. Beam Position Monitoring with Cavity Higher Order Modes in the Superconducting Linac FLASH

    SciTech Connect

    Baboi, N.; Molloy, S.; Eddy, N.; Frisch, J.; Hendrickson, L.; Hensler, O.; McCormick, D.; May, J.; Nagaitsev, S.; Napoly, O.; Paparella, R.C.; Petrosian, L.; Piccolli, L.; Rechenmacher, R.; Ross, M.; Simon, C.; Smith, T.; Watanabe, K.; Wendt, M.; /DESY /SLAC /Fermilab /DAPNIA, Saclay /KEK, Tsukuba

    2007-03-20

    FLASH (Free Electron Laser in Hamburg) is a user facility for a high intensity VUV-light source [1]. The radiation wavelength is tunable in the range from about 40 to 13 nm by changing the electron beam energy from 450 to 700 MeV. The accelerator is also a test facility for the European XFEL (X-ray Free Electron Laser) to be built in Hamburg [2] and the project study ILC (International Linear Collider) [3]. The superconducting TESLA technology is tested at this facility, together with other accelerator components.

  10. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  11. Superconducting combined function magnets

    SciTech Connect

    Hahn, H.; Fernow, R.C.

    1983-01-01

    Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

  12. Development of the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat for all-weather atmospheric sounding

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Marinan, A.; Bishop, R. L.; Leslie, V. V.; Shields, M.; Marlow, W.; Kennedy, A.

    2015-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and GPS radio occultation (GPSRO) experiment. The microwave radiometer takes measurements of allweather temperature (V-band, 52-58 GHz), water vapor, and cloud ice (G-band, 175-191 & 207 GHz) to provide key contributions toward improved weather forecasting. The GPSRO experiment, called the Compact TEC (Total Electron Count)/Atmosphere GPS Sensor (CTAGS) measures profiles of temperature and pressure in the upper neutral atmosphere and electron density in the ionosphere. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for both neutral atmosphere and ionospheric GPS radio occultation retrieval on a nanosatellite. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements.

  13. The wonderful world of electron accelerators

    SciTech Connect

    Leeman, C.W.

    1995-04-01

    Electrons provide clean interactions both for high energy physics (in e{sup +}e{sup {minus}} colliders) and nuclear physics (in fixed-target accelerators). However, even at only moderate energies (>1GeV), electrons challenge the accelerator builder, and so one finds that the needs of electron accelerators have pushed many accelerator concepts and technologies: most obviously the important breakthrough superconducting rf (srf) technology, but also rf generation, cavity design, manipulation of short bunches, special lattices, and vacuum chamber design. One also finds that the nuisance synchrotron radiation, tamed by the accelerator builder`s tricks, has become one of the most important applications of electron beams. Srf was proposed in the early 1960`s and tried with little success at first, was later pushed by large storage rings to some extent (LEP, HERA, Tristan), and has now been implemented on an unprecendented scale as the sole means of acceleration at CEBAF. Completed on cost and schedule, CEBAF is progressing in its commissioning and early operations phase according to plan. It has fostered key advances in srf, 2K cryogenics, and rf control, and has provided a technology basis for other accelerator applications of the future. One of these is TESLA, the TeV-scale linear accelerator project now in preliminary development centered at DESY. Another, for which industrial interest is quite high, is free-electron lasers with output adjustable through specific bands of interest in the infrared and the deep ultraviolet at average powers of 50 to 100kW. A third future possibility is intense proton beams, potentially useful for spallation neutron sources.

  14. The Information Edge: Using Data to Accelerate Achievement--Technology Counts, 2006

    ERIC Educational Resources Information Center

    Edwards, Virginia, Ed.

    2006-01-01

    This special issue presents the ninth edition of "Education Week's" annual report on education technology, "Technology Counts." The annual report found that the nation has made dramatic progress in developing computerized data systems that can reliably guide education decision-making, but still has plenty of work to do before those systems can…

  15. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  16. Nuclear modeling for applications in medical radiation therapy and accelerator-driven technologies

    SciTech Connect

    Chadwick, M.B.

    1995-06-01

    An understanding of the interactions of neutrons and protons below a few hundred MeV with nuclei is important for a number of applications. In this paper, two new applications are discussed: radiation transport calculations of energy deposition in fast neutron and proton cancer radiotherapy to optimize the dose given to a tumor; and intermediate-energy proton accelerators which are currently being designed for a range of applications including the destruction of long-lived radioactive nuclear waste. We describe nuclear theory calculations of direct, preequilibrium, and compound nucleus reaction mechanisms important for the modeling of these systems.

  17. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  18. Vibration isolation technology: Sensitivity of selected classes of space experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Zhang, Y. Q.; Adebiyi, Adebimpe

    1989-01-01

    Progress performed on each task is described. Order of magnitude analyses related to liquid zone sensitivity and thermo-capillary flow sensitivity are covered. Progress with numerical models of the sensitivity of isothermal liquid zones is described. Progress towards a numerical model of coupled buoyancy-driven and thermo-capillary convection experiments is also described. Interaction with NASA personnel is covered. Results to date are summarized and they are discussed in terms of the predicted space station acceleration environment. Work planned for the second year is also discussed.

  19. Accelerating the Pace of Change in Energy Technologies Through an Integrated Federal Energy Policy

    SciTech Connect

    none,

    2010-11-01

    In this report, the President’s Council of Advisors on Science and Technology (PCAST) calls for the development of a coordinated government-wide Federal energy policy. This will be a major undertaking, given the large number of Federal policies that affect the development, implementation, and use of energy technologies. For that reason, we recommend that the Administration initiate a process analogous to the Quadrennial Defense Review undertaken every four years by the Department of Defense

  20. Emerging terawatt picosecond CO{sub 2} laser technology and possible applications in accelerator physics

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.

    1997-07-01

    The first terawatt picosecond (TWps) CO{sub 2} laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO{sub 2} lasers, having the order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for the strong-field physics research. For processes based on electro quiver motion, such as laser wakefield acceleration (LWFA), the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential for the same peak power. The large average power capability of CO{sub 2} lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams, as well as for other applications. Among them are: LWFA modules of a tentative electron-positron collider, {gamma}-{gamma} (or {gamma}-lepton) collider, a possible table-top source of high-intensity x-rays and gamma rays and the generation of polarized positron beams.

  1. Three-Axis Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1987-01-01

    Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.

  2. Progress in the Development of Superconducting RF

    NASA Astrophysics Data System (ADS)

    Martinello, Martina

    2016-03-01

    The R &D of superconducting radiofrequency (SRF) cavities is focused on lowering the power dissipation, i.e. increasing the Q factor, during their operation in accelerators. Nitrogen doping is the innovative high Q SRF technology currently implemented in the LCLS-II cavity production. Of crucial importance is the understanding on how high Q factors can be maintained from the cavity vertical test to the cryomodule operation. One of the major issue of SRF cavity operation is the remnant magnetic field which will always be present during the cool down through the critical temperature, jeopardizing the cavity performance. Research is ongoing both to reduce the remnant field levels and to avoid magnetic field trapping during the SC transition. In addition, fundamental studies allowed us to define the best nitrogen doping treatment needed to lower the sensitivity to trapped flux. Recent developments on the preparation of Nb3Sn coatings for SRF cavities will be also presented. This alternative technology has been demonstrated to allow high Q operation even at 4.2 K. In addition, the maximum field limit of Nb3Sn is predicted to be twice that of niobium, potentially providing a significant decrease in the required length of an accelerator to reach a given energy.

  3. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  4. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  5. GPU technology as a platform for accelerating physiological systems modeling based on Laguerre-Volterra networks.

    PubMed

    Papadopoulos, Agathoklis; Kostoglou, Kyriaki; Mitsis, Georgios D; Theocharides, Theocharis

    2015-01-01

    The use of a GPGPU programming paradigm (running CUDA-enabled algorithms on GPU cards) in biomedical engineering and biology-related applications have shown promising results. GPU acceleration can be used to speedup computation-intensive models, such as the mathematical modeling of biological systems, which often requires the use of nonlinear modeling approaches with a large number of free parameters. In this context, we developed a CUDA-enabled version of a model which implements a nonlinear identification approach that combines basis expansions and polynomial-type networks, termed Laguerre-Volterra networks and can be used in diverse biological applications. The proposed software implementation uses the GPGPU programming paradigm to take advantage of the inherent parallel characteristics of the aforementioned modeling approach to execute the calculations on the GPU card of the host computer system. The initial results of the GPU-based model presented in this work, show performance improvements over the original MATLAB model. PMID:26736993

  6. Using Advanced Modeling to Accelerate the Scale-Up of Carbon Capture Technologies

    SciTech Connect

    Miller, David; Sun, Xin; Storlie, Curtis; Bhattacharyya, Debangsu

    2015-06-18

    Carbon capture and storage (CCS) is one of many approaches that are critical for significantly reducing domestic and global CO2 emissions. The U.S. Department of Energy’s Clean Coal Technology Program Plan envisions 2nd generation CO2 capture technologies ready for demonstration-scale testing around 2020 with the goal of enabling commercial deployment by 2025 [1]. Third generation technologies have a similarly aggressive timeline. A major challenge is that the development and scale-up of new technologies in the energy sector historically takes up to 15 years to move from the laboratory to pre-deployment and another 20 to 30 years for widespread industrial scale deployment. In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale up new carbon capture technologies. The CCSI Toolset (1) enables promising concepts to be more quickly identified through rapid computational screening of processes and devices, (2) reduces the time to design and troubleshoot new devices and processes by using optimization techniques to focus development on the best overall process conditions and by using detailed device-scale models to better understand and improve the internal behavior of complex equipment, and (3) provides quantitative predictions of device and process performance during scale up based on rigorously validated smaller scale simulations that take into account model and parameter uncertainty[2]. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  7. Advanced modeling to accelerate the scale up of carbon capture technologies

    SciTech Connect

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  8. An accelerated technique for a ceramic-pressed-to-metal restoration with CAD/CAM technology.

    PubMed

    Lee, Ju-Hyoung

    2014-11-01

    The conventional fabrication of metal ceramic restorations depends on an experienced dental technician and requires a long processing time. However, complete-contour digital waxing and digital cutback with computer-aided design and computer-aided manufacturing (CAD/CAM) technology can overcome these disadvantages and provide a correct metal framework design and space for the ceramic material. PMID:24952883

  9. Road Map for Studies to Produce Consistent and High Performance SRF Accelerator Structures

    SciTech Connect

    Ganapati Rao Myneni; John F. O’Hanlon

    2007-06-20

    Superconducting Radio Frequency (SRF) accelerator structures made from high purity niobium are becoming the technological choice for a large number of future accelerators and energy recovery LINAC’s (ERL). Most of the presently planned accelerators and ERL requirements will be met with some effort by the current SRF technology where accelerating gradients of about 20 MV/m can be produced on a routine basis with an acceptable yield. However, the XFEL at DESY and the planned ILC require acceleration gradients more than 28 MV/m and 35 MV/m respectively. At the recent ILC meeting at Snowmass (2005) concern was expressed regarding the wide spread in the achieved accelerator gradients and the relatively low yields. For obtaining accelerating gradients of 35 MV/m in SRF accelerator structures consistently, a deeper understanding of the causes for the spread has to be gained and advances have to be made in many scientific and high technology fields, including materials, surface and vacuum sciences, application of reliable processes and procedures, which provide contamination –free surfaces and avoid recontamination and cryogenics related technologies. In this contribution a road map for studies needed to produce consistent and high performance SRF accelerator structures from the needed materials development to clean and non-recontaminating processes and procedures will be presented.

  10. Hurricane Isabel gives accelerators a severe test

    SciTech Connect

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  11. Recent Progress in the Superconductivity Research Field

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru

    Major developments in the research field of superconductivity have been achieved in 2008. Since the discovery of high-Tc superconductors, their practical application has been studied by many researchers. Coated conductors consisting of an YBa2Cu3Oy superconducting layer deposited on metal tapes buffered oxide layers were developed in the NEDO project between FY2003 and FY2007. These technologies for coated conductors are expected to be applicable to electrical power equipment. A new NEDO project that started in FY2008 is focusing on the development of superconducting electric power equipment such as power cables, superconducting magnetic energy storage devices (SMES) and transformers. Furthermore, a new family of high-Tc superconductors, Fe-As-O-based superconductors, has been discovered. The highest reported critical temperature, Tc, has rapidly increased owing to the considerable effort of many researchers. A new social environment based on superconductivity technology might indeed be realized in the near future.

  12. Fbis report. Science and technology: Japan, October 10, 1995

    SciTech Connect

    1995-10-10

    ;Contents: Advanced Materials; Aerospace; Automotive Technologies; Biotechnology; Environment; Microelectronics; Nuclear Technologies; Science and Technology Policy; Superconductivity; Defense Industries.

  13. The MESA accelerator

    SciTech Connect

    Aulenbacher, Kurt

    2013-11-07

    The MESA accelerator will operate for particle and nuclear physics experiments in two different modes. A first option is conventional c.w. acceleration yielding 150-200MeV spin-polarized external beam. Second, MESA will be operated as a superconducting multi-turn energy recovery linac (ERL), opening the opportunity to perform experiments with a windowless target with beam current of up to 10 mA. The perspectives for innovative experiments with such a machine are discussed together with a sketch of the accelerator physics issues that have to be solved.

  14. Superconducting RFQ development at Los Alamos

    SciTech Connect

    Wangler, T.P.; Cimabue, A.; Merson, J.; Mills, R.S.; Wood, R.; Young, L.

    1992-10-01

    We are investigating the performance capabilities of a niobium, superconducting, radiofrequency-quadrupole (RFQ) accelerator for high- field continuous-wave operation, to provide greater acceleration and stronger focusing of low-velocity ion beams. We present the results of our RFQ beam-dynamics studies, which test new design methods for increasing the beam transmission, our cavity-design calculations, and some mechanical-design aspects of a short, superconducting RFQ 4-vane prototype structure that will be tested at high fields during the coming year.

  15. Superconducting RFQ development at Los Alamos

    SciTech Connect

    Wangler, T.P.; Cimabue, A.; Merson, J.; Mills, R.S.; Wood, R.; Young, L.

    1992-01-01

    We are investigating the performance capabilities of a niobium, superconducting, radiofrequency-quadrupole (RFQ) accelerator for high- field continuous-wave operation, to provide greater acceleration and stronger focusing of low-velocity ion beams. We present the results of our RFQ beam-dynamics studies, which test new design methods for increasing the beam transmission, our cavity-design calculations, and some mechanical-design aspects of a short, superconducting RFQ 4-vane prototype structure that will be tested at high fields during the coming year.

  16. New Advances in SuperConducting Materials

    ScienceCinema

    None

    2014-08-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

  17. Accelerated technology development by the use of critical point imaging SEM

    NASA Astrophysics Data System (ADS)

    Sanchez, Dominique; Hinschberger, Benôit; Bouckou, Loemba; Moreau, Olivier; Parisi, Paolo

    2015-03-01

    In order to optimize the time to market of the newest technology nodes and maximize their profitability, advanced semiconductor manufacturers need to adapt their yield enhancement strategies to their current development stage. During very early development, gross Defectivity at some critical process steps often makes it impractical to use broadband plasma or laser scanning micro-defect patterned wafer inspection techniques: such sensitive defect inspections capture a large number of defects, producing wafer defect maps so heavily populated that even wafer level signature are difficult to visualize.

  18. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    SciTech Connect

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  19. Advances in Normal Conducting Accelerator Technology from the X-Band Linear Collider Program

    SciTech Connect

    Adolphsen, C; /SLAC

    2005-06-22

    In the mid-1990's, groups at SLAC and KEK began dedicated development of X-band (11.4 GHz) rf technology for a next generation, TeV-scale linear collider. The choice of a relatively high frequency, four times that of the SLAC 50 GeV Linac, was motivated by the cost benefits of having lower rf energy per pulse (hence fewer rf sources) and reasonable efficiencies at high gradients (hence shorter linacs). To realize such savings, however, requires operation at gradients and peak powers much higher than that hitherto achieved. During the past twelve years, these challenges were met through innovations on several fronts. This paper reviews these achievements, which include developments in the generation and transport of high power rf, and new insights into high gradient limitations.

  20. Displacement measurements in the cryogenically cooled dipoles of the new CERN-LHC particle accelerator

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko; Scandale, Walter; Garcia Perez, Juan; Billan, Jaques; Radaelli, Stefano

    2001-08-01

    All evidence indicates that new physics, and answers to some of the most profound scientific questions of our time, lie at energies around 1 TeV. To look for this new physics, the next research instrument in Europe's particle physics armory is the Large Hadron Collider (LHC). This challenging machine will use the most advanced superconducting magnet and accelerator technologies ever employed. LHC experiments are being designed to look for theoretically predicted phenomena.

  1. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2011-02-11

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  2. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  3. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  4. Will Progress in Science and Technology Avert or Accelerate Global Collapse? A Critical Analysis and Policy Recommendations

    SciTech Connect

    Huesemann, Michael H.; Huesemann, Joyce A.

    2008-12-01

    Industrial society will move towards collapse if its total environmental impact (I), expressed either in terms of energy and materials use or in terms of pollution, increases with time, i.e., dI/dt > 0. The traditional interpretation of the I=PAT equation reflects the optimistic belief that technological innovation, particularly improvements in eco-efficiency, will significantly reduce the technology (T) factor, and thereby result in a corresponding decline in impact (I). Unfortunately, this interpretation of the I=PAT equation ignores the effects of technical change on the other two factors: population (P) and per capita affluence (A). A more heuristic formulation of this equation is I=P(T)∙A(T)∙T in which the dependence of P and A on T is apparent. From historical evidence, it is clear that technological revolutions (tool-making, agricultural, and industrial) have been the primary driving forces behind successive population explosions, and that modern communication and transportation technologies have been employed to transform a large proportion of the world’s inhabitants into consumers of material- and energy-intensive products and services. In addition, factor analysis from neoclassical growth theory and the rebound effect provide evidence that science and technology have played a key role in contributing to rising living standards. While technological change has thus contributed to significant increases in both P and A, it has at the same time brought about considerable eco-efficiency improvements. Unfortunately, reductions in the T-factor have generally not been sufficiently rapid to compensate for the simultaneous increases in both P and A. As a result, total impact, in terms of energy production, mineral extraction, land-use and CO2 emissions, has in most cases increased with time, indicating that industrial society is nevertheless moving towards collapse. The belief that continued and even accelerated scientific research and technological innovation

  5. Research & Development on Superconducting Niobium Materials via Magnetic Measurements

    SciTech Connect

    S. B. Roy, V. C. Sahni, and G. R. Myneni

    2011-03-01

    We present a study of superconducting properties of both large grain (1 mm average grain size) and small grain (50 micron average grain size) Niobium materials containing varying amounts of Tantalum impurities that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities. We found that a buffered chemical polishing of these Niobium samples causes a distinct reduction in the superconducting parameters like TC, wt- ppm to 1300 wt-ppm. Implications of these results on the performance of niobium superconducting radio frequency cavities are discussed, especially the anomalous high field RF losses that have been reported in the literature.

  6. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  7. Superconducting magnet needs for the ILC

    SciTech Connect

    Tompkins, J.C.; Kashikhin, Vl.; Parker, B.; Palmer, M.A. /; Clarke, J.A.; /Daresbury

    2007-06-01

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  8. SUPERCONDUCTING MAGNET NEEDS FOR THE ILC.

    SciTech Connect

    PARKER,B.; TOMPKINS, J.C.; KASHIKHIN, VI.; PALMER, M.A.; CLARKE, J.A.

    2007-06-25

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the lLC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  9. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  10. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  11. Muon Acceleration - RLA and FFAG

    SciTech Connect

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  12. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  13. Difficult Decisions: The Superconducting Super Collider.

    ERIC Educational Resources Information Center

    Newton, David E.; Slesnick, Irwin L.

    1990-01-01

    The fundamental principles of the superconducting super collider are presented. Arguments for the construction of this apparatus and policy issues surrounding its construction are discussed. Charts of the fundamental atomic particles and forces and the history of particle accelerators are provided. An activity for discussing this controversial…

  14. Assessment of General Atomics accelerator transmutation of waste concept based on gas-turbine-modular helium cooled reactor technology.

    SciTech Connect

    Gohar, Y.; Taiwo, T. A.; Cahalan, J. E.; Finck, P. J.

    2001-05-08

    An assessment has been performed for an Accelerator Transmutation of Waste (ATW) concept based on the use of the high temperature gas reactor technology. The concept has been proposed by General Atomics for the ATW system. The assessment was jointly conducted at Argonne National Laboratory (ANL) and Los Alamos national laboratory to assess and to define the potential candidates for the ATW system. This report represents the assessment work performed at ANL. The concept uses recycled light water reactor (LWR)-discharge-transuranic extracted from irradiated oxide fuel in a critical and sub-critical accelerator driven gas-cooled transmuter. In this concept, the transmuter operates at 600 MWt first in the critical mode for three cycles and then operates in a subcritical accelerator-driven mode for a single cycle. The transmuter contains both thermal and fast spectrum transmutation zones. The thermal zone is fueled with the TRU oxide material in the form of coated particles, which are mixed with graphite powder, packed into cylindrical compacts, and loaded in hexagonal graphite blocks with cylindrical channels; the fast zone is fueled with TRU-oxide material in the form of coated particles without the graphite powder and the graphite blocks that has been burned in the thermal region for three critical cycles and one additional accelerator-driven cycle. The fuel loaded into the fast zone is irradiated for four additional cycles. This fuel management scheme is intended to achieve a high Pu isotopes consumption in the thermal spectrum zone, and to consume the minor actinides in the fast-spectrum zone. Monte Carlo and deterministic codes have been used to assess the system performance and to determine the feasibility of achieving high TRU consumption levels. The studies revealed the potential for high consumption of Pu-239 (97%), total Pu (71%) and total TRU (64%) in the system. The analyses confirmed the need for burnable absorber for both suppressing the initial excess

  15. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  16. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    SciTech Connect

    KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

    2001-03-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of

  17. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology.

    PubMed

    Lu, Haifeng; Zhang, Guangming; Lu, Yufeng; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2016-01-01

    Starch wastewater is a type of nutrient-rich wastewater that contains numerous macromolecular polysaccharides. Using photosynthetic bacteria (PSB) to treat starch wastewater can reduce pollutants and enhance useful biomass production. However, PSB cannot directly degrade macromolecular polysaccharides, which weakens the starch degradation effect. Therefore, co-metabolism with primary substances was employed in PSB wastewater treatment to promote starch degradation. The results indicated that co-metabolism is a highly effective method in synthetic starch degradation by PSB. When malic acid was used as the optimal primary substrate, the chemical oxygen demand, total sugar, macromolecules removal and biomass yield were considerably higher than when primary substances were not used, respectively. Malic acid was the primary substrate that played a highly important role in starch degradation. It promoted the alpha-amylase activity to 46.8 U and the PSB activity, which induced the degradation of macromolecules. The products in the wastewater were ethanol, acetic acid and propionic acid. Ethanol was the primary product throughout the degradation process. The introduction of co-metabolism with malic acid to treat wastewater can accelerate macromolecules degradation and bioresource production and weaken the acidification effect. This method provides another pathway for bioresource recovery from wastewater. This approach is a sustainable and environmentally friendly wastewater treatment technology. PMID:26360302

  18. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  19. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    SciTech Connect

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  20. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  1. Future development of large superconducting generators

    SciTech Connect

    Singh, S.K.; Mole, C.J.

    1989-03-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field.

  2. A 1.8 K test facility for superconducting RF cavities

    SciTech Connect

    Horlitz, G.; Knopf, U.; Lange, R.; Petersen, B.; Sellmann, D.; Trines, D.; Peterson, T.

    1994-04-01

    To demonstrate the feasibility of superconducting RF technology for a high energy e{sup +}/e{sup {minus}} collider, a research and development program has begun with collaborators from Europe, Asia, and North America. The immediate goal of the R&D program is to build and operate a 50 meter-long linac at DESY with 1.3 GHz superconducting RF cavities at a temperature of 1.8 K - 2.0 K and an accelerating gradient of 15 MV/meter. The refrigeration for the test system at DESY initially will have a capacity of about 100 W at 1.8 K, distributed among three test cryostats. In a second step, refrigeration will be upgraded to 200 W at 1.8 K in order to supply the 50 meter test linac. This paper describes the cryogenics of this test system.

  3. Some aspects of the layout and optimization for the cryogenic supply of superconducting linacs

    NASA Astrophysics Data System (ADS)

    Petersen, Bernd

    2006-02-01

    The primary power consumption of large linear accelerators can be significantly lowered by means of superconducting RF technologies. Nevertheless, superconducting RF cavities dissipate energy at low temperatures, and large cryogenic plants have to be operated for the cryogenic supply. In particular, cryogenic plants for future superconducting Energy Recovery Linacs (ERLs) will require primary power in the order of some mega watts. Because of the fundamental laws of thermodynamics, the efficiencies of the cryogenic plants decrease with decreasing operation temperature. At the same time, the dynamic heat losses of high- Q0 superconducting cavities decrease strongly with temperature. In order to minimize the primary power consumption at stable operating conditions of the cavities, the cryogenic operating conditions, and in particular the operation temperature, have to be optimized. With the focus on helium II cooling, some aspects of cryogenic efficiencies at low temperatures and the consequences for the layout of cryogenic systems are discussed. As an example, options for the cryogenic layout of the European XFEL-Linac including some ERL upgrade options are presented.

  4. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  5. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  6. A high temperature superconductivity communications flight experiment

    NASA Technical Reports Server (NTRS)

    Ngo, P.; Krishen, K.; Arndt, D.; Raffoul, G.; Karasack, V.; Bhasin, K.; Leonard, R.

    1992-01-01

    The proposed high temperature superconductivity (HTSC) millimeter-wave communications flight experiment from the payload bay of the Space Shuttle Orbiter to the Advanced Communications Technology Satellite (ACTS) in geosynchronous orbit is described. The experiment will use a Ka-band HTSC phased array antenna and front-end electronics to receive a downlink communications signal from the ACTS. The discussion covers the system configuration, a description of the ground equipment, the spacecraft receiver, link performance, thermal loading, and the superconducting antenna array.

  7. ZGS roots of superconductivity: People and devices

    SciTech Connect

    Pewitt, E.G.

    1994-12-31

    The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.

  8. Evaluation of the Xeon phi processor as a technology for the acceleration of real-time control in high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah; Vick, Andy; Schnetler, Hermine

    2014-08-01

    We present wavefront reconstruction acceleration of high-order AO systems using an Intel Xeon Phi processor. The Xeon Phi is a coprocessor providing many integrated cores and designed for accelerating compute intensive, numerical codes. Unlike other accelerator technologies, it allows virtually unchanged C/C++ to be recompiled to run on the Xeon Phi, giving the potential of making development, upgrade and maintenance faster and less complex. We benchmark the Xeon Phi in the context of AO real-time control by running a matrix vector multiply (MVM) algorithm. We investigate variability in execution time and demonstrate a substantial speed-up in loop frequency. We examine the integration of a Xeon Phi into an existing RTC system and show that performance improvements can be achieved with limited development effort.

  9. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  10. Pushing the Gradient Limitations of Superconducting Photonic Band Gap Structure Cells

    SciTech Connect

    Simakov, Evgenya I.; Haynes, William B.; Kurennoy, Sergey S.; Shchegolkov, Dmitry; O'Hara, James F.; Olivas, Eric R.

    2012-06-07

    Superconducting photonic band gap resonators present us with unique means to place higher order mode couples in an accelerating cavity and efficiently extract HOMs. An SRF PBG resonator with round rods was successfully tested at LANL demonstrating operation at 15 MV/m. Gradient in the SRF PBG resonator was limited by magnetic quench. To increase the quench threshold in PBG resonators one must design the new geometry with lower surface magnetic fields and preserve the resonator's effectiveness for HOM suppression. The main objective of this research is to push the limits for the high-gradient operation of SRF PBG cavities. A NCRF PBG cavity technology is established. The proof-of-principle operation of SRF PBG cavities is demonstrated. SRF PBG resonators are effective for outcoupling HOMs. PBG technology can significantly reduce the size of SRF accelerators and increase brightness for future FELs.

  11. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  12. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  13. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  14. Report on Workshop on Future Directions for Accelerator R&D at Fermilab

    SciTech Connect

    Shiltsev, V.; Church, M.; Spentzouris, P.; Chou, W.; /Fermilab

    2009-09-01

    Accelerator R&D has played a crucial role in enabling scientific discovery in the past century and will continue to play this role in the years to come. In the U.S., the Office of High Energy Physics of DOE's Office of Science is developing a plan for national accelerator R&D stewardship. Fermilab undertakes accelerator research, design, and development focused on superconducting radio-frequency (RF), superconducting magnet, beam cooling, and high intensity proton technologies. In addition, the Lab pursues comprehensive integrated theoretical concepts and simulations of complete future facilities on both the energy and intensity frontiers. At present, Fermilab (1) supplies integrated design concept and technology development for a multi-MW proton source (Project X) to support world-leading programs in long baseline neutrino and rare processes experiments; (2) plays a leading role in the development of ionization cooling technologies required for muon storage ring facilities at the energy (multi-TeV Muon Collider) and intensity (Neutrino Factory) frontiers, and supplies integrated design concepts for these facilities; and (3) carries out a program of advanced accelerator R&D (AARD) in the field of high quality beam sources, and novel beam manipulation techniques.

  15. FBIS report. Science and technology: Japan, April 26, 1996

    SciTech Connect

    1996-04-26

    ;Contents: Advanced Manufacturing; Advanced Materials; Aerospace; Environment; Lasers, Sensors, Optics; Nuclear Technologies; Science and Technology Policy; Superconductivity; Telecommunications; Defense Industries.

  16. Post-LHC accelerator magnets

    SciTech Connect

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  17. Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"

    SciTech Connect

    Gold, Steven H.

    2013-10-13

    This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a

  18. Physics design of front ends for superconducting ion linacs

    SciTech Connect

    Ostroumov, P.N.; Carneiro, J.P.; /Fermilab

    2009-01-01

    Superconducting (SC) technology is the only option for CW linacs and is also an attractive option for pulsed linacs. SC cavities are routinely used for proton and H{sup -} beam acceleration above 185 MeV. Successful development of SC cavities covering the lower velocity range (down to 0.03c) is a very strong basis for the application of SC structures in the front ends of high energy linacs. Lattice design and related high-intensity beam physics issues in a {approx}400 MeV linac that uses SC cavities will be presented in this talk. In particular, axially-symmetric focusing by SC solenoids provides strong control of beam space-charge and a compact focusing lattice. As an example, we discuss the SC front-end of the H{sup -} linac for the FNAL Proton Driver.

  19. Superconducting quadrupoles

    SciTech Connect

    McInturff, A.D.

    1985-07-01

    The data base for this paper will represent the work from two different groups and two different Laboratories (Brookhaven National Laboratory and Fermi National Accelerator Laboratory). The majority of the data was that obtained by the Fermi National Accelerator Group and is the most recent, and is based on a larger number of coil windings. The coil winding sizes that will be discussed are 12 cm, (Figure 1) 7.6 cm and 5 cm, (Figure 2) for the inner diameter. The maximum gradients measured in the 5 cm sizes were 1.93 T/cm at 3.5 K and 1.79 T/cm at 4.2 K. In the 7.6 cm size were 1.35 T/cm at 2.0 K and 1.1 T/cm at 4.2 K and in the 12.0 cm size was 1.35 T/cm at 4.2 K. The 12 cm size used a cold iron shield, but had an older conductor, so one effect (increase due to Fe) offset the other (lower J/sub c/ (H) of the earlier superconductor). These gradients (especially the 12 cm measurements) can be improved using more modern conductors, (i.e., approx.20% + g/(cm A) and their higher current densities. These gradients represent an increase of 2 to 3+ times the value obtainable using conventional iron and copper magnets at a comparable aperature. The original purposes for these coils were for the 12 cm size, the Isabelle lattice, the 7.6 cm size, the Tevatron lattice and low ..beta.. insertion focus, and the 5 cm size, the final focus of SLC at SLAC and SSC size coils.

  20. RF properties of 1050 MHz, β = 0.49 Elliptical cavity for High Current Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Roy, Amitava; Mondal, J.; Mittal, K. C.

    2008-04-01

    BARC is developing technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator driven subcritical system project. We have studied RF properties of 1050 MHz, β = 0.49 single cell Elliptical cavity for possible use in High Current Proton Accelerator. Cavity shape optimization studies have been done by means of 2D cavity tuning code SUPERFISH and 3D High Frequency Simulation code CST Microwave Studio. The cavity peak electric and magnetic fields, power dissipation Pc, quality factor Q and effective shunt impedante ZT2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameter for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.