Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis
The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.
NASA Astrophysics Data System (ADS)
Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.
2017-08-01
Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.
Harriss-Phillips, W M; Bezak, E; Yeoh, E K
2011-01-01
Objective A temporal Monte Carlo tumour growth and radiotherapy effect model (HYP-RT) simulating hypoxia in head and neck cancer has been developed and used to analyse parameters influencing cell kill during conventionally fractionated radiotherapy. The model was designed to simulate individual cell division up to 108 cells, while incorporating radiobiological effects, including accelerated repopulation and reoxygenation during treatment. Method Reoxygenation of hypoxic tumours has been modelled using randomised increments of oxygen to tumour cells after each treatment fraction. The process of accelerated repopulation has been modelled by increasing the symmetrical stem cell division probability. Both phenomena were onset immediately or after a number of weeks of simulated treatment. Results The extra dose required to control (total cell kill) hypoxic vs oxic tumours was 15–25% (8–20 Gy for 5×2 Gy per week) depending on the timing of accelerated repopulation onset. Reoxygenation of hypoxic tumours resulted in resensitisation and reduction in total dose required by approximately 10%, depending on the time of onset. When modelled simultaneously, accelerated repopulation and reoxygenation affected cell kill in hypoxic tumours in a similar manner to when the phenomena were modelled individually; however, the degree was altered, with non-additive results. Simulation results were in good agreement with standard linear quadratic theory; however, differed for more complex comparisons where hypoxia, reoxygenation as well as accelerated repopulation effects were considered. Conclusion Simulations have quantitatively confirmed the need for patient individualisation in radiotherapy for hypoxic head and neck tumours, and have shown the benefits of modelling complex and dynamic processes using Monte Carlo methods. PMID:21933980
A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration
Cullen, D. Kacy; Harris, James P.; Browne, Kevin D.; Wolf, John A; Duda, John E.; Meaney, David F.; Margulies, Susan S.; Smith, Douglas H.
2017-01-01
Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive nonimpact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725
Minimizing Head Acceleration in Soccer: A Review of the Literature.
Caccese, Jaclyn B; Kaminski, Thomas W
2016-11-01
Physicians and healthcare professionals are often asked for recommendations on how to keep athletes safe during contact sports such as soccer. With an increase in concussion awareness and concern about repetitive subconcussion, many parents and athletes are interested in mitigating head acceleration in soccer, so we conducted a literature review on factors that affect head acceleration in soccer. We searched electronic databases and reference lists to find studies using the keywords 'soccer' OR 'football' AND 'head acceleration'. Because of a lack of current research in soccer heading biomechanics, this review was limited to 18 original research studies. Low head-neck segment mass predisposes athletes to high head acceleration, but head-neck-torso alignment during heading and follow-through after contact can be used to decrease head acceleration. Additionally, improvements in symmetric neck flexor and extensor strength and neuromuscular neck stiffness can decrease head acceleration. Head-to-head impacts and unanticipated ball contacts result in the highest head acceleration. Ball contacts at high velocity may also be dangerous. The risk of concussive impacts may be lessened through the use of headgear, but headgear may also cause athletes to play more recklessly because they feel a sense of increased security. Young, but physically capable, athletes should be taught proper heading technique in a controlled setting, using a carefully planned progression of the skill.
The Impact of Radiation Treatment Time on Survival in Patients With Head and Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaikh, Talha; Handorf, Elizabeth A.; Murphy, Colin T.
Purpose: To assess the impact of radiation treatment time (RTT) in head and neck cancers on overall survival (OS) in the era of chemoradiation. Methods and Materials: Patients with diagnoses of tongue, hypopharynx, larynx, oropharynx, or tonsil cancer were identified by use of the National Cancer Database. RTT was defined as date of first radiation treatment to date of last radiation treatment. In the definitive setting, prolonged RTT was defined as >56 days, accelerated RTT was defined as <47 days, and standard RTT was defined as 47 to 56 days. In the postoperative setting, prolonged RTT was defined as >49 days, accelerated RTT wasmore » defined as <40 days, and standard RTT was defined as 40 to 49 days. We used χ{sup 2} tests to identify predictors of RTT. The Kaplan-Meier method was used to compare OS among groups. Cox proportional hazards model was used for OS analysis in patients with known comorbidity status. Results: 19,531 patients were included; 12,987 (67%) had a standard RTT, 4,369 (34%) had an accelerated RTT, and 2,165 (11%) had a prolonged RTT. On multivariable analysis, accelerated RTT (hazard ratio [HR] 0.84; 95% confidence interval [CI] 0.73-0.97) was associated with an improved OS, and prolonged RTT (HR 1.25; 95% CI 1.14-1.37) was associated with a worse OS relative to standard RTT. When the 9,200 (47%) patients receiving definitive concurrent chemoradiation were examined, prolonged RTT (HR 1.29; 95% CI 1.11-1.50) was associated with a worse OS relative to standard RTT, whereas there was no significant association between accelerated RTT and OS (HR 0.76; 95% CI 0.57-1.01). Conclusion: Prolonged RTT is associated with worse OS in patients receiving radiation therapy for head and neck cancer, even in the setting of chemoradiation. Expeditious completion of radiation should continue to be a quality metric for the management of head and neck malignancies.« less
Rotational Acceleration during Head Impact Resulting from Different Judo Throwing Techniques
MURAYAMA, Haruo; HITOSUGI, Masahito; MOTOZAWA, Yasuki; OGINO, Masahiro; KOYAMA, Katsuhiro
2014-01-01
Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchigari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s2 to 5,525.9 rad/s2 and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s2 to 2,104.1 rad/s2 and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami. PMID:24477065
Rotational acceleration during head impact resulting from different judo throwing techniques.
Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro
2014-01-01
Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchi-gari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s(2) to 5,525.9 rad/s(2) and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s(2) to 2,104.1 rad/s(2) and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami.
Neck Strength Imbalance Correlates With Increased Head Acceleration in Soccer Heading
Dezman, Zachary D.W.; Ledet, Eric H.; Kerr, Hamish A.
2013-01-01
Background: Soccer heading is using the head to directly contact the ball, often to advance the ball down the field or score. It is a skill fundamental to the game, yet it has come under scrutiny. Repeated subclinical effects of heading may compound over time, resulting in neurologic deficits. Greater head accelerations are linked to brain injury. Developing an understanding of how the neck muscles help stabilize and reduce head acceleration during impact may help prevent brain injury. Hypothesis: Neck strength imbalance correlates to increasing head acceleration during impact while heading a soccer ball. Study Design: Observational laboratory investigation. Methods: Sixteen Division I and II collegiate soccer players headed a ball in a controlled indoor laboratory setting while player motions were recorded by a 14-camera Vicon MX motion capture system. Neck flexor and extensor strength of each player was measured using a spring-type clinical dynamometer. Results: Players were served soccer balls by hand at a mean velocity of 4.29 m/s (±0.74 m/s). Players returned the ball to the server using a heading maneuver at a mean velocity of 5.48 m/s (±1.18 m/s). Mean neck strength difference was positively correlated with angular head acceleration (rho = 0.497; P = 0.05), with a trend toward significance for linear head acceleration (rho = 0.485; P = 0.057). Conclusion: This study suggests that symmetrical strength in neck flexors and extensors reduces head acceleration experienced during low-velocity heading in experienced collegiate players. Clinical Relevance: Balanced neck strength may reduce head acceleration cumulative subclinical injury. Since neck strength is a measureable and amenable strength training intervention, this may represent a modifiable intrinsic risk factor for injury. PMID:24459547
NASA Astrophysics Data System (ADS)
Muraishi, Hiroshi; Hara, Hidetake; Abe, Shinji; Yokose, Mamoru; Watanabe, Takara; Takeda, Tohoru; Koba, Yusuke; Fukuda, Shigekazu
2016-03-01
We have developed a heavy-ion computed tomography (IonCT) system using a scintillation screen and an electron-multiplying charged coupled device (EMCCD) camera that can measure a large object such as a human head. In this study, objective with the development of the system was to investigate the possibility of applying this system to heavy-ion treatment planning from the point of view of spatial resolution in a reconstructed image. Experiments were carried out on a rotation phantom using 12C accelerated up to 430 MeV/u by the Heavy-Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). We demonstrated that the reconstructed image of an object with a water equivalent thickness (WET) of approximately 18 cm was successfully achieved with the spatial resolution of 1 mm, which would make this IonCT system worth applying to the heavy-ion treatment planning for head and neck cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palazzi, Mauro; Tomatis, Stefano; Orlandi, Ester
2008-02-01
Purpose: To quantify the incidence and severity of acute local toxicity in head and neck cancer patients treated with radiotherapy (RT), with or without chemotherapy (CHT), using the Common Terminology Criteria for Adverse Events, version 3.0 (CTCAE v3.0), scoring system. Methods and Materials: Between 2004 and 2006, 149 patients with head and neck cancer treated with RT at our center were prospectively evaluated for local toxicity during treatment. On a weekly basis, patients were monitored and eight toxicity items were recorded according to the CTCAE v3.0 scoring system. Of the 149 patients, 48 (32%) were treated with RT alone (conventionalmore » fractionation), 82 (55%) with concomitant CHT and conventional fractionation RT, and 20 (13%) with accelerated-fractionation RT and CHT. Results: Severe (Grade 3-4) adverse events were recorded in 28% (mucositis), 33% (dysphagia), 40% (pain), and 12% (skin) of patients. Multivariate analysis showed CHT to be the most relevant factor independently predicting for worse toxicity (mucositis, dysphagia, weight loss, salivary changes). In contrast, previous surgery, RT acceleration and older age, female gender, and younger age, respectively, predicted for a worse outcome of mucositis, weight loss, pain, and dermatitis. The T-score method confirmed that conventional RT alone is in the 'low-burden' class (T-score = 0.6) and suggests that concurrent CHT and conventional fractionation RT is in the 'high-burden' class (T-score = 1.15). Combined CHT and accelerated-fractionation RT had the highest T-score at 1.9. Conclusions: The CTCAE v3.0 proved to be a reliable tool to quantify acute toxicity in head and neck cancer patients treated with various treatment intensities. The effect of CHT and RT acceleration on the acute toxicity burden was clinically relevant.« less
Saenz, Daniel L.; Paliwal, Bhudatt R.; Bayouth, John E.
2014-01-01
ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving <20% of prescription dose (DRx) were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95) had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system. PMID:24872603
Saenz, Daniel L; Paliwal, Bhudatt R; Bayouth, John E
2014-04-01
ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving <20% of prescription dose (DRx) were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95) had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.
Dickson, Tracey J; Trathen, Stephen; Waddington, Gordon; Terwiel, F Anne; Baltis, Daniel
2016-03-01
This study applied a human factors approach to snowsport resort systems to contribute to the understanding of the incidence and severity of pediatric snowsport head accelerations. Previous research indicates low magnitude head accelerations are common among snowsport participants. This study adds to the knowledge of snowsport safety by measuring aspects of participants' snowsport behavior and linking this with head acceleration data. School-aged students (n = 107) wore telemetry-fitted helmets and Global Positioning System (GPS) devices during snowsport activity. Data was collected over 159 sessions (total hours 701). Head accelerations recorded by the telemetry units were compared with GPS-generated data. This study found speeds attained normally exceed the testing rating for which helmets are designed; lower rates of head accelerations compared to earlier studies and that when head accelerations did occur they were generally below the threshold for concussions. Pediatric snowsport head accelerations are rare and are generally of low magnitude. Those most at risk of a head acceleration >40 g were male snowboarders. Given the recorded speeds in first time participants, increased targeting of novice snowsport participants to encourage education about the use of protective equipment, including helmets, is warranted. Post event recall was not a good indicator of having experienced a head impact. Consideration should be given to raising the standard design speed testing for snowsport helmet protective devices to reflect actual snowsport behaviors. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruetten, Heidi, E-mail: h.rutten@rther.umcn.nl; Pop, Lucas A.M.; Janssens, Geert O.R.J.
2011-11-15
Purpose: To evaluate the long-term outcome and morbidity after intensified treatment for locally advanced head-and-neck cancer. Methods and Materials: Between May 2003 and December 2007, 77 patients with Stage III to IV head-and-neck cancer were treated with curative intent. Treatment consisted of accelerated radiotherapy to a dose of 68 Gy and concurrent cisplatin. Long-term survivors were invited to a multidisciplinary outpatient clinic for a comprehensive assessment of late morbidity with special emphasis on dysphagia, including radiological evaluation of swallowing function in all patients. Results: Compliance with the treatment protocol was high, with 87% of the patients receiving at least fivemore » cycles of cisplatin and all but 1 patient completing the radiotherapy as planned. The 5-year actuarial disease-free survival and overall survival rates were 40% and 47%, respectively. Locoregional recurrence-free survival at 5 years was 61%. The 5-year actuarial rates of overall late Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) Grade 3 and Grade 4 toxicity were 52% and 25% respectively. Radiologic evaluation after a median follow-up of 44 months demonstrated impaired swallowing in 57% of the patients, including 23% with silent aspiration. Subjective assessment using a systematic scoring system indicated normalcy of diet in only 15.6% of the patients. Conclusion: This regimen of accelerated radiotherapy with weekly cisplatin produced favorable tumor control rates and survival rates while compliance was high. However, comprehensive assessment by a multidisciplinary team of medical and paramedical specialists revealed significant long-term morbidity in the majority of the patients, with dysphagia being a major concern.« less
NASA Astrophysics Data System (ADS)
Thalhofer, J. L.; Roque, H. S.; Rebello, W. F.; Correa, S. A.; Silva, A. X.; Souza, E. M.; Batita, D. V. S.; Sandrini, E. S.
2014-02-01
Photoneutron production occurs when high energy photons, greater than 6.7 MeV, interact with linear accelerator head structures. In Brazil, the National Cancer Institute, one of the centers of reference in cancer treatment, uses radiation at 4 angles (0°, 90°, 180° and 270°) as treatment protocol for prostate cancer. With the objective of minimizing the dose deposited in the patient due to photoneutrons, this study simulated radiotherapy treatment using MCNPX, considering the most realistic environment; simulating the radiotherapy room, the Linac 2300 head, the MAX phantom and the treatment protocol with the accelerator operating at 18 MV. In an attempt to reduce the dose deposited by photoneutrons, an external shielding was added to the Linac 2300. Results show that the equivalent dose due to photoneutrons deposited in the patient diminished. The biggest reduction was seen in bone structures, such as the tibia and fibula, and mandible, at approximately 75%. Besides that, organs such as the brain, pancreas, small intestine, lungs and thyroid revealed a reduction of approximately 60%. It can be concluded that the shielding developed by our research group is efficient in neutron shielding, reducing the dose for the patient, and thus, the risk of secondary cancer, and increasing patient survival rates.
Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook
2016-05-01
In this paper, we report the results of our investigation into whole brain radiotherapy (WBRT) using linear accelerator-based intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in lung cancer patients with a high risk of metastasis to the brain. Specifically, we assessed the absorbed dose and the rate of adverse effects for several organs at risk (OAR), including the hippocampus, according to the tilt of a patient's head. We arbitrarily selected five cases where measurements were made with the patients' heads tilted forward and five cases without such tilt. We set the entire brain as the planning target volume (PTV), and the hippocampi, the lenses, the eyes, and the cochleae as the main OAR, and formulated new plans for IMRT (coplanar, non-coplanar) and VMAT (coplanar, non-coplanar). Using the dose-volume histogram (DVH), we calculated and compared the effective uniform dose (EUD), normal tissue complication probability (NTCP) of the OAR and the mean and the maximum doses of hippocampus. As a result, if the patient tilted the head forward when receiving the Linac-based treatment, for the same treatment effect in the PTV, we confirmed that a lower dose entered the OAR, such as the hippocampus, eye, lens, and cochlea. Moreover, the damage to the hippocampus was expected to be the least when receiving coplanar VMAT with the head tilted forward. Accordingly, if patients tilt their heads forward when undergoing Linac-based WBRT, we anticipate that a smaller dose would be transmitted to the OAR, resulting in better quality of life following treatment. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Gender differences in head-neck segment dynamic stabilization during head acceleration.
Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph
2005-02-01
Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.
Shain, Kellen S; Madigan, Michael L; Rowson, Steven; Bisplinghoff, Jill; Duma, Stefan M
2010-11-01
The goals of this study were to measure the ability of catcher's masks to attenuate head accelerations on impact with a baseball and to compare these head accelerations to established injury thresholds for mild traumatic brain injury. Testing involved using a pneumatic cannon to shoot baseballs at an instrumented Hybrid III headform (a 50th percentile male head and neck) with and without a catcher's mask on the head. The ball speed was controlled from approximately 26.8 to 35.8 m/s (60-80 mph), and the regulation National Collegiate Athletic Association baseballs were used. Research laboratory. None. Catcher's masks and impact velocity. The linear and angular head accelerations of the Hybrid III headform. Peak linear resultant acceleration was 140 to 180 g without a mask and 16 to 30 g with a mask over the range of ball's speed investigated. Peak angular resultant acceleration was 19 500 to 25 700 rad/s without a mask and 2250 to 3230 rad/s with a mask. The Head Injury Criterion was 93 to 181 without a mask and 3 to 13 with a mask, and the Severity Index was 110 to 210 without a mask and 3 to 15 with a mask. Catcher's masks reduced head acceleration metrics by approximately 85%. Head acceleration metrics with a catcher's mask were significantly lower than contemporary injury thresholds, yet reports in the mass media clearly indicate that baseball impacts to the mask still occasionally result in mild traumatic brain injuries. Further research is needed to address this apparent contradiction.
Analysis of real-time head accelerations in collegiate football players.
Duma, Stefan M; Manoogian, Sarah J; Bussone, William R; Brolinson, P Gunnar; Goforth, Mike W; Donnenwerth, Jesse J; Greenwald, Richard M; Chu, Jeffrey J; Crisco, Joseph J
2005-01-01
To measure and analyze head accelerations during American collegiate football practices and games. A newly developed in-helmet 6-accelerometer system that transmits data via radio frequency to a sideline receiver and laptop computer system was implemented. From the data transfer of these accelerometer traces, the sideline staff has real-time data including the head acceleration, the head injury criteria value, the severity index value, and the impact location. Data are presented for instrumented players for the entire 2003 football season, including practices and games. American collegiate football. Thirty-eight players from Virginia Tech's varsity football team. Accelerations and pathomechanics of head impacts. : A total of 3312 impacts were recorded over 35 practices and 10 games for 38 players. The average peak head acceleration, Gadd Severity Index, and Head Injury Criteria were 32 g +/- 25 g, 36 g +/- 91 g, and 26 g +/- 64 g, respectively. One concussive event was observed with a peak acceleration of 81 g, a 267 Gadd Severity Index, and 200 Head Injury Criteria. Because the concussion was not reported until the day after of the event, a retrospective diagnosis based on his history and clinical evaluation suggested a mild concussion. The primary finding of this study is that the helmet-mounted accelerometer system proved effective at collecting thousands of head impact events and providing contemporaneous head impact parameters that can be integrated with existing clinical evaluation techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y; Mazur, T; Green, O
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: We first translated PENELOPE from FORTRAN to C++ and validated that the translation produced equivalent results. Then we adapted the C++ code to CUDA in a workflow optimized for GPU architecture. We expanded upon the original code to include voxelized transportmore » boosted by Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, we incorporated the vendor-provided MRIdian head model into the code. We performed a set of experimental measurements on MRIdian to examine the accuracy of both the head model and gPENELOPE, and then applied gPENELOPE toward independent validation of patient doses calculated by MRIdian’s KMC. Results: We achieve an average acceleration factor of 152 compared to the original single-thread FORTRAN implementation with the original accuracy preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen (1), mediastinum (1) and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: We developed a Monte Carlo simulation platform based on a GPU-accelerated version of PENELOPE. We validated that both the vendor provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.« less
Thompson, Angela K; Bertocci, Gina; Pierce, Mary Clyde
2009-04-01
Short distance falls are a common false history provided in cases of child abuse. Falls are also a common occurrence in ambulating young children. The purpose of this study was to determine the risk of head injury in short distance feet-first free falls for a 12-month-old child. Feet-first free falls were simulated using an anthropomorphic test device. Three fall heights and five surfaces were tested to determine whether changing fall environment characteristics leads to differences in head injury risk outcomes. Linear head accelerations were measured and angular head accelerations in the anterior-posterior direction were determined. Head injury criteria values and impact durations were also determined for each fall. The mean peak linear head acceleration across all trials was 52.2g. HIC15 values were all below the injury assessment reference value. The mean peak angular head acceleration across all trials was 4,246 rad/s2. Impact durations ranged from 12.1 milliseconds to 27.8 milliseconds. In general, head accelerations were greater and impact durations were lower for surfaces with lower coefficients of restitution (a measure of resiliency). In falls onto wood and linoleum over concrete, the ground-based fall was associated with greater accelerations than the two higher fall heights. Results show that fall dynamics play an important role in head injury outcome measures. Different fall heights and impact surfaces led to differences in head injury risk, but the risk of severe head injury across all tested scenarios was low for a 12-month-old child in feet-first free falls.
The Effects of Training and Subject Reproducibility during Vertical Impact Acceleration
2006-05-01
configuration. Subjects were evaluated for reproducibility at 6, 8, and 10G with varying helmet weights. The head and sternum accelerations in the Z direction...helmet inertial properties, subject anthropometry, and the recorded head accelerations. The results from the study revealed no effect of training on the...Seat pan, seat cushion, sternum, and head accelerations were collected using an on-board data acquisition system, and neck loads were calculated to
Alba, J R; Basterra, J; Ferrer, J C; Santonja, F; Zapater, E
2016-05-01
Hypothyroidism is a common complication when radiotherapy is part of the treatment for head and neck tumours. This study aimed to show the incidence of hypothyroidism and possible risk factors in these patients. Factors related to the population, tumour, treatment and occurrence of hypothyroidism were analysed in 241 patients diagnosed with head and neck carcinoma. Approximately 53 per cent of patients were diagnosed with radiation-induced hypothyroidism. Its occurrence was related to: tumour location, laryngeal surgery type, neck dissection type, post-operative complications, cervical radiotherapy and radiotherapy unit type (linear particle accelerator or telecobalt therapy technology). Control of thyroid function should be standardised for several years after treatment, particularly in patients with risk factors, such as those treated with telecobalt therapy, those with post-operative complications and for whom the thyroid parenchyma is included in the irradiated area (laryngeal or pharyngeal location and bilateral cervical radiation).
King, Doug; Hume, Patria A; Brughelli, Matt; Gissane, Conor
2015-03-01
Direct impacts with the head (linear acceleration or pressure) and inertial loading of the head (rotational acceleration or strain) have been postulated as the 2 major mechanisms of head-related injuries such as concussion. Although data are accumulating for soccer and American football, there are no published data for nonhelmeted collision sports such as rugby union. To quantify head impacts via instrumented mouthguard acceleration analyses for rugby union players over a season of matches. Descriptive epidemiology study. Data on impact magnitude and frequency were collected with molded instrumented mouthguards worn by 38 premier amateur senior rugby players participating in the 2013 domestic season of matches. A total of 20,687 impacts >10g (range, 10.0-164.9g) were recorded over the duration of the study. The mean ± SD number of impacts per player over the duration of the season of matches was 564 ± 618, resulting in a mean ± SD of 95 ± 133 impacts to the head per player, per match over the duration of the season of matches. The impact magnitudes for linear accelerations were skewed to the lower values (Sp = 3.7 ± 0.02; P < .001), with a mean linear acceleration of 22.2 ± 16.2g. Rotational accelerations were also skewed to the lower values (Sp = 2.0 ± 0.02; P < .001), with a mean rotational acceleration of 3902.9 ± 3948.8 rad/s(2). The acceleration magnitudes and number of head impacts in amateur rugby union players over a season of matches, measured via instrumented mouthguard accelerations, were higher than for most sports previously reported. Mean linear acceleration measured over a season of matches was similar to the mean linear accelerations previously reported for youth, high school, and collegiate American football players but lower than that for female youth soccer players. Mean rotational acceleration measured over a season of matches was similar to mean rotational accelerations for youth, high school, and collegiate American football players but less than those for female youth soccer players, concussed American collegiate players, collegiate American football players, and professional American football players. © 2014 The Author(s).
King, Doug A; Hume, Patria A; Gissane, Conor; Clark, Trevor N
2016-07-01
OBJECTIVE Direct impact with the head and the inertial loading of the head have been postulated as major mechanisms of head-related injuries, such as concussion. METHODS This descriptive observational study was conducted to quantify the head impact acceleration characteristics in under-9-year-old junior rugby union players in New Zealand. The impact magnitude, frequency, and location were collected with a wireless head impact sensor that was worn by 14 junior rugby players who participated in 4 matches. RESULTS A total of 721 impacts > 10g were recorded. The median (interquartile range [IQR]) number of impacts per player was 46 (IQR 37-58), resulting in 10 (IQR 4-18) impacts to the head per player per match. The median impact magnitudes recorded were 15g (IQR 12g-21g) for linear acceleration and 2296 rad/sec(2) (IQR 1352-4152 rad/sec(2)) for rotational acceleration. CONCLUSIONS There were 121 impacts (16.8%) above the rotational injury risk limit and 1 (0.1%) impact above the linear injury risk limit. The acceleration magnitude and number of head impacts in junior rugby union players were higher than those previously reported in similar age-group sports participants. The median linear acceleration for the under-9-year-old rugby players were similar to 7- to 8-year-old American football players, but lower than 9- to 12-year-old youth American football players. The median rotational accelerations measured were higher than the median and 95th percentiles in youth, high school, and collegiate American football players.
Chitapanarux, Imjai; Tharavichitkul, Ekkasit; Kamnerdsupaphon, Pimkhuan; Pukanhapan, Nantaka; Vongtama, Roy
2013-01-01
The aim of this study was to compare the efficacy and safety of concurrent chemoradiotherapy (CCRT) vs accelerated hyperfractionation with concomitant boost (CCB) as a primary treatment for patients with Stage III–IV squamous cell carcinoma of head and neck (SCCHN). A total of 85 non-metastatic advanced SCCHN patients were accrued from January 2003 to December 2007. Of these, 48 and 37 patients received CCRT and CCB, respectively. The patients were randomized to receive either three cycles of carboplatin and 5-fluorouracil plus conventional radiotherapy (CCRT, 66 Gy in 6.5 weeks) or hybrid accelerated radiotherapy (CCB, 70 Gy in 6 weeks). The primary endpoint was determined by locoregional control rate. The secondary endpoints were overall survival and toxicity. With a median follow-up of 43 months (range, 3–102), the 5-year locoregional control rate was 69.6% in the CCRT arm vs 55.0% in the CCB arm (P = 0.184). The 5-year overall survival rate was marginally significantly different (P = 0.05): 76.1% in the CCRT arm vs 63.5% in the CCB arm. Radiotherapy treatment interruptions of more than three days were 60.4% and 40.5% in the CCRT arm and CCB arm, respectively. The median total treatment time was 55.5 days in the CCRT arm and 49 days in the CCB arm. The rate of Grade 3–4 acute mucositis was significantly higher in the CCB arm (67.6% vs 41.7%, P = 0.01), but no high grade hematologic toxicities were found in the CCB arm (27.2% vs 0%). CCRT has shown a trend of improving outcome over CCB irradiation in locoregionally advanced head and neck cancer. PMID:23740894
Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael
2013-01-01
Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518
Wada, Takahiro; Yoshida, Keigo
2016-08-01
This study examined the effect of passengers' active head-tilt and eyes-open/eyes-closed conditions on the severity of motion sickness in the lateral acceleration environment of cars. In the centrifugal head-tilt condition, participants intentionally tilted their heads towards the centrifugal force, whereas in the centripetal head-tilt condition, the participants tilted their heads against the centrifugal acceleration. The eyes-open and eyes-closed cases were investigated for each head-tilt condition. In the experimental runs, the sickness rating in the centripetal head-tilt condition was significantly lower than that in the centrifugal head-tilt condition. Moreover, the sickness rating in the eyes-open condition was significantly lower than that in the eyes-closed condition. The results suggest that an active head-tilt motion against the centrifugal acceleration reduces the severity of motion sickness both in the eyes-open and eyes-closed conditions. They also demonstrate that the eyes-open condition significantly reduces the motion sickness even when the head-tilt strategy is used. Practitioner Summary: Little is known about the effect of head-tilt strategies on motion sickness. This study investigated the effects of head-tilt direction and eyes-open/eyes-closed conditions on motion sickness during slalom automobile driving. Passengers' active head tilt towards the centripetal direction and the eyes-open condition greatly reduce the severity of motion sickness.
Toda, Haruki; Nagano, Akinori; Luo, Zhiwei
2016-01-01
[Purpose] The purpose of this study was to clarify whether walking speed affects acceleration variability of the head, lumbar, and lower extremity by simultaneously evaluating of acceleration. [Subjects and Methods] Twenty young individuals recruited from among the staff at Kurashiki Heisei Hospital participated in this study. Eight accelerometers were used to measure the head, lumbar and lower extremity accelerations. The participants were instructed to walk at five walking speeds prescribed by a metronome. Acceleration variability was assessed by a cross-correlation analysis normalized using z-transform in order to evaluate stride-to-stride variability. [Results] Vertical acceleration variability was the smallest in all body parts, and walking speed effect had laterality. Antero-posterior acceleration variability was significantly associated with walking speed at sites other than the head. Medio-lateral acceleration variability of the bilateral hip alone was smaller than the antero-posterior variability. [Conclusion] The findings of this study suggest that the effect of walking speed changes on the stride-to-stride acceleration variability was individual for each body parts, and differs among directions. PMID:27390419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoogsteen, Ilse J.; Pop, Lucas A.M.; Marres, Henri A.M.
2006-01-01
Purpose: To evaluate the prognostic significance of hemoglobin (Hb) levels measured before and during treatment with accelerated radiotherapy with carbogen and nicotinamide (ARCON). Methods and Materials: Two hundred fifteen patients with locally advanced tumors of the head and neck were included in a phase II trial of ARCON. This treatment regimen combines accelerated radiotherapy for reduction of repopulation with carbogen breathing and nicotinamide to reduce hypoxia. In these patients, Hb levels were measured before, during, and after radiotherapy. Results: Preirradiation and postirradiation Hb levels were available for 206 and 195 patients respectively. Hb levels below normal were most frequently seenmore » among patients with T4 (p < 0.001) and N2 (p < 0.01) disease. Patients with a larynx tumor had significantly higher Hb levels (p < 0.01) than other tumor sites. During radiotherapy, 69 patients experienced a decrease in Hb level. In a multivariate analysis there was no prognostic impact of Hb level on locoregional control, disease-free survival, and overall survival. Primary tumor site was independently prognostic for locoregional control (p = 0.018), and gender was the only prognostic factor for disease-free and overall survival (p < 0.05). High locoregional control rates were obtained for tumors of the larynx (77%) and oropharynx (72%). Conclusion: Hemoglobin level was not found to be of prognostic significance for outcome in patients with squamous cell carcinoma of the head and neck after oxygen-modifying treatment with ARCON.« less
The biomechanics of concussion in unhelmeted football players in Australia: a case–control study
McIntosh, Andrew S; Patton, Declan A; Fréchède, Bertrand; Pierré, Paul-André; Ferry, Edouard; Barthels, Tobias
2014-01-01
Objective Concussion is a prevalent brain injury in sport and the wider community. Despite this, little research has been conducted investigating the dynamics of impacts to the unprotected human head and injury causation in vivo, in particular the roles of linear and angular head acceleration. Setting Professional contact football in Australia. Participants Adult male professional Australian rules football players participating in 30 games randomly selected from 103 games. Cases selected based on an observable head impact, no observable symptoms (eg, loss-of-consciousness and convulsions), no on-field medical management and no injury recorded at the time. Primary and secondary outcome measures A data set for no-injury head impact cases comprising head impact locations and head impact dynamic parameters estimated through rigid body simulations using the MAthematical DYnamic MOdels (MADYMO) human facet model. This data set was compared to previously reported concussion case data. Results Qualitative analysis showed that the head was more vulnerable to lateral impacts. Logistic regression analyses of head acceleration and velocity components revealed that angular acceleration of the head in the coronal plane had the strongest association with concussion; tentative tolerance levels of 1747 rad/s2 and 2296 rad/s2 were reported for a 50% and 75% likelihood of concussion, respectively. The mean maximum resultant angular accelerations for the concussion and no-injury cases were 7951 rad/s2 (SD 3562 rad/s2) and 4300 rad/s2 (SD 3657 rad/s2), respectively. Linear acceleration is currently used in the assessment of helmets and padded headgear. The 50% and 75% likelihood of concussion values for resultant linear head acceleration in this study were 65.1 and 88.5 g, respectively. Conclusions As hypothesised by Holbourn over 70 years ago, angular acceleration plays an important role in the pathomechanics of concussion, which has major ramifications in terms of helmet design and other efforts to prevent and manage concussion. PMID:24844272
Xiao, Canhua; Zhang, Qiang; Nguyen-Tân, Phuc Felix; List, Marcie; Weber, Randal S; Ang, K Kian; Rosenthal, David; Filion, Edith J; Kim, Harold; Silverman, Craig; Raben, Adam; Galloway, Thomas; Fortin, Andre; Gore, Elizabeth; Winquist, Eric; Jones, Christopher U; Robinson, William; Raben, David; Le, Quynh-Thu; Bruner, Deborah
2017-03-15
To analyze quality of life (QOL) and performance status (PS) for head and neck cancer (HNC) patients treated on NRG Oncology RTOG 0129 by treatment (secondary outcome) and p16 status, and to examine the association between QOL/PS and survival. Eligible patients were randomized into either an accelerated-fractionation arm or a standard-fractionation arm, and completed the Performance Status Scale for the Head and Neck (PSS-HN), the Head and Neck Radiotherapy Questionnaire (HNRQ), and the Spitzer Quality of Life Index (SQLI) at 8 time points from before treatment to 5 years after treatment. The results from the analysis of area under the curve showed that QOL/PS was not significantly different between the 2 arms from baseline to year after treatment (P ranged from .39 to .98). The results from general linear mixed models further supported the nonsignificant treatment effects until 5 years after treatment (P=.95, .90, and .84 for PSS-HN Diet, Eating, and Speech, respectively). Before treatment and after 1 year after treatment, p16-positive oropharyngeal cancer (OPC) patients had better QOL than did p16-negative patients (P ranged from .0283 to <.0001 for all questionnaires). However, QOL/PS decreased more significantly from pretreatment to the last 2 weeks of treatment in the p16-positive group than in the p16-negative group (P ranged from .0002 to <.0001). Pretreatment QOL/PS was a significant independent predictor of overall survival, progression-free survival, and local-regional failure but not of distant metastasis (P ranged from .0063 to <.0001). The results indicated that patients in both arms may have experienced similar QOL/PS. p16-positive patients had better QOL/PS at baseline and after 1 year of follow-up. Patients presenting with better baseline QOL/PS scores had better survival. Copyright © 2016 Elsevier Inc. All rights reserved.
Xiao, Canhua; Zhang, Qiang; Nguyen-Tân, Phuc Felix; List, Marcie; Weber, Randal S.; Ang, K. Kian; Rosenthal, David; Filion, Edith J.; Kim, Harold; Silverman, Craig; Raben, Adam; Galloway, Thomas; Fortin, Andre; Gore, Elizabeth; Winquist, Eric; Jones, Christopher U.; Robinson, William; Raben, David; Le, Quynh-Thu; Bruner, Deborah
2016-01-01
Purpose/Objective(s) To analyze quality of life (QOL) and performance status (PS) for head and neck cancer (HNC) patients treated on NRG Oncology RTOG 0129 by treatment (secondary outcome) and p16 status, and to examine the association between QOL/PS and survival. Methods and Materials Eligible patients were randomized into either an accelerated-fractionation arm or a standard-fractionation arm, and completed the Performance Status Scale for the Head and Neck (PSS-HN), the Head and Neck Radiotherapy Questionnaire (HNRQ), and the Spitzer Quality of Life Index (SQLI) at 8 time points from before treatment to 5 years after treatment. Results The results from the analysis of area under the curve showed that QOL/PS was not significantly different between the 2 arms from baseline to year after treatment (P ranged from .39 to .98). The results from general linear mixed models further supported the nonsignificant treatment effects until 5 years after treatment (P=.95, .90, and .84 for PSS-HN Diet, Eating, and Speech, respectively). Before treatment and after 1 year after treatment, p16-positive oropharyngeal cancer (OPC) patients had better QOL than did p16-negative patients (P ranged from .0283 to <.0001 for all questionnaires). However, QOL/PS decreased more significantly from pretreatment to the last 2 weeks of treatment in the p16-positive group than in the p16-negative group (P ranged from .0002 to <.0001). Pretreatment QOL/PS was a significant independent predictor of overall survival, progression-free survival, and local-regional failure but not of distant metastasis (P ranged from .0063 to <.0001). Conclusions The results indicated that patients in both arms may have experienced similar QOL/PS. p16-positive patients had better QOL/PS at baseline and after 1 year of follow-up. Patients presenting with better baseline QOL/PS scores had better survival. PMID:27727063
Schach Von Wittenau, Alexis E.
2003-01-01
A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.
Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Krause, David L.; Kantzos, Pete T.
2006-01-01
For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.
Analysis of linear head accelerations from collegiate football impacts.
Brolinson, P Gunnar; Manoogian, Sarah; McNeely, David; Goforth, Mike; Greenwald, Richard; Duma, Stefan
2006-02-01
Sports-related concussions result in 300,000 brain injuries in the United States each year. We conducted a study utilizing an in-helmet system that measures and records linear head accelerations to analyze head impacts in collegiate football. The Head Impact Telemetry (HIT) System is an in-helmet system with six spring-mounted accelerometers and an antenna that transmits data via radio frequency to a sideline receiver and laptop computer system. A total of 11,604 head impacts were recorded from the Virginia Tech football team throughout the 2003 and 2004 football seasons during 22 games and 62 practices from a total of 52 players. Although the incidence of injury data are limited, this study presents an extremely large data set from human head impacts that provides valuable insight into the lower limits of head acceleration that cause mild traumatic brain injuries.
Bracing of the trunk and neck has a differential effect on head control during gait
Russell, D. M.; Kelleran, K.; Walker, M. L.
2015-01-01
During gait, the trunk and neck are believed to play an important role in dissipating the transmission of forces from the ground to the head. This attenuation process is important to ensure head control is maintained. The aim of the present study was to assess the impact of externally restricting the motion of the trunk and/or neck segments on acceleration patterns of the upper body and head and related trunk muscle activity. Twelve healthy adults performed three walking trials on a flat, straight 65-m walkway, under four different bracing conditions: 1) control-no brace; 2) neck-braced; 3) trunk-braced; and 4) neck-trunk braced. Three-dimensional acceleration from the head, neck (C7) and lower trunk (L3) were collected, as was muscle activity from trunk. Results revealed that, when the neck and/or trunk were singularly braced, an overall decrease in the ability of the trunk to attenuate gait-related oscillations was observed, which led to increases in the amplitude of vertical acceleration for all segments. However, when the trunk and neck were braced together, acceleration amplitude across all segments decreased in line with increased attenuation from the neck to the head. Bracing was also reflected by increased activity in erector spinae, decreased abdominal muscle activity and lower trunk muscle coactivation. Overall, it would appear that the neuromuscular system of young, healthy individuals was able to maintain a consistent pattern of head acceleration, irrespective of the level of bracing, and that priority was placed over the control of vertical head accelerations during these gait tasks. PMID:26180113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuhe; Mazur, Thomas R.; Green, Olga
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expandedmore » to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.« less
Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold
2016-01-01
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian’s kmc. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems. PMID:27370123
Wang, Yuhe; Mazur, Thomas R; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H Harold
2016-07-01
The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian's kmc. An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.
Ashokkumar, Sigamani; Nambi Raj, N Arunai; Sinha, Sujit Nath; Yadav, Girigesh; Thiyagarajan, Rajesh; Raman, Kothanda; Mishra, Manindra Bhushan
2014-07-01
To measure and compare the head scatter factor for flattened (FB) and unflattened (FFF) of 6MV and 10MV photon beam using indigenously designed mini phantom. A columnar mini phantom was designed as recommended by AAPM Task Group 74 with low and high atomic number materials at 10 cm (mini phantom) and at approximately twice the depth of maximum dose water equivalent thickness (brass build-up cap). Scatter in the accelerator (Sc) values of 6MV-FFF photon beams are lesser than that of the 6MV-FB photon beams (0.66-2.8%; Clinac iX, 2300CD) and (0.47-1.74%; True beam) for field sizes ranging from 10 × 10 cm(2) to 40 × 40 cm(2). Sc values of 10MV-FFF photon beams are lesser (0.61-2.19%; True beam) than that of the 10MV-FB photons beams for field sizes ranging from 10 × 10 cm(2) to 40 × 40 cm(2). The SSD had no influence on head scatter for both flattened and unflattened beams and irrespective of head design of the different linear accelerators. The presence of field shaping device influences the Sc values. The collimator exchange effect reveals that the opening of the upper jaw increases Sc irrespective of FB or FFF photon beams and different linear accelerators, and it is less significant in FFF beams. Sc values of 6MV-FB square field were in good agreement with that of AAPM, TG-74 published data for Varian (Clinac iX, 2300CD) accelerator. Our results confirm that the removal of flattening filter decreases in the head scatter factor compared to flattened beam. This could reduce the out-of-field dose in advanced treatment delivery techniques.
Ashokkumar, Sigamani; Nambi Raj, N Arunai; Sinha, Sujit Nath; Yadav, Girigesh; Thiyagarajan, Rajesh; Raman, Kothanda; Mishra, Manindra Bhushan
2014-01-01
To measure and compare the head scatter factor for flattened (FB) and unflattened (FFF) of 6MV and 10MV photon beam using indigenously designed mini phantom. A columnar mini phantom was designed as recommended by AAPM Task Group 74 with low and high atomic number materials at 10 cm (mini phantom) and at approximately twice the depth of maximum dose water equivalent thickness (brass build-up cap). Scatter in the accelerator (Sc) values of 6MV-FFF photon beams are lesser than that of the 6MV-FB photon beams (0.66-2.8%; Clinac iX, 2300CD) and (0.47-1.74%; True beam) for field sizes ranging from 10 × 10 cm2 to 40 × 40 cm2. Sc values of 10MV-FFF photon beams are lesser (0.61-2.19%; True beam) than that of the 10MV-FB photons beams for field sizes ranging from 10 × 10 cm2 to 40 × 40 cm2. The SSD had no influence on head scatter for both flattened and unflattened beams and irrespective of head design of the different linear accelerators. The presence of field shaping device influences the Sc values. The collimator exchange effect reveals that the opening of the upper jaw increases Sc irrespective of FB or FFF photon beams and different linear accelerators, and it is less significant in FFF beams. Sc values of 6MV-FB square field were in good agreement with that of AAPM, TG-74 published data for Varian (Clinac iX, 2300CD) accelerator. Our results confirm that the removal of flattening filter decreases in the head scatter factor compared to flattened beam. This could reduce the out-of-field dose in advanced treatment delivery techniques. PMID:25190997
Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves
Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques
2015-01-01
Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36–45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125
Parameter study for child injury mitigation in near-side impacts through FE simulations.
Andersson, Marianne; Pipkorn, Bengt; Lövsund, Per
2012-01-01
The objective of this study is to investigate the effects of crash-related car parameters on head and chest injury measures for 3- and 12-year-old children in near-side impacts. The evaluation was made using a model of a complete passenger car that was impacted laterally by a barrier. The car model was validated in 2 crash conditions: the Insurance Institute for Highway Safety (IIHS) and the US New Car Assessment Program (NCAP) side impact tests. The Small Side Impact Dummy (SID-IIs) and the human body model 3 (HBM3) (Total HUman Model for Safety [THUMS] 3-year-old) finite element models were used for the parametric investigation (HBM3 on a booster). The car parameters were as follows: vehicle mass, side impact structure stiffness, a head air bag, a thorax-pelvis air bag, and a seat belt with pretensioner. The studied dependent variables were as follows: resultant head linear acceleration, resultant head rotational acceleration, chest viscous criterion, rib deflection, and relative velocity at head impact. The chest measurements were only considered for the SID-IIs. The head air bag had the greatest effect on the head measurements for both of the occupant models. On average, it reduced the peak head linear acceleration by 54 g for the HBM3 and 78 g for the SID-IIs. The seat belt had the second greatest effect on the head measurements; the peak head linear accelerations were reduced on average by 39 g (HBM3) and 44 g (SID-IIs). The high stiffness side structure increased the SID-IIs' head acceleration, whereas it had marginal effect on the HBM3. The vehicle mass had a marginal effect on SID-IIs' head accelerations, whereas the lower vehicle mass caused 18 g higher head acceleration for HBM3 and the greatest rotational acceleration. The thorax-pelvis air bag, vehicle mass, and seat belt pretensioner affected the chest measurements the most. The presence of a thorax-pelvis air bag, high vehicle mass, and a seat belt pretensioner all reduced the chest viscous criterion (VC) and peak rib deflection in the SID-IIs. The head and thorax-pelvis air bags have the potential to reduce injury measurements for both the SID-IIs and the HBM3, provided that the air bag properties are designed to consider these occupant sizes also. The seat belt pretensioner is also effective, provided that the lateral translation of the torso is managed by other features. The importance of lateral movement management is greater the smaller the occupant is. Light vehicles require interior restraint systems of higher performance than heavy vehicles do to achieve the same level of injury measures for a given side structure. Copyright © 2012 Taylor & Francis Group, LLC
The biomechanics of concussion in unhelmeted football players in Australia: a case-control study.
McIntosh, Andrew S; Patton, Declan A; Fréchède, Bertrand; Pierré, Paul-André; Ferry, Edouard; Barthels, Tobias
2014-05-20
Concussion is a prevalent brain injury in sport and the wider community. Despite this, little research has been conducted investigating the dynamics of impacts to the unprotected human head and injury causation in vivo, in particular the roles of linear and angular head acceleration. Professional contact football in Australia. Adult male professional Australian rules football players participating in 30 games randomly selected from 103 games. Cases selected based on an observable head impact, no observable symptoms (eg, loss-of-consciousness and convulsions), no on-field medical management and no injury recorded at the time. A data set for no-injury head impact cases comprising head impact locations and head impact dynamic parameters estimated through rigid body simulations using the MAthematical DYnamic MOdels (MADYMO) human facet model. This data set was compared to previously reported concussion case data. Qualitative analysis showed that the head was more vulnerable to lateral impacts. Logistic regression analyses of head acceleration and velocity components revealed that angular acceleration of the head in the coronal plane had the strongest association with concussion; tentative tolerance levels of 1747 rad/s(2) and 2296 rad/s(2) were reported for a 50% and 75% likelihood of concussion, respectively. The mean maximum resultant angular accelerations for the concussion and no-injury cases were 7951 rad/s(2) (SD 3562 rad/s(2)) and 4300 rad/s(2) (SD 3657 rad/s(2)), respectively. Linear acceleration is currently used in the assessment of helmets and padded headgear. The 50% and 75% likelihood of concussion values for resultant linear head acceleration in this study were 65.1 and 88.5 g, respectively. As hypothesised by Holbourn over 70 years ago, angular acceleration plays an important role in the pathomechanics of concussion, which has major ramifications in terms of helmet design and other efforts to prevent and manage concussion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Caccese, V.; Ferguson, J.; Lloyd, J.; Edgecomb, M.; Seidi, M.; Hajiaghamemar, M.
2017-01-01
A test method based upon a Hybrid-III head and neck assembly that includes measurement of both linear and angular acceleration is investigated for potential use in impact testing of protective headgear. The test apparatus is based upon a twin wire drop test system modified with the head/neck assembly and associated flyarm components. This study represents a preliminary assessment of the test apparatus for use in the development of protective headgear designed to prevent injury due to falls. By including angular acceleration in the test protocol it becomes possible to assess and intentionally reduce this component of acceleration. Comparisons of standard and reduced durometer necks, various anvils, front, rear, and side drop orientations, and response data on performance of the apparatus are provided. Injury measures summarized for an unprotected drop include maximum linear and angular acceleration, head injury criteria (HIC), rotational injury criteria (RIC), and power rotational head injury criteria (PRHIC). Coefficient of variation for multiple drops ranged from 0.4 to 6.7% for linear acceleration. Angular acceleration recorded in a side drop orientation resulted in highest coefficient of variation of 16.3%. The drop test apparatus results in a reasonably repeatable test method that has potential to be used in studies of headgear designed to reduce head impact injury. PMID:28216804
Repopulation Kinetics and the Linear-Quadratic Model
NASA Astrophysics Data System (ADS)
O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.
2009-08-01
The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skladowski, Krzysztof, E-mail: skladowski@io.gliwice.pl; Hutnik, Marcin; Wygoda, Andrzej
2013-03-01
Purpose: To report long-term results of randomized trial comparing 2 accelerated fractionations of definitive radiation therapy assessing the need to irradiate during weekend in patients with head and neck squamous cell carcinoma. Methods and Materials: A total of 345 patients with SCC of the oral cavity, larynx, and oro- or hypo-pharynx, stage T2-4N0-1M0, were randomized to receive continuous accelerated irradiation (CAIR: once per day, 7 days per week) or concomitant accelerated boost (CB: once per day, 3 days per week, and twice per day, 2 days per week). Total dose ranged from 66.6-72 Gy, dose per fraction was 1.8 Gy,more » number of fractions ranged from 37-40 fractions, and overall treatment time ranged from 37-40 days. Results: No differences for all trial end-points were noted. At 5 and 10 years, the actuarial rates of local-regional control were 63% and 60% for CAIR vs 65% and 60% for CB, and the corresponding overall survival were 40% and 25% vs 44% and 25%, respectively. Confluent mucositis was the main acute toxicity, with an incidence of 89% in CAIR and 86% in CB patients. The 5-year rate of grade 3-4 late radiation morbidity was 6% for both regimens. Conclusions: Results of this trial indicate that the effects of accelerated fractionation can be achieve by delivering twice-per-day irradiation on weekday(s). This trial has also confirmed that an accelerated, 6-weeks schedule is a reasonable option for patients with intermediate-stage head-and-neck squamous cell carcinoma because of the associated high cure rate and minimal severe late toxicity.« less
46 CFR 154.407 - Cargo tank internal pressure head.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Equipment Cargo Containment Systems § 154.407 Cargo tank internal pressure head. (a) For the calculation..., resulting from the combined effects of gravity and dynamic accelerations of a full tank)=aβ Zβ Y; where: aβ=dimensionless acceleration relative to the acceleration of gravity resulting from gravitational and dynamic...
Head impact exposure measured in a single youth football team during practice drills.
Kelley, Mireille E; Kane, Joeline M; Espeland, Mark A; Miller, Logan E; Powers, Alexander K; Stitzel, Joel D; Urban, Jillian E
2017-11-01
OBJECTIVE This study evaluated the frequency, magnitude, and location of head impacts in practice drills within a youth football team to determine how head impact exposure varies among different types of drills. METHODS On-field head impact data were collected from athletes participating in a youth football team for a single season. Each athlete wore a helmet instrumented with a Head Impact Telemetry (HIT) System head acceleration measurement device during all preseason, regular season, and playoff practices. Video was recorded for all practices, and video analysis was performed to verify head impacts and assign each head impact to a specific drill. Eleven drills were identified: dummy/sled tackling, install, special teams, Oklahoma, one-on-one, open-field tackling, passing, position skill work, multiplayer tackle, scrimmage, and tackling drill stations. Generalized linear models were fitted to log-transformed data, and Wald tests were used to assess differences in head accelerations and impact rates. RESULTS A total of 2125 impacts were measured during 30 contact practices in 9 athletes (mean age 11.1 ± 0.6 years, mean mass 44.9 ± 4.1 kg). Open-field tackling had the highest median and 95th percentile linear accelerations (24.7 g and 97.8 g, respectively) and resulted in significantly higher mean head accelerations than several other drills. The multiplayer tackle drill resulted in the highest head impact frequency, with an average of 0.59 impacts per minute per athlete, but the lowest 95th percentile linear accelerations of all drills. The front of the head was the most common impact location for all drills except dummy/sled tackling. CONCLUSIONS Head impact exposure varies significantly in youth football practice drills, with several drills exposing athletes to high-magnitude and/or high-frequency head impacts. These data suggest that further study of practice drills is an important step in developing evidence-based recommendations for modifying or eliminating certain high-intensity drills to reduce head impact exposure and injury risk for all levels of play.
Willmott, Catherine; McIntosh, Andrew S; Howard, Teresa; Mitra, Biswadev; Dimech-Betancourt, Bleydy; Donovan, Jarrod; Rosenfeld, Jeffrey V
2018-05-01
To investigate changes from baseline on SCAT3 as a result of football game exposure, and association with X2 Patch measured head acceleration events in amateur Australian footballers. Prospective cohort. Peak linear acceleration (PLA) of the head (>10 g) was measured by wearable head acceleration sensor X2 Biosystems X-Patch in male (n=34) and female (n=19) Australian footballers. SCAT3 was administered at baseline (B) and post-game (PG). 1394 head acceleration events (HEA) >10 g were measured. Mean and median HEA PLA were recorded as 15.2 g (SD=9.2, range=10.0-115.8) and 12.4 g (IQR=11.0-15.6) respectively. No significant difference in median HEA PLA (g) was detected across gender (p=0.55), however, more HEAs were recorded in males (p=0.03). A greater number (p=0.004) and severity (p<0.001) of symptoms were reported PG than at B. No significant association between number of HEA or median PLA, and SCAT3 change scores (p>0.05 for all), was identified for either gender. Increase in symptom severity post game was not associated with X2 measured HEA. Males sustained more HEA, however HEA PLA magnitude did not differ across gender. Further work on the validation of head acceleration sensors is required and their role in sports concussion research and medical management. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Environmental and Physiological Factors Affect Football Head Impact Biomechanics.
Mihalik, Jason P; Sumrall, Adam Z; Yeargin, Susan W; Guskiewicz, Kevin M; King, Kevin B; Trulock, Scott C; Shields, Edgar W
2017-10-01
Recent anecdotal trends suggest a disproportionate number of head injuries in collegiate football players occur during preseason football camp. In warmer climates, this season also represents the highest risk for heat-related illness among collegiate football players. Because concussion and heat illnesses share many common symptoms, we need 1) to understand if environmental conditions, body temperature, and hydration status affect head impact biomechanics; and 2) to determine if an in-helmet thermistor could provide a valid measure of gastrointestinal temperature. A prospective cohort of 18 Division I college football players (age, 21.1 ± 1.4 yr; height, 187.7 ± 6.6 cm; mass, 114.5 ± 23.4 kg). Data were collected during one control and three experimental sessions. During each session, the Head Impact Telemetry System recorded head impact biomechanics (linear acceleration, rotational acceleration, and severity profile) and in-helmet temperature. A wet bulb globe device recorded environmental conditions, and CorTemp™ Ingestible Core Body Temperature Sensors recorded gastrointestinal temperature. Our findings suggest that linear acceleration (P = 0.57), rotational acceleration (P = 0.16), and Head Impact Technology severity profile (P = 0.33) are not influenced by environmental or physiological conditions. We did not find any single or combination of predictors for impact severity. Rotational acceleration was approaching significance between our early experimental sessions when compared with our control session. More research should be conducted to better understand if rotational accelerations are a component of impact magnitudes that are affected due to changes in environmental conditions, body temperature, and hydration status.
Wang, Xinghua; Peng, Yong; Yi, Shengen
2017-11-01
To investigate the differences of the head impact responses between bicyclists and motorcyclists in vehicle collisions. A series of vehicle-bicycle and vehicle-motorcycle lateral impact simulations on four vehicle types at seven vehicle speeds (30, 35, 40, 45, 50, 55 and 60 km/h) and three two-wheeler moving speeds (5, 7.5 and 10 km/h for bicycle, 10, 12.5 and 15 km/h for motorcycle) were established based on PC-Crash software. To further comprehensively explore the differences, additional impact scenes with other initial conditions, such as impact angle (0, π/3, 2π/3 and π) and impact position (left, middle and right part of vehicle front-end), also were supplemented. And then, extensive comparisons were accomplished with regard to average head peak linear acceleration, average head impact speed, average head peak angular acceleration, average head peak angular speed and head injury severity. The results showed there were prominent differences of kinematics and body postures for bicyclists and motorcyclists even under same impact conditions. The variations of bicyclist head impact responses with the changing of impact conditions were a far cry from that of motorcyclists. The average head peak linear acceleration, average head impact speed and average head peak angular acceleration values were higher for motorcyclists than for bicyclists in most cases, while the bicyclists received greater average head peak angular speed values. And the head injuries of motorcyclists worsened faster with increased vehicle speed. The results may provide even deeper understanding of two-wheeler safety and contribute to improve the public health affected by road traffic accidents.
Interaction of the body, head, and eyes during walking and turning
NASA Technical Reports Server (NTRS)
Imai, T.; Moore, S. T.; Raphan, T.; Cohen, B.
2001-01-01
Body, head, and eye movements were measured in five subjects during straight walking and while turning corners. The purpose was to determine how well the head and eyes followed the linear trajectory of the body in space and whether head orientation followed changes in the gravito-inertial acceleration vector (GIA). Head and body movements were measured with a video-based motion analysis system and horizontal, vertical, and torsional eye movements with video-oculography. During straight walking, there was lateral body motion at the stride frequency, which was at half the frequency of stepping. The GIA oscillated about the direction of heading, according to the acceleration and deceleration associated with heel strike and toe flexion, and the body yawed in concert with stepping. Despite the linear and rotatory motions of the head and body, the head pointed along the forward motion of the body during straight walking. The head pitch/roll component appeared to compensate for vertical and horizontal acceleration of the head rather than orienting to the tilt of the GIA or anticipating it. When turning corners, subjects walked on a 50-cm radius over two steps or on a 200-cm radius in five to seven steps. Maximum centripetal accelerations in sharp turns were ca.0.4 g, which tilted the GIA ca.21 degrees with regard to the heading. This was anticipated by a roll tilt of the head of up to 8 degrees. The eyes rolled 1-1.5 degrees and moved down into the direction of linear acceleration during the tilts of the GIA. Yaw head deviations moved smoothly through the turn, anticipating the shift in lateral body trajectory by as much as 25 degrees. The trunk did not anticipate the change in trajectory. Thus, in contrast to straight walking, the tilt axes of the head and the GIA tended to align during turns. Gaze was stable in space during the slow phases and jumped forward in saccades along the trajectory, leading it by larger angles when the angular velocity of turning was greater. The anticipatory roll head movements during turning are likely to be utilized to overcome inertial forces that would destabilize balance during turning. The data show that compensatory eye, head, and body movements stabilize gaze during straight walking, while orienting mechanisms direct the eyes, head, and body to tilts of the GIA in space during turning.
NASA Technical Reports Server (NTRS)
Miller, Christopher; Peters, Brian; Feiveson, Alan; Bloomberg, Jacob
2011-01-01
Astronauts returning from spaceflight experience neurovestibular disturbances during head movements and attempt to mitigate them by limiting head motion. Analyses to date of the head movements made during walking have concentrated on amplitude and variability measures extracted from ensemble averages of individual gait cycles. Phase shifts within each gait cycle can be determined by functional data analysis through the computation of time-warping functions. Large, localized variations in the timing of peaks in head kinematics may indicate changes in coordination. The purpose of this study was to determine timing changes in head pitch acceleration of astronauts during treadmill walking before and after flight. Six astronauts (5M/1F; age = 43.5+/-6.4yr) participated in the study. Subjects walked at 1.8 m/sec (4 mph) on a motorized treadmill while reading optotypes displayed on a computer screen 4 m in front of their eyes. Three-dimensional motion of the subject s head was recorded with an Inertial Measurement Unit (IMU) device. Data were recorded twice before flight and four times after landing. The head pitch acceleration was calculated by taking the time derivative of the pitch velocity data from the IMU. Data for each session with each subject were time-normalized into gait cycles, then registered to align significant features and create a mean curve. The mean curves of each postflight session for each subject were re-registered based on their preflight mean curve to create time-warping functions. The root mean squares (RMS) of these warping functions were calculated to assess the deviation of head pitch acceleration mean curves in each postflight session from the preflight mean curve. After landing, most crewmembers exhibited localized shifts within their head pitch acceleration regimes, with the greatest deviations in RMS occurring on landing day or 1 day after landing. These results show that the alteration of head pitch coordination due to spaceflight may be assessed using an analysis of time-warping functions.
Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang
Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vsmore » treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.« less
Pehlivan, Berrin; Luthi, Francois; Matzinger, Oscar; Betz, Michael; Dragusanu, Daniela; Bulling, Shelley; Bron, Luc; Pasche, Philippe; Seelentag, Walter; Mirimanoff, René O; Zouhair, Abderrahim; Ozsahin, Mahmut
2009-05-01
The aim of this study was to assess feasibility and efficacy of weekly concomitant boost accelerated postoperative radiation therapy (PORT) with concomitant chemotherapy (CT) in patients with locally advanced head and neck cancer (LAHNC). Conformal or intensity-modulated 66-Gy RT was performed in 5.5 weeks in 40 patients. Cisplatin was given at days 1, 22, and 43. Median follow-up was 36 months. Grade 3 mucositis, dysphagia, and erythema was observed in ten (25%), nine (23%), and six (13%) patients, respectively. Grade 3 or more anemia was observed in two (6%) patients, and leukopenia in five (13%) patients. No grade 3 or 4 thrombocytopenia was observed. Grade 3 nephrotoxicity was observed in one patient (3%). No treatment-related mortality was observed. Grade 2 or more xerostomia and edema were observed in ten (25%) and one (3%) patient, respectively. Locoregional relapse occurred in eight patients, and seven patients developed distant metastases. Median time to locoregional relapse was 6 months. Three-year overall, disease-free survival, and locoregional control rates were 63%, 62%, and 81%, respectively. Multivariate analysis revealed that the only prognostic factor was nodal status. Reducing overall treatment time using accelerated PORT/CT by weekly concomitant boost (six fractions per week) combined with concomitant cisplatin CT is easily feasible with acceptable morbidity.
O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A
2011-06-01
Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.
Abe, Yota; Sugaya, Tomoaki; Sakamoto, Masaaki
2014-03-01
[Purpose] This study aimed to validate the postural control characteristics of individuals with a history of ankle sprain during single leg standing by using a gravicorder and head and foot accelerometry. [Subjects] Twenty subjects with and 23 subjects without a history of ankle sprain (sprain and control groups, respectively) participated. [Methods] The anteroposterior, mediolateral, and total path lengths, as well as root mean square (RMS) of each length, were calculated using the gravicorder. The anteroposterior, mediolateral, and resultant acceleration of the head and foot were measured using accelerometers and were evaluated as the ratio of the acceleration of the head to the foot. [Results] There was no significant difference between the two groups in path length or RMS acceleration of the head and foot. However, the ratios of the mediolateral and resultant components were significantly higher in the sprain group than in the control group. [Conclusion] Our findings suggest that individuals with a history of ankle sprain have a higher head-to-foot acceleration ratio and different postural control characteristics than those of control subjects.
2016-04-05
pathoanatomic classification of TBI focusing on two mechanisms, and demonstrates assessment of mechanism-specific therapy . Our results suggest that sildenafil... therapies . x TABLE OF CONTENTS LIST OF TABLES...mechanism-specific targeted therapies (28; 61; 106). At the time of the primary injury, rapid acceleration-decceleration of the head causes
Allal, Abdelkarim S; Taussky, Daniel; Mach, Nicolas; Becker, Minerva; Bieri, Sabine; Dulguerov, Pavel
2004-04-01
Accelerated schedules are effective in overcoming repopulation during radiotherapy (RT) for head-and-neck cancers, but their feasibility is compromised by increased toxicity. The therapeutic ratio may be particularly favorable for 5-week regimens. This study reports the 10-year experience of a single institution in the routine use of concomitant boost RT as standard radical treatment in all but the most favorable stage patients. Between February 1991 and June 2001, 296 patients (mean age, 59 years) were treated with concomitant boost RT either alone (67%) or combined with cisplatin-based chemotherapy (33%), with a median tumor dose of 69.9 Gy. Tumors were located in the oropharynx in 52%, hypopharynx in 20%, larynx in 15%, nasopharynx in 7%, and oral cavity in 6%. International Union Against Cancer Stage III-IV disease represented 77% of tumors. The median follow-up for surviving patients was 55 months (range, 10-138 months). The RT schedule was completed to the prescribed dose in all but 1 patient. Twenty patients (7%) had a treatment interruption (median, 5 days; range, 2-35 days). Grade 3-4 Radiation Therapy Oncology Group acute toxicity was observed in 77% of patients, and nutritional support was required in 110 patients (37%). For all patients, the 5-year actuarial locoregional control and disease-free survival rate was 72% and 61%, respectively. In a multivariate analysis, only T and N stage was significantly associated with locoregional control and disease-free survival. Grade 3-4 late toxicity occurred in 14%, mostly bone and cartilage necrosis. The present, moderately accelerated, concomitant boost regimen is logistically feasible, causing minimal inconvenience to the technical staff and yielding a high rate of patient compliance. Concomitant chemotherapy administration is feasible provided that patients are carefully selected and supportive care is introduced in a timely fashion. Considering the manageable toxicity and the satisfactory tumor control obtained, this regimen represents a good choice when considering implementation of an altered RT fractionation schedule as standard treatment for head-and-neck cancers.
Blumenthal, Gideon M.; Yuan, Weishi; He, Kun; Sridhara, Rajeshwari; Subramaniam, Sriram; Zhao, Hong; Liu, Chao; Yu, Jingyu; Goldberg, Kirsten B.; McKee, Amy E.; Keegan, Patricia; Pazdur, Richard
2017-01-01
Abstract On August 5, 2016, the U.S. Food and Drug Administration granted accelerated approval to pembrolizumab (KEYTRUDA injection, Merck Sharp & Dohme Corp., Kenilworth, NJ) for treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum‐containing chemotherapy. Approval was based on the objective response rate (ORR) and duration of response (DoR) in a cohort of patients in a nonrandomized multi‐cohort trial (KEYNOTE‐012) that included 174 patients with recurrent or metastatic HNSCC who had disease progression on or after platinum‐containing chemotherapy. Patients received either intravenous pembrolizumab 10 mg/kg every 2 weeks or 200 mg every 3 weeks. ORR was determined by independent review according to Response Evaluation Criteria in Solid Tumors 1.1. ORR was 16% (95% confidence interval 11, 22) with a complete response rate of 5%. DoR ranged from 2.4+ months to 27.7+ months. Twenty‐three of 28 responding patients (82%) had response durations of ≥6 months. Safety was evaluated in 192 patients with HNSCC receiving at least one dose of pembrolizumab. Frequent (≥2%) serious adverse reactions were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. Clinically significant immune‐mediated adverse reactions included pneumonitis, colitis, hepatitis, adrenal insufficiency, diabetes mellitus, skin toxicity, myositis, and thyroid disorders. The benefit‐risk profile of pembrolizumab was considered acceptable in this patient population. As a condition of accelerated approval, Merck is required to conduct a confirmatory trial; this trial, KEYNOTE‐040, is ongoing. Implications for Practice. This accelerated approval expands the U.S. Food and Drug Administration‐approved indications for pembrolizumab, providing health care providers with new information regarding pembrolizumab for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum‐containing chemotherapy. Pembrolizumab is the first drug to receive approval for treatment of patients with HNSCC since cetuximab was approved for this indication in 2006. PMID:28533473
Monte Carlo study of neutron-ambient dose equivalent to patient in treatment room.
Mohammadi, A; Afarideh, H; Abbasi Davani, F; Ghergherehchi, M; Arbabi, A
2016-12-01
This paper presents an analytical method for the calculation of the neutron ambient dose equivalent H* (10) regarding patients, whereby the different concrete types that are used in the surrounding walls of the treatment room are considered. This work has been performed according to a detailed simulation of the Varian 2300C/D linear accelerator head that is operated at 18MV, and silver activation counter as a neutron detector, for which the Monte Carlo MCNPX 2.6 code is used, with and without the treatment room walls. The results show that, when compared to the neutrons that leak from the LINAC, both the scattered and thermal neutrons are the major factors that comprise the out-of field neutron dose. The scattering factors for the limonite-steel, magnetite-steel, and ordinary concretes have been calculated as 0.91±0.09, 1.08±0.10, and 0.371±0.01, respectively, while the corresponding thermal factors are 34.22±3.84, 23.44±1.62, and 52.28±1.99, respectively (both the scattering and thermal factors are for the isocenter region); moreover, the treatment room is composed of magnetite-steel and limonite-steel concretes, so the neutron doses to the patient are 1.79 times and 1.62 times greater than that from an ordinary concrete composition. The results also confirm that the scattering and thermal factors do not depend on the details of the chosen linear accelerator head model. It is anticipated that the results of the present work will be of great interest to the manufacturers of medical linear accelerators. Copyright © 2016. Published by Elsevier Ltd.
Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.
Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P
2017-03-01
Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.
Anthropometrics and maturity status: A preliminary study of youth football head impact biomechanics.
Yeargin, Susan W; Kingsley, Payton; Mensch, Jim M; Mihalik, Jason P; Monsma, Eva V
2017-10-03
There is a paucity of head impact biomechanics research focusing on youth athletes. Little is known about how youth subconcussive head impact tolerances are related to physical size and maturation. To examine the effects of age, anthropometric and maturational status variability on head impact biomechanics. Cross-sectional. Outdoor youth football facilities in South Carolina. Thirty-four male recreational youth football players, 8 to 13yrs. Categorized by CDC standards, independent variables were: age, height, mass, BMI, and estimated peak height velocity (PHV). Participants wore a designated head impact sensor (xPatch) on their mastoid process during practices and games. Linear acceleration (g) and rotational acceleration (rad/s 2 ). Boys in the older age category had a greater linear (F=17.72; P<0.001) and rotational acceleration (F=10.74; P<0.001) than those in the younger category. Post-PHV boys had higher linear (F=9.09, P=0.002) and rotational (F=5.57, P=0.018) accelerations than those who were pre-PHV. Rotational, but not linear acceleration differed by height category with lowest impacts found for the tallest category, whereas both linear and rotational accelerations by mass differences favored average and heavy categories. BMI overweight boys, had the greatest linear (F=5.25; P=0.011) and rotational acceleration (F=4.13; P=0.260) means. Post-PHV boys who were older, taller and had longer legs, but who were not heavier, had higher impacts perhaps due to the type of impacts sustained. Taller boys' heads are above their peers possibly encouraging hits in the torso region resulting in lower impact accelerations. Obese boys did not have sequential results compared to boys in the other BMI categories probably due to league rules, player position, and lack of momentum produced. Copyright © 2017 Elsevier B.V. All rights reserved.
Head impact exposure sustained by football players on days of diagnosed concussion.
Beckwith, Jonathan G; Greenwald, Richard M; Chu, Jeffrey J; Crisco, Joseph J; Rowson, Steven; Duma, Stefan M; Broglio, Steven P; McAllister, Thomas W; Guskiewicz, Kevin M; Mihalik, Jason P; Anderson, Scott; Schnebel, Brock; Brolinson, P Gunnar; Collins, Michael W
2013-04-01
This study compares the frequency and severity of head impacts sustained by football players on days with and without diagnosed concussion and to identify the sensitivity and specificity of single-impact severity measures to diagnosed injury. One thousand two hundred eight players from eight collegiate football teams and six high school football teams wore instrumented helmets to measure head impacts during all team sessions, of which 95 players were diagnosed with concussion. Eight players sustained two injuries and one sustained three, providing 105 injury cases. Measures of head kinematics (peak linear and rotational acceleration, Gadd severity index, head injury criteria (HIC15), and change in head velocity (Δv)) and the number of head impacts sustained by individual players were compared between days with and without diagnosed concussion. Receiver operating characteristic curves were generated to evaluate the sensitivity and specificity of each kinematic measure to diagnosed concussion using only those impacts that directly preceded diagnosis. Players sustained a higher frequency of impacts and impacts with more severe kinematic properties on days of diagnosed concussion than on days without diagnosed concussion. Forty-five injury cases were immediately diagnosed after head impact. For these cases, peak linear acceleration and HIC15 were most sensitive to immediately diagnosed concussion (area under the curve = 0.983). Peak rotational acceleration was less sensitive to diagnosed injury than all other kinematic measures (P = 0.01), which are derived from linear acceleration (peak linear, HIC15, Gadd severity index, and Δv). Players sustained more impacts and impacts of higher severity on days of diagnosed concussion than on days without diagnosed concussion. In addition, of historical measures of impact severity, those associated with peak linear acceleration are the best predictors of immediately diagnosed concussion.
Head Impact Exposure Sustained by Football Players on Days of Diagnosed Concussion
Beckwith, Jonathan G.; Greenwald, Richard M.; Chu, Jeffrey J.; Crisco, Joseph J.; Rowson, Steven; Duma, Stefan M.; Broglio, Steven P.; McAllister, Thomas W.; Guskiewicz, Kevin M.; Mihalik, Jason P.; Anderson, Scott; Schnebel, Brock; Brolinson, P. Gunnar; Collins, Michael W.
2012-01-01
Purpose This study compares the frequency and severity of head impacts sustained by football players on days with and without diagnosed concussion and to identify the sensitivity and specificity of single impact severity measures to diagnosed injury. Methods 1,208 players from eight collegiate and six high school football teams wore instrumented helmets to measure head impacts during all team sessions, of which 95 players were diagnosed with concussion. Eight players sustained two injuries and one three, providing 105 injury cases. Measures of head kinematics (peak linear and rotational acceleration, Gadd Severity Index (GSI), Head Injury Criteria (HIC15), change in head velocity (Δv)) and the number of head impacts sustained by individual players were compared between days with and without diagnosed concussion. Receiver operator characteristic curves were generated to evaluate the sensitivity and specificity of each kinematic measure to diagnosed concussion using only those impacts that directly preceded diagnosis. Results Players sustained a higher frequency of impacts and impacts with more severe kinematic properties on days of diagnosed concussion than on days without diagnosed concussion. Forty-five injury cases were immediately diagnosed following head impact. For these cases, peak linear acceleration and HIC15 were most sensitive to immediately diagnosed concussion (AUC = 0.983). Peak rotational acceleration was less sensitive to diagnosed injury than all other kinematic measures (p = 0.01) which are derived from linear acceleration (peak linear, HIC15, GSI, and Δv). Conclusions Players sustain more impacts and impacts of higher severity on days of diagnosed concussion than on days without diagnosed concussion. Additionally, of historical measures of impact severity, those associated with peak linear acceleration are the best predictors of immediately diagnosed concussion. PMID:23135363
Cashmore, Jason; Ramtohul, Mark; Ford, Dan
2011-07-15
Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments. Copyright © 2011 Elsevier Inc. All rights reserved.
Concussion in professional football: animal model of brain injury--part 15.
Viano, David C; Hamberger, Anders; Bolouri, Hayde; Säljö, Annette
2009-06-01
A concussion model was developed to study injury mechanisms, functional effects, treatment, and recovery. Concussions in National Football League football involve high-impact velocity (7.4-11.2 m/s) and rapid change in head velocity (DeltaV) (5.4-9.0 m/s). Current animal models do not simulate these head impact conditions. One hundred eight adult male Wistar rats weighing 280 to 350 g were used in ballistic impacts simulating 3 collision severities causing National Football League-type concussion. Pneumatic pressure accelerated a 50 g impactor to velocities of 7.4, 9.3, and 11.2 m/s at the left side of the helmet-protected head. A thin layer of padding on the helmet controlled head acceleration, which was measured on the opposite side of the head, in line with the impact. Peak head acceleration, DeltaV, impact duration, and energy transfer were determined. Fifty-four animals were exposed to single impact, with 18 each having 1, 4, or 10 days of survival. Similar tests were conducted on another 54 animals, which received 3 impacts at 6-hour intervals. An additional 72 animals were tested with a 100g impactor to study more serious brain injuries. Brains were perfused, and surface injuries were identified. The 50 g impactor matches concussion conditions scaled to the rat. Impact velocity and head DeltaV were within 1% and 3% of targets on average. Head acceleration reached 450 g to 1750 g without skull fracture. The test is repeatable and robust. Gross pathology was observed in 11%, 28%, and 33% of animals in the 7.4-, 9.3-, and 11.2-m/s single impacts, respectively. At 7.4 m/s, a single diameter area of less than 0.5 mm of fine petechial hemorrhage occurred on the brain surface in the parenchyma and meninges nearest the point of impact. At higher velocities, there were larger areas of bleeding, sometimes with subdural hemorrhage. When the 50 g impactor tests were examined by logistic regression, greater energy transfer increased the probability of injury (odds ratio, 5.83; P = 0.01), as did 3 repeat impacts (odds ratio, 4.72; P = 0.002). The number of survival days decreased the probability of observing injury (odds ratio, 0.25 and 0.11 for 4 and 10 days, respectively, compared with 1 day). The 100g impactor produced more severe brain injuries. A concussion model was developed to simulate the high velocity of impact and rapid head DeltaV of concussions in National Football League players. The new procedure can be used to evaluate immediate and latent effects of concussion and more severe injury with greater impact mass.
SU-E-T-168: Characterization of Neutrons From the TrueBeam Treatment Head
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawkey, D; Svatos, M
2015-06-15
Purpose: Calculate neutron production and transport in the TrueBeam treatment head, as input for vault design and phantom dose calculations. Methods: A detailed model of the treatment head, including shielding components off the beam axis, was created from manufacturer’s engineering drawings. Simulations were done with Geant4 for the 18X, 15X, 10X and 10FFF beams, tuned to match measured dose distributions inside the treatment field. Particles were recorded on a 70 cm radius sphere surrounding the treatment head enabling input into simulations of vaults. Results: For the 18X beam, 11×10{sup 9} neutrons/MU were observed. The energy spectrum was a broad peakmore » with average energy 0.37 MeV. With jaws closed, 48% of the neutrons were generated in the primary collimator, 18% in the jaws, 12% in the target, and 10% in the flattening filter. With wide open jaws, few neutrons were produced in the jaws and consequently total neutron production dropped to 8.5×10{sup 9} neutrons/MU. Angular distributions were greatest along the beam axis (12×10{sup 9} neutrons/MU/sr, within 2 deg of the beam axis) and antiparallel to the beam axis (7×10{sup 9} neutrons/MU/sr). Peaks were observed in the neutron energy spectrum, corresponding to elastic scattering resonances in the shielding materials. Neutron production was lower for the other beams studied: 4.1×10{sup 9} neutrons/MU for 15X, 0.38×10{sup 9} neutrons/MU for 10X, and 0.22×10{sup 9} neutrons/MU for 10FFF. Despite dissimilar treatment head geometries and materials, the neutron production and energy spectrum were similar to those reported for Clinac accelerators. Conclusion: Detailed neutron production and leakage calculations for the TrueBeam treatment head were done. Unlike other studies, results are independent of the surrounding vault, enabling vault design calculations.« less
Sensing Passive Eye Response to Impact Induced Head Acceleration Using MEMS IMUs.
Meng, Yuan; Bottenfield, Brent; Bolding, Mark; Liu, Lei; Adams, Mark L
2018-02-01
The eye may act as a surrogate for the brain in response to head acceleration during an impact. Passive eye movements in a dynamic system are sensed by microelectromechanical systems (MEMS) inertial measurement units (IMU) in this paper. The technique is validated using a three-dimensional printed scaled human skull model and on human volunteers by performing drop-and-impact experiments with ribbon-style flexible printed circuit board IMUs inserted in the eyes and reference IMUs on the heads. Data are captured by a microcontroller unit and processed using data fusion. Displacements are thus estimated and match the measured parameters. Relative accelerations and displacements of the eye to the head are computed indicating the influence of the concussion causing impacts.
NASA Astrophysics Data System (ADS)
Bartsch, Adam; Samorezov, Sergey
2013-05-01
Nearly 2 million Traumatic Brain Injuries (TBI) occur in the U.S. each year, with societal costs approaching $60 billion. Including mild TBI and concussion, TBI's are prevalent in soldiers returning from Iraq and Afghanistan as well as in domestic athletes. Long-term risks of single and cumulative head impact dosage may present in the form of post traumatic stress disorder (PTSD), depression, suicide, Chronic Traumatic Encephalopathy (CTE), dementia, Alzheimer's and Parkinson's diseases. Quantifying head impact dosage and understanding associated risk factors for the development of long-term sequelae is critical toward developing guidelines for TBI exposure and post-exposure management. The current knowledge gap between head impact exposure and clinical outcomes limits the understanding of underlying TBI mechanisms, including effective treatment protocols and prevention methods for soldiers and athletes. In order to begin addressing this knowledge gap, Cleveland Clinic is developing the "Intelligent Mouthguard" head impact dosimeter. Current testing indicates the Intelligent Mouthguard can quantify linear acceleration with 3% error and angular acceleration with 17% error during impacts ranging from 10g to 174g and 850rad/s2 to 10000rad/s2, respectively. Correlation was high (R2 > 0.99, R2 = 0.98, respectively). Near-term development will be geared towards quantifying head impact dosages in vitro, longitudinally in athletes and to test new sensors for possible improved accuracy and reduced bias. Long-term, the IMG may be useful to soldiers to be paired with neurocognitive clinical data quantifying resultant TBI functional deficits.
Acceleration induced water removal from ear canals.
NASA Astrophysics Data System (ADS)
Kang, Hosung; Averett, Katelee; Jung, Sunghwan
2017-11-01
Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.
Nourmohammadi, Bahareh; Mesbahi, Asghar
2018-06-01
Despite all advantages for using high-energy photons for radiotherapy, high-energy photon beams (≥10 MV) induce photonuclear and neutron capture interactions, which result in producing radionuclide byproducts inside the Linac head and bunker, exposing radiation therapy technologists (RTTs) and patients to excessive dose. By the use of higher photon energy, greater number of monitor unit, greater field size and adding treatment accessories, induced dose rate become greater in the isocenter mainly due to activation of high-Z materials inside the Linac head. Activated radionuclides disintegrate with γ, β+ and β- rays with half-lives between 2 min up to more than 5 years. Several researches estimated additional exposure to an RTT depend on treatment strategies, beam energy, and delay time before entrance to the treatment room between 0.1 and 4.9 mSv/y and proposed at least 2 min delay before entrance to the treatment room after treatments with high-energy photon beams.
Role of awareness in head-neck acceleration in low velocity rear-end impacts.
Kumar, S; Narayan, Y; Amell, T
2000-03-01
Fourteen normal healthy seated and restrained young adults were delivered rear-end impacts of four intensities of acceleration. The chair was delivered a regulated and controlled pneumatic blow using a 30 cm cylinder to cause an acceleration of 0.5, 0.9, 1.1 and 1.4g. The accelerated chair was stopped suddenly by impacting the stopper at the other end of the 2 m long friction reduced track. In one set of trials, subjects were informed about the impending impact and in the other they were blindfolded and provided with loud auditory input to eliminate cues of the impact. The accelerations of the chair, shoulder and head of the participating subjects were measured triaxially and compared between levels of acceleration and expectation. The multiple analyses of variance revealed that the peak acceleration was significantly affected by the gender (P < 0.01), intensity of impact (P < 0.001), and expectation (P < 0.0001). The accelerations were significantly different in different axes (P < 0.001). A significant two-way interaction between acceleration and expectation (P < 0.03), and expectation and axes of acceleration (P < 0.02) would imply that awareness of the impending impact serves to significantly reduce the level of accelerations of head and neck.
Active head rotations and eye-head coordination
NASA Technical Reports Server (NTRS)
Zangemeister, W. H.; Stark, L.
1981-01-01
It is pointed out that head movements play an important role in gaze. The interaction between eye and head movements involves both their shared role in directing gaze and the compensatory vestibular ocular reflex. The dynamics of head trajectories are discussed, taking into account the use of parameterization to obtain the peak velocity, peak accelerations, the times of these extrema, and the duration of the movement. Attention is given to the main sequence, neck muscle EMG and details of the head-movement trajectory, types of head model accelerations, the latency of eye and head movement in coordinated gaze, gaze latency as a function of various factors, and coordinated gaze types. Clinical examples of gaze-plane analysis are considered along with the instantaneous change of compensatory eye movement (CEM) gain, and aspects of variability.
A study of emergency American football helmet removal techniques.
Swartz, Erik E; Mihalik, Jason P; Decoster, Laura C; Hernandez, Adam E
2012-09-01
The purpose was to compare head kinematics between the Eject Helmet Removal System and manual football helmet removal. This quasi-experimental study was conducted in a controlled laboratory setting. Thirty-two certified athletic trainers (sex, 19 male and 13 female; age, 33 ± 10 years; height, 175 ± 12 cm; mass, 86 ± 20 kg) removed a football helmet from a healthy model under 2 conditions: manual helmet removal and Eject system helmet removal. A 6-camera motion capture system recorded 3-dimensional head position. Our outcome measures consisted of the average angular velocity and acceleration of the head in each movement plane (sagittal, frontal, and transverse), the resultant angular velocity and acceleration, and total motion. Paired-samples t tests compared each variable across the 2 techniques. Manual helmet removal elicited greater average angular velocity in the sagittal and transverse planes and greater resultant angular velocity compared with the Eject system. No differences were observed in average angular acceleration in any single plane of movement; however, the resultant angular acceleration was greater during manual helmet removal. The Eject Helmet Removal System induced greater total head motion. Although the Eject system created more motion at the head, removing a helmet manually resulted in more sudden perturbations as identified by resultant velocity and acceleration of the head. The implications of these findings relate to the care of all cervical spine-injured patients in emergency medical settings, particularly in scenarios where helmet removal is necessary. Copyright © 2012 Elsevier Inc. All rights reserved.
Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes
Bretzin, Abigail C.; Mansell, Jamie L.; Tierney, Ryan T.; McDevitt, Jane K.
2016-01-01
Background: Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. Hypothesis: The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Study Design: Pilot, cross-sectional design. Level of Evidence: Level 3. Methods: Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Results: Sex differences were observed in neck girth (t = 5.09, P < 0.001), flexor and left lateral flexor strength (t = 3.006, P = 0.012 and t = 4.182, P = 0.002, respectively), and rotational velocity at both speeds (t = −2.628, P = 0.024 and t = −2.227, P = 0.048). Neck girth had negative correlations with both linear acceleration (r = −0.599, P = 0.031) and rotational velocity at both speeds (r = −0.551, P = 0.012 and r = −0.652, P = 0.016). Also, stronger muscle groups had lower linear accelerations at both speeds (P < 0.05). Conclusion: There was a significant relationship between anthropometrics and soccer heading kinematics for sex and ball speeds. Clinical Relevance: Neck girth and neck strength are factors that may limit head impact kinematics. PMID:28225689
Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes.
Bretzin, Abigail C; Mansell, Jamie L; Tierney, Ryan T; McDevitt, Jane K
Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Pilot, cross-sectional design. Level 3. Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Sex differences were observed in neck girth ( t = 5.09, P < 0.001), flexor and left lateral flexor strength ( t = 3.006, P = 0.012 and t = 4.182, P = 0.002, respectively), and rotational velocity at both speeds ( t = -2.628, P = 0.024 and t = -2.227, P = 0.048). Neck girth had negative correlations with both linear acceleration ( r = -0.599, P = 0.031) and rotational velocity at both speeds ( r = -0.551, P = 0.012 and r = -0.652, P = 0.016). Also, stronger muscle groups had lower linear accelerations at both speeds ( P < 0.05). There was a significant relationship between anthropometrics and soccer heading kinematics for sex and ball speeds. Neck girth and neck strength are factors that may limit head impact kinematics.
Neck forces and moments and head accelerations in side impact.
Yoganandan, Narayan; Pintar, Frank A; Maiman, Dennis J; Philippens, Mat; Wismans, Jac
2009-03-01
Although side-impact sled studies have investigated chest, abdomen, and pelvic injury mechanics, determination of head accelerations and the associated neck forces and moments is very limited. The purpose of the present study was therefore to determine the temporal forces and moments at the upper neck region and head angular accelerations and angular velocities using postmortem human subjects (PMHS). Anthropometric data and X-rays were obtained, and the specimens were positioned upright on a custom-designed seat, rigidly fixed to the platform of the sled. PMHS were seated facing forward with the Frankfort plane horizontal, and legs were stretched parallel to the mid-sagittal plane. The normal curvature and alignment of the dorsal spine were maintained without initial torso rotation. A pyramid-shaped nine-accelerometer package was secured to the parietal-temporal region of the head. The test matrix consisted of groups A and B, representing the fully restrained torso condition, and groups C and D, representing the three-point belt-restrained torso condition. The change in velocity was 12.4 m/s for groups A and C, 17.9 m/s for group B, and 8.7 m/s for group D tests. Two specimens were tested in each group. Injuries were scored based on the Abbreviated Injury Scale. The head mass, center of gravity, and moment of inertia were determined for each specimen. Head accelerations and upper neck forces and moments were determined before head contact. Neck forces and moments and head angular accelerations and angular velocities are presented on a specimen-by-specimen basis. In addition, a summary of peak magnitudes of biomechanical data is provided because of their potential in serving as injury reference values characterizing head-neck biomechanics in side impacts. Though no skull fractures occurred, AIS 0 to 3 neck traumas were dependent on the impact velocity and restraint condition. Because specimen-specific head center of gravity and mass moment of inertia were determined, and a suitable instrumentation system was used for data collection and analysis, head angular accelerations and neck forces and moments determined in the present study can be used with confidence to advance impact biomechanics research. Although the sample size is limited in each group, results from these tests serve as a fundamental data set to validate finite element models and evaluate the performance and biofidelity of federalized and prototype side-impact dummies with a focus on head-neck biomechanics.
Lamba, Michael A. S.; Elson, Howard R.
2010-01-01
The purpose of this study was to compare the peripheral doses to various organs from a typical head and neck intensity‐modulated radiation therapy (IMRT) treatment delivered by linear accelerator (linac) and helical TomoTherapy. Multiple human CT data sets were used to segment critical structures and organs at risk, fused and adjusted to an anthropomorphic phantom. Eighteen contours were designated for thermoluminescent dosimeter (TLD) placement. Following the RTOG IMRT Protocol 0522, treatment of the primary tumor and involved nodes (PTV70) and subclinical disease sites (PTV56) was planned utilizing IMRT to 70 Gy and 56 Gy. Clinically acceptable treatment plans were produced for linac and TomoTherapy treatments. TLDs were placed and each treatment plan was delivered to the anthropomorphic phantom four times. Within 2.5 cm (one helical TomoTherapy field width) superior and inferior to the field edges, normal tissue doses were on average 45% lower using linear accelerator. Beyond 2.5 cm, the helical TomoTherapy normal tissue dose was an average of 52% lower. The majority of points proved to be statistically different using the Student's t‐test with p<0.05. Using one method of calculation, probability of a secondary malignancy was 5.88% for the linear accelerator and 4.08% for helical TomoTherapy. Helical TomoTherapy delivers more dose than a linac immediately above and below the treatment field, contributing to the higher peripheral doses adjacent to the field. At distances beyond one field width (where leakage is dominant), helical TomoTherapy doses are lower than linear accelerator doses. PACS number: 87.50.cm Dosimetry/exposure assessment
Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Delombard, Richard
1994-01-01
The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.
Tilt perception during dynamic linear acceleration.
Seidman, S H; Telford, L; Paige, G D
1998-04-01
Head tilt is a rotation of the head relative to gravity, as exemplified by head roll or pitch from the natural upright orientation. Tilt stimulates both the otolith organs, owing to shifts in gravitational orientation, and the semicircular canals in response to head rotation, which in turn drive a variety of behavioral and perceptual responses. Studies of tilt perception typically have not adequately isolated otolith and canal inputs or their dynamic contributions. True tilt cannot readily dissociate otolith from canal influences. Alternatively, centrifugation generates centripetal accelerations that simulate tilt, but still entails a rotatory (canal) stimulus during important periods of the stimulus profiles. We reevaluated the perception of head tilt in humans, but limited the stimulus to linear forces alone, thus isolating the influence of otolith inputs. This was accomplished by employing a centrifugation technique with a variable-radius spinning sled. This allowed us to accelerate the sled to a constant angular velocity (128 degrees/s), with the subject centered, and then apply dynamic centripetal accelerations after all rotatory perceptions were extinguished. These stimuli were presented in the subjects' naso-occipital axis by translating the subjects 50 cm eccentrically either forward or backward. Centripetal accelerations were thus induced (0.25 g), which combined with gravity to yield a dynamically shifting gravitoinertial force simulating pitch-tilt, but without actually rotating the head. A magnitude-estimation task was employed to characterize the dynamic perception of pitch-tilt. Tilt perception responded sluggishly to linear acceleration, typically reaching a peak after 10-30 s. Tilt perception also displayed an adaptation phenomenon. Adaptation was manifested as a per-stimulus decline in perceived tilt during prolonged stimulation and a reversal aftereffect upon return to zero acceleration (i.e., recentering the subject). We conclude that otolith inputs can produce tilt perception in the absence of canal stimulation, and that this perception is subject to an adaptation phenomenon and low-pass filtering of its otolith input.
Kinematics of a Head-Neck Model Simulating Whiplash
NASA Astrophysics Data System (ADS)
Colicchia, Giuseppe; Zollman, Dean; Wiesner, Hartmut; Sen, Ahmet Ilhan
2008-02-01
A whiplash event is a relative motion between the head and torso that occurs in rear-end automobile collisions. In particular, the large inertia of the head results in a horizontal translation relative to the thorax. This paper describes a simulation of the motion of the head and neck during a rear-end (whiplash) collision. A head-neck model that qualitatively undergoes the same forces acting in whiplash and shows the same behavior is used to analyze the kinematics of both the head and the cervical spine and the resulting neck loads. The rapid acceleration during a whiplash event causes the extension and flexion of the cervical spine, which in turn can cause dislocated vertebrae, torn ligaments, intervertebral disc herniation, and other trauma that appear to be the likely causes of subsequent painful headache or neck pain symptoms. Thus, whiplash provides a connection between the dynamics of the human body and physics. Its treatment can enliven the usual teaching in kinematics, and both theoretical and experimental approaches provide an interesting biological context to teach introductory principles of mechanics.
Magnitude of Head Impact Exposures in Individual Collegiate Football Players
Wilcox, Bethany J.; Machan, Jason T.; McAllister, Thomas W.; Duhaime, Ann-Christine; Duma, Stefan M.; Rowson, Steven; Beckwith, Jonathan G.; Chu, Jeffrey J.; Greenwald, Richard M.
2013-01-01
The purpose of this study was to quantify the severity of head impacts sustained by individual collegiate football players and to investigate differences between impacts sustained during practice and game sessions, as well as by player position and impact location. Head impacts (N = 184,358) were analyzed for 254 collegiate players at three collegiate institutions. In practice, the 50th and 95th percentile values for individual players were 20.0 g and 49.5 g for peak linear acceleration, 1187 rad/s2 and 3147 rad/s2 for peak rotational acceleration, and 13.4 and 29.9 for HITsp, respectively. Only the 95th percentile HITsp increased significantly in games compared with practices (8.4%, p= .0002). Player position and impact location were the largest factors associated with differences in head impacts. Running backs consistently sustained the greatest impact magnitudes. Peak linear accelerations were greatest for impacts to the top of the helmet, whereas rotational accelerations were greatest for impacts to the front and back. The findings of this study provide essential data for future investigations that aim to establish the correlations between head impact exposure, acute brain injury, and long-term cognitive deficits. PMID:21911854
Kinetics of the head-neck complex in low-speed rear impact.
Stemper, Brian D; Yoganandan, Naryan; Pintar, Frank A
2003-01-01
A comprehensive characterization of the biomechanics of the cervical spine in rear impact will lead to an understanding of the mechanisms of whiplash injury. Cervical kinematics have been experimentally described using human volunteers, full-body cadaver specimens, and isolated and intact head-neck specimens. However, forces and moments at the cervico-thoracic junction have not been clearly delineated. An experimental investigation was performed using ten intact head-neck complexes to delineate the loading at the base of the cervical spine and angular acceleration of the head in whiplash. A pendulum-minisled apparatus was used to simulate whiplash acceleration of the thorax at four impact severities. Lower neck loads were measured using a six-axis load cell attached between the minisled and head-neck specimens, and head angular motion was measured with an angular rate sensor attached to the lateral side of the head. Shear and axial force, extension moment, and head angular acceleration increased with impact severity. Shear force was significantly larger than axial force (p < 0.0001). Shear force reached its maximum value at 46 msec. Maximum extension moment occurred between 7 and 22 msec after maximum shear force. Maximum angular acceleration of the head occurred 2 to 18 msec later. Maximum axial force occurred last (106 msec). All four kinetic components reached maximum values during cervical S-curvature, with maximum shear force and extension moment occurring before the attainment of maximum S-curvature. Results of the present investigation indicate that shear force and extension moment at the cervico-thoracic junction drive the non-physiologic cervical S-curvature responsible for whiplash injury and underscore the importance of understanding cervical kinematics and the underlying kinetics.
Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Bush, G. A.; Perachio, A. A.
1993-01-01
Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses, respectively, elicited in the rat during linear translation in the horizontal head plane. In addition, the data suggest a spatially and temporally specific and selective otolith/canal convergence. We propose that the central otolith system is organized in canal coordinates such that there is a close alignment between the plane of angular acceleration (canal) sensitivity and the plane of linear acceleration (otolith) sensitivity in otolith/canal-convergent vestibular nuclei neurons.
Brown, Alan S.; Gyllenberg, David; Hinkka-Yli-Salomäki, Susanna; Sourander, Andre; McKeague, Ian W.
2016-01-01
Identification of abnormalities in the developmental trajectory during infancy of future schizophrenia cases offers the potential to reveal pathogenic mechanisms of this disorder. Previous studies of head circumference in pre-schizophrenia were limited to measures at birth. The use of growth acceleration of head circumference (defined as the rate of change in head circumference) provides a more informative representation of the maturational landscape of this measure compared to studies based on static head circumference measures. To date, however, no study has examined whether HC growth acceleration differs between pre-schizophrenia cases and controls. In the present study, we employed a nested case control design of a national birth cohort in Finland. Cases with schizophrenia or schizoaffective disorder (N=375) and controls (N=375) drawn from the birth cohort were matched 1:1 on date of birth (within 1 month), sex, and residence in Finland at case diagnosis. Longitudinal data were obtained on head circumference from birth through age 1. Data were analyzed using a new nonparametric Bayesian inversion method which allows for a detailed understanding of growth dynamics. Adjusting for growth velocity of height and weight, and gestational age, there was significantly accelerated growth of head circumference in females with schizophrenia from birth to 2 months; the findings remained significant following Bonferroni correction (p < 0.0125). This is the first study to report abnormal HC growth acceleration, a more sensitive measure of somatic developmental deviation of this measure, in schizophrenia. PMID:27818077
Suderman, Bethany L; Hoover, Ryan W; Ching, Randal P; Scher, Irving S
2014-12-01
We evaluated the effectiveness of hardhats in attenuating head acceleration and neck force in vertical impacts from large construction objects. Two weight-matched objects (lead shot bag and concrete block) weighing 9.1 kg were dropped from three heights (0.91 m, 1.83 m and 2.74 m) onto the head of a 50th percentile male Hybrid III anthropomorphic test device (ATD). Two headgear conditions were tested: no head protection and an ANSI Type-I, Class-E hardhat. A third headgear condition (snow sport helmet) was tested at 1.83 m for comparison with the hardhat. Hardhats significantly reduced the resultant linear acceleration for the concrete block impacts by 70-95% when compared to the unprotected head condition. Upper neck compression was also significantly reduced by 26-60% with the use of a hardhat when compared to the unprotected head condition for the 0.91 and 1.83 m drop heights for both lead shot and concrete block drop objects. In this study we found that hardhats can be effective in reducing both head accelerations and compressive neck forces for large construction objects in vertical impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.
VARIAN CLINAC 6 MeV Photon Spectra Unfolding using a Monte Carlo Meshed Model
NASA Astrophysics Data System (ADS)
Morató, S.; Juste, B.; Miró, R.; Verdú, G.
2017-09-01
Energy spectrum is the best descriptive function to determine photon beam quality of a Medical Linear Accelerator (LinAc). The use of realistic photon spectra in Monte Carlo simulations has a great importance to obtain precise dose calculations in Radiotherapy Treatment Planning (RTP). Reconstruction of photon spectra emitted by medical accelerators from measured depth dose distributions in a water cube is an important tool for commissioning a Monte Carlo treatment planning system. Regarding this, the reconstruction problem is an inverse radiation transport function which is ill conditioned and its solution may become unstable due to small perturbations in the input data. This paper presents a more stable spectral reconstruction method which can be used to provide an independent confirmation of source models for a given machine without any prior knowledge of the spectral distribution. Monte Carlo models used in this work are built with unstructured meshes to simulate with realism the linear accelerator head geometry.
Penguin head movement detected using small accelerometers: a proxy of prey encounter rate.
Kokubun, Nobuo; Kim, Jeong-Hoon; Shin, Hyoung-Chul; Naito, Yasuhiko; Takahashi, Akinori
2011-11-15
Determining temporal and spatial variation in feeding rates is essential for understanding the relationship between habitat features and the foraging behavior of top predators. In this study we examined the utility of head movement as a proxy of prey encounter rates in medium-sized Antarctic penguins, under the presumption that the birds should move their heads actively when they encounter and peck prey. A field study of free-ranging chinstrap and gentoo penguins was conducted at King George Island, Antarctica. Head movement was recorded using small accelerometers attached to the head, with simultaneous monitoring for prey encounter or body angle. The main prey was Antarctic krill (>99% in wet mass) for both species. Penguin head movement coincided with a slow change in body angle during dives. Active head movements were extracted using a high-pass filter (5 Hz acceleration signals) and the remaining acceleration peaks (higher than a threshold acceleration of 1.0 g) were counted. The timing of head movements coincided well with images of prey taken from the back-mounted cameras: head movement was recorded within ±2.5 s of a prey image on 89.1±16.1% (N=7 trips) of images. The number of head movements varied largely among dive bouts, suggesting large temporal variations in prey encounter rates. Our results show that head movement is an effective proxy of prey encounter, and we suggest that the method will be widely applicable for a variety of predators.
King, D; Hume, P; Gissane, C; Brughelli, M; Clark, T
2016-02-01
Head impacts and resulting head accelerations cause concussive injuries. There is no standard for reporting head impact data in sports to enable comparison between studies. The aim was to outline methods for reporting head impact acceleration data in sport and the effect of the acceleration thresholds on the number of impacts reported. A systematic review of accelerometer systems utilised to report head impact data in sport was conducted. The effect of using different thresholds on a set of impact data from 38 amateur senior rugby players in New Zealand over a competition season was calculated. Of the 52 studies identified, 42% reported impacts using a >10-g threshold, where g is the acceleration of gravity. Studies reported descriptive statistics as mean ± standard deviation, median, 25th to 75th interquartile range, and 95th percentile. Application of the varied impact thresholds to the New Zealand data set resulted in 20,687 impacts of >10 g, 11,459 (45% less) impacts of >15 g, and 4024 (81% less) impacts of >30 g. Linear and angular raw data were most frequently reported. Metrics combining raw data may be more useful; however, validity of the metrics has not been adequately addressed for sport. Differing data collection methods and descriptive statistics for reporting head impacts in sports limit inter-study comparisons. Consensus on data analysis methods for sports impact assessment is needed, including thresholds. Based on the available data, the 10-g threshold is the most commonly reported impact threshold and should be reported as the median with 25th and 75th interquartile ranges as the data are non-normally distributed. Validation studies are required to determine the best threshold and metrics for impact acceleration data collection in sport. Until in-field validation studies are completed, it is recommended that head impact data should be reported as median and interquartile ranges using the 10-g impact threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashmore, Jason, E-mail: Jason.cashmore@uhb.nhs.uk; Ramtohul, Mark; Ford, Dan
Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery ofmore » pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.« less
32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.
Wiggins, G C; Triantafyllou, C; Potthast, A; Reykowski, A; Nittka, M; Wald, L L
2006-07-01
A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g-factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g-factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g-factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Copyright (c) 2006 Wiley-Liss, Inc.
Arregui-Dalmases, Carlos; Rebollo-Soria, M Carmen; Sanchez-Molina, David; Velazquez-Ameijide, Juan; Teijeira Alvarez
Pedestrian-vehicle collisions are a leading cause of death among motor vehicle accidents. Recently, pedestrian injury research has been increased, mostly due to the implementation of European and Japanese regulations. This research presents an analysis of the main head injury vehicle sources and injury mechanisms observed in the field, posteriorly the data are compared with the current pedestrian regulations. The analysis has been performed through an epidemiologic transversal and descriptive study, using the Pedestrian Crash Data Study (PCDS) involving 552 pedestrians, sustaining a total of 4.500 documented injuries. According to this research, the hood surface is responsible for only 15,1% of all the head injuries. On the other hand, the windshield glazing is responsible for 41,8%. In case of sedan vehicles the head impact location exceeds what is expected in the current regulation, and therefore no countermeasures are applied. From all the head injuries sustained by the pedestrians just 20% have the linear acceleration as isolated injury mechanism, 40% of the injuries are due to rotational acceleration. In this research, the importance of the rotational acceleration as injury mechanism, in case of pedestrian-vehicle collision is highlighted. In the current pedestrian regulation just the linear acceleration is addressed in the main injury criteria used for head injury prediction. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Technical Reports Server (NTRS)
Correia, Manning J.; Luke, Brian L.; McGrath, Braden J.; Clark, John B.; Rupert, Angus H.
1996-01-01
While considerable attention has been given to visual-vestibular interaction (VVI) during angular motion of the head as might occur during an aircraft spin, much less attention has been given to VVI during linear motion of the head. Such interaction might occur, for example, while viewing a stationary or moving display during vertical take-off and landing operations Research into linear VVI, particularly during prolonged periods of linear acceleration, has been hampered by the unavailability of a programmable translator capable of large excursions We collaborated with Otis Elevator Co. and used their research tower and elevator, whose motion could be digitally programmed, to vertically translate human subjects over a distance of 92.3 meters with a peak linear acceleration of 2 meters/sec(exp 2) During pulsatile or sinusoidal translation, the subjects viewed moving stripes (optokinetic stimulus) or a fixed point source (light emitting diode, led, display), respectively and it was generally found that. The direction of linear acceleration relative to the cardinal head axes and the direction of the slow component of optokinetic nystagmus (OKN) determined the extent of VVI during concomitant stripe motion and linear acceleration. Acceleration along the z head axis (A(sub z)) produced the largest VVI, particularly when the slow component of OKN was in the same direction as eye movements produced by the linear acceleration and Eye movements produced by linear acceleration are suppressed by viewing a fixed target at frequencies below 10 Hz But, above this frequency the suppression produced by VVI is removed. Finally, as demonstrated in non-human primates, vergence of the eyes appears to modulate the vertical eye movement response to linear acceleration in humans.
Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar P.; Bloomberg, Jacob J.
2002-01-01
The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, tibia and foot, accelerations along the vertical axis at the head and the tibia, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the tibia and the transmission of the shock wave at heel strike (measured by the peak acceleration ratio of the head/tibia and the time lag between the tibial and head peak accelerations) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.
Ice hockey shoulder pad design and the effect on head response during shoulder-to-head impacts.
Richards, Darrin; Ivarsson, B Johan; Scher, Irving; Hoover, Ryan; Rodowicz, Kathleen; Cripton, Peter
2016-11-01
Ice hockey body checks involving direct shoulder-to-head contact frequently result in head injury. In the current study, we examined the effect of shoulder pad style on the likelihood of head injury from a shoulder-to-head check. Shoulder-to-head body checks were simulated by swinging a modified Hybrid-III anthropomorphic test device (ATD) with and without shoulder pads into a stationary Hybrid-III ATD at 21 km/h. Tests were conducted with three different styles of shoulder pads (traditional, integrated and tethered) and without shoulder pads for the purpose of control. Head response kinematics for the stationary ATD were measured. Compared to the case of no shoulder pads, the three different pad styles significantly (p < 0.05) reduced peak resultant linear head accelerations of the stationary ATD by 35-56%. The integrated shoulder pads reduced linear head accelerations by an additional 18-21% beyond the other two styles of shoulder pads. The data presented here suggest that shoulder pads can be designed to help protect the head of the struck player in a shoulder-to-head check.
Development of Head Injury Assessment Reference Values Based on NASA Injury Modeling
NASA Technical Reports Server (NTRS)
Somers, Jeffrey T.; Melvin, John W.; Tabiei, Ala; Lawrence, Charles; Ploutz-Snyder, Robert; Granderson, Bradley; Feiveson, Alan; Gernhardt, Michael; Patalak, John
2011-01-01
NASA is developing a new capsule-based, crewed vehicle that will land in the ocean, and the space agency desires to reduce the risk of injury from impact during these landings. Because landing impact occurs for each flight and the crew might need to perform egress tasks, current injury assessment reference values (IARV) were deemed insufficient. Because NASCAR occupant restraint systems are more effective than the systems used to determine the current IARVs and are similar to NASA s proposed restraint system, an analysis of NASCAR impacts was performed to develop new IARVs that may be more relevant to NASA s context of vehicle landing operations. Head IARVs associated with race car impacts were investigated by completing a detailed analysis of all of the 2002-2008 NASCAR impact data. Specific inclusion and exclusion criteria were used to select 4071 impacts from the 4015 recorder files provided (each file could contain multiple impact events). Of the 4071 accepted impacts, 274 were selected for numerical simulation using a custom NASCAR restraint system and Humanetics Hybrid-III 50th percentile numerical dummy model in LS-DYNA. Injury had occurred in 32 of the 274 selected impacts, and 27 of those injuries involved the head. A majority of the head injuries were mild concussions with or without brief loss of consciousness. The 242 non-injury impacts were randomly selected and representative of the range of crash dynamics present in the total set of 4071 impacts. Head dynamics data (head translational acceleration, translational change in velocity, rotational acceleration, rotational velocity, HIC-15, HIC-36, and the Head 3ms clip) were filtered according to SAE J211 specifications and then transformed to a log scale. The probability of head injury was estimated using a separate logistic regression analysis for each log-transformed predictor candidate. Using the log transformation constrains the estimated probability of injury to become negligible as IARVs approach zero. For the parameters head translational acceleration, head translational velocity change, head rotational acceleration, HIC-15, and HIC-36, conservative values (in the lower 95% confidence interval) that gave rise to a 5% risk of any injury occurring were estimated as 40.0 G, 7.9 m/s, 2200 rad/s2, 98.4, and 77.4 respectively. Because NASA is interested in the consequence of any particular injury on the ability of the crew to perform egress tasks, the head injuries that occurred in the NASCAR dataset were classified according to a NASA-developed scale (Classes I - III) for operationally relevant injuries, which classifies injuries on the basis of their operational significance. Additional analysis of the data was performed to determine the probability of each injury class occurring, and this was estimated using an ordered probit model. For head translational acceleration, head translational velocity change, head rotational acceleration, head rotational velocity, HIC-36, and head 3ms clip, conservative values of IARVs that produced a 5% risk of Class II injury were estimated as 50.7 G, 9.5 m/s, 2863 rad/s2, 11.0 rad/s, 30.3, and 46.4 G respectively. The results indicate that head IARVs developed from the NASCAR dataset may be useful to protect crews during landing impact.
Gutierrez, E; Huang, Y; Haglid, K; Bao, F; Hansson, H A; Hamberger, A; Viano, D
2001-03-01
Rapid head rotation is a major cause of brain damage in automobile crashes and falls. This report details a new model for rotational acceleration about the center of mass of the rabbit head. This allows the study of brain injury without translational acceleration of the head. Impact from a pneumatic cylinder was transferred to the skull surface to cause a half-sine peak acceleration of 2.1 x 10(5) rad/s2 and 0.96-ms pulse duration. Extensive subarachnoid hemorrhages and small focal bleedings were observed in the brain tissue. A pronounced reactive astrogliosis was found 8-14 days after trauma, both as networks around the focal hemorrhages and more diffusely in several brain regions. Astrocytosis was prominent in the gray matter of the cerebral cortex, layers II-V, and in the granule cell layer and around the axons of the pyramidal neurons in the hippocampus. The nuclei of cranial nerves, such as the hypoglossal and facial nerves, also showed intense astrocytosis. The new model allows study of brain injuries from head rotation in the absence of translational influences.
Can Functional Movement Assessment Predict Football Head Impact Biomechanics?
Ford, Julia M; Campbell, Kody R; Ford, Cassie B; Boyd, Kenneth E; Padua, Darin A; Mihalik, Jason P
2018-06-01
The purposes of this study was to determine functional movement assessments' ability to predict head impact biomechanics in college football players and to determine whether head impact biomechanics could explain preseason to postseason changes in functional movement performance. Participants (N = 44; mass, 109.0 ± 20.8 kg; age, 20.0 ± 1.3 yr) underwent two preseason and postseason functional movement assessment screenings: 1) Fusionetics Movement Efficiency Test and 2) Landing Error Scoring System (LESS). Fusionetics is scored 0 to 100, and participants were categorized into the following movement quality groups as previously published: good (≥75), moderate (50-75), and poor (<50). The LESS is scored 0 to 17, and participants were categorized into the following previously published movement quality groups: good (≤5 errors), moderate (6-7 errors), and poor (>7 errors). The Head Impact Telemetry (HIT) System measured head impact frequency and magnitude (linear acceleration and rotational acceleration). An encoder with six single-axis accelerometers was inserted between the padding of a commercially available Riddell football helmet. We used random intercepts general linear-mixed models to analyze our data. There were no effects of preseason movement assessment group on the two Head Impact Telemetry System impact outcomes: linear acceleration and rotational acceleration. Head impact frequency did not significantly predict preseason to postseason score changes obtained from the Fusionetics (F1,36 = 0.22, P = 0.643, R = 0.006) or the LESS (F1,36 < 0.01, P = 0.988, R < 0.001) assessments. Previous research has demonstrated an association between concussion and musculoskeletal injury, as well as functional movement assessment performance and musculoskeletal injury. The functional movement assessments chosen may not be sensitive enough to detect neurological and neuromuscular differences within the sample and subtle changes after sustaining head impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rekha Reddy, B.; Ravikumar, M.; Tanvir Pasha, C.R
2014-06-01
Purpose: To evaluate the radiobiological outcome of Intensity Modulated Radiotherapy Treatment (IMRT) for locally advanced head and neck squamous cell carcinomas using HART (Histogram Analysis in Radiation Therapy; J Appl Clin Med Phys 11(1): 137–157, 2010) program and compare with the clinical outcomes. Methods: We have treated 20 patients of stage III and IV HNSCC Oropharynx and hypopharynx with accelerated IMRT technique and concurrent chemotherapy. Delineation of tumor and normal tissues were done using Danish Head and Neck Cancer Group (DAHANCA) contouring guidelines and radiotherapy was delivered to a dose of 70Gy in 35 fractions to the primary and involvedmore » lymph nodes, 63Gy to intermediate risk areas and 56 Gy to lower risk areas, Monday to Saturday, 6 Days/week using 6 MV Photons with an expected overall treatment time of 6 weeks. The TCP and NTCP's were calculated from the dose-volume histogram (DVH) statistics using the Poisson Statistics (PS) and JT Lyman models respectively and the Resultwas correlated with clinical outcomes of the patients with mean follow up of 24 months. Results: Using HART program, the TCP (0.89± 0.01) of primary tumor and the NTCP for parotids (0.20±0.12), spinal cord (0.05±0.01), esophagus (0.30±0.2), mandible (0.35±0.21), Oral cavity (0.37±0.18), Larynx (0.30±0.15) were estimated and correlated with clinical outcome of the patients. Conclusion: Accelerated IMRT with Chemotherapy is a clinical feasible option in the treatment of locally advanced HNSCC with encouraging initial tumour response and acceptable acute toxicities. The correlation between the clinical outcomes and radiobiological model estimated parameters using HART programs are found to be satisfactory.« less
Analysis of head impacts during sub-elite hurling practice sessions.
O'Sullivan, D; Roe, M; Blake, C
2018-06-01
The reported incidence of head and neck injuries in hurling is 0.12 per 1000 hours, but no previous research has quantified head impact characteristics in this sport. Here, a wireless accelerometer and gyroscope captured head impacts, in 20 senior club level hurling players. Peak linear and rotational acceleration and impact location were recorded during three hurling training sessions, each player participating once. A mean of 27.9 impacts (linear acceleration >10g) per player, per session were recorded; 1314 impacts during a total exposure time of 247 minutes. Only 2.6% impacts had peak linear acceleration of >70g and 6.2% had peak rotational acceleration >7900 rad/s 2 . There were significant differences in the number and magnitude of impacts, quantified by the accelerometer, between three training sessions of differing intensity (ŋ2 0.03-0.09, p < 0.001). This study represents a first step in quantifying head impacts during hurling, demonstrating the feasibility of this technology in the field. The sensors were able to discriminate between sessions of varying intensity. These data can be used to develop athlete monitoring protocols and may be useful in developing innovative helmet-testing standards for hurling. The potential for this technology to provide feedback has clinical utility for team medical personnel.
Beckwith, Jonathan G; Chu, Jeffrey J; Greenwald, Richard M
2007-08-01
Although the epidemiology and mechanics of concussion in sports have been investigated for many years, the biomechanical factors that contribute to mild traumatic brain injury remain unclear because of the difficulties in measuring impact events in the field. The purpose of this study was to validate an instrumented boxing headgear (IBH) that can be used to measure impact severity and location during play. The instrumented boxing headgear data were processed to determine linear and rotational acceleration at the head center of gravity, impact location, and impact severity metrics, such as the Head Injury Criterion (HIC) and Gadd Severity Index (GSI). The instrumented boxing headgear was fitted to a Hybrid III (HIII) head form and impacted with a weighted pendulum to characterize accuracy and repeatability. Fifty-six impacts over 3 speeds and 5 locations were used to simulate blows most commonly observed in boxing. A high correlation between the HIII and instrumented boxing headgear was established for peak linear and rotational acceleration (r2= 0.91), HIC (r2 = 0.88), and GSI (r2 = 0.89). Mean location error was 9.7 +/- 5.2 masculine. Based on this study, the IBH is a valid system for measuring head acceleration and impact location that can be integrated into training and competition.
Brown, Alan S; Gyllenberg, David; Hinkka-Yli-Salomäki, Susanna; Sourander, Andre; McKeague, Ian W
2017-04-01
Identification of abnormalities in the developmental trajectory during infancy of future schizophrenia cases offers the potential to reveal pathogenic mechanisms of this disorder. Previous studies of head circumference in pre-schizophrenia were limited to measures at birth. The use of growth acceleration of head circumference (defined as the rate of change in head circumference) provides a more informative representation of the maturational landscape of this measure compared to studies based on static head circumference measures. To date, however, no study has examined whether HC growth acceleration differs between pre-schizophrenia cases and controls. In the present study, we employed a nested case control design of a national birth cohort in Finland. Cases with schizophrenia or schizoaffective disorder (N=375) and controls (N=375) drawn from the birth cohort were matched 1:1 on date of birth (within 1month), sex, and residence in Finland at case diagnosis. Longitudinal data were obtained on head circumference from birth through age 1. Data were analyzed using a new nonparametric Bayesian inversion method which allows for a detailed understanding of growth dynamics. Adjusting for growth velocity of height and weight, and gestational age, there was significantly accelerated growth of head circumference in females with schizophrenia from birth to 2months; the findings remained significant following Bonferroni correction (p<0.0125). This is the first study to report abnormal HC growth acceleration, a more sensitive measure of somatic developmental deviation of this measure, in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Miller, Logan E; Kuo, Calvin; Wu, Lyndia C; Urban, Jillian E; Camarillo, David B; Stitzel, Joel D
2018-05-01
Head impact exposure in popular contact sports is not well understood, especially in the youth population, despite recent advances in impact-sensing technology which has allowed widespread collection of real-time head impact data. Previous studies indicate that a custom-instrumented mouthpiece is a superior method for collecting accurate head acceleration data. The objective of this study was to evaluate the efficacy of mounting a sensor device inside an acrylic retainer form factor to measure six-degrees-of-freedom (6DOF) head kinematic response. This study compares 6DOF mouthpiece kinematics at the head center of gravity (CG) to kinematics measured by an anthropomorphic test device (ATD). This study found that when instrumentation is mounted in the rigid retainer form factor, there is good coupling with the upper dentition and highly accurate kinematic results compared to the ATD. Peak head kinematics were correlated with r2 > 0.98 for both rotational velocity and linear acceleration and r2 = 0.93 for rotational acceleration. These results indicate that a rigid retainer-based form factor is an accurate and promising method of collecting head impact data. This device can be used to study head impacts in helmeted contact sports such as football, hockey, and lacrosse as well as nonhelmeted sports such as soccer and basketball. Understanding the magnitude and frequency of impacts sustained in various sports using an accurate head impact sensor, such as the one presented in this study, will improve our understanding of head impact exposure and sports-related concussion.
Evaluating activation of the shielding walls of a treatment room using the Monte Carlo method
NASA Astrophysics Data System (ADS)
Lee, D.-Y.; Kim, J.-H.
2018-05-01
This study investigates the radiation activation process in a medical linear accelerator, which creates a photon beam with the energy acquired from accelerated electrons. The concrete shielding walls used in conjunction with a medical linear accelerator occupy the largest portion of facility decommissioning costs. Therefore, to evaluate the activation of the shielding wall, this study simulated the operation of a linear accelerator with high-energy photon beams (10, 15, and 20 MV). The results of the simulations showed that the high-energy photon beams produced a large number of neutrons in the areas around the linear accelerator head. Several radionuclides were identified, and their half-lives and radioactivity levels were calculated. Half-lives ranged from 2.62 hours to 3.68E+06 years, and the radioactivity levels of most of the radionuclides were found to satisfy their respective clearance requirements. These results indicate that photon beams of 15 MV or lower satisfy the clearance requirements for decommissioning a linear accelerator facility, whereas those of 20 MV or higher lie partially above the regulatory clearance levels.
Head impact exposure in youth football.
Daniel, Ray W; Rowson, Steven; Duma, Stefan M
2012-04-01
The head impact exposure for athletes involved in football at the college and high school levels has been well documented; however, the head impact exposure of the youth population involved with football has yet to be investigated, despite its dramatically larger population. The objective of this study was to investigate the head impact exposure in youth football. Impacts were monitored using a custom 12 accelerometer array equipped inside the helmets of seven players aged 7-8 years old during each game and practice for an entire season. A total of 748 impacts were collected from the 7 participating players during the season, with an average of 107 impacts per player. Linear accelerations ranged from 10 to 100 g, and the rotational accelerations ranged from 52 to 7694 rad/s(2). The majority of the high level impacts occurred during practices, with 29 of the 38 impacts above 40 g occurring in practices. Although less frequent, youth football can produce high head accelerations in the range of concussion causing impacts measured in adults. In order to minimize these most severe head impacts, youth football practices should be modified to eliminate high impact drills that do not replicate the game situations.
Siegmund, Gunter P; Blouin, Jean-Sébastien
2009-01-01
Recent studies have proposed that a high rate of acceleration onset, i.e. high jerk, during a low-speed vehicle collision increases the risk of whiplash injury by triggering inappropriate muscle responses and/or increasing peak head acceleration. Our goal was to test these proposed mechanisms at realistic jerk levels and then to determine how collision jerk affects the potential for whiplash injuries. Twenty-three seated volunteers (8 F, 15 M) were exposed to multiple experiments involving perturbations simulating the onset of a vehicle collision in eyes open and eyes closed conditions. In the first experiment, subjects experienced five forward and five rearward perturbations to look for the inappropriate muscle responses and ‘floppy’ head kinematics previously attributed to high jerk perturbations. In the second experiment, we independently varied the jerk (∼125 to 3 000 m s−3) and acceleration (∼0.65 to 2.6 g) of the perturbation to assess their effect on the electromyographic (EMG) responses of the sternocleidomastoid (SCM), scalene (SCAL) and cervical paraspinal (PARA) muscles and the kinematic responses of the head and neck. In the first experiment, we found neither inappropriate muscle responses nor floppy head kinematics when subjects had their eyes open, but observed two subjects with floppy head kinematics with eyes closed. In the second experiment, we found that about 70% of the variations in the SCM and SCAL responses and about 95% of the variations in head/neck kinematics were explained by changes in perturbation acceleration in both the eyes open and eyes closed conditions. Less than 2% of the variation in the muscle and kinematic responses was explained by changes in perturbation jerk and, where significant, response amplitudes diminished with increasing jerk. Based on these findings, collision jerk appears to have little or no role in the genesis of whiplash injuries in low-speed vehicle crashes. PMID:19237420
Influence of custom-made and prefabricated insoles before and after an intense run
2017-01-01
Each time the foot contacts the ground during running there is a rapid deceleration that results in a shock wave that is transmitted from the foot to the head. The fatigue of the musculoskeletal system during running may decrease the ability of the body to absorb those shock waves and increase the risk of injury. Insoles are commonly prescribed to prevent injuries, and both custom-made and prefabricated insoles have been observed to reduce shock accelerations during running. However, no study to date has included a direct comparison of their behaviour measured over the same group of athletes, and therefore great controversy still exists regarding their effectiveness in reducing impact loading during running. The aim of the study was to analyse the acute differences in stride and shock parameters while running on a treadmill with custom-made and prefabricated insoles. Stride parameters (stride length, stride rate) and shock acceleration parameters (head and tibial peak acceleration, shock magnitude, acceleration rate, and shock attenuation) were measured using two triaxial accelerometers in 38 runners at 3.33 m/s before and after a 15-min intense run while using the sock liner of the shoe (control condition), prefabricated insoles and custom-made insoles. No differences in shock accelerations were found between the custom-made and the control insoles. The prefabricated insoles increased the head acceleration rate (post-fatigue, p = 0.029) compared to the control condition. The custom-made reduced tibial (pre-fatigue, p = 0.041) and head acceleration rates (pre-fatigue and post-fatigue, p = 0.01 and p = 0.046) compared to the prefabricated insoles. Neither the stride nor the acceleration parameters were modified as a result of the intense run. In the present study, the acute use of insoles (custom-made, prefabricated) did not reduce shock accelerations compared to the control insoles. Therefore, their effectiveness at protecting against injuries associated with elevated accelerations is not supported and remains unclear. PMID:28245273
Thermal neutron flux mapping in a head phantom
NASA Astrophysics Data System (ADS)
Lee, C. L.; Zhou, X.-L.; Harmon, J. F.; Bartholomay, R. W.; Harker, Y. D.; Kudchadker, R. J.
1999-02-01
Boron neutron capture therapy (BNCT) is a binary cancer treatment modality in which a boron-containing compound is preferentially loaded into a tumor, followed by irradiation by thermal neutrons. In accelerator-based BNCT, neutrons are produced by charged particle-induced reactions such as 7Li(p, n) 7Be. For deeply seated brain tumors, epithermal (1 eV to 10 kev) neutrons are needed to penetrate the skull cap and subsequently thermalize at the tumor location. Cell damage in BNCT is caused by the high linear energy transfer (LET) products from the 10B(n, α) 7Li reaction. Because the cross section for this reaction is of 1/ v character, the dose due to 10B has essentially the same spatial distribution as the thermal neutron flux. A cylindrical acrylic head phantom (15.24 cm diameter by 21.59 cm length) has been constructed to simulate the patient's head and neck, and acrylic spacers of varying width allow placement of small (active sizes: 0.635 cm diameter by 1.27 cm length and 1.5875 cm diameter by 2.54 cm length) BF 3 proportional counters at nearly all radial and axial locations. Measurements of the thermal flux have also been benchmarked with gold and indium foils (bare and cadmium covered), as well as MCNP simulations. Measurement of the thermal neutron flux using these small BF 3 counters is shown to be adequate for experimentally determining the spatial variation of the 10B dose in head phantoms for accelerator-based BNCT.
Neutron H*(10) estimation and measurements around 18MV linac.
Cerón Ramírez, Pablo Víctor; Díaz Góngora, José Antonio Irán; Paredes Gutiérrez, Lydia Concepción; Rivera Montalvo, Teodoro; Vega Carrillo, Héctor René
2016-11-01
Thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the dose of neutron radiation in a treatment room with a linear electron accelerator of 18MV. Measurements were carried out through neutron ambient dose monitors which include pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti), which were placed inside a paraffin spheres. The measurements has allowed to use NCRP 151 equations, these expressions are useful to find relevant dosimetric quantities. In addition, photoneutrons produced by linac head were calculated through MCNPX code taking into account the geometry and composition of the linac head principal parts. Copyright © 2016 Elsevier Ltd. All rights reserved.
In vivo dosimetry for external photon treatments of head and neck cancers by diodes and TLDS.
Tung, C J; Wang, H C; Lo, S H; Wu, J M; Wang, C J
2004-01-01
In vivo dosimetry was implemented for treatments of head and neck cancers in the large fields. Diode and thermoluminescence dosemeter (TLD) measurements were carried out for the linear accelerators of 6 MV photon beams. ESTRO in vivo dosimetry protocols were followed in the determination of midline doses from measurements of entrance and exit doses. Of the fields monitored by diodes, the maximum absolute deviation of measured midline doses from planned target doses was 8%, with the mean value and the standard deviation of -1.0 and 2.7%. If planned target doses were calculated using radiological water equivalent thicknesses rather than patient geometric thicknesses, the maximum absolute deviation dropped to 4%, with the mean and the standard deviation of 0.7 and 1.8%. For in vivo dosimetry monitored by TLDs, the shift in mean dose remained small but the statistical precision became poor.
Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine
2016-03-01
Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.
Tan, Yinghui; Zhou, Shuxia; Jiang, Hetian
2002-05-01
In this experiment, we studied the craniocerebral injury that occurs due to the transmission of forces when maxillofacial gunshot wounds are sustained by the facial bones and cranium. Forty fresh pigs' heads were wounded by one of the following methods: steel spheres weighing 1.03 g at an impact velocity of 1,400 m/s, steel spheres weighing 1.03 g at an impact velocity of 800 m/s, M193 military bullets, or M56 military bullets. Pressure waves in the brain, acceleration of the head, and stress changes in the facial bones and cranium at the moment of the impact were recorded by pressure and acceleration transducers and strain gauges and were statistically compared. Some obvious differences between the mechanical values obtained from high-and low-velocity missile wounds were found. A negative relationship between the peak value of the pressure wave in the brain and the distance from the point of impact to the transducer was obtained. The acceleration of the head in the direction of the ballistic path was the strongest in absolute value. There were differences in the stress values between the mandible and the temporal bone. Acceleration of the head, pressure wave changes in the brain, and injury from bony stress conduction all play important roles in associated craniocerebral damage after maxillofacial firearm wounds. Copyright 2002 American Association of Oral and Maxillofacial Surgeons
Effects of Sex and Event Type on Head Impact in Collegiate Soccer
Reynolds, Bryson B.; Patrie, James; Henry, Erich J.; Goodkin, Howard P.; Broshek, Donna K.; Wintermark, Max; Druzgal, T. Jason
2017-01-01
Background: The effects of head impact in sports are of growing interest for clinicians, scientists, and athletes. Soccer is the most popular sport worldwide, but the burden of head impact in collegiate soccer is still unknown. Purpose: To quantify head impact associated with practicing and playing collegiate soccer using wearable accelerometers. Study Design: Descriptive epidemiological study. Methods: Mastoid patch accelerometers were used to quantify head impact in soccer, examining differences in head impact as a function of sex and event type (practice vs game). Seven female and 14 male collegiate soccer players wore mastoid patch accelerometers that measured head impacts during team events. Data were summarized for each athletic exposure, and statistical analyses evaluated the mean number of impacts, mean peak linear acceleration, mean peak rotational acceleration, and cumulative linear and rotational acceleration, each grouped by sex and event type. Results: There were no differences in the frequency or severity of head impacts between men’s and women’s soccer practices. For men’s soccer, games resulted in 285% more head impacts than practices, but there were no event-type differences in mean impact severity. Men’s soccer games resulted in more head impacts than practices across nearly all measured impact severities, which also resulted in men’s soccer games producing a greater cumulative impact burden. Conclusion: Similar to other sports, men’s soccer games have a greater impact burden when compared with practices, and this effect is driven by the quantity rather than severity of head impacts. In contrast, there were no differences in the quantity or severity of head impacts in men’s and women’s soccer practices. These data could prompt discussions of practical concern to collegiate soccer, such as understanding sex differences in head impact and whether games disproportionately contribute to an athlete’s head impact burden. PMID:28491885
49 CFR 572.142 - Head assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... acceleration versus time history curve shall be unimodal, and the oscillations occurring after the main pulse... for testing. (3) Suspend the head assembly with its midsagittal plane in vertical orientation as shown... head in transverse alignment with the CG, shall be used to ensure that the head transverse plane is...
Comparative Analysis of Head Impact in Contact and Collision Sports
Reynolds, Bryson B.; Patrie, James; Henry, Erich J.; Goodkin, Howard P.; Broshek, Donna K.; Wintermark, Max
2017-01-01
Abstract As concerns about head impact in American football have grown, similar concerns have started to extend to other sports thought to experience less head impact, such as soccer and lacrosse. However, the amount of head impact experienced in soccer and lacrosse is relatively unknown, particularly compared with the substantial amount of data from football. This pilot study quantifies and compares head impact from four different types of sports teams: college football, high school football, college soccer, and college lacrosse. During the 2013 and 2014 seasons, 61 players wore mastoid patch accelerometers to quantify head impact during official athletic events (i.e., practices and games). In both practices and games, college football players experienced the most or second-most impacts per athletic event, highest average peak resultant linear and rotational acceleration per impact, and highest cumulative linear and rotational acceleration per athletic event. For average peak resultant linear and rotational acceleration per individual impact, college football was followed by high school football, then college lacrosse, and then college soccer, with similar trends in both practices and games. In the four teams under study, college football players experienced a categorically higher burden of head impact. However, for cumulative impact burden, the high school football cohort was not significantly different from the college soccer cohort. The results suggest that head impact in sport substantially varies by both the type of sport (football vs. soccer vs. lacrosse) and level of play (college vs. high school). PMID:27541183
Effects of Olympic-style taekwondo kicks on an instrumented head-form and resultant injury measures.
Fife, Gabriel P; O'Sullivan, David M; Pieter, Willy; Cook, David P; Kaminski, Thomas W
2013-12-01
The objective of this study was to assess the effect of taekwondo kicks and peak foot velocity (FVEL) on resultant head linear acceleration (RLA), head injury criterion (HIC15) and head velocity (HVEL). Each subject (n=12) randomly performed five repetitions of the turning kick (TK), clench axe kick (CA), front leg axe kick, jump back kick (JB) and jump spinning hook kick (JH) at the average standing head height for competitors in their weight division. A Hybrid II Crash Test Dummy head was fitted with a protective taekwondo helmet and instrumented with a triaxial accelerometer and fixed to a height-adjustable frame. Resultant head linear acceleration, HVEL, FVEL data were captured and processed using Qualysis Track Manager. The TK (130.11 ± 51.67 g) produced a higher RLA than the CA (54.95 ± 20.08 g, p<0.001, d=1.84) and a higher HIC15 than the JH (672.74 ± 540.89 vs 300.19 ± 144.35, p<0.001, ES=0.97). There was no difference in HVEL of the TK (4.73 ± 1.67 m/s) and that of the JB (4.43 ± 0.78 m/s; p=0.977, ES<0.01). The TK is of concern because it is the most common technique and cause of concussion in taekwondo. Future studies should aim to understand rotational accelerations of the head.
Otolith-Canal Convergence In Vestibular Nuclei Neurons
NASA Technical Reports Server (NTRS)
Dickman, J. David; Si, Xiao-Hong
2002-01-01
The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.
Identifying Head-Trunk and Lower Limb Contributions to Gaze Stabilization During Locomotion
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar P.; Bloomberg, Jacob J.
2003-01-01
The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as - compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the shank and the transmissibility of the shock wave at heel strike (measured by the peak acceleration ratio of the head/shank) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.
46 CFR 154.407 - Cargo tank internal pressure head.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., resulting from the combined effects of gravity and dynamic accelerations of a full tank)=aβ Zβ Y; where: aβ=dimensionless acceleration relative to the acceleration of gravity resulting from gravitational and dynamic...
46 CFR 154.407 - Cargo tank internal pressure head.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., resulting from the combined effects of gravity and dynamic accelerations of a full tank)=aβ Zβ Y; where: aβ=dimensionless acceleration relative to the acceleration of gravity resulting from gravitational and dynamic...
46 CFR 154.407 - Cargo tank internal pressure head.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., resulting from the combined effects of gravity and dynamic accelerations of a full tank)=aβ Zβ Y; where: aβ=dimensionless acceleration relative to the acceleration of gravity resulting from gravitational and dynamic...
46 CFR 154.407 - Cargo tank internal pressure head.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., resulting from the combined effects of gravity and dynamic accelerations of a full tank)=aβ Zβ Y; where: aβ=dimensionless acceleration relative to the acceleration of gravity resulting from gravitational and dynamic...
Individual Impact Magnitude vs. Cumulative Magnitude for Estimating Concussion Odds.
O'Connor, Kathryn L; Peeters, Thomas; Szymanski, Stefan; Broglio, Steven P
2017-08-01
Helmeted impact devices have allowed researchers to investigate the biomechanics of head impacts in vivo. While increased impact magnitude has been associated with greater concussion risk, a definitive concussive threshold has not been established. It is likely that concussion risk is not determined by a single impact itself, but a host of predisposing factors. These factors may include genetics, fatigue, and/or prior head impact exposure. The objective of the current paper is to investigate the association between cumulative head impact magnitude and concussion risk. It is hypothesized that increased cumulative magnitudes will be associated with greater concussion risk. This retrospective analysis included participants that were recruited from regional high-schools in Illinois and Michigan from 2007 to 2014 as part of an ongoing study on concussion biomechanics. Across seven seasons, 185 high school football athletes were instrumented with the Head Impact Telemetry system. Out of 185 athletes, 31 (17%) sustained a concussion, with two athletes sustaining two concussions over the study period, yielding 33 concussive events. The system recorded 78,204 impacts for all concussed players. Linear acceleration, rotational acceleration, and head impact telemetry severity profile (HITsp) magnitudes were summed within five timeframes: the day of injury, three days prior to injury, seven days prior to injury, 30 days prior to injury, and prior in-season exposure. Logistic regressions were modeled to explain concussive events based on the singular linear acceleration, rotational acceleration, and HITsp event along with the calculated summations over time. Linear acceleration, rotational acceleration, and HITsp all produced significant models estimating concussion (p < 0.05). The strongest estimators of a concussive impact were the linear acceleration (OR = 1.040, p < 0.05), rotational acceleration (OR = 1.001, p < 0.05), and HITsp (OR = 1.003, p < 0.05) for the singular impact rather than any of the cumulative magnitude calculations. Moreover, no cumulative count measure was significant for linear or rotational acceleration. Results from this investigation support the growing literature indicating cumulative magnitude is not related to concussion likelihood. Cumulative magnitude is a simplistic measure of the total exposure sustained by a player over a given period. However, this measure is limited as it assumes the brain is a static structure unable to undergo self-repair. Future research should consider how biological recovery between impacts may influence concussion risk.
O'Day, Kathleen M; Koehling, Elizabeth M; Vollavanh, Lydia R; Bradney, Debbie; May, James M; Breedlove, Katherine M; Breedlove, Evan L; Blair, Price; Nauman, Eric A; Bowman, Thomas G
2017-03-01
Head impacts have been studied extensively in football, but little similar research has been conducted in men's lacrosse. It is important to understand the location and magnitude of head impacts during men's lacrosse to recognize the risk of head injury. Descriptive epidemiology study set on collegiate lacrosse fields. Eleven men's lacrosse players (age=20.9±1.13years, mass=83.91±9.04kg, height=179.88±5.99cm) volunteered to participate. We applied X2 sensors behind the right ear of participants for games and practices. Sensors recorded data on linear and rotational accelerations and the location of head impacts. We calculated incidence rates per 1000 exposures with 95% confidence intervals for impact locations and compared the effect of impact location on linear and rotational accelerations with Kruskal-Wallis tests. We verified 167 head impacts (games=112; practices=55). During games, the incidence rate was 651.16 (95% confidence interval=530.57-771.76). The high and low incidence rates for head impact locations during games were: side=410.7 (95% confidence interval=292.02-529.41) and top=26.79 (95% confidence interval=3.53-57.10). For games and practices combined, the impact locations did not significantly affect linear (χ 2 3 =6.69, P=0.08) or rotational acceleration (χ 2 3 =6.34, P=0.10). We suggest further research into the location of head impacts during games and practices. We also suggest player and coach education on head impacts as well as behavior modification in men's lacrosse athletes to reduce the incidence of impacts to the side of the head in an effort to reduce potential injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shaohui; Department of Radiation Oncology, University of Toronto, Toronto, ON; O'Sullivan, Brian
2011-01-01
Purpose: To compare the patterns of care for elderly head-and-neck cancer patients with those of younger patients. Methods and Materials: A retrospective review was conducted of all new mucosal head-and-neck cancer referrals to radiation oncology between July 1, 2003 and December 31, 2007 at our institution. The clinical characteristics, treatment pattern, tolerance, and outcomes were compared between the elderly (aged {>=}75 years) and younger (aged <75 years) cohorts. Results: A total of 2,312 patients, including 452 (20%) elderly and 1,860 (80%) younger patients, were studied. The elderly patients were more likely to be women (36% vs. 27%, p <.01) andmore » to have other malignancies (23% vs. 13%, p <.01), Stage I or II disease (38% vs. 32%, p <.01), and N0 status (56% vs. 42%, p <.01). Treatment was less often curative in intent (79% vs. 93%, p <.01). For the 1,487 patients who received definitive radiotherapy (RT), no differences were found between the elderly (n = 238) and younger (n = 1,249) patients in treatment interruption, completion, or treatment-related death. Within the subset of 760 patients who received intensified treatment (concurrent chemoradiotherapy or hyperfractionated accelerated RT), no difference was seen between the elderly (n = 46) and younger (n = 714) patients in treatment interruption, completion, or treatment-related death. After a median follow-up of 2.5 years, the 2-year cause-specific survival rate after definitive RT was 72% (range, 65-78%) for the elderly vs. 86% (range, 84-88%) for the younger patients (p <.01). Conclusion: Elderly head-and-neck cancer patients exhibited different clinical characteristics and experienced different patterns of care from younger patients. Although age itself was an adverse predictor of cause-specific survival, its effect was modest. Elderly patients selected for definitive RT or intensified RT showed no evidence of impaired treatment tolerance.« less
Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer
Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David
2007-01-01
Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937
Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T
1999-05-01
Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.
Calibration of a Six-Degree-of-Freedom Acceleration Measurement Device
DOT National Transportation Integrated Search
1994-12-01
This report describes the calibration of a six-degree-of-freedom acceleration measurement system designed for use in the measurement of linear and angular head accelerations of anthropomorphic dummies during crash tests. The calibration methodology, ...
Predicting brain acceleration during heading of soccer ball
NASA Astrophysics Data System (ADS)
Taha, Zahari; Hasnun Arif Hassan, Mohd; Azri Aris, Mohd; Anuar, Zulfika
2013-12-01
There has been a long debate whether purposeful heading could cause harm to the brain. Studies have shown that repetitive heading could lead to degeneration of brain cells, which is similarly found in patients with mild traumatic brain injury. A two-degree of freedom linear mathematical model was developed to study the impact of soccer ball to the brain during ball-to-head impact in soccer. From the model, the acceleration of the brain upon impact can be obtained. The model is a mass-spring-damper system, in which the skull is modelled as a mass and the neck is modelled as a spring-damper system. The brain is a mass with suspension characteristics that are also defined by a spring and a damper. The model was validated by experiment, in which a ball was dropped from different heights onto an instrumented dummy skull. The validation shows that the results obtained from the model are in a good agreement with the brain acceleration measured from the experiment. This findings show that a simple linear mathematical model can be useful in giving a preliminary insight on what human brain endures during a ball-to-head impact.
Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude and Heading Reference System
Yoo, Tae Suk; Hong, Sung Kyung; Yoon, Hyok Min; Park, Sungsu
2011-01-01
This paper describes a robust and simple algorithm for an attitude and heading reference system (AHRS) based on low-cost MEMS inertial and magnetic sensors. The proposed approach relies on a gain-scheduled complementary filter, augmented by an acceleration-based switching architecture to yield robust performance, even when the vehicle is subject to strong accelerations. Experimental results are provided for a road captive test during which the vehicle dynamics are in high-acceleration mode and the performance of the proposed filter is evaluated against the output from a conventional linear complementary filter. PMID:22163824
Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance.
Telford, L; Seidman, S H; Paige, G D
1997-10-01
Horizontal, vertical, and torsional eye movements were recorded using the magnetic search-coil technique during linear accelerations along the interaural (IA) and dorsoventral (DV) head axes. Four squirrel monkeys were translated sinusoidally over a range of frequencies (0.5-4.0 Hz) and amplitudes (0.1-0.7 g peak acceleration). The linear vestibuloocular reflex (LVOR) was recorded in darkness after brief presentations of visual targets at various distances from the subject. With subjects positioned upright or nose-up relative to gravity, IA translations generated conjugate horizontal (IA horizontal) eye movements, whereas DV translations with the head nose-up or right-side down generated conjugate vertical (DV vertical) responses. Both were compensatory for linear head motion and are thus translational LVOR responses. In concert with geometric requirements, both IA-horizontal and DV-vertical response sensitivities (in deg eye rotation/cm head translation) were related linearly to reciprocal fixation distance as measured by vergence (in m-1, or meter-angles, MA). The relationship was characterized by linear regressions, yielding sensitivity slopes (in deg.cm-1.MA-1) and intercepts (sensitivity at 0 vergence). Sensitivity slopes were greatest at 4.0 Hz, but were only slightly more than half the ideal required to maintain fixation. Slopes declined with decreasing frequency, becoming negligible at 0.5 Hz. Small responses were observed when vergence was zero (intercept), although no response is required. Like sensitivity slope, the intercept was largest at 4.0 Hz and declined with decreasing frequency. Phase lead was near zero (compensatory) at 4.0 Hz, but increased as frequency declined. Changes in head orientation, motion axis (IA vs. DV), and acceleration amplitude produced slight and sporadic changes in LVOR parameters. Translational LVOR response characteristics are consistent with high-pass filtering within LVOR pathways. Along with horizontal eye movements, IA translation generated small torsional responses. In contrast to the translational LVORs, IA-torsional responses were not systematically modulated by vergence angle. The IA-torsional LVOR is not compensatory for translation because it cannot maintain image stability. Rather, it likely compensates for the effective head tilt simulated by translation. When analyzed in terms of effective head tilt, torsional responses were greatest at the lowest frequency and declined as frequency increased, consistent with low-pass filtering of otolith input. It is unlikely that IA-torsional responses compensate for actual head tilt, however, because they were similar for both upright and nose-up head orientations. The IA-torsional and -horizontal LVORs seem to respond only to linear acceleration along the IA head axis, and the DV-vertical LVOR to acceleration along the head's DV axis, regardless of gravity.
Cardiopulmonary Responses to Supine Cycling during Short-Arm Centrifugation
NASA Technical Reports Server (NTRS)
Vener, J. M.; Simonson, S. R.; Stocks, J.; Evettes, S.; Bailey, K.; Biagini, H.; Jackson, C. G. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
The purpose of this study was to investigate cardiopulmonary responses to supine cycling with concomitant +G(sub z) acceleration using the NASA/Ames Human Powered Short-Arm Centrifuge (HPC). Subjects were eight consenting males (32+/-5 yrs, 178+/-5 cm, 86.1+/- 6.2 kg). All subjects completed two maximal exercise tests on the HPC (with and without acceleration) within a three-day period. A two tailed t-test with statistical significance set at p less than or equal to 0.05 was used to compare treatments. Peak acceleration was 3.4+/-0.1 G(sub z), (head to foot acceleration). Peak oxygen uptake (VO2(sub peak) was not different between treatment groups (3.1+/-0.1 Lmin(exp -1) vs. 3.2+/-0.1 Lmin(exp -1) for stationary and acceleration trials, respectively). Peak HR and pulmonary minute ventilation (V(sub E(sub BTPS))) were significantly elevated (p less than or equal to 0.05) for the acceleration trial (182+/-3 BPM (Beats per Minute); 132.0+/-9.0 Lmin(exp -1)) when compared to the stationary trial (175+/-3 BPM; 115.5+/-8.5 Lmin(exp -1)). Ventilatory threshold expressed as a percent of VO2(sub peak) was not different for acceleration and stationary trials (72+/-2% vs. 68+/-2% respectively). Results suggest that 3.4 G(sub z) acceleration does not alter VO2(sub peak) response to supine cycling. However, peak HR and V(sub E(sub BTPS)) response may be increased while ventilatory threshold response expressed as a function of percent VO2(sub peak) is relatively unaffected. Thus, traditional exercise prescription based on VO2 response would be appropriate for this mode of exercise. Prescriptions based on HR response may require modification.
Oculomotor control of primary eye position discriminates between translation and tilt
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1999-01-01
We have previously shown that fast phase axis orientation and primary eye position in rhesus monkeys are dynamically controlled by otolith signals during head rotations that involve a reorientation of the head relative to gravity. Because of the inherent ambiguity associated with primary otolith afferent coding of linear accelerations during head translation and tilts, a similar organization might also underlie the vestibulo-ocular reflex (VOR) during translation. The ability of the oculomotor system to correctly distinguish translational accelerations from gravity in the dynamic control of primary eye position has been investigated here by comparing the eye movements elicited by sinusoidal lateral and fore-aft oscillations (0.5 Hz +/- 40 cm, equivalent to +/- 0.4 g) with those during yaw rotations (180 degrees/s) about a vertically tilted axis (23.6 degrees). We found a significant modulation of primary eye position as a function of linear acceleration (gravity) during rotation but not during lateral and fore-aft translation. This modulation was enhanced during the initial phase of rotation when there was concomitant semicircular canal input. These findings suggest that control of primary eye position and fast phase axis orientation in the VOR are based on central vestibular mechanisms that discriminate between gravity and translational head acceleration.
Efficacy of visor and helmet for blast protection assessed using a computational head model
NASA Astrophysics Data System (ADS)
Singh, D.; Cronin, D. S.
2017-11-01
Head injury resulting from blast exposure has been identified as a challenge that may be addressed, in part, through improved protective systems. Existing detailed head models validated for blast loading were applied to investigate the influence of helmet visor configuration, liner properties, and shell material stiffness. Response metrics including head acceleration and intracranial pressures (ICPs) generated in brain tissue during primary blast exposure were used to assess and compare helmet configurations. The addition of a visor was found to reduce peak head acceleration and positive ICPs. However, negative ICPs associated with a potential for injury were increased when a visor and a foam liner were present. In general, the foam liner material was found to be more significant in affecting the negative ICP response than positive ICP or acceleration. Shell stiffness was found to have relatively small effects on either metric. A strap suspension system, modeled as an air gap between the head and helmet, was more effective in reducing response metrics compared to a foam liner. In cases with a foam liner, lower-density foam offered a greater reduction of negative ICPs. The models demonstrated the "underwash" effect in cases where no foam liner was present; however, the reflected pressures generated between the helmet and head did not translate to significant ICPs in adjacent tissue, when compared to peak ICPs from initial blast wave interaction. This study demonstrated that the efficacy of head protection can be expressed in terms of load transmission pathways when assessed with a detailed computational model.
NASA Astrophysics Data System (ADS)
Chang, Li-Tung; Huang, Tsai-Jeon
Rubber tiles are commonly used in playgrounds as protective surfacing to reduce the incidence of head injuries in children caused by falling from equipment. This study developed a rubber tile model consisting of a surface layer of solid and a base layer of plate-cell and used it to investigate head injury protective performance. An explicit finite element method based on the experimental data was used to simulate head impact on the rubber tile. The peak acceleration and head injury criterion (HIC) were employed to assess the shock-absorbing capability of the tile. The results showed that compared to the peak acceleration, use of the HIC index provided a more conservative assessment of the shock absorption ability, and ultimately the protection against head injuries. This study supports the feasibility of using rubber tile with plate-cell construction to improve shock-absorbing capability. The plate-cell structure provided an excellent cushioning effect via a lower axial shear stiffness of the surface layer and lower transverse shearing stiffness of the core. The core's dimensions were an important parameter in determining the shearing stiffness. The analysis suggested that the cushioning effect would significantly reduce the peak force on the head from a fall and delay the occurrence of the peak value during impact, resulting in a marked reduction in the peak acceleration and HIC values of the head. Two plate-cell constructions with honeycomb and box-like cores were proposed and validated in this study. The better protective ability of the honeycomb core was attributed to its lower transverse shearing stiffness.
Sullivan, Sarah; Coats, Brittany; Margulies, Susan S
2015-09-01
Falls are a major cause of traumatic head injury in children. Understanding head kinematics during low height falls is essential for evaluating injury risk and designing mitigating strategies. Typically, these measurements are made with commercial anthropomorphic infant surrogates, but these surrogates are designed based on adult biomechanical data. In this study, we improve upon the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck bending and tensile data. We then measure head kinematics following head-first falls onto 4 impact surfaces from 3 fall heights with occipital and parietal head impact locations. The biofidelic skull compliance and neck properties of the improved infant surrogate significantly influenced the measured kinematic loads, decreasing the measured impact force and peak angular accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct kinematic responses in primary head rotation direction and the magnitude of the rotational velocities and accelerations, with larger angular velocities as the head rebounded after occipital impacts. Further evaluations of injury risk due to short falls should take into account the impact surface and head impact location, in addition to the fall height. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sullivan, Sarah; Coats, Brittany; Margulies, Susan S.
2015-01-01
Falls are a major cause of traumatic head injury in children. Understanding head kinematics during low height falls is essential for evaluating injury risk and designing mitigating strategies. Typically, these measurements are made with commercial anthropomorphic infant surrogates, but these surrogates are designed based on adult biomechanical data. In this study, we improve upon the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck bending and tensile data. We then measure head kinematics following head-first falls onto 4 impact surfaces from 3 fall heights with occipital and parietal head impact locations. The biofidelic skull compliance and neck properties of the improved infant surrogate significantly influenced the measured kinematic loads, decreasing the measured impact force and peak angular accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct kinematic responses in primary head rotation direction and the magnitude of the rotational velocities and accelerations, with larger angular velocities as the head rebounded after occipital impacts. Further evaluations of injury risk due to short falls should take into account the impact surface and head impact location, in addition to the fall height. PMID:26072183
NASA Astrophysics Data System (ADS)
Sarvghad-Moghaddam, H.; Rezaei, A.; Ziejewski, M.; Karami, G.
2017-11-01
Upon impingement of blast waves on the head, stress waves generated at the interface of the skull are transferred into the cranium and the brain tissue and may cause mild to severe blast traumatic brain injury. The intensity of the shock front, defined by the blast overpressure (BoP), that is, the blast-induced peak static overpressure, significantly affects head kinematics as well as the tissue responses of the brain. While evaluation of global linear and rotational accelerations may be feasible, an experimental determination of dynamic responses of the brain in terms of intracranial pressure (ICP), maximum shear stress (MSS), and maximum principal strain (MPS) is almost impossible. The main objective of this study is to investigate possible correlations between head accelerations and the brain's ICP, MSS, and MPS. To this end, three different blasts were simulated by modeling the detonation of 70, 200, and 500 g of TNT at a fixed distance from the head, corresponding to peak BoPs of 0.52, 1.2, and 2 MPa, respectively. A nonlinear multi-material finite element algorithm was implemented in the LS-DYNA explicit solver. Fluid-solid interaction between the blast waves and head was modeled using a penalty-based method. Strong correlations were found between the brain's dynamic responses and both global linear and rotational accelerations at different blast intensities (R^{2 }≥98%), implying that global kinematic parameters of the head might be strong predictors of brain tissue biomechanical parameters.
Exercise Training During +Gz Acceleration
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.
1999-01-01
The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.
Analysis of Methods to Excite Head-Tail Motion Within the Cornell Electron Storage Ring
NASA Astrophysics Data System (ADS)
Gendler, Naomi; Billing, Mike; Shanks, Jim
The main accelerator complex at Cornell consists of two rings around which electrons and positrons move: the synchrotron, where the particles are accelerated to 5 GeV, and the Storage Ring, where the particles circulate a ta Þxed energy, guided by quadrupole and dipole magnets, with a steady energy due to a sinusoidal voltage source. Keeping the beam stable in the Storage Ring is crucial for its lifetime. A long-lasting, invariable beam means more accurate experiments, as well as brighter, more focused X-rays for use in the Cornell High Energy Synchrotron Source (CHESS). The stability of the electron and positron beams in the Cornell Electron Storage Ring (CESR) is important for the development of accelerators and for usage of the beam in X-ray science and accelerator physics. Bunch oscillations tend to enlarge the beam's cross section, making it less stable. We believe that one such oscillation is ``head-tail motion,'' where the bunch rocks back and forth on a pivot located at the central particle. In this project, we write a simulation of the bunch that induces head-tail motion with a vertical driver. We also excite this motion physically in the storage ring, and observe a deÞnite head-tail signal. In the experiment, we saw a deÞnite persistence of the drive-damp signal within a small band around the head-tail frequency, indicating that the head-tail frequency is a natural vertical mode of the bunch that was being excited. The signal seen in the experiment matched the signal seen in the simulation to within an order of magnitude.
Designing safer composite helmets to reduce rotational accelerations during oblique impacts.
Mosleh, Yasmine; Cajka, Martin; Depreitere, Bart; Vander Sloten, Jos; Ivens, Jan
2018-05-01
Oblique impact is the most common accident situation that occupants in traffic accidents or athletes in professional sports experience. During oblique impact, the human head is subjected to a combination of linear and rotational accelerations. Rotational movement is known to be responsible for traumatic brain injuries. In this article, composite foam with a column/matrix composite configuration is proposed for head protection applications to replace single-layer uniform foam, to better attenuate rotational movement of the head during oblique impacts. The ability of composite foam in the mitigation of rotational head movement is studied by performing finite element (FE) simulations of oblique impact on flat and helmet shape specimens. The performance of composite foam with respect to parameters such as compliance of the matrix foam and the number, size and cross-sectional shape of the foam columns is explored in detail, and subsequently an optimized structure is proposed. The simulation results show that using composite foam instead of single-layer foam, the rotational acceleration and velocity of the headform can be significantly reduced. The parametric study indicates that using a more compliant matrix foam and by increasing the number of columns in the composite foam configuration, the rotation can be further mitigated. This was confirmed by experimental results. The simulation results were also analyzed based on global head injury criteria such as head injury criterion, rotational injury criterion, brain injury criterion and generalized acceleration model for brain injury threshold which further confirmed the superior performance of composite foam versus single-layer homogeneous expanded polystyrene foam. The findings of simulations give invaluable information for design of protective helmets or, for instance, headliners for the automotive industry.
Nyqvist, Johanna; Fransson, Per; Laurell, Göran; Hammerlid, Eva; Kjellén, Elisabeth; Franzén, Lars; Söderström, Karin; Wickart-Johansson, Gun; Friesland, Signe; Sjödin, Helena; Brun, Eva; Ask, Anders; Nilsson, Per; Ekberg, Lars; Björk-Eriksson, Thomas; Nyman, Jan; Lödén, Britta; Lewin, Freddi; Reizenstein, Johan; Lundin, Erik; Zackrisson, Björn
2016-02-01
Health related quality of life (HRQoL) was assessed in the randomised, prospective ARTSCAN study comparing conventional radiotherapy (CF) with accelerated radiotherapy (AF) for head and neck cancer. 750 patients with squamous cell carcinoma (of any grade and stage) in the oral cavity, oro-, or hypopharynx or larynx (except T1-2, N0 glottic carcinoma) without distant metastases were randomised to either conventional fractionation (2 Gy/day, 5 days/week in 49 days, total dose 68 Gy) or accelerated fractionation (1.1+2.0 Gy/day, 5 days/week in 35 days, total dose 68 Gy). HRQoL was assessed with EORTC QLQ-C30, QLQ-H&N35 and HADS at baseline, at end of radiotherapy (eRT) and at 3 and 6 months and 1, 2 and 5 years after start of treatment. The AF group reported HRQoL was significantly lower at eRT and at 3 months for most symptoms, scales and functions. Few significant differences were noted between the groups at 6 months and 5 years. Scores related to functional oral intake never reached baseline. In comparison to CF, AF has a stronger adverse effect on HRQoL in the acute phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
van den Berg, Manon G A; Kalf, Johanna G; Hendriks, Jan C M; Takes, Robert P; van Herpen, Carla M L; Wanten, Geert J A; Drenth, Joost P H; Kaanders, Johannes H A M; Merkx, Matthias A W
2016-04-01
Dysphagia resulting in altered food intake is common among patients with head and neck cancer. This randomized trial investigated the effect of combined individual dietary counseling with individualized swallowing therapy (intervention) compared to individual dietary counseling (control) on normalcy of food intake (NFI). Patients with stage II to IV head and neck cancer treated with postoperative (chemo)radiation were randomly assigned to this study. NFI, dysphagia severity, social eating, and nutritional status were measured at the start of treatment and in weeks 6, 10, 18, and 30. One hundred twenty patients, 60 in each group, were recruited. No overall estimated difference was detected for NFI, dysphagia severity, social eating, or nutritional status. At week 10, the intervention group slightly improved dysphagia recovery 0.6 (95% confidence interval [CI] = 0.1-1.1). This difference diminished by week 30. Adding individualized swallowing therapy to individual dietary counseling did not improve NFI but slightly accelerate swallowing recovery. © 2015 Wiley Periodicals, Inc. Head Neck 38: E198-E206, 2016. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanny, S; Bogue, J; Parsai, E
Purpose: Potential collisions between the gantry head and the patient or table assembly are difficult to detect in most treatment planning systems. We have developed and implemented a novel software package for the representation of potential gantry collisions with the couch assembly at the time of treatment planning. Methods: Physical dimensions of the Varian Edge linear accelerator treatment head were measured and reproduced using the Visual Python display package. A script was developed for the Pinnacle treatment planning system to generate a file with the relevant couch, gantry, and isocenter positions for each beam in a planning trial. A pythonmore » program was developed to parse the information from the TPS and produce a representative model of the couch/gantry system. Using the model and the Visual Python libraries, a rendering window is generated for each beam that allows the planner to evaluate the possibility of a collision. Results: Comparison against heuristic methods and direct verification on the machine validated the collision model generated by the software. Encounters of <1 cm between the gantry treatment head and table were visualized as collisions in our virtual model. Visual windows were created depicting the angle of collision for each beam, including the anticipated table coordinates. Visual rendering of a 6 arc trial with multiple couch positions was completed in under 1 minute, with network bandwidth being the primary bottleneck. Conclusion: The developed software allows for quick examination of possible collisions during the treatment planning process and helps to prevent major collisions prior to plan approval. The software can easily be implemented on future planning systems due to the versatility and platform independence of the Python programming language. Further integration of the software with the treatment planning system will allow the possibility of patient-gantry collision detection for a range of treatment machines.« less
Head-impact mechanisms in men's and women's collegiate ice hockey.
Wilcox, Bethany J; Machan, Jason T; Beckwith, Jonathan G; Greenwald, Richard M; Burmeister, Emily; Crisco, Joseph J
2014-01-01
Concussion injury rates in men's and women's ice hockey are reported to be among the highest of all collegiate sports. Quantification of the frequency of head impacts and the magnitude of head acceleration as a function of the different impact mechanisms (eg, head contact with the ice) that occur in ice hockey could provide a better understanding of this high injury rate. To quantify and compare the per-game frequency and magnitude of head impacts associated with various impact mechanisms in men's and women's collegiate ice hockey players. Cohort study. Collegiate ice hockey rink. Twenty-three men and 31 women from 2 National Collegiate Athletic Association Division I ice hockey teams. We analyzed magnitude and frequency (per game) of head impacts per player among impact mechanisms and between sexes using generalized mixed linear models and generalized estimating equations to account for repeated measures within players. Participants wore helmets instrumented with accelerometers to allow us to collect biomechanical measures of head impacts sustained during play. Video footage from 53 games was synchronized with the biomechanical data. Head impacts were classified into 8 categories: contact with another player; the ice, boards or glass, stick, puck, or goal; indirect contact; and contact from celebrating. For men and women, contact with another player was the most frequent impact mechanism, and contact with the ice generated the greatest-magnitude head accelerations. The men had higher per-game frequencies of head impacts from contact with another player and contact with the boards than did the women (P < .001), and these impacts were greater in peak rotational acceleration (P = .027). Identifying the impact mechanisms in collegiate ice hockey that result in frequent and high-magnitude head impacts will provide us with data that may improve our understanding of the high rate of concussion in the sport and inform injury-prevention strategies.
Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji
2012-08-29
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options.
2012-01-01
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options. PMID:22929110
Variability in the control of head movements in seated humans: a link with whiplash injuries?
Vibert, N; MacDougall, H G; de Waele, C; Gilchrist, D P D; Burgess, A M; Sidis, A; Migliaccio, A; Curthoys, I S; Vidal, P P
2001-01-01
The aim of this study was to determine how context and on-line sensory information are combined to control posture in seated subjects submitted to high-jerk, passive linear accelerations. Subjects were seated with eyes closed on a servo-controlled linear sled. They were asked to relax and received brief accelerations either sideways or in the fore-aft direction. The stimuli had an abrupt onset, comparable to the jerk experienced during a minor car collision. Rotation and translation of the head and body were measured using an Optotrak system. In some of the subjects, surface electromyographic (EMG) responses of selected neck and/or back muscles were recorded simultaneously. For each subject, responses were highly stereotyped from the first trial, and showed little sign of habituation or sensitisation. Comparable results were obtained with sideways and fore-aft accelerations. During each impulse, the head lagged behind the trunk for several tens of milliseconds. The subjects' head movement responses were distributed as a continuum in between two extreme categories. The ‘stiff’ subjects showed little rotation or translation of the head relative to the trunk for the whole duration of the impulse. In contrast, the ‘floppy’ subjects showed a large roll or pitch of the head relative to the trunk in the direction opposite to the sled movement. This response appeared as an exaggerated ‘inertial’ response to the impulse. Surface EMG recordings showed that most of the stiff subjects were not contracting their superficial neck or back muscles. We think they relied on bilateral contractions of their deep, axial musculature to keep the head-neck ensemble in line with the trunk during the movement. About half of the floppy subjects displayed reflex activation of the neck muscles on the side opposite to the direction of acceleration, which occurred before or during the head movement and tended to exaggerate it. The other floppy subjects seemed to rely on only the passive biomechanical properties of their head-neck ensemble to compensate for the perturbation. In our study, proprioception was the sole source of sensory information as long as the head did not move. We therefore presume that the EMG responses and head movements we observed were mainly triggered by the activation of stretch receptors in the hips, trunk and/or neck. The visualisation of an imaginary reference in space during sideways impulses significantly reduced the head roll exhibited by floppy subjects. This suggests that the adoption by the central nervous system of an extrinsic, ‘allocentric’ frame of reference instead of an intrinsic, ‘egocentric’ one may be instrumental for the selection of the stiff strategy. The response of floppy subjects appeared to be maladaptive and likely to increase the risk of whiplash injury during motor vehicle accidents. Evolution of postural control may not have taken into account the implications of passive, high-acceleration perturbations affecting seated subjects. PMID:11313451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L; Allan, E; Putten, M Van
Purpose: To investigate the dose contributions of scattered electrons from dental amalgams during head and neck radiotherapy, and to evaluate the protective role of dosimetric dental stents during treatment to prevent oral mucositis. Methods: A phantom was produced to accurately simulate the oral cavity and head. The oral cavity consisted of a tissue equivalent upper and lower jaw and complete set of teeth. A set of 4 mm ethylene copolymer dosimetric stents was made for the upper and lower teeth. Five removable gold caps were fitted to apposing right molars, and the phantom was crafted to accomodate horizontal and verticalmore » film for 2D dosimetry and NanoDot dosimeter for recording point doses. The head was simulated using a small cylindrical glass water bath. CT simulation was performed on the phantom with and without metal fittings and, in each case, with and without the dental stent. The CT image sets were imported into Eclipse treatment planning system for contouring and treatment planning, and a 9-field IMRT treatment plan was developed for each scenario. These plans were delivered using a Varian TrueBeam linear accelerator. Doses were recorded using GafChromic EBT2 films and NanoDot dosimeters. Results: The measurements revealed a 43% relative increase in dose measured adjacent to the metal fixtures in the horizontal plane without the use of the dental stent. This equates to a total dose of 100 Gy to the oral mucosa during a standard course of definitive radiotherapy. To our knowledge, this is the first dosimetric analysis of dental stents using an anatomically realistic phantom and modern beam arrangement. Conclusion: These results support the use of dosimetric dental stents in head and neck radiotherapy for patients with metallic dental fixtures as a way to effectively reduce dose to nearby mucosal surfaces and, hence, reduce the risk and severity of mucositis.« less
Underbody Blast Models of TBI Caused by Hyper-Acceleration and Secondary Head Impact
2016-02-01
discovery rate (FDR), which controls for the expected proportion of false rejected hypotheses. ANOVA was performed to evaluate the significance in gene...acceleration/deceleration11,27 and blast4,13 have also been designed for the purpose of evaluating coup-contrecoup and blast wave energies potentially... evaluation of different angles/ locations of the projectile impact to the surface of the rat head. Finally, pilot studies were conducted to provide further
Mechanism of chlorogenic acid treatment on femoral head necrosis and its protection of osteoblasts.
Zhang, Mingjuan; Hu, Xianda
2016-07-01
The aim of the present study was to investigate the therapeutic effect of chlorogenic acid on hormonal femoral head necrosis and its protection of osteoblasts. The study established a femoral head necrosis model in Wistar rats using Escherichia coli endotoxin and prednisolone acetate. The rats were divided into five groups and were treated with different concentrations of chlorogenic acid (1, 10 and 20 mg/kg). The main detected indicators were the blood rheology, bone mineral density, and the hydroxyproline and hexosamine (HOM) contents. At a cellular level, osteoblasts were cultured and treated by drug-containing serum. Subsequently, cell proliferation and the osteoblast cycle were measured using flow cytometry, and the protein expression levels of Bax and B-cell lymphoma 2 (Bcl-2) were detected using western blotting. Chlorogenic acid at a concentration of 20 mg/kg (high-dose) enhanced the bone mineral density of the femoral head and femoral neck following ischemia. Simultaneously, blood flow following the injection of prednisolone acetate was significantly improved, and the HOM contents of the high-dose chlorogenic acid group were significantly different. The results from the flow cytometry analysis indicated that chlorogenic acid can efficiently ameliorate hormone-induced necrosis. The osteoblasts were isolated and cultured. The MTT colorimetric assay showed that chlorogenic acid at different densities can increase the proliferation capabilities of osteoblasts and accelerate the transition process of G 0 /G 1 phase to S phase, as well as enhance mitosis and the regeneration of osteoblasts. Western blotting detection indicated that chlorogenic acid may prohibit the decrease of Bcl-2 and the increase of Bax during apoptosis, thereby inhibiting osteoblast apoptosis and preventing the deterioration of femoral head necrosis. In conclusion, chlorogenic acid at the density of 20 mg/kg is effective in the treatment of hormonal femoral head necrosis, which may be applicable for future treatment.
The Influence of Neck Muscle Activation on Head and Neck Injuries of Occupants in Frontal Impacts.
Li, Fan; Lu, Ronggui; Hu, Wei; Li, Honggeng; Hu, Shiping; Hu, Jiangzhong; Wang, Haibin; Xie, He
2018-01-01
The aim of the present paper was to study the influence of neck muscle activation on head and neck injuries of vehicle occupants in frontal impacts. A mixed dummy-human finite element model was developed to simulate a frontal impact. The head-neck part of a Hybrid III dummy model was replaced by a well-validated head-neck FE model with passive and active muscle characteristics. The mixed dummy-human FE model was validated by 15 G frontal volunteer tests conducted in the Naval Biodynamics Laboratory. The effects of neck muscle activation on the head dynamic responses and neck injuries of occupants in three frontal impact intensities, low speed (10 km/h), medium speed (30 km/h), and high speed (50 km/h), were studied. The results showed that the mixed dummy-human FE model has good biofidelity. The activation of neck muscles can not only lower the head resultant acceleration under different impact intensities and the head angular acceleration in medium- and high-speed impacts, thereby reducing the risks of head injury, but also protect the neck from injury in low-speed impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beitler, Jonathan J., E-mail: jjbeitl@emory.edu; Zhang, Qiang; Fu, Karen K.
Purpose: To test whether altered radiation fractionation schemes (hyperfractionation [HFX], accelerated fractionation, continuous [AFX-C], and accelerated fractionation with split [AFX-S]) improved local-regional control (LRC) rates for patients with squamous cell cancers (SCC) of the head and neck when compared with standard fractionation (SFX) of 70 Gy. Methods and Materials: Patients with stage III or IV (or stage II base of tongue) SCC (n=1076) were randomized to 4 treatment arms: (1) SFX, 70 Gy/35 daily fractions/7 weeks; (2) HFX, 81.6 Gy/68 twice-daily fractions/7 weeks; (3) AFX-S, 67.2 Gy/42 fractions/6 weeks with a 2-week rest after 38.4 Gy; and (4) AFX-C, 72 Gy/42 fractions/6 weeks. The 3 experimental arms were to bemore » compared with SFX. Results: With patients censored for LRC at 5 years, only the comparison of HFX with SFX was significantly different: HFX, hazard ratio (HR) 0.79 (95% confidence interval 0.62-1.00), P=.05; AFX-C, 0.82 (95% confidence interval 0.65-1.05), P=.11. With patients censored at 5 years, HFX improved overall survival (HR 0.81, P=.05). Prevalence of any grade 3, 4, or 5 toxicity at 5 years; any feeding tube use after 180 days; or feeding tube use at 1 year did not differ significantly when the experimental arms were compared with SFX. When 7-week treatments were compared with 6-week treatments, accelerated fractionation appeared to increase grade 3, 4 or 5 toxicity at 5 years (P=.06). When the worst toxicity per patient was considered by treatment only, the AFX-C arm seemed to trend worse than the SFX arm when grade 0-2 was compared with grade 3-5 toxicity (P=.09). Conclusions: At 5 years, only HFX improved LRC and overall survival for patients with locally advanced SCC without increasing late toxicity.« less
Chvetsov, Alexei V; Dong, Lei; Palta, Jantinder R; Amdur, Robert J
2009-10-01
To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.
Foul tip impact attenuation of baseball catcher masks using head impact metrics
White, Terrance R.; Cutcliffe, Hattie C.; Shridharani, Jay K.; Wood, Garrett W.; Bass, Cameron R.
2018-01-01
Currently, no scientific consensus exists on the relative safety of catcher mask styles and materials. Due to differences in mass and material properties, the style and material of a catcher mask influences the impact metrics observed during simulated foul ball impacts. The catcher surrogate was a Hybrid III head and neck equipped with a six degree of freedom sensor package to obtain linear accelerations and angular rates. Four mask styles were impacted using an air cannon for six 30 m/s and six 35 m/s impacts to the nasion. To quantify impact severity, the metrics peak linear acceleration, peak angular acceleration, Head Injury Criterion, Head Impact Power, and Gadd Severity Index were used. An Analysis of Covariance and a Tukey’s HSD Test were conducted to compare the least squares mean between masks for each head injury metric. For each injury metric a P-Value less than 0.05 was found indicating a significant difference in mask performance. Tukey’s HSD test found for each metric, the traditional style titanium mask fell in the lowest performance category while the hockey style mask was in the highest performance category. Limitations of this study prevented a direct correlation from mask testing performance to mild traumatic brain injury. PMID:29856814
Neck injury tolerance under inertial loads in side impacts.
McIntosh, Andrew S; Kallieris, Dimitrios; Frechede, Bertrand
2007-03-01
Neck injury remains a major issue in road safety. Current side impact dummies and side impact crashworthiness assessments do not assess the risk of neck injury. These assessments are limited by biofidelity and knowledge regarding neck injury criteria and tolerance levels in side impacts. Side impact tests with PMHS were performed at the Heidelberg University in the 1980s and 1990s to improve primarily the understanding of trunk dynamics, injury mechanisms and criteria. In order to contribute to the definition of human tolerances at neck level, this study presents an analysis of the head/neck biomechanical parameters that were measured in these tests and their relationship to neck injury severity. Data from 15 impact tests were analysed. Head accelerations, and neck forces and moments were calculated from 9-accelerometer array head data, X-rays and anthropometric data. Statistically significant relationships were observed between resultant head acceleration and neck force and neck injury severity. The average resultant head acceleration for AIS 2 neck injuries was 112 g, while resultant neck force was 4925 N and moment 241 Nm. The data compared well to other test data on cadavers and volunteers. It is hoped that the paper will assist in the understanding of neck injuries and the development of tolerance criteria.
Survival of patients with head and neck cancer. Impact of physical status and comorbidities.
Sadat, F; Wienke, A; Dunst, J; Kuhnt, T
2012-01-01
Prognostic factors (e.g., gender, tumor stage, and hypoxia) have an impact on survival in patients with head and neck cancer. Thus, the impact of physical status and comorbidities on treatment decision and survival were evaluated. A total of 169 primary, inoperable patients with squamous cell cancer of the head and neck were retrospectively investigated. Patients were treated with hyperfractionated accelerated radio(chemo)therapy (HARcT) or hypofractionated radio(chemo)therapy (HypoRcT). Depending on the individual patient's situation (Karnofsky Performance Index, KPI), treatment for patients with a KPI of 80-100% was generally radiochemotherapy and for patients with a KPI ≤ 70% treatment was radiotherapy alone. In addition, all comorbidities were evaluated. Uni- and multivariate proportional hazards model were used, and overall survival (OS) was estimated by the Kaplan-Meier method. Treatment consisted of HARcT for 76 patients (45%), HART for 28 patients (17%), HypoRcT for 14 patients(8%), and HypoRT for 51 patients (30%). Of the patients, 107 patients (63%) presented with a KPI of 80-100%. OS (20%) was significantly better for patients with a KPI of 80-100%, while the OS for patients with a KPI ≤ 70% was 8% (p < 0.001). Good KPI, total irradiation dose (> 70 Gy), and chemotherapy were significant prognostic factors for better OS. Our retrospective analysis shows that performance status with dependency on comorbidities was an independent risk factor for OS.
Pälvimäki, Esa-Pekka; Siironen, Jari; Pohjola, Juha; Hernesniemi, Juha
2011-01-01
Brain concussion is a common disturbance caused by external forces or acceleration affecting the head. It may be accompanied by transient loss of consciousness and amnesia. Typical symptoms include headache, nausea and dizziness; these may remain for a week or two. Some patients may experience transient loss of inability to create new memories or other brief impairment of mental functioning. Treatment is symptomatic. Some patients may suffer from prolonged symptoms, the connection of which with brain concession is difficult to show. Almost invariably the prognosis of brain concussion is good.
14 CFR 125.225 - Flight data recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... acceleration; (5) Heading; (6) Time of each radio transmission to or from air traffic control; (7) Pitch attitude; (8) Roll attitude; (9) Longitudinal acceleration; (10) Control column or pitch control surface... control; (7) Pitch attitude; (8) Roll attitude; (9) Longitudinal acceleration; (10) Pitch trim position...
DOT National Transportation Integrated Search
1989-06-01
This report describes a methodology for calibrating and gathering data with a six-degree-of-freedom acceleration measurement device that is intended to measure head acceleration of anthropomorphic dummies and human volunteers in automotive crash test...
Validation of concussion risk curves for collegiate football players derived from HITS data.
Funk, James R; Rowson, Steven; Daniel, Ray W; Duma, Stefan M
2012-01-01
For several years, Virginia Tech and other schools have measured the frequency and severity of head impacts sustained by collegiate American football players in real time using the Head Impact Telemetry (HIT) System of helmet-mounted accelerometers. In this study, data from 37,128 head impacts collected at Virginia Tech during games from 2006 to 2010 were analyzed. Peak head acceleration exceeded 100 g in 516 impacts, and the Head Injury Criterion (HIC) exceeded 200 in 468 impacts. Four instrumented players in the dataset sustained a concussion. These data were used to develop risk curves for concussion as a function of peak head acceleration and HIC. The validity of this biomechanical approach was assessed using epidemiological data on concussion incidence from other sources. Two specific aspects of concussion incidence were addressed: the variation by player position, and the frequency of repeat concussions. The HIT System data indicated that linemen sustained the highest overall number of head impacts, while skill positions sustained a higher number of more severe head impacts (peak acceleration > 100 g or HIC > 200). When weighted using injury risk curves, the HIT System data predicted a higher incidence of concussion in skill positions compared to linemen at rates that were in strong agreement with the epidemiological literature (Pearson's r = 0.72-0.87). The predicted rates of repeat concussions (21-39% over one season and 33-50% over five seasons) were somewhat higher than the ranges reported in the epidemiological literature. These analyses demonstrate that simple biomechanical parameters that can be measured by the HIT System possess a high level of power for predicting concussion.
A link between occupant and vehicle accelerations during common driving tasks.
Mathias, Anne C; Shibata, Peggy A; Sprague, James K
2014-01-01
When evaluating occupant motions during driving tasks, it is desirable to have a well-established correlation between vehicle and occupant accelerations. Therefore, this study demonstrated a methodology to quantify accelerations experienced by the driver of a passenger vehicle and compare them to associated vehicle motions. Acceleration levels were measured at the seat and the drivers head, cervical spine, and lumbar spine during six non-collision driving tasks. Tasks included mounting a 127 mm (5 in) -high curb, crossing railroad tracks, driving on a rough road, braking heavily from 13.4 m/s (30 mph), having a 89 mm (3.5 in)-diameter roller sequentially pass under two tires, and dropping one tire from a 171-mm (6.75 in) height. The driver experienced peak resultant accelerations of similar magnitudes across all trials. Peak body accelerations were less than 1.2 g, including 0.82 g lumbar acceleration during heavy braking and 0.88 g head acceleration during the curb mount. These preliminary measurements are comparable to or lower than accelerations experienced during non-driving activities such as sitting quickly. This study contributes to the scientific understanding of accelerations experienced by vehicle occupants and demonstrates the potential to relate vehicle and occupant accelerations during common driving activities that do not involve collisions.
High-field plasma acceleration in a high-ionization-potential gas
Corde, S.; Adli, E.; Allen, J. M.; ...
2016-06-17
Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less
How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?
NASA Technical Reports Server (NTRS)
Newby, N.; Somers, J. T.; Caldwell, E.; Gernhardt, M.
2014-01-01
One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-acceleration peak response correlated with the human response at 8 and 10-G 100 ms but not 10-G 70 ms. The phase lagged the human response. Head z-acceleration was not correlated. Chest x-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-acceleration was not well correlated. Head and chest z-acceleration was in phase but had a higher peak response. Chest z-acceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder z-displacement but the THOR was in phase and was comparable to the mean peak response. Head xand z-displacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NASA
Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.
Krstic, D.; Nikezic, D.
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837
The effect of motorcycle helmet fit on estimating head impact kinematics from residual liner crush.
Bonin, Stephanie J; Gardiner, John C; Onar-Thomas, Arzu; Asfour, Shihab S; Siegmund, Gunter P
2017-09-01
Proper helmet fit is important for optimizing head protection during an impact, yet many motorcyclists wear helmets that do not properly fit their heads. The goals of this study are i) to quantify how a mismatch in headform size and motorcycle helmet size affects headform peak acceleration and head injury criteria (HIC), and ii) to determine if peak acceleration, HIC, and impact speed can be estimated from the foam liner's maximum residual crush depth or residual crush volume. Shorty-style helmets (4 sizes of a single model) were tested on instrumented headforms (4 sizes) during linear impacts between 2.0 and 10.5m/s to the forehead region. Helmets were CT scanned to quantify residual crush depth and volume. Separate linear regression models were used to quantify how the response variables (peak acceleration (g), HIC, and impact speed (m/s)) were related to the predictor variables (maximum crush depth (mm), crush volume (cm 3 ), and the difference in circumference between the helmet and headform (cm)). Overall, we found that increasingly oversized helmets reduced peak headform acceleration and HIC for a given impact speed for maximum residual crush depths less than 7.9mm and residual crush volume less than 40cm 3 . Below these levels of residual crush, we found that peak headform acceleration, HIC, and impact speed can be estimated from a helmet's residual crush. Above these crush thresholds, large variations in headform kinematics are present, possibly related to densification of the foam liner during the impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Effect of Aircrew Age on +Gz Tolerance as Measured in a Human-Use Centrifuge
2000-08-01
acceleration stress (+Gz). This type of acceleration displaces blood in the head to foot direction. As the pressure in the vessels of the lower body... blood in the lower extremities translates into reduced cardiac output provoking the cardiovascular system, mainly by the activation of baroreceptor ...This pressure aids the cardiovascular system to maintain adequate blood flow to the CNS by forcing blood towards the head "counteracting" the effect of
Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo
2007-05-01
We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.
Women Who Head Families: A Socioeconomic Analysis. Special Labor Force Report 190.
ERIC Educational Resources Information Center
McEaddy, Beverly Johnson
1976-01-01
This report describes the socioeconomic conditions of women who are heads of families noting that the accelerated growth of families headed by women in recent years, especially since 1970, has been of concern in part because one out of every three, as compared to one of every eighteen of the families headed by men, is living at or below what is…
NASA Astrophysics Data System (ADS)
Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez
2012-04-01
In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.
NASA Technical Reports Server (NTRS)
Bush, G. A.; Perachio, A. A.; Angelaki, D. E.
1993-01-01
1. Extracellular recordings were made in and around the medial vestibular nuclei in decerebrated rats. Neurons were functionally identified according to their semicircular canal input on the basis of their responses to angular head rotations around the yaw, pitch, and roll head axes. Those cells responding to angular acceleration were classified as either horizontal semicircular canal-related (HC) or vertical semicircular canal-related (VC) neurons. The HC neurons were further characterized as either type I or type II, depending on the direction of rotation producing excitation. Cells that lacked a response to angular head acceleration, but exhibited sensitivity to a change in head position, were classified as purely otolith organ-related (OTO) neurons. All vestibular neurons were then tested for their response to sinusoidal linear translation in the horizontal head plane. 2. Convergence of macular and canal inputs onto central vestibular nuclei neurons occurred in 73% of the type I HC, 79% of the type II HC, and 86% of the VC neurons. Out of the 223 neurons identified as receiving macular input, 94 neurons were further studied, and their spatiotemporal response properties to sinusoidal stimulation with pure linear acceleration were quantified. Data were obtained from 33 type I HC, 22 type II HC, 22 VC, and 17 OTO neurons. 3. For each neuron the angle of the translational stimulus vector was varied by 15, 30, or 45 degrees increments in the horizontal head plane. In all tested neurons, a direction of maximum sensitivity was identified. An interesting difference among neurons was their response to translation along the direction perpendicular to that that produced the maximum response ("null" direction). For the majority of neurons tested, it was possible to evoke a nonzero response during stimulation along the null direction always had response phases that varied as a function of stimulus direction. 4. These spatiotemporal response properties were quantified in two independent ways. First, the data were evaluated on the basis of the traditional one-dimensional principle governed by the "cosine gain rule" and constant response phase at different stimulus orientations. Second, the response gain and phase values that were empirically determined for each orientation of the applied linear stimulus vector were fitted on the basis of a newly developed formalism that treats neuronal responses as exhibiting two-dimensional spatial sensitivity. Thus two response vectors were determined for each neuron on the basis of its response gain and phase at different stimulus directions in the horizontal head plane.(ABSTRACT TRUNCATED AT 400 WORDS).
Characteristics of a heavy water photoneutron source in boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Danial, Salehi; Dariush, Sardari; M. Salehi, Jozani
2013-07-01
Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.
Biomechanical investigation of head impacts in football
Withnall, C; Shewchenko, N; Gittens, R; Dvorak, J
2005-01-01
Objectives: This study sought to measure the head accelerations induced from upper extremity to head and head to head impact during the game of football and relate this to the risk of mild traumatic brain injury using the Head Impact Power (HIP) index. Furthermore, measurement of upper neck forces and torques will indicate the potential for serious neck injury. More stringent rules or punitive sanctions may be warranted for intentional impact by the upper extremity or head during game play. Methods: Game video of 62 cases of head impact (38% caused by the upper extremity and 30% by the head of the opposing player) was provided by F-MARC. Video analysis revealed the typical impact configurations and representative impact speeds. Upper extremity impacts of elbow strike and lateral hand strike were re-enacted in the laboratory by five volunteer football players striking an instrumented Hybrid III pedestrian model crash test manikin. Head to head impacts were re-enacted using two instrumented test manikins. Results: Elbow to head impacts (1.7–4.6 m/s) and lateral hand strikes (5.2–9.3 m/s) resulted in low risk of concussion (<5%) and severe neck injury (<5%). Head to head impacts (1.5–3.0 m/s) resulted in high concussion risk (up to 67%) but low risk of severe neck injury (<5%). Conclusion: The laboratory simulations suggest little risk of concussion based on head accelerations and maximum HIP. There is no biomechanical justification for harsher penalties in this regard. However, deliberate use of the head to impact another player's head poses a high risk of concussion, and justifies a harsher position by regulatory bodies. In either case the risk of serious neck injury is very low. PMID:16046356
Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H
2013-07-01
This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.
To Predict the Body’s Strength
1988-11-01
requests to Henning E. Von Gierke, Dr. Eng., T"rector, Biodynamics & Bioengineering Division, Wright-Patterson Fig. 1. The anatomy of the human neck ...aircraft emerged. This idea generated the 0 8.O- 0 question, "How much acceleration in the buttocks- 4 0 to- head direction is tolerable in ejecting a...determine that the required 10-12 G head - 0 . JJwards acceleration would be tolerable for I second (21). 01O c 0 0And that was the criteria for the first
Inertial processing of vestibulo-ocular signals
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1999-01-01
New evidence for a central resolution of gravito-inertial signals has been recently obtained by analyzing the properties of the vestibulo-ocular reflex (VOR) in response to combined lateral translations and roll tilts of the head. It is found that the VOR generates robust compensatory horizontal eye movements independent of whether or not the interaural translatory acceleration component is canceled out by a gravitational acceleration component due to simultaneous roll-tilt. This response property of the VOR depends on functional semicircular canals, suggesting that the brain uses both otolith and semicircular canal signals to estimate head motion relative to inertial space. Vestibular information about dynamic head attitude relative to gravity is the basis for computing head (and body) angular velocity relative to inertial space. Available evidence suggests that the inertial vestibular system controls both head attitude and velocity with respect to a gravity-centered reference frame. The basic computational principles underlying the inertial processing of otolith and semicircular canal afferent signals are outlined.
Effect of external viscous load on head movement
NASA Technical Reports Server (NTRS)
Nam, M.-H.; Lakshminarayanan, V.; Stark, L. W.
1984-01-01
Quantitative measurements of horizontal head rotation were obtained from normal human subjects intending to make 'time optimal' trajectories between targets. By mounting large, lightweight vanes on the head, viscous damping B, up to 15 times normal could be added to the usual mechanical load of the head. With the added viscosity, the head trajectory was slowed and of larger duration (as expected) since fixed and maximal (for that amplitude) muscle forces had to accelerate the added viscous load. This decreased acceleration and velocity and longer duration movement still ensued in spite of adaptive compensation; this provided evidence that quasi-'time optimal' movements do indeed employ maximal muscle forces. The adaptation to this added load was rapid. Then the 'adapted state' subjects produced changed trajectories. The adaptation depended in part on the differing detailed instructions given to the subjects. This differential adaptation provided evidence for the existence of preprogrammed controller signals, sensitive to intended criterion, and neurologically ballistic or open loop rather than modified by feedback from proprioceptors or vision.
Bari, Sumra; Svaldi, Diana O; Jang, Ikbeom; Shenk, Trey E; Poole, Victoria N; Lee, Taylor; Dydak, Ulrike; Rispoli, Joseph V; Nauman, Eric A; Talavage, Thomas M
2018-05-25
Long term neurological impairments due to repetitive head trauma are a growing concern for collision sport athletes. American Football has the highest rate of reported concussions among male high school athletes, a position held by soccer for female high school athletes. Recent research has shown that subconcussive events experienced by collision sport athletes can be a further significant source of accrued damage. Collision sport athletes experience hundreds of subconcussive events in a single season, and these largely go uninvestigated as they produce no overt clinical symptoms. Continued participation by these seemingly uninjured athletes is hypothesized to increase susceptibility to diagnoseable brain injury. This study paired magnetic resonance spectroscopy with head impact monitoring to quantify the relationship between metabolic changes and head acceleration event characteristics in high school-aged male football and female soccer collision sport athletes. During the period of exposure to subconcussive events, asymptomatic male (football) collision sport athletes exhibited statistically significant changes in concentrations of glutamate+glutamine (Glx) and total choline containing compounds (tCho) in dorsolateral prefrontal cortex, and female (soccer) collision sport athletes exhibited changes in glutamate+glutamine (Glx) in primary motor cortex. Neurometabolic alterations observed in football athletes during the second half of the season were found to be significantly associated with the average acceleration per head acceleration events, being best predicted by the accumulation of events exceeding 50 g. These marked deviations in neurometabolism, in the absence of overt symptoms, raise concern about the neural health of adolescent collision-sport athletes and suggest limiting exposure to head acceleration events may help to ameliorate the risk of subsequent cognitive impairment.
Correlates of head circumference growth in infants later diagnosed with autism spectrum disorders.
Mraz, Krista D; Green, James; Dumont-Mathieu, Thyde; Makin, Sarah; Fein, Deborah
2007-06-01
Previous research has demonstrated that children diagnosed with autism spectrum disorder show an abnormal acceleration of head growth during the first year of life. This study attempts to replicate these findings and to determine whether overgrowth is associated with clinical outcome. Measurements of head circumference, body length, and body weight taken during the first 2 years of life were obtained from a sample of 35 children diagnosed with autism spectrum disorder and compared to both national normative data (Centers for Disease Control and Prevention) and a control group of 37 healthy infants. Results demonstrated that compared to national averages, infants who were later diagnosed with autism spectrum disorder had a significantly smaller head circumference at birth to 2 weeks and a significantly larger head circumference by 10 to 14 months. Children with autism spectrum disorder were also significantly longer and heavier beginning at 1 to 2 months. However, when overall length and weight were controlled, head circumference was not bigger in the autistic spectrum disorder group compared to local controls. Correlations between head circumference and clinical outcome were significant for 5 of the 30 clinical variables that were run, suggesting that there appears to be no simple or straightforward relationship between head circumference and clinical outcome. Smaller head circumference at birth to 2 weeks was associated with a greater number of symptoms related to social impairment and a greater total number of autism spectrum disorder symptoms based on the Diagnostic and Statistical Manual of Mental Disorders , Fourth Edition criteria. Larger head circumference at 15 to 25 months was also associated with a greater number of symptoms of social impairment. In addition, greater head circumference change during the first 2 years was associated with poorer performance on the visual reception subtest of the Mullen Scales of Early Learning and a smaller number of stereotyped and repetitive behaviors and interests based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. These findings support previous findings of accelerated brain growth during the first year of life in autism spectrum disorder and question whether growth factors might contribute to both accelerated brain growth and overall body growth.
Could head circumference be used to screen for autism in young males with developmental delay?
Gray, Kylie M; Taffe, John; Sweeney, Deborah J; Forster, Sheridan; Tonge, Bruce J
2012-04-01
Research has suggested an abnormal acceleration in head circumference growth in children with autism within the first 12 months of life. This study aimed to examine head circumference at birth and head circumference growth rates in young children with autism and developmental delay, and young children with developmental delay without autism. This study assessed head circumference at birth and rate of change in head circumference in young children with autism (n=86) and children with developmental delay without autism (n=40). For both groups of children, head circumference at birth and head circumference growth were compared with Centers for Disease Control normative data. No differences were found between the group of children with autism and developmental delay compared with the group with developmental delay only. However, when the sample was compared with a range of selected Centers for Disease Control normative medians, the children with autism were found to have significantly smaller head circumferences at birth and significantly larger head circumference at 18.5 months of age. These results are discussed in relation to the potential of accelerated head circumference growth as an early marker for autism. This study failed to find a difference in the head circumferences of children with autism and developmental delay and children with developmental delay only, thus suggesting that head circumference measurement has limited value as an early marker for autism. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
An MCNP-based model of a medical linear accelerator x-ray photon beam.
Ajaj, F A; Ghassal, N M
2003-09-01
The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.
An operating principle of the turtle utricle to detect wide dynamic range.
Nam, Jong-Hoon
2018-03-01
The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from <0.05 to >2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (i MET ) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (a Head ). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle. Copyright © 2017 Elsevier B.V. All rights reserved.
Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.
Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu
2012-01-01
Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.
Evaluation of possible head injuries ensuing a cricket ball impact.
Mohotti, Damith; Fernando, P L N; Zaghloul, Amir
2018-05-01
The aim of this research is to study the behaviour of a human head during the event of an impact of a cricket ball. While many recent incidents were reported in relation to head injuries caused by the impact of cricket balls, there is no clear information available in the published literature about the possible threat levels and the protection level of the current protective equipment. This research investigates the effects of an impact of a cricket ball on a human head and the level of protection offered by the existing standard cricket helmet. An experimental program was carried out to measure the localised pressure caused by the impact of standard cricket balls. The balls were directed at a speed of 110 km/h on a 3D printed head model, with and without a standard cricket helmet. Numerical simulations were carried out using advanced finite element package LS-DYNA to validate the experimental results. The experimental and numerical results showed approximately a 60% reduction in the pressure on the head model when the helmet was used. Both frontal and side impact resulted in head acceleration values in the range of 225-250 g at a ball speed of 110 km/h. There was a 36% reduction observed in the peak acceleration of the brain when wearing a helmet. Furthermore, numerical simulations showed a 67% reduction in the force on the skull and a 95% reduction in the skull internal energy when introducing the helmet. (1) Upon impact, high localised pressure could cause concussion for a player without helmet. (2) When a helmet was used, the acceleration of the brain observed in the numerical results was at non-critical levels according to existing standards. (3) A significant increase in the threat levels was observed for a player without helmet, based on force, pressure, acceleration and energy criteria, which resulted in recommending the compulsory use of the cricket helmet. (4) Numerical results showed a good correlation with experimental results and hence, the numerical technique used in this study can be recommended for future applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Drill-specific head impact exposure in youth football practice.
Campolettano, Eamon T; Rowson, Steven; Duma, Stefan M
2016-11-01
OBJECTIVE Although 70% of football players in the United States are youth players (6-14 years old), most research on head impacts in football has focused on high school, collegiate, or professional populations. The objective of this study was to identify the specific activities associated with high-magnitude (acceleration > 40g) head impacts in youth football practices. METHODS A total of 34 players (mean age 9.9 ± 0.6 years) on 2 youth teams were equipped with helmet-mounted accelerometer arrays that recorded head accelerations associated with impacts in practices and games. Videos of practices and games were used to verify all head impacts and identify specific drills associated with each head impact. RESULTS A total of 6813 impacts were recorded, of which 408 had accelerations exceeding 40g (6.0%). For each type of practice drill, impact rates were computed that accounted for the length of time that teams spent on each drill. The tackling drill King of the Circle had the highest impact rate (95% CI 25.6-68.3 impacts/hr). Impact rates for tackling drills (those conducted without a blocker [95% CI 14.7-21.9 impacts/hr] and those with a blocker [95% CI 10.5-23.1 impacts/hr]) did not differ from game impact rates (95% CI 14.2-21.6 impacts/hr). Tackling drills were observed to have a greater proportion (between 40% and 50%) of impacts exceeding 60g than games (25%). The teams in this study participated in tackling or blocking drills for only 22% of their overall practice times, but these drills were responsible for 86% of all practice impacts exceeding 40g. CONCLUSIONS In youth football, high-magnitude impacts occur more often in practices than games, and some practice drills are associated with higher impact rates and accelerations than others. To mitigate high-magnitude head impact exposure in youth football, practices should be modified to decrease the time spent in drills with high impact rates, potentially eliminating a drill such as King of the Circle altogether.
Drill-specific head impact exposure in youth football practice
Campolettano, Eamon T.; Rowson, Steven; Duma, Stefan M.
2017-01-01
OBJECTIVE Although 70% of football players in the United States are youth players (6–14 years old), most research on head impacts in football has focused on high school, collegiate, or professional populations. The objective of this study was to identify the specific activities associated with high-magnitude (acceleration > 40g) head impacts in youth football practices. METHODS A total of 34 players (mean age 9.9 ± 0.6 years) on 2 youth teams were equipped with helmet-mounted accelerometer arrays that recorded head accelerations associated with impacts in practices and games. Videos of practices and games were used to verify all head impacts and identify specific drills associated with each head impact. RESULTS A total of 6813 impacts were recorded, of which 408 had accelerations exceeding 40g (6.0%). For each type of practice drill, impact rates were computed that accounted for the length of time that teams spent on each drill. The tackling drill King of the Circle had the highest impact rate (95% CI 25.6–68.3 impacts/hr). Impact rates for tackling drills (those conducted without a blocker [95% CI 14.7–21.9 impacts/hr] and those with a blocker [95% CI 10.5–23.1 impacts/hr]) did not differ from game impact rates (95% CI 14.2–21.6 impacts/hr). Tackling drills were observed to have a greater proportion (between 40% and 50%) of impacts exceeding 60g than games (25%). The teams in this study participated in tackling or blocking drills for only 22% of their overall practice times, but these drills were responsible for 86% of all practice impacts exceeding 40g. CONCLUSIONS In youth football, high-magnitude impacts occur more often in practices than games, and some practice drills are associated with higher impact rates and accelerations than others. To mitigate high-magnitude head impact exposure in youth football, practices should be modified to decrease the time spent in drills with high impact rates, potentially eliminating a drill such as King of the Circle altogether. PMID:27550390
SU-E-J-69: Evaluation of the Lens Dose On the Cone Beam IGRT Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomo-Llinares, R; Gimeno-Olmos, J; Carmona Meseguer, V
Purpose: With the establishment of the IGRT as a standard technique, the extra dose that is given to the patients should be taken into account. Furthermore, it has been a recent decrease of the dose threshold in the lens, reduced to 0.5 Gy (ICRP ref 4825-3093-1464 on 21st April, 2011).The purpose of this work was to evaluate the extra dose that the lens is receive due to the Cone-Beam (CBCT) location systems in Head-and-Neck treatments. Methods: The On-Board Imaging (OBI) v 1.5 of the two Varian accelerators, one Clinac iX and one True Beam, were used to obtain the dosemore » that this OBI version give to the lens in the Head-and-Neck location treatments. All CBCT scans were acquired with the Standard Dose Head protocol (100 kVp, 80 mA, 8 ms and 200 degree of rotation).The measurements were taken with thermoluminescence (TLD) EXTRAD (Harshaw) dosimeters placed in an anthropomorphic phantom over the eye and under 3 mm of bolus material to mimic the lens position. The center of the head was placed at the isocenter. To reduce TLD energy dependence, they were calibrated at the used beam quality. Results: The average lens dose at the lens in the OBI v 1.5 systems of the Clinac iX and the True Beam is 0.071 and 0.076 cGy/CBCT, respectively. Conclusions: The extra absorbed doses that receive the eye lenses due to one CBCT acquisition with the studied protocol is far below the new ICRP recommended threshold for the lens. However, the addition effect of several CBCT acquisition during the whole treatment should be taken into account.« less
Sanguineti, Giuseppe; Richetti, Antonella; Bignardi, Mario; Corvo', Renzo; Gabriele, Pietro; Sormani, Maria Pia; Antognoni, Paolo
2005-03-01
To determine whether, in the postoperative setting, accelerated fractionation (AF) radiotherapy (RT) yields a superior locoregional control rate compared with conventional fractionation (CF) RT in locally advanced squamous cell carcinomas of the oral cavity, oropharynx, larynx, or hypopharynx. Patients from four institutions with one or more high-risk features (pT4, positive resection margins, pN >1, perineural/lymphovascular invasion, extracapsular extension, subglottic extension) after surgery were randomly assigned to either RT with one daily session of 2 Gy up to 60 Gy in 6 weeks or AF. Accelerated fractionation consisted of a "biphasic concomitant boost" schedule, with the boost delivered during the first and last weeks of treatment, to deliver 64 Gy in 5 weeks. Informed consent was obtained. The primary endpoint of the study was locoregional control. Analysis was on an intention-to-treat basis. From March 1994 to August 2000, 226 patients were randomized. At a median follow-up of 30.6 months (range, 0-110 months), 2-year locoregional control estimates were 80% +/- 4% for CF and 78% +/- 5% for AF (p = 0.52), and 2-year overall survival estimates were 67% +/- 5% for CF and 64% +/- 5% for AF (p = 0.84). The lack of difference in outcome between the two treatment arms was confirmed by multivariate analysis. However, interaction analysis with median values as cut-offs showed a trend for improved locoregional control for those patients who had a delay in starting RT and who were treated with AF compared with those with a similar delay but who were treated with CF (hazard ratio = 0.5, 95% confidence interval 0.2-1.1). Fifty percent of patients treated with AF developed confluent mucositis, compared with only 27% of those treated with CF (p = 0.006). However, mucositis duration was not different between arms. Although preliminary, actuarial Grade 3+ late toxicity estimates at 2 years were 18% +/- 4% and 27% +/- 6% for CF and AF, respectively (p = 0.10). Accelerated fractionation does not seem to be worthwhile for squamous cell carcinoma of the head and neck after resection; however, AF might be an option for patients who delay starting RT.
How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?
NASA Technical Reports Server (NTRS)
Newby, Nate; Somers, Jeff; Caldewll, Erin; Gernhardt, Michael
2014-01-01
One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post--mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi--purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two--parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x--acceleration peak response correlated with the human response at 8 and 10--G 100 ms but not 10--G 70 ms. The phase lagged the human response. Head z--acceleration was not correlated. Chest x--acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x--displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x--displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x--acceleration was not well correlated. Head and chest z--acceleration was in phase but had a higher peak response. Chest z--acceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder z--displacement but the THOR was in phase and was comparable to the mean peak response. Head x-- and z--displacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NASA
NASA Technical Reports Server (NTRS)
Jiang, L.; Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Nan, R.
1998-01-01
Super-Dwarf wheat plants were grown in growth chambers under 12 treatments with three photoperiods (18 h, 21 h, 24 h) and four carbon dioxide (CO2) levels (360, 1,200, 3,000 and 7,000 micromoles mol-1). Carbon dioxide concentrations affected flower initiation rates of Super-Dwarf wheat. The optimum CO2 level for flower initiation and development was 1,200 micromoles mol-1. Super-optimum CO2 levels delayed flower initiation, but did not decrease final flower bud number per head. Longer photoperiods not only accelerated flower initiation rates, but also decreased deleterious effects of super-optimum CO2. Flower bud size and head length at the same developmental stage were larger under longer photoperiods, but final flower bud number was not affected by photoperiod.
Crew Exploration Vehicle (CEV) (Orion) Occupant Protection. [Appendices Part 2
NASA Technical Reports Server (NTRS)
Currie-Gregg, Nancy J.; Gernhardt, Michael L.; Lawrence, Charles; Somers, Jeffrey T.
2016-01-01
The purpose of this study was to determine the similarity between the response of the THUMS model and the Hybrid III Anthropometric Test Device (ATD) given existing Wright-Patterson (WP) sled tests. There were four tests selected for this comparison with frontal, spinal, rear, and lateral loading. The THUMS was placed in a sled configuration that replicated the WP configuration and the recorded seat acceleration for each test was applied to model seat. Once the modeling simulations were complete, they were compared to the WP results using two methods. The first was a visual inspection of the sled test videos compared to the THUMS d3plot files. This comparison resulted in an assessment of the overall kinematics of the two results. The other comparison was a comparison of the plotted data recorded for both tests. The metrics selected for comparison were seat acceleration, belt forces, head acceleration and chest acceleration. These metrics were recorded in all WP tests and were outputs of the THUMS model. Once the comparison of the THUMS to the WP tests was complete, the THUMS model output was also examined for possible injuries in these scenarios. These outputs included metrics for injury risk to the head, neck, thorax, lumbar spine and lower extremities. The metrics to evaluate head response were peak head acceleration, HIC15, and HIC36. For the neck, N (sub ij) was calculated. The thorax response was evaluated with peak chest acceleration, the Combined Thoracic Index (CTI), sternal deflection, chest deflection, and chest acceleration- 3 ms clip. The lumbar spine response was evaluated with lumbar spine force. Finally the lower extremity response was evaluated by femur and tibia force. The results of the simulation comparisons indicate the THUMS model had a similar response to the Hybrid III dummy given the same input. The primary difference seen between the two was a more flexible response of the THUMS compared to the Hybrid III. This flexibility was most pronounced in the neck flexion, shoulder deflection and chest deflection. Due to the flexibility of the THUMS, the resulting head and chest accelerations tended to lag the Hybrid III acceleration trace and have a lower peak value. The results of the injury metric comparison identified possible injury trends between simulations. Risk of head injury was highest for the lateral simulations. The risk of chest injury was highest for the rear impact. However, neck injury risk was approximately the same for all simulations. The injury metric value for lumbar spine force was highest for the spinal impact. The leg forces were highest for the rear and lateral impacts. The results of this comparison indicate the THUMS model performs in a similar manner as the Hybrid III ATD. The differences in the responses of model and the ATD are primarily due to the flexibility of the THUMS. This flexibility of the THUMS would be a more human like response. Based on the similarity between the two models, the THUMS should be used in further testing to assess risk of injury to the occupant.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Brock, P. J.; Sciaraffa, D.; Polese, A.; Elizondo, R.
1985-01-01
Two aspects of prolonged endurance training were investigated: (1) the effects of exercise-heat acclimation (on a cycle ergometer at 40 C, 42 rh) on orthostatic tolerance (70 deg head-up tilt) and on a +Gz (head-to-foot) acceleration tolerance of male and female subjects; and (2) comparison of their fluid-electrolyte shifts and hormonal (plasma epinephdrine, norepinephrine, renin, and vasopressin) responses during tilting and centrifugation. The adaptive responses during the 12 d, 2-h acclimation did not alter acceleration tolerance of either men or women, or the women's tilt tolerance, but did increase men's tilt tolerance from 30.4 min before to 58.3 min after acclimation. The patterns of fluid, electrolyte, and protein shifts at tolerance in acceleration and tilting tests were virtually the same in men and women. On the other hand, the hormonal plasma epinephrine, norepinephrine, renin, and vasopressin resonses displayed different shift patterns during acceleration and tilting. It is concluded that the responses to tilting cannot be used to predict responses to acceleration. Future experiments for relating the orthostatic and the acceleration tolerances, and the practical questions of the training regimens for future astronauts are discussed.
Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT).
Moss, Raymond L
2014-06-01
The first BNCT trials took place in the USA in the early 1960's, yet BNCT is still far from mainstream medicine. Nonetheless, in recent years, reported results in the treatment of head and neck cancer and recurrent glioma, coupled with the progress in developing linear accelerators specifically for BNCT applications, have given some optimism to the future of BNCT. This article provides a brief reminder on the ups and downs of the history of BNCT and supports the view that controlled and prospective clinical trials with a modern design will make BNCT an evidence-based treatment modality within the coming decade. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.
2009-06-01
At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.
Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks
NASA Astrophysics Data System (ADS)
Takeuchi, Satoshi
2018-02-01
A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.
Radiation shielding design of a new tomotherapy facility.
Zacarias, Albert; Balog, John; Mills, Michael
2006-10-01
It is expected that intensity modulated radiation therapy (IMRT) and image guided radiation therapy (IGRT) will replace a large portion of radiation therapy treatments currently performed with conventional MLC-based 3D conformal techniques. IGRT may become the standard of treatment in the future for prostate and head and neck cancer. Many established facilities may convert existing vaults to perform this treatment method using new or upgraded equipment. In the future, more facilities undoubtedly will be considering de novo designs for their treatment vaults. A reevaluation of the design principles used in conventional vault design is of benefit to those considering this approach with a new tomotherapy facility. This is made more imperative as the design of the TomoTherapy system is unique in several aspects and does not fit well into the formalism of NCRP 49 for a conventional linear accelerator.
CDP-choline: pharmacological and clinical review.
Secades, J J; Frontera, G
1995-10-01
Cytidine 5'-diphosphocholine, CDP-choline or citicoline, is an essential intermediate in the biosynthetic pathway of the structural phospholipids of cell membranes, especially in that of phosphatidylcholine. Upon oral or parenteral administration, CDP-choline releases its two principle components, cytidine and choline. When administered orally, it is absorbed almost completely, and its bioavailability is approximately the same as when administered intravenously. Once absorbed, the cytidine and choline disperse widely throughout the organism, cross the blood-brain barrier and reach the central nervous system (CNS), where they are incorporated into the phospholipid fraction of the membrane and microsomes. CDP-choline activates the biosynthesis of structural phospholipids in the neuronal membranes, increases cerebral metabolism and acts on the levels of various neurotransmitters. Thus, it has been experimentally proven that CDP-choline increases noradrenaline and dopamine levels in the CNS. Due to these pharmacological activities, CDP-choline has a neuroprotective effect in situations of hypoxia and ischemia, as well as improved learning and memory performance in animal models of brain aging. Furthermore, it has been demonstrated that CDP-choline restores the activity of mitochondrial ATPase and of membranal Na+/K+ ATPase, inhibits the activation of phospholipase A2 and accelerates the reabsorption of cerebral edema in various experimental models. CDP-choline is a safe drug, as toxicological tests have shown; it has no serious effects on the cholinergic system and it is perfectly tolerated. These pharmacological characteristics, combined with CDP-choline's mechanisms of action, suggest that this drug may be suitable for the treatment of cerebral vascular disease, head trauma of varying severity and cognitive disorders of diverse etiology. In studies carried out on the treatment of patients with head trauma, CDP-choline accelerated the recovery from post-traumatic coma and the recuperation of walking ability, achieved a better final functional result and reduced the hospital stay of these patients, in addition to improving the cognitive and memory disturbances which are observed after a head trauma of lesser severity and which constitute the disorder known as postconcussion syndrome. In the treatment of patients with acute cerebral vascular disease of the ischemic type, CDP-choline accelerated the recovery of consciousness and motor deficit, attaining a better final result and facilitating the rehabilitation of these patients. The other important use for CDP-choline is in the treatment of senile cognitive impairment, which is secondary to degenerative diseases (e.g., Alzheimer's disease) and to chronic cerebral vascular disease. In patients with chronic cerebral ischemia, CDP-choline improves scores on cognitive evaluation scales, while in patients with senile dementia of the Alzheimer's type, it slows the disease's evolution. Beneficial neuroendocrine, neuroimmunomodulatory and neurophysiological effects have been described. CDP-choline has also been shown to be effective as co-therapy for Parkinson's disease. No serious side effects have been found in any of the groups of patients treated with CDP-choline, which demonstrates the safety of the treatment.
Football helmet drop tests on different fields using an instrumented Hybrid III head.
Viano, David C; Withnall, Chris; Wonnacott, Michael
2012-01-01
An instrumented Hybrid III head was placed in a Schutt ION 4D football helmet and dropped on different turfs to study field types and temperature on head responses. The head was dropped 0.91 and 1.83 m giving impacts of 4.2 and 6.0 m/s on nine different football fields (natural, Astroplay, Fieldturf, or Gameday turfs) at turf temperatures of -2.7 to 23.9 °C. Six repeat tests were conducted for each surface at 0.3 m (1') intervals. The Hybrid III was instrumented with triaxial accelerometers to determine head responses for the different playing surfaces. For the 0.91-m drops, peak head acceleration varied from 63.3 to 117.1 g and HIC(15) from 195 to 478 with the different playing surfaces. The lowest response was with Astroplay, followed by the engineered natural turf. Gameday and Fieldturf involved higher responses. The differences between surfaces decreased in the 1.83 m tests. The cold weather testing involved higher accelerations, HIC(15) and delta V for each surface. The helmet drop test used in this study provides a simple and convenient means of evaluating the compliance and energy absorption of football playing surfaces. The type and temperature of the playing surface influence head responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budach, Volker, E-mail: volker.budach@charite.de; Stromberger, Carmen; Poettgen, Christoph
2015-04-01
Purpose: To report the long-term results of the ARO 95-06 randomized trial comparing hyperfractionated accelerated chemoradiation with mitomycin C/5-fluorouracil (C-HART) with hyperfractionated accelerated radiation therapy (HART) alone in locally advanced head and neck cancer. Patients and Methods: The primary endpoint was locoregional control (LRC). Three hundred eighty-four patients with stage III (6%) and IV (94%) oropharyngeal (59.4%), hypopharyngeal (32.3%), and oral cavity (8.3%) cancer were randomly assigned to 30 Gy/2 Gy daily followed by twice-daily 1.4 Gy to a total of 70.6 Gy concurrently with mitomycin C/5-FU (C-HART) or 16 Gy/2 Gy daily followed by twice-daily 1.4 Gy to a total dose of 77.6 Gy alone (HART). Statisticalmore » analyses were done with the log-rank test and univariate and multivariate Cox regression analyses. Results: The median follow-up time was 8.7 years (95% confidence interval [CI]: 7.8-9.7 years). At 10 years, the LRC rates were 38.0% (C-HART) versus 26.0% (HART, P=.002). The cancer-specific survival and overall survival rates were 39% and 10% (C-HART) versus 30.0% and 9% (HART, P=.042 and P=.049), respectively. According to multivariate Cox regression analysis, the combined treatment was associated with improved LRC (hazard ratio [HR]: 0.6 [95% CI: 0.5-0.8; P=.002]). The association between combined treatment arm and increased LRC appeared to be limited to oropharyngeal cancer (P=.003) as compared with hypopharyngeal or oral cavity cancer (P=.264). Conclusions: C-HART remains superior to HART in terms of LRC. However, this effect may be limited to oropharyngeal cancer patients.« less
NASA Technical Reports Server (NTRS)
Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.
2001-01-01
During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that perception weights the sense of the body vertical more heavily early in-flight, that this weighting falls during adaptation to microgravity, and that the decreased reliance on the body vertical persists early post-flight, generating an exaggerated sense of tilt. Since graviceptors respond to linear acceleration and not to head tilt in orbit, it has been proposed that adaptation to weightlessness entails reinterpretation of otolith activity, causing tilt to be perceived as translation. Since linear acceleration during in-flight centrifugation was always perceived as tilt, not translation, the findings do not support this hypothesis.
96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation.
Wiggins, Graham C; Polimeni, Jonathan R; Potthast, Andreas; Schmitt, Melanie; Alagappan, Vijay; Wald, Lawrence L
2009-09-01
The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g-factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g-factor for 96 channels compared to 32; for example, the 96-channel maximum g-factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images.
A Study of the Response of the Human Cadaver Head to Impact
Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott
2008-01-01
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591
Hogan, Mark
2018-02-13
SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.
Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)
Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Accelerator and Fusion Research Division (AFRD) and Laser Optics and Accelerator Systems Integrated Studies (LOASIS)
2018-05-04
Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.
Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)
Leemans, Wim [LOASIS Program, AFRD
2017-12-09
July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.
Multiscale Analysis of Head Impacts in Contact Sports
NASA Astrophysics Data System (ADS)
Guttag, Mark; Sett, Subham; Franck, Jennifer; McNamara, Kyle; Bar-Kochba, Eyal; Crisco, Joseph; Blume, Janet; Franck, Christian
2012-02-01
Traumatic brain injury (TBI) is one of the world's major causes of death and disability. To aid companies in designing safer and improved protective gear and to aid the medical community in producing improved quantitative TBI diagnosis and assessment tools, a multiscale finite element model of the human brain, head and neck is being developed. Recorded impact data from football and hockey helmets instrumented with accelerometers are compared to simulated impact data in the laboratory. Using data from these carefully constructed laboratory experiments, we can quantify impact location, magnitude, and linear and angular accelerations of the head. The resultant forces and accelerations are applied to a fully meshed head-form created from MRI data by Simpleware. With appropriate material properties for each region of the head-form, the Abaqus finite element model can determine the stresses, strains, and deformations in the brain. Simultaneously, an in-vitro cellular TBI criterion is being developed to be incorporated into Abaqus models for the brain. The cell-based injury criterion functions the same way that damage criteria for metals and other materials are used to predict failure in structural materials.
Change in size and impact performance of football helmets from the 1970s to 2010.
Viano, David C; Halstead, David
2012-01-01
Linear impactor tests were conducted on football helmets from the 1970s-1980s to complement recently reported tests on 1990 s and 2010 s helmets. Helmets were placed on the Hybrid III head with an array of accelerometers to determine translational and rotational acceleration. Impacts were at four sites on the helmet shell at 3.6-11.2 m/s. The four generations of helmets show a continuous improvement in response from bare head impacts in terms of Head Injury Criterion (HIC), peak head acceleration and peak rotational acceleration. Helmets of 2010 s weigh 1.95 ± 0.2 kg and are 2.7 times heavier than 1970s designs. They are also 4.3 cm longer, 7.6 cm higher, and 4.9 cm wider. The extra size and weight allow the use of energy absorbing padding that lowers forces in helmet impacts. For frontal impacts at 7.4 m/s, the four best performing 2010 s helmets have HIC of 148 ± 23 compared to 179 ± 42 for the 1990 s baseline, 231 ± 27 for the 1980s, 253 ± 22 for the 1970s helmets, and 354 ± 3 for the bare head. The additional size and padding of the best 2010 s helmets provide superior attenuation of impact forces in normal play and in conditions associated with concussion than helmets of the 1970s-1990 s.
Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy.
Menz, Hylton B; Lord, Stephen R; St George, Rebecca; Fitzpatrick, Richard C
2004-02-01
To evaluate, in older people with diabetic peripheral neuropathy (DPN) and in age-matched controls, acceleration patterns of the head and pelvis when walking to determine the effect of lower-limb sensory loss on walking stability. Case-control study. Falls and balance laboratory in Australia. Thirty persons with diabetes mellitus (age range, 55-91 y) and 30 age-matched controls. Acceleration patterns of the head and pelvis were measured while participants walked on a level surface and an irregular walkway. Participants also underwent tests of vision, sensation, strength, reaction time, and balance. Temporospatial gait parameters and variables derived from acceleration signals. Participants with DPN had reduced walking speed, cadence, and step length, and less rhythmic acceleration patterns at the head and pelvis compared with controls. These differences were particularly evident when participants walked on the irregular surface. Participants with DPN also had impaired peripheral sensation, reaction time, and balance. Older people with DPN have an impaired ability to stabilize their body when walking on irregular surfaces, even if they adopt a more conservative gait pattern. These results provide further insights into the role of peripheral sensory input in the control of gait stability, and suggest possible mechanisms underlying the increased risk of falling in older people with diabetic neuropathy.
Player and Game Characteristics and Head Impacts in Female Youth Ice Hockey Players.
Reed, Nick; Taha, Tim; Greenwald, Richard; Keightley, Michelle
2017-08-01
Despite the growing popularity of ice hockey among female youth and interest in the biomechanics of head impacts in sport, the head impacts sustained by this population have yet to be characterized. To describe the number of, biomechanical characteristics of, and exposure to head impacts of female youth ice hockey players during competition and to investigate the influences of player and game characteristics on head impacts. Cohort study. Twenty-seven female youth ice hockey players (mean age = 12.5 ± 0.52 years) wore instrumented ice hockey helmets during 66 ice hockey games over a 3-year period. Data specific to player, game, and biomechanical head impact characteristics were recorded. A multiple regression analysis identified factors most associated with head impacts of greater frequency and severity. A total of 436 total head impacts were sustained during 6924 minutes of active ice hockey participation (0.9 ± 0.6 impacts per player per game; range, 0-2.1). A higher body mass index (BMI) significantly predicted a higher number of head impacts sustained per game (P = .008). Linear acceleration of head impacts was greater in older players and those who played the forward position, had a greater BMI, and spent more time on the ice (P = .008), whereas greater rotational acceleration was present in older players who had a greater BMI and played the forward position (P = .008). During tournament games, increased ice time predicted increased severity of head impacts (P = .03). This study reveals for the first time that head impacts are occurring in female youth ice hockey players, albeit at a lower rate and severity than in male youth ice hockey players, despite the lack of intentional body checking.
King, Doug; Hume, Patria; Gissane, Conor; Clark, Trevor
2017-01-01
OBJECTIVE The aim of this study was to investigate the frequency, magnitude, and distribution of head impacts sustained by players in a junior rugby league over a season of matches. METHODS The authors performed a prospective cohort analysis of impact magnitude, frequency, and distribution on data collected with instrumented XPatches worn behind the ear of players in an "under-11" junior rugby league team (players under 11 years old). RESULTS A total of 1977 impacts were recorded. Over the course of the study, players sustained an average of 116 impacts (average of 13 impacts per player per match). The measured linear acceleration ranged from 10g to 123g (mean 22g, median 16g, and 95th percentile 57g). The rotational acceleration ranged from 89 rad/sec 2 to 22,928 rad/sec 2 (mean 4041 rad/sec 2 , median 2773 rad/sec 2 , and 95th percentile 11,384 rad/sec 2 ). CONCLUSIONS The level of impact severity based on the magnitude of impacts for linear and rotational accelerations recorded was similar to the impacts reported in studies of American junior and high school football, collegiate football, and youth ice hockey players, but the players in the rugby league cohort were younger, had less body mass, and played at a slower speed than the American players. Junior rugby league players are required to tackle the player to the ground and use a different tackle technique than that used in American football, likely increasing the rotational accelerations recorded at the head.
DOT National Transportation Integrated Search
1968-03-01
Interactions of linear and angular accelerations are frequently experienced by pilots during aircraft maneuvers. Several recent studies have indicated that the otoliths (detectors of linear acceleration) may influence responses of the semicircular ca...
Ocular motor responses to abrupt interaural head translation in normal humans
NASA Technical Reports Server (NTRS)
Ramat, Stefano; Zee, David S.; Shelhamer, M. J. (Principal Investigator)
2003-01-01
We characterized the interaural translational vestibulo-ocular reflex (tVOR) in 6 normal humans to brief (approximately 200 ms), high-acceleration (0.4-1.4g) stimuli, while they fixed targets at 15 or 30 cm. The latency was 19 +/- 5 ms at 15-cm and 20 +/- 12 ms at 30-cm viewing. The gain was quantified using the ratio of actual to ideal behavior. The median position gain (at time of peak head velocity) was 0.38 and 0.37, and the median velocity gain, 0.52 and 0.62, at 15- and 30-cm viewing, respectively. These results suggest the tVOR scales proportionally at these viewing distances. Likewise, at both viewing distances, peak eye velocity scaled linearly with peak head velocity and gain was independent of peak head acceleration. A saccade commonly occurred in the compensatory direction, with a greater latency (165 vs. 145 ms) and lesser amplitude (1.8 vs. 3.2 deg) at 30- than 15-cm viewing. Even with saccades, the overall gain at the end of head movement was still considerably undercompensatory (medians 0.68 and 0.77 at 15- and 30-cm viewing). Monocular viewing was also assessed at 15-cm viewing. In 4 of 6 subjects, gains were the same as during binocular viewing and scaled closely with vergence angle. In sum the low tVOR gain and scaling of the response with viewing distance and head velocity extend previous results to higher acceleration stimuli. tVOR latency (approximately 20 ms) was lower than previously reported. Saccades are an integral part of the tVOR, and also scale with viewing distance.
49 CFR 572.122 - Head assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... head CG may not be less than 245 G or more than 300 G. The resultant acceleration vs. time history... and the head must be oriented to an incline of 62 ±1 deg. between the “D” plane as shown in Figure N1 and the plane of the impact surface. The 1.57 mm (0.062 in) diameter holes located on either side of...
Martin, Colin J; Abuhaimed, Abdullah; Sankaralingam, Marimuthu; Metwaly, Mohamed; Gentle, David J
2016-06-01
Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within ±21% for the stomach and liver in thorax scans and 2 × CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff.
Safe-Play Knowledge, Aggression, and Head-Impact Biomechanics in Adolescent Ice Hockey Players.
Schmidt, Julianne D; Pierce, Alice F; Guskiewicz, Kevin M; Register-Mihalik, Johna K; Pamukoff, Derek N; Mihalik, Jason P
2016-05-01
Addressing safe-play knowledge and player aggression could potentially improve ice hockey sport safety. To compare (1) safe-play knowledge and aggression between male and female adolescent ice hockey players and (2) head-impact frequency and severity between players with high and low levels of safe-play knowledge and aggression during practices and games. Cohort study. On field. Forty-one male (n = 29) and female (n = 12) adolescent ice hockey players. Players completed the Safe Play Questionnaire (0 = less knowledge, 7 = most knowledge) and Competitive Aggressiveness and Anger Scale (12 = less aggressive, 60 = most aggressive) at midseason. Aggressive penalty minutes were recorded throughout the season. The Head Impact Telemetry System was used to capture head-impact frequency and severity (linear acceleration [g], rotational acceleration [rad/s(2)], Head Impact Technology severity profile) at practices and games. One-way analyses of variance were used to compare safe play knowledge and aggression between sexes. Players were categorized as having high or low safe-play knowledge and aggression using a median split. A 2 × 2 mixed-model analysis of variance was used to compare head-impact frequency, and random-intercept general linear models were used to compare head-impact severity between groups (high, low) and event types (practice, game). Boys (5.8 of 7 total; 95% confidence interval [CI] = 5.3, 6.3) had a trend toward better safe-play knowledge compared with girls (4.9 of 7 total; 95% CI = 3.9, 5.9; F1,36 = 3.40, P = .073). Less aggressive male players sustained significantly lower head rotational accelerations during practices (1512.8 rad/s (2) , 95% CI = 1397.3, 1637.6 rad/s(2)) versus games (1754.8 rad/s (2) , 95% CI = 1623.9, 1896.2 rad/s(2)) and versus high-aggression players during practices (1773.5 rad/s (2) , 95% CI = 1607.9, 1956.3 rad/s (2) ; F1,26 = 6.04, P = .021). Coaches and sports medicine professionals should ensure that athletes of all levels, ages, and sexes have full knowledge of safe play and should consider aggression interventions for reducing head-impact severity among aggressive players during practice.
Analysis of Head Response to Torso Acceleration. Vol. I - Development of Performance Requirements.
DOT National Transportation Integrated Search
1987-11-01
Performance requirements are developed which define the kinematic and kinetic response of the head for a seated subject exposed to frontal, lateral or oblique impact. Response is expressed in terms of variables which are readily measured in an anthro...
Three-dimensional ballistocardiography in microgravity: a review of past research.
De Ridder, S; Migeotte, P-F; Neyt, X; Pattyn, N; Prisk, G K
2011-01-01
This paper gives a short review of research on ballistocardiography in microgravity and indicates the benefits from this research for the use of BCG as a terrestrial cardiac monitoring system. In the past, 3-D methods required large devices to decouple the subject from the terrestrial environment and hence, BCG on Earth is usually limited to unidirectional recordings of the motion in the head-to-foot direction. However, microgravity provides a suspension-free environment where accelerations can be measured in all directions without the influence of gravity. Microgravity research indicated that along with the acceleration in the head-to-foot direction, the accelerations in the lateral and dorso-ventral direction are important in understanding the physiological forces during a cardiac cycle. Further, lung volume has a large influence on the transmission of cardiac forces to the surface of the body. To date, only the three separate components of the acceleration vector have been analyzed in 3-D BCG studies. Using the true acceleration and displacement vector (orientation and magnitude), rather than the three separate components, may permit more accurate cardiac event detection.
The Effect of Head Impact Location on Day of Diagnosed Concussion in College Football.
Liao, Steven; Lynall, Robert C; Mihalik, Jason P
2016-07-01
Scientists and clinicians have attempted to identify and understand biomechanical factors that influence concussion likelihood. The effect of impact frequency to a given head location before the concussion has not been evaluated. The purpose of this study was to compare the frequency of impacts to a given head location on days of diagnosed concussion to the frequency of impacts to a given head location before kinematically matched nonconcussive impacts. Head impact data were gathered from 33 Division I National Collegiate Athletic Association football players. Twenty-four concussions were identified and matched with impacts of similar kinematic and injury criterion values (linear acceleration, rotational acceleration, Gadd severity index, and head injury criterion) that occurred during the same event type (game, practice, or scrimmage). In addition, these same matching criteria were used to match all players to the closest kinematic/same player group. All impacts within a session before the impact of interest (concussive or matched impact) were analyzed. On days of diagnosed concussion, the concussive group sustained a lower percentage of impacts to the front of the head (34.5%) and a greater frequency of impacts to the sides (19.6%) and top (18.9%) of the head (χ(3) = 10.23, P = 0.017) as compared with the matched nonconcussive group (front = 42.5%, sides = 16.6%, top = 14.0%). No significant difference in frequency was found in impacts to the back of the head. It may be more difficult to mitigate concussive forces sustained in impacts to the top and sides of the head than the front of the head. These findings fall in line with previous research demonstrating that reduced impact magnitudes may lessen concussion risk. Studying appropriate training paradigms to develop safer playing techniques on the field is warranted.
Development of head injury assessment reference values based on NASA injury modeling.
Somers, Jeffrey T; Granderson, Bradley; Melvin, John W; Tabiei, Ala; Lawrence, Charles; Feiveson, Alan; Gernhardt, Michael; Ploutz-Snyder, Robert; Patalak, John
2011-11-01
NASA is developing a new crewed vehicle and desires a lower risk of injury compared to automotive or commercial aviation. Through an agreement with the National Association of Stock Car Auto Racing, Inc. (NASCAR®), an analysis of NASCAR impacts was performed to develop new injury assessment reference values (IARV) that may be more relevant to NASA's context of vehicle landing operations. Head IARVs associated with race car impacts were investigated by analyzing all NASCAR recorded impact data for the 2002-2008 race seasons. From the 4015 impact files, 274 impacts were selected for numerical simulation using a custom NASCAR restraint system and Hybrid III 50th percentile male Finite Element Model (FEM) in LS-DYNA. Head injury occurred in 27 of the 274 selected impacts, and all of the head injuries were mild concussions with or without brief loss of consciousness. The 247 noninjury impacts selected were representative of the range of crash dynamics present in the total set of impacts. The probability of head injury was estimated for each metric using an ordered probit regression analysis. Four metrics had good correlation with the head injury data: head resultant acceleration, head change in velocity, HIC 15, and HIC 36. For a 5% risk of AIS≥1/AIS≥2 head injuries, the following IARVs were found: 121.3/133.2 G (head resultant acceleration), 20.3/22.0 m/s (head change in velocity), 1,156/1,347 (HIC 15), and 1,152/1,342 (HIC 36) respectively. Based on the results of this study, further analysis of additional datasets is recommended before applying these results to future NASA vehicles.
Head-Impact-Measurement Devices: A Systematic Review.
O'Connor, Kathryn L; Rowson, Steven; Duma, Stefan M; Broglio, Steven P
2017-03-01
With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. To assess available head-impact devices and their clinical utility. We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians working on the sidelines to monitor athletes. However, head-impact-monitoring systems have limited clinical utility due to error rates, designs, and low specificity in predicting concussive injury.
Singh, Harshvardhan; Sanders, Ozell; McCombe Waller, Sandy; Bair, Woei-Nan; Beamer, Brock; Creath, Robert A; Rogers, Mark W
2017-10-01
To determine and compare gait speed during head-forward and side-to-side head-turn walking in individuals with lower versus greater lateral balance. Cross-sectional study. University research laboratory. Older adults (N=93; 42 men, 51 women; mean age ± SD, 73 ± 6.08y) who could walk independently. (1) Balance tolerance limit (BTL), defined as the lowest perturbation intensity where a multistep balance recovery pattern was first evoked in response to randomized lateral waist-pull perturbations of standing balance to the left and right sides, at 6 different intensities (range from level 2: 4.5-cm displacement at 180cm/s 2 acceleration, to level 7: 22.5-cm displacement at 900cm/s 2 acceleration); (2) gait speed, determined using an instrumented gait mat; (3) balance, evaluated with the Activities-specific Balance Confidence Scale; and (4) mobility, determined with the Timed Up and Go (TUG). Individuals with low versus high BTL had a slower self-selected head-forward gait speed and head-turn gait speed (P=.002 and P<.001, respectively); the magnitude of difference was greater in head-turn gait speed than head-forward gait speed (Cohen's d=1.0 vs 0.6). Head-turn gait speed best predicted BTL. BTL was moderately and positively related (P=.003) to the ABC Scale and negatively related (P=.017) to TUG. Head-turn gait speed is affected to a greater extent than head-forward gait speed in older individuals with poorer lateral balance and at greater risk of falls. Moreover, head-turn gait speed can be used to assess the interactions of limitations in lateral balance function and gait speed in relation to fall risk in older adults. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Clinical Biomechanics of Wear in Total Hip Arthroplasty
Callaghan, John J; Pedersen, Douglas R; Johnston, Richard C; Brown, Thomas D
2003-01-01
Complementary clinical and laboratory studies were performed to identify variables associated with polyethylene wear following total hip replacement, and to elucidate the mechanisms responsible for accelerated wear in the total hip arthroplasty construct. Observational cohort studies were performed using a prospective clinical database of more than 4000 consecutive primary total hip arthroplasties performed by a single surgeon, to identify wear-related variables. These variables included head size, acetabular/femoral component impingement, and third body debris. Novel digital edge detection techniques were developed and employed to accurately measure wear, and to determine the relationships of head size and third body debris to acceleration of wear. A novel slidingdistance-coupled finite element model was formulated and employed to examine the mechanisms responsible for wear. The long-term cohort studies demonstrated smaller head sizes to be associated with less wear. Third body debris generated from cable fretting was associated with an increase in wear, osteolysis, and acetabular loosening, especially with larger head sizes. The sliding-distance-coupled finite element model replicated the wear rates occurring in vitro and in vivo, demonstrating the importance of sliding distance on polyethylene wear following total hip arthroplasty. It also demonstrated substantial increases in wear associated with femoral head scratching from third body debris. Further extension of the finite element formulation demonstrated the potential for acetabular component rim damage from impingement wear, and the enhanced potential for third body ingress to the bearing surface with larger head sizes. Edge detection wear measurement techniques demonstrated that early wear rates were predictive of long-term wear rates. These complementary clinical and laboratory investigations have provided insight into 1) the significance of sliding distance and physiologic loci of motion as contributing factors in minimizing wear, 2) the deleterious effects of third body particulates in accelerating wear, 3) the potential for, and factors related to, impingement wear, and 4) the potential advantages and compromises related to the use of larger head sizes in the bearing surface construct. PMID:14575243
On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets.
Jadischke, Ron; Viano, David C; Dau, Nathan; King, Albert I; McCarthy, Joe
2013-09-03
On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Disequilibrium After Traumatic Brain Injury: Vestibular Mechanisms
2011-09-01
of otolith signal processing, including the integration of head acceleration26 and the disambiguation of linear ac- celeration signals related to tilt ...Foveal versus full-field visual stabilization strategies for translational and rotational head movements. J. Neurosci. 23: 1104–1108. 14. Walker, M.F., M...in the vestibular reflexes that compensate for linear movements of the head and body during standing and walking. The experimental protocol has two
A Multidisciplinary Evaluation of Traumatic Brain Injury: Early Predictors of Outcome
2007-04-01
undergoing an acceleration/deceleration movement (i.e., whiplash ) without direct external trauma to the head . Computed tomography (CT...mild head injury. J Neurol Neurosurg Psychiatry. 1985;48:137-140. Geurts ACH , Ribbers GM, Knoop JA, van Limbeek J. Identification of static and...boney) Injury 30 Facial Injury 13 Skull Fracture/ Head CT Findings 7 Symptoms (i.e. dizziness, nausea, vomiting) 10 Past Medical History 6 The NBM
Bishop, Laura; Goebl, Werner
2017-07-21
Ensemble musicians often exchange visual cues in the form of body gestures (e.g., rhythmic head nods) to help coordinate piece entrances. These cues must communicate beats clearly, especially if the piece requires interperformer synchronization of the first chord. This study aimed to (1) replicate prior findings suggesting that points of peak acceleration in head gestures communicate beat position and (2) identify the kinematic features of head gestures that encourage successful synchronization. It was expected that increased precision of the alignment between leaders' head gestures and first note onsets, increased gesture smoothness, magnitude, and prototypicality, and increased leader ensemble/conducting experience would improve gesture synchronizability. Audio/MIDI and motion capture recordings were made of piano duos performing short musical passages under assigned leader/follower conditions. The leader of each trial listened to a particular tempo over headphones, then cued their partner in at the given tempo, without speaking. A subset of motion capture recordings were then presented as point-light videos with corresponding audio to a sample of musicians who tapped in synchrony with the beat. Musicians were found to align their first taps with the period of deceleration following acceleration peaks in leaders' head gestures, suggesting that acceleration patterns communicate beat position. Musicians' synchronization with leaders' first onsets improved as cueing gesture smoothness and magnitude increased and prototypicality decreased. Synchronization was also more successful with more experienced leaders' gestures. These results might be applied to interactive systems using gesture recognition or reproduction for music-making tasks (e.g., intelligent accompaniment systems).
Wavelet analysis of head acceleration response under dirac excitation for early oedema detection.
Kostopoulos, V; Loutas, T H; Derdas, C; Douzinas, E
2008-04-01
The present work deals with the application of an innovative in-house developed wavelet-based methodology for the analysis of the acceleration responses of a human head complex model as a simulated diffused oedema progresses. The human head complex has been modeled as a structure consisting of three confocal prolate spheroids, whereas the three defined regions by the system of spheroids, from the outside to the inside, represent the scull, the region of cerebrospinal fluid, and the brain tissue. A Dirac-like pulse has been used to excite the human head complex model and the acceleration response of the system has been calculated and analyzed via the wavelet-based methodology. For the purpose of the present analysis, a wave propagation commercial finite element code, LS-DYNA 3D, has been used. The progressive diffused oedema was modeled via consecutive increases in brain volume accompanied by a decrease in brain density. It was shown that even a small increase in brain volume (at the level of 0.5%) can be identified by the effect it has on the vibration characteristics of the human head complex. More precisely, it was found that for some of the wavelet decomposition levels, the energy content changes monotonically as the brain volume increases, thus providing a useful index of monitoring an oncoming brain oedema before any brain damage appears due to uncontrolled intracranial hypertension. For the purpose of the present work and for the levels of brain volume increase considered in the present analysis, no pressure increase was assumed into the cranial vault and, associatively, no brain compliance variation.
NASA Technical Reports Server (NTRS)
Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard
2005-01-01
Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.
Imposed Faster and Slower Walking Speeds Influence Gait Stability Differently in Parkinson Fallers.
Cole, Michael H; Sweeney, Matthew; Conway, Zachary J; Blackmore, Tim; Silburn, Peter A
2017-04-01
To evaluate the effect of imposed faster and slower walking speeds on postural stability in people with Parkinson disease (PD). Cross-sectional cohort study. General community. Patients with PD (n=84; 51 with a falls history; 33 without) and age-matched controls (n=82) were invited to participate via neurology clinics and preexisting databases. Of those contacted, 99 did not respond (PD=36; controls=63) and 27 were not interested (PD=18; controls=9). After screening, a further 10 patients were excluded; 5 had deep brain stimulation surgery and 5 could not accommodate to the treadmill. The remaining patients (N=30) completed all assessments and were subdivided into PD fallers (n=10), PD nonfallers (n=10), and age-matched controls (n=10) based on falls history. Not applicable. Three-dimensional accelerometers assessed head and trunk accelerations and allowed calculation of harmonic ratios and root mean square (RMS) accelerations to assess segment control and movement amplitude. Symptom severity, balance confidence, and medical history were established before participants walked on a treadmill at 70%, 100%, and 130% of their preferred speed. Head and trunk control was lower for PD fallers than PD nonfallers and older adults. Significant interactions indicated head and trunk control increased with speed for PD nonfallers and older adults, but did not improve at faster speeds for PD fallers. Vertical head and trunk accelerations increased with walking speed for PD nonfallers and older adults, while the PD fallers demonstrated greater anteroposterior RMS accelerations compared with both other groups. The results suggest that improved gait dynamics do not necessarily represent improved walking stability, and this must be respected when rehabilitating gait in patients with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
1987-11-01
Performance requirements are developed which define the kinematic and kinetic response of the head for a seated subject exposed to frontal, lateral or oblique impact. Response is expressed in terms of variables which are readily measured in an anthro...
Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M
2009-07-01
The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.
Assessing women's lacrosse head impacts using finite element modelling.
Clark, J Michio; Hoshizaki, T Blaine; Gilchrist, Michael D
2018-04-01
Recently studies have assessed the ability of helmets to reduce peak linear and rotational acceleration for women's lacrosse head impacts. However, such measures have had low correlation with injury. Maximum principal strain interprets loading curves which provide better injury prediction than peak linear and rotational acceleration, especially in compliant situations which create low magnitude accelerations but long impact durations. The purpose of this study was to assess head and helmet impacts in women's lacrosse using finite element modelling. Linear and rotational acceleration loading curves from women's lacrosse impacts to a helmeted and an unhelmeted Hybrid III headform were input into the University College Dublin Brain Trauma Model. The finite element model was used to calculate maximum principal strain in the cerebrum. The results demonstrated for unhelmeted impacts, falls and ball impacts produce higher maximum principal strain values than stick and shoulder collisions. The strain values for falls and ball impacts were found to be within the range of concussion and traumatic brain injury. The results also showed that men's lacrosse helmets reduced maximum principal strain for follow-through slashing, falls and ball impacts. These findings are novel and demonstrate that for high risk events, maximum principal strain can be reduced by implementing the use of helmets if the rules of the sport do not effectively manage such situations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Urban, Jillian E.; Davenport, Elizabeth M.; Golman, Adam J.; Maldjian, Joseph A.; Whitlow, Christopher T.; Powers, Alexander K.; Stitzel, Joel D.
2015-01-01
Sports-related concussion is the most common athletic head injury with football having the highest rate among high school athletes. Traditionally, research on the biomechanics of football-related head impact has been focused at the collegiate level. Less research has been performed at the high school level, despite the incidence of concussion among high school football players. The objective of this study is to twofold: to quantify the head impact exposure in high school football, and to develop a cumulative impact analysis method. Head impact exposure was measured by instrumenting the helmets of 40 high school football players with helmet mounted accelerometer arrays to measure linear and rotational acceleration. A total of 16,502 head impacts were collected over the course of the season. Biomechanical data were analyzed by team and by player. The median impact for each player ranged from 15.2 to 27.0 g with an average value of 21.7 (±2.4) g. The 95th percentile impact for each player ranged from 38.8 to 72.9 g with an average value of 56.4 (±10.5) g. Next, an impact exposure metric utilizing concussion injury risk curves was created to quantify cumulative exposure for each participating player over the course of the season. Impacts were weighted according to the associated risk due to linear acceleration and rotational acceleration alone, as well as the combined probability (CP) of injury associated with both. These risks were summed over the course of a season to generate risk weighted cumulative exposure. The impact frequency was found to be greater during games compared to practices with an average number of impacts per session of 15.5 and 9.4, respectively. However, the median cumulative risk weighted exposure based on combined probability was found to be greater for practices vs. games. These data will provide a metric that may be used to better understand the cumulative effects of repetitive head impacts, injury mechanisms, and head impact exposure of athletes in football. PMID:23864337
Characterization of Vertical Impact Device Acceleration Pulses Using Parametric Assessment: Phase I
2015-04-01
vehicle seating systems. Previous research on the VID (Knox, T., Pellettiere, J., Perry, C., Plaga , J., Bonfeld, J., 2008; Veridian Contract Report...BIBLIOGRAPHY/REFERENCES Knox, T., Pellettiere, J., Perry, C., Plaga , J., Bonfeld, J. (2008). New Sensors to Track Head Acceleration During Possible
The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs)
Jones, Timothy A.; Jones, Sherri M.; Vijayakumar, Sarath; Brugeaud, Aurore; Bothwell, Marcella; Chabbert, Christian
2013-01-01
Short latency linear vestibular sensory evoked potentials (VsEPs) provide a means to objectively and directly assess the function of gravity receptors in mammals and birds. The importance of this functional measure is illustrated by its use in studies of the genetic basis of vestibular function and disease. Head motion is the stimulus for the VsEP. In the bird, it has been established that neurons mediating the linear VsEP respond collectively to the rate of change in linear acceleration during head movement (i.e. jerk) rather than peak acceleration. The kinematic element of motion responsible for triggering mammalian VsEPs has not been characterized in detail. Here we tested the hypothesis that jerk is the kinematic component of head motion responsible for VsEP characteristics. VsEP amplitudes and latencies changed systematically when peak acceleration level was held constant and jerk level was varied from ~0.9 to 4.6 g/ms. In contrast, responses remained relatively constant when kinematic jerk was held constant and peak acceleration was varied from ~0.9 to 5.5g in mice and ~0.44 to 2.75g in rats. Thus the mammalian VsEP depends on jerk levels and not peak acceleration. We conclude that kinematic jerk is the adequate stimulus for the mammalian VsEP. This sheds light on the behavior of neurons generating the response. The results also provide the basis for standardizing the reporting of stimulus levels, which is key to ensuring that response characteristics reported in the literature by many laboratories can be effectively compared and interpreted. PMID:21664446
NASA Astrophysics Data System (ADS)
Chytyk-Praznik, Krista Joy
Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The method was then applied to five prostate and six head-and-neck IMRT treatment courses (˜1900 clinical images). Deviations between the predicted and measured images were quantified. The portal dose image prediction model developed in this thesis work has been shown to be accurate, and it was demonstrated to be able to verify patients' delivered radiation treatments.
Mounted Combat System Crew Shock Loading: Head and Neck Injury Potential Evaluation
2007-07-01
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...degrees. The raw data for this project were collected by the Motion Base Technologies Team of TARDEC and their contractors. The data were sent to the...relating the neck force and torque and head accelerations to establish injury criteria for the neck and head. Data from the Hybrid III manikin were
Frameless stereotactic radiosurgery with a bite-plate: our experience with brain metastases.
Furuse, M; Aoki, T; Takagi, T; Takahashi, J A; Ishikawa, M
2008-12-01
Non-invasive frameless stereotactic radiosurgical systems have recently been developed. We report our experience of frameless stereotactic radiosurgery (SRS) with a bite-plate for brain metastases. Between February 2002 and December 2005, 147 patients with brain metastases were treated with C-arm linear accelerator-based SRS and 122 patients were followed up by our institute. An optic tracking system with infrared light-emitting diodes was used for real-time monitoring. A bite-plate with fiducial markers was applied as a first-line method for frameless SRS. Head-ring fixation was used in patients lacking teeth. Lung carcinomas (63%) were the most common primary tumors, followed by breast carcinomas (13%). Ninety patients underwent radiosurgery with a bite-plate and 32 patients underwent fixation of a head ring. Males were significantly more predominant in the head-ring group (26 men and 6 women), compared with the bite-plate group (47 men and 43 women, p < 0.01). The average age (62 years) in the bite-plate group was significantly younger than that (68 years) in the head-ring group (p < 0.01). The median survival time was 12.0 months in the bite-plate group and 8.0 months in the head-ring group (p = 0.0621). Nine patients who had brain metastases in or close to the brain stem were treated with fractionated stereotactic radiotherapy. The frameless stereotactic radiosurgical system with a bite-plate is safe and effective for the treatment of brain metastasis. Elderly male patients sometimes are edentulous and require placement of a head ring for radiosurgery.
NASA Astrophysics Data System (ADS)
Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail
2017-09-01
In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuyts, Sandra; Dirix, Piet; Clement, Paul M.J.
2009-03-15
Purpose: To evaluate the feasibility and efficacy of a hyperfractionated accelerated radiotherapy (RT) schedule combined with concomitant chemotherapy (Cx) in patients with locally advanced head-and-neck squamous cell carcinoma. Methods and Materials: Between 2004 and 2007, a total of 90 patients with locoregionally advanced head-and-neck squamous cell carcinoma underwent irradiation according to a hybrid fractionation schedule consisting of 20 fractions of 2 Gy (once daily) followed by 20 fractions of 1.6 Gy (twice daily) to a total dose of 72 Gy. Concomitant Cx (cisplatinum 100 mg/m{sup 2}) was administered at the start of Weeks 1 and 4. Treatment outcome and toxicitymore » were retrospectively compared with a previous patient group (n = 73) treated with the same schedule, but without concomitant Cx, between 2001 and 2004. Results: The locoregional control (LRC) rate was 70% after 2 years. Two-year overall and 2-year disease-free survival rates were 74% and 60%, respectively. In comparison with the RT-only group, an improvement of 15% in both LRC (p = 0.03) and overall survival (p = 0.09) was observed. All patients were treated to full radiation dose according to protocol, although the Cx schedule had to be adjusted in 12 patients. No acute Grade 4 or 5 toxicity was seen, but incidences of Grade 3 acute mucositis (74.5% vs. 50.7%; p = 0.002) and dysphagia (82.2% vs. 47.9%; p < 0.001) were significantly higher in the chemoradiotherapy group compared with patients treated with RT alone. Conclusion: With this chemoradiotherapy regimen, excellent LRC and survival rates were achieved, with acceptable acute toxicity.« less
Netherton, Tucker; Li, Yuting; Nitsch, Paige; Shaitelman, Simona; Balter, Peter; Gao, Song; Klopp, Ann; Muruganandham, Manickam; Court, Laurence
2018-06-01
Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion. To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 10 6 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies. The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants with maximum dose deviations greater than 3.7%, dose deviation as a function of fraction number was protracted. For treatments on the Halcyon 1.0 linear accelerator, the convergence of dose deviation with fraction number happened more slowly than reported for conventional linear accelerators. However, if plan complexity is reduced for IMRT and if tumor motion is less than ~10-mm, interplay is greatly reduced. To minimize dose deviations across multiple fractions for dynamic targets, we recommend limiting treatment plan complexity and avoiding one-arc VMAT on the Halcyon 1.0 linear accelerator when interplay is a concern. © 2018 American Association of Physicists in Medicine.
49 CFR 572.152 - Head assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... acceleration vs. time history curve shall be unimodal, and the oscillations occurring after the main pulse... 71 g. The resultant acceleration vs. time history curve shall be unimodal, and the oscillations... with its midsagittal plane in vertical orientation as shown in Figure R1 of this subpart. The lowest...
High-magnitude head impact exposure in youth football
Campolettano, Eamon T.; Gellner, Ryan A.; Rowson, Steven
2018-01-01
OBJECTIVE Even in the absence of a clinically diagnosed concussion, research suggests that neurocognitive changes may develop in football players as a result of frequent head impacts that occur during football games and practices. The objectives of this study were to determine the specific situations in which high-magnitude impacts (accelerations exceeding 40g) occur in youth football games and practices and to assess how representative practice activities are of games with regard to high-magnitude head impact exposure. METHODS A total of 45 players (mean age 10.7 ± 1.1 years) on 2 youth teams (Juniors [mean age 9.9 ± 0.6 years; mean body mass 38.9 ± 9.9 kg] and Seniors [mean age 11.9 ± 0.6 years; mean body mass 51.4 ± 11.8 kg]) wore helmets instrumented with accelerometer arrays to record head impact accelerations for all practices and games. Video recordings from practices and games were used to verify all high-magnitude head impacts, identify specific impact characteristics, and determine the amount of time spent in each activity. RESULTS A total of 7590 impacts were recorded, of which 571 resulted in high-magnitude head impact accelerations exceeding 40g (8%). Impacts were characterized based on the position played by the team member who received the impact, the part of the field where the impact occurred, whether the impact occurred during a game or practice play, and the cause of the impact. High-magnitude impacts occurred most frequently in the open field in both games (59.4%) and practices (67.5%). “Back” position players experienced a greater proportion of high-magnitude head impacts than players at other positions. The 2 teams in this study structured their practice sessions similarly with respect to time spent in each drill, but impact rates differed for each drill between the teams. CONCLUSIONS High-magnitude head impact exposure in games and practice drills was quantified and used as the basis for comparison of exposure in the 2 settings. In this cohort, game impact rates exceeded those for practice. Back players, who were often positioned in the open field, were shown to experience elevated levels of head impact exposure relative to players at other positions. The analysis also suggests that practice intensity, which may be influenced by coaching style, may also affect high-magnitude head impact exposure. Future studies should investigate this aspect as a factor affecting head impact exposure. PMID:29037104
High-magnitude head impact exposure in youth football.
Campolettano, Eamon T; Gellner, Ryan A; Rowson, Steven
2017-12-01
OBJECTIVE Even in the absence of a clinically diagnosed concussion, research suggests that neurocognitive changes may develop in football players as a result of frequent head impacts that occur during football games and practices. The objectives of this study were to determine the specific situations in which high-magnitude impacts (accelerations exceeding 40 g) occur in youth football games and practices and to assess how representative practice activities are of games with regard to high-magnitude head impact exposure. METHODS A total of 45 players (mean age 10.7 ± 1.1 years) on 2 youth teams (Juniors [mean age 9.9 ± 0.6 years; mean body mass 38.9 ± 9.9 kg] and Seniors [mean age 11.9 ± 0.6 years; mean body mass 51.4 ± 11.8 kg]) wore helmets instrumented with accelerometer arrays to record head impact accelerations for all practices and games. Video recordings from practices and games were used to verify all high-magnitude head impacts, identify specific impact characteristics, and determine the amount of time spent in each activity. RESULTS A total of 7590 impacts were recorded, of which 571 resulted in high-magnitude head impact accelerations exceeding 40 g (8%). Impacts were characterized based on the position played by the team member who received the impact, the part of the field where the impact occurred, whether the impact occurred during a game or practice play, and the cause of the impact. High-magnitude impacts occurred most frequently in the open field in both games (59.4%) and practices (67.5%). "Back" position players experienced a greater proportion of high-magnitude head impacts than players at other positions. The 2 teams in this study structured their practice sessions similarly with respect to time spent in each drill, but impact rates differed for each drill between the teams. CONCLUSIONS High-magnitude head impact exposure in games and practice drills was quantified and used as the basis for comparison of exposure in the 2 settings. In this cohort, game impact rates exceeded those for practice. Back players, who were often positioned in the open field, were shown to experience elevated levels of head impact exposure relative to players at other positions. The analysis also suggests that practice intensity, which may be influenced by coaching style, may also affect high-magnitude head impact exposure. Future studies should investigate this aspect as a factor affecting head impact exposure.
Inertial Head-Tracker Sensor Fusion by a Complementary Separate-Bias Kalman Filter
NASA Technical Reports Server (NTRS)
Foxlin, Eric
1996-01-01
Current virtual environment and teleoperator applications are hampered by the need for an accurate, quick-responding head-tracking system with a large working volume. Gyroscopic orientation sensors can overcome problems with jitter, latency, interference, line-of-sight obscurations, and limited range, but suffer from slow drift. Gravimetric inclinometers can detect attitude without drifting, but are slow and sensitive to transverse accelerations. This paper describes the design of a Kalman filter to integrate the data from these two types of sensors in order to achieve the excellent dynamic response of an inertial system without drift, and without the acceleration sensitivity of inclinometers.
Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter
NASA Technical Reports Server (NTRS)
Foxlin, Eric
1996-01-01
Current virtual environment and teleoperator applications are hampered by the need for an accurate, quick responding head-tracking system with a large working volume. Gyroscopic orientation sensors can overcome problems with jitter, latency, interference, line-of-sight obscurations, and limited range, but suffer from slow drift. Gravimetric inclinometers can detect attitude without drifting, but are slow and sensitive to transverse accelerations. This paper describes the design of a Kalman filter to integrate the data from these two types of sensors in order to achieve the excellent dynamic response of an inertial system without drift, and without the acceleration sensitivity of inclinometers.
Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei
2015-01-01
Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044
Panhypopituitarism after multisystem trauma.
Wiechecka, Joanna; Krzewska, Aleksandra; Droń, Izabela; Beń-Skowronek, Iwona
2013-01-01
The pituitary gland plays a key role in hormonal regulation in the organism, contributing to maintenance of balance of basic vital functions. To emphasise the need for assessment of pituitary function after head injury, as correct diagnosis and hormone replacement therapy prove to be a life-saving therapy accelerating the recovery process. A healthy, normally developing 9-year-old girl, a child of young and healthy parents, was struck by a falling tree. The results of severe head trauma included adrenal crisis, hypothyroidism, and diabetes insipidus as manifestations of damage to the anterior and posterior pituitary gland. Administration of hormone replacement therapy, i.e. hydrocortisone, L-thyroxine, and desmopressin greatly improved the patient´s condition and facilitated effective rehabilitation. Determination of pituitary hormones in children after severe head injury should be an important part of diagnosis allowing identification of an early stage of acute hypopituitarism and acceleration of recovery through hormone replacement therapy.
Tucker, Ross; Raftery, Martin; Kemp, Simon; Brown, James; Fuller, Gordon; Hester, Ben; Cross, Matthew; Quarrie, Ken
2017-08-01
The tackle is responsible for the majority of head injuries during rugby union. In order to address head injury risk, risk factors during the tackle must first be identified. This study analysed tackle characteristics in the professional game in order to inform potential interventions. 464 tackles resulting in a head injury assessment (HIA) were analysed in detail, with tackle type, direction, speed, acceleration, nature of head contact and player body position the characteristics of interest. Propensity to cause an HIA was significantly greater for active shoulder tackles, front-on tackles, high speeder tackles and an accelerating tackler. Head contact between a tackler's head and ball carrier's head or shoulder was significantly more likely to cause an HIA than contact below the level of the shoulder (incident rate ratio (IRR) 4.25, 95%-CI 3.38 to 5.35). The tackler experiences the majority (78%) of HIAs when head-to-head contact occurs. An upright tackler was 1.5 times more likely to experience an HIA than a bent at the waist tackler (IRR 1.44, 95% CI 1.18 to 1.76). This study confirms that energy transfer in the tackle is a risk factor for head injury, since direction, type and speed all influence HIA propensity. The study provides evidence that body position and the height of tackles should be a focus for interventions, since lowering height and adopting a bent at the waist body position is associated with reduced risk for both tacklers and ball carriers. To this end, World Rugby has implemented law change based on the present data. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Concussion in professional football: reconstruction of game impacts and injuries.
Pellman, Elliot J; Viano, David C; Tucker, Andrew M; Casson, Ira R; Waeckerle, Joe F
2003-10-01
Concussion in professional football was studied with respect to impact types and injury biomechanics. A combination of video surveillance and laboratory reconstruction of game impacts was used to evaluate concussion biomechanics. Between 1996 and 2001, videotapes of concussions and significant head impacts were collected from National Football League games. There were clear views of the direction and location of the helmet impact for 182 cases. In 31 cases, the speed of impact could be determined with analysis of multiple videos. Those cases were reconstructed in laboratory tests using helmeted Hybrid III dummies and the same impact velocity, direction, and head kinematics as in the game. Translational and rotational accelerations were measured, to define concussion biomechanics. Several studies were performed to ensure the accuracy and reproducibility of the video analysis and laboratory methods used. Concussed players experienced head impacts of 9.3 +/- 1.9 m/s (20.8 +/- 4.2 miles/h). There was a rapid change in head velocity of 7.2 +/- 1.8 m/s (16.1 +/- 4.0 miles/h), which was significantly greater than that for uninjured struck players (5.0 +/- 1.1 m/s, 11.2 +/- 2.5 miles/h; t = 2.9, P < 0.005) or striking players (4.0 +/- 1.2 m/s, 8.9 +/- 2.7 miles/h; t = 7.6, P < 0.001). The peak head acceleration in concussion was 98 +/- 28 g with a 15-millisecond half-sine duration, which was statistically greater than the 60 +/- 24 g for uninjured struck players (t = 3.1, P < 0.005). Concussion was primarily related to translational acceleration resulting from impacts on the facemask or side, or falls on the back of the helmet. Concussion could be assessed with the severity index or head injury criterion (the conventional measures of head injury risk). Nominal tolerance levels for concussion were a severity index of 300 and a head injury criterion of 250. Concussion occurs with considerable head impact velocity and velocity changes in professional football. Current National Operating Committee on Standards for Athletic Equipment standards primarily address impacts to the periphery and crown of the helmet, whereas players are experiencing injuries in impacts to the facemask, side, and back of the helmet. New tests are needed to assess the performance of helmets in reducing concussion risks involving high-velocity and long-duration injury biomechanics.
Safe-Play Knowledge, Aggression, and Head-Impact Biomechanics in Adolescent Ice Hockey Players
Schmidt, Julianne D.; Pierce, Alice F.; Guskiewicz, Kevin M.; Register-Mihalik, Johna K.; Pamukoff, Derek N.; Mihalik, Jason P.
2016-01-01
Context: Addressing safe-play knowledge and player aggression could potentially improve ice hockey sport safety. Objectives: To compare (1) safe-play knowledge and aggression between male and female adolescent ice hockey players and (2) head-impact frequency and severity between players with high and low levels of safe-play knowledge and aggression during practices and games. Design: Cohort study. Setting: On field. Patients or Other Participants: Forty-one male (n = 29) and female (n = 12) adolescent ice hockey players. Intervention(s): Players completed the Safe Play Questionnaire (0 = less knowledge, 7 = most knowledge) and Competitive Aggressiveness and Anger Scale (12 = less aggressive, 60 = most aggressive) at midseason. Aggressive penalty minutes were recorded throughout the season. The Head Impact Telemetry System was used to capture head-impact frequency and severity (linear acceleration [g], rotational acceleration [rad/s2], Head Impact Technology severity profile) at practices and games. Main Outcome Measure(s): One-way analyses of variance were used to compare safe play knowledge and aggression between sexes. Players were categorized as having high or low safe-play knowledge and aggression using a median split. A 2 × 2 mixed-model analysis of variance was used to compare head-impact frequency, and random-intercept general linear models were used to compare head-impact severity between groups (high, low) and event types (practice, game). Results: Boys (5.8 of 7 total; 95% confidence interval [CI] = 5.3, 6.3) had a trend toward better safe-play knowledge compared with girls (4.9 of 7 total; 95% CI = 3.9, 5.9; F1,36 = 3.40, P = .073). Less aggressive male players sustained significantly lower head rotational accelerations during practices (1512.8 rad/s2, 95% CI = 1397.3, 1637.6 rad/s2) versus games (1754.8 rad/s2, 95% CI = 1623.9, 1896.2 rad/s2) and versus high-aggression players during practices (1773.5 rad/s2, 95% CI = 1607.9, 1956.3 rad/s2; F1,26 = 6.04, P = .021). Conclusions: Coaches and sports medicine professionals should ensure that athletes of all levels, ages, and sexes have full knowledge of safe play and should consider aggression interventions for reducing head-impact severity among aggressive players during practice. PMID:27111585
Seki, Masako; Chono, Makiko; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji
2011-12-01
The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from 'Shiroboro 21' by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station.
Seki, Masako; Chono, Makiko; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji
2011-01-01
The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from ‘Shiroboro 21’ by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station. PMID:23136478
An attempt to detect lameness in galloping horses by use of body-mounted inertial sensors.
Lopes, Marco A F; Dearo, Antonio C O; Lee, Allen; Reed, Shannon K; Kramer, Joanne; Pai, P Frank; Yonezawa, Yoshiharu; Maki, Hiromitchi; Morgan, Terry L; Wilson, David A; Keegan, Kevin G
2016-10-01
OBJECTIVE To evaluate head, pelvic, and limb movement to detect lameness in galloping horses. ANIMALS 12 Thoroughbreds. PROCEDURES Movement data were collected with inertial sensors mounted on the head, pelvis, and limbs of horses trotting and galloping in a straight line before and after induction of forelimb and hind limb lameness by use of sole pressure. Successful induction of lameness was determined by measurement of asymmetric vertical head and pelvic movement during trotting. Differences in gallop strides before and after induction of lameness were evaluated with paired-sample statistical analysis and neural network training and testing. Variables included maximum, minimum, range, and time indices of vertical head and pelvic acceleration, head rotation in the sagittal plane, pelvic rotation in the frontal plane, limb contact intervals, stride durations, and limb lead preference. Difference between median standardized gallop strides for each limb lead before and after induction of lameness was calculated as the sum of squared differences at each time index and assessed with a 2-way ANOVA. RESULTS Head and pelvic acceleration and rotation, limb timing, stride duration measurements, and limb lead preference during galloping were not significantly different before and after induction of lameness in the forelimb or hind limb. Differences between limb leads before induction of lameness were similar to or greater than differences within limb leads before and after lameness induction. CONCLUSIONS AND CLINICAL RELEVANCE Galloping horses maintained asymmetry of head, pelvic, and limb motion between limb leads that was unrelated to lameness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Yuan, J; Geis, P
2016-06-15
Purpose: To verify the similarity of the dosimetric characteristics between two Elekta linear accelerators (linacs) in order to treat patients interchangeably on these two machines without re-planning. Methods: To investigate the viability of matching the 6 MV flattened beam on an existing linac (Elekta Synergy with Agility head) with a recently installed new linca (Elekta Versa HD), percent depth doses (PDD), flatness and symmetry output factors were compared for both machines. To validate the beam matching among machines, we carried out two approaches to cross-check the dosimetrical equivalence: 1) the prior treatment plans were re-computed based on the newly builtmore » Versa HD treatment planning system (TPS) model without changing the beam control points; 2) The same plans were delivered on both machines and the radiation dose measurements on a MapCheck2 were compared with TPS calculations. Three VMAT plans (Head and neck, lung, and prostate) were used in the study. Results: The difference between the PDDs for 10×10 cm{sup 2} field at all depths was less than 0.8%. The difference of flatness and symmetry for 30×30 cm{sup 2} field was less than 0.8%, and the measured output factors varies by less than 1% for each field size ranging from 2×2 cm2 to 40×40 cm{sup 2}. For the same plans, the maximum difference of the two calculated dose distributions is 2% of prescription. For the QA measurements, the gamma index passing rates were above 99% for 3%/3mm criteria with 10% threshold for all three clinical plans. Conclusion: A beam modality matching between two Elekta linacs is demonstrated with a cross-checking approach.« less
Guley, Natalie H.; Rogers, Joshua T.; Del Mar, Nobel A.; Deng, Yunping; Islam, Rafiqul M.; D'Surney, Lauren; Ferrell, Jessica; Deng, Bowei; Hines-Beard, Jessica; Bu, Wei; Ren, Huiling; Elberger, Andrea J.; Marchetta, Jeffrey G.; Rex, Tonia S.; Honig, Marcia G.
2016-01-01
Abstract Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25–40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50–60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits. PMID:26414413
Head Impact Biomechanics in Women's College Soccer.
Lynall, Robert C; Clark, Michael D; Grand, Erin E; Stucker, Jaclyn C; Littleton, Ashley C; Aguilar, Alain J; Petschauer, Meredith A; Teel, Elizabeth F; Mihalik, Jason P
2016-09-01
There are limited nonlaboratory soccer head impact biomechanics data. This is surprising given soccer's global popularity. Epidemiological data suggest that female college soccer players are at a greater concussion injury risk than their male counterparts. Therefore, the purposes of our study were to quantify head impact frequency and magnitude during women's soccer practices and games in the National Collegiate Athletic Association and to characterize these data across event type, playing position, year on the team, and segment of game (first and second halves). Head impact biomechanics were collected from female college soccer players (n = 22; mean ± SD age = 19.1 ± 0.1 yr, height = 168.0 ± 3.5 cm, mass = 63.7 ± 6.0 kg). We employed a helmetless head impact measurement device (X2 Biosystems xPatch) before each competition and practice across a single season. Peak linear and rotational accelerations were categorized based on impact magnitude and subsequently analyzed using appropriate nonparametric analyses. Overall, women's college soccer players experience approximately seven impacts per 90 min of game play. The overwhelming majority (~90%) of all head impacts were categorized into our mildest linear acceleration impact classification (10g-20g). Interestingly, a higher percentage of practice impacts in the 20g-40g range compared with games (11% vs 7%) was observed. Head impact biomechanics studies have provided valuable insights into understanding collision sports and for informing evidence-based rule and policy changes. These have included changing the football kickoff, ice hockey body checking ages, and head-to-head hits in both sports. Given soccer's global popularity, and the growing public concern for the potential long-term neurological implications of collision and contact sports, studying soccer has the potential to impact many athletes and the sports medicine professionals caring for them.
Cold plasma: A new technology to modify wheat flour functionality
Bahrami, Niloufar; Bayliss, Danny; Chope, Gemma; Penson, Simon; Perehinec, Tania; Fisk, Ian D.
2016-01-01
Atmospheric pressure cold plasma has the potential to modify biological chemistry and modulate physical surface properties. Wheat flour was treated by low levels of cold plasma (air, 15 V and 20 V) for 60 or 120 s. There was no change in the total aerobic bacterial count or total mould count as a result of treatment. Treatment did not impact the concentration of total non-starch lipids, or non-polar and glycolipids. However, treatment did reduce total free fatty acids and phospholipids and was dose dependent. Oxidation markers (hydroperoxide value and head space n-hexanal) increased with treatment time and voltage, which confirmed the acceleration of lipid oxidation. Total proteins were not significantly influenced by treatment although there was a trend towards higher molecular weight fractions which indicated protein oxidation and treated flour did produce a stronger dough. This study confirms the potential of cold plasma as a tool to modify flour functionality. PMID:26920291
The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.
Chuang, Hui-Ching; Yang, Liang Peng; Fitzgerald, Alison L; Osman, Abdullah; Woo, Sang Hyeok; Myers, Jeffrey N; Skinner, Heath D
2014-01-01
TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.
Rasmussen, Jacob H; Håkansson, Katrin; Vogelius, Ivan R; Aznar, Marianne C; Fischer, Barbara M; Friborg, Jeppe; Loft, Annika; Kristensen, Claus A; Bentzen, Søren M; Specht, Lena
2016-07-01
The CONTRAST (CONventional vs.Tumor Recurrence Adapted Specification of Target dose) phase I trial tested the safety of FDG PET guided dose redistribution in patients receiving accelerated chemo-radiotherapy for locally advanced head and neck squamous cell carcinoma (HNSCC). CONTRAST was designed with two pre-defined dose-escalation steps to the FDG PET-avid volume (GTVPET). The primary end point was any early grade 4+ toxicity according to Common Terminology Criteria for Adverse Events version 4.0 (CTCAE). The dose to GTVPET was escalated to a uniform prescription of 82Gy EQD2 in the first step. All patients received accelerated radiotherapy (6 fractions a week) delivering 34 fractions of 2.34Gy to the GTVPET as well as concomitant weekly cisplatin. Inclusion criteria were (1) primary SCC of oral cavity, oro- or hypo-pharynx, or laynx, (2) candidates for concomitant chemo-radiotherapy and (3) p16 negative tumors or p16 positive tumors in patients with smoking history of >10 pack years. GTVPET was defined by a specialist in nuclear medicine and a radiologist, while the anatomic GTV was defined in collaboration between an oncologist and a radiologist. Median follow up time from the end of treatment was 18months (range 7-21months). All 15 patients completed treatment without interruptions and no incidents of early grade 4+ toxicity were observed. Four patients had ulceration at the evaluation two months after treatment, two have subsequently healed, but two remain, raising concerns regarding late effects. With all 15 cases having completed four month follow up and no incidence of early grade 4+ toxicity FDG PET based dose escalation to 82Gy passed the protocol-defined criterion for dose escalation. However, two cases of concern regarding late outcome led us to refrain from further dose escalation and proceed with the current dose level in a larger comparative effectiveness trial. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Risk of Carotid Blowout After Reirradiation of the Head and Neck: A Systematic Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Mark W., E-mail: mwmcdona@iupui.edu; Indiana University Health Proton Therapy Center, Bloomington, IN; Moore, Michael G.
2012-03-01
Purpose: Carotid blowout (CB) is a rare but frequently fatal complication of head-and-neck (H and N) cancer or its treatment. We sought to determine the reported rate of CB in patients receiving salvage reirradiation for H and N cancer. Methods and Materials: A literature search identified 27 published articles on H and N reirradiation involving 1554 patients, and a pooled analysis was performed to determine the rate of CB. Treatment parameters, including prior radiation dose, interval from prior radiation, dose and fractionation of reirradiation, use of salvage surgery, and chemotherapy, were abstracted and summarized. The cumulative risk of CB wasmore » compared between groups using Fisher's exact test. Results: Among 1554 patients receiving salvage H and N reirradiation, there were 41 reported CBs, for a rate of 2.6%; 76% were fatal. In patients treated in a continuous course with 1.8-2-Gy daily fractions or 1.2-Gy twice-daily fractions, 36% of whom received concurrent chemotherapy, the rate of CB was 1.3%, compared with 4.5% in patients treated with 1.5 Gy twice daily in alternating weeks or with delayed accelerated hyperfractionation, all of whom received concurrent chemotherapy (p = 0.002). There was no statistically significant difference in the rate of CB between patients treated with or without concurrent chemotherapy, or between patients treated with or without salvage surgery before reirradiation. Conclusion: Carotid blowout is an infrequent but serious complication of salvage reirradiation for H and N cancer. The rate of CB was lower among patients treated with conventional or hyperfractionated schedules compared with regimens of accelerated hyperfractionation, though heterogeneous patient populations and treatment parameters preclude definite conclusions. Given the high mortality rate of CB, discussion of the risk of CB is an important component of informed consent for salvage reirradiation.« less
Wong, Ricky H; Wong, Andrew K; Bailes, Julian E
2014-03-01
A growing body of research suggests that subconcussive head impacts or repetitive mild Traumatic Brain Injury (mTBI) can have cumulative and deleterious effects. Several studies have investigated head impacts in football at the professional, collegiate, and high school levels, in an attempt to elucidate the biomechanics of head impacts among football players. Youth football players, generally from 7 to 14 years of age, constitute 70% of all football players, yet burden of, and susceptibility to, head injury in this population is not well known. A novel impact sensor utilizing binary force switches (Shockbox(®)) was used to follow an entire Pop Warner football team consisting of twenty-two players for six games and five practices. The impact sensor was designed to record impacts with linear accelerations over 30g. In addition, video recording of games and practices were used to further characterize the head impacts by type of position (skilled versus unskilled), field location of impact (open field versus line of scrimmage), type of hit (tackling, tackled, or hold/push), and whether the impact was a head-to-head impact or not. We recorded a total of 480 head impacts. An average of 21.8 head impacts occurred per practice, while 61.8 occurred per game. Players had an average of 3.7 head impacts per game and 1.5 impacts per practice (p<0.001). The number of high magnitude head impacts (>80g) was 11. Two concussions were diagnosed over the course of the season. However, due to technical reasons the biomechanics of those hits resulting in concussions were not captured. Despite smaller players and slower play when compared to high school, collegiate or professional players, those involved in youth football sustain a moderate number of head impacts per season with several high magnitude impacts. Our results suggest that players involved in open-field, tackling plays that have head-to-head contact sustain impacts with the highest linear accelerations. Our data supports previously published data that suggests changes to the rules of play during practice can reduce the burden of hits. Copyright © 2013 Elsevier B.V. All rights reserved.
Structural Benchmark Testing for Stirling Convertor Heater Heads
NASA Technical Reports Server (NTRS)
Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.
2007-01-01
The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.
Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993
NASA Technical Reports Server (NTRS)
Finley, Brian; Grodsinsky, Carlos; Delombard, Richard
1994-01-01
The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.
Porcine head response to blast.
Shridharani, Jay K; Wood, Garrett W; Panzer, Matthew B; Capehart, Bruce P; Nyein, Michelle K; Radovitzky, Raul A; Bass, Cameron R 'dale'
2012-01-01
Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G's and were well correlated with peak incident overpressure (R(2) = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are presented to provide experimental data for computer model validation.
Porcine Head Response to Blast
Shridharani, Jay K.; Wood, Garrett W.; Panzer, Matthew B.; Capehart, Bruce P.; Nyein, Michelle K.; Radovitzky, Raul A.; Bass, Cameron R. ‘Dale’
2012-01-01
Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300–2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G’s and were well correlated with peak incident overpressure (R2 = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are presented to provide experimental data for computer model validation. PMID:22586417
A virtual photon energy fluence model for Monte Carlo dose calculation.
Fippel, Matthias; Haryanto, Freddy; Dohm, Oliver; Nüsslin, Fridtjof; Kriesen, Stephan
2003-03-01
The presented virtual energy fluence (VEF) model of the patient-independent part of the medical linear accelerator heads, consists of two Gaussian-shaped photon sources and one uniform electron source. The planar photon sources are located close to the bremsstrahlung target (primary source) and to the flattening filter (secondary source), respectively. The electron contamination source is located in the plane defining the lower end of the filter. The standard deviations or widths and the relative weights of each source are free parameters. Five other parameters correct for fluence variations, i.e., the horn or central depression effect. If these parameters and the field widths in the X and Y directions are given, the corresponding energy fluence distribution can be calculated analytically and compared to measured dose distributions in air. This provides a method of fitting the free parameters using the measurements for various square and rectangular fields and a fixed number of monitor units. The next step in generating the whole set of base data is to calculate monoenergetic central axis depth dose distributions in water which are used to derive the energy spectrum by deconvolving the measured depth dose curves. This spectrum is also corrected to take the off-axis softening into account. The VEF model is implemented together with geometry modules for the patient specific part of the treatment head (jaws, multileaf collimator) into the XVMC dose calculation engine. The implementation into other Monte Carlo codes is possible based on the information in this paper. Experiments are performed to verify the model by comparing measured and calculated dose distributions and output factors in water. It is demonstrated that open photon beams of linear accelerators from two different vendors are accurately simulated using the VEF model. The commissioning procedure of the VEF model is clinically feasible because it is based on standard measurements in air and water. It is also useful for IMRT applications because a full Monte Carlo simulation of the treatment head would be too time-consuming for many small fields.
Head-Impact–Measurement Devices: A Systematic Review
O'Connor, Kathryn L.; Rowson, Steven; Duma, Stefan M.; Broglio, Steven P.
2017-01-01
Context: With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. Objective: To assess available head-impact devices and their clinical utility. Data Sources: We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Study Selection: Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. Data Extraction: One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. Data Synthesis: In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Conclusions: Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians working on the sidelines to monitor athletes. However, head-impact–monitoring systems have limited clinical utility due to error rates, designs, and low specificity in predicting concussive injury. PMID:28387553
Carlsson, Anna; Linder, Astrid; Davidsson, Johan; Hell, Wolfram; Schick, Sylvia; Svensson, Mats
2011-08-01
The objective was to quantify dynamic responses of 50th percentile females in rear impacts and compare to those from similar tests with males. The results will serve as a basis for future work with models, criteria, and safety systems. A rear impact sled test series with 8 female volunteers was performed at velocity changes of 5 and 7 km/h. The following dynamic response corridors were generated for the head, T1 (first thoracic vertebra) and head relative to T1: (1) accelerations in posterior-anterior direction, (2) horizontal and vertical displacements, (3) angular displacements for 6 females close to the 50th percentile in size. Additionally, the head-to-head restraint distance and contact time and neck injury criterion (NIC) were extracted from the data set. These data were compared to results from previously performed male volunteer tests, representing the 50th percentile male, in equivalent test conditions. T-tests were performed with the statistical significance level of .05 to quantify the significance of the parameter value differences for the males and females. At 7 km/h, the females showed 29 percent earlier head-to-head restraint contact time (p = .0072); 27 percent shorter horizontal rearward head displacement (p = .0017); 36 percent narrower head extension angle (p = .0281); and 52 percent lower NIC value (p = .0239) than the males in previous tests. This was mainly due to 35 percent shorter initial head-to-head restraint distance for the females (p = .0125). The peak head acceleration in the posterior-anterior direction was higher and occurred earlier for the females. The overall result indicated differences in the dynamic response for the female and male volunteers. The results could be used in developing and evaluating a mechanical and/or mathematical average-sized female dummy model for rear impact safety assessment. These models can be used as a tool in the design of protective systems and for further development and evaluation of injury criteria.
Research study on neck injury lessening with active head restraint using human body FE model.
Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji
2008-12-01
The objective of this study is to examine the effectiveness of the active head restraint system in reducing neck injury risk of car occupants in low-speed rear impacts. A human body FE model "THUMS" was used to simulate head and neck kinematics of the occupant and to evaluate loading to the neck. Joint capsule strain was calculated to predict neck injury risk as well as NIC. The validity of the model was confirmed comparing its mechanical responses to those in human subjects in the literatures. Seat FE models were also prepared representing one with a fixed head restraint and the other one with an active head restraint system. The active head restraint system was designed to move the head restraint forward and upward when the lower unit was lower unit was loaded by the pelvis. Rear impact simulations were performed assuming a triangular acceleration pulse at a delta-V of 25 km/h. The model reproduced similar head and neck motions to those measured in the human volunteer test, except for active muscular responses. The calculated joint capsule strain also showed a good match with those of PMHS tests in the literature. A rear-impact simulation was conducted using the model with the fixed head restraint. The result revealed that NIC was strongly correlated with the relative acceleration between the head and the torso and that its maximum peak appeared when the head contacted the head restraint. It was also found that joint capsule strain grew in later timing synchronizing with the relative displacement. Another simulation with the active head restraint system showed that both NIC and joint capsule strain were lowered owing to the forward and upward motion of the head restraint. A close investigation of the vertebral motion indicated that the active head restraint reduced the magnitude of shear deformation in the facet joint, which contributed to the strain growth in the fixed head restraint case. Rear-impact simulations were conducted using a human body FE model, THUMS, representing an average-size male occupant. The cervical system including the facet joint capsules was incorporated to the model. The validity of the model was examined comparing its mechanical responses to those in the literature such as the whole body motion of the volunteer subject and the vertebral motion in the PMHS tests. Rear-impact simulations were conducted using the validated THUMS model and two prototype seat models; one had a fixed head restraint and the other one was equipped with an active head restraint system. The active head restraint system works moving the head restraint forward and upward when the lower unit is loaded by the pelvis. The head and neck kinematics and responses were analyzed from the simulation results. The force and acceleration rose at the pelvis first, followed by T1 and the head. The early timing of force rise and its magnitude indicated that the pelvis force was a good trigger for the active head restraint system. The results showed that the head was supported earlier in a case with the active head restraint system, and both NIC and joint capsule strain were lowered. The study also analyzed the mechanism of strain growth in the joint capsules. Relatively greater strain was observed in the direction of the facet joint surface, which was around 45 degrees inclined to the spinal column. The forward and upward motion of the active head restraint were aligned with the direction of the joint deformation and contributed to lower strain in the joint capsules. The results indicated that the active head restraint could help reduce the neck injury risk not only by supporting the head at an early timing but also through its trajectory stopping the joint deformation.
Antigraviceptive neck muscle responses to "moving up and moving down" in human.
Aoki, M; Han, X Y; Yamada, H; Muto, T; Satake, H; Ito, Y; Matsunami, K
2000-07-01
The responses of neck muscle to sudden transit from one 'g' to hyper 'g', work to support the head and remain the relative position of head on trunk as common observed: i.e. in sudden acceleration or deceleration by car or ejection of pilot from aircraft. Accordingly it is highly possible that the neck muscle responses to moving up may be important to prevent the neck injury due to sudden linear acceleration such as moving up against gravity. However little is known about the evaluation of mechanism of this reflex. Therefore the present study was conducted with two aims. The first aim was to investigate the neck muscle responses to vertical linear acceleration bv 0.4 g produced with an electro-hydraulic servo-system. We chose the vertical linear acceleration because it activates mainly sacculus, from which afferents have been demonstrated to be connected directly to sternocleidomastoid muscle in animals and human. The second aim was to determine whether there is a difference of neck muscle response to moving down and moving up.
Antigraviceptive neck muscle responses to "moving up and moving down" in human
NASA Technical Reports Server (NTRS)
Aoki, M.; Han, X. Y.; Yamada, H.; Muto, T.; Satake, H.; Ito, Y.; Matsunami, K.
2000-01-01
The responses of neck muscle to sudden transit from one 'g' to hyper 'g', work to support the head and remain the relative position of head on trunk as common observed: i.e. in sudden acceleration or deceleration by car or ejection of pilot from aircraft. Accordingly it is highly possible that the neck muscle responses to moving up may be important to prevent the neck injury due to sudden linear acceleration such as moving up against gravity. However little is known about the evaluation of mechanism of this reflex. Therefore the present study was conducted with two aims. The first aim was to investigate the neck muscle responses to vertical linear acceleration bv 0.4 g produced with an electro-hydraulic servo-system. We chose the vertical linear acceleration because it activates mainly sacculus, from which afferents have been demonstrated to be connected directly to sternocleidomastoid muscle in animals and human. The second aim was to determine whether there is a difference of neck muscle response to moving down and moving up.
Axis of Eye Rotation Changes with Head-Pitch Orientation during Head Impulses about Earth-Vertical
Schubert, Michael C.; Clendaniel, Richard A.; Carey, John P.; Della Santina, Charles C.; Minor, Lloyd B.; Zee, David S.
2006-01-01
The goal of this study was to assess how the axis of head rotation, Listing's law, and eye position influence the axis of eye rotation during brief, rapid head rotations. We specifically asked how the axis of eye rotation during the initial angular vestibuloocular reflex (VOR) changed when the pitch orientation of the head relative to Earth-vertical was varied, but the initial position of the eye in the orbit and the orientation of Listing's plane with respect to the head were fixed. We measured three-dimensional eye and head rotation axes in eight normal humans using the search coil technique during head-and-trunk (whole-body) and head-on-trunk (head-only) “impulses” about an Earth-vertical axis. The head was initially oriented at one of five pitch angles (30° nose down, 15° nose down, 0°, 15° nose up, 30° nose up). The fixation target was always aligned with the nasooccipital axis. Whole-body impulses were passive, unpredictable, manual, rotations with peak-amplitude of ∼20°, peak-velocity of ∼80°/s, and peak-acceleration of ∼1000°/s2. Head-only impulses were also passive, unpredictable, manual, rotations with peak-amplitude of ∼20°, peak-velocity of ∼150°/s, and peak-acceleration of ∼3000°/s2. During whole-body impulses, the axis of eye rotation tilted in the same direction, and by an amount proportional (0.51 ± 0.09), to the starting pitch head orientation (P < 0.05). This proportionality constant decreased slightly to 0.39 ± 0.08 (P < 0.05) during head-only impulses. Using the head-only impulse data, with the head pitched up, we showed that only 50% of the tilt in the axis of eye rotation could be predicted from vectorial summation of the gains (eye velocity/head velocity) obtained for rotations about the pure yaw and roll head axes. Thus, even when the orientation of Listing's plane and eye position in the orbit are fixed, the axis of eye rotation during the VOR reflects a compromise between the requirements of Listing's law and a perfectly compensatory VOR. PMID:16552499
Long necks enhance and constrain foraging capacity in aquatic vertebrates.
Wilson, Rory P; Gómez-Laich, Agustina; Sala, Juan-Emilio; Dell'Omo, Giacomo; Holton, Mark D; Quintana, Flavio
2017-11-29
Highly specialized diving birds display substantial dichotomy in neck length with, for example, cormorants and anhingas having extreme necks, while penguins and auks have minimized necks. We attached acceleration loggers to Imperial cormorants Phalacrocorax atriceps and Magellanic penguins Spheniscus magellanicus , both foraging in waters over the Patagonian Shelf, to examine the difference in movement between their respective heads and bodies in an attempt to explain this dichotomy. The penguins had head and body attitudes and movements that broadly concurred throughout all phases of their dives. By contrast, although the cormorants followed this pattern during the descent and ascent phases of dives, during the bottom (foraging) phase of the dive, the head angle differed widely from that of the body and its dynamism (measured using vectorial dynamic acceleration) was over four times greater. A simple model indicated that having the head on an extended neck would allow these cormorants to half the energy expenditure that they would expend if their body moved in the way their heads did. This apparently energy-saving solution is likely to lead to greater heat loss though and would seem tenable in slow-swimming species because the loss of streamlining that it engenders would make it detrimental for fast-swimming taxa such as penguins. © 2017 The Author(s).
Head Impact Exposure in Youth Football: Comparing Age- and Weight-Based Levels of Play.
Kelley, Mireille E; Urban, Jillian E; Miller, Logan E; Jones, Derek A; Espeland, Mark A; Davenport, Elizabeth M; Whitlow, Christopher T; Maldjian, Joseph A; Stitzel, Joel D
2017-06-01
Approximately 5,000,000 athletes play organized football in the United States, and youth athletes constitute the largest proportion with ∼3,500,000 participants. Investigations of head impact exposure (HIE) in youth football have been limited in size and duration. The objective of this study was to evaluate HIE of athletes participating in three age- and weight-based levels of play within a single youth football organization over four seasons. Head impact data were collected using the Head Impact Telemetry (HIT) System. Mixed effects linear models were fitted, and Wald tests were used to assess differences in head accelerations and number of impacts among levels and session type (competitions vs. practices). The three levels studied were levels A (n = 39, age = 10.8 ± 0.7 years, weight = 97.5 ± 11.8 lb), B (n = 48, age = 11.9 ± 0.5 years, weight = 106.1 ± 13.8 lb), and C (n = 32, age = 13.0 ± 0.5 years, weight = 126.5 ± 18.6 lb). A total of 40,538 head impacts were measured. The median/95th percentile linear head acceleration for levels A, B, and C was 19.8/49.4g, 20.6/51.0g, and 22.0/57.9g, respectively. Level C had significantly greater mean linear acceleration than both levels A (p = 0.005) and B (p = 0.02). There were a significantly greater number of impacts per player in a competition than in a practice session for all levels (A, p = 0.0005, B, p = 0.0019, and C, p < 0.0001). Athletes at lower levels experienced a greater percentage of their high magnitude impacts (≥ 80g) in practice, whereas those at the highest level experienced a greater percentage of their high magnitude impacts in competition. These data improve our understanding of HIE within youth football and are an important step in making evidence-based decisions to reduce HIE.
Head Impact Exposure in Youth Football: Comparing Age- and Weight-Based Levels of Play
Kelley, Mireille E.; Urban, Jillian E.; Miller, Logan E.; Jones, Derek A.; Espeland, Mark A.; Davenport, Elizabeth M.; Whitlow, Christopher T.; Maldjian, Joseph A.
2017-01-01
Abstract Approximately 5,000,000 athletes play organized football in the United States, and youth athletes constitute the largest proportion with ∼3,500,000 participants. Investigations of head impact exposure (HIE) in youth football have been limited in size and duration. The objective of this study was to evaluate HIE of athletes participating in three age- and weight-based levels of play within a single youth football organization over four seasons. Head impact data were collected using the Head Impact Telemetry (HIT) System. Mixed effects linear models were fitted, and Wald tests were used to assess differences in head accelerations and number of impacts among levels and session type (competitions vs. practices). The three levels studied were levels A (n = 39, age = 10.8 ± 0.7 years, weight = 97.5 ± 11.8 lb), B (n = 48, age = 11.9 ± 0.5 years, weight = 106.1 ± 13.8 lb), and C (n = 32, age = 13.0 ± 0.5 years, weight = 126.5 ± 18.6 lb). A total of 40,538 head impacts were measured. The median/95th percentile linear head acceleration for levels A, B, and C was 19.8/49.4g, 20.6/51.0g, and 22.0/57.9g, respectively. Level C had significantly greater mean linear acceleration than both levels A (p = 0.005) and B (p = 0.02). There were a significantly greater number of impacts per player in a competition than in a practice session for all levels (A, p = 0.0005, B, p = 0.0019, and C, p < 0.0001). Athletes at lower levels experienced a greater percentage of their high magnitude impacts (≥ 80g) in practice, whereas those at the highest level experienced a greater percentage of their high magnitude impacts in competition. These data improve our understanding of HIE within youth football and are an important step in making evidence-based decisions to reduce HIE. PMID:28274184
The functional head impulse test: preliminary data.
Corallo, Giulia; Versino, Maurizio; Mandalà, Marco; Colnaghi, Silvia; Ramat, Stefano
2018-06-04
The functional head impulse test is a new test of vestibular function based on the ability to recognize the orientation of a Landolt C optotype that briefly appears on a computer screen during passive head impulses imposed by the examiner over a range of head accelerations. Here, we compare its results with those of the video head impulse test on a population of vestibular neuritis patients recorded acutely and after 3 months from symptoms onset. The preliminary results presented here show that while both tests are able to identify the affected labyrinth and to show a recovery of vestibular functionality at 3 months, the two tests are not redundant, but complementary.
Environmental Data Collection Using Autonomous Wave Gliders
2014-12-01
Observing System IMU Inertial Measurement Unit LRI Liquid Robotics, Inc. MASFlux Marine-Air-Sea-Flux METOC meteorological and oceanographic...position, velocity, heading, pitch, roll , and six-axis acceleration rates (Figure 11). A separate temperature probe also provides sea surface...Position, Velocity, and Magnetic declination True North Revolution Technologies GS Gyro Stabilized Electronic Compass Heading, Pitch, and Roll
Dependence of vestibular reactions on frequency of action of sign-variable accelerations
NASA Technical Reports Server (NTRS)
Lapayev, E. V.; Vorobyev, O. A.; Ivanov, V. V.
1980-01-01
It was revealed that during the tests with continuous action of sign variable Coriolis acceleration the development of kinetosis was proportionate to the time of head inclinations in the range of 1 to 4 seconds while illusions of rocking in sagittal plane was more expressed in fast inclinations. The obtained data provided the evidence of sufficient dependence of vestibulovegetative and vestibulosensory reactions on the period of repetition of sign variable Coriolis acceleration.
Tooth segmentation system with intelligent editing for cephalometric analysis
NASA Astrophysics Data System (ADS)
Chen, Shoupu
2015-03-01
Cephalometric analysis is the study of the dental and skeletal relationship in the head, and it is used as an assessment and planning tool for improved orthodontic treatment of a patient. Conventional cephalometric analysis identifies bony and soft-tissue landmarks in 2D cephalometric radiographs, in order to diagnose facial features and abnormalities prior to treatment, or to evaluate the progress of treatment. Recent studies in orthodontics indicate that there are persistent inaccuracies and inconsistencies in the results provided using conventional 2D cephalometric analysis. Obviously, plane geometry is inappropriate for analyzing anatomical volumes and their growth; only a 3D analysis is able to analyze the three-dimensional, anatomical maxillofacial complex, which requires computing inertia systems for individual or groups of digitally segmented teeth from an image volume of a patient's head. For the study of 3D cephalometric analysis, the current paper proposes a system for semi-automatically segmenting teeth from a cone beam computed tomography (CBCT) volume with two distinct features, including an intelligent user-input interface for automatic background seed generation, and a graphics processing unit (GPU) acceleration mechanism for three-dimensional GrowCut volume segmentation. Results show a satisfying average DICE score of 0.92, with the use of the proposed tooth segmentation system, by 15 novice users who segmented a randomly sampled tooth set. The average GrowCut processing time is around one second per tooth, excluding user interaction time.
The evaluation of speed skating helmet performance through peak linear and rotational accelerations.
Karton, Clara; Rousseau, Philippe; Vassilyadi, Michael; Hoshizaki, Thomas Blaine
2014-01-01
Like many sports involving high speeds and body contact, head injuries are a concern for short track speed skating athletes and coaches. While the mandatory use of helmets has managed to nearly eliminate catastrophic head injuries such as skull fractures and cerebral haemorrhages, they may not be as effective at reducing the risk of a concussion. The purpose of this study was to evaluate the performance characteristics of speed skating helmets with respect to managing peak linear and peak rotational acceleration, and to compare their performance against other types of helmets commonly worn within the speed skating sport. Commercially available speed skating, bicycle and ice hockey helmets were evaluated using a three-impact condition test protocol at an impact velocity of 4 m/s. Two speed skating helmet models yielded mean peak linear accelerations at a low-estimated probability range for sustaining a concussion for all three impact conditions. Conversely, the resulting mean peak rotational acceleration values were all found close to the high end of a probability range for sustaining a concussion. A similar tendency was observed for the bicycle and ice hockey helmets under the same impact conditions. Speed skating helmets may not be as effective at managing rotational acceleration and therefore may not successfully protect the user against risks associated with concussion injuries.
Staar, S; Rudat, V; Stuetzer, H; Dietz, A; Volling, P; Schroeder, M; Flentje, M; Eckel, H E; Mueller, R P
2001-08-01
To demonstrate the efficacy of radiochemotherapy (RCT) as the first choice of treatment for advanced unresectable head-and-neck cancer. To prove an expected benefit of simultaneously given chemotherapy, a two-arm randomized study with hyperfractionated accelerated radiochemotherapy (HF-ACC-RCT) vs. hyperfractionated accelerated radiotherapy (HF-ACC-RT) was initiated. The primary endpoint was 1-year survival with local control (SLC). Patients with Stage III and IV (UICC) unresectable oro- and hypopharyngeal carcinomas were randomized for HF-ACC-RCT with 2 cycles of 5-FU (600 mg/m(2)/day)/carboplatinum (70 mg/m(2)) on days 1--5 and 29--33 (arm A) or HF-ACC-RT alone (arm B). In both arms, there was a second randomization for testing the effect of prophylactically given G-CSF (263 microg, days 15--19) on mucosal toxicity. Total RT dose in both arms was 69.9 Gy in 38 days, with a concomitant boost regimen (weeks 1--3: 1.8 Gy/day, weeks 4 and 5: b.i.d. RT with 1.8 Gy/1.5 Gy). Between July 1995 and May 1999, 263 patients were randomized (median age 56 years; 96% Stage IV tumors, 4% Stage III tumors). This analysis is based on 240 patients: 113 patients with RCT and 127 patients with RT, qualified for protocol and starting treatment. There were 178 oropharyngeal and 62 hypopharyngeal carcinomas. Treatment was tolerable in both arms, with a higher mucosal toxicity after RCT. Restaging showed comparable nonsignificant different CR + PR rates of 92.4% after RCT and 87.9% after RT (p = 0.29). After a median observed time of 22.3 months, l- and 2-year local-regional control (LRC) rates were 69% and 51% after RCT and 58% and 45% after RT (p = 0.14). There was a significantly better 1-year SLC after RCT (58%) compared with RT (44%, p = 0.05). Patients with oropharyngeal carcinomas showed significantly better SLC after RCT (60%) vs. RT (40%, p = 0.01); the smaller group of hypopharyngeal carcinomas had no statistical benefit of RCT (p = 0.84). For both tumor locations, prophylactically given G-CSF was a poor prognostic factor (Cox regression), and resulted in reduced LRC (log-rank test: +/- G-CSF, p = 0.0072). With accelerated radiotherapy, the efficiency of simultaneously given chemotherapy may be not as high as expected when compared to standard fractionated RT. Oropharyngeal carcinomas showed better LRC after HF-ACC-RCT vs. HF-ACC-RT; hypopharyngeal carcinomas did not. Prophylactic G-CSF resulted in an unexpected reduced local control and should be given in radiotherapy regimen only with strong hematologic indication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bednarz, Bryan; Xu, X. George
2008-07-15
A Monte Carlo-based procedure to assess fetal doses from 6-MV external photon beam radiation treatments has been developed to improve upon existing techniques that are based on AAPM Task Group Report 36 published in 1995 [M. Stovall et al., Med. Phys. 22, 63-82 (1995)]. Anatomically realistic models of the pregnant patient representing 3-, 6-, and 9-month gestational stages were implemented into the MCNPX code together with a detailed accelerator model that is capable of simulating scattered and leakage radiation from the accelerator head. Absorbed doses to the fetus were calculated for six different treatment plans for sites above the fetusmore » and one treatment plan for fibrosarcoma in the knee. For treatment plans above the fetus, the fetal doses tended to increase with increasing stage of gestation. This was due to the decrease in distance between the fetal body and field edge with increasing stage of gestation. For the treatment field below the fetus, the absorbed doses tended to decrease with increasing gestational stage of the pregnant patient, due to the increasing size of the fetus and relative constant distance between the field edge and fetal body for each stage. The absorbed doses to the fetus for all treatment plans ranged from a maximum of 30.9 cGy to the 9-month fetus to 1.53 cGy to the 3-month fetus. The study demonstrates the feasibility to accurately determine the absorbed organ doses in the mother and fetus as part of the treatment planning and eventually in risk management.« less
SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bichay, T; Mayville, A
2016-06-15
Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less
A 13C(d,n)-based epithermal neutron source for Boron Neutron Capture Therapy.
Capoulat, M E; Kreiner, A J
2017-01-01
Boron Neutron Capture Therapy (BNCT) requires neutron sources suitable for in-hospital siting. Low-energy particle accelerators working in conjunction with a neutron producing reaction are the most appropriate choice for this purpose. One of the possible nuclear reactions is 13 C(d,n) 14 N. The aim of this work is to evaluate the therapeutic capabilities of the neutron beam produced by this reaction, through a 30mA beam of deuterons of 1.45MeV. A Beam Shaping Assembly design was computationally optimized. Depth dose profiles in a Snyder head phantom were simulated with the MCNP code for a number of BSA configurations. In order to optimize the treatment capabilities, the BSA configuration was determined as the one that allows maximizing both the tumor dose and the penetration depth while keeping doses to healthy tissues under the tolerance limits. Significant doses to tumor tissues were achieved up to ∼6cm in depth. Peak doses up to 57Gy-Eq can be delivered in a fractionated scheme of 2 irradiations of approximately 1h each. In a single 1h irradiation, lower but still acceptable doses to tumor are also feasible. Treatment capabilities obtained here are comparable to those achieved with other accelerator-based neutron sources, making of the 13 C(d,n) 14 N reaction a realistic option for producing therapeutic neutron beams through a low-energy particle accelerator. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Lloyd, John; Conidi, Frank
2016-03-01
Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of all ages, the authors propose thresholds for all sports helmets based on a peak linear acceleration no greater than 90 g and a peak angular acceleration not exceeding 1700 rad/sec(2).
2017-11-01
rearward rotation of the head towards the back or shoulder blades ). The y- axis of the head runs from right ear canal to the left ear canal with...PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT Unclassified c . THIS PAGE Unclassified Chris Burneka 19b. TELEPHONE NUMBER...92 APPENDIX C . SAMPLE DATA SHEETS
14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications
Code of Federal Regulations, 2010 CFR
2010-01-01
... Discrete “true” or “mag” ±2° 1 0.5° When true or magnetic heading can be selected as the primary heading reference, a discrete indicating selection must be recorded. 5. Normal acceleration (vertical) 9 −3g to +6g.... Manual Radio Transmitter Keying or CVR/DFDR synchronization reference On-Off (Discrete)None 1 Preferably...
Iwawaki, Yoko; Uebaba, Kazuo; Yamamoto, Yoko; Takishita, Yukie; Harada, Kiyomi; Shibata, Akemi; Narumoto, Jin; Fukui, Kenji
2016-01-01
Abstract Objective: To clarify the physical and psychological effects of head massage performed in the supine position using Ayurveda-based techniques (head treatment). Design: Twenty-four healthy female students were included in the study. Using a crossover study design, the same participants were enrolled in both the head treatment intervention group and control group. There was an interval of 1 week or more between measurements. Outcome measures: The physiologic indices measured included blood pressure and heart rate fluctuations (high frequency and low frequency/high frequency). The psychological markers measured included liveliness, depression, and boredom using the visual analogue scale method. State anxiety was measured using the State-Trait Anxiety Inventory method. Results: The parasympathetic nerve activity increased immediately after head treatment. Upon completion of head treatment, the parasympathetic nerve predominance tended to gradually ease. Head treatment boosted freshness and relieved anxiety. Conclusions: The results suggest that head treatment has a relaxing and refreshing effect and may be used to provide comfort. PMID:27163344
Novel Model of Frontal Impact Closed Head Injury in the Rat
Kilbourne, Michael; Kuehn, Reed; Tosun, Cigdem; Caridi, John; Keledjian, Kaspar; Bochicchio, Grant; Scalea, Thomas; Gerzanich, Volodymyr
2009-01-01
Abstract Frontal impact, closed head trauma is a frequent cause of traumatic brain injury (TBI) in motor vehicle and sports accidents. Diffuse axonal injury (DAI) is common in humans and experimental animals, and results from shearing forces that develop within the anisotropic brain. Because the specific anisotropic properties of the brain are axis-dependent, the anatomical site where force is applied as well as the resultant acceleration, be it linear, rotational, or some combination, are important determinants of the resulting pattern of brain injury. Available rodent models of closed head injury do not reproduce the frontal impact commonly encountered in humans. Here we describe a new rat model of closed head injury that is a modification of the impact-acceleration model of Marmarou. In our model (the Maryland model), the impact force is applied to the anterior part of the cranium and produces TBI by causing anterior-posterior plus sagittal rotational acceleration of the brain inside the intact cranium. Skull fractures, prolonged apnea, and mortality were absent. The animals exhibited petechial hemorrhages, DAI marked by a bead-like pattern of β-amyloid precursor protein (β-APP) in damaged axons, and widespread upregulation of β-APP in neurons, with regions affected including the orbitofrontal cortex (coup), corpus callosum, caudate, putamen, thalamus, cerebellum, and brainstem. Activated caspase-3 was prominent in hippocampal neurons and Purkinje cells at the grey-white matter junction of the cerebellum. Neurobehavioral dysfunction, manifesting as reduced spontaneous exploration, lasted more than 1 week. We conclude that the Maryland model produces diffuse injuries that may be relevant to human brain injury. PMID:19929375
Accelerator Science: Collider vs. Fixed Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.
Accelerator Science: Collider vs. Fixed Target
Lincoln, Don
2018-01-16
Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilabâs Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.
Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.
Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom
2016-01-01
The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles. Copyright 2016, SLACK Incorporated.
Biomechanics of head injury in olympic taekwondo and boxing.
Fife, G P; O'Sullivan, D; Pieter, W
2013-12-01
The purpose was to examine differences between taekwondo kicks and boxing punches in resultant linear head acceleration (RLA), head injury criterion (HIC15), peak head velocity, and peak foot and fist velocities. Data from two existing publications on boxing punches and taekwondo kicks were compared. For taekwondo head impacts a Hybrid II Crash Dummy (Hybrid II) head was instrumented with a tri-axial accelerometer mounted inside the Hybrid II head. The Hybrid II was fixed to a height-adjustable frame and fitted with a protective taekwondo helmet. For boxing testing, a Hybrid III Crash Dummy head was instrumented with an array of tri-axial accelerometers mounted at the head centre of gravity. Differences in RLA between the roundhouse kick (130.11±51.67 g) and hook punch (71.23±32.19 g, d = 1.39) and in HIC15 (clench axe kick: 162.63±104.10; uppercut: 24.10±12.54, d = 2.29) were observed. Taekwondo kicks demonstrated significantly larger magnitudes than boxing punches for both RLA and HIC.
The potential of polymer gel dosimeters for 3D MR-IGRT quality assurance
NASA Astrophysics Data System (ADS)
Roed, Y.; Ding, Y.; Wen, Z.; Wang, J.; Pinsky, L.; Ibbott, G.
2017-05-01
Advances in radiotherapy technology have enabled more accurate delivery of radiation doses to anatomically complex tumor volumes, while sparing surrounding tissues. The most recent advanced treatment modality combines a radiation delivery system (either Cobalt-60 therapy heads or linear accelerator) with a diagnostic magnetic resonance (MR) scanner to perform MR-image guided radiotherapy (MR-IGRT). For a radiation treatment plan to be delivered successfully with MR-IGRT the compliance with previously established criteria to validate the passing of such plans has to be confirmed. Due to the added strong magnetic field a new set of quality assurance standards has to be developed. Ideal detectors are MR-compatible, can capture complex dose distributions and can be read out with MRI. Polymer gels were investigated as potential three dimensional MR-IGRT quality assurance detectors.
Rowson, Steven; Duma, Stefan M
2013-05-01
Recent research has suggested possible long term effects due to repetitive concussions, highlighting the importance of developing methods to accurately quantify concussion risk. This study introduces a new injury metric, the combined probability of concussion, which computes the overall risk of concussion based on the peak linear and rotational accelerations experienced by the head during impact. The combined probability of concussion is unique in that it determines the likelihood of sustaining a concussion for a given impact, regardless of whether the injury would be reported or not. The risk curve was derived from data collected from instrumented football players (63,011 impacts including 37 concussions), which was adjusted to account for the underreporting of concussion. The predictive capability of this new metric is compared to that of single biomechanical parameters. The capabilities of these parameters to accurately predict concussion incidence were evaluated using two separate datasets: the Head Impact Telemetry System (HITS) data and National Football League (NFL) data collected from impact reconstructions using dummies (58 impacts including 25 concussions). Receiver operating characteristic curves were generated, and all parameters were significantly better at predicting injury than random guessing. The combined probability of concussion had the greatest area under the curve for all datasets. In the HITS dataset, the combined probability of concussion and linear acceleration were significantly better predictors of concussion than rotational acceleration alone, but not different from each other. In the NFL dataset, there were no significant differences between parameters. The combined probability of concussion is a valuable method to assess concussion risk in a laboratory setting for evaluating product safety.
Elliott, Michael R; Margulies, Susan S; Maltese, Matthew R; Arbogast, Kristy B
2015-09-18
There has been recent dramatic increase in the use of sensors affixed to the heads or helmets of athletes to measure the biomechanics of head impacts that lead to concussion. The relationship between injury and linear or rotational head acceleration measured by such sensors can be quantified with an injury risk curve. The utility of the injury risk curve relies on the accuracy of both the clinical diagnosis and the biomechanical measure. The focus of our analysis was to demonstrate the influence of three sources of error on the shape and interpretation of concussion injury risk curves: sampling variability associated with a rare event, concussion under-reporting, and sensor measurement error. We utilized Bayesian statistical methods to generate synthetic data from previously published concussion injury risk curves developed using data from helmet-based sensors on collegiate football players and assessed the effect of the three sources of error on the risk relationship. Accounting for sampling variability adds uncertainty or width to the injury risk curve. Assuming a variety of rates of unreported concussions in the non-concussed group, we found that accounting for under-reporting lowers the rotational acceleration required for a given concussion risk. Lastly, after accounting for sensor error, we find strengthened relationships between rotational acceleration and injury risk, further lowering the magnitude of rotational acceleration needed for a given risk of concussion. As more accurate sensors are designed and more sensitive and specific clinical diagnostic tools are introduced, our analysis provides guidance for the future development of comprehensive concussion risk curves. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Oman, C. M.; Lichtenberg, B. K.; Money, K. E.; McCoy, R. K.
1986-01-01
Space sickness symptoms were observed by 4 specially trained observers on Spacelab-1. Three reported persistent symptoms, and vomited repeatedly during the first and/or second day of flight. Head movements on all axes were provocative, particularly in pitch and roll. Head acceleration data recorded from 2 symptomatic crewmen showed that after several hours of physical activity in orbit, symptoms appeared, and thereafter both crewmen were compelled to limit head movements. Firm body contact with motionless surfaces helped alleviate symptoms. When crewmembers floated into unfamiliar body orientations in the cabin, inherent ambiguities in static visual orientation cues sometimes produced spatial reorientation episodes which were also provocative. Symptoms largely resembled those of other forms of prolonged motion sickness, superimposed upon other symptoms attributable to fluid shift. All 4 eventually used anti-motion sickness drugs. When they did, vomiting frequency was reduced. By the 4th day, symptoms subsided, and head accelerations again increased in magnitude and variability. Sickness intensity in orbit was not predicted by statistically concordant results of 6 acute preflight susceptibility tests. However, results from a longer duration preflight prism goggles test showed an apparent correlation. All subjects were asymptomatic making head movements in parabolic flight 4 days after the mission, but not 1 year later. Overall, results support the view that space sickness is a motion sickness.
Tselis, Nikolaos; Ratka, Markus; Vogt, Hans-Georg; Kolotas, Christos; Baghi, Mehran; Baltas, Dimos; Fountzilas, George; Georgoulias, Vassilios; Ackermann, Hanns; Zamboglou, Nikolaos
2011-01-01
Despite significant improvements in the treatment of head and neck cancer (HNC), lymph node recurrences remain a clinical challenge after primary radiotherapy. The value of interstitial (IRT) brachytherapy (BRT) for control of lymph node recurrence remains unclear. In order to clarify its role a retrospective review was undertaken on the value of computed tomography (CT)-guided IRT high-dose-rate (HDR)-BRT in isolated recurrent disease from HNC. From 2000 to 2007, 74 patients were treated for inoperable recurrent cervical lymphadenopathy. All patients had previously been treated with radical radiotherapy or chemoradiation with or without surgery. The HDR-BRT delivered a median salvage dose of 30.0 Gy (range, 12.0-36.0 Gy) in twice-daily fractions of 2.0-5.0 Gy in 71 patients and of 30.0 Gy (range, 10.0-36.0 Gy) in once-daily fractions of 6.0-10.0 Gy in three patients. The overall and disease-free survival rates at one, two and three years were 42%, 19%, 6%, and 42%, 37% and 19%, respectively. The local control probability at one, two and three years was 67% at all three time points. Grade III-IV complications occurred in 13% of patients. In patients with inoperable recurrent neck disease from HNC, hypofractionated accelerated CT-guided IRT-HDR-BRT can play an important role in providing palliation and tumor control. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Jutila, Topi; Hirvonen, Timo P
2013-01-01
Physiological nystagmus stabilizes gaze during head movements and pathological nystagmus reflects a disorder of the vestibulo-ocular reflex (VOR). Pathological nystagmus appears or strengthens usually during change in head position. Therefore, dizziness or nystagmus associated with head movements is not specific to benign paroxysmal positional vertigo unless it is verified in specific positional test. Peripheral nystagmus decelerates during visual fixation, accelerates when gaze is turned towards the fast phase, does not change direction, and is usually composed of several directional components unlike central nystagmus. The velocity and frequency of the slow phase of nystagmus can be measured with electronystagmography or video-oculography.
Modeling of patient's blood pressure variation during ambulance transportation
NASA Astrophysics Data System (ADS)
Sakatani, Kenji; Ono, Takahiko; Kobayasi, Yasuhide; Hikita, Shinichi; Saito, Mitsuyuki
2007-12-01
In an emergency transportation by ambulance, a patient is transported in a supine position. In this position, a patient's blood pressure (BP) variation depending on an inertial force which occurs when an ambulance accelerates or decelerates. This BP variation causes a critical damage for a patent with brain disorder. In order to keep a patient stable during transportation, it is required to maintain small BP variation. To analyze the BP variation during transportation, a model of the BP variation has so far been made. But, it can estimate the BP variation only in braking. The purpose of this paper is to make a dynamical model of the BP variation which can simulate it in both braking and accelerating. First, to obtain the data to construct the model, we used a tilting bed to measure a head-to-foot acceleration and BP of fingertip. Based on this data, we build a mathematical model whose input is the head-to-foot acceleration and output is the Mean BP variation. It is a switched model which switches two models depending on the jerk. We add baroreceptor reflex to the model as a offset value.
Zeng, Jing; Zhao, Xiao-yu; Huang, Qiong; Wang, En-ren
2009-10-01
To investigate the effects of glutamine-enriched enteral nutrition on the nutritional status and prognosis of patients with severe head injury. Thirty-three patients with severe head injury were randomly divided into control group (C, 15 cases) and glutamine-enriched group (Gln, 18 cases). Patients in both groups were given routine treatment and enteral nutrition with the same amount of nitrogen and calorie. Patients in Gln group were given glutamine 0.5 g x kg(-1) x d(-1) additionally added into the nutrient fluid. Vital signs and the occurrence of side effects of all patients were observed before and after nutrition support. Venous blood and urine sample of all patients were collected before and 7, 14 days after treatment to determine the parameters of blood, urine routine and hepatorenal function. At the same time points, body mass, skin fold thickness at the region of triceps brachii (TSF), upper arm circumference (AC), upper arm muscle circumference (AMC) and fasting blood glucose of all patients were detected and determined, Glasgow coma scale (GCS) scoring was performed. The length of hospital stay of all patients was recorded. Vital signs and parameters of blood, urine routine and hepatorenal function of patients in 2 groups after nutrition treatment were close to those before treatment. Side effects, such as nausea and diarrhea occurred with spontaneous remission in a few patients. There was no statistical significant difference between 2 groups, and within each group before and after treatment, in respect of body mass and TSF (P > 0.05). Values of AC and AMC of patients in Gln group were obviously higher than those of C group (P < 0.01) on post-treatment day 14. Fasting blood glucose and GCS score of all patients before treatment were close to those on post-treatment day 14 (P > 0.05). Fasting blood glucose and GCS score of patients was respectively lower and higher in Gln group than that in C group on post-treatment day 7 (P < 0.05). Length of hospital stay of patients in Gln group (25 +/- 9) d was obviously shorter than that of C group (33 +/- 12) d (P < 0.05). Glutamine-enriched enteral nutrition can control the blood glucose level, prevent the loss of lean tissue, improve nutrition status of patients,shorten hospital stay, and accelerate the recovery of patients to some extent.
Pezzotti, Giuseppe; Affatato, Saverio; Rondinella, Alfredo; Yorifuji, Makiko; Marin, Elia; Zhu, Wenliang; McEntire, Bryan; Bal, Sonny B.; Yamamoto, Kengo
2017-01-01
A clear discrepancy between predicted in vitro and actual in vivo surface phase stability of BIOLOX®delta zirconia-toughened alumina (ZTA) femoral heads has been demonstrated by several independent research groups. Data from retrievals challenge the validity of the standard method currently utilized in evaluating surface stability and raise a series of important questions: (1) Why do in vitro hydrothermal aging treatments conspicuously fail to model actual results from the in vivo environment? (2) What is the preponderant microscopic phenomenon triggering the accelerated transformation in vivo? (3) Ultimately, what revisions of the current in vitro standard are needed in order to obtain consistent predictions of ZTA transformation kinetics in vivo? Reported in this paper is a new in toto method for visualizing the surface stability of femoral heads. It is based on CAD-assisted Raman spectroscopy to quantitatively assess the phase transformation observed in ZTA retrievals. Using a series of independent analytical probes, an evaluation of the microscopic mechanisms responsible for the polymorphic transformation is also provided. An outline is given of the possible ways in which the current hydrothermal simulation standard for artificial joints can be improved in an attempt to reduce the gap between in vitro simulation and reality. PMID:28772828
Evaluation of lens absorbed dose with Cone Beam IGRT procedures.
Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J
2015-12-01
The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71 ± 0.07 mGy/CBCT and 0.70 ± 0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.
The p53-Reactivating Small Molecule RITA Induces Senescence in Head and Neck Cancer Cells
Chuang, Hui-Ching; Yang, Liang Peng; Fitzgerald, Alison L.; Osman, Abdullah; Woo, Sang Hyeok; Myers, Jeffrey N.; Skinner, Heath D.
2014-01-01
TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC. PMID:25119136
Top tether effectiveness during side impacts.
Majstorovic, Jordan; Bing, Julie; Dahle, Eric; Bolte, John; Kang, Yun-Seok
2018-02-28
Few studies have looked at the effectiveness of the top tether during side impacts. In these studies, limited anthropomorphic test device (ATD) data were collected and/or few side impact scenarios were observed. The goal of this study was to further understand the effects of the top tether on ATD responses and child restraint system (CRS) kinematics during various side impact conditions. A series of high-speed near-side and far-side sled tests were performed using the FMVSS213 side impact sled buck and Q3s ATD. Tests were performed at both 10° and 30° impacts with respect to the pure lateral direction. Two child restraints, CRS A and CRS B, were attached to the bench using flexible lower anchors. Each test scenario was performed with the presence and absence of a top tether. Instrumentation recorded Q3s responses and CRS kinematics, and the identical test scenarios with and without a top tether attachment were compared. For the far-side lateral (10°) and oblique (30°) impacts, top tether attachment increased resultant head accelerations by 8-38% and head injury criterion (HIC 15 ) values by 20-140%. However, the top tether was effective in reducing lateral head excursion by 5-25%. For near-side impacts, the top tether resulted in less than 10% increases in both resultant head acceleration and HIC 15 in the lateral impact direction. For near-side oblique impacts, the top tether increased HIC 15 by 17.3% for CRS A and decreased it by 19.5% for CRS B. However, the injury values determined from both impact conditions were below current injury assessment reference values (IARVs). Additionally, the top tether proved beneficial in preventing forward and lateral CRS rotations. The results show that the effects of the top tether on Q3s responses were dependent on impact type, impact angle, and CRS. Tether attachments that increased head accelerations and HIC 15 values were generally counterbalanced by a reduction in head excursion and CRS rotation compared to nontethered scenarios.
Li, Zhipeng; Yang, Zejia; Passaniti, Antonino; Lapidus, Rena G.; Liu, Xuefeng; Cullen, Kevin J.; Dan, Han C.
2016-01-01
The overexpression or mutation of epidermal growth factor receptor (EGFR) has been associated with a number of cancers, including head and neck squamous cell carcinoma (HNSCC). Increasing evidence indicates that both the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of Rapamycin (mTOR) and the nuclear factor-kappa B (NF-κB) are constitutively active and contribute to aggressive HNSCC downstream of EGFR. However, whether these two oncogenic signaling pathways exhibit molecular and functional crosstalk in HNSCC is unclear. Our results now reveal that mTORC1, not mTORC2, contributes to NF-κB activation downstream of EGFR/PI3K/Akt signaling. Mechanistically, mTORC1 enhances the inhibitor of nuclear factor kappa-B kinase (IKK) activity to accelerate NF-κB signaling. Concomitantly, activated NF-κB/IKK up-regulates EGFR expression through positive feedback regulation. Blockage of NF-κB/IKK activity by the novel IKKβ specific inhibitor, CmpdA, leads to significant inhibition of cell proliferation and induction of apoptosis. CmpdA also sensitizes intrinsic cisplatin-resistant HNSCC cells to cisplatin treatment. Our findings reveal a new mechanism by which EGFR/PI3K/Akt/mTOR signaling promotes head and neck cancer progression and underscores the need for developing a therapeutic strategy for targeting IKK/NF-κB either as a single agent or in combination with cisplatin in head and neck cancer. PMID:26895469
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Mckenzie, M. A.; Looft-Wilson, R.; Hargens, A. R.
1997-01-01
In addition to extensive use of lower extremity physical exercise training as a countermeasure for the work capacity component of spaceflight deconditioning, some form of additional head-to-foot (+Gz) gravitational (orthostatic) stress may be required to further attenuate or prevent the signs and symptoms (nausea, vertigo, instability, fatigue) of the general reentry syndrome (GRS) that can reduce astronaut performance during landing. Orthostatic (head-to-foot) stress can be induced by standing, by lower body negative pressure, and by +Gz acceleration. One important question is whether acceleration training alone or with concurrent leg exercise would provide sufficient additive stimulation to attenuate the GRS. Use of a new human-powered centrifuge may be the answer. Thus, the purpose for this study was to compare heart rate (HR), i.e., a stress response during human-powered acceleration, in four men (35-62 yr) and two women (30-31 yr) during exercise acceleration versus passive acceleration (by an off-board operator) at 100% (maximal acceleration = A(max)), and at 25%, 50%, and 75% of A(max). Mean (+/-SE) A(max) was 43.7 +/- 1.3 rpm (+3.9 +/- 0.2Gz). Mean HR at exercise A(max) was 189 +/- 13 b/min (50-70 sec run time), and 142 +/- 22 b/min at passive A(max) (40-70 sec run time). Regression of mean HR on the various +Gz levels indicated explained variance (correlations squared) of r(exp 2) = 0.88 (exercise) and r(exp 2) = 0.96 (passive): exercise HR of 107 +/- 4 (25%) to 189 +/- 13 (100%) b/min were 43-50 b/min higher (p less than 0.05) than comparable passive HR of 64 +/- 2 to 142 +/- 22 b/min. Thus, exercise adds significant physiological stress during +Gz acceleration. Inflight use of this combined exercise and acceleration countermeasure may maintain work capacity as well as normalize acceleration and orthostatic tolerances which could attenuate or perhaps eliminate the GRS.
Oeur, R Anna; Karton, Clara; Post, Andrew; Rousseau, Philippe; Hoshizaki, T Blaine; Marshall, Shawn; Brien, Susan E; Smith, Aynsley; Cusimano, Michael D; Gilchrist, Michael D
2015-08-01
Concussions typically resolve within several days, but in a few cases the symptoms last for a month or longer and are termed persistent postconcussive symptoms (PPCS). These persisting symptoms may also be associated with more serious brain trauma similar to subdural hematoma (SDH). The objective of this study was to investigate the head dynamic and brain tissue responses of injury reconstructions resulting in concussion, PPCS, and SDH. Reconstruction cases were obtained from sports medicine clinics and hospitals. All subjects received a direct blow to the head resulting in symptoms. Those symptoms that resolved in 9 days or fewer were defined as concussions (n = 3). Those with symptoms lasting longer than 18 months were defined as PPCS (n = 3), and 3 patients presented with SDHs (n = 3). A Hybrid III headform was used in reconstruction to obtain linear and rotational accelerations of the head. These dynamic response data were then input into the University College Dublin Brain Trauma Model to calculate maximum principal strain and von Mises stress. A Kruskal-Wallis test followed by Tukey post hoc tests were used to compare head dynamic and brain tissue responses between injury groups. Statistical significance was set at p < 0.05. A significant difference was identified for peak resultant linear and rotational acceleration between injury groups. Post hoc analyses revealed the SDH group had higher linear and rotational acceleration responses (316 g and 23,181 rad/sec(2), respectively) than the concussion group (149 g and 8111 rad/sec(2), respectively; p < 0.05). No significant differences were found between groups for either brain tissue measures of maximum principal strain or von Mises stress. The reconstruction of accidents resulting in a concussion with transient symptoms (low severity) and SDHs revealed a positive relationship between an increase in head dynamic response and the risk for more serious brain injury. This type of relationship was not found for brain tissue stress and strain results derived by finite element analysis. Future research should be undertaken using a larger sample size to confirm these initial findings. Understanding the relationship between the head dynamic and brain tissue response and the nature of the injury provides important information for developing strategies for injury prevention.
Ocular Counter-Rolling During Centrifugation and Static Tilt
NASA Technical Reports Server (NTRS)
Cohen, Bernard; Clement, Gilles; Moore, Steven; Curthoys, Ian; Dai, Mingjia; Koizuka, Izumi; Kubo, Takeshi; Raphan, Theodore
2003-01-01
Activation of the gravity sensors in the inner ear-the otoliths-generates reflexes that act to maintain posture and gaze. Ocular counter-rolling (OCR) is an example of such a reflex. When the head is tilted to the side, the eyes rotate around the line of sight in the opposite direction (i.e., counter-rolling). While turning comers, undergoing centrifugation, or making side-to-side tilting head movements, the OCR reflex orients the eyes towards the sum of the accelerations from body movements and gravity. Deconditioning of otolith-mediated reflexes following adaptation to microgravity has been proposed as the basis of many of the postural, locomotor, and gaze control problems experienced by returning astronauts. Evidence suggests that OCR is reduced postflight in about 75% of astronauts tested; but the data are sparse, primarily due to difficulties in recording rotational eye movements. During the Neurolab mission, a short-arm human centrifuge was flown that generated sustained sideways accelerations of 0.5-G and one-G to the head and upper body. This produces OCR; and so for the first time, the responses to sustained centrifugation could be studied without the influence of Earth's gravity on the results. This allowed us to determine the relative importance of sideways and vertical acceleration in the generation of OCR. This also provided the first test of the effects of exposure to artificial gravity in space on postflight otolith-ocular reflexes. There was little difference between the responses to centrifugation in microgravity and on Earth. In both conditions, the induced OCR was roughly proportional to the applied acceleration, with the OCR magnitude during 0.5-G centrifugation approximately 60% of that generated during one-G centrifugation. The overall mean OCR from the four payload crewmembers in response to one-G of sideways acceleration was 5.7 plus or minus 1.1 degree (mean and SD) on Earth. Inflight one-G centrifugation generated 5.7 plus or minus 1.1 degree of OCR, which was a small but significant decrease in OCR magnitude. The postflight OCR was 5.9 plus or minus 1.4 degree, which was not significantly different from preflight values. During both 0.5-G and one-G centrifugation in microgravity, where the head vertical gravitational component was absent, the OCR magnitude was not significantly different from that produced by an equivalent acceleration during static tilt on Earth. This suggests that the larger OCR magnitude observed during centrifugation on Earth was due to the larger body vertical linear acceleration component, which may have activated either the otoliths or the body tilt receptors. In contrast to previous studies, there was no decrease in OCR gain postflight. Our findings raise the possibility that inflight exposure to artificial gravity, in the form of intermittent one-G and 0.5-G centripetal acceleration, may have been a countermeasure to deconditioning of otolith-based orientation reflexes.
Video analysis of high-magnitude head impacts in men's collegiate lacrosse.
Kindschi, Kari; Higgins, Michael; Hillman, Andrea; Penczek, Gregory; Lincoln, Andrew
2017-01-01
Lacrosse is one of the fastest growing sports in the USA. Efforts to minimise head injuries focus on promoting safe play through player and coach education, rules enforcement and use of effective protective equipment. The study aims to determine event characteristics of high-magnitude head impacts in men's collegiate lacrosse competitions through video analysis. Seventeen Division I men's collegiate lacrosse players wore instrumented helmets that collected biomechanical measures of head impacts. During 15 competitions, the magnitude of linear acceleration, rotational velocity and helmet impact location were recorded. Impacts with linear accelerations above a 70 g threshold were correlated with video to confirm impact location and to determine event characteristics-source of impact and player activity at the time of impact. A total of 122 high-magnitude impacts were reviewed on video. Player-to-player contact (n=94, 77.0%) was the most common impact mechanism, followed by stick-to-player contact (n=11, 9.0%). Impacts occurred most often when the athlete was delivering a body check (n=39, 32.0%), fighting for loose ball possession (n=35, 28.7%) or attacking the goal (n=35, 28.7%). The most frequent impact locations were the front of the helmet (n=46, 37.8%) and the left side of the helmet (n=26, 21.3%). In men's collegiate lacrosse games, the majority of high-magnitude head impacts resulted from player-to-player contact when the sensored athlete did not have possession of the ball. Video analysis provides the game context for head impact mechanisms, which is critical to developing sport-specific injury prevention strategies.
Head ballistocardiogram based on wireless multi-location sensors.
Onizuka, Kohei; Sodini, Charles G
2015-08-01
Recently a wearable BCG monitoring technique based on an accelerometer worn at the ear was demonstrated to replace a conventional bulky BCG acquisition system. In this work, a multi-location wireless vital signs monitor was developed, and at least two common acceleration vectors correlating to sitting-BCG were found in the supine position by using head PPG signal as a reference for eight healthy human subjects. The head side amplitude in the supine position is roughly proportional to the sitting amplitude that is in turn proportional to the stroke volume. Signal processing techniques to identify J-waves in a subject having small amplitude was also developed based on the two common vectors at the head side and top.
Microgravity acceleration measurement and environment characterization science (17-IML-1)
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.
In Vivo Evaluation of Wearable Head Impact Sensors.
Wu, Lyndia C; Nangia, Vaibhav; Bui, Kevin; Hammoor, Bradley; Kurt, Mehmet; Hernandez, Fidel; Kuo, Calvin; Camarillo, David B
2016-04-01
Inertial sensors are commonly used to measure human head motion. Some sensors have been tested with dummy or cadaver experiments with mixed results, and methods to evaluate sensors in vivo are lacking. Here we present an in vivo method using high speed video to test teeth-mounted (mouthguard), soft tissue-mounted (skin patch), and headgear-mounted (skull cap) sensors during 6-13 g sagittal soccer head impacts. Sensor coupling to the skull was quantified by displacement from an ear-canal reference. Mouthguard displacements were within video measurement error (<1 mm), while the skin patch and skull cap displaced up to 4 and 13 mm from the ear-canal reference, respectively. We used the mouthguard, which had the least displacement from skull, as the reference to assess 6-degree-of-freedom skin patch and skull cap measurements. Linear and rotational acceleration magnitudes were over-predicted by both the skin patch (with 120% NRMS error for a(mag), 290% for α(mag)) and the skull cap (320% NRMS error for a(mag), 500% for α(mag)). Such over-predictions were largely due to out-of-plane motion. To model sensor error, we found that in-plane skin patch linear acceleration in the anterior-posterior direction could be modeled by an underdamped viscoelastic system. In summary, the mouthguard showed tighter skull coupling than the other sensor mounting approaches. Furthermore, the in vivo methods presented are valuable for investigating skull acceleration sensor technologies.
Relative brain displacement and deformation during constrained mild frontal head impact.
Feng, Y; Abney, T M; Okamoto, R J; Pless, R B; Genin, G M; Bayly, P V
2010-12-06
This study describes the measurement of fields of relative displacement between the brain and the skull in vivo by tagged magnetic resonance imaging and digital image analysis. Motion of the brain relative to the skull occurs during normal activity, but if the head undergoes high accelerations, the resulting large and rapid deformation of neuronal and axonal tissue can lead to long-term disability or death. Mathematical modelling and computer simulation of acceleration-induced traumatic brain injury promise to illuminate the mechanisms of axonal and neuronal pathology, but numerical studies require knowledge of boundary conditions at the brain-skull interface, material properties and experimental data for validation. The current study provides a dense set of displacement measurements in the human brain during mild frontal skull impact constrained to the sagittal plane. Although head motion is dominated by translation, these data show that the brain rotates relative to the skull. For these mild events, characterized by linear decelerations near 1.5g (g = 9.81 m s⁻²) and angular accelerations of 120-140 rad s⁻², relative brain-skull displacements of 2-3 mm are typical; regions of smaller displacements reflect the tethering effects of brain-skull connections. Strain fields exhibit significant areas with maximal principal strains of 5 per cent or greater. These displacement and strain fields illuminate the skull-brain boundary conditions, and can be used to validate simulations of brain biomechanics.
Kim, Ha Yong; Cha, Yong Han; Choy, Won Sik; Jeung, Sang Wook; Min, Yeon Seung
2018-05-01
This research focuses on femoral head wedge resection for the treatment of avascular necrosis (AVN) of the femoral head. A 9-year-old girl presented to the emergency room complaining of right hip pain that occurred after a pedestrian car accident. After 8 months of internal fixation using cannulated screws for Delbet-type 2 fracture of the femoral neck, AVN of the femoral head developed in the patient. Even though valgus-derotation-extension intertrochanteric osteotomy was performed for the treatment of AVN, it progressed further and femoral head wedge resection was performed to recover the femoral head sphericity. After 3 years of follow-up, radiograph results showed appropriate and satisfactory congruency and containment. This research shows that the treatment of AVN of the femoral head using femoral head wedge resection is an effective method that can yield excellent results.
Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity
NASA Technical Reports Server (NTRS)
Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.
1996-01-01
Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.
1986-01-01
Tests of otolith function were performed pre-flight and post-flight on the science crew of the first Spacelab Mission with a rail-mounted linear acceleration sled. Four tests were performed using horizontal lateral (y-axis) acceleration: perception of linear motion, a closed loop nulling task, dynamic ocular torsion, and lateral eye deviations. The motion perception test measured the time to detect the onset and direction of near threshold accelerations. Post-flight measures of threshold and velocity constant obtained during the days immediately following the mission showed no consistent pattern of change among the four crewmen compared to their pre-flight baseline other than an increased variability of response. In the closed loop nulling task, crewmen controlled the motion of the sled and attempted to null a computer-generated random disturbance motion. When performed in the light, no difference in ability was noted between pre-flight and post-flight. In the dark, however, two of the four crewmen exhibited somewhat enhanced performance post-flight. Dynamic ocular torsion was measured in response to sinusoidal lateral acceleration which produces a gravitionertial stimulus equivalent to lateral head tilt without rotational movement of the head. Results available for two crewmen suggest a decreased amplitude of sinusoidal ocular torsion when measured on the day of landing (R+0) and an increasing amplitude when measured during the week following the mission.
NASA Technical Reports Server (NTRS)
Minor, L. B.; Lasker, D. M.; Backous, D. D.; Hullar, T. E.; Shelhamer, M. J. (Principal Investigator)
1999-01-01
The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in five squirrel monkeys with intact vestibular function. The VOR evoked by steps of acceleration in darkness (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) began after a latency of 7.3 +/- 1.5 ms (mean +/- SD). Gain of the reflex during the acceleration was 14.2 +/- 5.2% greater than that measured once the plateau head velocity had been reached. A polynomial regression was used to analyze the trajectory of the responses to steps of acceleration. A better representation of the data was obtained from a polynomial that included a cubic term in contrast to an exclusively linear fit. For sinusoidal rotations of 0.5-15 Hz with a peak velocity of 20 degrees /s, the VOR gain measured 0.83 +/- 0.06 and did not vary across frequencies or animals. The phase of these responses was close to compensatory except at 15 Hz where a lag of 5.0 +/- 0.9 degrees was noted. The VOR gain did not vary with head velocity at 0.5 Hz but increased with velocity for rotations at frequencies of >/=4 Hz (0. 85 +/- 0.04 at 4 Hz, 20 degrees /s; 1.01 +/- 0.05 at 100 degrees /s, P < 0.0001). No responses to these rotations were noted in two animals that had undergone bilateral labyrinthectomy indicating that inertia of the eye had a negligible effect for these stimuli. We developed a mathematical model of VOR dynamics to account for these findings. The inputs to the reflex come from linear and nonlinear pathways. The linear pathway is responsible for the constant gain across frequencies at peak head velocity of 20 degrees /s and also for the phase lag at higher frequencies being less than that expected based on the reflex delay. The frequency- and velocity-dependent nonlinearity in VOR gain is accounted for by the dynamics of the nonlinear pathway. A transfer function that increases the gain of this pathway with frequency and a term related to the third power of head velocity are used to represent the dynamics of this pathway. This model accounts for the experimental findings and provides a method for interpreting responses to these stimuli after vestibular lesions.
SU-F-T-668: Irradiating Mouse Brain with a Clinical Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Torres, C
Purpose: To design and construct a “mouse jig” device that would allow for irradiation of the mouse brain with a clinical Varian 6 MeV Linear Accelerator. This device must serve as a head immobilizer, gaseous anesthesia delivery, and radiation bolus concurrently. Methods: The mouse jig was machined out of nylon given that it is inexpensive, easy to machine, and has similar electron density to water. A cylindrical opening with diameter of 16 mm and 40 mm depth was drilled into a nylon block sized 56×56×50 mm (width, length, depth). Additional slots were included in the block for ear bars andmore » a tooth bar to serve as a three-point immobilization device as well as for anesthesia delivery and scavenging. For ease of access when loading the mouse into the holder, there is a removable piece at the top of the block that is 15 mm in depth. This serves a dual purpose, as with the proper extra shielding, the mouse jig could be used with lower linear energy transfer photons with this piece removed. A baseplate was then constructed with five square slots where the mouse jig can securely be inserted plus additional slots that would allow the baseplate to be mounted on a standard lock bar in the treatment couch. This maximizes the reproducibility of placement between imaging and treatment and between treatment sessions. Results: CT imaging and radiation treatment planning was performed that showed acceptable coverage and uniformity of radiation dose in the mouse brain while sparing the throat and eyes. Conclusion: We have designed and manufactured a device that fulfills our criteria allowing us to selectively irradiate the mouse brain with a clinical linear accelerator. This setup will be used for generating mouse models of radiation-induced brain injury.« less
SU-F-T-66: Characteristics of Electron Beams From Varian Trubeam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimofte, A; Kennedy, C; Zhu, T
2016-06-15
Purpose: The purpose of this study was to compare the electron beam data between Truebeam and 2300ix Varian accelerators for percent depth dose for broad beam and small circular cutouts, cone factors, head scatter factor as a function of cone size and SSD, phantom scatter factor, blocking factor, distance factor and virtual source position. Methods: Measurements were performed for Truebeam and 2300ix Varian accelerators. The main energies used were: 6, 9, 12, 16 and 20 MeV. PDD was measured at SSD = 100 cm for open beam and small circular cutouts (r = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 andmore » 6.6cm) for different energies. Measurements to determine the head scatter factor (H) were done as a function of radius for six representative energies and five cone sizes (6, 10, 15, 20 and 25cm2). The phantom scatter factor (PSF) is defined as the ratio of blocking factor in water at reference depth and head scatter factor in air. PSF was measured as a function of radius and electron energy. Distance factor was measured for all energies and cones for three SSD’s (100, 110 and 120cm). Results: The percent depth dose (PDD) was measured for small cutouts of radius r = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0 and 5.6cm. Blocking factor (BF) was measured for Truebeam and 2300ix accelerators, for different circular cutouts and energies for a 10×10 cone. Cone factors were compared between the two accelerators for different energies and applicator sizes. Conclusion: Cone factors measured for the two accelerator types differ by up to 5% for the largest applicator size. Blocking factors differs by up to 3%, with the largest variation for the smallest field size (0.5cm). Distance factor for different SSD’s differ by up to 4.5%.« less
Sonza, Anelise; Völkel, Nina; Zaro, Milton A; Achaval, Matilde; Hennig, Ewald M
2015-07-01
Whole-body vibration (WBV) training has become popular in recent years. However, WBV may be harmful to the human body. The goal of this study was to determine the acceleration magnitudes at different body segments for different frequencies of WBV. Additionally, vibration sensation ratings by subjects served to create perception vibration magnitude and discomfort maps of the human body. In the first of two experiments, 65 young adults mean (± SD) age range of 23 (± 3.0) years, participated in WBV severity perception ratings, based on a Borg scale. Measurements were performed at 12 different frequencies, two intensities (3 and 5 mm amplitudes) of rotational mode WBV. On a separate day, a second experiment (n = 40) included vertical accelerometry of the head, hip and lower leg with the same WBV settings. The highest lower limb vibration magnitude perception based on the Borg scale was extremely intense for the frequencies between 21 and 25 Hz; somewhat hard for the trunk region (11-25 Hz) and fairly light for the head (13-25 Hz). The highest vertical accelerations were found at a frequency of 23 Hz at the tibia, 9 Hz at the hip and 13 Hz at the head. At 5 mm amplitude, 61.5% of the subjects reported discomfort in the foot region (21-25 Hz), 46.2% for the lower back (17, 19 and 21 Hz) and 23% for the abdominal region (9-13 Hz). The range of 3-7 Hz represents the safest frequency range with magnitudes less than 1 g(*)sec for all studied regions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Boxing headguard performance in punch machine tests.
McIntosh, Andrew S; Patton, Declan A
2015-09-01
The paper presents a novel laboratory method for assessing boxing headguard impact performance. The method is applied to examine the effects of headguards on head impact dynamics and injury risk. A linear impactor was developed, and a range of impacts was delivered to an instrumented Hybrid III head and neck system both with and without an AIBA (Association Internationale de Boxe Amateur)-approved headguard. Impacts at selected speeds between 4.1 and 8.3 m/s were undertaken. The impactor mass was approximately 4 kg and an interface comprising a semirigid 'fist' with a glove was used. The peak contact forces were in the range 1.9-5.9 kN. Differences in head impact responses between the Top Ten AIBA-approved headguard and bare headform in the lateral and forehead tests were large and/or significant. In the 8.3 m/s fist-glove impacts, the mean peak resultant headform accelerations for bare headform tests was approximately 130 g compared with approximately 85 g in the forehead impacts. In the 6.85 m/s bare headform impacts, mean peak resultant angular head accelerations were in the range of 5200-5600 rad/s(2) and almost halved by the headguard. Linear and angular accelerations in 45° forehead and 60° jaw impacts were reduced by the headguard. The data support the opinion that current AIBA headguards can play an important role in reducing the risk of concussion and superficial injury in boxing competition and training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Simulation of the effects of different pilot helmets on neck loading during air combat.
Mathys, R; Ferguson, S J
2012-09-21
New generation pilot helmets with mounted devices enhance the capabilities of pilots substantially. However, the additional equipment increases the helmet weight and shifts its center of mass forward. Two helmets with different mass properties were modeled to simulate their effects on the pilot's neck. A musculoskeletal computer model was used, with the methods of inverse dynamics and static optimization, to compute the muscle activations and joint reaction forces for a given range of quasi-static postures at various accelerations experienced during air combat. Head postures which induce much higher loads on the cervical spine than encountered in a neutral position could be identified. The increased weight and the forward shift of the center of mass of a new generation helmet lead to higher muscle activations and higher joint reaction loads over a wide range of head and neck movements. The muscle activations required to balance the head and neck in extreme postures increased the compressive force at the T1-C7 level substantially, while in a neutral posture the muscle activations remained low. The lateral neck muscles can reach activations of 100% and cause compressive joint forces up to 1100N during extensive rotations and extensions at high 'vertical' accelerations (Gz). The calculated values have to be interpreted with care as the model has not been validated. Nevertheless, this systematic analysis could separate the effects of head posture, acceleration and helmet mass on neck loading. More reliable data about mass properties and muscle morphometry with a more detailed motion analysis would help to refine the existing model. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of rehydration on +Gz tolerance after 14-days' bed rest.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Van Beaumont, W.; Bernauer, E. M.; Haines, R. F.; Sandler, H.; Staley, R. W.; Young, H. L.; Yusken, J. W.
1973-01-01
Investigation of the magnitude of reduction in human tolerance to centrifugation following 2 weeks of bed rest with moderate daily exercise. The degree of hypovolemia associated with these exposures is assessed, and the possibility to improve or to return to control levels the tolerance to acceleration forces acting in the head-to-foot direction through rehydration prior to acceleration is explored.
2016-11-01
acceleration at a cross-section was used as a measure of the wave impact load in units of g. Later developments included publication of the envelope...Republic, 4 – 7 October 2004. PICKFORD, E.V., MAHONE, R.R., WOLK, H.L. (1975). Slam/Shock Isolation Pedestal, United States Patent Number, 3,912,248, 14...accelerations. The rigid body peak acceleration is a measure of the impact load in units of g. In the following plots the data corresponds to head-sea
The Influence of Passive Acceleration and Exercise+Acceleration on Work Capacity and Orthostasis
NASA Technical Reports Server (NTRS)
Simonson, S. R.; Cowell, S. A.; Stocks, J. M.; Biagini, H. W.; Vener, J. M.; Evetts, S. N.; Bailey, K. N.; Evans, J.; Knapp, C.; Greenleaf, J. E.
1999-01-01
The losses of aerobic power and orthostatic tolerance are significant effects of manned C) spaceflight that can negatively impact crew health and safety. Daily acceleration and aerobic training may ameliorate these effects. To determine the influence of passive intermittent +Gz acceleration (PA) training and active acceleration + interval exercise (AE) training on work 0 0 capacity and the acute (1 min) response to 70 deg head-up tilt, 6 men (X-Bar SD: age, 33 +/- 6 y; height, 178.3 +/- 4.6 cm; mass, 86.3 +/- 6.6 kg) participated in two 3-wk training protocols. It was hypothesized that PA and AE training would improve orthostatic tolerance and that the addition of aerobic conditioning, would not alter this effect.
Selection, Training and Simulation
2000-03-01
most Neck training, Altitudetehamber, PBG, Gas nixtures, Trampoline , important in flying. In years to come we will have a Statoergometer, Raling...superagile world, are mentioned neck, more if X-tra head worn equipment is used put below. a lot of stress to this system. In addition stress will 6-6 be...acceleration Pilot selection criteria like body-type, heart-cerebral forces, mainly head to foot (Gz). The heart itself is distance, vagal and sympathetic nerve
SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, G
Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth,more » Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.« less
NASA Technical Reports Server (NTRS)
Mast, F. W.; Newby, N. J.; Young, L. R.
2002-01-01
The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.
BIOMECHANICS OF HEAD INJURY IN OLYMPIC TAEKWONDO AND BOXING
Fife, G.P.; Pieter, W.
2013-01-01
Objective The purpose was to examine differences between taekwondo kicks and boxing punches in resultant linear head acceleration (RLA), head injury criterion (HIC15), peak head velocity, and peak foot and fist velocities. Data from two existing publications on boxing punches and taekwondo kicks were compared. Methods For taekwondo head impacts a Hybrid II Crash Dummy (Hybrid II) head was instrumented with a tri-axial accelerometer mounted inside the Hybrid II head. The Hybrid II was fixed to a height-adjustable frame and fitted with a protective taekwondo helmet. For boxing testing, a Hybrid III Crash Dummy head was instrumented with an array of tri-axial accelerometers mounted at the head centre of gravity. Results Differences in RLA between the roundhouse kick (130.11±51.67 g) and hook punch (71.23±32.19 g, d = 1.39) and in HIC15 (clench axe kick: 162.63±104.10; uppercut: 24.10±12.54, d = 2.29) were observed. Conclusions Taekwondo kicks demonstrated significantly larger magnitudes than boxing punches for both RLA and HIC. PMID:24744497
Using EMG to anticipate head motion for virtual-environment applications
NASA Technical Reports Server (NTRS)
Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion
2005-01-01
In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.
Using EMG to anticipate head motion for virtual-environment applications.
Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion
2005-06-01
In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.
Current Topics in Sports-related Head Injuries: A Review
NAGAHIRO, Shinji; MIZOBUCHI, Yoshifumi
2014-01-01
We review the current topic in sports-related head injuries including acute subdural hematoma (ASDH), concussion, and chronic traumatic encephalopathy (CTE). Sports-related ASDH is a leading cause of death and severe morbidity in popular contact sports like American football in the USA and judo in Japan. It is thought that rotational acceleration is most likely to produce not only cerebral concussion but also ASDH due to the rupture of a parasagittal bridging vein, depending on the severity of the rotational acceleration injury. Repeated sports head injuries increase the risk for future concussion, cerebral swelling, ASDH or CTE. To avoid fatal consequences or CTE resulting from repeated concussions, an understanding of the criteria for a safe post-concussion return to play (RTP) is essential. Once diagnosed with a concussion, the athlete must not be allowed to RTP the same day and should not resume play before the concussion symptoms have completely resolved. If brain damage has been confirmed or a subdural hematoma is present, the athlete should not be allowed to participate in any contact sports. As much remains unknown regarding the pathogenesis and pathophysiology of sports-related concussion, ASDH, and CTE, basic and clinical studies are necessary to elucidate the crucial issues in sports-related head injuries. PMID:25367588
Current topics in sports-related head injuries: a review.
Nagahiro, Shinji; Mizobuchi, Yoshifumi
2014-01-01
We review the current topic in sports-related head injuries including acute subdural hematoma (ASDH), concussion, and chronic traumatic encephalopathy (CTE). Sports-related ASDH is a leading cause of death and severe morbidity in popular contact sports like American football in the USA and judo in Japan. It is thought that rotational acceleration is most likely to produce not only cerebral concussion but also ASDH due to the rupture of a parasagittal bridging vein, depending on the severity of the rotational acceleration injury. Repeated sports head injuries increase the risk for future concussion, cerebral swelling, ASDH or CTE. To avoid fatal consequences or CTE resulting from repeated concussions, an understanding of the criteria for a safe post-concussion return to play (RTP) is essential. Once diagnosed with a concussion, the athlete must not be allowed to RTP the same day and should not resume play before the concussion symptoms have completely resolved. If brain damage has been confirmed or a subdural hematoma is present, the athlete should not be allowed to participate in any contact sports. As much remains unknown regarding the pathogenesis and pathophysiology of sports-related concussion, ASDH, and CTE, basic and clinical studies are necessary to elucidate the crucial issues in sports-related head injuries.
Flavell, Carol A.; Sayers, Mark G. L.; Gordon, Susan J.; Lee, James B.
2013-01-01
The front row of a rugby union scrum consists of three players. The loose head prop, hooker and tight head prop. The objective of this study was to determine if known biomechanical risk factors for triceps surae muscle injury are exhibited in the lower limb of front row players during contested scrummaging. Eleven high performance front row rugby union players were landmarked bilaterally at the posterior superior iliac spine (PSIS), greater trochanter, lateral femoral epicondyle, midline of the calcaneus above the plantar aspect of the heel, midline lower leg 5cm and 20cm proximal to the lateral malleolus, at the axis of subtalar joint, lateral malleolus, and head of the fifth metatarsal. Players were video recorded during a series of 2 on 1 live scrummaging drills. Biomechanical three dimensional analysis identified large angular displacements, and increased peak velocities and accelerations at the ankle joint during attacking scrummaging drill techniques when in the stance phase of gait. This places the triceps surae as increased risk of injury and provides valuable information for training staff regarding injury prevention and scrum training practices for front row players. Key points Front rowers exhibited patterns of single leg weight bearing, in a position of greater ankle plantar flexion and knee extension at toe off during scrummaging, which is a risk position for TS injury. Front rowers also exhibited greater acceleration at the ankle, knee, and hip joints, and greater changes in ankle ROM from toe strike to toe off during attacking scrum drills. These reported accelerations and joint displacements may be risk factors for TS injury, as the ankle is accelerating into plantar flexion at final push off and the muscle is shortening from an elongated state. PMID:24149740
Flavell, Carol A; Sayers, Mark G L; Gordon, Susan J; Lee, James B
2013-01-01
The front row of a rugby union scrum consists of three players. The loose head prop, hooker and tight head prop. The objective of this study was to determine if known biomechanical risk factors for triceps surae muscle injury are exhibited in the lower limb of front row players during contested scrummaging. Eleven high performance front row rugby union players were landmarked bilaterally at the posterior superior iliac spine (PSIS), greater trochanter, lateral femoral epicondyle, midline of the calcaneus above the plantar aspect of the heel, midline lower leg 5cm and 20cm proximal to the lateral malleolus, at the axis of subtalar joint, lateral malleolus, and head of the fifth metatarsal. Players were video recorded during a series of 2 on 1 live scrummaging drills. Biomechanical three dimensional analysis identified large angular displacements, and increased peak velocities and accelerations at the ankle joint during attacking scrummaging drill techniques when in the stance phase of gait. This places the triceps surae as increased risk of injury and provides valuable information for training staff regarding injury prevention and scrum training practices for front row players. Key pointsFront rowers exhibited patterns of single leg weight bearing, in a position of greater ankle plantar flexion and knee extension at toe off during scrummaging, which is a risk position for TS injury.Front rowers also exhibited greater acceleration at the ankle, knee, and hip joints, and greater changes in ankle ROM from toe strike to toe off during attacking scrum drills.These reported accelerations and joint displacements may be risk factors for TS injury, as the ankle is accelerating into plantar flexion at final push off and the muscle is shortening from an elongated state.
Quantifying Head Impacts in Collegiate Lacrosse.
Reynolds, Bryson B; Patrie, James; Henry, Erich J; Goodkin, Howard P; Broshek, Donna K; Wintermark, Max; Druzgal, T Jason
2016-11-01
Concussion and repetitive head impact in sports has increased interest and concern for clinicians, scientists, and athletes. Lacrosse is the fastest growing sport in the United States, but the burden of head impact in lacrosse is unknown. The goal of this pilot study was to quantify head impact associated with practicing and playing collegiate lacrosse while subjects were fitted with wearable accelerometers. Descriptive epidemiology study. In a single year, a collegiate cohort of 14 women's and 15 men's lacrosse players wore mastoid-patch accelerometers to measure the frequency and severity of head impacts during official practices and games. Average impact severity, mean number of impacts, and cumulative acceleration were evaluated, stratified by sport and event type. Men's and women's collegiate lacrosse players did not significantly differ in the number of head impacts received during games (11.5 for men vs 9.2 for women) or practices (3.1 vs 3.1). Men's lacrosse players had significantly higher average head acceleration per impact during games compared with women (21.1g vs 14.7g) but not during practices (21.3g vs 18.1g). For both men and women, more impacts occurred during games than during practices (men, 11.5 vs 3.1; women, 9.2 vs 3.1), but impact severity did not significantly differ between events for either sport (men, 21.1g vs 21.3g; women, 14.7g vs 18.1g). The study data suggest a higher impact burden during games compared with practices, but this effect is driven by the quantity rather than severity of impacts. In contrast, sex-based effects in impact burden are driven by average impact severity rather than quantity. Data collected from larger multisite trials and/or different age groups could be used to inform ongoing debates, including headgear and practice regulations, that might appreciably affect the burden of head impacts in lacrosse. While most head impacts do not result in a clinical diagnosis of concussion, evidence indicates that subconcussive head impacts may increase susceptibility to concussion and contribute to long-term neurodegeneration. © 2016 The Author(s).
Football Players' Head-Impact Exposure After Limiting of Full-Contact Practices.
Broglio, Steven P; Williams, Richelle M; O'Connor, Kathryn L; Goldstick, Jason
2016-07-01
Sporting organizations limit full-contact football practices to reduce concussion risk and based on speculation that repeated head impacts may result in long-term neurodegeneration. To directly compare head-impact exposure in high school football players before and after a statewide restriction on full-contact practices. Cross-sectional study. High school football field. Participants were varsity football athletes from a single high school. Before the rule change, 26 athletes (age = 16.2 ± 0.8 years, height = 179.6 ± 6.4 cm, weight = 81.9 ± 13.1 kg) participated. After the rule change, 24 athletes (age = 15.9 ± 0.8 years, height = 178.3 ± 6.5 cm, weight = 76.2 ± 11.6 kg) participated. Nine athletes participated in both years of the investigation. Head-impact exposure was monitored using the Head Impact Telemetry System while the athletes participated in football games and practices in the seasons before and after the rule change. Head-impact frequency, location, and magnitude (ie, linear acceleration, rotational acceleration, and Head Impact Telemetry severity profile [HITsp], respectively) were measured. A total of 15 398 impacts (592 impacts per player per season) were captured before the rule change and 8269 impacts (345 impacts per player per season) after the change. An average 42% decline in impact exposure occurred across all players, with practice-exposure declines occurring among linemen (46% decline); receivers, cornerbacks, and safeties (41% decline); and tight ends, running backs (including fullbacks), and linebackers (39% decline). Impact magnitudes remained largely unchanged between the years. A rule change limiting full-contact high school football practices appears to have been effective in reducing head-impact exposure across all players, with the largest reduction occurring among linemen. This finding is likely associated with the rule modification, particularly because the coaching staff and offensive scheme remained consistent, yet how this reduction influences concussion risk and long-term cognitive health remains unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, S; Kyung Hee University Hospital at Gangdong, Gangdong-gu; Kim, D
2015-06-15
Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion aroundmore » the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.« less
Cost Analysis of Complex Radiation Therapy for Patients With Head and Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrier, Lionel; Morelle, Magali; Department of Clinical Research and Innovation, Leon Berard Cancer Centre, Lyon
2016-06-01
Purpose: This cost analysis aimed to prospectively assess differences in costs between TomoTherapy and volumetric modulated arc therapy (VMAT) in patients with head and neck cancer. Methods and Materials: Economic data were gathered from a multicenter study. However, randomization was not possible due to the availability of equipment. Costs were calculated using the microcosting technique from the hospital's perspective (in 2013 euros), and the time horizon was radiation therapy. Only resources that entered the hospital production process and which were likely to vary between the strategies being compared were considered. Acute adverse events observed within the time horizon were alsomore » assessed. Results: The cost analysis was based on a total of 173 patient treatments given between 2010 and 2012 in 14 French cancer centers: 73 patients were treated with TomoTherapy, 92 with VMAT RapidArc, and 8 with VMAT SmartArc. Estimated costs of SmartArc were removed from the comparison due to the small sample size. The mean ± SD cost per patient of the treatment planning phase was €314 (±€214) for TomoTherapy and €511 (±€590) for RapidArc. Mean costs ± SD per patient of irradiation reached €3144 (±€565) for TomoTherapy and €1350 (±€299) for RapidArc. The most sensitive parameter of irradiation was the annual operating time of accelerators. Ninety-five percent confidence intervals for the mean costs of irradiation were €3016 to €3272 for TomoTherapy and €1281 to €1408 for RapidArc. The number of acute adverse events during radiation therapy was not significantly different between strategies. Conclusions: TomoTherapy appeared to be more expensive than RapidArc mainly due to the higher price of the accelerator, the higher costs of maintenance, and the longer duration of treatment sessions. Because strategies were not significantly different in clinical effect, RapidArc appeared to be the strategy to be recommended at this stage of knowledge.« less
Cost Analysis of Complex Radiation Therapy for Patients With Head and Neck Cancer.
Perrier, Lionel; Morelle, Magali; Pommier, Pascal; Boisselier, Pierre; Coche-Dequeant, Bernard; Gallocher, Olivier; Alfonsi, Marc; Bardet, Etienne; Rives, Michel; Calugaru, Valentin; Chajon, Enrique; Noel, Georges; Mecellem, Hinda; Pérol, David; Dussart, Sophie; Giraud, Philippe
2016-06-01
This cost analysis aimed to prospectively assess differences in costs between TomoTherapy and volumetric modulated arc therapy (VMAT) in patients with head and neck cancer. Economic data were gathered from a multicenter study. However, randomization was not possible due to the availability of equipment. Costs were calculated using the microcosting technique from the hospital's perspective (in 2013 euros), and the time horizon was radiation therapy. Only resources that entered the hospital production process and which were likely to vary between the strategies being compared were considered. Acute adverse events observed within the time horizon were also assessed. The cost analysis was based on a total of 173 patient treatments given between 2010 and 2012 in 14 French cancer centers: 73 patients were treated with TomoTherapy, 92 with VMAT RapidArc, and 8 with VMAT SmartArc. Estimated costs of SmartArc were removed from the comparison due to the small sample size. The mean ± SD cost per patient of the treatment planning phase was €314 (±€214) for TomoTherapy and €511 (±€590) for RapidArc. Mean costs ± SD per patient of irradiation reached €3144 (±€565) for TomoTherapy and €1350 (±€299) for RapidArc. The most sensitive parameter of irradiation was the annual operating time of accelerators. Ninety-five percent confidence intervals for the mean costs of irradiation were €3016 to €3272 for TomoTherapy and €1281 to €1408 for RapidArc. The number of acute adverse events during radiation therapy was not significantly different between strategies. TomoTherapy appeared to be more expensive than RapidArc mainly due to the higher price of the accelerator, the higher costs of maintenance, and the longer duration of treatment sessions. Because strategies were not significantly different in clinical effect, RapidArc appeared to be the strategy to be recommended at this stage of knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.
Hurst, Howard T; Atkins, Stephen; Dickinson, Ben D
2018-03-21
To determine the magnitude of translational and rotational head accelerations during downhill mountain biking. Observational study. Sixteen male downhill cyclists (age 26.4±8.4years; stature 179.4±7.2cm; mass 75.3±5.9kg) were monitored during two rounds of the British Downhill Series. Riders performed two runs on each course wearing a triaxial accelerometer behind the right ear. The means of the two runs for each course were used to determine differences between courses for mean and maximum peak translational (g) and rotational accelerations (rad/s 2 ) and impact duration for each course. Significant differences (p<0.05) were revealed for the mean number of impacts (>10g), FW=12.5±7.6, RYF=42.8±27.4 (t (22.96) =-4.70; p<0.001; 95% CI=17.00 to 43.64); maximum peak rotational acceleration, FW=6805.4±3073.8rad/s 2 , RYF=9799.9±3381.7rad/s 2 (t (32) =-2.636; p=0.01; 95% CI=680.31 to 5308.38); mean acceleration duration FW=4.7±1.2ms, RYF=6.5±1.4ms (t (32) =-4.05; p<0.001; 95% CI=0.91 to 2.76) and maximum acceleration duration, FW=11.6±4.5ms, RYF=21.2±9.1 (t (29.51) =-4.06; p=0.001; 95% CI=4.21 to 14.94). No other significant differences were found. Findings indicate that downhill riders may be at risk of sustaining traumatic brain injuries and course design influences the number and magnitude of accelerations. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Impact attenuation of protective boxing and taekwondo headgear.
O'Sullivan, David M; Fife, Gabriel P
2016-11-01
This study aimed to compare the impact attenuation performance of boxing and taekwondo headgear in terms of peak linear and rotational acceleration. To measure the impact attenuation of headgear, a standardized (American Society for Testing and Materials (ASTM) F-2397) martial arts headgear striker was used to impart impacts to a 50th Percentile Male Hybrid III Crash Test Dummy head and neck complex. Two boxing (Adidas and Greenhill) and two taekwondo (Adidas and Nike) headgear, approved by the Association Internationale de Boxe Amateur and the World Taekwondo Federation (WTF), were selected. Each of the selected headgear was fitted to the Hybrid III head and subsequently subjected to five impacts at the front and side with a maximum impact interim time of 60 seconds by the rotating striker at 8 ± 0.3 m/s. Linear and rotational acceleration were recorded at 10,000 Hz. There were significant interactions of the impact location and brand on the rotational acceleration, F(3,40) = 6.7, p < .05. There were significant main effects of both impact location F(1,40) = 9.07, p < .05 and headgear brand F(3,40) = 9.9, p < .05 on the linear acceleration. Pairwise comparisons show significant differences between the front and side for both linear and rotational acceleration. The headgear tested failed the ASTM high impact test requirement to reduce the linear acceleration to below a threshold of 150 g. Further development of headgear to reduce impact linear and rotational acceleration magnitudes should be called for by the relevant sport governing bodies and initiated by headgear manufactures.
Human Tolerance to Rapidly Applied Accelerations: A Summary of the Literature
NASA Technical Reports Server (NTRS)
Eiband, A. Martin
1959-01-01
The literature is surveyed to determine human tolerance to rapidly applied accelerations. Pertinent human and animal experiments applicable to space flight and to crash impact forces are analyzed and discussed. These data are compared and presented on the basis of a trapezoidal pulse. The effects of body restraint and of acceleration direction, onset rate, and plateau duration on the maximum tolerable and survivable rapidly applied accelerations are shown. Results of the survey indicate that adequate torso and extremity restraint is the primary variable in tolerance to rapidly applied accelerations. The harness, or restraint system, must be arranged to transmit the major portion of the accelerating force directly to the pelvic structure and not via the vertebral column. When the conditions of adequate restraint have been met, then the other variables, direction, magnitude, and onset rate of rapidly applied accelerations, govern maximum tolerance and injury limits. The results also indicate that adequately stressed aft-faced passenger seats offer maximum complete body support with minimum objectionable harnessing. Such a seat, whether designed for 20-, 30-, or 40-G dynamic loading, would include lap strap, chest (axillary) strap, and winged-back seat to increase headward and lateral G protection, full-height integral head rest, arm rests (load-bearing) with recessed hand-holds and provisions to prevent arms from slipping either laterally or beyond the seat back, and leg support to keep the legs from being wedged under the seat. For crew members and others whose duties require forward-facing seats, maximum complete body support requires lap, shoulder, and thigh straps, lap-belt tie-down strap, and full-height seat back with integral head support.
Human Kinematics During Non-Collinear Low Velocity Rear End Collisions
McConnell, Whitman E.; Guzman, Herbert M.; Krenrich, Scott W.; Bomar, John B.; Harding, Richard M.; Raddin, James H.; Funk, James R.; Smith, Darrin A.
2003-01-01
Non-collinear low velocity rear end (LVRE) collision human kinematics have not previously been studied. Occupant head and neck motions during twenty similar non-collinear (15 and 30 degree angle) left rear end collisions were analyzed for five male test subjects alternately positioned in the left and right front seats of the struck vehicle. Displacement-time and acceleration data for occupant, seat, and vehicles were determined by 3D motion analyses and linear accelerometer outputs. The dynamics of the struck vehicle at 6.0 to 9.3 kph (3.8 to 5.8 mph) delta-V showed an initial period of yaw, even when the rear tires did not lose traction with the pavement. The brief yaw seen during the 15 degree impacts was accompanied by early relative rightward movement of the vehicle’s seat and seatback behind the stationary test subject: the subjects subsequently engaged the left region of the seatback and head restraint. A more pronounced yaw accompanied the loss of rear tire traction during the 30 degree tests, and resulted in occupant contact/loading further toward the left edge of the seat back and head restraint. For a given striking vehicle velocity, the impact severity in terms of head acceleration and changes in head velocity were significantly lower (p<0.05) at vehicle impact angles of 30 degrees compared with 15 degrees. Clinically, there were only minor short-term symptoms and no long-term symptoms observed in these angled impacts. PMID:12941242
Bearing-Foreign Material Deposition on Retrieved Co-Cr Femoral Heads: Composition and Morphology
Tikekar, Nishant M.; Heiner, Anneliese D.; Baer, Thomas E.; Kruger, Karen M.; Callaghan, John J.; Brown, Thomas D.; Lannutti, John J.
2015-01-01
Bearing-foreign material deposition onto a femoral head can occur from contact with an acetabular shell due to dislocation, reduction, or subluxation. The purpose of this study was to comprehensively characterize deposit regions on retrieved cobalt-chrome femoral heads from metal-on-polyethylene total hip arthroplasties that had experienced such adverse events. The morphology, topography, and composition of deposition regions were characterized using macrophotography, optical profilometry, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The deposit areas were relatively large, they were much rougher than the surrounding undamaged clean areas, and they displayed several distinct morphologies. Titanium alloy elements were the predominant constituents. Calcium and phosphorous were also detected within the deposit areas, in a composition that could nucleate abrasive hydroxyapatite. In addition, tungsten-rich particles, likely present as tungsten carbide, were observed on top of the titanium deposits. The increased roughness associated with these deposition features would be expected to accelerate damage and wear of the opposing liner and hence accelerate the development of osteolysis. PMID:26236744
Migliaccio, Americo A; Minor, Lloyd B; Carey, John P
2004-11-01
The angular vestibulo-ocular reflex normally has an increased response during vergence on a near target. Surgical unilateral vestibular deafferentation reduces the horizontal vestibulo-ocular reflex (VOR) in response to far target viewing and eliminates this vergence effect. Intratympanic gentamicin treatment reduces VOR gain during far viewing, but the reduction is less severe than that after unilateral vestibular deafferentation. We sought to determine how gentamicin would affect vergence-mediated modulation of the VOR. The VOR in response to passive head impulses in the horizontal plane while viewing a far (124 cm) or near (15 cm) target was evaluated in 11 subjects following intratympanic gentamicin treatment. Three of these subjects had also been tested immediately prior to receiving gentamicin. The impulses were low amplitude (approximately 20 degrees ), high velocity (approximately 150 degrees /s), high acceleration (approximately 3,000 degrees /s2) horizontal head rotations administered manually by the investigator. Binocular eye and head velocity were recorded using the scleral search coil technique. The VOR gain was defined as eye velocity divided by inverted head velocity. Prior to intratympanic gentamicin, the VOR gain during rotations to either side was symmetric and showed the same vergence-mediated increase. Following gentamicin, head impulses towards the untreated side yielded VOR gains of 0.91+/-0.12 while viewing a far target and 1.27+/-0.22 while viewing a near target, an increase of 33%. Head impulses towards the treated side produced a hypometric VOR with no increase between far and near viewing. The average latency of the VOR was 7.6+/-2.5 ms towards the untreated side for either near or far viewing and 20.7+/-13.1 ms towards the treated side for either near or far viewing. Our findings show that a peripheral lesion caused by gentamicin does not ablate the VOR but does eliminate a component of the vestibular signal that is necessary for vergence-mediated modulation of the VOR. Gentamicin has preferential toxicity for the hair cells in the central zone of the crista, where irregular afferents predominate. Our findings are consistent with the hypothesis that irregular afferents provide the necessary signal for vergence-mediated modulation of the VOR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiwert, Tanguy Y., E-mail: tseiwert@medicine.bsd.uchicago.edu; Melotek, James M.; Blair, Elizabeth A.
Purpose: The role of cetuximab in the treatment of locoregionally advanced head and neck squamous cell cancer (LA-HNSCC) remains poorly defined. In this phase 2 randomized study, we investigated the addition of cetuximab to both induction chemotherapy (IC) and hyperfractionated or accelerated chemoradiation. Methods and Materials: Patients with LA-HNSCC were randomized to receive 2 cycles of weekly IC (cetuximab, paclitaxel, carboplatin) and either Cetux-FHX (concurrent cetuximab, 5-fluorouracil, hydroxyurea, and 1.5 Gy twice-daily radiation therapy every other week to 75 Gy) or Cetux-PX (cetuximab, cisplatin, and accelerated radiation therapy with delayed concomitant boost to 72 Gy in 42 fractions). The primary endpoint was progression-freemore » survival (PFS), with superiority compared with historical control achieved if either arm had 2-year PFS ≥70%. Results: 110 patients were randomly assigned to either Cetux-FHX (n=57) or Cetux-PX (n=53). The overall response rate to IC was 91%. Severe toxicity on IC was limited to rash (23% grade ≥3) and myelosuppression (38% grade ≥3 neutropenia). The 2-year rates of PFS for both Cetux-FHX (82.5%) and Cetux-PX (84.9%) were significantly higher than for historical control (P<.001). The 2-year overall survival (OS) was 91.2% for Cetux-FHX and 94.3% for Cetux-PX. With a median follow-up time of 72 months, there were no significant differences in PFS (P=.35) or OS (P=.15) between the treatment arms. The late outcomes for the entire cohort included 5-year PFS, OS, locoregional failure, and distant metastasis rates of 74.1%, 80.3%, 15.7%, and 7.4%, respectively. The 5-year PFS and OS were 84.4% and 91.3%, respectively, among human papillomavirus (HPV)-positive patients and 65.9% and 72.5%, respectively, among HPV-negative patients. Conclusions: The addition of cetuximab to IC and chemoradiation was tolerable and produced long-term control of LA-HNSCC, particularly among poor-prognosis HPV-negative patients. Further investigation of cetuximab may be warranted in the neoadjuvant setting and with non–platinum-based chemoradiation.« less
Development of a Night Vision Goggle Heads-Up Display for Paratrooper Guidance
2008-06-01
and GPS data [MIC07]. requiring altitude, position, velocity, acceleration, and angular rates for navigation or control. An internal GPS receiver...Language There are several programming languages that provide the operating capabilities for this program. Languages like JAVA and C# provide an...acceleration, and angular rates. Figure 3.6 illustrates the MIDG hardware’s input and output data. The sensor actually generates the INS data, which is
Software Tool for Computing Maximum Von Mises Stress
NASA Technical Reports Server (NTRS)
Chen, Long Y.; Knutson, Kurt; Martin, Eric
2007-01-01
The maximum Van Mises stress and stress direction are of interest far analyzing launch accelerations such as with the Mass Acceleration Curves developed by JPL. Maximum launch stresses can be combined with appropriate load cases at consistent locations with resulting stress tensors. Maximum Van Mises stress is also of interest for understanding maximum operational loading such as traverse events. - For example, planetary traversing simulations may prescribe bounding acceleration values during traverse for a rover such as Mars Science Lab (MSL) in (X,Y,Z) of the rover. - Such accelerations can be really in any directions for many parts such as a mast or head mounted components which can be in numerous configurations and orientations when traversing a planet surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas
2016-06-15
Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were enteredmore » into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.« less
1983-05-01
A. L. Personal communication. 1982. Benton, A. L., & Van Allen, M. W. Impairment in facial recognition in patients with cerebral disease. Cortex...patients. Journal of Consulting and Clinical Psycholology, 1977, 45, 684-688. (a) Levin, H. S., Grossman, R. G., Kelly, P. J. Impairment of facial ... recognition after closed head injuries of varying severity. Cortex, 1977, 13, 110-130. (b) Miller, E. Simple and choice reaction time following severe
Simulation of Blast on Porcine Head
2015-07-01
human cadaver heads (Wayne State Tolerance Curve), and concussive data from animals as well as long-duration human sled experiments have led to the...99% probability of producing concussion in Rhesus monkeys (whiplash injury on the sagittal plane) (Ommaya et al. 1967). However, since a single...correlated to brain injury—the critical rotation velocity ωcr = 42.1 rad/s and the critical acceleration αcr = 363 krad/ s2 for college football data
Auditory, Vestibular and Cognitive Effects due to Repeated Blast Exposure on the Warfighter
2012-10-01
Gaze Horizontal (Left and Right) Description: The primary purpose of the Gaze Horizontal subtest was to detect nystagmus when the head is fixed and...to detect nystagmus when the head is fixed and the eyes are gazing off center from the primary (straight ahead) gaze position. This test is designed...physiological target area and examiner instructions for testing): Spontaneous Nystagmus Smooth Harmonic Acceleration (.01, .08, .32, .64, 1.75
Interaction of semicircular canal stimulation with carotid baroreceptor reflex control of heart rate
NASA Technical Reports Server (NTRS)
Convertino, V. A.
1998-01-01
The carotid-cardiac baroreflex contributes to the prediction of orthostatic tolerance; experimental attenuation of the reflex response leads to orthostatic hypotension in humans and animals. Anecdotal observations indicate that rotational head movements about the vertical axis of the body can also induce orthostatic bradycardia and hypotension through increased parasympathetic activity. We therefore measured the chronotropic response to carotid baroreceptor stimulation in 12 men during varying conditions of vestibulo-oculomotor stimulation to test the hypothesis that stimulation of the semicircular canals associated with head movements in the yaw plane inhibits cardioacceleration through a vagally mediated baroreflex. Carotid-cardiac baroreflex response was assessed by plotting R-R intervals (ms) at each of 8 neck pressure steps with their respective carotid distending pressures (mmHg). Calculated baroreflex gain (maximal slope of the stimulus-response relationship) was measured under 4 experimental conditions: 1) sinusoidal whole-body yaw rotation of the subject in the dark without visual fixation (combined vestibular-oculomotor stimulation); 2) yaw oscillation of the subject while tracking a small head-fixed light moving with the subject (vestibular stimulation without eye movements); 3) subject stationary while fixating on a small light oscillating in yaw at the same frequency, peak acceleration, and velocity as the chair (eye movements without vestibular stimulation); and 4) subject stationary in the dark (no eye or head motion). Head motion alone and with eye movement reduced baseline baroreflex responsiveness to the same stimulus by 30%. Inhibition of cardioacceleration during rotational head movements may have significant impact on functional performance in aerospace environments, particularly in high-performance aircraft pilots during high angular acceleration in aerial combat maneuvers or in astronauts upon return from spaceflight who already have attenuated baroreflex functions.
WHIPS seat and occupant motions during simulated rear crashes.
Xiao, Ming; Ivancic, Paul C
2010-10-01
Objectives of this study were to investigate the motions of Volvo's Whiplash Protection System (WHIPS) seat and occupant during simulated rear crashes of a human model of the neck (HUMON). HUMON consisted of a human neck specimen (n = 6) mounted to the torso of BioRID II and carrying an anthropometric head stabilized with muscle force replication. HUMON was seated and secured in a 2005 Volvo XC90 minivan seat that included WHIPS and a fixed head restraint. Rear crashes of 9.9 g (ΔV 9.2 kph), 12.0 g (ΔV 11.4 kph), and 13.3 g (ΔV 13.4 kph) were simulated and WHIPS and occupant motions were monitored. Linear regression analyses (P < .05) were used to determine relationships between WHIPS and occupant motion peaks using data from all crashes combined. WHIPS motions consisted of simultaneous rearward and downward translations and extension of the seatback and plastic deformation of the bilateral WHIPS energy-absorbing components. Peak WHIPS motions were linearly correlated only with peak rearward occupant translations. Less rearward pelvis translation was required to cause WHIPS activation as compared to T1 translation. WHIPS reduced peak T1 horizontal acceleration by 39 percent compared to sled acceleration. This was within the range previously reported for WHIPS, between 30 and 60 percent, but higher than the 16 percent reduction previously reported due to active head restraint. Absorption of crash energy occurred during the initial 75 ms and the onset of head support occurred at 114 ms. Differential head-torso motions occurred prior to and during head support, indicating the potential for neck injury even with WHIPS.
Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel
2015-12-15
Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.
Project for the development of the linac based NCT facility in University of Tsukuba.
Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H
2014-06-01
A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Treatment vault shielding for a flattening filter-free medical linear accelerator
NASA Astrophysics Data System (ADS)
Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.
2009-03-01
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Treatment vault shielding for a flattening filter-free medical linear accelerator.
Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N
2009-03-07
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m(3) less concrete to shield the single-energy linac and 36 m(3) less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Wang, Peng; Yin, Lingshu; Zhang, Yawei; Kirk, Maura; Song, Gang; Ahn, Peter H; Lin, Alexander; Gee, James; Dolney, Derek; Solberg, Timothy D; Maughan, Richard; McDonough, James; Teo, Boon-Keng Kevin
2016-03-08
The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.
Addison, Daniel; Seidelmann, Sara B; Janjua, Sumbal A; Emami, Hamed; Staziaki, Pedro V; Hallett, Travis R; Szilveszter, Bálint; Lu, Michael T; Cambria, Richard P; Hoffmann, Udo; Chan, Annie W; Wirth, Lori J; Neilan, Tomas G
2017-08-30
Radiation therapy (RT) is a standard treatment for head and neck cancer; however, it is associated with inflammation, accelerated atherosclerosis, and cerebrovascular events (CVEs; stroke or transient ischemic attack). Human papillomavirus (HPV) is found in nearly half of head and neck cancers and is associated with inflammation and atherosclerosis. Whether HPV confers an increased risk of CVEs after RT is unknown. Using an institutional database, we identified all consecutive patients treated with RT from 2002 to 2012 for head and neck cancer who were tested for HPV. The outcome of interest was the composite of ischemic stroke and transient ischemic attack, and the association between HPV and CVEs was assessed using Cox proportional hazard models, competing risk analysis, and inverse probability weighting. Overall, 326 participants who underwent RT for head and neck cancer were tested for HPV (age 59±12 years, 75% were male, 9% had diabetes mellitus, 45% had hypertension, and 61% were smokers), of which 191 (59%) were tumor HPV positive. Traditional risk factors for CVEs were similar between HPV-positive and -negative patients. Over a median follow-up of 3.4 years, there were 18 ischemic strokes and 5 transient ischemic attacks (event rate of 1.8% per year). The annual event rate was higher in the HPV-positive patients compared with the HPV-negative patients (2.6% versus 0.9%, P =0.002). In a multivariable model, HPV-positive status was associated with a >4 times increased risk of CVEs (hazard ratio: 4.4; 95% confidence interval, 1.5-13.2; P =0.008). In this study, HPV-positive status is associated with an increased risk of stroke or transient ischemic attack following RT for head and neck cancer. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Oral ivermectin for the treatment of head lice infestation.
Sanchezruiz, Wendy L; Nuzum, Donald S; Kouzi, Samir A
2018-05-22
Published literature describing the use of oral ivermectin for the treatment of head lice infestation is reviewed. In the United States and globally, head lice infestation, or pediculosis capitis, remains a public health issue with both social and medical implications. Treatment with oral or topical medications is typically required for head lice eradication. Resistance to traditional topical therapies for head lice infestation is increasing, creating a need for consideration of additional treatment options. A growing body of data describing the potential role of oral ivermectin for the treatment or prevention of head lice infestation is available. A literature search identified 5 clinical trials that evaluated safety and/or effectiveness outcomes of oral ivermectin use as an alternative to malathion, other topical prescription medications, and traditional, nonprescription remedies; those studies were conducted in various parts of the world (e.g., Australia, Brazil, Mexico, Egypt) and likely involved varying types and degrees of lice resistance. Clinical research findings to date, while not consistently robust, suggest that oral ivermectin is comparable or superior in effectiveness to other topical treatment options for head lice infestation while being well tolerated and favorably perceived by patients and caretakers. Oral ivermectin is an option for the treatment of head lice infestation, especially in individuals who have experienced a treatment failure. Published evidence from clinical trials indicates that oral ivermectin is as effective as currently available topical treatments. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Lucas-Cuevas, Angel G; Pérez-Soriano, Pedro; Bush, Michael; Crossman, Aaron; Llana, Salvador; Cortell-Tormo, Juan M; Pérez-Turpin, José A
2013-01-01
It is well established nowadays the benefits that physical activity can have on the health of individuals. Walking is considered a fundamental method of movement and using a backpack is a common and economical manner of carrying load weight. Nevertheless, the shock wave produced by the impact forces when carrying a backpack can have detrimental effects on health status. Therefore, the aim of this study was to investigate differences in the accelerations placed on males and females whilst carrying different loads when walking. Twenty nine sports science students (16 males and 13 females) participated in the study under 3 different conditions: no weight, 10% and 20% body weight (BW) added in a backpack. Accelerometers were attached to the right shank and the centre of the forehead. Results showed that males have lower accelerations than females both in the head (2.62 ± 0.43G compared to 2.83 + 0.47G) and shank (1.37 ± 0.14G compared to 1.52 ± 0.15G; p<0.01). Accelerations for males and females were consistent throughout each backpack condition (p>0.05). The body acts as a natural shock absorber, reducing the amount of force that transmits through the body between the foot (impact point) and head. Anthropometric and body mass distribution differences between males and females may result in women receiving greater impact acceleration compared to men when the same load is carried.
Lucas-Cuevas, Angel G.; Pérez-Soriano, Pedro; Bush, Michael; Crossman, Aaron; Llana, Salvador; Cortell-Tormo, Juan M.; Pérez-Turpin, José A.
It is well established nowadays the benefits that physical activity can have on the health of individuals. Walking is considered a fundamental method of movement and using a backpack is a common and economical manner of carrying load weight. Nevertheless, the shock wave produced by the impact forces when carrying a backpack can have detrimental effects on health status. Therefore, the aim of this study was to investigate differences in the accelerations placed on males and females whilst carrying different loads when walking. Twenty nine sports science students (16 males and 13 females) participated in the study under 3 different conditions: no weight, 10% and 20% body weight (BW) added in a backpack. Accelerometers were attached to the right shank and the centre of the forehead. Results showed that males have lower accelerations than females both in the head (2.62 ± 0.43G compared to 2.83 + 0.47G) and shank (1.37 ± 0.14G compared to 1.52 ± 0.15G; p<0.01). Accelerations for males and females were consistent throughout each backpack condition (p>0.05). The body acts as a natural shock absorber, reducing the amount of force that transmits through the body between the foot (impact point) and head. Anthropometric and body mass distribution differences between males and females may result in women receiving greater impact acceleration compared to men when the same load is carried. PMID:24146708
49 CFR 572.11 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., December 1971, with channel classes as follows: (1) Head acceleration—Class 1000. (2) Pendulum acceleration... exceed 2g throughout the range of limb motion. (h) Performance tests are conducted at any temperature...
Courtney, Amy; Courtney, Michael
2015-01-01
Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism. PMID:26539158
Hauschild, Hans W; Humm, John R; Pintar, Frank A; Yoganandan, Narayan; Kaufman, Bruce; Kim, Jinyong; Maltese, Matthew R; Arbogast, Kristy B
2016-09-01
Testing was conducted to quantify the kinematics, potential for head impact, and influence on head injury metrics for a center-seated Q3s in a forward-facing child restraint system (FFCRS) in oblique impacts. The influences of a tether and intruded door on these measures were explored. Nine lateral oblique sled tests were conducted on a convertible forward-facing child restraint seat (FFCRS). The FFCRSs were secured to a bench seat from a popular production small SUV at the center seating position utilizing the lower anchor and tether for children (LATCH). The vehicle seat was fixed on the sled carriage at 60° and 80° from full frontal (30° and 10° forward rotation from pure lateral) providing an oblique lateral acceleration to the Q3s and FFCRS. A structure simulating an intruded door was mounted to the near (left) side of vehicle seat. The sled input acceleration was the proposed FMVSS 213 lateral pulse scaled to a 35 km/h delta-V. Tests were conducted with and without the tether attached to the FFCRS. Results indicate the influence of the tether on kinematics and injury measures in oblique side impact crashes for a center- or far-side-seated child occupant. All tests without a tether resulted in head contact with the simulated door, and 2 tests at the less oblique angle (80°) with a tether also resulted in head contact. No head-to-door contact was observed in 2 tests utilizing a tether. High-speed video analysis showed that the head moved beyond the CRS head side wings and made contact with the simulated intruded door. Head injury criterion (HIC) 15 median values were 589 without the tether vs. 332 with the tether attached. Tests utilizing a tether had less lateral head excursion than tests without a tether (median 400 vs. 442 mm). These tests demonstrate the important role of the tether in controlling head excursion for center- or far-side-seated child occupants in oblique side impact crashes and limiting the head injury potential with an intruded door. The tether may not influence the kinematics of a near-side-seated occupant as strongly where the vehicle door or side structure interacts with the CRS and influences its motion. The results indicate that there may be an opportunity to improve child head kinematics and head protection in oblique side impacts through different CRS attachment methods and/or alternative vehicle side structure protection or padding.
Park, Jong Min; Shin, Kyung Hwan; Kim, Jung-In; Park, So-Yeon; Jeon, Seung Hyuck; Choi, Noorie; Kim, Jin Ho; Wu, Hong-Gyun
2018-01-01
To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field.
Balanced Rotating Spray Tank and Pipe Cleaning and Cleanliness Verification System
NASA Technical Reports Server (NTRS)
Caimi, Raoul E. B. (Inventor); Thaxton, Eric A. (Inventor)
1998-01-01
A system for cleaning and verifying the cleanliness of the interior surfaces of hollow items, such as small bottles, tanks, pipes and tubes, employs a rotating spray head for supplying a gas-liquid cleaning mixture to the item's surface at a supersonic velocity. The spray head incorporates a plurality of nozzles having diverging cross sections so that the incoming gas-liquid mixture is first converged within the spray head and then diverged through the nozzles, thereby accelerating the mixture to a supersonic velocity. In the preferred embodiment, three nozzles are employed; one forwardly facing nozzle at the end of the spray head and two oppositely facing angled nozzles exiting on opposite sides of the spray head which balance each other, and therefore impart no net side load on the spray head. A drive mechanism is provided to rotate the spray head and at the same time move the head back and forth within the item to be cleaned. The drive mechanism acts on a long metal tube to which the spray head is fixed, and thus no moving parts are exposed to the interior surfaces of the items to be cleaned, thereby reducing the risk of contamination.
Mahfoud, Felix; Böhm, Michael; Baumhäkel, Magnus
2012-04-01
Optimal revascularization strategy is still under debate in patients with coronary artery disease, particularly due to the results of the Synergy Between Percutaneous Coronary Intervention With TAXUS and Cardiac Surgery (SYNTAX) trial. Although medical prevention has been clearly shown to be beneficial in coronary artery disease, it has been suggested that patients were significantly undertreated with evidence-based medications for cardiovascular protection. The purpose of the study was to evaluate concomitant medical treatment in cardiovascular interventional head-to-head trials comparing coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI). A systematic search of the literature regarding documentation and reports of medical treatment in cardiovascular interventional head-to-head trials with more than 500 patients comparing CABG and PCI was performed. Systematic research of the literature identified 2106 articles of potential interest. After review and selection, only 3 trials reported on medical treatment. Baseline medication was reported in the RITA (Randomized Intervention Treatment of Angina), CABRI (Coronary Angioplasty versus Bypass Revascularisation Investigation), and SYNTAX trials, and follow-up data were provided by the CABRI and SYNTAX 3-year trials only. Poor reporting of medical treatment at discharge might reflect an underestimation of secondary prevention in patients undergoing cardiac surgery or interventional procedures in head-to-head interventional trials. Thus, discussion of optimal revascularization procedure has to remain open, even in terms of concomitant medical treatment of patients. © 2012 Wiley Periodicals, Inc.
Simple Strategy to Prevent Severe Head Trauma in Judo —Biomechanical Analysis—
Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro
2013-01-01
To determine whether the use of an under-mat has an effect on impact forces to the head in Judo, a Judo expert threw an anthropomorphic test device using the Osoto-gari and Ouchi-gari techniques onto a tatami (judo mat) with and without an under-mat. Head acceleration was measured and the head injury criterion (HIC) values with or without under-mat were compared. The use of an under-mat significantly decreased (p = 0.021) the HIC values from 1174.7 ± 246.7 (without under-mat) to 539.3 ± 43.5 in Ouchi-gari and from 330.0 ± 78.3 (without under-mat) to 156.1 ± 30.4 in Osoto-gari. The use of an under-mat simply reduces impact forces to the head in Judo. Rule changes are not necessary and the enjoyment and health benefits of Judo are maintained. PMID:24067767
Simple strategy to prevent severe head trauma in Judo.
Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro
2013-01-01
To determine whether the use of an under-mat has an effect on impact forces to the head in Judo, a Judo expert threw an anthropomorphic test device using the Osoto-gari and Ouchi-gari techniques onto a tatami (judo mat) with and without an under-mat. Head acceleration was measured and the head injury criterion (HIC) values with or without under-mat were compared. The use of an under-mat significantly decreased (p = 0.021) the HIC values from 1174.7 ± 246.7 (without under-mat) to 539.3 ± 43.5 in Ouchi-gari and from 330.0 ± 78.3 (without under-mat) to 156.1 ± 30.4 in Osoto-gari. The use of an under-mat simply reduces impact forces to the head in Judo. Rule changes are not necessary and the enjoyment and health benefits of Judo are maintained.
Underbody Blast Models of TBI Caused by Hyper-Acceleration and Secondary Head Impact
2017-10-01
brain injury (TBI), with most of these head injuries caused by explosive munitions such as bombs , land mines, improvised explosive devices and missiles...with most of these injuries caused by explosive munitions such as bombs , land mines, improvised explosive devices (IEDs), and missiles.1,2 Little is...Neurosurg. 2008;108: 124–131. 21. Richards EM , Fiskum G, Rosenthal RE, Hopkins I, McKenna MC. Hyperoxic reperfusion after global ischemia decreases
Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D
2011-08-01
To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.
Modeling the Biodynamical Response of the Human Head for Injury Analysis
2001-09-01
1 II. BACKGROUND ..............................................5 A. HUMAN ANATOMY ......................................5...facilitate the simulation of the sled acceleration test used for model validation. A. HUMAN ANATOMY 1. The Spine The muscles and other soft tissue
Hemianopic and Quadrantanopic Field Loss, Eye and Head Movements, and Driving
McGwin, Gerald; Elgin, Jennifer; Vaphiades, Michael S.; Braswell, Ronald A.; DeCarlo, Dawn K.; Kline, Lanning B.; Owsley, Cynthia
2011-01-01
Purpose. To compare eye and head movements, lane keeping, and vehicle control of drivers with hemianopic and quadrantanopic field defects with controls, and to identify differences in these parameters between hemianopic and quadrantanopic drivers rated safe to drive by a clinical driving rehabilitation specialist compared with those rated as unsafe. Methods. Eye and head movements and lane keeping were rated in 22 persons with homonymous hemianopic defects and 8 with quadrantanopic defects (mean age, 53 years) who were ≥6 months post-injury and 30 persons with normal fields (mean age, 53 years). All were licensed to drive and were current drivers or aimed to resume driving. Participants drove a 6.3-mile route along non-interstate city roads under in-traffic conditions. Vehicle control was assessed objectively by vehicle instrumentation for speed, braking, acceleration, and cornering. Results. As a group, drivers with hemianopic or quadrantanopic defects drove slower, exhibited less excessive cornering or acceleration, and executed more shoulder movements than the controls. Those drivers with hemianopic or quadrantanopic defects rated as safe also made more head movements into their blind field, received superior ratings regarding eye movement extent and lane position stability, and exhibited less sudden braking and drove faster than those rated unsafe. Conclusions. Persons with hemianopic and quadrantanopic defects rated as safe to drive compensated by making more head movements into their blind field, combined with more stable lane keeping and less sudden braking. Future research should evaluate whether these characteristics could be trained in rehabilitation programs aimed at improving driving safety in this population. PMID:21367969
Gaze pursuit responses in nucleus reticularis tegmenti pontis of head-unrestrained macaques.
Suzuki, David A; Betelak, Kathleen F; Yee, Robert D
2009-01-01
Eye-head gaze pursuit-related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit-related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position-related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit-related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged approximately 1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII.
Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David
2013-01-01
Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.
Benson, A. J.; Guedry, F. E.; Jones, G. Melvill
1970-01-01
1. Recent experiments have shown that rotation of a linear acceleration vector round the head can generate involuntary ocular nystagmus in the absence of angular acceleration. The present experiments examine the suggestion that adequate stimulation of the semicircular canals may contribute to this response. 2. Decerebrate cats were located in a stereotaxic device on a platform, slung from four parallel cables, which could be driven smoothly round a circular orbit without inducing significant angular movement of the platform. This Parallel Swing Rotation (PSR) generated a centripetal acceleration of 4·4 m/sec2 which rotated round the head at 0·52 rev/sec. 3. The discharge frequency of specifically lateral canal-dependent neural units in the vestibular nuclei of cats was recorded during PSR to right and left, and in the absence of motion. The dynamic responses to purely angular motion were also examined on a servo-driven turntable. 4. Without exception all proven canal-dependent cells examined (twenty-nine cells in nine cats) were more active during PSR in the direction of endolymph circulation assessed to be excitatory to the unit, than during PSR in the opposite direction. 5. The observed changes in discharge frequency are assessed to have been of a magnitude appropriate for the generation of the involuntary oculomotor response induced by the same stimulus in the intact animal. 6. The findings suggest that a linear acceleration vector which rotates in the plane of the lateral semicircular canals can be an adequate stimulus to ampullary receptors, though an explanation which invokes the modulation of canal cells by a signal dependent upon the sequential activation of macular receptors cannot be positively excluded. PMID:5501270
Efficacy of the LouseBuster, a new medical device for treating head lice (Anoplura:Pediculidae).
Bush, Sarah E; Rock, Alex N; Jones, Sherri L; Malenke, Jael R; Clayton, Dale H
2011-01-01
Human head lice (Pediculus humanus capitis De Geer) occur worldwide and infest millions of children and adults every year. Head lice infestations, which are known as pediculosis capitis, are psychologically stressful, physically irritating, and are one of the leading causes of K-6 school absence. The prevalence of head lice in many countries is increasing rapidly because of resistance to chemicals used in many head lice treatments. We tested the efficacy of an alternative method for controlling head lice, the LouseBuster, a custom-built medical device designed to kill head lice and their eggs using controlled, heated air. A total of 56 infested subjects was treated with the LouseBuster, and the efficacy of the treatment was evaluated by comparing the viability of lice and eggs on randomly assigned pre- and posttreatment sides of each subject's scalp. We evaluate treatment efficacy in the hands of novice versus experienced operators. We also evaluate treatment efficacy on different hair types and at different ambient humidities. Overall mortality of lice and eggs was 94.8% after treatment by experienced operators. Novice operators also achieved good results after a short training session; their results did not differ significantly from those of experienced operators. No adverse events were associated with the LouseBuster treatment. The LouseBuster is efficacious for killing head lice and their eggs. The use of heated air is appealing because it is a fast, safe, nonchemical treatment. Head lice are also unlikely to evolve resistance to desiccation, which is the apparent mode of action.
ERIC Educational Resources Information Center
Sawyer Mac Productions, Weston, MA.
Head lice affect over 10 million Americans each year. Noting that head lice are becoming resistant to conventional pediculicide (insecticide) treatments, this video combines live action and animation to education parents, children, and health professionals about the use of olive oil for successfully preventing and getting rid of head lice. The…
SAMS Acceleration Measurements on Mir from May 1997 to June 1998 (NASA Increments 5, 6, and 7)
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1999-01-01
During NASA Increments 5, 6, and 7 (May 1997 to June 1998), about eight gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station Mir. The data were recorded on twenty-seven optical disks which were returned to Earth on Orbiter missions STS-86, STS-89, and STS-91. During these increments, SAMS data were collected in the Priroda module to support various microgravity experiments. This report points out some of the salient features of the microgravity acceleration environment to which the experiments were exposed. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous Mir increment summary reports prepared by the Principal Investigator Microgravity Services project.
Severe-to-fatal head injuries in motor vehicle impacts.
Yoganandan, Narayan; Baisden, Jamie L; Maiman, Dennis J; Gennarelli, Thomas A; Guan, Yabo; Pintar, Frank A; Laud, Prakash; Ridella, Stephen A
2010-07-01
Severe-to-fatal head injuries in motor vehicle environments were analyzed using the United States Crash Injury Research and Engineering Network database for the years 1997-2006. Medical evaluations included details and photographs of injury, and on-scene, trauma bay, emergency room, intensive care unit, radiological, operating room, in-patient, and rehabilitation records. Data were synthesized on a case-by-case basis. X-rays, computed tomography scans, and magnetic resonance images were reviewed along with field evaluations of scene and photographs for the analyses of brain injuries and skull fractures. Injuries to the parenchyma, arteries, brainstem, cerebellum, cerebrum, and loss of consciousness were included. In addition to the analyses of severe-to-fatal (AIS4+) injuries, cervical spine, face, and scalp trauma were used to determine the potential for head contact. Fatalities and survivors were compared using nonparametric tests and confidence intervals for medians. Results were categorized based on the mode of impact with a focus on head contact. Out of the 3178 medical cases and 169 occupants sustaining head injuries, 132 adults were in frontal (54), side (75), and rear (3) crashes. Head contact locations are presented for each mode. A majority of cases clustered around the mid-size anthropometry and normal body mass index (BMI). Injuries occurred at change in velocities (DeltaV) representative of US regulations. Statistically significant differences in DeltaV between fatalities and survivors were found for side but not for frontal impacts. Independent of the impact mode and survivorship, contact locations were found to be superior to the center of gravity of the head, suggesting a greater role for angular than translational head kinematics. However, contact locations were biased to the impact mode: anterior aspects of the frontal bone and face were involved in frontal impacts while temporal-parietal regions were involved in side impacts. Because head injuries occur at regulatory DeltaV in modern vehicles and angular accelerations are not directly incorporated in crashworthiness standards, these findings from the largest dataset in literature, offer a field-based rationale for including rotational kinematics in injury assessments. In addition, it may be necessary to develop injury criteria and evaluate dummy biofidelity based on contact locations as this parameter depended on the impact mode. The current field-based analysis has identified the importance of both angular acceleration and contact location in head injury assessment and mitigation. Published by Elsevier Ltd.
Detection of linear ego-acceleration from optic flow.
Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A
2012-07-20
Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.
Modular use of human body models of varying levels of complexity: Validation of head kinematics.
Decker, William; Koya, Bharath; Davis, Matthew L; Gayzik, F Scott
2017-05-29
The significant computational resources required to execute detailed human body finite-element models has motivated the development of faster running, simplified models (e.g., GHBMC M50-OS). Previous studies have demonstrated the ability to modularly incorporate the validated GHBMC M50-O brain model into the simplified model (GHBMC M50-OS+B), which allows for localized analysis of the brain in a fraction of the computation time required for the detailed model. The objective of this study is to validate the head and neck kinematics of the GHBMC M50-O and M50-OS (detailed and simplified versions of the same model) against human volunteer test data in frontal and lateral loading. Furthermore, the effect of modular insertion of the detailed brain model into the M50-OS is quantified. Data from the Navy Biodynamics Laboratory (NBDL) human volunteer studies, including a 15g frontal, 8g frontal, and 7g lateral impact, were reconstructed and simulated using LS-DYNA. A five-point restraint system was used for all simulations, and initial positions of the models were matched with volunteer data using settling and positioning techniques. Both the frontal and lateral simulations were run with the M50-O, M50-OS, and M50-OS+B with active musculature for a total of nine runs. Normalized run times for the various models used in this study were 8.4 min/ms for the M50-O, 0.26 min/ms for the M50-OS, and 0.97 min/ms for the M50-OS+B, a 32- and 9-fold reduction in run time, respectively. Corridors were reanalyzed for head and T1 kinematics from the NBDL studies. Qualitative evaluation of head rotational accelerations and linear resultant acceleration, as well as linear resultant T1 acceleration, showed reasonable results between all models and the experimental data. Objective evaluation of the results for head center of gravity (CG) accelerations was completed via ISO TS 18571, and indicated scores of 0.673 (M50-O), 0.638 (M50-OS), and 0.656 (M50-OS+B) for the 15g frontal impact. Scores at lower g levels yielded similar results, 0.667 (M50-O), 0.675 (M50-OS), and 0.710 (M50-OS+B) for the 8g frontal impact. The 7g lateral simulations also compared fairly with an average ISO score of 0.565 for the M50-O, 0.634 for the M50-OS, and 0.606 for the M50-OS+B. The three HBMs experienced similar head and neck motion in the frontal simulations, but the M50-O predicted significantly greater head rotation in the lateral simulation. The greatest departure from the detailed occupant models were noted in lateral flexion, potentially indicating the need for further study. Precise modeling of the belt system however was limited by available data. A sensitivity study of these parameters in the frontal condition showed that belt slack and muscle activation have a modest effect on the ISO score. The reduction in computation time of the M50-OS+B reduces the burden of high computational requirements when handling detailed HBMs. Future work will focus on harmonizing the lateral head response of the models and studying localized injury criteria within the brain from the M50-O and M50-OS+B.
Lenich, Andreas; Bachmeier, Samuel; Prantl, Lukas; Nerlich, Michael; Hammer, Jochen; Mayr, Edgar; Al-Munajjed, Amir Andreas; Füchtmeier, Bernd
2011-04-22
Since cut-out still remains one of the major clinical challenges in the field of osteoporotic proximal femur fractures, remarkable developments have been made in improving treatment concepts. However, the mechanics of these complications have not been fully understood.We hypothesize using the experimental data and a theoretical model that a previous rotation of the femoral head due to de-central implant positioning can initiate a cut-out. In this investigation we analysed our experimental data using two common screws (DHS/Gamma 3) and helical blades (PFN A/TFN) for the fixation of femur fractures in a simple theoretical model applying typical gait pattern on de-central positioned implants. In previous tests during a forced implant rotation by a biomechanical testing machine in a human femoral head the two screws showed failure symptoms (2-6Nm) at the same magnitude as torques acting in the hip during daily activities with de-central implant positioning, while the helical blades showed a better stability (10-20Nm).To calculate the torque of the head around the implant only the force and the leverarm is needed (N [Nm] = F [N] * × [m]). The force F is a product of the mass M [kg] multiplied by the acceleration g [m/s2]. The leverarm is the distance between the center of the head of femur and the implant center on a horizontal line. Using 50% of 75 kg body weight a torque of 0.37Nm for the 1 mm decentralized position and 1.1Nm for the 3 mm decentralized position of the implant was calculated. At 250% BW, appropriate to a normal step, torques of 1.8Nm (1 mm) and 5.5Nm (3 mm) have been calculated.Comparing of the experimental and theoretical results shows that both screws fail in the same magnitude as torques occur in a more than 3 mm de-central positioned implant. We conclude the center-center position in the head of femur of any kind of lag screw or blade is to be achieved to minimize rotation of the femoral head and to prevent further mechanical complications.
Dynamic response due to behind helmet blunt trauma measured with a human head surrogate.
Freitas, Christopher J; Mathis, James T; Scott, Nikki; Bigger, Rory P; Mackiewicz, James
2014-01-01
A Human Head Surrogate has been developed for use in behind helmet blunt trauma experiments. This human head surrogate fills the void between Post-Mortem Human Subject testing (with biofidelity but handling restrictions) and commercial ballistic head forms (with no biofidelity but ease of use). This unique human head surrogate is based on refreshed human craniums and surrogate materials representing human head soft tissues such as the skin, dura, and brain. A methodology for refreshing the craniums is developed and verified through material testing. A test methodology utilizing these unique human head surrogates is also developed and then demonstrated in a series of experiments in which non-perforating ballistic impact of combat helmets is performed with and without supplemental ceramic appliques for protecting against larger caliber threats. Sensors embedded in the human head surrogates allow for direct measurement of intracranial pressure, cranial strain, and head and helmet acceleration. Over seventy (70) fully instrumented experiments have been executed using this unique surrogate. Examples of the data collected are presented. Based on these series of tests, the Southwest Research Institute (SwRI) Human Head Surrogate has demonstrated great potential for providing insights in to injury mechanics resulting from non-perforating ballistic impact on combat helmets, and directly supports behind helmet blunt trauma studies.
Dynamic Response Due to Behind Helmet Blunt Trauma Measured with a Human Head Surrogate
Freitas, Christopher J.; Mathis, James T.; Scott, Nikki; Bigger, Rory P.; MacKiewicz, James
2014-01-01
A Human Head Surrogate has been developed for use in behind helmet blunt trauma experiments. This human head surrogate fills the void between Post-Mortem Human Subject testing (with biofidelity but handling restrictions) and commercial ballistic head forms (with no biofidelity but ease of use). This unique human head surrogate is based on refreshed human craniums and surrogate materials representing human head soft tissues such as the skin, dura, and brain. A methodology for refreshing the craniums is developed and verified through material testing. A test methodology utilizing these unique human head surrogates is also developed and then demonstrated in a series of experiments in which non-perforating ballistic impact of combat helmets is performed with and without supplemental ceramic appliques for protecting against larger caliber threats. Sensors embedded in the human head surrogates allow for direct measurement of intracranial pressure, cranial strain, and head and helmet acceleration. Over seventy (70) fully instrumented experiments have been executed using this unique surrogate. Examples of the data collected are presented. Based on these series of tests, the Southwest Research Institute (SwRI) Human Head Surrogate has demonstrated great potential for providing insights in to injury mechanics resulting from non-perforating ballistic impact on combat helmets, and directly supports behind helmet blunt trauma studies. PMID:24688303
Puchalska, Monika; Sihver, Lembit
2015-06-21
Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.
NASA Astrophysics Data System (ADS)
Puchalska, Monika; Sihver, Lembit
2015-06-01
Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.
MO-FG-202-05: Identifying Treatment Planning System Errors in IROC-H Phantom Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, J; Followill, D; Howell, R
Purpose: Treatment Planning System (TPS) errors can affect large numbers of cancer patients receiving radiation therapy. Using an independent recalculation system, the Imaging and Radiation Oncology Core-Houston (IROC-H) can identify institutions that have not sufficiently modelled their linear accelerators in their TPS model. Methods: Linear accelerator point measurement data from IROC-H’s site visits was aggregated and analyzed from over 30 linear accelerator models. Dosimetrically similar models were combined to create “classes”. The class data was used to construct customized beam models in an independent treatment dose verification system (TVS). Approximately 200 head and neck phantom plans from 2012 to 2015more » were recalculated using this TVS. Comparison of plan accuracy was evaluated by comparing the measured dose to the institution’s TPS dose as well as the TVS dose. In cases where the TVS was more accurate than the institution by an average of >2%, the institution was identified as having a non-negligible TPS error. Results: Of the ∼200 recalculated plans, the average improvement using the TVS was ∼0.1%; i.e. the recalculation, on average, slightly outperformed the institution’s TPS. Of all the recalculated phantoms, 20% were identified as having a non-negligible TPS error. Fourteen plans failed current IROC-H criteria; the average TVS improvement of the failing plans was ∼3% and 57% were found to have non-negligible TPS errors. Conclusion: IROC-H has developed an independent recalculation system to identify institutions that have considerable TPS errors. A large number of institutions were found to have non-negligible TPS errors. Even institutions that passed IROC-H criteria could be identified as having a TPS error. Resolution of such errors would improve dose delivery for a large number of IROC-H phantoms and ultimately, patients.« less
Birkeland, Andrew C.; Swiecicki, Paul L.; Brenner, J. Chad; Shuman, Andrew G.
2017-01-01
Introduction Head and neck squamous cell carcinoma remains a highly morbid and fatal disease, with poor survival rates among patients with advanced and recurrent disease. Recent advances in next generation sequencing, targeted therapeutics, and precision medicine trials are expanding treatment options for head and neck cancers; thus greater awareness of this rapidly evolving field is important. Areas Covered Recent next-generation sequencing studies in head and neck squamous cell carcinoma, targeted therapy clinical trials involving head and neck squamous cell carcinoma. Expert Commentary This review discusses the current state of head and neck cancer treatment, and considerations and implications for the incorporation of personalized medicine and targeted therapy for head and neck cancers in a dynamic clinical landscape. PMID:28251187
Chojnowski, Jacek M; Taylor, Lee M; Sykes, Jonathan R; Thwaites, David I
2018-05-14
A novel phantomless, EPID-based method of measuring the beam focal spot offset of a linear accelerator was proposed and validated for Varian machines. In this method, one set of jaws and the MLC were utilized to form a symmetric field and then a 180 o collimator rotation was utilized to determine the radiation isocenter defined by the jaws and the MLC, respectively. The difference between these two isocentres is directly correlated with the beam focal spot offset of the linear accelerator. In the current work, the method has been considered for Elekta linacs. An Elekta linac with the Agility ® head does not have two set of jaws, therefore, a modified method is presented making use of one set of diaphragms, the MLC and a full 360 o collimator rotation. The modified method has been tested on two Elekta Synergy ® linacs with Agility ® heads and independently validated. A practical guide with instructions and a MATLAB ® code is attached for easy implementation. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Beating time: How ensemble musicians' cueing gestures communicate beat position and tempo.
Bishop, Laura; Goebl, Werner
2018-01-01
Ensemble musicians typically exchange visual cues to coordinate piece entrances. "Cueing-in" gestures indicate when to begin playing and at what tempo. This study investigated how timing information is encoded in musicians' cueing-in gestures. Gesture acceleration patterns were expected to indicate beat position, while gesture periodicity, duration, and peak gesture velocity were expected to indicate tempo. Same-instrument ensembles (e.g., piano-piano) were expected to synchronize more successfully than mixed-instrument ensembles (e.g., piano-violin). Duos performed short passages as their head and (for violinists) bowing hand movements were tracked with accelerometers and Kinect sensors. Performers alternated between leader/follower roles; leaders heard a tempo via headphones and cued their partner in nonverbally. Violin duos synchronized more successfully than either piano duos or piano-violin duos, possibly because violinists were more experienced in ensemble playing than pianists. Peak acceleration indicated beat position in leaders' head-nodding gestures. Gesture duration and periodicity in leaders' head and bowing hand gestures indicated tempo. The results show that the spatio-temporal characteristics of cueing-in gestures guide beat perception, enabling synchronization with visual gestures that follow a range of spatial trajectories.
Cho, Hanna; Jeon, Seun; Kim, Changsoo; Ye, Byoung Seok; Kim, Geon Ha; Noh, Young; Kim, Hee Jin; Yoon, Cindy W; Kim, Yeo Jin; Kim, Jung-Hyun; Park, Sang Eon; Kim, Sung Tae; Lee, Jong-Min; Kang, Sue J; Suh, Mee Kyung; Chin, Juhee; Na, Duk L; Kang, Dae Ryong; Seo, Sang Won
2015-01-01
Epidemiological studies have reported that higher education (HE) is associated with a reduced risk of incident Alzheimer's disease (AD). However, after the clinical onset of AD, patients with HE levels show more rapid cognitive decline than patients with lower education (LE) levels. Although education level and cognition have been linked, there have been few longitudinal studies investigating the relationship between education level and cortical decline in patients with AD. The aim of this study was to compare the topography of cortical atrophy longitudinally between AD patients with HE (HE-AD) and AD patients with LE (LE-AD). We prospectively recruited 36 patients with early-stage AD and 14 normal controls. The patients were classified into two groups according to educational level, 23 HE-AD (>9 years) and 13 LE-AD (≤9 years). As AD progressed over the 5-year longitudinal follow-ups, the HE-AD showed a significant group-by-time interaction in the right dorsolateral frontal and precuneus, and the left parahippocampal regions compared to the LE-AD. Our study reveals that the preliminary longitudinal effect of HE accelerates cortical atrophy in AD patients over time, which underlines the importance of education level for predicting prognosis.
Saturation of the Hosing Instability in Quasilinear Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehe, R.; Schroeder, C. B.; Vay, J. -L.
The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.
Saturation of the Hosing Instability in Quasilinear Plasma Accelerators
Lehe, R.; Schroeder, C. B.; Vay, J. -L.; ...
2017-12-13
The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.
Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli
NASA Technical Reports Server (NTRS)
Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.
1989-01-01
The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).
DOT National Transportation Integrated Search
1973-07-01
A miniature piezoresistive mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during a simulated vehicle crash. Corrections have been electronically applied to the rotational accelerometer to reduce i...
Neural representation of orientation relative to gravity in the macaque cerebellum
Laurens, Jean; Meng, Hui; Angelaki, Dora E.
2013-01-01
Summary A fundamental challenge for maintaining spatial orientation and interacting with the world is knowledge of our orientation relative to gravity, i.e. tilt. Sensing gravity is complicated because of Einstein’s equivalence principle, where gravitational and translational accelerations are physically indistinguishable. Theory has proposed that this ambiguity is solved by tracking head tilt through multisensory integration. Here we identify a group of Purkinje cells in the caudal cerebellar vermis with responses that reflect an estimate of head tilt. These tilt-selective cells are complementary to translation-selective Purkinje cells, such that their population activities sum to the net gravito-inertial acceleration encoded by the otolith organs, as predicted by theory. These findings reflect the remarkable ability of the cerebellum for neural computation and provide novel quantitative evidence for a neural representation of gravity, whose calculation relies on long-postulated theoretical concepts such as internal models and Bayesian priors. PMID:24360549
Football Players' Head-Impact Exposure After Limiting of Full-Contact Practices
Broglio, Steven P.; Williams, Richelle M.; O'Connor, Kathryn L.; Goldstick, Jason
2016-01-01
Context: Sporting organizations limit full-contact football practices to reduce concussion risk and based on speculation that repeated head impacts may result in long-term neurodegeneration. Objective: To directly compare head-impact exposure in high school football players before and after a statewide restriction on full-contact practices. Design: Cross-sectional study. Setting: High school football field. Patients or Other Participants: Participants were varsity football athletes from a single high school. Before the rule change, 26 athletes (age = 16.2 ± 0.8 years, height = 179.6 ± 6.4 cm, weight = 81.9 ± 13.1 kg) participated. After the rule change, 24 athletes (age = 15.9 ± 0.8 years, height = 178.3 ± 6.5 cm, weight = 76.2 ± 11.6 kg) participated. Nine athletes participated in both years of the investigation. Main Outcome Measure(s): Head-impact exposure was monitored using the Head Impact Telemetry System while the athletes participated in football games and practices in the seasons before and after the rule change. Head-impact frequency, location, and magnitude (ie, linear acceleration, rotational acceleration, and Head Impact Telemetry severity profile [HITsp], respectively) were measured. Results: A total of 15 398 impacts (592 impacts per player per season) were captured before the rule change and 8269 impacts (345 impacts per player per season) after the change. An average 42% decline in impact exposure occurred across all players, with practice-exposure declines occurring among linemen (46% decline); receivers, cornerbacks, and safeties (41% decline); and tight ends, running backs (including fullbacks), and linebackers (39% decline). Impact magnitudes remained largely unchanged between the years. Conclusions: A rule change limiting full-contact high school football practices appears to have been effective in reducing head-impact exposure across all players, with the largest reduction occurring among linemen. This finding is likely associated with the rule modification, particularly because the coaching staff and offensive scheme remained consistent, yet how this reduction influences concussion risk and long-term cognitive health remains unknown. PMID:27333460
Balfe, Myles; Keohane, Kieran; O' Brien, Katie; Gooberman-Hill, Rachael; Maguire, Rebecca; Hanly, Paul; O' Sullivan, Eleanor; Sharp, Linda
2017-10-01
To explore the effect that treatment-related commuting has on carers of patients with head and neck cancer. Semi-structured interviews, thematically analysed, with 31 carers. Treatment-related commuting had a considerable impact on carers of patients with head and neck cancer, both in practical terms (economic costs, disruption) and also in psychological terms. Many carers of patients with head and neck cancer described becoming distressed by their commute. Some carers from large urban cities appeared to have hidden commuting burdens. Some carers respond to commuting stress by 'zoning out' or becoming 'like zombies'. Treatment-related travel for head and neck cancer can have significant practical and psychological impacts. Health professionals should be aware of the impacts that commuting can have on head and neck caregivers. Health services may be able to take practical steps, such as providing subsidized parking, to address head and neck carergivers' difficulties. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Dynamic Model of the Cervical Spine and Head
1981-11-01
history for -G impact accel- eration 53 13b Moment at occipital condyles for -G impact acceleration 53 14a C6-C5 axial force time history for -G impact...triangular in shape rather than round, The 1 .minae are relatively long and narrow and meet in the posterior midline to form short bifid spinous processes...concave. It is directed upward and maedially and supports the condyles of the occipital bone. This is where the nodding, or "yes" movement of the head
Autologous Platelet Concentrates as Treatment for Avascular Necrosis of Femoral Head in a Dog.
Parra, Estefanía; Vergara, Andrea; Silva, Raúl F
2017-03-01
Avascular necrosis of the femoral head is a developmental disturbance that generally affects young dogs of small breeds and produces ischemic necrosis of the femoral head resulting in an incongruous and malformed joint. The most common treatment is the excisional arthroplasty of the head and femoral neck. The aim of this study is to describe the treatment of avascular necrosis in a Yorkshire dog using intra-articular injections of autologous platelet concentrate. Evaluations were made at 0, 15, 30, 60, and 120 days of treatment, describing the following parameters: clinical gait analysis, perimetry, goniometry, and radiographic evaluations. The results obtained in this case suggest that the autologous platelet concentrate may be an alternative for the treatment of avascular necrosis of the femoral head in dogs. Copyright © 2017 Elsevier Inc. All rights reserved.
Bending it like Beckham: how to visually fool the goalkeeper.
Dessing, Joost C; Craig, Cathy M
2010-10-06
As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will cross the goal line, it is unknown how this affects the goalkeeper's actual movements. Here, an in-depth analysis of goalkeepers' hand movements in immersive, interactive virtual reality shows that they do not fully account for spin-induced lateral ball acceleration. Hand movements were found to be biased in the direction of initial ball heading, and for curved free-kicks this resulted in biases in a direction opposite to those necessary to save the free-kick. These movement errors result in less time to cover a now greater distance to stop the ball entering the goal. These and other details of the interceptive behaviour are explained using a simple mathematical model which shows how the goalkeeper controls his movements online with respect to the ball's current heading direction. Furthermore our results and model suggest how visual landmarks, such as the goalposts in this instance, may constrain the extent of the movement biases. While it has previously been shown that humans can internalize the effects of gravitational acceleration, these results show that it is much more difficult for goalkeepers to account for spin-induced visual acceleration, which varies from situation to situation. The limited sensitivity of the human visual system for detecting acceleration, suggests that curved free-kicks are an important goal-scoring opportunity in the game of soccer.
Bending It Like Beckham: How to Visually Fool the Goalkeeper
2010-01-01
Background As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will cross the goal line, it is unknown how this affects the goalkeeper's actual movements. Methodology/Principal Findings Here, an in-depth analysis of goalkeepers' hand movements in immersive, interactive virtual reality shows that they do not fully account for spin-induced lateral ball acceleration. Hand movements were found to be biased in the direction of initial ball heading, and for curved free-kicks this resulted in biases in a direction opposite to those necessary to save the free-kick. These movement errors result in less time to cover a now greater distance to stop the ball entering the goal. These and other details of the interceptive behaviour are explained using a simple mathematical model which shows how the goalkeeper controls his movements online with respect to the ball's current heading direction. Furthermore our results and model suggest how visual landmarks, such as the goalposts in this instance, may constrain the extent of the movement biases. Conclusions While it has previously been shown that humans can internalize the effects of gravitational acceleration, these results show that it is much more difficult for goalkeepers to account for spin-induced visual acceleration, which varies from situation to situation. The limited sensitivity of the human visual system for detecting acceleration, suggests that curved free-kicks are an important goal-scoring opportunity in the game of soccer. PMID:20949130
Hu, Zhi-ming; Zhou, Ming-qian; Gao, Ji-min
2008-12-01
To evaluate the therapeutic effect of vascular endothelial growth factor (VEGF) and tumor necrosis factor receptor (TNFR) on avascular necrosis of the femoral head in rabbits. Avascular necrosis of the femoral head was induced in 26 New Zealand white rabbits by injections of horse serum and prednisolone. The rabbits were then divided into VEGF/TNFR treatment group, VEGF treatment group, and untreated model group, with another 4 normal rabbits as the normal control group. In the two treatment groups, the therapeutic agents were injected percutaneously into the femoral head. Enzyme-linked immunosorbent assay was performed to determine the concentration of TNF-alpha in rabbit serum followed by pathological examination of the changes in the bone tissues, bone marrow hematopoietic tissue and the blood vessels in the femoral head. Compared with the model group, the rabbits with both VEGF and TNFR treatment showed decreased serum concentration of TNF-alpha with obvious new vessel formation, decreased empty bone lacunae in the femoral head and hematopoietic tissue proliferation in the bone marrow cavity. Percutaneous injection of VEGF and TNFR into the femoral head can significantly enhance bone tissue angiogenesis and ameliorate osteonecrosis in rabbits with experimental femoral head necrosis.
Effectiveness of headgear in football
Withnall, C; Shewchenko, N; Wonnacott, M; Dvorak, J; Scott, D
2005-01-01
Objectives: Commercial headgear is currently being used by football players of all ages and skill levels to provide protection from heading and direct impact. The clinical and biomechanical effectiveness of the headgear in attenuating these types of impact is not well defined or understood. This study was conducted to determine whether football headgear has an effect on head impact responses. Methods: Controlled laboratory tests were conducted with a human volunteer and surrogate head/neck system. The impact attenuation of three commercial headgears during ball impact speeds of 6–30 m/s and in head to head contact with a closing speed of 2–5 m/s was quantified. The human subject, instrumented to measure linear and angular head accelerations, was exposed to low severity impacts during heading in the unprotected and protected states. High severity heading contact and head to head impacts were studied with a biofidelic surrogate headform instrumented to measure linear and angular head responses. Subject and surrogate responses were compared with published injury assessment functions associated with mild traumatic brain injury (MTBI). Results: For ball impacts, none of the headgear provided attenuation over the full range of impact speeds. Head responses with or without headgear were not significantly different (p>0.05) and remained well below levels associated with MTBI. In head to head impact tests the headgear provided an overall 33% reduction in impact response. Conclusion: The football headgear models tested did not provide benefit during ball impact. This is probably because of the large amount of ball deformation relative to headband thickness. However, the headgear provided measurable benefit during head to head impacts. PMID:16046355
Atypical Facial and Head Pain in Childhood and Adolescence.
Grazzi, Licia; Sansone, Emanuela; Rizzoli, Paul
2018-05-03
This review will consider forms of atypical facial and head pain in children and adolescents. A brief and general overview of typical head and facial pains and treatments will be offered. Moreover, atypical head and face pain will be discussed with treatment options. The most recent literature including case reports will be evaluated; possible pathophysiological mechanisms, resulting disabilities, and family and social impact will be discussed. General indications for pharmacological treatment will be reviewed, when needed in more disabling cases. Also, non-pharmacological treatments that are especially suitable for this category of patients will be illustrated and discussed.
Gaze Pursuit Responses in Nucleus Reticularis Tegmenti Pontis of Head-Unrestrained Macaques
Suzuki, David A.; Betelak, Kathleen F.; Yee, Robert D.
2009-01-01
Eye-head gaze pursuit–related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit–related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position–related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit–related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged ∼1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII. PMID:18987125
[Management of positional head deformity in 31 infants].
Pan, Wei-Wei; Tong, Xiao-Mei
2017-02-01
To investigate the clinical effect of postural correction training and helmet therapy in the treatment of moderate-severe positional head deformity defined as asymmetric head shape in infants. A total of 31 infants who were diagnosed with moderate-severe plagiocephaly and/or brachiocephaly were enrolled. According to the different treatment methods, the infants were divided into helmet therapy group with 11 infants and postural correction training group with 20 infants. The cranial vault asymmetry index (CVAI), cephalic ratio (CR), and head circumference growth were compared between the two groups before and after treatment. Compared with the postural correction training group, the helmet therapy group had significantly lower CVAI and CR after treatment. The helmet therapy group had significantly better improvements in CVAI and CR after treatment compared with the postural correction training group (CVAI difference: 6.0±1.9 vs 0.7±0.8, P=0.001; CR difference: 0.047±0.009 vs 0.008±0.005, P<0.001). There was no significant difference in head circumference growth between the two groups (P=0.55). Helmet therapy has a significantly better effect in the treatment of moderate-severe positional head deformity than postural correction training in infants. Helmet therapy does not limit head circumference growth.
Occupant Motion Sensors : Rotational Accelerometer Development
DOT National Transportation Integrated Search
1972-04-01
A miniature mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during vehicle crash or impact conditions. The device has been tested in the laboratory using a shake table and in the field using dummie...
Gillies, G T; Broaddus, W C; Stenger, J M; Taylor, A G
1998-01-01
The head and neck constitute an inverted pendulum that is stabilized during consciousness by neuromuscular restoring forces. An analysis of the dynamics of this inverted pendulum suggests that the mechanics of the mandible and temporomandibular joint might couple into those of the pendulum's stabilization process. In this article, physical principles of the inverted pendulum model as these apply to the head and neck are explored, and the authors describe implications of mandibular mechanics for the forces acting on the head and neck at equilibrium. This novel application of the inverted pendulum model predicts that alteration or pathology of temporomandibular mechanics would lead to perturbations of the normal forces acting in the head and neck. Under certain circumstances, these perturbations could be expected to contribute to symptoms and result in additional or accelerated degenerative effects.
Virtual head rotation reveals a process of route reconstruction from human vestibular signals
Day, Brian L; Fitzpatrick, Richard C
2005-01-01
The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. PMID:16002439
Clinical, morphological, and biochemical correlates of head circumference in autism.
Sacco, Roberto; Militerni, Roberto; Frolli, Alessandro; Bravaccio, Carmela; Gritti, Antonella; Elia, Maurizio; Curatolo, Paolo; Manzi, Barbara; Trillo, Simona; Lenti, Carlo; Saccani, Monica; Schneider, Cindy; Melmed, Raun; Reichelt, Karl-Ludvig; Pascucci, Tiziana; Puglisi-Allegra, Stefano; Persico, Antonio M
2007-11-01
Head growth rates are often accelerated in autism. This study is aimed at defining the clinical, morphological, and biochemical correlates of head circumference in autistic patients. Fronto-occipital head circumference was measured in 241 nonsyndromic autistic patients, 3 to 16 years old, diagnosed according to DSM-IV criteria. We assessed 1) clinical parameters using the Autism Diagnostic Observation Schedule, Autism Diagnostic Interview-Revised, Vineland Adaptive Behavioral Scales, intelligence quotient measures, and an ad hoc clinical history questionnaire; 2) height and weight; 3) serotonin (5-HT) blood levels and peptiduria. The distribution of cranial circumference is significantly skewed toward larger head sizes (p < .00001). Macrocephaly (i.e., head circumference >97th percentile) is generally part of a broader macrosomic endophenotype, characterized by highly significant correlations between head circumference, weight, and height (p < .001). A head circumference >75th percentile is associated with more impaired adaptive behaviors and with less impairment in IQ measures and motor and verbal language development. Surprisingly, larger head sizes are significantly associated with a positive history of allergic/immune disorders both in the patient and in his/her first-degree relatives. Our study demonstrates the existence of a macrosomic endophenotype in autism and points toward pathogenetic links with immune dysfunctions that we speculate either lead to or are associated with increased cell cycle progression and/or decreased apoptosis.
Ruan, J S; Prasad, P
1995-08-01
A skull-brain finite element model of the human head has been coupled with a multilink rigid body model of the Hybrid III dummy. The experimental coupled model is intended to represent anatomically a 50th percentile human to the extent the dummy and the skull-brain model represent a human. It has been verified by simulating several human cadaver head impact tests as well as dummy head 'impacts" during barrier crashes in an automotive environment. Skull-isostress and brain-isostrain response curves were established based on model calibration of experimental human cadaver tolerance data. The skull-isostress response curve agrees with the JARI Human Head Impact Tolerance Curve for skull fracture. The brain-isostrain response curve predicts a higher G level for concussion than does the JARI concussion curve and the Wayne State Tolerance Curve at the longer time duration range. Barrier crash simulations consist of belted dummies impacting an airbag, a hard and soft steering wheel hub, and no head contact with vehicle interior components. Head impact force, intracranial pressures and strains, skull stress, and head center-of-gravity acceleration were investigated as injury parameters. Head injury criterion (HIC) was also calculated along with these parameters. Preliminary results of the model simulations in those impact conditions are discussed.
[Diagnosis and treatment characteristics of head-wind sha in She medicine].
Zou, Guangyi; Xu, Xiangdong; Zheng, Songming; Yan, Lianhe; Lei, Houxing; Zhang, Qiao-ling; Xiang, Yingmei; Ye, Yiping; Song, Liwei
2015-03-01
The diagnosis and treatment characteristics of head-wind sha in She medicine were analyzed and summarized. By visiting She-nationality villages and towns in Zhejiang province and Fujian province and interviewing hundreds of doctors of She medicine, the sha diagnosis, sha differentiation, experience and theory of treatment were arranged, and a comprehensive summary on theory and application of head-wind sha in She medicine such as pathogeny, name of disease, mechanism, diagnosis, differential diagnosis and treatment was made. It is believed that the methods of diagnosis and treatment in She medicine for head-wind sha could effectively enhance curative effect, safety and patients' quality of life, and the further research should be carried out.
Video Analysis Verification of Head Impact Events Measured by Wearable Sensors.
Cortes, Nelson; Lincoln, Andrew E; Myer, Gregory D; Hepburn, Lisa; Higgins, Michael; Putukian, Margot; Caswell, Shane V
2017-08-01
Wearable sensors are increasingly used to quantify the frequency and magnitude of head impact events in multiple sports. There is a paucity of evidence that verifies head impact events recorded by wearable sensors. To utilize video analysis to verify head impact events recorded by wearable sensors and describe the respective frequency and magnitude. Cohort study (diagnosis); Level of evidence, 2. Thirty male (mean age, 16.6 ± 1.2 years; mean height, 1.77 ± 0.06 m; mean weight, 73.4 ± 12.2 kg) and 35 female (mean age, 16.2 ± 1.3 years; mean height, 1.66 ± 0.05 m; mean weight, 61.2 ± 6.4 kg) players volunteered to participate in this study during the 2014 and 2015 lacrosse seasons. Participants were instrumented with GForceTracker (GFT; boys) and X-Patch sensors (girls). Simultaneous game video was recorded by a trained videographer using a single camera located at the highest midfield location. One-third of the field was framed and panned to follow the ball during games. Videographic and accelerometer data were time synchronized. Head impact counts were compared with video recordings and were deemed valid if (1) the linear acceleration was ≥20 g, (2) the player was identified on the field, (3) the player was in camera view, and (4) the head impact mechanism could be clearly identified. Descriptive statistics of peak linear acceleration (PLA) and peak rotational velocity (PRV) for all verified head impacts ≥20 g were calculated. For the boys, a total recorded 1063 impacts (2014: n = 545; 2015: n = 518) were logged by the GFT between game start and end times (mean PLA, 46 ± 31 g; mean PRV, 1093 ± 661 deg/s) during 368 player-games. Of these impacts, 690 were verified via video analysis (65%; mean PLA, 48 ± 34 g; mean PRV, 1242 ± 617 deg/s). The X-Patch sensors, worn by the girls, recorded a total 180 impacts during the course of the games, and 58 (2014: n = 33; 2015: n = 25) were verified via video analysis (32%; mean PLA, 39 ± 21 g; mean PRV, 1664 ± 619 rad/s). The current data indicate that existing wearable sensor technologies may substantially overestimate head impact events. Further, while the wearable sensors always estimated a head impact location, only 48% of the impacts were a result of direct contact to the head as characterized on video. Using wearable sensors and video to verify head impacts may decrease the inclusion of false-positive impacts during game activity in the analysis.
Riegel, Adam C; Chen, Yu; Kapur, Ajay; Apicello, Laura; Kuruvilla, Abraham; Rea, Anthony J; Jamshidi, Abolghassem; Potters, Louis
Optically stimulated luminescent dosimeters (OSLDs) are utilized for in vivo dosimetry (IVD) of modern radiation therapy techniques such as intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Dosimetric precision achieved with conventional techniques may not be attainable. In this work, we measured accuracy and precision for a large sample of clinical OSLD-based IVD measurements. Weekly IVD measurements were collected from 4 linear accelerators for 2 years and were expressed as percent differences from planned doses. After outlier analysis, 10,224 measurements were grouped in the following way: overall, modality (photons, electrons), treatment technique (3-dimensional [3D] conformal, field-in-field intensity modulation, inverse-planned IMRT, and VMAT), placement location (gantry angle, cardinality, and central axis positioning), and anatomical site (prostate, breast, head and neck, pelvis, lung, rectum and anus, brain, abdomen, esophagus, and bladder). Distributions were modeled via a Gaussian function. Fitting was performed with least squares, and goodness-of-fit was assessed with the coefficient of determination. Model means (μ) and standard deviations (σ) were calculated. Sample means and variances were compared for statistical significance by analysis of variance and the Levene tests (α = 0.05). Overall, μ ± σ was 0.3 ± 10.3%. Precision for electron measurements (6.9%) was significantly better than for photons (10.5%). Precision varied significantly among treatment techniques (P < .0001) with field-in-field lowest (σ = 7.2%) and IMRT and VMAT highest (σ = 11.9% and 13.4%, respectively). Treatment site models with goodness-of-fit greater than 0.90 (6 of 10) yielded accuracy within ±3%, except for head and neck (μ = -3.7%). Precision varied with treatment site (range, 7.3%-13.0%), with breast and head and neck yielding the best and worst precision, respectively. Placement on the central axis of cardinal gantry angles yielded more precise results (σ = 8.5%) compared with other locations (range, 10.5%-11.4%). Accuracy of ±3% was achievable. Precision ranged from 6.9% to 13.4% depending on modality, technique, and treatment site. Simple, standardized locations may improve IVD precision. These findings may aid development of patient-specific tolerances for OSLD-based IVD. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Shul'zhenko, E B; Kozlova, V G; Kurdin, K A; Iarov, A S; Plokhova, V G
1983-01-01
Orthostatic tolerance after 7-day dry immersion and head-to-feet acceleration was investigated on test subjects with and without an antigravity suit of bladderless type. With the suit on, the 20 min tilt test at 70 degrees prior to immersion induced less marked changes than without the suit. When the suit was on, cardiovascular reactions to tilt tests after immersion and acceleration improved. The maximum heart rate decreased from 135 +/- 4 to 101 +/- 5 beats/min (p less than 0.01), minimum stroke volume increased from 29 +/- 2 to 41 +/- 3 ml (p less than 0.05), and pulse pressure grew. Thus, an antigravity suit may help increase initial orthostatic tolerance and maintain it after the combined effect of simulated hypogravity and acceleration.
von Dadelszen, Peter; Ansermino, J Mark; Dumont, Guy; Hofmeyr, G Justus; Magee, Laura A; Mathai, Matthews; Sawchuck, Diane; Teela, Kate; Donnay, France; Roberts, James M
2012-10-01
The hypertensive disorders of pregnancy (HDP; pre-existing hypertension, gestational hypertension, and pre-eclampsia) remain important causes of maternal morbidity and mortality, especially in low- and middle-income countries. The paper summarizes the current state of evidence around possible technologies to support community-based improvements in maternal and perinatal outcomes for women with pre-eclampsia. Through the testing and, where proven, introduction of these technologies, we believe that HDP-related progress toward achieving Millennium Development Goal 5 can best be accelerated. The evidence and discussion are presented under the following headings: (1) prediction; (2) prevention; (3) diagnosis; (4) risk stratification; (5) decision aids; (6) treatment; (7) geographic information systems; (8) communication; and (9) community and patient education. © 2012 International Federation of Gynecology and Obstetrics.
Bone Healing and Hormonal Bioassay in Patients with Long-Bone Fractures and Concomitant Head Injury.
Khallaf, Fathy G; Kehinde, Elijah O; Hussein, Sundus
The aim of this study is to investigate healing of fractures in patients with concomitant head injuries and to measure blood hormone levels to elucidate the mechanism of a possible accelerated osteogenesis. One hundred and sixty-two patients were included in this study and divided into 3 cohorts: group A with head injuries only (n = 52); group B with head injuries as well as long-bone fractures (n = 50); group C with long-bone fractures only (n = 60). Fracture-healing parameters including time of appearance and thickness of the bridging callus, and blood hormonal assays were measured and compared using Student's t test. The mean time to healing was significantly lower in cohort B (6.9 ± 2.9 weeks) than C (22.4 ± 8.7 weeks; p = 0.001). The mean thickness of the healing callus was significantly higher in cohort B (26.3 ± 9.7 mm) than C (8.1 ± 5.9 mm; p = 0.002). The mean healing rate was also higher in cohort B (4.5 ± 2.3 mm/week) than C (0.38 ± 0.21 mm/week; p = 0.001). Blood hormonal assays in group B showed higher values of parathyroid hormone and growth hormone than in group C. However, adrenaline and noradrenaline values were lower in group B than in group C at all measured time intervals, and correspondingly leptin was lower in all groups (p = 0.001). Corticosteroid values were normal in group B compared to slightly higher values in group C, also at all measured time intervals. In this study, healing of fractures in patients with concomitant head injuries was accelerated, thereby indicating an involvement of a combined neurohormonal mechanism. © 2016 S. Karger AG, Basel.
Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.
2008-01-01
The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a highly controlled laboratory environment. This paper focuses on the last element and presents a preliminary methodology for creep rate prediction, the experimental methods, test challenges, and results from benchmark testing of a trial MarM-247 heater head test article. The results compare favorably with the analytical strain predictions. A description of other test findings is provided, and recommendations for future test procedures are suggested. The manuscript concludes with describing the potential impact of the heater head creep life assessment and benchmark testing effort on the ASC program.
Miyashita, Theresa L; Diakogeorgiou, Eleni; Marrie, Kaitlyn
Investigation into the effect of cumulative subconcussive head impacts has yielded various results in the literature, with many supporting a link to neurological deficits. Little research has been conducted on men's lacrosse and associated balance deficits from head impacts. (1) Athletes will commit more errors on the postseason Balance Error Scoring System (BESS) test. (2) There will be a positive correlation to change in BESS scores and head impact exposure data. Prospective longitudinal study. Level 3. Thirty-four Division I men's lacrosse players (age, 19.59 ± 1.42 years) wore helmets instrumented with a sensor to collect head impact exposure data over the course of a competitive season. Players completed a BESS test at the start and end of the competitive season. The number of errors from pre- to postseason increased during the double-leg stance on foam ( P < 0.001), tandem stance on foam ( P = 0.009), total number of errors on a firm surface ( P = 0.042), and total number of errors on a foam surface ( P = 0.007). There were significant correlations only between the total errors on a foam surface and linear acceleration ( P = 0.038, r = 0.36), head injury criteria ( P = 0.024, r = 0.39), and Gadd Severity Index scores ( P = 0.031, r = 0.37). Changes in the total number of errors on a foam surface may be considered a sensitive measure to detect balance deficits associated with cumulative subconcussive head impacts sustained over the course of 1 lacrosse season, as measured by average linear acceleration, head injury criteria, and Gadd Severity Index scores. If there is microtrauma to the vestibular system due to repetitive subconcussive impacts, only an assessment that highly stresses the vestibular system may be able to detect these changes. Cumulative subconcussive impacts may result in neurocognitive dysfunction, including balance deficits, which are associated with an increased risk for injury. The development of a strategy to reduce total number of head impacts may curb the associated sequelae. Incorporation of a modified BESS test, firm surface only, may not be recommended as it may not detect changes due to repetitive impacts over the course of a competitive season.
Devore, Cynthia D; Schutze, Gordon E
2015-05-01
Head lice infestation is associated with limited morbidity but causes a high level of anxiety among parents of school-aged children. Since the 2010 clinical report on head lice was published by the American Academy of Pediatrics, newer medications have been approved for the treatment of head lice. This revised clinical report clarifies current diagnosis and treatment protocols and provides guidance for the management of children with head lice in the school setting. Copyright © 2015 by the American Academy of Pediatrics.
Multileaf collimator characteristics and reliability requirements for IMRT Elekta system.
Liu, Chihray; Simon, Thomas A; Fox, Christopher; Li, Jonathan; Palta, Jatinder R
2008-01-01
Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm.
Schad, L R; Boesecke, R; Schlegel, W; Hartmann, G H; Sturm, V; Strauss, L G; Lorenz, W J
1987-01-01
A treatment planning system for stereotactic convergent beam irradiation of deeply localized brain tumors is reported. The treatment technique consists of several moving field irradiations in noncoplanar planes at a linear accelerator facility. Using collimated narrow beams, a high concentration of dose within small volumes with a dose gradient of 10-15%/mm was obtained. The dose calculation was based on geometrical information of multiplanar CT or magnetic resonance (MR) imaging data. The patient's head was fixed in a stereotactic localization system, which is usable at CT, MR, and positron emission tomography (PET) installations. Special computer programs for correction of the geometrical MR distortions allowed a precise correlation of the different imaging modalities. The therapist can use combinations of CT, MR, and PET data for defining target volume. For instance, the superior soft tissue contrast of MR coupled with the metabolic features of PET may be a useful addition in the radiation treatment planning process. Furthermore, other features such as calculated dose distribution to critical structures can also be transferred from one set of imaging data to another and can be displayed as three-dimensional shaded structures.
McKeague, Ian W; Brown, Alan S; Bao, Yuanyuan; Hinkka-Yli-Salomäki, Susanna; Huttunen, Jukka; Sourander, Andre
2015-05-01
It is not yet definitively known whether dynamic features of head circumference growth are associated with autism. To address this issue, we carried out a nested matched case-control study using data from national well baby clinics in Finland; autism cases were identified from the Finnish Hospital and Outpatient Discharge Registry. A nonparametric Bayesian method was used to construct growth velocity trajectories between birth and 2 years of age in autism cases and matched control subjects (n = 468 in main analyses, 1:1 matched control subjects). Estimates of odds ratios for autism risk in relation to the growth velocities were obtained using conditional logistic regression. Growth velocity of head circumference at 3 months of age, adjusting for gestational age at birth and maternal age, is significantly associated with autism (p = .014); the finding was observed in subjects with comorbid intellectual disability (ID) (p = .025) but not in those without ID (p = .15). Height growth velocity among subjects with autism and without ID is significantly associated with autism at 6 months (p = .007), and weight growth velocity at 18 months without ID (p = .02) and 24 months without ID (p = .042) and with ID (p = .037). Acceleration in head circumference growth is associated with autism with comorbid ID at 3 months but not subsequently. This association is unrelated to acceleration in height and weight, which are not strongly associated with autism until after 6 months. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Siegmund, Gunter P; Sanderson, David J; Myers, Barry S; Inglis, J Timothy
2003-04-01
To examine whether habituation confounds the study of whiplash injury using human subjects, we quantified changes in the magnitude and temporal development of the neck muscle electromyogram and peak linear and angular head/torso kinematics of subjects exposed to sequential whiplash-like perturbations. Forty-four seated subjects (23F, 21M) underwent 11 consecutive forward horizontal perturbations (peak sled acceleration=1.5 g). Electromyographic (EMG) activity was recorded over the sternocleidomastoid (SCM) and cervical paraspinal (PARA) muscles with surface electrodes, and head and torso kinematics were measured using linear and angular accelerometers and a 3D motion analysis system. EMG onset occurred at reflex latencies (67-75 ms in SCM) and did not vary with repeated perturbations. EMG amplitude was significantly attenuated by the second perturbation in PARA muscles and by the third perturbation in SCM muscles. The mean decrement in EMG amplitude between the first trial and the mean of the last five trials was between 41% and 64%. Related kinematic changes ranged from a 21% increase in head extension angle to a 29% decrease in forward acceleration at the forehead, and were also significantly different by the second exposure in some variables. Although a wider range of perturbation intensities and inter-perturbation intervals need to be studied, the significant changes observed in both muscle and kinematic variables by the second perturbation indicated that habituation was a potential confounder of whiplash injury studies using repeated perturbations of human subjects.
Cui, Daping; Zhao, Dewei
2011-03-01
To provide the objective basis for the evaluation of the operative results of vascularized greater trochanter bone flap in treating osteonecrosis of the femoral head (ONFH) by three-dimensional gait analysis. Between March 2006 and March 2007, 35 patients with ONFH were treated with vascularized greater trochanter bone flap, and gait analysis was made by using three-dimensional gait analysis system before operation and at 1, 2 years after operation. There were 23 males and 12 females, aged 21-52 years (mean, 35.2 years), including 8 cases of steroid-induced, 7 cases of traumatic, 6 cases of alcoholic, and 14 cases of idiopathic ONFH. The left side was involved in 15 cases, and right side in 20 cases. According to Association Research Circulation Osseous (ARCO) classification, all patients were diagnosed as having femoral-head necrosis at stage III. Preoperative Harris hip functional score (HHS) was 56.2 +/- 5.6. The disease duration was 1.5-18.6 years (mean, 5.2 years). All incisions healed at stage I without early postoperative complications of deep vein thrombosis and infections of incision. Thirty-five patients were followed up 2-3 years with an average of 2.5 years. At 2 years after operation, the HHS score was 85.8 +/- 4.1, showing significant difference when compared with the preoperative score (t = 23.200, P = 0.000). Before operation, patients showed a hip muscles gait, short gait, reduce pain gait, and the pathological gaits significantly improved at 1 year after operation. At 1 year and 2 years after operation, step frequency, pace, step length and hip flexion, hip extension, knee flexion, ankle flexion were significantly improved (P < 0.01). Acceleration-time curves showed that negative wave and spinous wave at acceleration-stance phase of front feet and hind feet in affected limb were obviously reduced at 1 year and 2 years after operation. Postoperative petronas wave appeared at swing phase; the preoperative situation was three normal phase waves. These results suggest that three-dimensional gait analysis before and after vascularized greater trochanter for ONFH can evaluate precisely hip vitodynamics variation.
Smith, Christine H; Goldman, Ran D
2012-08-01
Head lice infestations continue to be seen frequently in many communities. Some of these children require multiple treatments before eradication. What are the current treatment recommendations for head lice? Head lice (Pediculus humanus capitis) infestations are common, particularly among school-aged children. In order to minimize louse resistance, insecticide usage, and social stigmatization, diagnosis and treatment should be limited to those with live lice on the scalp. Options for management are predominantly topical therapies or physical removal. Large studies comparing the efficacy of these treatments are lacking. Treatment should be repeated in approximately 7 days if topical insecticides are used or every 2 to 3 days for 2 weeks if wet combing is used. Lice resistance patterns vary widely geographically, and resistance is now the most common cause of treatment failure.
Liu, Sheng; Angelaki, Dora E.
2009-01-01
Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631
Modification of Eye Movements and Motion Perception during Off-Vertical Axis Rotation
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Denise, P.; CLement, G.
2006-01-01
Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both torsional and horizontal eye movements as a function of the varying linear acceleration along the lateral plane, and modulation of vertical and vergence eye movements as a function of the varying linear acceleration along the sagittal plane. Previous studies have demonstrated that tilt and translation otolith-ocular responses, as well as motion perception, vary as a function of stimulus frequency during OVAR. The purpose of this study is to examine normative OVAR responses in healthy human subjects, and examine adaptive changes in astronauts following short duration space flight at low (0.125 Hz) and high (0.5 Hz) frequencies. Data was obtained on 24 normative subjects (14 M, 10 F) and 14 (13 M, 1F) astronaut subjects. To date, astronauts have participated in 3 preflight sessions (n=14) and on R+0/1 (n=7), R+2 (n= 13) and R+4 (n= 13) days after landing. Subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography. Perceived motion was evaluated using verbal reports and a two-axis joystick (pitch and roll tilt) mounted on top of a two-axis linear stage (anterior-posterior and medial-lateral translation). Eye responses were obtained in ten of the normative subjects with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias of the responses over several cycles at each stimulus frequency. Eye responses during 0.125 Hz OVAR were dominated by modulation of torsional and vertical eye position, compensatory for tilt relative to gravity. While there is a bias horizontal slow phase velocity (SPV), the modulation of horizontal and vergence SPV is negligible at this lower stimulus frequency. Eye responses during 0.5 Hz OVAR; however, are characterized by modulation of horizontal and vergence SPV, compensatory for translation in the lateral and sagittal planes, respectively. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of the ocular reflexes, on the other hand, shifted towards alignment with the head. During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. In contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. Preliminary results from astronaut data suggest that the ocular responses are not substantially altered by short-duration spaceflight. However, compared to preflight averages, astronauts reported greater amplitude of both perceived tilt and translation at low and high frequency, respectively, during early post-flight testing. We conclude that the neural processing to distinguish tilt and translation linear acceleration stimuli differs between eye movements and motion perception. The results from modifying head-on-trunk position are consistent with the modulation of ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural and naso-occipital head axis. While the tilt and translation ocular reflexes appear to operate in an independent fashion, the timing of perceived tilt and translation influence each other. We conclude that the perceived motion path during linear acceleration in darkness results from a composite representation of tilt and translation inputs from both vestibular and somatosensory systems.
NASA Astrophysics Data System (ADS)
Hasegawa, N.; Koike, F.; Ikarashi, K.; Ishizone, M.; Kawamura, M.; Nakazawa, Y.; Takahashi, A.; Tomita, H.; Iwasaki, H.; Sahashi, M.
2002-05-01
To implement the specular nano-oxide-layer (NOL) spin valve (SV) heads for use in practical applications, it is key to simultaneously achieve a good specular effect of the NOL inserted in the synthetic ferrimagnet pinned layer (i.e., high magnetoresistance MR performance) and a strong pinning field through the NOL. By using CoFe+X as a substance to be subjected to oxidation, we obtained the NOL specular SV films simultaneously achieving a high MR ratio of 17%-18% and a high pinning field of 1100-1500 Oe. Narrow track (0.12 μm) heads were fabricated and they showed a high sensitivity of 10 mV/μm. Several reliability tests were done both at the sheet film level and the actual head level. The oxygen inside NOL was found to be stable up to 350 °C, and pinned layer magnetization canting after orthogonal field annealing was found to be almost the same as today's non-NOL SV films. An electrostatic discharge test and accelerated lifetime test were also performed and NOL specular heads were demonstrated to have almost the same robustness as today's non-NOL heads.
Ash, April; Palmisano, Stephen
2012-01-01
We examined the vection induced by consistent and conflicting multisensory information about self-motion. Observers viewed displays simulating constant-velocity self-motion in depth while physically oscillating their heads left-right or back-forth in time with a metronome. Their tracked head movements were either ignored or incorporated directly into the self-motion display (as an added simulated self-acceleration). When this head oscillation was updated into displays, sensory conflict was generated by simulating oscillation along: (i) an orthogonal axis to the head movement; or (ii) the same axis, but in a non-ecological direction. Simulated head oscillation always produced stronger vection than 'no display oscillation'--even when the axis/direction of this display motion was inconsistent with the physical head motion. When head-and-display oscillation occurred along the same axis: (i) consistent (in-phase) horizontal display oscillation produced stronger vection than conflicting (out-of-phase) horizontal display oscillation; however, (ii) consistent and conflicting depth oscillation conditions did not induce significantly different vection. Overall, orthogonal-axis oscillation was found to produce very similar vection to same-axis oscillation. Thus, we conclude that while vection appears to be very robust to sensory conflict, there are situations where sensory consistency improves vection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, D.; Haryanto, F.; Male, S.
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file ismore » used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.« less
Hoy, Nathan Y; Shapka, Larissa; Rudzinski, Jan; Schuler, Trevor D; Wollin, Timothy A; Bochinski, Derek; De, Shubha K
2016-09-01
The manufacturer for the Storz Modulith SLX-F2 lithotripter recommends treatment head exchange after 1.65 million shocks. However, there is no documentation describing longevity of the treatment head with continued usage. The objective of this study is to determine whether there is a difference in stone fragmentation effectiveness with the treatment head at the beginning versus the end of its treatment life. We conducted a retrospective chart review of 200 patients-50 consecutive patients treated immediately preceding, and following, two separate treatment head exchanges. Primary outcome measures were stone-free rate (no stone), total stone fragmentation (any decrease in size), and fragmentation rate ≤4 mm (decrease in size with largest residual fragment ≤4 mm), based on most recent follow-up imaging post shockwave. There were no baseline characteristic differences between the pre-exchange and postexchange groups with respect to first time lithotripsy for the stone (85% vs. 77%), stone location, preoperative stenting (3% vs. 4%), mean stone density (912 hounsfield units [HU] vs. 840 HU), mean stone size (9.0 mm vs. 8.1 mm), stone location, and mean number of shocks delivered (3105 vs. 3089). Mean time to follow-up was 2.7 weeks in both groups, with most follow-up imaging consisting of a kidney ureter bladder X-ray (87% pre-exchange vs. 85% postexchange). Stone free (34% vs. 27%), total stone fragmentation (76% vs. 76%), fragmentation ≤4 mm (48% vs. 42%), re-treatment rates (38% vs. 51%), and complication rates (6% vs. 7%), were not statistically different between the pre and postexchange groups, respectively. Exchanging the Storz Modulith F2 lithotripter head at the manufacturer recommended 1.65 million shocks does not affect the stone-free or fragmentation rate. If the manufacturer's recommendation for treatment head longevity is based on clinical outcomes, then there is likely room to extend this number without affecting treatment efficacy.
Monte Carlo method for calculating the radiation skyshine produced by electron accelerators
NASA Astrophysics Data System (ADS)
Kong, Chaocheng; Li, Quanfeng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Tang, Chuanxiang; Zhu, Li; Zhang, Hui; Pei, Zhigang; Ming, Shenjin
2005-06-01
Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.
Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients
NASA Astrophysics Data System (ADS)
Grassberger, C.; Lomax, Anthony; Paganetti, H.
2015-01-01
The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low-energy electrons (<0.6 MeV for 230 MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of-field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5 mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations.
Characterizing a Proton Beam Scanning System for Monte Carlo Dose Calculation in Patients
Grassberger, C; Lomax, Tony; Paganetti, H
2015-01-01
The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low–energy electrons (<0.6MeV for 230MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations. PMID:25549079
Head and Neck Cancer: An Overview
Stepnick, David; Gilpin, David
2010-01-01
Ablative surgery for malignancies of the upper aerodigestive tract is the most common reason why the reconstructive surgeon is called upon to reconstruct adult head and neck defects. An understanding of the pathophysiology and treatment of head and neck malignancy is vital to the reconstructive surgeon so that restoration of both form and function can be achieved. It is important to understand the behavior of cancers of each head and neck subsite, as staging and ultimately the treatment of tumors from each subsite is different. Historically, the standard treatment of head and neck cancer was surgery and/or primary radiation therapy with surgical salvage for failure. Beginning in the 1980s, advances in chemotherapy and concurrent delivery with radiation offered new options to standard surgical therapy. Over the past two decades, the concept of organ preservation using chemotherapy together with radiation therapy has been definitively established. Yet, even with the strides made over these two decades with chemoradiation, surgical treatment of head and neck cancer and reconstruction thereof will be an important treatment option for the foreseeable future. Therefore, the relationship between the extirpative and reconstructive surgeon is vital, and a clear understanding of the biology and behavior of head and neck malignancy is crucial to successful patient outcomes. PMID:22550431
The effects of SENSE on PROPELLER imaging.
Chang, Yuchou; Pipe, James G; Karis, John P; Gibbs, Wende N; Zwart, Nicholas R; Schär, Michael
2015-12-01
To study how sensitivity encoding (SENSE) impacts periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) image quality, including signal-to-noise ratio (SNR), robustness to motion, precision of motion estimation, and image quality. Five volunteers were imaged by three sets of scans. A rapid method for generating the g-factor map was proposed and validated via Monte Carlo simulations. Sensitivity maps were extrapolated to increase the area over which SENSE can be performed and therefore enhance the robustness to head motion. The precision of motion estimation of PROPELLER blades that are unfolded with these sensitivity maps was investigated. An interleaved R-factor PROPELLER sequence was used to acquire data with similar amounts of motion with and without SENSE acceleration. Two neuroradiologists independently and blindly compared 214 image pairs. The proposed method of g-factor calculation was similar to that provided by the Monte Carlo methods. Extrapolation and rotation of the sensitivity maps allowed for continued robustness of SENSE unfolding in the presence of motion. SENSE-widened blades improved the precision of rotation and translation estimation. PROPELLER images with a SENSE factor of 3 outperformed the traditional PROPELLER images when reconstructing the same number of blades. SENSE not only accelerates PROPELLER but can also improve robustness and precision of head motion correction, which improves overall image quality even when SNR is lost due to acceleration. The reduction of SNR, as a penalty of acceleration, is characterized by the proposed g-factor method. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dionne, J. P.; Levine, J.; Makris, A.
2018-01-01
To design the next generation of blast mitigation helmets that offer increasing levels of protection against explosive devices, manufacturers must be able to rely on appropriate test methodologies and human surrogates that will differentiate the performance level of various helmet solutions and ensure user safety. Ideally, such test methodologies and associated injury thresholds should be based on widely accepted injury criteria relevant within the context of blast. Unfortunately, even though significant research has taken place over the last decade in the area of blast neurotrauma, there currently exists no agreement in terms of injury mechanisms for blast-induced traumatic brain injury. In absence of such widely accepted test methods and injury criteria, the current study presents a specific blast test methodology focusing on explosive ordnance disposal protective equipment, involving the readily available Hybrid III mannequin, initially developed for the automotive industry. The unlikely applicability of the associated brain injury criteria (based on both linear and rotational head acceleration) is discussed in the context of blast. Test results encompassing a large number of blast configurations and personal protective equipment are presented, emphasizing the possibility to develop useful correlations between blast parameters, such as the scaled distance, and mannequin engineering measurements (head acceleration). Suggestions are put forward for a practical standardized blast testing methodology taking into account limitations in the applicability of acceleration-based injury criteria as well as the inherent variability in blast testing results.
Biosignal-based relaxation evaluation of head-care robot.
Ando, Takeshi; Takeda, Maki; Maruyama, Tomomi; Susuki, Yuto; Hirose, Toshinori; Fujioka, Soichiro; Mizuno, Osamu; Yamada, Kenji; Ohno, Yuko; Yukio, Honda
2013-01-01
Such popular head care procedures as shampooing and scalp massages provide physical and mental relaxation. However, they place a big burden such as chapped hands on beauticians and other practitioners. Based on our robot hand technology, we have been developing a head care robot. In this paper, we quantitatively evaluated its relaxation effect using the following biosignals: accelerated plethymography (SDNN, HF/TP, LF/HF), heart rate (HR), blood pressure, salivary amylase (sAA) and peripheral skin temperature (PST). We compared the relaxation of our developed head care robot with the head care provided by nurses. In our experimental result with 54 subjects, the activity of the autonomic nerve system changed before and after head care procedures performed by both a human nurse and our proposed robot. Especially, in the proposed robot, we confirmed significant differences with the procedure performed by our proposed head care robot in five indexes: HF/TP, LF/HF, HR, sAA, and PST. The activity of the sympathetic nerve system decreased, because the values of its indexes significantly decreased: LF/HF, HR, and sAA. On the other hand, the activity of the parasympathetic nerve system increased, because of the increase of its indexes value: HF/TP and PST. Our developed head care robot provided satisfactory relaxation in just five minutes of use.
Orientation illusions and heart-rate changes during short-radius centrifugation
NASA Technical Reports Server (NTRS)
Hecht, H.; Kavelaars, J.; Cheung, C. C.; Young, L. R.
2001-01-01
Intermittent short-radius centrifugation is a promising countermeasure against the adverse effects of prolonged weightlessness. To assess the feasibility of this countermeasure, we need to understand the disturbing sensory effects that accompany some movements carried out during rotation. We tested 20 subjects who executed yaw and pitch head movements while rotating at constant angular velocity. They were supine with their main body axis perpendicular to earth gravity. The head was placed at the centrifuge's axis of rotation. Head movements produced a transient elevation of heart-rate. All observers reported head-contingent sensations of body tilt although their bodies remained supine. Mostly, the subjective sensations conform to a model based on semicircular canal responses to angular acceleration. However, some surprising deviations from the model were found. Also, large inter-individual differences in direction, magnitude, and quality of the illusory body tilt were observed. The results have implications for subject screening and prediction of subjective tolerance for centrifugation.
Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements
von Laßberg, Christoph; Beykirch, Karl A.; Mohler, Betty J.; Bülthoff, Heinrich H.
2014-01-01
Using state-of-the-art technology, interactions of eye, head and intersegmental body movements were analyzed for the first time during multiple twisting somersaults of high-level gymnasts. With this aim, we used a unique combination of a 16-channel infrared kinemetric system; a three-dimensional video kinemetric system; wireless electromyography; and a specialized wireless sport-video-oculography system, which was able to capture and calculate precise oculomotor data under conditions of rapid multiaxial acceleration. All data were synchronized and integrated in a multimodal software tool for three-dimensional analysis. During specific phases of the recorded movements, a previously unknown eye-head-body interaction was observed. The phenomenon was marked by a prolonged and complete suppression of gaze-stabilizing eye movements, in favor of a tight coupling with the head, spine and joint movements of the gymnasts. Potential reasons for these observations are discussed with regard to earlier findings and integrated within a functional model. PMID:24763143
NASA Astrophysics Data System (ADS)
Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.
2017-11-01
Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the importance of improving awareness regarding the increased risk, arising from repeated exposures.
Molecular biology and immunology of head and neck cancer.
Guo, Theresa; Califano, Joseph A
2015-07-01
In recent years, our knowledge and understanding of head and neck squamous cell carcinoma (HNSCC) has expanded dramatically. New high-throughput sequencing technologies have accelerated these discoveries since the first reports of whole-exome sequencing of HNSCC tumors in 2011. In addition, the discovery of human papillomavirus in relationship with oropharyngeal squamous cell carcinoma has shifted our molecular understanding of the disease. New investigation into the role of immune evasion in HNSCC has also led to potential novel therapies based on immune-specific systemic therapies. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimizing multimodality treatment for head and neck cancer in rural India.
Trivedi, N P; Trivedi, P; Trivedi, H; Trivedi, S; Trivedi, N
2012-01-01
Multimodality treatment of head and neck cancer in rural India is not always feasible due to lack of infrastructure and logistics. To demonstrate the feasibility of multimodality treatment for head and neck cancer in a community setting in rural India. Community cancer center, retrospective review. This article focuses on practice environment in a cancer clinic in rural India. We evaluated patient profile, treatment protocols, infrastructure availability, factors impacting treatment decisions, cost estimations, completion of treatment, and major treatment-related complications for the patient population treated in our clinic for a 2-year period. A total of 230 head and neck cancer patients were treated with curative intent. Infrastructure support included basic operating room facility (cautery machine, suction, drill system, microscope, and anesthesia machine without ventilator support), blood bank, histopathology laboratory, and computerized tomography machine. Radiation therapy (RT) facility was available in a nearby city, about 75 km away. One hundred and fifty-four (67%) patients presented at an advanced stage, with 138 (60%) receiving multimodality treatment. One hundred and eighty-four (80%) patients underwent primary surgery and 167 (73%) received radiotherapy. Two hundred and twelve (92%) patients completed the treatment, 60 (26%) were lost to follow-up at 18-month median follow-up (range 12-26 months), with 112 patients (66%) being alive, disease free. Totally 142 were major head neck surgeries with 25 free flap reconstructions and 41 regional flaps. There were 15 (6%) major post-op complications and two perioperative mortalities. Average cost of treatment for single modality treatment was approximately 40,000 INR and for multimodality treatment was 80,000 INR. This study demonstrates that it is feasible to provide basic multimodality treatment to head and neck cancer patients in the community.
Multiple brain metastases irradiation with Eleka Axesse stereotactic system
NASA Astrophysics Data System (ADS)
Filatov, P. V.; Polovnikov, E. S.; Orlov, K. Yu.; Krutko, A. V.; Kirilova, I. A.; Moskalev, A. V.; Filatova, E. V.; Zheravin, A. A.
2017-09-01
Brain metastases are one of the factors complicating the treatment of a malignant tumor. Radiation therapy, especially radiosurgery, plays an important role in the modern treatment practice. During 2011-2016, 32 patients (from 29 to 67 years old) with multiple brain metastases underwent the treatment with SRS or SRT in our center. The number of secondary lesions varied from 2 to 11. Eight patients underwent microsurgery resection. Seven patients had recurrence after whole brain radiotherapy. Thirty patient underwent single fraction SRS and two patients with large metastases (bigger than 3 cm) underwent fractionated SRT. The treatment was done with dedicated linear accelerator stereotactic system Elekta Axesse (Elekta AB, Stockholm, Sweden). Different stereotactic fixation devices were used, namely, Leksell G frame, non-invasive HeadFIX frame, and reinforced thermoplastic mask (IMRT perforation). All treatments included a volumetric modulated arc therapy (VMAT) technique and of Inage Guided Radiation Therapy (IGRT) technique. All lesions were treated from a single isocenter, which allowed reducing the treatment time and overall dose to the patient's body. All patients suffered the treatment satisfactorily. No adverse reactions or complications were met in any case during or right after the treatment. Different stereotactic fixation devices and modern treatment techniques allowed creating an optimal, safe and comfortable way for patient treatment. The treatment time was from 15 to 50 minutes. Patient position verification after or during the treatment demonstrated good accuracy for all fixation types and low level of intrafraction motion.
Ertl, M; Moser, M; Boegle, R; Conrad, J; Zu Eulenburg, P; Dieterich, M
2017-07-15
The vestibular organ senses linear and rotational acceleration of the head during active and passive motion. These signals are necessary for bipedal locomotion, navigation, the coordination of eye and head movements in 3D space. The temporal dynamics of vestibular processing in cortical structures have hardly been studied in humans, let alone with natural stimulation. The aim was to investigate the cortical vestibular network related to natural otolith stimulation using a hexapod motion platform. We conducted two experiments, 1. to estimate the sources of the vestibular evoked potentials (VestEPs) by means of distributed source localization (n=49), and 2. to reveal modulations of the VestEPs through the underlying acceleration intensity (n=24). For both experiments subjects were accelerated along the main axis (left/right, up/down, fore/aft) while the EEG was recorded. We were able to identify five VestEPs (P1, N1, P2, N2, P3) with latencies between 38 and 461 ms as well as an evoked beta-band response peaking with a latency of 68 ms in all subjects and for all acceleration directions. Source localization gave the cingulate sulcus visual (CSv) area and the opercular-insular region as the main origin of the evoked potentials. No lateralization effects due to handedness could be observed. In the second experiment, area CSv was shown to be integral in the processing of acceleration intensities as sensed by the otolith organs, hinting at its potential role in ego-motion detection. These robust VestEPs could be used to investigate the mechanisms of inter-regional interaction in the natural context of vestibular processing and multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.
Benchmark Calibration Tests Completed for Stirling Convertor Heater Head Life Assessment
NASA Technical Reports Server (NTRS)
Krause, David L.; Halford, Gary R.; Bowman, Randy R.
2005-01-01
A major phase of benchmark testing has been completed at the NASA Glenn Research Center (http://www.nasa.gov/glenn/), where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive experimentation to aid the development of an analytical life-prediction methodology. Two special-purpose test rigs subjected SRG heater-head pressure-vessel test articles to accelerated creep conditions, using the standard design temperatures to stay within the wall material s operating creep-response regime, but increasing wall stresses up to 7 times over the design point. This resulted in well-controlled "ballooning" of the heater-head hot end. The test plan was developed to provide critical input to analytical parameters in a reasonable period of time.
Gaul, Charly; Resch, Sonja
2015-05-01
Treatment of neuropathic or neuralgic head and facial pain due to dental, traumatic or surgical nerve lesions or post-herpetic neuropathy is often challenging. We are reporting on four patients with neuropathic pain syndromes successfully treated with a capsaicin 8% patch in the affected area of the head or face. Treatment with the capsaicin 8% patch seems to be effective and safe for application to the facial and head region. The capsaicin 8% patch might be an additional treatment option if first-line treatment with anticonvulsants or antidepressants was ineffective or limited by side effects. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Menotti, Federica; Labanca, Luciana; Laudani, Luca; Giombini, Arrigo; Pigozzi, Fabio; Macaluso, Andrea
2015-01-01
Driving is associated with high activation of low-back and neck muscles due to the sitting position and perturbations imposed by the vehicle. The aim of this study was to investigate the use of a neck balance system together with a lumbar support on the activation of low-back and neck muscles during driving. Twelve healthy male subjects (age 32±6.71 years) were asked to drive in two conditions: 1) with devices; 2) without devices. During vehicle accelerations and decelerations root mean square (RMS) of surface electromyography (sEMG) was recorded from the erector spinae, semispinalis capitis and sternocleidomastoid muscles and expressed as a percentage of maximal voluntary contraction (MVC). The pitch of the head was obtained by means of an inertial sensor placed on the subjects' head. A visual analog scale (VAS) was used to assess the level of perceived comfort. RMS of the low back muscles was lower with than without devices during both acceleration and deceleration of the vehicle (1.40±0.93% vs 29 2.32±1.90% and 1.88±1.45% vs 2.91±2.33%, respectively), while RMS of neck extensor muscles was reduced only during acceleration (5.18±1.96% vs 5.91±2.16%). There were no differences between the two conditions in RMS of neck flexor muscles, the pitch of the head and the VAS score. The use of these two ergonomic devices is therefore effective in reducing the activation of low-back and neck muscles during driving with no changes in the level of perceived comfort, which is likely due to rebalancing weight on the neck and giving a neutral position to lumbar segments.
Yoganandan, Narayan; Pintar, Frank A; Humm, John R; Maiman, Dennis J; Voo, Liming; Merkle, Andrew
2016-07-01
The purpose of this study was to determine injuries to osteo-ligamentous structures of cervical column, mechanisms, forces, severities and AIS scores from vertical accelerative loading. Seven human cadaver head-neck complexes (56.9 ± 9.5 years) were aligned based on seated the posture of military soldiers. Army combat helmets were used. Specimens were attached to a vertical accelerator to apply caudo-cephalad g-forces. They were accelerated with increasing insults. Intermittent palpation and radiography were done. A roof structure mimicking military vehicle interior was introduced after a series of tests and experiments were conducted following similar protocols. Upon injury detection, CT and dissection were done. Temporal force responses were extracted, peak forces and times of occurrence were obtained, injury severities were graded, and spine stability was determined. Injuries occurred in tests only when the roof structure was included. Responses were tri-phasic: initial thrust, secondary tensile, tertiary roof contact phases. Peak forces: 1364-4382 N, initial thrust, 165-169 N, secondary tensile, 868-3368 N tertiary helmet-head roof contact phases. Times of attainments: 5.3-9.6, 31.7-42.6, 55.0-70.8 ms. Injuries included fractures and joint disruptions. Multiple injuries occurred in all but one specimen. A majority of injury severities were AIS = 2. Spines were considered unstable in a majority of cases. Spine response was tri-phasic. Injuries occurred in roof contact tests with the helmeted head-neck specimen. Multiplicity and unstable nature of AIS = 2 level injuries, albeit at lower severities, might predispose the spine to long-term accelerated degenerative changes. Clinical protocols should include a careful evaluation of sub-catastrophic injuries in military patients.
In vivo evaluation of wearable head impact sensors
Wu, Lyndia C.; Nangia, Vaibhav; Bui, Kevin; Hammoor, Bradley; Kurt, Mehmet; Hernandez, Fidel; Kuo, Calvin; Camarillo, David B.
2015-01-01
Inertial sensors are commonly used to measure human head motion.(R1–3) Some sensors have been tested with dummy or cadaver experiments with mixed results, and methods to evaluate sensors in vivo are lacking. Here we present an in vivo(R3–10) method using high speed video to test teeth-mounted (mouthguard), soft tissue-mounted (skin patch), and headgear-mounted (skull cap) sensors during 6–13g(R1–20) sagittal soccer head impacts. Sensor coupling to the skull (R1–3) was quantified by displacement from an ear-canal reference. Mouthguard displacements were within video measurement error (<1mm), while the skin patch and skull cap displaced up to 4mm and 13mm from the ear-canal reference, respectively. We used the mouthguard, which had the least displacement from skull (R1–5), as the reference to assess 6-degree-of-freedom skin patch and skull cap measurements. Linear and rotational acceleration magnitudes were over-predicted by both the skin patch (with 120% NRMS error for amag, 290% for αmag(R1–6)) and the skull cap (320% NRMS error for amag, 500% for αmag(R1–6)). Such over-predictions were largely due to out-of-plane motion. To model sensor error, we found that in-plane skin patch acceleration peaks in the anterior-posterior direction could be modeled by an underdamped viscoelastic system. In summary, the mouthguard showed tighter skull coupling than the other sensor mounting approaches(R1–7). Furthermore, the in vivo methods presented are valuable for investigating skull acceleration sensor technologies. PMID:26289941
Start-On-The-Part Transient Model for In-Situ Automated Tape Placement of Thermoplastic Composites
NASA Technical Reports Server (NTRS)
Costen, Robert c.; Marchello, Joseph M.
1997-01-01
Fabrication of a complex part by automated tape placement (ATP) can require starting up a new tape-end in the part interior, termed start-on-the-part. Careful thermal management of the starting transient is needed to achieve uniform crystallinity and inter-laminar weld strength - which is the objective of this modeling effort. The transient is modeled by a Fourier-Laplace transform solution of the time-dependent thermal transport equation in two spatial dimensions. The solution is subject to a quasi-steady approximation for the speed and length of the consolidation head. Sample calculations are done for the Langley ATP robot applying PEEK/carbon fiber composite and for two upgrades in robot performance. The head starts out almost at rest which meets an engineering requirement for accurate placement of the new tape-end. The head then rapidly accelerates until it reaches its steady state speed. This rapid acceleration, however, violates the quasi-steady approximation, so uniform weld strength and crystallinity during the starting transient are not actually achieved. The solution does give the elapsed time and distance from start-up to validity of the quasi-steady approximation - which quantifies the length of the non-uniform region. The elapsed time was always less than 0.1 s and the elapsed distance less than 1 cm. This quantification would allow the non-uniform region to be either trimmed away or compensated for in the design of a part. Such compensation would require experiments to measure the degree of non-uniformity, because the solution does not provide this information. The rapid acceleration suggests that the consolidation roller or belt be actively synchronized to avoid abrading the tape.
A Novel Peptide to Treat Oral Mucositis Blocks Endothelial and Epithelial Cell Apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Xiaoyan; Chen Peili; Sonis, Stephen T.
2012-07-01
Purpose: No effective agents currently exist to treat oral mucositis (OM) in patients receiving chemoradiation for the treatment of head-and-neck cancer. We identified a novel 21-amino acid peptide derived from antrum mucosal protein-18 that is cytoprotective, mitogenic, and motogenic in tissue culture and animal models of gastrointestinal epithelial cell injury. We examined whether administration of antrum mucosal protein peptide (AMP-p) could protect against and/or speed recovery from OM. Methods and Materials: OM was induced in established hamster models by a single dose of radiation, fractionated radiation, or fractionated radiation together with cisplatin to simulate conventional treatments of head-and-neck cancer. Results:more » Daily subcutaneous administration of AMP-p reduced the occurrence of ulceration and accelerated mucosal recovery in all three models. A delay in the onset of erythema after irradiation was observed, suggesting that a protective effect exists even before injury to mucosal epithelial cells occurs. To test this hypothesis, the effects of AMP-p on tumor necrosis factor-{alpha}-induced apoptosis were studied in an endothelial cell line (human dermal microvascular endothelial cells) as well as an epithelial cell line (human adult low-calcium, high-temperature keratinocytes; HaCaT) used to model the oral mucosa. AMP-p treatment, either before or after cell monolayers were exposed to tumor necrosis factor-{alpha}, protected against development of apoptosis in both cell types when assessed by annexin V and propidium iodide staining followed by flow cytometry or ligase-mediated polymerase chain reaction. Conclusions: These observations suggest that the ability of AMP-p to attenuate radiation-induced OM could be attributable, at least in part, to its antiapoptotic activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yepes, P; UT MD Anderson Cancer Center, Houston, TX; Titt, U
2016-06-15
Purpose: Evaluate the differences in dose distributions between the proton analytic semi-empirical dose calculation algorithm used in the clinic and Monte Carlo calculations for a sample of 50 head-and-neck (H&N) patients and estimate the potential clinical significance of the differences. Methods: A cohort of 50 H&N patients, treated at the University of Texas Cancer Center with Intensity Modulated Proton Therapy (IMPT), were selected for evaluation of clinical significance of approximations in computed dose distributions. H&N site was selected because of the highly inhomogeneous nature of the anatomy. The Fast Dose Calculator (FDC), a fast track-repeating accelerated Monte Carlo algorithm formore » proton therapy, was utilized for the calculation of dose distributions delivered during treatment plans. Because of its short processing time, FDC allows for the processing of large cohorts of patients. FDC has been validated versus GEANT4, a full Monte Carlo system and measurements in water and for inhomogeneous phantoms. A gamma-index analysis, DVHs, EUDs, and TCP and NTCPs computed using published models were utilized to evaluate the differences between the Treatment Plan System (TPS) and FDC. Results: The Monte Carlo results systematically predict lower dose delivered in the target. The observed differences can be as large as 8 Gy, and should have a clinical impact. Gamma analysis also showed significant differences between both approaches, especially for the target volumes. Conclusion: Monte Carlo calculations with fast algorithms is practical and should be considered for the clinic, at least as a treatment plan verification tool.« less
Namjoshi, Dhananjay R; Cheng, Wai Hang; Carr, Michael; Martens, Kris M; Zareyan, Shahab; Wilkinson, Anna; McInnes, Kurt A; Cripton, Peter A; Wellington, Cheryl L
2016-01-01
Concussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE), a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis. Approximately 20% of CTE cases report a history of substance use including androgenic-anabolic steroids (AAS). How acute, chronic, or historical AAS use may affect the vulnerability of the brain to concussion is unknown. We therefore tested whether antecedent AAS exposure in young, male C57Bl/6 mice affects acute behavioral and neuropathological responses to mild traumatic brain injury (TBI) induced with the CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) platform. Male C57Bl/6 mice received either vehicle or a cocktail of three AAS (testosterone, nandrolone and 17α-methyltestosterone) from 8-16 weeks of age. At the end of the 7th week of treatment, mice underwent two closed-head TBI or sham procedures spaced 24 h apart using CHIMERA. Post-repetitive TBI (rTBI) behavior was assessed for 7 d followed by tissue collection. AAS treatment induced the expected physiological changes including increased body weight, testicular atrophy, aggression and downregulation of brain 5-HT1B receptor expression. rTBI induced behavioral deficits, widespread axonal injury and white matter microgliosis. While AAS treatment did not worsen post-rTBI behavioral changes, AAS-treated mice exhibited significantly exacerbated axonal injury and microgliosis, indicating that AAS exposure can alter neuronal and innate immune responses to concussive TBI.
Namjoshi, Dhananjay R.; Cheng, Wai Hang; Carr, Michael; Martens, Kris M.; Zareyan, Shahab; Wilkinson, Anna; McInnes, Kurt A.; Cripton, Peter A.; Wellington, Cheryl L.
2016-01-01
Concussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE), a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis. Approximately 20% of CTE cases report a history of substance use including androgenic-anabolic steroids (AAS). How acute, chronic, or historical AAS use may affect the vulnerability of the brain to concussion is unknown. We therefore tested whether antecedent AAS exposure in young, male C57Bl/6 mice affects acute behavioral and neuropathological responses to mild traumatic brain injury (TBI) induced with the CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) platform. Male C57Bl/6 mice received either vehicle or a cocktail of three AAS (testosterone, nandrolone and 17α-methyltestosterone) from 8–16 weeks of age. At the end of the 7th week of treatment, mice underwent two closed-head TBI or sham procedures spaced 24 h apart using CHIMERA. Post-repetitive TBI (rTBI) behavior was assessed for 7 d followed by tissue collection. AAS treatment induced the expected physiological changes including increased body weight, testicular atrophy, aggression and downregulation of brain 5-HT1B receptor expression. rTBI induced behavioral deficits, widespread axonal injury and white matter microgliosis. While AAS treatment did not worsen post-rTBI behavioral changes, AAS-treated mice exhibited significantly exacerbated axonal injury and microgliosis, indicating that AAS exposure can alter neuronal and innate immune responses to concussive TBI. PMID:26784694
Dehner, Christoph; Schick, Sylvia; Arand, Markus; Elbel, Martin; Hell, Wolfram; Kramer, Michael
2008-07-01
The objective of this study was to investigate the influence of anthropometric data on the kinematics of the cervical spine and the risk factors for sustaining a neck injury during rear-end collisions occurring in a sled test. A rear-end collision with a velocity change (DeltaV) of 6.3 km/h was simulated in a sled test with eight healthy female subjects. The study analysed the association of anthropometric data with the initial distance between the head and the head restraint, defined kinematic characteristics, the neck injury criterion (NIC) and the neck injury criterion minor (NICmin). The head circumference is negatively associated (r=-0.598) with the initial distance between the head and the head restraint, the maximal head extension (r=-0.687) and the maximal dorsal angular head acceleration (r=-0.633). The body weight (r=0.800), body height (r=0.949) and thorax circumference (r=0.632) are positively associated with the maximal ventral head translation. The neck length correlates positively with the NIC (r=0.826) and negatively with the NICmin (r=-0.797). Anthropometric factors influence the kinematics of the cervical spine and the risk of injury. A high risk of injury may be assumed for individuals with a small head circumference, long neck, tall body height and high body weight.
Head lice in progress: what could/should be done-a report on an in vivo and in vitro field study.
Abdel-Ghaffar, Fathy; Abdel-Aty, Mohammed; Rizk, Ibrahim; Al-Quraishy, Saleh; Semmler, Margit; Gestmann, Falk; Hoff, Norman-Philipp
2016-11-01
Head lice infections are a growing problem in the light of increasing migration of large population as well as the increasing current refugee flows and concomitant poor hygienic conditions. These infections are associated with a significantly reduced quality of life and frequent medical consultations. The approved drugs for the treatment of head lice infections have some disadvantages in the treatment despite their good efficacy. In addition to irritant-toxic substances that can cause adverse reactions in patients, a partial development of resistance has occurred and a double application is necessary to achieve adequate efficacy. For this reason, we have decided to test a product without the aforementioned treatment drawbacks. We examined the effect of Licener® on the head lice treatment through individual therapy trials. We identified 65 patients with head lice infections for the treatment with Licener®. All patients were treated with Licener® and visited for a period of 2 weeks. Successfully treated patients had no relapses. Against the background of this study and based on the observations of our applications, we expect that Licener® could enhance considerably the therapeutic options for the treatment of head lice infections, as an alternative to classical products.
Meister, Laura; Ochsendorf, Falk
2016-11-11
Conflicting information about the proper treatment of head lice has given rise to uncertainty among patients and treating personnel. For example, the reported efficacy of permethrin fell from 97% in the 1990s to 30% in 2010. Review of the literature based on a selective search of PubMed. In Germany, outbreaks of head lice mainly occur among 5- to 13-year-olds returning to school after the summer vacation. Nymphs hatch from eggs after an average of 8 days and become sexually mature lice over the ensuing 9 days. The main route of transmission is direct head-to-head contact; transmission via inanimate objects is of no relevance. Symptoms arise 4-6 weeks after an initial infestation; many affected persons have no symptoms at all. Wet combing is the most sensitive method of establishing the diagnosis and monitoring treatment. Resistance to neurotoxic pediculocidal drugs is increasing around the world. Dimethicones are the treatment of choice, with 97% efficacy. Outbreaks must be managed with the synchronous treatment of all infested persons to break the chain of infestation. If the agent used is not ovicidal, the treatment must be repeated in 8-10 days and sometimes in a further 7 days as well. Outbreaks of head lice can be successfully terminated by synchronous treatment with ovicidal dimethicones.
Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine.
Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F
2005-03-07
IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre of the primary PTV and the approximations present in the dose calculation.
Overgaard, Jens; Hoff, Camilla Molich; Hansen, Hanne Sand; Specht, Lena; Overgaard, Marie; Lassen, Pernille; Andersen, Elo; Johansen, Jørgen; Andersen, Lisbeth Juhler; Evensen, Jan Folkvard; Alsner, Jan; Grau, Cai
2018-04-01
To evaluate if correction of low hemoglobin (Hb) levels by means of darbepoetin alfa improves the outcomes of radiotherapy in patients with squamous cell carcinoma of the head and neck (HNSCC). Patients eligible for primary radiotherapy and who had Hb values below 14.0 g/dl were randomized to receive accelerated fractionated radiotherapy with or without darbepoetin alfa. Patients also received the hypoxic radiosensitizer nimorazole. Darbepoetin alfa was given weekly during radiotherapy or until the Hb value exceeded 15.5 g/dl. Following a planned interim analysis which showed inferiority of the experimental treatment the trial was stopped after inclusion of 522 patients (of a planned intake of 600). Of these, 513 were eligible for analysis (254 patients treated with darbepoetin alfa and 259 patients in the control group). Overall, the patients were distributed according to the stratification parameters (gender, T and N staging, tumor site). Treatment with darbepoetin alfa increased the Hb level to the planned value in 81% of the patients. The compliance was good without excess serious adverse events. The results showed a poorer outcome with a 5-year cumulative loco-regional failure rate of 47% vs. 34%, Hazard Ratio (HR): 1.53 [1.16-2.02], for the darbepoetin alfa vs. control arm, respectively. This was also seen for the endpoints of event-free survival (HR: 1.36 [1.09-1.69]), disease-specific death (HR: 1.43 [1.08-1.90]), and overall survival (HR: 1.30 [1.02-1.64]). There was no enhanced risk of cardio-vascular events observed in the experimental arm or any significant differences in acute or late radiation related morbidity. All univariate analyses were confirmed in a multivariate setting. Correction of the Hb level with darbepoetin alfa during radiotherapy of patients with HNSCC resulted in a significantly poorer tumor control and survival. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tung, Chuan-Jong; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Yu, Pei-Chieh
2010-01-01
During radiotherapy treatments, quality assurance/control is essential, particularly dose delivery to patients. This study was designed to verify midline doses with diode in vivo dosimetry. Dosimetry was studied for 6-MV bilateral fields in head and neck cancer treatments and 10-MV bilateral and anteroposterior/posteroanterior (AP/PA) fields in pelvic cancer treatments. Calibrations with corrections of diodes were performed using plastic water phantoms; 190 and 100 portals were studied for head and neck and pelvis treatments, respectively. Calculations of midline doses were made using the midline transmission, arithmetic mean, and geometric mean algorithms. These midline doses were compared with the treatment planning systemmore » target doses for lateral or AP (PA) portals and paired opposed portals. For head and neck treatments, all 3 algorithms were satisfactory, although the geometric mean algorithm was less accurate and more uncertain. For pelvis treatments, the arithmetic mean algorithm seemed unacceptable, whereas the other algorithms were satisfactory. The random error was reduced by using averaged midline doses of paired opposed portals because the asymmetric effect was averaged out. Considering the simplicity of in vivo dosimetry, the arithmetic mean and geometric mean algorithm should be adopted for head/neck and pelvis treatments, respectively.« less
Anti-cancer effects of curcumin on head and neck cancers.
Gao, Wei; Chan, Jimmy Yu-Wai; Wei, William Ignance; Wong, Thian-Sze
2012-11-01
Head and neck cancer is the sixth large type of cancer in the world. The treatment regimens for head and neck cancer encompass surgery, radiotherapy and chemotherapy. However, all current treatment regimens for head and neck cancer have adverse effects. Therefore, continuing investigations have been undertaken to seek less toxic therapies to reduce treatment morbidity for head and neck cancer. Substantial evidence has demonstrated that curcumin inhibited proliferation, migration, invasion and metastasis and induced apoptosis via modulating multiple signaling pathways in head and neck cancer. Curcumin also suppressed the growth of xenograft derived from head and neck cancer in vivo in animal models. This review summarizes the evidence demonstrating potential use of curcumin as a single chemotherapeutic agent or in combination with other chemotherapeutic agents and radiation to minimize their toxicity in head and neck cancer. Although curcumin has been shown to be safe at doses of 8 g/d in both phase I and phase II clinical trials, its bioavailability is poor. Overcoming the poor bioavailability of curcumin in the near future would facilitate its clinical use.
Of Lice and Math: Using Models to Understand and Control Populations of Head Lice
Laguna, Mara Fabiana; Risau-Gusman, Sebastián
2011-01-01
In this paper we use detailed data about the biology of the head louse (pediculus humanus capitis) to build a model of the evolution of head lice colonies. Using theory and computer simulations, we show that the model can be used to assess the impact of the various strategies usually applied to eradicate head lice, both conscious (treatments) and unconscious (grooming). In the case of treatments, we study the difference in performance that arises when they are applied in systematic and non-systematic ways. Using some reasonable simplifying assumptions (as random mixing of human groups and the same mobility for all life stages of head lice other than eggs) we model the contagion of pediculosis using only one additional parameter. It is shown that this parameter can be tuned to obtain collective infestations whose characteristics are compatible with what is given in the literature on real infestations. We analyze two scenarios: One where group members begin treatment when a similar number of lice are present in each head, and another where there is one individual who starts treatment with a much larger threshold (“superspreader”). For both cases we assess the impact of several collective strategies of treatment. PMID:21799752
Of lice and math: using models to understand and control populations of head lice.
Laguna, María Fabiana; Laguna, Mara Fabiana; Risau-Gusman, Sebastián
2011-01-01
In this paper we use detailed data about the biology of the head louse (pediculus humanus capitis) to build a model of the evolution of head lice colonies. Using theory and computer simulations, we show that the model can be used to assess the impact of the various strategies usually applied to eradicate head lice, both conscious (treatments) and unconscious (grooming). In the case of treatments, we study the difference in performance that arises when they are applied in systematic and non-systematic ways. Using some reasonable simplifying assumptions (as random mixing of human groups and the same mobility for all life stages of head lice other than eggs) we model the contagion of pediculosis using only one additional parameter. It is shown that this parameter can be tuned to obtain collective infestations whose characteristics are compatible with what is given in the literature on real infestations. We analyze two scenarios: One where group members begin treatment when a similar number of lice are present in each head, and another where there is one individual who starts treatment with a much larger threshold ("superspreader"). For both cases we assess the impact of several collective strategies of treatment.
NCAP test improvements with pretensioners and load limiters.
Walz, Marie
2004-03-01
New Car Assessment Program (NCAP) test scores, measured by the United States Department of Transportation's (USDOT) National Highway Traffic Safety Administration (NHTSA), were analyzed in order to assess the benefits of equipping safety belt systems with pretensioners and load limiters. Safety belt pretensioners retract the safety belt almost instantly in a crash to remove excess slack. They tie the occupant to the vehicle's deceleration early during the crash, reducing the peak load experienced by the occupant. Load limiters and other energy management systems allow safety belts to yield in a crash, preventing the shoulder belt from directing too much energy on the chest of the occupant. In NCAP tests, vehicles are crashed into a fixed barrier at 35 mph. During the test, instruments measure the accelerations of the head and chest, as well as the force on the legs of anthropomorphic dummies secured in the vehicle by safety belts. NCAP data from model year 1998 through 2001 cars and light trucks were examined. The combination of pretensioners and load limiters is estimated to reduce Head Injury Criterion (HIC) by 232, chest acceleration by an average of 6.6 g's, and chest deflection (displacement) by 10.6 mm, for drivers and right front passengers. The unit used to measure chest acceleration (g) is defined as a unit of force equal to the force exerted by gravity. All of these reductions are statistically significant. When looked at individually, pretensioners are more effective in reducing HIC scores for both drivers and right front passengers, as well as chest acceleration and chest deflection scores for drivers. Load limiters show greater reductions in chest acceleration and chest deflection scores for right front passengers. By contrast, in make-models for which neither load limiters nor pretensioners have been added, there is little change during 1998 to 2001 in HIC, chest acceleration, or chest deflection values in NCAP tests.
Time-to-Passage Judgments in Nonconstant Optical Flow Fields
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Hecht, Heiko
1995-01-01
The time until an approaching object will pass an observer (time to passage, or TTP) is optically specified by a global flow field even in the absence of local expansion or size cues. Kaiser and Mowafy have demonstrated that observers are in fact sensitive to this global flow information. The present studies investigate two factors that are usually ignored in work related to TTP: (1) non-constant motion functions and (2) concomitant eye rotation. Non-constant velocities violate an assumption of some TTP derivations, and eye rotations may complicate heading extraction. Such factors have practical significance, for example, in the case of a pilot accelerating an aircraft or executing a roll. In our studies, a flow field of constant-sized stars was presented monocularly on a large screen. TIP judgments had to be made on the basis of one target star. The flow field varied in its acceleration pattern and its roll component. Observers did not appear to utilize acceleration information. In particular, TTP with decelerating motion were consistently underestimated. TTP judgments were fairly robust with respect to roll, even when roll axis and track vector were decoupled. However, substantial decoupling between heading and track vector led to a decrement in performance, in both the presence and the absence of roll.
HEAD MOVEMENT DURING WALKING IN THE CAT
ZUBAIR, HUMZA N.; BELOOZEROVA, IRINA N.; SUN, HAI; MARLINSKI, VLADIMIR
2016-01-01
Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20–90°. Nose-up rotation followed head upward translation by another 40–90° delay. The peak-to-peak amplitude of vertical translation was ~1.5 cm and amplitude of pitch rotation was ~3°. Amplitudes of lateral translation and roll rotation were ~1 cm and 1.5–3°, respectively. Overall, cats' heads were neutral in roll and 10–30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5–1 m/s, maximal upward and downward linear velocities were ~0.05 and ~0.1 m/s, respectively, and maximal lateral velocity was ~0.05 m/s. Maximal velocities of head pitch rotation were 20–50 °/s. During walking in light, cats stood 0.3–0.5 cm taller and held their head 0.5–2 cm higher than in darkness. Forward acceleration was 25–100% higher and peak-to-peak amplitude of head pitch oscillations was ~20 °/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role. PMID:27339731
Heading in football. Part 3: Effect of ball properties on head response
Shewchenko, N; Withnall, C; Keown, M; Gittens, R; Dvorak, J
2005-01-01
Objectives: Head impacts from footballs are an essential part of the game but have been implicated in mild and acute neuropsychological impairment. Ball characteristics have been noted in literature to affect the impact response of the head; however, the biomechanics are not well understood. The present study determined whether ball mass, pressure, and construction characteristics help reduce head and neck can impact response. Methods: Head responses under ball impact (6–7 m/s) were measured with a biofidelic numerical human model and controlled human subject trials (n = 3). Three ball masses and four ball pressures were investigated for frontal heading. Further, the effect of ball construction in wet/dry conditions was studied with the numerical model. The dynamic ball characteristics were determined experimentally. Head linear and angular accelerations were measured and compared with injury assessment functions comprising peak values and head impact power. Neck responses were assessed with the numerical model. Results: Ball mass reductions up to 35% resulted in decreased head responses up to 23–35% for the numerical and subject trials. Similar decreases in neck axial and shear responses were observed. Ball pressure reductions of 50% resulted in head and neck response reductions up to 10–31% for the subject trials and numerical model. Head response reductions up to 15% were observed between different ball constructions. The wet condition generally resulted in greater head and neck responses of up to 20%. Conclusion: Ball mass, pressure, and construction can reduce the impact severity to the head and neck. It is foreseeable that the benefits can be extended to players of all ages and skill levels. PMID:16046354
Three dimensional eye movements of squirrel monkeys following postrotatory tilt
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Paige, G. D.; Tomko, D. L.
1993-01-01
Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head out of the horizontal plane (pitch or roll tilt between 15 degrees and 90 degrees) immediately after cessation of motion. Results showed that in addition to post rotatory horizontal nystagmus, vertical nystagmus followed tilts to the left or right (roll), and torsional nystagmus followed forward or backward (pitch) tilts. When the time course and spatial orientation of eye velocity were considered in three dimensions, the axis of eye rotation always shifted toward alignment with gravity, and the postrotatory horizontal VOR decay was accelerated by the tilts. These phenomena may reflect a neural process that resolves the sensory conflict induced by this postrotatory tilt paradigm.
Neurons compute internal models of the physical laws of motion.
Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David
2004-07-29
A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.
NASA Astrophysics Data System (ADS)
Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid
2017-12-01
Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.
1976-05-01
to Review Grants for Clinical Research and Investigation Involving Human Beings, Medical School, The University of Michigan. 3 of biomechanical models...human volunteers in dynamic sled tests found no clinically observable effects. due to acceleration on a subject in which the peak mouth angular...minutes cf rest between trials , and the average fo-ce of each set computed. Figure 2.7 shows typi- cal forcc curves and the EMG signal resulting from
An investigation of accelerator head scatter and output factor in air.
Ding, George X
2004-09-01
Our purpose in this study was to investigate whether the Monte Carlo simulation can accurately predict output factors in air. Secondary goals were to study the head scatter components and investigate the collimator exchange effect. The Monte Carlo code, BEAMnrc, was used in the study. Photon beams of 6 and 18 MV were from a Varian Clinac 2100EX accelerator and the measurements were performed using an ionization chamber in a mini-phantom. The Monte Carlo calculated in air output factors was within 1% of measured values. The simulation provided information of the origin and the magnitude of the collimator exchange effect. It was shown that the collimator backscatter to the beam monitor chamber played a significant role in the beam output factors. However the magnitude of the scattered dose contributions from the collimator at the isocenter is negligible. The maximum scattered dose contribution from the collimators was about 0.15% and 0.4% of the total dose at the isocenter for a 6 and 18 MV beam, respectively. The scattered dose contributions from the flattening filter at the isocenter were about 0.9-3% and 0.2-6% of the total dose for field sizes of 4x4 cm2-40x40 cm2 for the 6 and 18 MV beam, respectively. The study suggests that measurements of head scatter factors be done at large depth well beyond the depth of electron contamination. The insight information may have some implications for developing generalized empirical models to calculate the head scatter.
Goldstein, Lee E.; Fisher, Andrew M.; Tagge, Chad A.; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A.; Upreti, Chirag; Kracht, Jonathan M.; Ericsson, Maria; Wojnarowicz, Mark W.; Goletiani, Cezar J.; Maglakelidze, Giorgi M.; Casey, Noel; Moncaster, Juliet A.; Minaeva, Olga; Moir, Robert D.; Nowinski, Christopher J.; Stern, Robert A.; Cantu, Robert C.; Geiling, James; Blusztajn, Jan K.; Wolozin, Benjamin L.; Ikezu, Tsuneya; Stein, Thor D.; Budson, Andrew E.; Kowall, Neil W.; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F.; Moss, William C.; Cleveland, Robin O.; Tanzi, Rudolph E.; Stanton, Patric K.; McKee, Ann C.
2013-01-01
Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory. PMID:22593173
Goldstein, Lee E; Fisher, Andrew M; Tagge, Chad A; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A; Upreti, Chirag; Kracht, Jonathan M; Ericsson, Maria; Wojnarowicz, Mark W; Goletiani, Cezar J; Maglakelidze, Giorgi M; Casey, Noel; Moncaster, Juliet A; Minaeva, Olga; Moir, Robert D; Nowinski, Christopher J; Stern, Robert A; Cantu, Robert C; Geiling, James; Blusztajn, Jan K; Wolozin, Benjamin L; Ikezu, Tsuneya; Stein, Thor D; Budson, Andrew E; Kowall, Neil W; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F; Moss, William C; Cleveland, Robin O; Tanzi, Rudolph E; Stanton, Patric K; McKee, Ann C
2012-05-16
Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein-linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.
Infantile hemangioma-like vascular lesion in a 26-year-old woman after abortion.
Lu, Yang; Wang, Shu Jun; Li, Xin; Hu, Li; Zhang, Wen Jie; Li, Wei
2014-01-01
A 26-year-old woman (G2P1A1) presented with a 5-week history of multiple red marks on her body after a therapeutic abortion. A physical examination found 15 palpable red marks on her head, neck, chest, arms and legs. Proliferating endothelial cells, which expressed CD31, CD34, von Willebrand factor, but not Glut-1 and merosin, were observed in the lesional area by histopathological analyses. Histocompatibility antigen typing of 2 lesions was identical to a sample from peripheral blood. Accelerated regression was observed in 2 lesions treated by intralesional injection of betamethasone, while spontaneous regression was observed within 9 months in the remaining lesions without any treatment. Rapid growth, spontaneous regression and histological analyses in this case support the diagnosis of 'infantile hemangioma-like vascular lesion'.
NASA Astrophysics Data System (ADS)
Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi
2014-10-01
Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... Exclusive License: Development of Chemopreventive Treatments for Head and Neck Squamous Cell Carcinoma... Squamous Cell Carcinoma'' (HHS Ref. No. E-302-2008/0) to Yissum Research Development Company of the Hebrew...: [email protected] . SUPPLEMENTARY INFORMATION: In head and neck squamous cell carcinoma (HNSCC), a...
Heiser, Clemens; Hofauer, Benedikt; Scherer, Elias; Schukraft, Johannes; Knopf, Andreas
2016-04-01
Smell and taste disorders, sicca symptoms, can be detected in patients with head and neck cancer. The purpose of this study was to assess the utility of local liposomal application in the treatment of patients with head and neck cancers. Ninety-eight patients with head and neck cancer were included in this study. The groups were defined as: group 1 = only surgery; group 2 = surgery + adjuvant radiochemotherapy; and group 3 = primarily radiochemotherapy. All patients had finished cancer treatment and received liposomal sprays for the nose and mouth for 2 months (LipoNasal, LipoSaliva; Optima Pharmaceutical GmbH, Germany) and suffered from taste and smell disorders. We performed tests with "Sniffin' Sticks," "Taste Strips," and a xerostomia questionnaire before and after treatment. After application of liposomes, patients demonstrated a statistically significant increase in smell and taste, and reduced xerostomia. Our results demonstrate that using nonpharmaceutical liposomal sprays improve smell, taste, and symptoms of xerostomia in patients with head and neck cancer. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1232-E1237, 2016. © 2015 Wiley Periodicals, Inc.
Helical tomotherapy to LINAC plan conversion utilizing RayStation Fallback planning.
Zhang, Xin; Penagaricano, Jose; Narayanasamy, Ganesh; Corry, Peter; Liu, TianXiao; Sanjay, Maraboyina; Paudel, Nava; Morrill, Steven
2017-01-01
RaySearch RayStation Fallback (FB) planning module can generate an equivalent backup radiotherapy treatment plan facilitating treatment on other linear accelerators. FB plans were generated from the RayStation FB module by simulating the original plan target and organ at risk (OAR) dose distribution and delivered in various backup linear accelerators. In this study, helical tomotherapy (HT) backup plans used in Varian TrueBeam linear accelerator were generated with the RayStation FB module. About 30 patients, 10 with lung cancer, 10 with head and neck (HN) cancer, and 10 with prostate cancer, who were treated with HT, were included in this study. Intensity-modulated radiotherapy Fallback plans (FB-IMRT) were generated for all patients, and three-dimensional conformal radiotherapy Fallback plans (FB-3D) were only generated for lung cancer patients. Dosimetric comparison study evaluated FB plans based on dose coverage to 95% of the PTV volume (R 95 ), PTV mean dose (D mean ), Paddick's conformity index (CI), and dose homogeneity index (HI). The evaluation results showed that all IMRT plans were statistically comparable between HT and FB-IMRT plans except that PTV HI was worse in prostate, and PTV R 95 and HI were worse in HN multitarget plans for FB-IMRT plans. For 3D lung cancer plans, only the PTV R 95 was statistically comparable between HT and FB-3D plans, PTV D mean was higher, and CI and HI were worse compared to HT plans. The FB plans using a TrueBeam linear accelerator generally offer better OAR sparing compared to HT plans for all the patients. In this study, all cases of FB-IMRT plans and 9/10 cases of FB-3D plans were clinically acceptable without further modification and optimization once the FB plans were generated. However, the statistical differences between HT and FB-IMRT/3D plans might not be of any clinically significant. One FB-3D plan failed to simulate the original plan without further optimization. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan
2015-11-15
Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy ofmore » the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.« less
Yu, Victoria Y; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A; Sheng, Ke
2015-11-01
Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.
Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke
2015-01-01
Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries. PMID:26520735
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppa, V; Pappas, E; Pantelis, E
2015-06-15
Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC datamore » were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research co-financed by the ESF and Greek funds through the Operational Program Education and Lifelong Learning Investing in Knowledge Society of the NSRF. Research Funding Program Aristeia. Nucletron, an Elekta company (Veenendaal, The Netherlands) is gratefully acknowledged for providing Oncentra Brachy v4.4 for research purposes.« less
Particle acceleration, magnetic field generation, and emission in relativistic pair jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, J; Department of Physics and Astronomy, University of Calgary, Calgary, AB; Ploquin, N
2014-08-15
Monte Carlo (MC) simulation is accepted as the most accurate method to predict dose deposition when compared to other methods in radiation treatment planning. Current dose calculation algorithms used for treatment planning can become inaccurate when small radiation fields and tissue inhomogeneities are present. At our centre the Novalis Classic linear accelerator (linac) is used for Stereotactic Radiosurgery (SRS). The first MC model to date of the Novalis Classic linac was developed at our centre using the Geant4 Application for Tomographic Emission (GATE) simulation platform. GATE is relatively new, open source MC software built from CERN's Geometry and Tracking 4more » (Geant4) toolkit. The linac geometry was modeled using manufacturer specifications, as well as in-house measurements of the micro MLC's. Among multiple model parameters, the initial electron beam was adjusted so that calculated depth dose curves agreed with measured values. Simulations were run on the European Grid Infrastructure through GateLab. Simulation time is approximately 8 hours on GateLab for a complete head model simulation to acquire a phase space file. Current results have a majority of points within 3% of the measured dose values for square field sizes ranging from 6×6 mm{sup 2} to 98×98 mm{sup 2} (maximum field size on the Novalis Classic linac) at 100 cm SSD. The x-ray spectrum was determined from the MC data as well. The model provides an investigation into GATE'S capabilities and has the potential to be used as a research tool and an independent dose calculation engine for clinical treatment plans.« less
Pathophysiology and new strategies for the treatment of Legg-Calvé-Perthes disease.
Kim, Harry K W
2012-04-04
Legg-Calvé-Perthes disease is a juvenile form of idiopathic osteonecrosis of the femoral head that can lead to permanent femoral head deformity and premature osteoarthritis. According to two recent multicenter, prospective cohort studies, current nonoperative and operative treatments have modest success rates of producing a good outcome with a spherical femoral head in older children with Legg-Calvé-Perthes disease. Experimental studies have revealed that the immature femoral head is mechanically weakened following ischemic necrosis. Increased bone resorption and delayed new bone formation, in combination with continued mechanical loading of the hip, contribute to the pathogenesis of the femoral head deformity. Biological treatment strategies to improve the healing process by decreasing bone resorption and stimulating bone formation appear promising in nonhuman preclinical studies.