Science.gov

Sample records for accelerator-based atomic physics

  1. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  2. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  3. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  4. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  5. Contemporary Aspects of Atomic Physics

    ERIC Educational Resources Information Center

    Knott, R. G. A.

    1972-01-01

    The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)

  6. Transition state in atomic physics

    NASA Astrophysics Data System (ADS)

    Jaffé, Charles; Farrelly, David; Uzer, T.

    1999-11-01

    The transition state is fundamental to modern theories of reaction dynamics: essentially, the transition state is a structure in phase space that all reactive trajectories must cross. While transition-state theory (TST) has been used mainly in chemical physics, it is possible to apply the theory to considerable advantage in any collision problem that involves some form of reaction. Of special interest are systems in which chaotic scattering or half-scattering occurs such as the ionization of Rydberg atoms in external fields. In this paper the ionization dynamics of a hydrogen atom in crossed electric and magnetic fields are shown to possess a transition state: We compute the periodic orbit dividing surface (PODS) which is found not to be a dividing surface when projected into configuration space. Although the possibility of a PODS occurring in phase space rather than configuration space has been recognized before, to our knowledge this is the first actual example: its origin is traced directly to the presence of velocity-dependent terms in the Hamiltonian. Our findings establish TST as the method of choice for understanding ionization of Rydberg atoms in the presence of velocity-dependent forces. To demonstrate this TST is used to (i) uncover a multiple-scattering mechanism for ionization and (ii) compute ionization rates. In the process we also develop a method of computing surfaces of section that uses periodic orbits to define the surface, and examine the fractal nature of the dynamics.

  7. Bringing Atoms into First-Year Physics.

    ERIC Educational Resources Information Center

    Chabay, Ruth W.; Sherwood, Bruce A.

    1999-01-01

    Argues that thermal physics should not be treated as a separate topic in introductory physics. Provides an example of a course that emphasizes physical modeling of the phenomenon in terms of the atomic nature of matter. (Author/CCM)

  8. Relativistic atomic physics at the SSC

    SciTech Connect

    1990-12-31

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance.

  9. Advances in atomic physics: Four decades of contribution of the Cairo University - Atomic Physics Group.

    PubMed

    El-Sherbini, Tharwat M

    2015-09-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University - Atomic Physics Group. Starting from the late 1960s - when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.

  10. Benchmarking Attosecond Physics with Atomic Hydrogen

    DTIC Science & Technology

    2015-05-25

    Final 3. DATES COVERED (From - To) 12 Mar 12 – 11 Mar 15 4. TITLE AND SUBTITLE Benchmarking attosecond physics with atomic hydrogen 5a...NOTES 14. ABSTRACT The research team obtained uniquely reliable reference data on atomic interactions with intense few-cycle laser pulses...AND SUBTITLE Benchmarking attosecond physics with atomic hydrogen 5a. CONTRACT NUMBER FA2386-12-1-4025 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  11. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    1998-09-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  12. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    2005-11-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  13. Classical approach in atomic physics

    NASA Astrophysics Data System (ADS)

    Solov'ev, E. A.

    2011-12-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincaré section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormgroup symmetry, criterion of accuracy and so on are reviewed as well.

  14. Atomic and Molecular Physics Program

    DTIC Science & Technology

    2013-03-05

    DESCRIPTION OF PORTFOLIO: Understanding interactions between atoms, molecules, ions, and radiation. SUB-AREAS IN PORTFOLIO: • Cold Quantum ...Gases − Strongly-interacting quantum gases − Ultracold molecules − New phases of matter − Non-equilibrium quantum dynamics • Quantum Information...Science (QIS) − Quantum simulation − Quantum communication − Quantum metrology, sensing, and imaging − Cavity optomechanics 3 DISTRIBUTION STATEMENT

  15. The atomic hypothesis: physical consequences

    NASA Astrophysics Data System (ADS)

    Rivas, Martín

    2008-08-01

    The hypothesis that matter is made of some ultimate and indivisible objects, together with the restricted relativity principle, establishes a constraint on the kind of variables we are allowed to use for the variational description of elementary particles. We consider that the atomic hypothesis not only states the indivisibility of elementary particles, but also that these ultimate objects, if not annihilated, cannot be modified by any interaction so that all allowed states of an elementary particle are only kinematical modifications of any one of them. Therefore, an elementary particle cannot have excited states. In this way, the kinematical group of spacetime symmetries not only defines the symmetries of the system, but also the variables in terms of which the mathematical description of the elementary particles can be expressed in either the classical or the quantum mechanical description. When considering the interaction of two Dirac particles, the atomic hypothesis restricts the interaction Lagrangian to a kind of minimal coupling interaction.

  16. Physical Limits on Atomic Resolution

    NASA Astrophysics Data System (ADS)

    van Dyck, D.; van Aert, S.; den Dekker, A. J.

    2004-02-01

    It is shown that the ultimate resolution is not limited by the bandwidth of the microscope but by the bandwidth (i.e., the scattering power) of the object. In the case of a crystal oriented along a zone axis, the scattering is enhanced by the channeling of the electrons. However, if the object is aperiodic along the beam direction, the bandwidth is much more reduced. A particular challenge are the amorphous objects. For amorphous materials, the natural bandwidth is that of the single atom and of the order of 1 [Angstrom capital A, ring][minus sign]1, which can be reached with the present generation of medium voltage microscopes without aberration correctors. A clear distinction is made between resolving a structure and refining, that is, between resolution and precision. In the case of an amorphous structure, the natural bandwidth also puts a limit on the number of atom coordinates that can be refined quantitatively. As a consequence, amorphous structures cannot be determined from one projection, but only by using atomic resolution tomography. Finally a theory of experiment design is presented that can be used to predict the optimal experimental setting or the best instrumental improvement. Using this approach it is suggested that the study of amorphous objects should be done at low accelerating voltage with correction of both spherical and chromatic aberration.

  17. The Atomic and Nuclear Physics of Atomic EDMs

    NASA Astrophysics Data System (ADS)

    Chupp, Timothy

    2016-09-01

    Atomic Electric-Dipole-Moment (EDM) measurements employ low-energy atomic and precision-measurement techniques to measure the effects of elementary particle forces that affect the distribution of charge and mass in the nucleus, which is probed by the atomic electrons. Experiments and their interpretation strongly overlap atomic and nuclear physics in the experimental and theoretical problems presented. On the experimental side, the atomic EDM couples to electric fields while the magnetic dipole moment couples to magnetic fields requiring exquisite control and characerization of the magnetic fields. Measuring the tiny frequency shifts requires clock-comparisons and a large signal-to-noise ratio for frequency resolution much smaller than the linewidths, which are lmitied by observation times. To address the experimental challenges, I will discuss systematic effects related to magnetic fields and techniques of magnetometry and co-magntometery as well as optical pumping and related techniques that enhance signal-to-noise. I will also address the interpretation of atomic EDMs in terms of a set of low-energy parameters that relate to effective-field-theory coefficients, and I will empshaize the need for improved calculations from both atomic-theory and nuclear theory.

  18. 3He: cosmological and atomic physics experiments.

    PubMed

    Bunkov, Yuriy M

    2008-08-28

    Because the superfluid 3He order parameter exhibits many similarities with that of our Universe, the superfluid condensate may be considered as a quantum vacuum that carries various types of quasiparticles and topological defects. The condensate thus provides a test system for the experimental investigation of many general physics problems in cosmology, atomic or nuclear physics that are otherwise difficult or even impossible to investigate experimentally.

  19. Atomic and molecular physics at LURE

    SciTech Connect

    Morin, P. |

    1994-08-01

    A short overview of the present research activity at LURE is given, in the field of atomic and molecular physics. Three selected examples are discussed in more detail and the {open_quotes}SOLEIL{close_quotes} project of a new French synchrotron facility is presented.

  20. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  1. Atomic physics processes in radial transport calculations

    SciTech Connect

    Hogan, J.T.

    1983-02-01

    These lectures were intended as preparation for detailed discussions of the role of atomic and molecular physics in confinement research at the 1982 NATO Advanced Study Institute. They begin with a description of the major approaches to magnetic confinement: tandem (ambipolar) mirrors with their associated auxiliary barriers, tokamaks, and stellarators. The leading alternatives, the ELMO Bumpy Torus and the reversed field pinch, are also treated. The evolution equations for particle, energy, and (where relevant) field diffusion are presented and discussed. This is the context for atomic and molecular processes relevant to confinement.

  2. Many-body physics using cold atoms

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh

    Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin

  3. Cold Atoms, Statistical Physics and Quantum Simulations

    DTIC Science & Technology

    2010-07-22

    to be the development of robust theoretical techniques for the simulations of ultra-cold Bose gases and other quantum phenomena, such theoretical...finite-temperature effects in atom-chip interferometry of Bose -Einstein condensates, R. G. Scott, et al., Physical Review A, 063624 (2009). A copy of...March 2009. Mr Hodder was supported through a University of Otago Scholarship. He initially developed a simple single-site Hubbard model, which can be

  4. Handbook explaining the fundamentals of nuclear and atomic physics

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  5. Atomic physics with vapor-cell clocks

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart Hunter

    The most widely used atomic frequency standards (or clocks) are based on the microwave resonant frequencies of optically pumped vapors of alkali-metal atoms in glass cells filled with buffer gas. These vapor-cell clocks are secondary, not primary frequency standards mainly because of the light and pressure shifts, which alter the resonant frequencies of the alkali-metal atoms. This dissertation presents studies of atomic physics important to vapor-cell clocks and, in particular, their accuracy. First, we report a simple method to suppress the light shift in optical pumping systems. This method uses only frequency modulation of a radio frequency or microwave source, which excites an atomic resonance, to simultaneously lock the source frequency to the atomic resonance and lock the pumping light frequency to suppress the light shift. This technique can be applied to many optical pumping systems that experience light shifts. It is especially useful for atomic clocks because it improves the long-term performance, reduces the influence of a pumping laser, and requires less equipment than previous methods. Next, we present three studies of the pressure shift, starting with an estimation of the hyperfine-shift potential that is responsible for most of the pressure shift. We then show that the microwave resonant frequencies of ground-state Rb and Cs atoms in Xe buffer gas have a relatively large nonlinear dependence on the Xe pressure, presumably because of short-lived RbXe and CsXe van der Waals molecules. The Xe data show striking discrepancies with the previous theory for nonlinear shifts, most of which is eliminated by accounting for the spin-rotation interaction in addition to the hyperfine-shift interaction in the molecules. To the limit of our experimental accuracy, the shifts of Rb and Cs in He, Ne, and N2 were linear with pressure. We then consider the prospects for suppressing the pressure shift with buffer-gas mixtures and feedback. Finally, we report an

  6. Atomic physics at the advanced photon source

    SciTech Connect

    Berry, H.G.; Cowan, P.L.; Gemmell, D.S.

    1995-08-01

    Argonne`s 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons.

  7. Astronomy-inspired Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Rau, A. R. P.

    2002-02-01

    Aimed at senior undergraduate and first-year graduate students in departments of physics and astronomy, this textbook gives a systematic treatment of atomic and molecular structure and spectra, together with the effect of weak and strong external electromagnetic fields. Topics chosen are those of interest in astronomy and indeed many were inspired by specific astronomical contexts. Examples include the negative ion of hydrogen and the effects of strong magnetic fields such as those occurring on certain white dwarfs and neutron stars. Adiabatic and non-adiabatic handling of electron correlations and application to processes such as dielectronic recombination are included. Astronomical examples are provided throughout as well as end-of-the chapter problems and exercises. Over seventy illustrative diagrams complete this unique and comprehensive volume. Link: http://www.wkap.nl/prod/b/1-4020-0467-2

  8. Atomic physics and quantum optics using superconducting circuits.

    PubMed

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  9. Atomic physics and non-equilibrium plasmas

    SciTech Connect

    Weisheit, J.C.

    1986-04-25

    Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs.

  10. Optical physics: Ultrashort light pulses shake atoms

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Taec

    2016-02-01

    The response of electrons in atoms to ultrashort optical light pulses has been probed by measuring the ultraviolet light emitted by the atoms. This reveals that a finite time delay occurs before the response. See Letter p.66

  11. Experiments in atomic and applied physics using synchrotron radiation

    SciTech Connect

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs.

  12. Quantum dynamics in ultracold atomic physics

    NASA Astrophysics Data System (ADS)

    He, Qiong-Yi; Reid, Margaret D.; Opanchuk, Bogdan; Polkinghorne, Rodney; Rosales-Zárate, Laura E. C.; Drummond, Peter D.

    2012-02-01

    We review recent developments in the theory of quantum dynamics in ultracold atomic physics, including exact techniques and methods based on phase-space mappings that are applicable when the complexity becomes exponentially large. Phase-space representations include the truncated Wigner, positive- P and general Gaussian operator representations which can treat both bosons and fermions. These phase-space methods include both traditional approaches using a phase-space of classical dimension, and more recent methods that use a non-classical phase-space of increased dimensionality. Examples used include quantum Einstein-Podolsky-Rosen (EPR) entanglement of a four-mode BEC, time-reversal tests of dephasing in single-mode traps, BEC quantum collisions with up to 106 modes and 105 interacting particles, quantum interferometry in a multi-mode trap with nonlinear absorption, and the theory of quantum entropy in phase-space. We also treat the approach of variational optimization of the sampling error, giving an elementary example of a nonlinear oscillator.

  13. Project Physics Text 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Basic atomic theories are presented in this fifth unit of the Project Physics text for use by senior high students. Chemical basis of atomic models in the early years of the 18th Century is discussed n connection with Dalton's theory, atomic properties, and periodic tables. The discovery of electrons is described by using cathode rays, Millikan's…

  14. GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS THE WHITE DOME STRUCTURE. THE SHED-LIKE STRUCTURE TO THE LEFT IS THE SEARCH-LIGHT BUILDING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Atomic Physics Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  15. Accelerator Based Tools of Stockpile Stewardship

    NASA Astrophysics Data System (ADS)

    Seestrom, Susan

    2017-01-01

    The Manhattan Project had to solve difficult challenges in physics and materials science. During the cold war a large nuclear stockpile was developed. In both cases, the approach was largely empirical. Today that stockpile must be certified without nuclear testing, a task that becomes more difficult as the stockpile ages. I will discuss the role of modern accelerator based experiments, such as x-ray radiography, proton radiography, neutron and nuclear physics experiments, in stockpile stewardship. These new tools provide data of exceptional sensitivity and are answering questions about the stockpile, improving our scientific understanding, and providing validation for the computer simulations that are relied upon to certify todays' stockpile.

  16. Atomic Physics, Science (Experimental): 5318.42.

    ERIC Educational Resources Information Center

    Petit, Ralph E.

    Presented is the study of modern and classical concepts of the atom; the structure of the atom as a mass-energy relationship; practical uses of radioactivity; isotopes; and the strange particles. Performance objectives (16) are included as well as a detailed course outline. Experiments, demonstrations, projects and reports to enhance student…

  17. Atomic physics experiments with stored cooled heavy ion beams

    SciTech Connect

    Datz, S.

    1986-01-01

    The wide ranging interest in the development of heavy ion synchrotrons with electron beam cooling is evident from the number of projects presently under way. Although much of the initial motivation for these rings stemmed from nuclear and particle physics, a considerable amount of atomic physics experimentation is planned. This paper surveys some of the new opportunities in atomic physics which may be made available with storage ring systems. 25 refs., 3 tabs.

  18. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  19. Atomic physics: A milestone in quantum computing

    NASA Astrophysics Data System (ADS)

    Bartlett, Stephen D.

    2016-08-01

    Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63

  20. Strong interaction physics from hadronic atoms

    NASA Astrophysics Data System (ADS)

    Batty, C. J.; Friedman, E.; Gal, A.

    1997-08-01

    Hadronic atoms provide a unique laboratory for studying strong interactions and nuclear medium effects at zero kinetic energy. Previous results from analyses of strong-interaction data consisting of level shifts, widths and yields in π-, K -, p¯ and ∑ - atoms are reviewed. Recent results from fits to comprehensive sets of data in terms of density-dependent optical potentials that respect the low-density limit, where the interaction tends to the free hadron nucleon value, are discussed. The importance of using realistic nuclear density distributions is highlighted. The introduction of density dependence in most cases significantly improves the fit to the data and leads to some novel results. For K - atoms, a substantial attraction of order 200 MeV in nuclear matter is suggested, with interesting repercussions for K¯ condensation and the evolution of strangeness in high-density stars. For p¯ atoms it is found that a reasonable p-wave strength can be accommodated in the fitted optical potential, in agreement with the energy dependence observed for some low-energy p¯N reactions. For ∑ - atoms, the fitted potential becomes repulsive inside the nucleus, implying that Σ hyperons generally do not bind in nuclei in agreement with recent measurements. This repulsion significantly affects calculated masses of neutron stars.

  1. Atomic physics with highly charged ions

    SciTech Connect

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  2. Project Physics Tests 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  3. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,…

  4. NASA GSFC Science Symposium on Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K. (Editor)

    2007-01-01

    This document is the proceedings of a conference on atomic and molecular physics in honor of the retirements of Dr. Aaron Temkin and Dr. Richard Drachman. The conference contained discussions on electron, positron, atomic, and positronium physics, as well as a discussion on muon catalyzed fusion. This proceedings document also contains photographs taken at the symposium, as well as speeches and a short biography made in tribute to the retirees.

  5. Research in Dense Plasma Atomic Physics.

    DTIC Science & Technology

    1984-04-19

    attention on * the solution to the time-independent Schrodinger equation with a self- consistent charge density. For calculations of atomic properties the...interaction potential. Incorporating this potential, the bound and free electron distributions are found from the Schrodinger equation . Thus, given an...spherically symmetric. In Eq. (1), .b is the local density of bound electrons found from solving * the Schrodinger equation where the interaction

  6. Physics Division progress report for period ending September 30, 1983

    SciTech Connect

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  7. Accelerator-based Experiments For Introductory-level Undergraduates

    SciTech Connect

    Sanders, Justin M.

    2009-03-10

    Although accelerator based experiments for undergraduates are often considered only for junior or senior physics majors, introductory students can also benefit from them. Rutherford backscattering and a {sup 12}C(p,p){sup 12}C elastic scattering resonance can be presented in ways that are well-suited for students who have taken only an introductory physics course.

  8. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  9. The Common Elements of Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  10. Majorana: From Atomic and Molecular, to Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Pucci, R.; Angilella, G. G. N.

    2006-10-01

    In the centennial of Ettore Majorana's birth (1906-1938?), we re-examine some aspects of his fundamental scientific production in atomic and molecular physics, including a not well known short communication. There, Majorana critically discusses Fermi's solution of the celebrated Thomas-Fermi equation for electron screening in atoms and positive ions. We argue that some of Majorana's seminal contributions in molecular physics already prelude to the idea of exchange interactions (or Heisenberg-Majorana forces) in his later workson theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at the basis of a physical problem, as well as the limitations, rather than the advantages, of the approximations of the method employed.

  11. Bringing atomic and nuclear physics laboratory data into the classroom

    SciTech Connect

    Norman, Eric B.; Larimer, Ruth-Mary; Rech, Gregory; Lee, Jeffrey; Vue, Chue; Leubane, Tholoana; Zamvil, Kenneth; Guthrie, Laura

    2003-05-27

    To illustrate a number of basic concepts in atomic and nuclear physics, we have developed three websites where students can analyze data from modern laboratories. By working through the on-line procedures, students will become acquainted with characteristic x-ray spectra, the concept of half-life, x-ray fluorescence, and neutron activation analysis.

  12. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 3, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) NUCLEAR BINDING ENERGY, (2) DISCOVERY OF RADIOACTIVITY, (3) RADIOACTIVE RADIATIONS, (4) ALPHA AND BETA DECAY, (5) BETA DECAY REACTIONS, (6) RADIOACTIVE DATING AND…

  13. Project Physics Reader 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    As a supplement to Project Physics Unit 5, a collection of articles is presented in this reader for student browsing. Nine excerpts are given under the following headings: failure and success, Einstein, Mr. Tompkins and simultaneity, parable of the surveyors, outside and inside the elevator, the teacher and the Bohr theory of atom, Dirac and Born,…

  14. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  15. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  16. Atomic physics with highly charged ions. Progress report

    SciTech Connect

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  17. Strong field atomic physics in the mid-infrared

    SciTech Connect

    Sheehy, B; Martin, J D D; Clatterbuck, T O; Kim, D W; DiMauro, L F; Agostini, P; Schafer, K J; Gaarde, M B; Kulander, K C

    2000-03-15

    We examine strong field atomic physics in a wavelength region (3-4 microns) where very little work has previously been done. The soft photon energy allows the exploration of one-electron atoms with low binding energies (alkali metals). We find that photoionization spectra differ from rare gas studies at shorter wavelengths due to more complex ion core potentials. Harmonic generation is studied, and we find that harmonic bandwidths are consistent with theory and the possibility of compression to pulse widths much shorter than that of the driving pulse. Harmonic yields in the visible and W are sufficient for a complete study of their amplitude and phase characteristics.

  18. Essay: Fifty years of atomic, molecular and optical physics in Physical Review Letters.

    PubMed

    Haroche, Serge

    2008-10-17

    The fiftieth anniversary of Physical Review Letters is a good opportunity to review the extraordinary progress of atomic, molecular, and optical physics reported in this journal during the past half-century. As both a witness and an actor of this story, I recall personal experiences and reflect about the past, present, and possible future of my field of research.

  19. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    SciTech Connect

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    1988-12-01

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.

  20. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  1. Detectors for Accelerator-Based Security Applications

    NASA Astrophysics Data System (ADS)

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    We present a review of detector systems used in accelerator-based security applications. The applications discussed span stockpile stewardship, material interdiction, treaty verification, and spent nuclear fuel assay. The challenge for detectors in accelerator-based applications is the separation of the desired signal from the background, frequently during high input count rates. Typical techniques to address the background challenge include shielding, timing, selection of sensitive materials, and choice of accelerator.

  2. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  3. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  4. ITER core imaging X-ray spectroscopy: Atomic physics issues

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Clementson, J.; Widmann, K.; Bitter, M.; Hill, K. W.; Johnson, D.; Barnsley, R.; Chung, H. K.; Safronova, U. I.

    2017-03-01

    The Core Imaging X-Ray Spectrometer (CIXS) will be employed for measurements of the ion temperature and of the toroidal rotation velocity, Ti and vϕ, respectively, as a function of the radius of ITER plasmas. The diagnostic is based on precision determinations of the Doppler broadening, centroid shift, and intensity of the lines of highly ionized heavy impurities using a curved Bragg crystal spectral disperser and imager. The ions under consideration for the diagnostic are those of tungsten, krypton, xenon, iron, and argon. A detailed discussion is given of the need for atomic physics experiments and calculations involving the primary diagnostic lines and their collisional and dielectronic satellites. Such experiments and calculations define the instrument parameters, determine the diagnostic uncertainties, and provide paths for extending the diagnostic capabilities to measure impurity concentrations, electron temperature, and ion transport parameters. Enabling the diagnostic to measure radially dependent ion transport coefficients, in particular, requires a large amount of high-quality atomic data in the form of reliable excitation, ionization, and recombination rate coefficients as well as ionization balance calculations which make use of these data. Because core imaging spectrometers are being developed and implemented on present-day magnetic fusion devices, much of the atomic data are already needed and can be tested in the analysis of existing spectra recorded by these diagnostics.

  5. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  6. Atomic, Molecular, and Optical Physics Workshop Final Report

    SciTech Connect

    Armstrong, Jr., Lloyd

    1997-09-21

    This document contains the final reports from the five panels that comprised a Workshop held to explore future directions, scientific impacts and technological connections of research in Atomic, Molecular and Optical Physics. This workshop was sponsored by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and was held at the Westfields International Conference Center in Chantilly, Virginia on September 21-24, 1997. The workshop was chaired by Lloyd Armstrong, Jr., University of Southern California and the five panels focused on the following topics: Panel A: Interactions of Atoms and Molecules with Photons - Low Field Daniel Kleppner (Massachusetts Institute of Technology), chair Panel B: Interactions of Atoms and Molecules with Photons - High Field Phil Bucksbaum (University of Michigan), chair Panel C: Surface Interactions with Photons, Electrons, Ions, Atoms and Molecules J. Wayne Rabalais (University of Houston), chair Panel D: Theory of Structure and Dynamics Chris Greene (University of Colorado), chair Panel E: Nano- and Mesocopic Structures Paul Alivisatos (Lawrence Berkeley National Laboratory), chair The choice of focus areas reflects areas of significant interest to DOE/BES but is clearly not intended to span all fields encompassed by the designation of atomic, molecular and optical physics, nor even all areas that would be considered for review and funding under DOE’s AMOP program. In a similar vein, not all research that might be suggested under these topics in this report would be appropriate for consideration by DOE’s AMOP program. The workshop format included overview presentations from each of the panel chairs, followed by an intensive series of panel discussion sessions held over a two-day period. The panels were comprised of scientists from the U. S. and abroad, many of whom are not supported by DOE’s AMOP Program. This workshop was held in lieu of the customary “Contractors Meeting” held annually for

  7. The Physical Conditions of Atomic Gas at High Redshift

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel

    In this thesis we provide insight into the chemical composition, physical conditions and cosmic distribution of atomic gas at high redshift. We study this gas in absorption against bright background quasars in absorption systems known as Damped Ly-alpha Systems (DLAs). These systems contain the bulk of the atomic gas at high redshift and are the likely progenitors of modern-day galaxies. In Chapter 2, we find that the atomic gas in DLAs obeys a mass-metallicity relationship that is similar to the mass-metallicity relationship seen in star-forming galaxies. The evolution of this relationship is linear with redshift, allowing for a planar equation to accurately describe this evolution, which provides a more stringent constraint on simulations modeling DLAs. Furthermore, the concomitant evolution of the mass-metallicity relationship of atomic gas and star-forming galaxies suggests an intimate link between the two. We next use a novel way to measure the physical conditions of the gas by using fine-structure line ratios of singly ionized carbon and silicon. By measuring the density of the upper and lower level states, we are able to determine the temperature, hydrogen density and electron density of the gas. We find that the conditions present in this high redshift gas are consistent with the conditions we see in the local interstellar medium (ISM). A few absorbers have higher than expected pressure, which suggests that they probe the ISM of star-forming galaxies. Finally in Chapter 4, we measure the cosmic neutral hydrogen density at redshifts below 1.6. Below this redshift, the Ly-alpha line of hydrogen is absorbed by the atmosphere, making detection difficult. Using the archive of the Hubble Space Telescope, we compile a comprehensive list of quasars for a search of DLAs at redshift below 1.6. We find that the incidence rate of DLAs and the cosmic neutral hydrogen density is smaller than previously measured, but consistent with the values both locally and at

  8. Intense and exciting: current and future accelerator-based measurements of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Whitehead, Lisa

    2017-01-01

    Accelerator-based experiments have been crucial in our understanding of neutrino oscillations. In this talk, I will give an overview of current accelerator-based neutrino oscillation experiments, which have observed electron neutrino appearance and made precision measurements of the parameters governing muon neutrino disappearance. I will discuss what the current set of experiments can contribute to the remaining questions in neutrino oscillation physics, including measuring the CP violating phase, determining the mass hierarchy, resolving the θ23 octant, and searching for sterile neutrinos. Finally, I will describe the plans and physics goals for future accelerator-based neutrino experiments.

  9. Davisson-Germer Prize in Atomic or Surface Physics Lecture: Exploring Flatland with Cold Atoms

    NASA Astrophysics Data System (ADS)

    Dalibard, Jean

    2012-06-01

    A two-dimensional Bose fluid is a remarkably rich many-body system, which allows one to revisit several features of quantum statistical physics. Firstly, the role of thermal fluctuations is enhanced compared to the 3D case, which destroys the ordered state associated with Bose-Einstein condensation. However interactions between particles can still cause a superfluid transition, thanks to the Berezinskii-Kosterlitz-Thouless mechanism. Secondly, a weakly interacting Bose fluid in 2D must be scale-invariant, a remarkable feature that manifests itself in the very simple form taken by the equation of state of the fluid. In this talk I will present recent experimental progress in the investigation of 2D atomic gases, which provide a nice illustration of the main features of low dimensional many-body physics.

  10. Atom optics and space physics: A summary of an 'Enrico Fermi' summer school

    NASA Astrophysics Data System (ADS)

    Arimondo, Ennio; Ertmer, Wolfgang; Rasel, Ernst M.; Schleich, Wolfgang P.

    2008-03-01

    We describe the scientific content of the International School of Physics 'Enrico Fermi' on atom optics and space physics, organized by the Italian Physical Society in Varenna at Lake Como, Italy, 2-13 July 2007.

  11. Probing non-Hermitian physics with flying atoms

    NASA Astrophysics Data System (ADS)

    Wen, Jianming; Xiao, Yanhong; Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Jiang, Liang

    2016-05-01

    Non-Hermtian optical systems with parity-time (PT) symmetry provide new means for light manipulation and control. To date, most of experimental demonstrations on PT symmetry rely on advanced nanotechnologies and sophisticated fabrication techniques to manmade solid-state materials. Here, we report the first experimental realization of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, we observe essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold. Moreover, our system allows nonlocal interference of two spatially-separated fields as well as anti-PT assisted four-wave mixing. Besides, another intriguing feature offered by the system is refractionless (or unit-refraction) light propagation. Our results thus represent a significant advance in non-Hermitian physics by bridging a firm connection with the AMO field, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry can be anticipated.

  12. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  13. The Los Alamos suite of relativistic atomic physics codes

    SciTech Connect

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.

  14. Efimov Physics in a 6Li-133Cs Atomic Mixture

    NASA Astrophysics Data System (ADS)

    Johansen, Jacob; Feng, Lei; Parker, Colin; Chin, Cheng; Wang, Yujun

    2015-05-01

    We investigate Efimov physics based on three-body recombination in an atomic mixture of 6Li and 133Cs in the vicinity of interspecies Feshbach resonances at 843 and 889 G. This allows us to compare the loss spectra near different resonances and test the universality of Efimov states. Theoretically the Efimov spectrum near 889 G is expected to be similar to that near 843 G, except that the first resonance is absent near the former Feshbach resonance. This is due to the difference in the Cs-Cs scattering length near the two resonances: At 843 G it is negative, whereas at 889 G it is positive. Although it is primarily the Li-Cs interactions that lead to Efimov resonances, the Cs-Cs scattering length is expected to influence the spectrum. This work is supported by NSF and Chicago MRSEC.

  15. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  16. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  17. PHYSICS OF POLARIZED SCATTERING AT MULTI-LEVEL ATOMIC SYSTEMS

    SciTech Connect

    Stenflo, J. O.

    2015-03-01

    The symmetric peak observed in linear polarization in the core of the solar sodium D{sub 1} line at 5896 Å has remained enigmatic since its discovery nearly two decades ago. One reason is that the theory of polarized scattering has not been experimentally tested for multi-level atomic systems in the relevant parameter domains, although the theory is continually being used for the interpretation of astrophysical observations. A laboratory experiment that was set up a decade ago to find out whether the D{sub 1} enigma is a problem of solar physics or quantum physics revealed that the D{sub 1} system has a rich polarization structure in situations where standard scattering theory predicts zero polarization, even when optical pumping of the m state populations of the hyperfine-split ground state is accounted for. Here we show that the laboratory results can be modeled in great quantitative detail if the theory is extended to include the coherences in both the initial and final states of the scattering process. Radiative couplings between the allowed dipole transitions generate coherences in the initial state. Corresponding coherences in the final state are then demanded by a phase closure selection rule. The experimental results for the well understood D{sub 2} line are used to constrain the two free parameters of the experiment, collision rate and optical depth, to suppress the need for free parameters when fitting the D{sub 1} results.

  18. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 1, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    AUTOINSTRUCTIONAL MATERIALS WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY OF THE SELF-TUTORING APPROACH IN EDUCATION. THE MATERIALS COVER SECTIONS ON (1) THE ATOM, (2) ATOMIC PARTICLES, (3) CATHODE RAYS, (4) MEASURING THE ELECTRON, (5) CHARGE AND MASS OF THE ELECTRON, AND (6) MASS OF ATOMS. RELATED REPORTS ARE ED 003 205 THROUGH ED 003 207, ED…

  19. Atomic physics in the quest for fusion energy and ITER

    NASA Astrophysics Data System (ADS)

    Skinner, Charles H.

    2009-05-01

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of the international thermonuclear experimental reactor (ITER). Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This paper will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data are needed.

  20. Difference-frequency combs in cold atom physics

    NASA Astrophysics Data System (ADS)

    Kliese, Russell; Hoghooghi, Nazanin; Puppe, Thomas; Rohde, Felix; Sell, Alexander; Zach, Armin; Leisching, Patrick; Kaenders, Wilhelm; Keegan, Niamh C.; Bounds, Alistair D.; Bridge, Elizabeth M.; Leonard, Jack; Adams, Charles S.; Cornish, Simon L.; Jones, Matthew P. A.

    2016-12-01

    Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow optical frequencies to be measured with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency, f ceo, and the pulse repetition-rate, f rep. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates f ceo by design — specifically tailored for applications in cold atom physics. An f ceo-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fibre technology allow the generation of multiple wavelength outputs. The DFG comb is a convenient tool to both stabilise laser sources and accurately measure optical frequencies in Rydberg experiments and more generally in quantum optics. In this paper we discuss the frequency comb design, characterization, and optical frequency measurement of Strontium Rydberg states. The DFG technique allows for a compact and robust, passively f ceo stable frequency comb significantly improving reliability in practical applications.

  1. The SPARC linear accelerator based terahertz source

    SciTech Connect

    Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Gatti, G.; Pace, E.; Rossi, A. R.; Vaccarezza, C.; Catani, L.; Cianchi, A.; Marchetti, B.; Mostacci, A.; Palumbo, L.; Ronsivalle, C.; and others

    2013-03-04

    Ultra-short electron beams, produced through the velocity bunching compression technique, are used to drive the SPARC linear accelerator based source, which relies on the emission of coherent transition radiation in the terahertz range. This paper reports on the main features of this radiation, as terahertz source, with spectral coverage up to 5 THz and pulse duration down to 200 fs, with an energy per pulse of the order of several micro-joule, and as electron beam longitudinal diagnostics.

  2. Sterile Neutrino Experiments I: Accelerator-based

    NASA Astrophysics Data System (ADS)

    Toups, Matthew

    2017-01-01

    The Standard Model is the theory that describes the fundamental constituents of matter and their interactions. Despite its great success, there still exists evidence for a wide range of phenomena, which lie outside the framework of the Standard Model. Among these, neutrino flavor oscillations hold great promise to bring insight to the field towards a theory that transcends the Standard Model. The discovery of light, sterile neutrinos that mix with the three active neutrino flavors and modify the standard three-neutrino oscillation probabilities in vacuum and matter would be a major breakthrough for the field and contribute to our overall understanding of neutrino mass and mixing. Current indications for light sterile neutrinos come from a variety of experiments reporting anomalies. The accelerator-based LSND and MiniBooNE experiments, for example, reported an excess of electron-type neutrinos over short baselines, which if interpreted as due to νμ ->νe (or νμ ->νe) oscillations, would imply the existence of a fourth light neutrino mass state. On the other hand, null results from other accelerator-based neutrino oscillation experiments searching for sterile neutrinos have put constraints on the possible existence of these particles. This talk will review the accelerator-based searches for light, sterile neutrinos as well as the prospects for confirming or refuting their existence in the coming years.

  3. Turbulence and atomic physics in magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Marandet, Y.; Bufferand, H.; Ciraolo, G.; Nace, N.; Serre, E.; Tamain, P.; Valentinuzzi, M.

    2017-03-01

    An overview of issues related to the interplay between atomic process and turbulence in the peripheral regions of magnetically confined fusion devices is presented. Both atomic processes and turbulence play key roles for fusion, but have most of the time been treated separately. The effects of fluctuations on the time averaged ionization balance, on the transport of neutral particles (atoms and molecules) are discussed, using stochastic models to generate fluctuations with statistically relevant properties. Then applications to optical diagnostics of turbulence, namely gas puff imaging and beam emission spectroscopy are discussed.

  4. Ultimate statistical physics: fluorescence of a single atom

    NASA Astrophysics Data System (ADS)

    Pomeau, Yves; Le Berre, Martine; Ginibre, Jean

    2016-10-01

    We discuss the statistics of emission of photons by a single atom or ion illuminated by a laser beam at the frequency of quasi-resonance between two energy levels, a situation that corresponds to real experiments. We extend this to the case of two laser beams resonant with the energy differences between two excited levels and the ground state (three level atom in V-configuration). We use a novel approach to this type of problem by considering a Kolmogorov equation for the probability distribution of the atomic state, which takes into account first the deterministic evolution of this state under the effect of the incoming laser beam and second the random emission of photons during the spontaneous decay of the excited state(s) to the ground state. This approach yields solvable equations in the two level atom case. For the three level atom case we set the problem and clearly define its frame. The results obtained are valid in both opposite limits of rare and frequent spontaneous decay, compared to the period of the optical Rabi oscillations due to the interaction between resonant excitation and atomic levels. Our analysis gives access to various statistical properties of the fluorescence light, including one showing that its fluctuations in time are not invariants under time reversal. This result makes evident the fundamentally irreversible character of quantum measurements, represented here by the emission of photons of fluorescence.

  5. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  6. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    ERIC Educational Resources Information Center

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…

  7. Inelastic processes in atomic, molecular and chemical physics (in honour of Andrey K. Belyaev)

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.; Tscherbul, Timur V.

    2015-11-01

    This Special Issue is dedicated to Professor Andrey K. Belyaev, on the occasion of his 60th birthday and in celebration of his productive career in theoretical atomic, molecular, and chemical physics. It brings together 12 research studies of Inelastic Processes in Atomic, Molecular and Chemical Physics, a research area where Andrey himself made significant contributions. Inelastic processes are central to many different areas of physics, including atmospheric physics, astrophysics, and plasma physics to name a few, as well as in related technological applications such as lasers and fusion reactors. Quantitative understanding of the mechanisms of inelastic processes in atoms and molecules is therefore a problem of fundamental importance in physics, astrophysics, and chemistry. It is precisely this challenging problem that Andrey's research addresses using a broad arsenal of theoretical tools and techniques.

  8. "Reaction Microscopes": The "Cloud Chambers" of Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Ullrich, Joachim

    2004-09-01

    Reaction-Microscopes, developed 10 years ago in order to investigate fast ion-atom collisions [1], allow to determine the complete vector momenta of several electrons and ions emerging as a result of the fragmentation of single atoms, molecules or clusters interacting with electrons, ions, single photons or intense laser pulses. Thus, the complete final-state many-particle wave function in momentum space becomes observable for single and multiple ionisation of atoms as well as for the dissociation of molecules [2]. In the talk the working principle of these machines will be described. Illustrative examples will be given demonstrating the ability of the method to identify the ``mechanisms'' of single and multiple ionisation for electron and ion impact. Its potential for the investigation of single photon as well as of intense laser-pulse induced fragmentation will be highlighted. Future possibilities to investigate ultra-low-energy electron atom or molecule collisions, laser assisted ionisation, using few-cycle phase controlled laser pulses or future free-electron lasers are envisaged. [1] R. Moshammer et al., Phys. Rev. Lett. 73 (1994) 3371 [2] J. Ullrich et al., Rep. Prog. Phys. 66 (2003) 1463

  9. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  10. Request for Support for the Conference on Super Intense Laser Atom Physics

    SciTech Connect

    Todd Ditmire

    2004-10-21

    The Conference on Super Intense Laser Atom Physics (SILAP) was held in November 2003 in Dallas, Texas. The venue for the meeting was South Fork Ranch in the outskirts of Dallas. The topics of the meeting included high harmonic generation and attosecond pulse generation, strong field interactions with molecules and clusters, particle acceleration, and relativistic laser atom interactions.

  11. Research in atomic and applied physics using a 6-GeV synchrotron source

    SciTech Connect

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented.

  12. Learning Pathways in High-School Level Quantum Atomic Physics.

    ERIC Educational Resources Information Center

    Niedderer, Hans; Petri, Juergen

    Investigations of changes in conceptions during physics instruction are the logical and necessary steps to follow successful international research on students' preinstructional conceptions. The theoretical perspective integrates currently available frameworks of cognition, cognitive states, and cognitive processes in physics. Particular emphasis…

  13. Computational challenges in atomic, molecular and optical physics.

    PubMed

    Taylor, Kenneth T

    2002-06-15

    Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

  14. Physics of the missing atoms: technetium and promethium

    SciTech Connect

    Aspden, H.

    1987-05-01

    Technetium (Z = 43) and promethium (Z = 61) are by far the least abundant of all atoms below the radioactive elements (Z = 84 onwards). Their scarcity confirms theoretical predictions emerging from a theory of the photon derived from synchronous lattice electrodynamics. This theory has given precise theoretical values for the fine-structure constant and the constant of gravitation G and is now shown in this paper to indicate resonant interactions between the vacuum lattice oscillations and technetium and promethium. In the case of promethium there is strong reason for believing that this atom can assume supergravitational or antigravitational properties, accounting for its scarcity. This paper not only adds support to the earlier theoretical work on the photon and gravitation, but suggests a research route that might lead to new technology based on controlled interactions with gravity fields.

  15. The Physics of Spin-Polarized Atomic Vapors.

    DTIC Science & Technology

    1985-01-01

    formula (82) (Ref. II). shift methods. In this paper we present the basic theory of spin ex- lower third-body pressures. Essentially the same relaxa- change...polarization during the 129Xe relaxa- The voltages on the capacitors are tion transient the left side of R,, in Fig. 17 is essentially "FM F) at ground...exchange is described by non-linear rate equa- tions. The nonlinearity is essential if one is to account for the spin polarization of both atoms which are

  16. Application of Group Theory to Some Problems in Atomic Physics.

    NASA Astrophysics Data System (ADS)

    Suskin, Mark Albert

    This work comprises three problems, each of which lends itself to investigation via the theory of groups and group representations. The first problem is to complete a set of operators used in the fitting of atomic energy levels of atoms whose ground configuration is f ^ 3. The role of group theory in the labelling of these operators and in their construction is explained. Values of parameters associated with a subset of the operators are also calculated via their group labels. The second problem is to explain the term inversion that occurs between states of the configuration of two equivalent electrons and certain of the states of the half-filled shell. This leads to generalizations that make it possible to investigate correspondences between matrix elements of effective operators taken between states of other configurations besides the two mentioned. This is made possible through the notion of quasispin. The third problem is the construction of recoupling coefficients for groups other than SO(3). Questions of phase convention and Kronecker-product multiplicities are taken up. Several methods of calculation are given and their relative advantages discussed. Tables of values of the calculated 6-j symbols are provided.

  17. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    NASA Astrophysics Data System (ADS)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of

  18. Nuclear physics (of the cell, not the atom)

    PubMed Central

    Pederson, Thoru; Marko, John F.

    2014-01-01

    The nucleus is physically distinct from the cytoplasm in ways that suggest new ideas and approaches for interrogating the operation of this organelle. Chemical bond formation and breakage underlie the lives of cells, but as this special issue of Molecular Biology of the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and biophysicists. PMID:25368422

  19. Project Physics Teacher Guide 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Teaching procedures of Project Physics Unit 5 are presented to help teachers make effective use of learning materials. Unit contents are discussed in connection with teaching aid lists, multi-media schedules, schedule blocks, and resource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information…

  20. Nuclear physics (of the cell, not the atom).

    PubMed

    Pederson, Thoru; Marko, John F

    2014-11-05

    The nucleus is physically distinct from the cytoplasm in ways that suggest new ideas and approaches for interrogating the operation of this organelle. Chemical bond formation and breakage underlie the lives of cells, but as this special issue of Molecular Biology of the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and biophysicists.

  1. Physical mechanisms for atomization of a jet spray

    SciTech Connect

    Bower, G.; Chang, S.K.; Corradini, M.L.; El-Beshbeeshy, M.; Martin, J.K.; Krueger, J.

    1988-01-01

    Because combustion in direct injection engines is strongly influenced by the details of the fuel spray in thes engines, the authors have begun a broad research effort of jet breakup experiments and modelling of these high pressure sprays. The main objective of this effort is to better understand fuel injection from the study of the spray-jet breakup process and the associated fuel-oxidant mixing. The focus of this paper is the development of specific models for atomization of the spray-jet. These models are then compared to each other and to preliminary data from the spray-jet breakup experiments. Initial results indicate that KIVA with this proposed spray model shows good agreement with low pressure data (69 MPa) but underestimates spray penetration for higher pressures (104 MPa).

  2. Physics of Optically Pumped Alkali-Metal Atoms

    DTIC Science & Technology

    2013-04-14

    collision broadening and will be almost completely determined by hyperfine structure, natural radiative broadening and Doppler broadening . 3 When pumped by...supported research, and will be an great advantage for work on greenhouse physics. Of particular interest is how collisions of CO2 molecules with the...nitrogen and oxygen molecules of the air affect the way CO2 absorbs and emits radiation. Incorrect modeling of collisional line broadening is one of

  3. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    SciTech Connect

    LeBrun, T.

    1996-12-31

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells.

  4. Present status of Accelerator-Based BNCT

    PubMed Central

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390

  5. PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT

    SciTech Connect

    Neeleman, Marcel; Wolfe, Arthur M.; Prochaska, J. Xavier

    2015-02-10

    A new method is used to measure the physical conditions of the gas in damped Lyα systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C{sup +} and Si{sup +}. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ∼100 cm{sup –3} and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log (P/k{sub B} ) = 3.4 (K cm{sup –3}), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n {sub H} > 0.1 cm{sup –3}) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k{sub B} ) in excess of 20,000 K cm{sup –3}, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.

  6. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  7. Otto Stern (1888-1969): The founding father of experimental atomic physics

    NASA Astrophysics Data System (ADS)

    Toennies, J. P.; Schmidt-Böcking, H.; Friedrich, B.; Lower, J. C. A.

    2011-12-01

    We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental determination of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933).

  8. Computation of Free-Free Transitions in Atomic Physics: Foundations

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sucher, J.

    2003-01-01

    The amplitude T for "free-free" processes, such as bremsstrahlung or photo- absorption by an electron in the continuum in the presence of an external field, is usually written as the matrix element of the radiation operator taken between two continuum states. However, unlike the case when at least one of the states is bound, as in radiative transitions, electron capture, or the photo-effect, this expression contains an unphysical term, proportional to a delta-function and is not really the physical amplitude Tphys. This continues to be true for both the velocity and length form of the dipole approximation to the amplitude T. We first give an a priori definition of Tphys in terms of the scattering parts of the continuum functions, which has an obvious interpretation in terms of time-ordered diagrams. We then show that when the formal amplitude is modified by a long- distance cutoff, the modified form approaches Tphys as the cutoff is removed. The modified form then serves as a basis for the definition of a physical velocity dipole amplitude and this in turn leads to an equivalent length form of the dipole amplitude. This exercise provides a clear theoretical basis for many extant calculations in which cutoff factors are introduces somewhat ad hoc, as needed.

  9. New Phenomena in Physics Related with Single-Atom Electron Sources

    NASA Astrophysics Data System (ADS)

    Akamine, Yuta; Fujiwara, Kazuto; Cho, Bokulae; Oshima, Chuhei

    We have reviewed new phenomena in physics related with development of single-atom electron sources. A collimated electron beam was emitted from the single-atom situated at the top of the nano-pyramids. The following three topics have been discussed. (1) High brightness of electron beam: High-density electrons come out of the source, and overlapping of wave functions presumably produces new phenomena including anti-bunching of electrons in vacuum. Energy spectra showed characteristic features of single-atom electron sources; additional shoulders appeared in the normal spectra. 3) Stable electron emission originates from the field evaporation.

  10. A New Accelerator-Based Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  11. ATOMIC AND MOLECULAR PHYSICS: Modelling of a DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Xie, Ping; Xue, Xiao-Guang; Wang, Peng-Ye

    2009-11-01

    During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage phi29 is an excellent model system to investigate the DNA packaging mechanism because of its highly efficient in vitro DNA packaging activity and the development of a single-molecule packaging assay. Here we make use of structural and biochemical experimental data to build a physical model of DNA packaging by the phi29 DNA packaging motor. Based on the model, various dynamic behaviours such as the packaging rate, pause frequency and slip frequency under different ATP concentrations, ADP concentrations, external loads as well as capsid fillings are studied by using Monte Carlo simulation. Good agreement is obtained between the simulated and available experimental results. Moreover, we make testable predictions that should guide future experiments related to motor function.

  12. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    SciTech Connect

    Not Available

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  13. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of

  14. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  15. PREFACE: 7th Asian International Seminar on Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pranawa C.; Chakraborty, Purushottam; Williams, Jim F.

    2007-09-01

    These proceedings arose from the 7th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the Indian Institute of Technology, Madras from 4-7 December 2006. The history of the AISAMP has been reviewed by Takayanagi http://www.physics.iitm.ac.in/~aisamp7/history.html. This international seminar/conference series grew out of the Japan-China meetings which were launched in 1985, the fourth of which was held in 1992 and carried a second title: The First Asian International Seminar on Atomic and Molecular Physics (AISAMP), thus providing a formal medium for scientists in this part of the world to report periodically and exchange their scientific thoughts. The founding nations of Japan and China were joined subsequently by Korea, Taiwan, India and Australia. The aims of the symposia included bringing together leading experts and students of atomic and molecular physics, the discussion of important problems, learning and sharing modern techniques and expanding the horizons of modern atomic and molecular physics. The fields of interest ranged from atomic and molecular structure and dynamics to photon, electron and positron scattering, to quantum information processing, the effects of symmetry and many body interactions, laser cooling, cold traps, electric and magnetic fields and to atomic and molecular physics with synchrotron radiation. Particular interest was evident in new techniques and the changes of the physical properties from atomic to condensed matter. Details of the 7th AISAMP, including the topics for the special sessions and the full programme, are available online at the conference website http://www.physics.iitm.ac.in/~aisamp7/. In total, 95 presentations were made at the 7th AISAMP, these included the Invited Talks and Contributed Poster Presentations, of which 52 appear in the present Proceedings after review by expert referees, refereed to the usual standard of the Institute of Physics journal: Journal of Physics B: Atomic

  16. Do General Physics Textbooks Discuss Scientists' Ideas about Atomic Structure? A Case in Korea

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general…

  17. Next Generation Accelerator-Based Light Sources

    SciTech Connect

    Gwyn Williams

    2005-06-26

    We discuss the physics which is driving the evolution of new sources for microscopy and spectroscopy. A new generation of sources, called energy recovery linacs or ERL’s, will be described and reviewed with particular emphasis on the examples of imaging and spectroscopic applications enabled by them.

  18. Physics and Its Multiple Roles in the International Atomic Energy Agency

    NASA Astrophysics Data System (ADS)

    Massey, Charles D.

    2017-01-01

    The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.

  19. PREFACE: Atomically controlled fabrication technology: new physics and functional device realization Atomically controlled fabrication technology: new physics and functional device realization

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuji; Kasai, Hideaki

    2011-10-01

    To realize next generation functional devices, atomic level controllability of the application and fabrication techniques is necessary. The conventional route to advance solid state devices, which involves improvement of 'instrumental accuracy', is now facing a major paradigm shift towards 'phenomenal accuracy'. Therefore, to keep up with this critical turn in the development of devices, pioneering research (both theoretical and experimental) on relevant materials, focusing on new physics at the atomic scale, is inevitable. This special section contains articles on the advancements in fabrication of functional devices with an emphasis on the exploration, clarification and understanding of atomistic phenomena. Research articles reporting theoretical and experimental findings on various materials such as semiconductors, metals, magnetic and organic systems, collectively present and 'capture' the appropriate processes and mechanisms of this rapidly developing field. The theoretical investigations employ first-principles quantum-mechanical simulations to clarify and bring about design principles and guidelines, or to develop more reliable computational methods. Experimental studies, on the other hand, introduce novel capabilities to build, view and manipulate materials at the atomic scale by employing pioneering techniques. Thus, the section pays significant attention to novel structures and properties and the accompanying fabrication techniques and design arising from the understanding of properties and structures at the atomic scale. We hope that researchers in the area of physics, materials science and engineering, interested in the development of functional devices via atomic level control, will find valuable information in this collaborative work. We are grateful to all of the authors for their contributions. Atomically controlled fabrication contents On the mechanism of carbon nanotube formation: the role of the catalyst G N Ayre, T Uchino, B Mazumder, A L Hector

  20. The Advanced Light Source: A new tool for research in atomic and molecular physics

    NASA Astrophysics Data System (ADS)

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters.

  1. Accelerator-based validation of shielding codes

    SciTech Connect

    Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack; Wilson, John W.

    2002-08-12

    The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required to validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.

  2. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging

    PubMed Central

    Giordano, V. M.; Ruta, B

    2016-01-01

    Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization. PMID:26787443

  3. Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes

    SciTech Connect

    Santarius, John F.; Emmert, Gilbert A.

    2013-11-07

    Research during this project at the University of Wisconsin Fusion Technology Institute (UW FTI) on ion and neutral flow through an arbitrary, monotonic potential difference created by nearly transparent electrodes accomplished the following: (1) developed and implemented an integral equation approach for atomic physics effects in helium plasmas; (2) extended the analysis to coupled integral equations that treat atomic and molecular deuterium ions and neutrals; (3) implemented the key deuterium and helium atomic and molecular cross sections; (4) added negative ion production and related cross sections; and (5) benchmarked the code against experimental results. The analysis and codes treat the species D0, D20, D+, D2+, D3+, D and, separately at present, He0 and He+. Extensions enhanced the analysis and related computer codes to include He++ ions plus planar and cylindrical geometries.

  4. Atomic physics with highly charged ions: Progress report, 15 August 1985--14 August 1988

    SciTech Connect

    Richard, P.

    1988-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project ''Atomic Physics with Highly Charged Ions'' speaks to these points. The experimental work is made possible locally by the use of relatively high velocity, highly charged projectiles (v typically 5% c) as obtained from the 6 MV tandem Van de Graaff accelerator. The work in the past few years has divided into collisions at high velocity using the primary beams from the accelerator and collisions at low velocity using secondary beams (recoil ions produced in a high velocity collision) in a so-called SIRS (Secondary Ion Recoil Source) geometry. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x-rays and Auger electrons. Correlation effects and polarization phenomena in ion-atom collisions have been investigated.

  5. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    SciTech Connect

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  6. Construction and characterization of external cavity diode lasers for atomic physics.

    PubMed

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  7. Construction and Characterization of External Cavity Diode Lasers for Atomic Physics

    PubMed Central

    Hardman, Kyle S.; Bennetts, Shayne; Debs, John E.; Kuhn, Carlos C. N.; McDonald, Gordon D.; Robins, Nick

    2014-01-01

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs1,2. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling1,2 makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman3, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included. PMID:24796259

  8. From the Dawn of Nuclear Physics to the First Atomic Bombs

    NASA Astrophysics Data System (ADS)

    Woolbright, Stephen; Schumacher, Jacob; Michonova-Alexova, Ekaterina

    2014-03-01

    This work gives a fresh look at the major discoveries leading to nuclear fission within the historical perspective. The focus is on the main contributors to the discoveries in nuclear physics, leading to the idea of fission and its application to the creation of the atomic bombs used at the end of the World War II. The present work is a more complete review on the history of the nuclear physics discoveries and their application to the atomic bomb. In addition to the traditional approach to the topic, focusing mainly on the fundamental physics discoveries in Europe and on the Manhattan Project in the United States, the nuclear research in Japan is also emphasized. Along with that, a review of the existing credible scholar publications, providing evidence for possible atomic bomb research in Japan, is provided. Proper credit is given to the women physicists, whose contributions had not always been recognized. Considering the historical and political situation at the time of the scientific discoveries, thought-provoking questions about decision-making, morality, and responsibility are also addressed. The work refers to the contributions of over 20 Nobel Prize winners. EM-A is grateful to Prof. Walter Grunden and to Prof. Emeritus Shadahiko Kano, Prof. Emeritus Monitori Hoshi for sharing their own notes, documents, and references, and to CCCU for sponsoring her participation in the 2013 Nuclear Weapons Seminar in Japan.

  9. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors.

  10. Medical physics in Europe following recommendations of the International Atomic Energy Agency

    PubMed Central

    Lopes, Maria do Carmo; Drljević, Advan; Gershkevitsh, Eduard; Pesznyak, Csilla

    2016-01-01

    Background Medical physics is a health profession where principles of applied physics are mostly directed towards the application of ionizing radiation in medicine. The key role of the medical physics expert in safe and effective use of ionizing radiation in medicine was widely recognized in recent European reference documents like the European Union Council Directive 2013/59/EURATOM (2014), and European Commission Radiation Protection No. 174, European Guidelines on Medical Physics Expert (2014). Also the International Atomic Energy Agency (IAEA) has been outspoken in supporting and fostering the status of medical physics in radiation medicine through multiple initiatives as technical and cooperation projects and important documents like IAEA Human Health Series No. 25, Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (2013) and the International Basic Safety Standards, General Safety Requirements Part 3 (2014). The significance of these documents and the recognition of the present insufficient fulfilment of the requirements and recommendations in many European countries have led the IAEA to organize in 2015 the Regional Meeting on Medical Physics in Europe, where major issues in medical physics in Europe were discussed. Most important outcomes of the meeting were the recommendations addressed to European member states and the survey on medical physics status in Europe conducted by the IAEA and European Federation of Organizations for Medical Physics. Conclusions Published recommendations of IAEA Regional Meeting on Medical Physics in Europe shall be followed and enforced in all European states. Appropriate qualification framework including education, clinical specialization, certification and registration of medical physicists shall be established and international recommendation regarding staffing levels in the field of medical physics shall be fulfilled in particular. European states have clear

  11. Physics Division progress report for period ending September 30, 1985

    SciTech Connect

    Livingston, A.B.

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics. (LEW)

  12. Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis.

    PubMed

    Vasudevan, Rama K; Ziatdinov, Maxim; Jesse, Stephen; Kalinin, Sergei V

    2016-09-14

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ∼1-10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysis is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. This method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure-property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.

  13. Phases and interfaces from real space atomically resolved data: Physics-based deep data image analysis

    DOE PAGES

    Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; ...

    2016-08-12

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysismore » is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.« less

  14. Phases and interfaces from real space atomically resolved data: Physics-based deep data image analysis

    SciTech Connect

    Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; Kalinin, Sergei V.

    2016-08-12

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysis is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.

  15. An accelerator-based epithermal photoneutron source for BNCT

    SciTech Connect

    Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.; Yoon, W.Y.

    1995-11-01

    Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.

  16. Stalking the Anti-Racist Atom: Engaging Educational Equity and Diversity in Physics Teaching

    NASA Astrophysics Data System (ADS)

    Hodari, Apriel K.

    2006-12-01

    One of the first articles I ever read on diversity in physics education stated, “There’s no such thing as an anti-racist atom.” This perspective, that the science of physics is itself inherently unbiased, illustrates the difficulty of engaging our intellectual community on this topic. We genuinely believe that our science is devoid of the complications of the human condition, and therefore we need not worry about these things. It is clear however, as people competing for scarce resources in a non-equitable society, we engage in all of the same behaviors everyone else does, include those that work against equity and diversity. Over the last several years, my colleagues and I have held workshops aimed at addressing educational equity and diversity in physics teaching. In this discussion, I will present some of the questions we have posed, along with lessons learned and ideas about what we can do next.

  17. Optical and magnetic properties of a transparent garnet film for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Saito, Mari; Tajima, Ryoichi; Kiyosawa, Ryota; Nagata, Yugo; Shimada, Hiroyuki; Ishibashi, Takayuki; Hatakeyama, Atsushi

    2016-12-01

    We investigated the optical and magnetic properties of a transparent magnetic garnet with a particular focus on its applications to atomic physics experiments. The garnet film used in this study was a magnetically soft material that was originally designed for a Faraday rotator at optical communication wavelengths in the near infrared region. The film had a thickness of 2.1 μm and a small optical loss at a wavelength of λ =780 nm resonant with Rb atoms. The Faraday effect was also small and, thus, barely affected the polarization of light at λ =780 nm. In contrast, large Faraday rotation angles at shorter wavelengths enabled us to visualize magnetic domains, which were perpendicularly magnetized in alternate directions with a period of 3.6 μm. We confirmed the generation of an evanescent wave on the garnet film, which can be used for the optical observation and manipulation of atoms on the surface of the film. Finally, we demonstrated a magnetic mirror for laser-cooled Rb atoms using the garnet film.

  18. Resolving all-order method convergence problems for atomic physics applications

    SciTech Connect

    Gharibnejad, H.; Derevianko, A.; Eliav, E.; Safronova, M. S.

    2011-05-15

    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for the study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for a large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the configuration-interaction (CI)+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, namely, reduced linear equation and direct inversion of iterative subspace. Examples are presented for B, Al, Zn{sup +}, and Yb{sup +}. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications.

  19. Dips in spectral line profiles and their applications in plasma physics and atomic physics

    NASA Astrophysics Data System (ADS)

    Dalimier, E.; Oks, E.; Renner, O.

    2017-03-01

    We review studies of two kinds of dips in spectral line profiles emitted by plasmas - the dips that have been predicted theoretically and observed experimentally: Langmuir-wave-caused dips (L-dips) and charge-exchange-caused dips (X-dips). There is a principal difference with respect to positions of L-dips and X-dips relative to the unperturbed wavelength of a spectral line: positions of L-dips scale with the electron density Ne roughly as Ne1/2, while positions of X-dips are almost independent of Ne (the dependence is much weaker than for L-dips). L-dips and X-dips phenomena are important both fundamentally and practically. The fundamental importance is due to a rich physics behind each of these phenomena. As for important practical applications, they are as follows. Observations of L-dips constitute a very accurate method to measure the electron density in plasmas - the method that does not require the knowledge of the electron temperature. L-dips also allow measuring the amplitude of the electric field of Langmuir waves - the only one spectroscopic method available for this purpose. Observations of X-dips provide an opportunity to determine rate coefficient of charge exchange between multi-charged ions. This is an important reference data virtually inaccessible by other experimental methods. The rate coefficients of charge exchange are important for magnetic fusion in Tokamaks, for population inversion in the soft x-ray and VUV ranges, for ion storage devices, as well as for astrophysics (e.g., for the solar plasma and for determining the physical state of planetary nebulae).

  20. TRIμP-Trapped Radioactive Atoms-μicrolaboratories for Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Jungmann, K.; Berg, G. P.; Dammalapati, U.; Dendooven, P.; Dermois, O.; Harakeh, M. N.; Hoekstra, R.; Morgenstern, R.; Rogachevskiy, A.; Sanchez-Vega, M.; Timmermans, R.; Traykov, E.; Willmann, L.; Wilscut, H. W.

    At the Kernfysisch Versneller Instituut (KVI) in Groningen, NL, a new facility (TRIμP) is under development. Radioactive nuclei will be produced using heavy ion beams from the superconducting AGOR cyclotron. They are then slowed down and finally trapped in ion or atomic traps in order to perform precision experiments with them. The facility will be open for use by the worldwide community. The present local research programme includes precision studies of nuclear β-decays through β-neutrino (recoil nucleus) momentum correlations in weak decays as well as searches for permanent electric dipole moments in heavy atomic systems. Such experiments offer a large potential for discovering new physics or to put sensitive limits on parameters in models beyond standard theory.

  1. An open source digital servo for atomic, molecular, and optical physics experiments

    PubMed Central

    Leibrandt, D. R.; Heidecker, J.

    2016-01-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser. PMID:26724014

  2. An open source digital servo for atomic, molecular, and optical physics experiments

    SciTech Connect

    Leibrandt, D. R. Heidecker, J.

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  3. Testing for a cosmological influence on local physics using atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Hellings, R. W.; Canuto, V. M.; Goldman, I.

    1983-01-01

    The existence of a possible influence of the large-scale structure of the universe on local physics is discussed. A particular realization of such an influence is discussed in terms of the behavior in time of atomic and gravitational clocks. Two natural categories of metric theories embodying a cosmic infuence exist. The first category has geodesic equations of motion in atomic units, while the second category has geodesic equations of motion in gravitational units. Equations of motion for test bodies are derived for both categories of theories in the appropriate parametrized post-Newtonian limit and are applied to the Solar System. Ranging data to the Viking lander on Mars are of sufficient precision to reveal (1) if such a cosmological influence exists at the level of Hubble's constant, and (2) which category of theories is appropriate for a descripton of the phenomenon.

  4. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  5. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  6. The role of atomic and molecular physics for dissipative divertor operation in helium and deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Canik, J. M.

    2016-10-01

    Recent experiments in DIII-D helium plasmas are examined to resolve the role of atomic and molecular physics in major discrepancies between experiment and modeling of dissipative divertor operation. Helium operation removes the complicated molecular processes of deuterium plasmas that are a prime candidate for the inability of standard fluid models (SOLPS, UEDGE) to reproduce dissipative divertor operation, primarily the consistent under-prediction of radiated power. With helium fueling, a high-recycling divertor was established with divertor densities increasing to ne,div >= 3 ×1020m-3 and temperatures decreasing to Te,div <= 2 eV as measured by divertor Thomson scattering (DTS). The electron pressure, pe , div decreased gradually with increasing density to less than 30% of the low density value. However, the ion flux to the divertor target did not decrease until the highest densities and lowest temperatures, Te,div <= 2 eV. In contrast, with deuterium operation, increasing density leads to a rapid transition from Te,div >= 10 eV to Te,div <= 3 eV, though both pe , div and ion flux do not decrease until Te,div <= 2 eV. These differences indicate an important role for molecular and atomic physics in the dynamics of divertor dissipation. Initial SOLPS modeling has reproduced ne and Te profiles at the midplane and divertor target, as well as the spatial structure of radiation patterns measured in moderate density helium plasmas. However, the modeled divertor radiation is less than measured, similar to deuterium simulations, suggesting processes more universal than species-specific atomic or molecular physics may be the source of radiation deficit. Detailed assessments of ne, Te profiles in the divertor volume, uniquely determined at DIII-D using DTS, are made along with analysis of measured and modeled line radiation to shed more light on these intriguing findings. Supported by the US DOE under DE-AC05-00OR22725.

  7. Ab Initio Study on Atomic Structures and Physical Properties of CdSe Quantum Nanodots

    DTIC Science & Technology

    2009-11-25

    CdSe quantum dots , with magic number (( CdSe )13, ( CdSe )19, ( CdSe )33 and ( CdSe )34 ). Effects of organic ligand binding on the stability of CdSe as well...calculations of optical absorption spectra for CdSe quantum dots , with magic number (( CdSe )13, ( CdSe )19, ( CdSe )33 and ( CdSe )34 ), have been calculated in...1 AOARD-08-4037 Title of Proposed Project: Ab initio study on atomic structures and physical

  8. Chapter Three - Atomic, Molecular, and Optical Physics in the Early Universe: From Recombination to Reionization

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.; Chluba, Jens; Furlanetto, Steve R.; Pritchard, Jonathan R.; Savin, Daniel Wolf

    2014-08-01

    Our knowledge of the evolution of the early Universe hinges, in part, on our understanding of the underlying atomic, molecular, and optical (AMO) processes occurring during that epoch. Here we review the relevant AMO physics from when it first became important at a redshift of z ~ 6000, some 18,000 years after the Big Bang when electrons and ions began to recombine. The review continues through the formation of the first stars and galaxies and concludes after the radiation from these first objects has reionized the Universe at a z ~ 10, about a billion years after the Big Bang.

  9. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    PubMed Central

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  10. Application of the Finite Element Method in Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  11. Nuclear-spin-independent short-range three-body physics in ultracold atoms.

    PubMed

    Gross, Noam; Shotan, Zav; Kokkelmans, Servaas; Khaykovich, Lev

    2010-09-03

    We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.

  12. The Atomic Era: A new interdisciplinary course combining physics, the humanities and the social sciences

    NASA Astrophysics Data System (ADS)

    Carstens-Wickham, Belinda

    2001-05-01

    Southern Illinois University Edwardsville won funding from the federal interagency competition, Leadership Opportunity in Science and Humanities Education, which supported interdisciplinary courses combining the natural sciences and the humanities. The author analyses her experiences developing a very successful and popular interdisciplinary course, entitled The Atomic Era, which features a unique combination of physics, sociology and German studies taught jointly by a Physicist, a Sociologist and a Germanist. The objectives of the course, the laboratories and demonstrations, instructional goals, assignments, organization, testing, student and faculty assessment, expenses and the special challenges of coordinating three faculty members and a wide variety of topics and perspectives are addressed and analysed.

  13. ELASR - An electrostatic storage ring for atomic and molecular physics at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, Mohamed O. A.

    A new ELectrostAtic Storage Ring (ELASR) has been designed and built at the King Abdulaziz City for Science and Technology (KACST), in Riyadh, Saudi Arabia. It was developed to be the core of a new storage ring laboratory for atomic and molecular physics at KACST. ELASR follows the standard design of the pioneering storage ring ELISA and it thereby features a racetrack single-bend shaped ring. Complementary simulation code packages were used to work out the design under the requirements of the projected experiments. This paper reports a short description of the ELASR storage ring through an overview of its design and construction.

  14. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  15. Physics of our Days: Cooling and thermometry of atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Onofrio, R.

    2017-02-01

    We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physics motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant physics cases, such as the search for unconventional superfluid states. Attention is then focused on the most widespread technique to reach deep quantum degeneracy for Fermi systems, sympathetic cooling of Bose–Fermi mixtures, organizing the discussion according to the specific species involved. Various proposals to circumvent some of the limitations on achieving the deepest Fermi degeneracy, and their experimental realizations, are then reviewed. Finally, we discuss the extension of these techniques to optical lattices and the implementation of precision thermometry crucial to the understanding of the phase diagram of classical and quantum phase transitions in Fermi gases.

  16. Atomic layer deposition of metal oxide patterns on nonwoven fiber mats using localized physical compression.

    PubMed

    Sweet, William J; Oldham, Christopher J; Parsons, Gregory N

    2014-06-25

    Patterning is an essential part of many industrial processes from printing to semiconductor manufacturing. In this work, we demonstrate a new method to pattern and selectively coat nonwoven textiles by atomic layer deposition (ALD) using compressive mask patterning. A physical mask combined with mechanical compression allows lateral definition and fidelity of the ALD coating to be controlled. We produce features of several sizes on different nonwoven fiber materials and demonstrate the ability to limit diffusion effects to within <200 μm of the pattern edge. Lateral and vertical penetration of reactive growth species into nonwoven mats is investigated by plan-view and cross-sectional imaging. Vertical growth is also analyzed by imaging coating depth into fiber mat stacks. We develop a fully quantitative transport model that describes well the effect of fiber structure and mechanical compression on the extent of coating under the physical mask. This method could be implemented for high-volume patterning for applications including flexible electronics.

  17. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    SciTech Connect

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab.

  18. Relativistic Momentum-Space Equations with Applications to Atomic and Elementary Particle Physics

    NASA Astrophysics Data System (ADS)

    Hardekopf, Eugene Edward

    Relativistic equal-time wave equations obtained from field theory which describe bound states of N Dirac particles inevitably involve free or external-field positive -energy projection operators (LAMDA)(,+)(i). For N > 2 these operators are vital if the equations are to admit normaliz- able solutions. Such equations have been used in the past to obtain relativistic corrections to simple atomic systems, and to provide a theoretical basis for the Dirac-Hartree-Fock type of equations for many-electron atoms. These equations also find applications in ele- mentary particle physics in describing bound states of quarks. Here we initiate a numerical study of such equations, avoiding an expan- sion in powers of v/c. We work in momentum space, where the free projection operators are simple functions of (')p. We describe tech- niques for finding the eigenvalues and eigenfunctions of H(,+)(1,2) = h(,D)(1) + h(,D)(2) + (LAMDA)(,++)V(LAMDA)(,++) where h(,D)(i) is the free Dirac Hamiltonian and V is a local potential with either a (VBAR)(')r(,1)-(')r(,2)(VBAR)('-1) singularity in the case of atomic systems, or a (VBAR)(')r(,1)-(')r(,2)(VBAR) behavior plus a Coulomb-like singular- ity in the case of bound quarks. Results are presented for both pure Coulomb and a Coulomb plus Breit potential for the atomic case, and for a pure Lorentz scalar in the linear potential case. In the atomic case a wide range of m(,1)/m(,2) and coupling strength (gamma) is studied and the m(,2) = (INFIN) limit is compared with the Dirac equation. The magni- tude of level shifts associated with virtual pair production in such two-body systems is discussed. For intermediate values of (gamma) a com- parison is made between the numerical results and those of pertur- bation theory. We find that there can often be large corrections to perturbative results even for not terribly large values of v/c. We also study the strong coupling limit and find the value (gamma)(,max) for which the lowest-lying bound state

  19. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  20. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    PubMed Central

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994

  1. Making custom fiber lasers for use in an atomic physics experiment

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Cameron, Garnet; Nault, Kyla; Shiner, David

    2016-05-01

    Fiber lasers can be a reasonable choice for a laser source in atomic physics. Our particular applications involve the optical pumping and in some applications cooling of various transitions in atomic helium. Doped fiber with emission at the required wavelengths is necessary. Readily available fiber and approximate wavelength emission ranges include Yb (990 - 1150 nm), Er/Yb (1530 - 1625 nm) and Th (1900 -2100 nm). High efficiency conversion of pump photons into stable single frequency laser emission at the required wavelength is the function of the fiber laser. A simple fiber laser cavity uses a short (~ few mm) fiber grating high reflector mirror, a doped fiber section for the laser cavity, and a long (~ few cm) fiber grating output coupler. To ensure reliable single frequency operation, the laser cavity length should be within 2-3 times the output grating length. However the cavity length must be long enough for round trip gains to compensate for the output mirror transmission loss. Efficiency can be maximized by avoiding fiber splices in the fiber laser cavity. This requires that the gratings be written into the doped fiber directly. In our previous designs, back coupling of the fiber laser into the pump laser contributes to instability and sometimes caused catastrophic pump failure. Current designs use a fiber based wavelength splitter (WDM) to study and circumvent this problem. Data will be presented on the fiber lasers at 1083 nm. Work on a Thulium 2057 nm fiber laser will also be discussed. This work is supported by NSF Grant # 1404498.

  2. The Heidelberg test storage ring for heavy ions and its use for atomic physics

    SciTech Connect

    Schuch, R.

    1986-11-01

    A brief description of the Heavy-Ion Test Storage Ring (TSR) presently being built at the Max-Planck Institut in Heidelberg is given. It will be able to store ions injected from the tandem postaccelerator combination up to about 30 MeV/nucleon for a charge to mass ratio of 0.5. One of the main purposes of the TSR will be the study of electron cooling. Some atomic physics experiments are discussed using the electron cooling device which provides an electron-ion collision facility with good energy resolution and ion beams of high currents and low emittances. Here the possibilities for measurements of spontaneous and laser-induced radiative recombination and dielectronic recombination in the electron cooling section are discussed.

  3. A distributed, graphical user interface based, computer control system for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  4. ATOMIC PHYSICS PROCESSES IMPORTANT TO THE UNDERSTANDING OF THE SCRAPE-OFF LAYER OF TOKAMAKS

    SciTech Connect

    WEST, W.P.; GOLDSMITH,; B. EVANS,T.E.; OLSON, R.J.

    2002-05-01

    The region between the well-confined plasma and the vessel walls of a magnetic confinement fusion research device, the scrape-off layer (SOL), is typically rich in atomic and molecular physics processes. The most advanced magnetic confinement device, the magnetically diverted tokamak, uses a magnetic separatrix to isolate the confinement zone (closed flux surfaces) from the edge plasma (open field lines). Over most of their length the open field lines run parallel to the separatrix, forming a thin magnetic barrier with the nearby vessel walls. In a poloidally-localized region, the open field lines are directed away from the separatrix and into the divertor, a region spatially separated from the separatrix where intense plasma wall interaction can occur relatively safely. Recent data from several tokamaks indicate that particle transport across the field lines of the SOL can be somewhat faster than previously thought. In these cases, the rate at which particles reach the vessel wall is comparable to the rate to the divertor from parallel transport. The SOL can be thin enough that the recycling neutrals and sputtered impurities from the wall may refuel or contaminate the confinement zone more efficiently than divertor plasma wall interaction. Just inside the SOL is a confinement barrier that produces a sharp pedestal in plasma density and temperature. Understanding neutral transport through the SOL and into the pedestal is key to understanding particle balance and particle and impurity exhaust. The SOL plasma is sufficiently hot and dense to excite and ionize neutrals. Ion and neutral temperatures are high enough that charge exchange between the neutrals and fuel and impurity ions is fast. Excitation of neutrals can be fast enough to lead to nonlinear behavior in charge exchange and ionization processes. In this paper the detailed atomic physics important to the understanding of the neutral transport through the SOL will be discussed.

  5. Effects of Solution Physical Properties on Copper and Chromium Signals in Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Rocha, Fàbio R. P.; Nòbrega, Joaquim A.

    1996-10-01

    Instrumental techniques, such as flame atomic absorption spectrometry (FAAS), are frequently used in chemical analysis. Independently of the technique used, the chemical principles must be considered to assure that the analytical results are correct. In FAAS, the most critical step is the sample introduction, since solutions need to be converted in an aerosol (nebulization process) that should contain drops with suitable size to attain the flame. Solution physical properties, such as viscosity and surface tension, can severely affect the analytical signals. Solutions with high viscosity are less easily aspirated and the analyte mass that reach the flame is reduced. The surface tension of the solution affects the size of the drops generated by the nebulization process and can modify the quantity of analyte that attain the flame. This work describes an experiment that allow demonstrating the effects of viscosity and surface tension on analytical signals, using a set of copper solutions prepared in different concentrations of ethanol and chromium solutions prepared in surfactant (tetrapropylammonium bromide) medium. The experiment can be carried out in a 4 h laboratory class and is useful to demonstrate to undergraduate students the effects of samples physical properties on the analytical signals in FAAS.

  6. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    SciTech Connect

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  7. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  8. Introduction to the Contributions of A. Temkin and R. J. Drachman to Atomic Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, A.K.

    2007-01-01

    Their work, as is the work of most atomic theorists, is concerned with solving the Schroedinger equation accurately for wave function in cases where there is no exact analytical solution. In particular, Temkin is associated with electron scattering from atoms and ions. When he started there already were a number of methods to study the scattering of electrons from atoms.

  9. A physical approach to reduce nonspecific adhesion in molecular recognition atomic force microscopy.

    PubMed

    Willemsen, O H; Snel, M M; Kuipers, L; Figdor, C G; Greve, J; De Grooth, B G

    1999-02-01

    Atomic force microscopy is one of the few techniques that allow analysis of biological recognition processes at the single-molecule level. A major limitation of this approach is the nonspecific interaction between the force sensor and substrate. We have modeled the nonspecific interaction by looking at the interaction potential between a conical Si3N4 tip with a spherical end face and a mica surface in solution, using DLVO (Derjaguin, Landau, Verwey, Overbeek) theory and numerical calculations. Insertion of the tip-sample potential in a simulation of an approach-retract cycle of the cantilever gives the well-known force-distance curve. Simulating a force-distance curve at low salt concentration predicts a discrete hopping of the tip, caused by thermal fluctuations. This hopping behavior was observed experimentally and gave rise to a novel approach to making measurements in adhesion mode that essentially works in the repulsive regime. The distance between tip and sample will still be small enough to allow spacer-involved specific interactions, and the percentage of nonspecific interactions of the bare tip with the mica is minimized. We have validated this physical model by imaging intercellular adhesion molecule 1 (ICAM-1) antigen with a tip functionalized with anti-ICAM-1 antibody. The measurement demonstrated that a significant decrease in the number of nonspecific interactions was realized, and the topographical image quality and the specific bonding capability of the tip were not affected.

  10. The advanced light source at Lawrence Berkeley laboratory: a new tool for research in atomic physics

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1991-04-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ps) will be ideal for time-resolved measurements. Undulators will generate high-brightness partially coherent soft X-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV; this radiation is plane polarized. Wigglers and bend magnets will extend the spectrum by generating high fluxes of X-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy), and in biology, such as X-ray microscopy with element-specific sensitivity; the high flux will allow measurements in atomic physics and chemistry to be made with tenuous gas-phase targets. Technological applications could include lithography and nano-fabrication.

  11. Protein model refinement using an optimized physics-based all-atom force field.

    PubMed

    Jagielska, Anna; Wroblewska, Liliana; Skolnick, Jeffrey

    2008-06-17

    One of the greatest challenges in protein structure prediction is the refinement of low-resolution predicted models to high-resolution structures that are close to the native state. Although contemporary structure prediction methods can assemble the correct topology for a large fraction of protein domains, such approximate models are often not of the resolution required for many important applications, including studies of reaction mechanisms and virtual ligand screening. Thus, the development of a method that could bring those structures closer to the native state is of great importance. We recently optimized the relative weights of the components of the Amber ff03 potential on a large set of decoy structures to create a funnel-shaped energy landscape with the native structure at the global minimum. Such an energy function might be able to drive proteins toward their native structure. In this work, for a test set of 47 proteins, with 100 decoy structures per protein that have a range of structural similarities to the native state, we demonstrate that our optimized potential can drive protein models closer to their native structure. Comparing the lowest-energy structure from each trajectory with the starting decoy, structural improvement is seen for 70% of the models on average. The ability to do such systematic structural refinements by using a physics-based all-atom potential represents a promising approach to high-resolution structure prediction.

  12. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merritt, B.T.; Vogtlin, G.E.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1996-08-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds (VOCs). In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non-thermal processing of VOCs. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non- thermal plasma reactors. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiently it is converted to the production of the plasma species (radicals, ions, or electrons) responsible for the decomposition of the VOCs. This paper will present results from the basic experimental and theoretical studies aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of VOCs.

  13. Accelerator based X-ray facilities applied to freight control

    NASA Astrophysics Data System (ADS)

    Gaillard, G.

    1996-06-01

    The first accelerator based X-ray facility dedicated to freight control, in this case air-freight pallets, became operational at Roissy-Charles-de-Gaulle airport in 1991. Since then, five other facilities have been built, three in Europe and the other two in China, for the control of trucks and sea-containers. In order to be able to see through these very large and dense objects, X-ray energies of several MeV are necessary. Two types of electron accelerators are used for the production of the X-ray beams: linear accelerators and electrostatic accelerators (Van de Graff or Pelletrons), depending on the beam quality requirements which depend on the technology used for the detection of X-rays. A brief description of the functioning of the X-ray inspection facilities is presented in this article as well as an estimation of their global cost and of their profitability.

  14. Folding peptides and proteins with all-atom physics: methods and applications

    NASA Astrophysics Data System (ADS)

    Shell, M. Scott

    2008-03-01

    Computational methods offer powerful tools for investigating proteins and peptides at the molecular-level; however, it has proven challenging to reproduce the long time scale folding processes of these molecules at a level that is both faithful to the atomic driving forces and attainable with modern commodity cluster computing. Alternatively, the past decade has seen significant progress in using bioinformatics-based approaches to infer the three dimensional native structures of proteins, drawing upon extensive knowledge databases of known protein structures [1]. These methods work remarkably well when a homologous protein can be found to provide a structural template for a candidate sequence. However, in cases where homology to database proteins is low, where the folding pathway is of interest, or where conformational flexibility is substantial---as in many emerging protein and peptide technologies---bioinformatics methods perform poorly. There is therefore great interest in seeing purely physics-based approaches succeed. We discuss a purely physics-based, database-free folding method, relying on proper thermal sampling (replica exchange molecular dynamics) and molecular potential energy functions. In order to surmount the tremendous computational demands of all-atom folding simulations, our approach implements a conformational search strategy based on a putative protein folding mechanism called zipping and assembly [2-4]. That is, we explicitly seek out potential folding pathways inferred from short simulations, and iteratively pursue all such routes by coaxing a polypeptide chain along them. The method is called the Zipping and Assembly Method (ZAM) and it works in two parts: (1) the full polypeptide chain is broken into small fragments that are first simulated independently and then successively re-assembled into larger segments with further sampling, and (2) consistently stable structure in fragments is detected and locked into place, in order to avoid re

  15. Atoms and Molecules. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    There are more than 20 million known substances in the universe, and they are all made of the same basic ingredients--atoms and molecules. In this fun and engaging program, kids will learn about the three main subatomic particles--protons, neutrons and electrons--as well as the forces that keep atoms and molecules together. They'll discover how…

  16. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  17. Physical Construction of the Chemical Atom: Is It Convenient to Go All the Way Back?

    ERIC Educational Resources Information Center

    Izquierdo-Aymerich, Merce; Aduriz-Bravo, Agustin

    2009-01-01

    In this paper we present an analysis of chemistry texts (mainly textbooks) published during the first half of the 20th century. We show the evolution of the explanations therein in terms of atoms and of atomic structure, when scientists were interpreting phenomena as evidence of the discontinuous, corpuscular structure of matter. In this process…

  18. Emulating solid-state physics with a hybrid system of ultracold ions and atoms.

    PubMed

    Bissbort, U; Cocks, D; Negretti, A; Idziaszek, Z; Calarco, T; Schmidt-Kaler, F; Hofstetter, W; Gerritsma, R

    2013-08-23

    We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.

  19. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  20. Atomic-Scale Investigation of Latent Fission Tracks in Fluorapatite: Physical Characteristics and Annealing Behavior.

    NASA Astrophysics Data System (ADS)

    Paul, Tracy Anne

    1993-01-01

    A JEOL JEM-2000FX analytical transmission electron microscope, equipped with a cold stage and anticontamination device, has been used to study the physical characteristics and annealing behavior of artificially induced fission tracks in fluorapatite. Near the atomic level, unetched fission tracks are not continuous, but are comprised of segments of extended damage that are separated by gaps of undamaged microstructure. From dark-field transmission electron microscopy (TEM) images, it appears that the crystalline damage around tracks, although intensive, is not extensive. As such, the defect density may be represented by a Gaussian-type distribution function. The disordered nature of the track core and defect distribution geometry supports the Ion-Explosion Theory that has been proposed for track formation. TEM analysis reveals that track width is crystallographically controlled. Parallel to the c-axis, tracks display widths of 5 to 13 nm and hexagonal faceting on the (0001) plane. Tracks perpendicular to the c-axis display widths of 3 to 9 nm and prismatic faceting on the (1000) plane. The track cross-section facets mimic etch-pit morphologies and provide a relative measure of the crystal's surface free energy. A consequence of differential bond strengths and elastic properties in the fluorapatite structure, track-width anisotropy resolves etching- and annealing-rate anisotropy that has been reported for fission tracks in fluorapatite. TEM observation of the behavior of fission tracks in response to electron beam exposure (i.e., radiolytic annealing), and temperature increase (i.e., thermal annealing), yields a physical and a kinetic description of the annealing process. Annealing commences with bulging at the track's tapered ends, followed by detachment of a single sphere. This process is replicated until a critical track radius is encountered at which the track geometry approaches an ideal right cylinder. A sinusoidal boundary develops at the track

  1. Neutron producing target for accelerator based neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Bayanov, B.; Belov, V.; Taskaev, S.

    2006-05-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is under construction now at the Budker Institute. One of the main elements of the facility is lithium target producing neutrons via threshold 7Li(p, n)7Be reaction at 10 mA proton beam with energies of 1.915 MeV or 2.5 MeV. In the present report, choice of target was substantiated. The main problems of lithium target were determined to be: 7Be radioactive isotope activation, keeping lithium layer solid, presence of photons resulted from proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal testing of target prototype, investigation of radiation blistering and several simulations are presented. It becomes clear that water is preferable for cooling this target, and that the lithium target 10 cm in diameter is able to run up to 25 kW proton beam before melting. The conception of optimal target is proposed: thin and easy to detach metal disk 10 cm in diameter, evaporated with thin layer of pure lithium from the side of proton beam exposure: its back is intensively cooled with turbulent water flow to maintain lithium layer solid. Design of target for the neutron source constructed at BINP is shown. Conceptions of radiation protection and neutrons, γ-rays and α- particles diagnostics are presented. The immediate plans on obtaining epithermal neutron beam are declared.

  2. Atomic physics of strongly correlated systems. Progress report, 1 August 1980-31 July 1981

    SciTech Connect

    Lin, C.D.

    1981-03-01

    Studies of electron correlations of doubly-excited electrons in hyperspherical coordinates, and differential and total cross sections for charge transfer and ionization in fast ion-atom collisions are reported. (GHT)

  3. A Learning Pathway in High-School Level Quantum Atomic Physics.

    ERIC Educational Resources Information Center

    Petri, Juergen; Niedderer, Hans

    1998-01-01

    Describes one student's learning pathway as a sequence of several metastable conceptions of the atom starting from a planetary model. Displays the final cognitive element as an association of three parallel conceptions. Contains 26 references. (DDR)

  4. Nonlocal thermodynamic equilibrium self-consistent average-atom model for plasma physics.

    PubMed

    Faussurier, G; Blancard, C; Berthier, E

    2001-02-01

    A time-dependent collisional-radiative average-atom model is presented to study statistical properties of highly charged ion plasmas in off-equilibrium conditions. The time evolution of electron populations and the electron covariance matrix is obtained as approximate solutions of a master equation. Atomic structure is described either with a screened-hydrogenic model including l splitting, or by calculating one-electron states in a self-consistent average-atom potential. Collisional and radiative excitation/deexcitation and ionization/recombination rates, as well as autoionization and dielectronic recombination rates, are formulated within the average-configuration framework. Local thermodynamic equilibrium is obtained as a specific steady-state solution. The influence of atomic structure and the role of autoionization and dielectronic recombination processes are studied by calculating steady-state average ionization and ionization variance of hot plasmas with or without radiation field.

  5. FROM THE HISTORY OF PHYSICS: L D Landau in the Soviet Atomic Project: a documentary study

    NASA Astrophysics Data System (ADS)

    Kiselev, G. V.

    2008-09-01

    The article presents information about the participation of Academician L D Landau in the Soviet Atomic Project and is based on a study of archive documents of the First Main Directorate. Their analysis points to L D Landau's important contribution to the development of the theory of heterogeneous nuclear reactors and to the computational justification of the first designs of atomic and hydrogen bombs. Many of the quoted documents have never been published before.

  6. Physical properties of FePt nanocomposite doped with Ag atoms: First-principles study

    NASA Astrophysics Data System (ADS)

    Jia, Yong-Fei; Shu, Xiao-Lin; Xie, Yong; Chen, Zi-Yu

    2014-07-01

    L10 FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order—disorder transition temperature of the nanocomposite is higher than 600 °C, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters, formation energy, electronic structure, atomic magnetic moment and order—disorder transition temperature of L10 FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is 2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10 FePt. The special quasirandom structures (SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order—disorder transition temperatures are 1377 °C and 600 °C, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively, indicating that the magnetic property of the doped system is almost unchanged.

  7. Constraints on a long-range spin-independent interaction from precision atomic physics

    SciTech Connect

    Karshenboim, S. G.

    2010-10-01

    Constraints on a spin-independent interaction by the exchange of a neutral light boson are derived from precision data on the electron anomalous magnetic moment and from atomic spectroscopy of hydrogen and deuterium atoms. The mass range from 1 eV/c{sup 2} to 1 MeV/c{sup 2} is studied, and the effective coupling constant {alpha}{sup '} is allowed below the level of 10{sup -11}-10{sup -13} depending on the value of the boson mass. The mass range corresponds to the Yukawa radius from 0.0002 nm to 20 nm, which covers the distances far above and far below the Bohr radius of the hydrogen atom.

  8. Atomic physics with highly charged ions. Progress report, 15 September 1984-14 September 1985

    SciTech Connect

    Richard, P.

    1985-09-01

    Advances are reported in the two areas of primary research: low-energy ion-atom collisions using secondary ion recoil sources, SIRS, and high-energy ion-atom collisions using the tandem Van de Graaff accelerator beams. We have investigated the feasibility of accel-decel with a tandem plus superconducting LINAC with great success, and we have continued to work on the designs of a stand-alone CRYEBIS and a superconducting Nb split-ring resonator LINAC as an appropriate booster for the EN tandem.

  9. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  10. How Novel Algorithms and Access to High Performance Computing Platforms are Enabling Scientific Progress in Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Schneider, Barry I.

    2016-10-01

    Over the past 40 years there has been remarkable progress in the quantitative treatment of complex many-body problems in atomic and molecular physics (AMP). This has happened as a consequence of the development of new and powerful numerical methods, translating these algorithms into practical software and the associated evolution of powerful computing platforms ranging from desktops to high performance computational instruments capable of massively parallel computation. We are taking the opportunity afforded by this CCP2015 to review computational progress in scattering theory and the interaction of strong electromagnetic fields with atomic and molecular systems from the early 1960’s until the present time to show how these advances have revealed a remarkable array of interesting and in many cases unexpected features. The article is by no means complete and certainly reflects the views and experiences of the author.

  11. Enhancing Laos Students' Understanding of Nature of Science in Physics Learning about Atom for Peace

    ERIC Educational Resources Information Center

    Sengdala, Phoxay; Yuenyong, Chokchai

    2014-01-01

    This paper aimed to study of Grade 12 students' understanding of nature of science in learning about atom for peace through science technology and society (STS) approach. Participants were 51 Grade 12 who study in Thongphong high school Vientiane Capital City Lao PDR, 1st semester of 2012 academic year. This research regarded interpretive…

  12. Atomic physics with highly charged ions. Progress report, FY 1989--91

    SciTech Connect

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  13. INSTRUMENTS AND METHODS OF INVESTIGATION: Physical mechanisms underlying the selective removal of atoms

    NASA Astrophysics Data System (ADS)

    Gurovich, Boris A.; Prikhod'ko, Kirill E.

    2009-02-01

    This paper reviews the current understanding of the selective removal of atoms (SRA), a technique that uses ion irradiation to controllably change the chemical composition and properties of polyatomic materials. The main effects involved and the possible mechanisms that govern the process are discussed. It is shown that SRA holds great promise for manufacturing functional nanoelements.

  14. Atomic physics measurements using an ECR ion source located on a 350-kV high-voltage platform

    SciTech Connect

    Dunford, R.W.; Berry, H.G.; Liu, C.J.; Hass, M.; Pardo, R.C.; Raphaelian, M.L.A.; Zabransky, B.J.

    1988-01-01

    We report on a new atomic physics facility at the Argonne PII ECR ion source which was built for the Uranium Upgrade of the ATLAS heavy-ion accelerator. An important feature of our ECR ion source is that it is on a high-voltage platform which provides beam energies of up to 350q keV, where q is the charge of the ion. We discuss the experimental program in progress at this ion source which includes measurements of state-selective electron capture cross sections, photon and electron spectroscopy, studies of quasi-molecular collisions, and polarization studies using an optically pumped Na target. 9 refs., 6 figs.

  15. Divisible Atoms or None at All? Facing the European Contributions to Developments of Chemistry and Physics in China.

    PubMed

    Južnič, Stanislav

    2016-12-01

    atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.

  16. Precision Physics of Simple Atoms and Constraints on a Light Boson with Ultraweak Coupling

    SciTech Connect

    Karshenboim, S. G.

    2010-06-04

    Constraint on spin-dependent and spin-independent Yukawa potential at atomic scale is developed. That covers constraints on a coupling constant of an additional photon {gamma}* and a pseudovector boson. The mass range considered is from 1 eV/c{sup 2} to 1 MeV/c{sup 2}. The strongest constraint on a coupling constant {alpha}{sup '} is at the level of a few parts in 10{sup 13} (for {gamma}*) and below one part in 10{sup 16} (for a pseudovector) corresponding to mass below 1 keV/c{sup 2}. The constraints are derived from low-energy tests of quantum electrodynamics and are based on spectroscopic data on light hydrogenlike atoms and experiments with magnetic moments of leptons and light nuclei.

  17. The Physics of Miniature Atomic Clocks: 0-0 Versus "End" Transitions

    NASA Astrophysics Data System (ADS)

    Post, Amber; Jau, Yuan-Yu; Kuzma, Nicholas; Happer, William

    2003-05-01

    The majority of traditional atomic-clock designs are based on the 0-0 hyperfine transition of a Cs 133 atom. We are currently investigating the advantages of operating a miniature optical atomic clock using the "end" transitions, e.g. connecting states |f=1, mf =+/-1> and |f=2, mf=+/-2> in 87Rb. In our paper we present extensive new measurements of relevant relaxation rates, such as those due to spin-exchange collisions, buffer-gas pressure shifts, Carver Rates and others, which ultimately determine the choices of an operating regime for the miniature optical atomic clock. The relationship between these rates is non-trivial: for example, using higher laser power will increase polarization and reduce the spin-exchange rate [1], but it can simultaneously increase the linewidth due to the optical pumping rate. The dependence of these and other relaxation rates on the cell size, temperature, pressure, a choice of buffer gas, and other parameters will be reported. Based on these measured rates, our modeling can be used to predict the transition linewidths, signal-to-noise ratios and thus the stability of the clock in different operating regimes. The trade-off between the stability of the clock and the desired small cell size and low power consumption needs to be carefully considered in order to optimize our design. In our experiments we used optical, microwave, and radio-frequency excitation to study hyperfine and Zeeman resonance lines in heated glass cells containing pure-isotope alkali-metal vapor and buffer gasses (N2, Ar, He, etc.) at low (0 - 10 G) magnetic fields. Simultaneous use of light, microwave and radio-frequency fields allowed us to calibrate surrounding magnetic fields by observing the corresponding shifts of the resonance, thus leading us to a quantitative understanding of our system. [1] S. Appelt, A. B. Baranga, A. R. Young, W. Happer, Phys. Rev. A 59, 2078 (1999).

  18. An electrostatic storage ring for atomic and molecular physics, at KACST - a status report

    NASA Astrophysics Data System (ADS)

    El Ghazaly, Mohamed O. A.

    2015-01-01

    An electrostatic storage ring has been designed following the pioneering storage ring ELISA [1], and it is currently being built as a new core laboratory for atomic and molecular collisions at the King Abdulaziz City for Science and Technology (KACST), in Riyadh, Saudi Arabia. In this paper, the design of the electrostatic storage ring together with an outline on the status of the construction are given.

  19. The problems of solar-terrestrial coupling and new processes introduced to the physics of the ionosphere from the physics of atomic collisions

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergei

    2010-05-01

    Further progress in research of solar-terrestrial coupling requires better understanding of solar variability influence on the ionosphere. The most powerful manifestations of solar variability are solar flares and geomagnetic storms. During a flare EUV/X-ray irradiations are completely absorbed in the ionosphere producing SID. During geomagnetic storms precipitations of electrons with energy of several keV (and to a lesser extent protons precipitations) from radiation belts and geomagnetosphere produce additional ionization and low latitude auroras. Considering the physics of ionosphere during the last several decades we have been taking into account three novel processes well known in the physics of atomic collisions. These are Auger effect [S. V. Avakyan, The consideration of Auger processes in the upper atmosphere of Earth. In Abstracts of paper presented at the Tenth scien. and techn. Conf. of young specialists of S.I. Vavilov State Optical Institute, 1974, 29-31.], multiple photoionization of upper, valence shell [S.V. Avakyan, The source of O++ ions in the upper atmosphere, 1979, Cosmic Res, 17, 942 - 943] and Rydberg excitation of all the components of upper atmosphere [S.V. Avakyan, The new factor in the physics of solar - terrestrial relations - Rydberg atomic and molecules states. Conf. on Physics of solar-terrestrial relationships, 1994, Almaty, 3 - 5]. In the present paper the results of bringing these new processes in the ionospheric physics are discussed and also its possible role in the physics of solar-terrestrial coupling is considered. Involving these processes to the model estimations allowed us for the first time to come to the following important conclusions: - Auger electrons play the determinant role at the formation of energy spectrum of photoelectrons and secondary auroral electrons at the range above 150 eV; - double photoionization of the outer shell of the oxygen atom (by a single photon) plays a dominant role in the formation of

  20. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    ERIC Educational Resources Information Center

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  1. The physics of the environmental sensitivity of rubidium gas cell atomic frequency standards.

    PubMed

    Riley, W R

    1992-01-01

    The physical mechanisms behind environmental sensitivity are considered, and they are related to the performances of rubidium frequency standards (RFSs). Some of the RFS environmental sensitivities are due to simple physical mechanisms like the effect of DC magnetic field on the Rb hyperfine resonance frequency. For these, an analysis can be based on physical principles and straightforward design factors. Other environmental factors, like temperature sensitivity, are more complex combinations of many effects, both physical and practical, and the analysis often takes the form of an error budget, with large unit-to-unit variations. Today's RFSs span a wide performance range from small, inexpensive units with pp10(10) error budgets to larger, higher-performance versions offering pp10(14) stabilities. For both extremes, however, environmental sensitivity can be the most significant performance limitation. Why this is the case is explained, and some insight into how to make improvements is offered.

  2. Workshop on Coupled-Cluster Theory at the Interface of Atomic Physics and Quantum Chemistry

    DTIC Science & Technology

    1991-03-05

    potentials, electron affinities, and Auger spectroscopy, Fock space multi-reference methods (as discussed at the workshop by Mukherjee, Kaldor , Rittby...Bishop K. Jankowski Zuwei Liu University of Manchester Nicholas Capernicus University University of Virginia Dept. of Mathematics Institute of Physics...Kingston, NY 12401 Bhanu Pratap Das Uzi Kaldor Peter Mohr Utah State University Tel Aviv University National Institute of Standards & Physics Dept

  3. Physics Division progress report for period ending September 30, 1987

    SciTech Connect

    Livingston, A.B.

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described.

  4. Spectral and Atomic Physics Analysis of Xenon L-Shell Emission From High Energy Laser Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.

    2016-10-01

    The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  5. A note on black-hole physics, cosmic censorship, and the charge-mass relation of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-02-01

    Arguing from the cosmic censorship principle, one of the fundamental cornerstones of black-hole physics, we have recently suggested the existence of a universal upper bound relating the maximal electric charge of a weakly self-gravitating system to its total mass: Z(A)≤slant {Z}*(A)\\equiv {α }-1/3{A}2/3, where Z is the number of protons in the system, A is the total baryon (mass) number, and α ={e}2/{{\\hslash }}c is the dimensionless fine-structure constant. In order to test the validity of this suggested bound, we here explore the Z(A) functional relation of atomic nuclei as deduced from the Weizsäcker semi-empirical mass formula. It is shown that all atomic nuclei, including the meta-stable maximally charged ones, conform to the suggested charge-mass upper bound. Our results support the validity of the cosmic censorship conjecture in black-hole physics.

  6. The application of atomic physics within impurity diagnostics for fusion plasmas

    SciTech Connect

    Loch, S. D.; Ballance, C. P.; Pindzola, M. S.; Griffin, D. C.

    2013-04-19

    With the focus of ITER on the transport and emission properties of tungsten, generating atomic data for complex species has received much interest. Focusing on impurity influx diagnostics, we discuss recent work on heavy species. Perturbative approaches do not work well for near neutral systems so non-perturbative data are required, presenting a particular challenge for these influx diagnostics. Recent results on Mo{sup +} are given as an illustration of how the diagnostic applications can guide the theoretical calculations for such systems.

  7. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  8. Physics and the New Games -- or Pretend You're an Atom.

    ERIC Educational Resources Information Center

    Edge, Ronald D.

    1982-01-01

    Describes several games in which physics principles are demonstrated using students. These include Pirates Treasure Game (vectors), Three-Meter Dash (kinematics), Knee-Bend Game (energy and power), Wave Game, Reaction Kinematics, Statics-People Pyramids, and games demonstrating nuclear reactions, collisions, electrons in a wire, close packing, and…

  9. Davisson-Germer Prize Talk: Many-Body Physics with Atomic Fermions

    NASA Astrophysics Data System (ADS)

    Hulet, Randall

    2016-05-01

    Ultracold atomic gases confined to optical lattices have proven to be highly versatile and tunable systems for realizing novel quantum states of matter. We are using Fermi gases of 6 Li atoms in our laboratory to explore several goals related to the strong correlations that arise in these systems. We have realized the Hubbard model, which has long been suspected of containing the essential ingredients of high temperature superconductivity. We measured the compressibility of the Mott insulating phase that occurs near half filling (1 atom/site), thus demonstrating the excitation gap of the Mott insulator. Progress in this field, however, has been hampered by an inability to cool to low enough temperatures to achieve the most ambitious goals. To address this problem, we have developed the compensated optical lattice method to enable evaporative cooling in the lattice. With this method, we have cooled the Mott insulator sufficiently far to observe short-range antiferromagnetic correlations using Bragg scattering of light. We are currently exploring new methods for entropy storage and redistribution to achieve even lower entropy in the antiferromagnetic phase. Motivated by the enhancement of quantum correlations in low dimensions, we are also exploring Fermi gases in quasi-one-dimension (1D). A deep 2D optical lattice produces an array of 1D tubes which can be weakly coupled by reducing the lattice depth, thus increasing the lattice hopping t between them. We observe a crossover from 1D-like to 3D-like behavior in the phase separation of a spin-imbalanced Fermi gas with increasing t. While this crossover occurs at a value of t that depends on interaction, we find that the crossover location is universally dependent upon the scaled hopping t /ɛb , where ɛb is the pair binding energy. Finally, I will also report progress on measuring the speed of sound of the charge and spin modes in a 1D Fermi gas. Work supported by an ARO MURI, NSF, and the Robert A Welch Foundation.

  10. The physics of the environmental sensitivity of rubidium gas cell atomic frequency standards

    NASA Technical Reports Server (NTRS)

    Riley, William J.

    1990-01-01

    Environmental sensitivity is often the most significant limitation to the practical stability of rubidium frequency standards (RFS). For example, temperature sensitivity can cause a rapid frequency change of several parts in 10(exp 10) for a tactical RFS that has an aging of only 1 times 10(exp -11)/month. Other important environmental factors are barometric pressure, vibration, magnetic field, and nuclear radiation. The physical mechanisms that lie behind these environmental sensitivities are considered. These physical mechanisms are related to the performance of actual rubidium frequency standards. For the user of these devices, a better knowledge of the causes for Rb clock instability will aid in their testing and proper application. For the time frequency specialist, a review of these factors may prove useful toward improving RFS design. Some of the RFS environmental sensitivities are due to simple physical mechanisms like the effect of dc magnetic field on the Rb hyperfine resonance frequency. For these, an analysis can be based on physical principles and straightforward design factors. Other environment factors, like temperature sensitivity, are more complex combinations of many effects, both physical and practical, and the analysis often takes the form of an error budget with large unit-to-unit variations. Today's rubidium frequency standards span a wide performance range from small, inexpensive units with pp 10(exp 10) error budgets to larger, higher performance versions offering pp 10(exp 10) stabilities. For both extremes, however, environmental sensitivity can be the most significant performance limitation. Why this is the case and how to make improvements are discussed.

  11. Point defect dynamics in MOSFETs -- From atomic-scale physics to engineering models

    NASA Astrophysics Data System (ADS)

    Pantelides, Sokrates T.

    2003-03-01

    Dopant impurities are the key ingredient that makes semiconductors so useful in microelectronics. Other point defects, e.g., vacancies and self-interstitial, play major roles in mediating diffusion, which can be both good and bad. Hydrogen is another element that is very useful in passivating point defects at the Si-SiO2 interface of metal-oxide-semiconductor field-effect transistors (MOSFETs), but it also lurks dormant in all kinds of places. Oxygen vacancies also abound dormant and benign in the SiO2 gate layer, but both hydrogen and oxygen vacancies reveal sinister personas when radiation strikes (as in space electronics). This talk will give a brief account of how, over the last few decades, atomic-scale quantum mechanical calculations have impacted the process of constructing engineering models that are used in technology development and then focus on recent results on point defect dynamics in MOSFETs, some of which have been fed into engineering models.

  12. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    NASA Astrophysics Data System (ADS)

    Johns, H. M.; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Brown, C. R. D.; Morton, J. W.; Hager, J. D.; Sherrill, M. E.

    2016-11-01

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi6O12 at 75 mg/cm3 density). We have determined that in the 50-200 eV Te range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for Te = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to Te changes of ˜3 eV.

  13. Physical adsorption: rare gas atoms on solid surfaces. Progress report, June 1, 1980-May 31, 1981

    SciTech Connect

    Cole, M.W.

    1981-02-01

    This project has entailed investigation of three areas during the current term: physical adsorption, photostimulated field emission (PSE), and phonon reflection at interfaces. The principal effort has been directed toward understanding interactions associated with physical adsorption and the associated properties of a film. The specific topics pursued include the detailed form of the long range interaction, the configuration space wave function, and the interaction between adatoms. Experimental confirmation of the last two come from neutron scattering and thermodynamic measurements, respectively. The research in PSE has yielded results which improve upon previous calculations. There is, however, a remaining disagreement with experiment; suggestions for the origin are discussed. The phonon reflection work is directed toward understanding the role of surface roughness, an important factor in increasing the energy transmission across interfaces. A formalism has been developed which will be evaluated in the future.

  14. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    SciTech Connect

    Not Available

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10/sup -12/ Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs.

  15. Atomic Force Microscopy of Physical and Chemical Processes at the Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Manne, Srinivas

    This thesis describes research using atomic force microscopy (AFM) to study dynamics of solid surfaces in contact with liquids. Specifically, three applications are described: electrochemistry (Chapters 1-3), crystal growth (Chapters 4 and 5), and biomineralization (Chapter 6). Chapter 1 shows the feasibility of using AFM to image metal atoms in liquid, which sets the stage for high -resolution electrochemistry. Chapter 2 describes methods to convert the standard AFM liquid cell into an electrochemical cell and shows images of a gold electrode during oxidation/reduction cycling. Chapter 3 follows an electroplating cycle, wherein copper is deposited from electrolyte onto a gold electrode and then stripped off. The surface lattice is shown to change from that of bulk gold to bulk copper during plating, and back to bulk gold after stripping. Moreover, the first monolayer of copper--which deposits at an "underpotential", before the bulk deposition--is shown to have a lattice which differs from the bulk and is electrolyte dependent. Like electrochemistry, the study of crystal growth is also perfectly suited to a surface technique such as AFM. AFM makes it possible to image "elemental steps" (i.e., steps one unit cell thick) on a single crystal and quantify their motion during growth and dissolution. This is illustrated for the inorganic crystal calcite (Chapter 4) and the more fragile organic crystal L-leucine (Chapter 5). In both cases it is shown that step speed is independent of spacing between steps, indicating that motion occurs by direct interaction of the step-site molecules with the solvent. Chapter 5 also describes techniques for growing and imaging organic crystals. Living organisms also use crystal growth, modified by inorganic and organic additives, to grow mineralized structures such as bones, teeth and seashells. In Chapter 6, AFM reveals the three-dimensional structure of the nacreous or pearly layer of mollusc shells by slowly etching away successive

  16. Description of the programs and facilities of the Physics Division

    SciTech Connect

    Not Available

    1992-10-01

    The major emphasis of our experimental nuclear physics research is in Heavy-Ion Physics, centered at the recently completed ATLAS facility. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. In addition, the Division has strong programs in Medium-Energy Physics and in Weak-Interaction Physics as well as in accelerator development. Our nuclear theory research spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national scale. The Atomic Physics program, the largest of which is accelerator-based, primarily uses ATLAS, a 5-MV Dynamitron accelerator and a highly stable 150-kV accelerator. A synchrotron-based atomic physics program has recently been initiated with current research with the National Synchrotron Light Source in preparation for a program at the Advanced Photon Source, at Argonne. The principal interests of the Atomic Physics program are in the interactions of fast atomic and molecular ions with solids and gases and in the laser spectroscopy of exotic species. The program is currently being expanded to take advantage of the unique research opportunities in synchrotron-based research that will present themselves when the Advanced Photon Source comes on line at Argonne. These topics are discussed briefly in this report.

  17. Threshold Laws for Two-Electron Ejection Processes: A Still Controversial Problem in Atomic Physics

    NASA Technical Reports Server (NTRS)

    Temkin, Aaron

    2003-01-01

    This talk deals with collision processes of the following kind: (a) an ionizing collision of an electron with a neutral atom, (b) a photon incident of a negative ion resulting in two-electron ejection. In both cases the final state is a positive ion and two outgoing electrons, and in principle both processes should be governed by the same form of threshold law. It is generally conceded that this is one of the most difficult basic problems in nonrelativistic quantum mechanics. The standard treatment (due to Wannier) will be briefly reviewed in terms of the derivation of his well- known threshold law for the yield (Q) of positive ions vs. the excess energy (E): Q(sub w) varies as E(exp 1.127...). The derivation is a brilliant analysis based on Newton's equations, leading to the dominance of events in which the two electrons emerge on opposite sides of the residual ion with similar energies. In contrast, I will argue on the basis of quantum mechanical ideas that in the threshold limit the more likely outcome are events in which the electrons emerge with decidedly different energies, leading to a formally different (Coulomb-dipole) threshold law Q(sub CD) varies as E(1 + C sin(alpha ln(E)+mu)]/[ln(E)](exp 2). Additional aspects of that approach will be discussed . Some: experimental results will be presented, and more incisive predictions involving polarized projectiles and targets will be given.

  18. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  19. First atomic physics experiments with cooled stored ion beams at the Heidelberg heavy-ion ring TSR

    SciTech Connect

    Wolf, A.; Balykin, V.; Baumann, W.; Berger, J.; Bisoffi, G.; Blatt, P.; Blum, M.; Faulstich, A.; Friedrich, A.; Gerhard, M.; Geyer, C.; Grieser, M.; Grieser, R.; Habs, D.; Heyng, H.W.; Hochadel, B.; Holzer, B.; Huber, G.; Jaeschke, E.; Jung, M.; Karafillidis, A.; Kilgus, G.; Klein, R.; Kraemer, D.; Krause, P.; Krieg, M.; Kuehl, T.; Matl, K.; Mueller, A.; Music, M.; Neumann, R.; Neureither, G.; Ott, W.; Petrich, W.; Povh, B.; Repnow, R.; Schroeder, S.; Schuch, R.; Schwalm, D.; Sigray, P.; Steck, M.; Stokstad, R.; Szmola, E.; Wagner, M.; Wanner, B.; Welti, K.; Zwickler, S. Max-Planck-Institut fuer Kernphysik, Heidelberg Manne Siegbahn Institute , Stockholm Institut fuer Kernphysik, Universitaet Giessen, Institut fuer Physik, Universitaet Mainz Gesellschaft fuer Schwerionenforschung , Darmstadt (Fed

    1990-06-01

    An overview of atomic physics experiments at the heavy ion Test Storage Ring (TSR) is given. Highly charged ions up to fully stripped silicon have been stored at energies between 4 and 12 MeV/u. The enhancement of the beam intensity by stacking, the beam lifetime, and electron cooling of these ion beams are discussed. Radiative and state-selective dielectronic recombination rates of hydrogen-like oxygen ions with free electrons from the electron cooler were measured. Beam noise spectra are being investigated with regard to collective effects caused by the Coulomb interaction in the cold ion beams. Resonance fluorescence from stored single-charged ions was observed using tunable narrow-band lasers. First indications of laser cooling in a storage ring were seen.

  20. A new data acquisition system for Schottky signals in atomic physics experiments at GSI's and FAIR's storage rings

    NASA Astrophysics Data System (ADS)

    Trageser, C.; Brandau, C.; Kozhuharov, C.; Litvinov, Yu A.; Müller, A.; Nolden, F.; Sanjari, S.; Stöhlker, T.

    2015-11-01

    A new continuous and broadband data acquisition system for measurements of Schottky-signals of ions revolving in a storage ring has been implemented. This set-up is capable of recording the radio frequency (RF) signal of the ions that circulate in the storage ring with a sustained acquisition rate of more than 3.5× {10}7 IQ-samples per second. This allows several harmonics of the full momentum acceptance of a storage ring to be measured at the same time. The RF signal analyzer modules are complemented by further electronic modules such as counters, precision clocks and synchronization modules that facilitate a seamless integration with main experimental data acquisitions for atomic and nuclear physics. In this contribution, the setup and first results from a test run at the experimental storage ring at GSI, Darmstadt, Germany, are presented.

  1. Atomic radiations in the decay of medical radioisotopes: a physics perspective.

    PubMed

    Lee, B Q; Kibédi, T; Stuchbery, A E; Robertson, K A

    2012-01-01

    Auger electrons emitted in nuclear decay offer a unique tool to treat cancer cells at the scale of a DNA molecule. Over the last forty years many aspects of this promising research goal have been explored, however it is still not in the phase of serious clinical trials. In this paper, we review the physical processes of Auger emission in nuclear decay and present a new model being developed to evaluate the energy spectrum of Auger electrons, and hence overcome the limitations of existing computations.

  2. Atomic Radiations in the Decay of Medical Radioisotopes: A Physics Perspective

    PubMed Central

    Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Robertson, K. A.

    2012-01-01

    Auger electrons emitted in nuclear decay offer a unique tool to treat cancer cells at the scale of a DNA molecule. Over the last forty years many aspects of this promising research goal have been explored, however it is still not in the phase of serious clinical trials. In this paper, we review the physical processes of Auger emission in nuclear decay and present a new model being developed to evaluate the energy spectrum of Auger electrons, and hence overcome the limitations of existing computations. PMID:22924061

  3. Physical bounds of metallic nanofingers obtained by mechano-chemical atomic force microscope nanolithography

    NASA Astrophysics Data System (ADS)

    Akhavan, O.; Abdolahad, M.

    2009-01-01

    To obtain metallic nanofingers applicable in surface acoustic wave (SAW) sensors, a mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness)/piezoelectric substrate covered by a spin-coated polymeric mask layer (50-60 nm in thickness) was implemented. The effective shape of cross-section of the before and after etching grooves have been determined by using the AFM tip deconvolution surface analysis, structure factor, and power spectral density analyses. The wet-etching process improved the shape and aspect ratio (height/width) of the grooves and also smoothed the surface within them. We have shown that the relaxed surface tension of the polymeric mask layer resulted in a down limitation in width and length of the lithographed nanofingers. The surface tension of the mask layer can be changed by altering the initial concentration of the polymer in the deposition process. As the surface tension reduced, the down limitation decreased. In fact, an extrapolation of the analyzed statistical data has indicated that by decreasing the surface tension from 39 to 10 nN/nm, the minimum obtainable width and length of the metallic nanofingers was changed from about 55 nm and 2 μm to 15 nm and 0.44 μm, respectively. Using the extrapolation's results, we have shown that the future SAW sensors buildable by this nanolithography method possess a practical bound in their synchronous frequency (˜58 GHz), mass sensitivity (˜6125 MHz-mm 2/ng), and the limit of mass resolution (˜4.88 × 10 -10 ng/mm 2).

  4. Metal intoxication in humans assessed by atomic and nuclear physics techniques

    NASA Astrophysics Data System (ADS)

    Chettle, David R.

    1995-08-01

    Toxic trace elements such as lead (Pb) and Cadmium (Cd) can be measured non-invasively in humans by radiation physics techniques, particularly x-ray fluorescence and neutron activation. An analysis is usually made of the content of a particular organ, representing the principal storage site of the element in question. For example, Pb is measured in bone, whereas Cd is measured in liver and kidney. Measuring stored quantities of these elements has contributed to assessment of health effects of chronic occupational and environmental exposure. In addition knowledge of the elemental metabolism has been significantly extended. Results of in vivo studies have also contributed to assessment and regulation of workplace exposure. Analogous methods are in use or under development for in vivo assay of mercury, aluminum, gold, platinum, and manganese. The principles of these measurements will be outlined and illustrative applications for Pb and Cd will be discussed.

  5. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator.

    PubMed

    Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.

  6. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator

    NASA Astrophysics Data System (ADS)

    Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.

  7. Ultracold atoms and their applications (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 28 October 2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Ultracold atoms and their applications", was held in the conference hall of the Lebedev Physical Institute, RAS, on 28 October 2015.The papers collected in this issue were written based on talks given at the session:(1) Vishnyakova G A, Golovizin A A, Kalganova E S, Tregubov D O, Khabarova K Yu (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Sorokin V N, Sukachev D D, Kolachevsky N N (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Ultracold lanthanides: from optical clock to a quantum simulator"; (2) Barmashova T V, Martiyanov K A, Makhalov V B (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod), Turlapov A V (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod) "Fermi liquid to Bose condensate crossover in a two-dimensional ultracold gas experiment"; (3) Taichenachev A V, Yudin V I, Bagayev S N (Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects"; (4) Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A (Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information". • Ultracold lanthanides: from optical clock to a quantum simulator, G A Vishnyakova, A A Golovizin, E S Kalganova, V N Sorokin, D D Sukachev, D O Tregubov, K Yu Khabarova, N N Kolachevsky Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 168-173 • Fermi liquid-to-Bose condensate crossover in a two

  8. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions.

    PubMed

    Elliot, Alan J; Malek, Gary A; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ~1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  9. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    SciTech Connect

    Elliot, Alan J. E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z. E-mail: jwu@ku.edu; Yu, Haifeng; Zhao, Shiping

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  10. The Light at the End of the Tunnel: Uncertainties in Atomic Physics, Bayesian Inference, and the Analysis of Solar and Stellar Observations

    NASA Astrophysics Data System (ADS)

    Warren, Harry

    2016-05-01

    We report on the efforts of a multidisciplinary International Space Science Institute team that is investigating the limits of our ability to infer the physical properties of solar and stellar atmospheres from remote sensing observations. As part of this project we have estimated the uncertainties in the collisional cross sections and radiative decay rates for Fe XIII and O VII and created 1000 realizations of the CHIANTI atomic database. These perturbed atomic data are then used to analyze solar observations from the EIS spectrometer on Hinode and stellar observations from the LETG on Chandra within a Bayesian framework. For the solar case we find that the systematic errors from the atomic physics dominate the statistical uncertainties from the observations. For many cases the uncertainties are about 10 times larger when variations in the atomic data are included. This indicates the need for very accurate atomic physics. Comparisons among recent Fe XIII calculations suggest that for some transitions the collision rates are currently known well enough to measure the electron density and emission measure to about 15%.

  11. A Reconstruction of Structure of the Atom and Its Implications for General Physics Textbooks: A History and Philosophy of Science Perspective

    ERIC Educational Resources Information Center

    Rodriguez, Maria A.; Niaz, Mansoor

    2004-01-01

    Recent research in science education has recognized the importance of history and philosophy of science. The objective of this study is to evaluate the presentation of the Thomson, Rutherford, and Bohr models of the atom in general physics textbooks based on criteria derived from history and philosophy of science. Forty-one general physics…

  12. An investigation into the effect of spray drying temperature and atomizing conditions on miscibility, physical stability, and performance of naproxen-PVP K 25 solid dispersions.

    PubMed

    Paudel, Amrit; Loyson, Yves; Van den Mooter, Guy

    2013-04-01

    The present study investigates the effect of changing spray drying temperature (40°C-120°C) and/or atomizing airflow rate (AR; 5-15 L/min) on the phase structure, physical stability, and performance of spray-dried naproxen-polyvinylpyrrolidone (PVP) K 25 amorphous solid dispersions. The modulated differential scanning calorimetry, attenuated total internal reflectance-Fourier transform infrared, and powder X-ray diffractometry (pXRD) studies revealed that higher inlet temperature (IT) or atomization airflow leads to the formation of amorphous-phase-separated dispersions with higher strongly H-bonded and free PVP fractions, whereas that prepared with the lowest IT was more homogeneous. The dispersion prepared with the lowest atomization AR showed trace crystallinity. Upon exposure to 75% relative humidity (RH) for 3 weeks, the phase-separated dispersions generated by spray drying at higher temperature or higher atomization airflow retained relatively higher amorphous drug fraction compared with those prepared at slow evaporation conditions. The humidity-controlled pXRD analysis at 98% RH showed that the dispersion prepared with highest atomization AR displayed the slowest kinetics of recrystallization. The molecular-level changes occurring during recrystallization at 98% RH was elucidated by spectroscopic monitoring at the same humidity. The rate and extent of the drug dissolution was the highest for dispersions prepared at the highest atomizing AR and the lowest for that prepared with the slowest atomizing condition.

  13. PREFACE: The 19th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases Preface: The 19th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases

    NASA Astrophysics Data System (ADS)

    Gordillo-Vazquez, F. J.

    2009-07-01

    The 19th Europhysics Sectional Conference on the Atomic and Molecular Physics of Ionized Gases (ESCAMPIG-2008) took place in Granada (Spain) from 15 to 19 July 2008. The conference was mainly organized by the Spanish National Research Council (CSIC), with the collaboration and support of the University of Córdoba (UCO) and the Research Center for Energy, Environment and Technology (CIEMAT). It is already 35 years since the first ESCAMPIG in 1973. The first editions of ESCAMPIG were in consecutive years (1973 and 1974) but later on it became a biennial conference of the European Physical Society (EPS) initially focusing on the collisional and radiative atomic and molecular processes in low temperature plasmas. The successive ESCAMPIGs took place in Bratislava in 1976 (3rd), Essen in 1978 (4th), Dubrovnik in 1980 (5th) and so on until the last one organized in Granada in 2008 (19th), the first ESCAMPIG in Spain. A number of changes have taken place in the Granada edition of ESCAMPIG. First, the previous six topics that have remained unchanged for almost two decades (since 1990) have now been updated to become twelve new topics which, in the opinion of the International Scientific Committee (ISC), will enhance the opportunity for discussions and communication of new findings and developments in the field of low temperature plasmas. The new list of topics for ESCAMPIG is: • Atomic and molecular processes in plasmas • Transport phenomena, particle velocity distribution function • Physical basis of plasma chemistry • Plasma surface interaction (boundary layers, sheath, surface processes) • Plasma diagnostics • Plasma and dicharges theory and simulation • Self-organization in plasmas, dusty plasmas • Upper atmospheric plasmas and space plasmas • Low pressure plasma sources • High pressure plasma sources • Plasmas and gas flows • Laser produced plasmas Secondly, a new prize has been created, the `William Crookes' prize in Plasma Physics to be

  14. EDITORIAL: The 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases The 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran Lj; Marić, Dragana; Malović, Gordana

    2011-03-01

    This special issue consists of papers that are associated with invited lectures, workshop papers and hot topic papers presented at the 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG XX). This conference was organized in Novi Sad (Serbia) from 13 to 17 July 2010 by the Institute of Physics of the University of Belgrade. It is important to note that this is not a conference 'proceedings'. Following the initial selection process by the International Scientific Committee, all papers were submitted to the journal by the authors and have been fully peer reviewed to the standard required for publication in Plasma Sources Science and Technology (PSST). The papers are based on presentations given at the conference but are intended to be specialized technical papers covering all or part of the topic presented by the author during the meeting. The ESCAMPIG conference is a regular biennial Europhysics Conference of the European Physical Society focusing on collisional and radiative aspects of atomic and molecular physics in partially ionized gases as well as on plasma-surface interaction. The conference focuses on low-temperature plasma sciences in general and includes the following topics: Atomic and molecular processes in plasmas Transport phenomena, particle velocity distribution function Physical basis of plasma chemistry Plasma surface interaction (boundary layers, sheath, surface processes) Plasma diagnostics Plasma and discharges theory and simulation Self-organization in plasmas, dusty plasmas Upper atmospheric plasmas and space plasmas Low-pressure plasma sources High-pressure plasma sources Plasmas and gas flows Laser-produced plasmas During ESCAMPIG XX special sessions were dedicated to workshops on: Atomic and molecular collision data for plasma modeling, organized by Professors Z Lj Petrovic and N Mason Plasmas in medicine, organized by Dr N Puac and Professor G Fridman. The conference topics were represented in the

  15. Mechanical, thermal, and physical properties of Mg-Ca compounds in the framework of the modified embedded-atom method.

    PubMed

    Groh, Sébastien

    2015-02-01

    Interatomic potentials for pure Ca and the Mg-Ca binary have been developed in the framework of the second nearest-neighbors modified embedded-atom method (MEAM). The validity and the transferability of the Ca MEAM potential was performed by calculating physical, mechanical, and thermal properties. These properties were compared to experimental data and numerical data obtained from existing Ca potentials, and a good agreement was found. In addition, the dissociation of the edge dislocation into two Shockley partials aligns with the linear elasticity solution. Furthermore, the velocity of an edge dislocation under static and dynamics loading conditions predicted in Ca using the MEAM formalism reproduces the expected behavior of an edge dislocation in fcc crystal structures. The Ca MEAM potential was then coupled to an existing Mg MEAM potential to describe the properties of the Mg-Ca alloys. Heat of formation, structural energy difference, and elastic constants were calculated for several ordered Mg-Ca compounds containing different concentrations of Ca. As expected from first-principle calculations based on DFT, Mg2Ca with the Laves phase C14 was found to be the most stable structure with the lowest heat of formation compared to compounds with other Ca concentrations (Mg3Ca, MgCa, and MgCa3). Moreover, the mechanical stability was recovered for the different tested compounds and is in agreement with first-principle data.

  16. Final Report: Particle Physics Research Program

    SciTech Connect

    Karchin, Paul E.

    2011-09-01

    We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

  17. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    PubMed

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  18. The Nature of Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  19. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  20. Lars Onsager Prize Talk: A New Challenge for Cold Atom Physics: Achieving the Strongly Correlated Regimes for Cold Atoms in Optical Lattices.

    NASA Astrophysics Data System (ADS)

    Ho, Tin-Lun

    2008-03-01

    Cold atoms in optical lattices show great promise to generate a whole host of new strongly correlated states and to emulate many theoretical models for strongly interacting electronic systems. However, to reach these strongly correlated regimes, we need to reach unprecedented low temperatures within current experimental settings. To achieve this, it is necessary to remove considerable amount of entropy from the system. Here, we point out a general principle for removing entropies of quantum gases in optical lattices which will allow one to reach some extraordinarily low temperature scales.

  1. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  2. International Conference on Atomic Physics: Abstracts of Contributed Papers (12th) Held in Ann Arbor, Michigan on 29 July-3 August 1990

    DTIC Science & Technology

    1990-09-26

    the local physics of the 2 1Ne nucleus . Systematic variations of the quadrupole component at multiples of the earth’s solar frequency do arise, mostly...equation is justified when the thermalization by wal Collisions drives the atomic velocity distribution to equilibrium on a time scale that is slow...inelastic cavity collisions in which particles can either lose energy or annihilate for a distribution of initial o-Ps energies. We expect such a

  3. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  4. Improving fundamental abilities of atomic force microscopy for investigating quantitative nanoscale physical properties of complex biological systems

    NASA Astrophysics Data System (ADS)

    Cartagena-Rivera, Alexander X.

    Measurements of local material properties of complex biological systems (e.g. live cells and viruses) in their respective physiological conditions are extremely important in the fields of biophysics, nanotechnology, material science, and nanomedicine. Yet, little is known about the structure-function-property relationship of live cells and viruses. In the case of live cells, the measurements of progressive variations in viscoelastic properties in vitro can provide insight to the mechanistic processes underpinning morphogenesis, mechano-transduction, motility, metastasis, and many more fundamental cellular processes. In the case of living viruses, the relationship between capsid structural framework and the role of the DNA molecule interaction within viruses influencing their stiffness, damping and electrostatic properties can shed light in virological processes like protein subunits assembly/dissassembly, maturation, and infection. The study of mechanics of live cells and viruses has been limited in part due to the lack of technology capable of acquiring high-resolution (nanoscale, subcellular) images of its heterogeneous material properties which vary widely depending on origin and physical interaction. The capabilities of the atomic force microscope (AFM) for measuring forces and topography with sub-nm precision have greatly contributed to research related to biophysics and biomechanics during the past two decades. AFM based biomechanical studies have the unique advantage of resolving/mapping spatially the local material properties over living cells and viruses. However, conventional AFM techniques such as force-volume and quasi-static force-distance curves are too low resolution and low speed to resolve interesting biophysical processes such as cytoskeletal dynamics for cells or assembly/dissasembly of viruses. To overcome this bottleneck, a novel atomic force microscopy mode is developed, that leads to sub-10-nm resolution and sub-15-minutes mapping of local

  5. Reviews Book: Sustainable Energy—Without the Hot Air Equipment: Doppler Effect Unit Book: The Physics of Rugby Book: Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Equipment: Brunel Eyecam Equipment: 200x Digital Microscope Book: The Atom and the Apple: Twelve Tales from Contemporary Physics Book: Physics 2 for OCR Web Watch

    NASA Astrophysics Data System (ADS)

    2009-09-01

    WE RECOMMEND Sustainable Energy—Without the Hot Air This excellent book makes sense of energy facts and figures Doppler Effect Unit Another simple, effective piece of kit from SEP Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Intriguing and unique write-up of an intellectual fraud case Brunel Eyecam An affordable digital eyepiece for your microscope 200x Digital Microscope An adjustable digital flexcam for classroom use The Atom and the Apple: Twelve Tales from Contemporary Physics A fascinating round-up of the recent history of physics WORTH A LOOK The Physics of Rugby Book uses sport analogy and context to teach physics concepts Physics 2 for OCR Essential textbook for the course but otherwise pointless WEB WATCH Some free teaching materials are better than those you'd pay for

  6. PREFACE: 6th Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS11)

    NASA Astrophysics Data System (ADS)

    Lupi, Stefano; Perucchi, Andrea

    2012-05-01

    This volume of Journal of Physics: Conference Series is dedicated to a subset of papers related to the work presented at the 6th edition of the international Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS), held in Trieste, Italy, September 4-8 2011. Previous editions of the conference were held in Porquerolles (France), Lake Tahoe (USA), Rathen (Germany), Awaji (Japan), and Banff (Canada). This edition was organized and chaired by Stefano Lupi (Roma La Sapienza) and co-chaired by Andrea Perucchi (Elettra), with the support of the Italian Synchrotron Light Laboratory ELETTRA, which was honored to host the WIRMS workshop in its tenth anniversary. The 6th WIRMS edition addressed several different topics, ranging from biochemistry to strongly correlated materials, from geology to conservation science, and from forensics to the study of cometary dusts. Representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities. This edition was attended by 88 participants, including representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities, who enjoyed the stimulating scientific presentations, several detailed discussions, and the beautiful weather and scenery of the Trieste gulf. Participants came from 16 different nations and four continents, including many young scientists, six of which were supported by the organizers. There were 45 scientific talks divided in 11 sessions: Facilities, Microspectroscopy (I, II, III), Time-Resolved Spectroscopies, Extreme Conditions, Condensed Matter, Near-Field, Imaging, THz Techniques and High-Resolution Spectroscopy. 37 posters were also presented at two very lively evening poster sessions. We would like to use the opportunity of writing this preface to thank all the participants of the workshop for the very high level of their scientific contribution and for the very friendly atmosphere

  7. 2004 Rahman Prize in Computational Physics: HOW DO SOLIDS FAIL? A Research Adventure Using Lots Of Atoms And Big Computers

    NASA Astrophysics Data System (ADS)

    Abraham, Farid

    2004-03-01

    During the last decade, I have been simulating the dynamic failure of brittle and ductile solids at the atomic level using millions of atoms and some of the world's fastest computers. Computer experiments encompassing crack dynamics in brittle fracture, crack blunting in ductile failure, and dislocation entanglement in work-hardening are some examples and have given new and exciting insights into the failure processes of solids. My goal is to give the audience an appreciation for the power of atomistic simulations, coupled with visualization, in studying "how solids fail."

  8. Physics Division progress report for period ending September 30, 1990

    SciTech Connect

    Livingston, A.B.

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source.

  9. Physics Division progress report for period ending September 30, 1984

    SciTech Connect

    Livingston, A.B.

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  10. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures.

    PubMed

    Lobascio, C; Briccarello, M; Destefanis, R; Faraud, M; Gialanella, G; Grossi, G; Guarnieri, V; Manti, L; Pugliese, M; Rusek, A; Scampoli, P; Durante, M

    2008-03-01

    Shielding is the only practical countermeasure for the exposure to cosmic radiation during space travel. It is well known that light, hydrogenated materials, such as water and polyethylene, provide the best shielding against space radiation. Kevlar and Nextel are two materials of great interest for spacecraft shielding because of their known ability to protect human space infrastructures from meteoroids and debris. We measured the response to simulated heavy-ion cosmic radiation of these shielding materials and compared it to polyethylene, Lucite (PMMA), and aluminum. As proxy to galactic nuclei we used 1 GeV n iron or titanium ions. Both physics and biology tests were performed. The results show that Kevlar, which is rich in carbon atoms (about 50% in number), is an excellent space radiation shielding material. Physics tests show that its effectiveness is close (80-90%) to that of polyethylene, and biology data suggest that it can reduce the chromosomal damage more efficiently than PMMA. Nextel is less efficient as a radiation shield, and the expected reduction on dose is roughly half that provided by the same mass of polyethylene. Both Kevlar and Nextel are more effective than aluminum in the attenuation of heavy-ion dose.

  11. Comparison of accelerator-based with reactor-based waste transmutation schemes

    SciTech Connect

    Sailor, W.C.; Beard, C.A.; Venneri, F.; Davidson, J.W.

    1993-12-01

    Accelerator-based transmutation of waste (ATW) systems for the destruction of commercial LWR spent fuel are compared with systems based on thermal reactors accomplish the same objectives. When the same technology is assumed for the actinide-burning aspect of the two systems, it is seen that the size of the accelerator is determined only by the choice of how many of the long-lived fission products to burn. if none are transmuted, then the accelerator is not necessary. This result is independent of the choice of fluid carrier, and whether the actinides are destroyed in an ATW system or in a separate reactor.

  12. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  13. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  14. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  15. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  16. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  17. The Atomic Intrinsic Integration Approach: A Structured Methodology for the Design of Games for the Conceptual Understanding of Physics

    ERIC Educational Resources Information Center

    Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra

    2012-01-01

    Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…

  18. News UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2014-05-01

    UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

  19. Flawed Nuclear Physics and Atomic Intelligence in the Campaign to deny Norwegian Heavy Water to Germany, 1942-1944

    NASA Astrophysics Data System (ADS)

    Børresen, Hans Christofer

    2012-12-01

    The military campaign to deny Norwegian heavy water to Germany in World War II did not diminish as the threat posed by heavy water in German hands dwindled, mainly because of excessive security among the Allies. Signs that Albert Speer (1905-1981) had decided in 1942 to stop the German atomic-bomb project were kept secret and ignored. Prominent Allied advisers like Leif Tronstad (1903-1945) and even Niels Bohr (1885-1962) were not told about the plutonium path to a German atomic bomb. Physicists did not brief advisers, decision makers, and Allied officers on how many years Werner Heisenberg (1901-1976) would need to accumulate enough heavy water (deuterium oxide, D2O) for an Uranmachine and then to extract and process plutonium for an atomic bomb. Had the flow of information been better, the military raids on the Norwegian heavy-water plant at Vemork could have been timed better, and the more costly of them could have been averted altogether.

  20. Pedestrian movement analysis in transfer station corridor: Velocity-based and acceleration-based

    NASA Astrophysics Data System (ADS)

    Ji, Xiangfeng; Zhang, Jian; Hu, Yongkai; Ran, Bin

    2016-05-01

    In this paper, pedestrians are classified into aggressive and conservative ones by their temper. Aggressive pedestrians' walking through crowd in transfer station corridor is analyzed. Treating pedestrians as particles, this paper uses the modified social force model (MSFM) as the building block, where forces involve self-driving force, repulsive force and friction force. The proposed model in this paper is a discrete model combining the MSFM and cellular automata (CA) model, where the updating rules of the CA are redefined with MSFM. Due to the continuity of values generated by the MSFM, we use the fuzzy logic to discretize the continuous values into cells pedestrians can move in one step. With the observation that stimulus around pedestrians influences their acceleration directly, an acceleration-based movement model is presented, compared to the generally reviewed velocity-based movement model. In the acceleration-based model, a discretized version of kinematic equation is presented based on the acceleration discretized with fuzzy logic. In real life, some pedestrians would rather keep their desired speed and this is also mimicked in this paper, which is called inertia. Compared to the simple triangular membership function, a trapezoidal membership function and a piecewise linear membership function are used to capture pedestrians' inertia. With the trapezoidal and the piecewise linear membership function, many overlapping scenarios should be carefully handled and Dubois and Prade's four-index method is used to completely describe the relative relationship of fuzzy quantities. Finally, a simulation is constructed to demonstrate the effect of our model.

  1. Secondary photon fields produced in accelerator-based sources for neutron generation.

    PubMed

    Agosteo, S; Cesana, A; Garlati, L; Pola, A; Terrani, M

    2005-01-01

    Neutrons can be produced with low-energy ion accelerators for many applications, such as the characterisation of neutron detectors, the irradiation of biological samples and the study of the radiation damage in electronic devices. Moreover, accelerator-based neutron sources are under development for boron neutron capture therapy (BNCT). Thin targets are used for generating monoenergetic neutrons, while thick targets are usually employed for producing more intense neutron fields. The associated photon field produced by the target nuclei may have a strong influence on the application under study. For instance, these photons can play a fundamental role in the design of an accelerator-based neutron source for BNCT. This work focuses on the measurement of the photon field associated with neutrons that are produced by 4.0-6.8 MeV protons striking both a thin 7LiF target (for generating monoenergetic neutrons) and a thick beryllium target. In both cases, very intense photon fields are generated with energy distribution extending up to several MeV.

  2. Greek Atomic Theory.

    ERIC Educational Resources Information Center

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  3. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials.

    PubMed

    Yan, Liang; Zheng, Yue Bing; Zhao, Feng; Li, Shoujian; Gao, Xingfa; Xu, Bingqian; Weiss, Paul S; Zhao, Yuliang

    2012-01-07

    Graphene has attracted great interest for its superior physical, chemical, mechanical, and electrical properties that enable a wide range of applications from electronics to nanoelectromechanical systems. Functionalization is among the significant vectors that drive graphene towards technological applications. While the physical properties of graphene have been at the center of attention, we still lack the knowledge framework for targeted graphene functionalization. In this critical review, we describe some of the important chemical and physical processes for graphene functionalization. We also identify six major challenges in graphene research and give perspectives and practical strategies for both fundamental studies and applications of graphene (315 references).

  4. X-ray sources such as metallic liner inside plastic cavities are used to test atomic physics models for LMJ simulations

    NASA Astrophysics Data System (ADS)

    Girard, Frederic; Jacquet, L.; Primout, M.; Babonneau, D.; Villette, B.; Stemmler, Ph.

    2009-11-01

    Bright multi-keV K-shell emission sources [1-3] are necessary for ICF studies such as radiography of dense materials. Our recent works with titanium (Heα at 4.7 keV) and germanium (Heα at 10.3 keV) lined cavities showed very high multi-keV x-ray conversion efficiencies up to 14.0% and 0.8% (respectively) [3]. Cavities with a titanium, copper or germanium liner have been used on the OMEGA laser facility in Rochester to test specifically atomic physics models coupled to hydrodynamic codes. Simulation results differ significantly from experimental conversion efficiencies for titanium liner but they are close together for germanium one. Atomic physics models do have great impact on X-ray output. The need for accurate predictive simulation is important in order to set up relevant radiography sources for experiments on the path to ignition. Multi-keV emission is diagnosed by a full set of diagnostics giving conversion efficiencies, time dependant x-ray power and imaging, time integrated imaging and high resolution spectra of titanium. [4pt] [1] D. Babonneau et al., Phys. Plasmas, 15, 092702, 2008 [0pt] [2] K. B. Fournier et al., Phys. Plasmas, 16 052703, 2009 [0pt] [3] F. Girard et al., Phys. Plasmas, 16, 052704, 2009

  5. Physics.

    ERIC Educational Resources Information Center

    Bromley, D. Allan

    1980-01-01

    The author presents the argument that the past few years, in terms of new discoveries, insights, and questions raised, have been among the most productive in the history of physics. Selected for discussion are some of the most important new developments in physics research. (Author/SA)

  6. Accelerator-based Neutron Fluence Standard of the National Metrology Institute of Japan

    NASA Astrophysics Data System (ADS)

    Harano, Hideki; Matsumoto, Tetsuro; Nishiyama, Jun; Uritani, Akira; Kudo, Katsuhisa

    2009-03-01

    We report the present status of the national standard on accelerator-based fast neutron fluences in Japan. Monoenergetic neutron fluence standards have been established at 144 keV, 565 keV, 5.0 MeV and 8.0 MeV by using a Van de Graaff accelerator and at 2.5 MeV and 14.8 MeV by using a Cockcroft Walton accelerator. These standards are prepared to measure the detection efficiency and the energy response of neutron sensitive devices, such as personal dosimeters and survey meters. Neutron production and absolute fluence measurement for these energies are described. We are developing a new standard in the energy region of a few tens of keV, which is also introduced here as well as our future plans.

  7. Shielding design of a treatment room for an accelerator-based neutron source for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1995-12-31

    For several years, research has been ongoing in the Ohio State University (OSU) Nuclear Engineering Program toward the development of an accelerator-based irradiation facility (ANIF) neutron source for boron neutron capture therapy (BNCT). The ANIF, which is planned to be built in a hospital, has been conceptually designed and analyzed. After Qu, an OSU researcher, determined that the shielding design of a 6-MV X-ray treatment room was inadequate to protect personnel from an accelerator neutron source operating at 30 mA, we decided to analyze and determine the shielding requirements of a treatment room for an ANIF. We determined the amount of shielding that would be sufficient to protect facility personnel from excessive radiation exposure caused by operation of the accelerator at 30 mA.

  8. Extending PowerPack for Profiling and Analysis of High Performance Accelerator-Based Systems

    SciTech Connect

    Li, Bo; Chang, Hung-Ching; Song, Shuaiwen; Su, Chun-Yi; Meyer, Timmy; Mooring, John; Cameron, Kirk

    2014-12-01

    Accelerators offer a substantial increase in efficiency for high-performance systems offering speedups for computational applications that leverage hardware support for highly-parallel codes. However, the power use of some accelerators exceeds 200 watts at idle which means use at exascale comes at a significant increase in power at a time when we face a power ceiling of about 20 megawatts. Despite the growing domination of accelerator-based systems in the Top500 and Green500 lists of fastest and most efficient supercomputers, there are few detailed studies comparing the power and energy use of common accelerators. In this work, we conduct detailed experimental studies of the power usage and distribution of Xeon-Phi-based systems in comparison to the NVIDIA Tesla and at SandyBridge.

  9. About the scheme of the infrared FEL system for the accelerator based on HF wells

    SciTech Connect

    Kabanov, V.S.; Dzergach, A.I.

    1995-12-31

    Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.

  10. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  11. Hardware acceleration based connected component labeling algorithm in real-time ATR system

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Zhi-yong

    2013-03-01

    Aims at the requirement of real-time processing in Real-Time Automatic Target Recognition(RTATR) system, this paper presents a hardware acceleration based two-scan connected-component labeling algorithm. Conventional pixel and run based algorithm's merits are combined, in the first scan, the pixel is processed scan unit while line as label unit, label equivalences are recorded while scanning the image by pixel. Lines with provisional label are outputted as the connected component labeling result. Then the union-find algorithm is used for resolving label equivalences and finds the representative label for each provisional label after the first scan. The labels are replaced in the second scan to complete the connected-component labeling. Experiments on RTATR platform demonstrate that the hardware acceleration implementation of algorithm reaches a higher performance and efficiency and consumes few resources. The implementation of proposed algorithm can meet the demand of real-time processing, and possesses a better practicability.

  12. Physical/chemical properties of tin oxide thin film transistors prepared using plasma-enhanced atomic layer deposition

    SciTech Connect

    Lee, Byung Kook; Jung, Eunae; Kim, Seok Hwan; Moon, Dae Chul; Lee, Sun Sook; Park, Bo Keun; Hwang, Jin Ha; Chung, Taek-Mo; Kim, Chang Gyoun; An, Ki-Seok

    2012-10-15

    Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO{sub 2}. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 10{sup 6} while the device mobility values were increased from 2.31 cm{sup 2}/V s to 6.24 cm{sup 2}/V s upon increasing the deposition temperature of the tin oxide films.

  13. Simulations of an accelerator-based shielding experiment using the particle and heavy-ion transport code system PHITS.

    PubMed

    Sato, T; Sihver, L; Iwase, H; Nakashima, H; Niita, K

    2005-01-01

    In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the Generalized Evaporation Model (GEM) for calculations of fission and evaporation processes, a model developed at NASA Langley for calculation of total reaction cross sections, and the SPAR model for stopping power calculations. The future development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, and improvement of the models used for calculating total reaction cross sections, and addition of routines for calculating elastic scattering of heavy ions, and inclusion of radioactivity and burn up processes. As a part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from <1 to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper, we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through thin slabs of polyethylene, Al, and Pb at an acceptance angle up to 4 degrees.

  14. Pegram Nuclear Physics Laboratories Progress Report for January 1969 through December 1969 to the United States Atomic Energy Commission

    DTIC Science & Technology

    1969-12-01

    determined to afflict 0.03 to 0.13 percent of Americans - about 600,000 people. (2) Red blood cells containing a predominance of abnormal sickle cell ... cells causes symptons of anemia (reduced oxygen carrying capacity of the blood ), hemolysis (increased blood destruction), and thrombosis (obstruction of...death often result from clogging of small capillaries by the elongated red blood IC. G. Jacobs et al., Physics Letters 29A, 498 (1969). 2A. Cantarow and

  15. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale.

    PubMed

    Picas, Laura; Milhiet, Pierre-Emmanuel; Hernández-Borrell, Jordi

    2012-12-01

    Atomic force microscopy (AFM) was developed in the 1980s following the invention of its precursor, scanning tunneling microscopy (STM), earlier in the decade. Several modes of operation have evolved, demonstrating the extreme versatility of this method for measuring the physicochemical properties of samples at the nanoscopic scale. AFM has proved an invaluable technique for visualizing the topographic characteristics of phospholipid monolayers and bilayers, such as roughness, height or laterally segregated domains. Implemented modes such as phase imaging have also provided criteria for discriminating the viscoelastic properties of different supported lipid bilayer (SLB) regions. In this review, we focus on the AFM force spectroscopy (FS) mode, which enables determination of the nanomechanical properties of membrane models. The interpretation of force curves is presented, together with newly emerging techniques that provide complementary information on physicochemical properties that may contribute to our understanding of the structure and function of biomembranes. Since AFM is an imaging technique, some basic indications on how real-time AFM imaging is evolving are also presented at the end of this paper.

  16. First Results of the GPS.DM Observatory: Search for Dark Matter and Exotic Physics with Atomic Clocks and GPS Constellation

    NASA Astrophysics Data System (ADS)

    Roberts, Benjamin; Blewitt, Geoff; Dailey, Conner; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei; GPS. DM Collaboration

    2017-01-01

    Despite the overwhelming cosmological evidence for the existence of dark matter, and the considerable effort of the scientific community over decades, there is no evidence for dark matter in terrestrial experiments. The GPS.DM observatory uses the existing GPS constellation as a 50,000 km-aperture sensor array, analysing the satellite and terrestrial atomic clock data for exotic physics signatures. In particular, the collaboration searches for evidence of transient variations of fundamental constants correlated with the Earth's galactic motion through the dark matter halo. There already exists more than 10 years of good clock timing data that can be used in the search. This type of search is particularly sensitive to exotic forms of dark matter, such as topological defects. Supported by the NSF.

  17. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model.

    PubMed

    Solares, Santiago D

    2014-01-01

    This paper presents computational simulations of single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip-sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are fundamental behaviors exhibited by viscoelastic surfaces. The relaxation of the surface in combination with the complexities of bimodal tip-sample impacts gives rise to unique dynamic behaviors that have important consequences with regards to the acquisition of quantitative relationships between the sample properties and the AFM observables. The physics of the tip-sample interactions and its effect on the observables are illustrated and discussed, and a brief research outlook on viscoelasticity measurement with intermittent-contact AFM is provided.

  18. PREFACE: Papers from the 17th European Conference on Atomic and Molecular Physics of Ionized Gases (Constanta, Romania, 1 5 September 2004)

    NASA Astrophysics Data System (ADS)

    Ciupina, V.; Musa, G.; Vladoiu, R.

    2005-05-01

    The 17th European Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG-17) was held in Constanta, Romania, on 1-5 September 2004. ESCAMPIG is an important biennial European conference at which useful exchanges of ideas and discussion of new achievements in low temperature plasma physics take place. The meeting was held in the ambient location of Constanta, Romania, which provided the perfect location to encourage interaction between the related research communities attending the conference. The local organizers, as well as the plasma scientists of Romania, were all very much honoured that Constanta was selected by the International Scientific Committee as the location for ESCAMPIG-17. The conference was the second largest plasma physics conference ever to take place in Romania, second only to the ICPIG conference of 1969 in Bucharest—a huge conference with four parallel sections and simultaneous translation in four languages (English, German, French and Russian) in all four parallel sections. In contrast, ESCAMPIG-17 maintained the founding ideals and held single sessions only to encourage and strengthen the relationships between research communities. During ESCAMPIG-17 we had the opportunity to attend and hear excellent invited lectures presenting outstanding new results in plasma physics. A selection of those invited lectures from ESCAMPIG-17 is published in this issue of Plasma Sources Science and Technology. We would like to take this opportunity to express our thanks to all the invited lecturers and also to all the participants who attended ESCAMPIG-17. The Local Organizing Committee would particularly like to thank all the International Scientific Committee members. Special thanks are due to Professor Gerrit Kroesen and Professor Nader Sadeghi for their valuable and continuous support in solving our problems, no matter how complicated they were.

  19. Physics of a two-dimensional electron gas with cold atoms in non-Abelian gauge potentials

    NASA Astrophysics Data System (ADS)

    Satija, Indubala I.; Dakin, Daniel C.; Vaishnav, J. Y.; Clark, Charles W.

    2008-04-01

    Motivated by the possibility of creating non-Abelian fields using cold atoms in optical lattices, we explore the richness and complexity of noninteracting two-dimensional electron gases (2DEGs) in a lattice, subjected to such fields. In the continuum limit, a non-Abelian system characterized by a two-component “magnetic flux” describes a harmonic oscillator existing in two different charge states (mimicking a particle-hole pair) where the coupling between the states is determined by the non-Abelian parameter, namely, the difference between the two components of the “magnetic flux.” A key feature of the non-Abelian system is a splitting of the Landau energy levels, which broaden into bands, as the spectrum depends explicitly on the transverse momentum. These Landau bands result in a coarse-grained “moth,” a continuum version of the generalized Hofstadter butterfly. Furthermore, the bands overlap, leading to effective relativistic effects. Importantly, similar features also characterize the corresponding two-dimensional lattice problem when at least one of the components of the magnetic flux is an irrational number. The lattice system with two competing “magnetic fluxes” penetrating the unit cell provides a rich environment in which to study localization phenomena. Some unique aspects of the transport properties of the non-Abelian system are the possibility of inducing localization by varying the quasimomentum, and the absence of localization of certain zero-energy states exhibiting a linear energy-momentum relation. Furthermore, non-Abelian systems provide an interesting localization scenario where the localization transition is accompanied by a transition from relativistic to nonrelativistic theory.

  20. A physics package for rubidium atomic frequency standard with a short-term stability of 2.4 × 10-13 τ-1/2

    NASA Astrophysics Data System (ADS)

    Hao, Qiang; Li, Wenbing; He, Shengguo; Lv, Jianfeng; Wang, Pengfei; Mei, Ganghua

    2016-12-01

    In this article, a new type of physics package with high signal to noise ratio for a rubidium atomic frequency standard is reported. To enhance the clock transition signal, a slotted tube microwave cavity with a field orientation factor of 0.93 and an absorption cell with the diameter of 30 mm were utilized in design of the cavity-cell assembly. Based on the spectral analysis of the three commonly used rubidium spectral lamps, the spectral lamp filled with Xe gas was chosen as the optical pumping source for its small line shape distortion. To suppress the shot noise of the signal, a band pass interference filter was used to filter out Xe spectral lines from the pumping light. A desk system of the rubidium frequency standard with the physics package was realized, and the short-term stability of the system was predicted and tested. The measured result is 2.4 × 10-13 τ-1/2 up to 100 s averaging time, in good agreement with the predicted one.

  1. A physics package for rubidium atomic frequency standard with a short-term stability of 2.4 × 10(-13) τ(-1/2).

    PubMed

    Hao, Qiang; Li, Wenbing; He, Shengguo; Lv, Jianfeng; Wang, Pengfei; Mei, Ganghua

    2016-12-01

    In this article, a new type of physics package with high signal to noise ratio for a rubidium atomic frequency standard is reported. To enhance the clock transition signal, a slotted tube microwave cavity with a field orientation factor of 0.93 and an absorption cell with the diameter of 30 mm were utilized in design of the cavity-cell assembly. Based on the spectral analysis of the three commonly used rubidium spectral lamps, the spectral lamp filled with Xe gas was chosen as the optical pumping source for its small line shape distortion. To suppress the shot noise of the signal, a band pass interference filter was used to filter out Xe spectral lines from the pumping light. A desk system of the rubidium frequency standard with the physics package was realized, and the short-term stability of the system was predicted and tested. The measured result is 2.4 × 10(-13) τ(-1/2) up to 100 s averaging time, in good agreement with the predicted one.

  2. Atomic Databases

    NASA Astrophysics Data System (ADS)

    Mendoza, Claudio

    2000-10-01

    Atomic and molecular data are required in a variety of fields ranging from the traditional astronomy, atmospherics and fusion research to fast growing technologies such as lasers, lighting, low-temperature plasmas, plasma assisted etching and radiotherapy. In this context, there are some research groups, both theoretical and experimental, scattered round the world that attend to most of this data demand, but the implementation of atomic databases has grown independently out of sheer necessity. In some cases the latter has been associated with the data production process or with data centers involved in data collection and evaluation; but sometimes it has been the result of individual initiatives that have been quite successful. In any case, the development and maintenance of atomic databases call for a number of skills and an entrepreneurial spirit that are not usually associated with most physics researchers. In the present report we present some of the highlights in this area in the past five years and discuss what we think are some of the main issues that have to be addressed.

  3. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  4. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  5. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    SciTech Connect

    Mitchell, Hannah E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  6. An optimized neutron-beam shaping assembly for accelerator-based BNCT.

    PubMed

    Burlon, A A; Kreiner, A J; Valda, A A; Minsky, D M

    2004-11-01

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon, and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the (7)Li(p,n)(7)Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases.

  7. Accelerator-based trace element analysis of foods and agriculture products

    NASA Astrophysics Data System (ADS)

    Lagunas-Solar, Manuel C.; Piña U, Cecilia; Solís, Corina; Mireles, Alibech

    2008-05-01

    An accelerator-based analytical method for measuring trace elements in foods and agricultural products was developed, optimized, validated and compared using reference standards. The method's initial phase is a new, rapid and effective digestion process of a small mass analyte in an aqueous media containing H2O2. Digestion is initiated by radicals formed in water with pulsed UV (PUV) induced (laser) photolysis, which rapidly react with organic matter. After digestion, trace metals are pre-concentrated as carbamates and deposited as thin targets onto Teflon filters. Conventional particle induced X-ray emission (PIXE) or X-ray fluorescence (XRF) methods are then used to analyze elements in the sample. When foods and other agricultural commodities (i.e., soils, feeds) are analyzed, the combined method named pulsed UV (PUV)/PIXE results in enhanced detection of trace elements such as Fe, Co, Ni, Cu, Zn and Pb at ∼1 mg/kg (1 ppm) levels, without lengthy, acid-based digestions. It provides improvements in digestion kinetics and processing time enhancing analytical sensitivity and element recovery. Precision and recovery yields were confirmed with food reference standards. The analysis of edible foods from contaminated agricultural areas is also reported.

  8. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.

    PubMed

    Taheri, Ali; Pazirandeh, Ali

    2016-12-01

    To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10(7) (n/cm(2).s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.

  9. Doppler Broadening Analysis of Steel Specimens Using Accelerator Based In Situ Pair Production

    NASA Astrophysics Data System (ADS)

    Makarashvili, V.; Wells, D. P.; Roy, A. K.

    2009-03-01

    Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma-induced pair-production techniques to produce positrons in thick samples (˜4-40 g/cm2, or ˜0.5-5 cm in steel). These techniques are called 'Accelerator-based Gamma-induced Positron Annihilation Spectroscopy' (AG-PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams by stopping 15 MeV electrons in a 1 mm thick tungsten converter. The accelerator is capable of operating with 30-60 ns pulse width, up to 200 mA peak current at 1 kHz repetition rate. The highly collimated bremsstrahlung beam impinged upon our steel tensile specimens, after traveling through a 1.2 m thick concrete wall. Annihilation radiation was detected by a well-shielded and collimated high-purity germanium detector (HPGe). Conventional Doppler broadening spectrometry (DBS) was performed to determine S, W and T parameters for our samples.

  10. Materials considerations for molten salt accelerator-based plutonium conversion systems

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF{sub 2} molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized.

  11. Materials considerations for molten salt accelerator-based plutonium conversion systems

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF{sub 2} molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized.

  12. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    NASA Astrophysics Data System (ADS)

    Yamanaka, N.; Sahoo, B. K.; Yoshinaga, N.; Sato, T.; Asahi, K.; Das, B. P.

    2017-03-01

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.

  13. Accelerator-Based Studies of Heavy Ion Interactions Relevant to Space Biomedicine

    NASA Technical Reports Server (NTRS)

    Miller, J.; Heilbronn, L.; Zeitlin, C.

    1999-01-01

    Evaluation of the effects of space radiation on the crews of long duration space missions must take into account the interactions of high energy atomic nuclei in spacecraft and planetary habitat shielding and in the bodies of the astronauts. These heavy ions (i.e. heavier than hydrogen), while relatively small in number compared to the total galactic cosmic ray (GCR) charged particle flux, can produce disproportionately large effects by virtue of their high local energy deposition: a single traversal by a heavy charged particle can kill or, what may be worse, severely damage a cell. Research into the pertinent physics and biology of heavy ion interactions has consequently been assigned a high priority in a recent report by a task group of the National Research Council. Fragmentation of the incident heavy ions in shielding or in the human body will modify an initially well known radiation field and thereby complicate both spacecraft shielding design and the evaluation of potential radiation hazards. Since it is impractical to empirically test the radiation transport properties of each possible shielding material and configuration, a great deal of effort is going into the development of models of charged particle fragmentation and transport. Accurate nuclear fragmentation cross sections (probabilities), either in the form of measurements with thin targets or theoretical calculations, are needed for input to the transport models, and fluence measurements (numbers of fragments produced by interactions in thick targets) are needed both to validate the models and to test specific shielding materials and designs. Fluence data are also needed to characterize the incident radiation field in accelerator radiobiology experiments. For a number of years, nuclear fragmentation measurements at GCR-like energies have been carried out at heavy ion accelerators including the LBL Bevalac, Saturne (France), the Synchrophasotron and Nuklotron (Dubna, Russia), SIS-18 (GSI, Germany), the

  14. Atomic-scale visualization of inertial dynamics.

    PubMed

    Lindenberg, A M; Larsson, J; Sokolowski-Tinten, K; Gaffney, K J; Blome, C; Synnergren, O; Sheppard, J; Caleman, C; Macphee, A G; Weinstein, D; Lowney, D P; Allison, T K; Matthews, T; Falcone, R W; Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Rudati, J; Fuoss, P H; Kao, C C; Siddons, D P; Pahl, R; Als-Nielsen, J; Duesterer, S; Ischebeck, R; Schlarb, H; Schulte-Schrepping, H; Tschentscher, Th; Schneider, J; von der Linde, D; Hignette, O; Sette, F; Chapman, H N; Lee, R W; Hansen, T N; Techert, S; Wark, J S; Bergh, M; Huldt, G; van der Spoel, D; Timneanu, N; Hajdu, J; Akre, R A; Bong, E; Krejcik, P; Arthur, J; Brennan, S; Luening, K; Hastings, J B

    2005-04-15

    The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.

  15. Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2008-03-01

    Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)

  16. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  17. Reviews Equipment: Vibration detector Equipment: SPARK Science Learning System PS-2008 Equipment: Pelton wheel water turbine Book: Atomic: The First War of Physics and the Secret History of the Atom Bomb 1939-49 Book: Outliers: The Story of Success Book: T-Minus: The Race to the Moon Equipment: Fridge Rover Equipment: Red Tide School Spectrophotometer Web Watch

    NASA Astrophysics Data System (ADS)

    2010-03-01

    WE RECOMMEND Vibration detector SEP equipment measures minor tremors in the classroom SPARK Science Learning System PS-2008 Datalogger is easy to use and has lots of added possibilities Atomic: The First War of Physics and the Secret History of the Atom Bomb 1939-49 Book is crammed with the latest on the atom bomb T-Minus: The Race to the Moon Graphic novel depicts the politics as well as the science Fridge Rover Toy car can teach magnetics and energy, and is great fun Red Tide School Spectrophotometer Professional standard equipment for the classroom WORTH A LOOK Pelton wheel water turbine Classroom-sized version of the classic has advantages Outliers: The Story of Success Study of why maths is unpopular is relevant to physics teaching WEB WATCH IOP webcasts are improving but are still not as impressive as Jodrell Bank's Chromoscope website

  18. Single atom electrochemical and atomic analytics

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  19. Current Trends in Atomic Spectroscopy.

    ERIC Educational Resources Information Center

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  20. On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers.

    PubMed

    Treuer, H; Hoevels, M; Luyken, K; Gierich, A; Kocher, M; Müller, R P; Sturm, V

    2000-08-01

    We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.

  1. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  2. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    PubMed

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  3. Atomic and Molecular Physics Program

    DTIC Science & Technology

    2012-03-07

    i i å Sz i +1 -hzSz i -hxSx i hx =0: classical first order phase transition Finite hx: quantum phase transition, second order 13...transition H = J i å Sz iSz i +1 - (1- D) Sz i - 23/2 t Sx i D = E-U E: energy difference per lattice site, or lattice tilt U: onsite interaction...distribution is unlimited. Laser cooling Dysprosium \\.J ••• • ·=--·-Rtnes • Ce ., Til Periodic Table of the Elements [iO " I

  4. Future hadron physics facilities at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2004-12-01

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, is described.

  5. Atomic and molecular theory

    SciTech Connect

    Inokuti, Mitio.

    1990-01-01

    The multifaceted role of theoretical physics in understanding the earliest stages of radiation action is discussed. Scientific topics chosen for the present discourse include photoabsorption, electron collisions, and ionic collisions, and electron transport theory, Connections of atomic and molecular physics with condensed-matter physics are also discussed. The present article includes some historical perspective and an outlook for the future. 114 refs., 3 figs.

  6. A difference in using atomic layer deposition or physical vapour deposition TiN as electrode material in metal-insulator-metal and metal-insulator-silicon capacitors.

    PubMed

    Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J

    2011-09-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.

  7. Toward Comprehensive Physical/Chemical Understanding of the Circumstellar Environments - Simultaneous Probing of Each of the Ionized/Atomic/Molecular Gas and Dust Components

    NASA Astrophysics Data System (ADS)

    Ueta, Toshiya

    also suggest that the central star of about 1.5 M_sun initial mass is terminating its PN evolution onto the white dwarf cooling track. The most notable aspect of the HerPlaNS analysis is simultaneous probing of each of the ionized/atomic/molecular gas and dust components in the target PN, which can properly determine relative abundances of these components as a function of position in the shell, allowing us to investigate the mass loss history. With this NASA ADAP proposal, we request funding to continue the simultaneous probing of all the PN components for the rest of 10 HerPlaNS target PNs and 13 other PNs in the Herschel Science Archive for which a full complement of the analysis can be performed (plus the remaining 29 PNs in the archive for which partial analysis is possible, for the sake of completeness). Our goals are to perform (1) broadband thermal dust emission fitting to establish the dust mass distribution in the target PNs and (2) farIR line diagnostics to establish the mass distribution of each of the ionized, atomic, and molecular gas components in the target PNs, so that we can create empirically-sound gasto-dust mass ratio maps which permit us to investigate the possibility of time variations in the gas-to-dust mass ratio over the course of mass loss history. We will also perform photoionization modeling using (py)CLOUDY and MOCASSIN to establish 3-D physical/chemical stratification within the nebulae as a manifestation of mass-loss modulations over the course of mass loss history. Our analysis is also assisted by optical data obtained through slit-scan mapping at the Gemini-North and South as well as the Subaru Telescope that are presently on-going (plus, spectral mapping with the Hubble Space Telescope and IFU observations at VLT, pending approval). Together with the farIR data, we can iteratively bootstrap line diagnostics so that we can determine the (Te, ne) profiles completely self-consistently without any prior assumptions.

  8. L. V. Keldysh's "Ionization in the Field of a Strong Electromagnetic Wave" and modern physics of atomic interaction with a strong laser field

    NASA Astrophysics Data System (ADS)

    Fedorov, M. V.

    2016-03-01

    Basic premises, approximations, and results of L.V. Keldysh's 1964 work on multiphoton ionization of atoms are discussed, as well as its influence on the modern science of the interaction of atomic-molecular systems with a strong laser field.

  9. Reviews Opera: Doctor Atomic DVD: Doctor Atomic Equipment: Digital stopclock with external trigger Book: I Cyborg Book: Flat Earth: The History of an Infamous Idea Book: Mere Thermodynamics Book: CGP revision guides Book: Hiding the Elephant: How Magicians Invented the Impossible Book: Back of the Envelope Physics Web Watch

    NASA Astrophysics Data System (ADS)

    2009-07-01

    WE RECOMMEND Doctor Atomic The new Doctor Atomic opera provkes discussion on ethics I Cyborg The world's first human cyborg shares his life story in I Cyborg Flat Earth: The History of an Infamous Idea Flat Earth gives us a different perspective on creationism Mere Thermodynamics An introductory text on the three laws CGP revision guides This revision guide suits all courses and every pocket Hiding the Elephant: How Magicians Invented the Impossible The mystery of many illusions are solved in this book Back of the Envelope Physics This reference deserves a place on your bookshelf WORTH A LOOK Doctor Atomic The DVD doesn't do justice to the live performance Digital stopclock with external trigger Use these stopclocks when you need an external trigger WEB WATCH Webcasts reach out to an online audience

  10. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  11. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  12. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  13. Influence of atomic physics on EDGE2D-EIRENE simulations of JET divertor detachment with carbon and beryllium/tungsten plasma-facing components

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Pitts, R. A.; Kukushkin, A. S.; Gunn, J. P.; Bucalossi, J.; Arnoux, G.; Belo, P.; Brezinsek, S.; Brix, M.; Corrigan, G.; Devaux, S.; Flanagan, J.; Groth, M.; Harting, D.; Huber, A.; Jachmich, S.; Kruezi, U.; Lehnen, M.; Marchetto, C.; Marsen, S.; Meigs, A. G.; Meyer, O.; Stamp, M.; Strachan, J. D.; Wiesen, S.; Wischmeier, M.; EFDA Contributors, JET

    2014-09-01

    The EDGE2D-EIRENE code is applied for simulation of divertor detachment during matched density ramp experiments in high triangularity, L-mode plasmas in both JET-Carbon (JET-C) and JET-ITER-Like Wall (JET-ILW). The code runs without drifts and includes either C or Be as impurity, but not W, assuming that the W targets have been coated with Be via main chamber migration. The simulations reproduce reasonably well the observed particle flux detachment as density is raised in both JET-C and JET-ILW experiments and can better match the experimental in-out divertor target power asymmetry if the heat flux entering the outer divertor is artificially set at around 2-3 times that entering the inner divertor. A careful comparison between different sets of atomic physics processes used in EIRENE shows that the detachment modelled by EDGE2D-EIRENE relies only on an increase of the particle sinks and not on a decrease of the ionization source. For the rollover and the beginning of the partially detached phase, the particle losses by perpendicular transport and the molecular activated recombination processes are mainly involved. For a deeper detachment with significant target ion flux reduction, volume recombination appears to be the main contributor. The elastic molecule-ion collisions are also important to provide good neutral confinement in the divertor and thus stabilize the simulations at low electron temperature (Te), when the sink terms are strong. Comparison between EDGE2D-EIRENE and SOLPS4.3 simulations of the density ramp in C shows similar detachment trends, but the importance of the elastic ion-molecule collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of increasing the neutral confinement in the divertor should help to improve the modelling of the detachment. A further outcome of this work has been to demonstrate that key JET divertor diagnostic signals—Langmuir probe Te and bolometric tomographic reconstructions—are running beyond

  14. Acceleration-based joint stability parameters for total knee arthroplasty that correspond with patient-reported instability.

    PubMed

    Roberts, Dustyn; Khan, Humera; Kim, Joo H; Slover, James; Walker, Peter S

    2013-10-01

    There is no universally accepted definition of human joint stability, particularly in nonperiodic general activities of daily living. Instability has proven to be a difficult parameter to define and quantify, since both spatial and temporal measures need to be considered to fully characterize joint stability. In this preliminary study, acceleration-based parameters were proposed to characterize the joint stability. Several time-statistical parameters of acceleration and jerk were defined as potential stability measures, since anomalous acceleration or jerk could be a symptom of poor control or stability. An inertial measurement unit attached at the level of the tibial tubercle of controls and patients following total knee arthroplasty was used to determine linear acceleration of the knee joint during several activities of daily living. The resulting accelerations and jerks were compared with patient-reported instability as determined through a standard questionnaire. Several parameters based on accelerations and jerks in the anterior/posterior direction during the step-up/step-down activity were significantly different between patients and controls and correlated with patient reports of instability in that activity. The range of the positive to negative peak acceleration and infinity norm of acceleration, in the anterior/posterior direction during the step-up/step-down activity, proved to be the best indicators of instability. As time derivatives of displacement, these acceleration-based parameters represent spatial and temporal information and are an important step forward in developing a definition and objective quantification of human joint stability that can complement the subjective patient report.

  15. Preliminary study of acceleration based sensor to record nile tilapia (Oreochromis niloticus) feeding behavior at water surface

    NASA Astrophysics Data System (ADS)

    Subakti, Aji; Khotimah, Zarah F.; Darozat, Fajar M.

    2017-01-01

    In this preliminary study, the acceleration based sensor was developed to monitor the activity of Nile tilapia (Oreochromis niloticus) feeding behavior at the water surface. This study was conducted for three weeks in a fish pond with 40 m2 in size, stocked with 850 fingerlings of Nile tilapia strain Nirwana-2 (average biomass of 13 g, fed four times a day at 8 am, 12 pm, 4 pm, and 8 pm). The acceleration sensor system was installed floating in the pond and was designed in a way so that the xz plane of the sensor will be parallel with water surface, while the y-axis will be pointing downward. By sensing the acceleration caused by the surface wave, the activities of fish near surface water could be monitored. The result showed that there were three distinctive patterns could be observed which was related to the feeding activity of fish. Generally, it can be concluded that this acceleration based sensor system can be integrated with automatic feeder machine, in particular by analyzing the recorded patter, it is possible to monitor when the fish stop eating, and so the right amount of feed could be given to the fish.

  16. Progress on the accelerator based SPES-BNCT project at INFN Legnaro

    SciTech Connect

    Esposito, J.; Colautti, P.; Pisent, A.; Conte, V.; Moro, D.; De Nardo, L.; Agosteo, S.; Rosi, G.

    2007-02-12

    In the framework of an advanced Exotic Ion Beam facility, named SPES (Study and Production of Exotic Species), that will allow a frontier program both in nuclear and interdisciplinary physics, an intense thermal neutron beam facility, devoted to perform Boron Neutron Capture Therapy (BNCT) experimental treatments on skin melanoma tumor, is currently under construction based on the SPES proton driver. A vast radiobiological investigation in vitro and in vivo has started with the new 10B carriers developed. Special microdosimetric detectors have been constructed to properly measure all the BNCT dose components and their qualities. Both microdosimetric and radiobiological measurements are being performed at the new HYTHOR beam shaping assembly at the Enea-Casaccia TAPIRO reactor.

  17. Generation, transport, and detection of linear accelerator based femtosecond-terahertz pulses.

    PubMed

    Park, Jaehun; Kim, Changbum; Lee, Jongseok; Yim, Changmook; Kim, Chul Hoon; Lee, Junghwa; Jung, Seonghoon; Ryu, Jaehyun; Kang, Heung-Sik; Joo, Taiha

    2011-01-01

    The generation and detection of intense terahertz (THz) radiation has drawn a great attention recently. The dramatically enhanced energy and peak electric field of the coherent THz radiation can be generated by coherent superposition of radiated fields emitted by ultrafast electron bunches. The femtosecond (fs)-THz beamline construction at the Pohang Accelerator Laboratory (PAL) was completed in the end of 2009. The fs-THz beamline at PAL can supply ultrafast and intense fs-THz radiation from a 75 MeV linear accelerator. The radiation is expected to have frequency up to 3 THz (∼100 cm(-1)) and the pulse width of <200 fs with pulse energy up to 10 μJ. This intense THz source has great potential for applications in nonlinear optical phenomena and fields such as material science, biomedical science, chemistry, and physics, etc.

  18. Optics and interferometry with atoms and molecules

    SciTech Connect

    Cronin, Alexander D.; Schmiedmayer, Joerg; Pritchard, David E.

    2009-07-15

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review the basic tools for coherent atom optics are described including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the application of atom interferometers are reviewed. These are grouped in three categories: (i) fundamental quantum science, (ii) precision metrology, and (iii) atomic and molecular physics. Although some experiments with Bose-Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e., phenomena where each single atom interferes with itself.

  19. Atoms in Astronomy.

    ERIC Educational Resources Information Center

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  20. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    SciTech Connect

    Ambrosi, R. M.; Watterson, J. I. W.

    1999-06-10

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.

  1. Accelerator-based analytical technique in the evaluation of some Nigeria’s natural minerals: Fluorite, tourmaline and topaz

    NASA Astrophysics Data System (ADS)

    Olabanji, S. O.; Ige, O. A.; Mazzoli, C.; Ceccato, D.; Akintunde, J. A.; De Poli, M.; Moschini, G.

    2005-10-01

    For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.

  2. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  3. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  4. Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit.

    PubMed

    Das, I J; Downes, M B; Corn, B W; Curran, W J; Werner-Wasik, M; Andrews, D W

    1996-01-01

    A stereotactic radiosurgery and radiotherapy (SRS/SRT) system on a dedicated Varian Clinac-600SR linear accelerator with Brown-Roberts-Wells and Gill-Thomas-Cosman relocatable frames along with the Radionics (RSA) planning system is evaluated. The Clinac-600SR has a single 6-MV beam with the same beam characteristics as that of the mother unit, the Clinac-600C. The primary collimator is a fixed cone projecting to a 10-cm diameter at isocenter. The secondary collimator is a heavily shielded cylindrical collimator attached to the face plate of the primary collimator. The tertiary collimation consists of the actual treatment cones. The cone sizes vary from 12.5 to 40.0 mm diameter. The mechanical stability of the entire system was verified. The variations in isocenter position with table, gantry, and collimator rotation were found to be < 0.5 mm with a compounded accuracy of < or = 1.0 mm. The radiation leakage under the cones was < 1% measured at a depth of 5 cm in a phantom. The beam profiles of all cones in the x and y directions were within +/- 0.5 mm and match with the physical size of the cone. The dosimetric data such as tissue maximum ratio, off-axis ratio, and cone factor were taken using film, diamond detector, and ion chambers. The mechanical and dosimetric characteristics including dose linearity of this unit are presented and found to be suitable for SRS/SRT. The difficulty in absolute dose measurement for small cone is discussed.

  5. New Developments in Atom Interferometry

    DTIC Science & Technology

    1992-07-01

    interferometers can be applied to a number of experiments in fundamental physics: tests of quantum mechanics such as the Aharonov - Casher effect (6), measurement of...qualitatively new types of experiments involving inertial effects , studies of atomic and molecular properties, tests of basic quantum physics, and may ultimately...laser light as the beam splitters. Atom interferometers will make possible qualitatively new types of experiments involving inertial effects , studies of

  6. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays

    NASA Astrophysics Data System (ADS)

    Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R.; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D.

    2016-11-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  7. Physics News in 1983.

    ERIC Educational Resources Information Center

    Schewe, Phillip F., Ed.

    Information is provided on some of the interesting and newsworthy developments in physics and its related fields during 1983. Areas considered include: (1) acoustics; (2) astrophysics; (3) condensed matter physics; (4) crystallography; (5) physics education; (6) electron and atomic physics; (7) elementary particle physics; (8) fluid dynamics; (9)…

  8. Physical conditions in the cool parts of prominences and spicules - The effects of model atom level truncation on the derived plasma parameters

    NASA Technical Reports Server (NTRS)

    Landman, D. A.

    1986-01-01

    The effects on calculated lower-level population densities of the truncation of Na and Sr(+) model atoms are determined in the context of the present spectral diagnostic scheme for solar prominences and spicules. It is shown that neglect of the upper atomic levels in Na, in particular, leads to overestimates in electron density and gas pressure by factors of about 2 and about 4, respectively, and to underestimates in the degree of hydrogen ionization and in the line-of-sight thickness of emitting material again by factors of about 2 and about 4, respectively. The implications of the revised emitting region extents, in particular, on the validity of the diagnostic method for these features are discussed.

  9. International Conference on Atomic Physics (12TH) Held at Ann Arbor, Michigan on July 29-August 2, 1990. Abstracts of Contributed Papers.

    DTIC Science & Technology

    1990-09-26

    the flux vanishes. The diffusion equation is justified when the thermalization by Wall collisions drives the atomic velocity distribution to...cavity collisions in which particles can either lose energy or annihilate for a distribution of initial o-Ps energies. We expect such a combination to...shell electrons and a target nucleus due to outer electrons. However, this FP assumption is almost justified in the case of collision system dealt

  10. NONLINEAR ATOM OPTICS

    SciTech Connect

    T. MILONNI; G. CSANAK; ET AL

    1999-07-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project objectives were to explore theoretically various aspects of nonlinear atom optics effects in cold-atom waves and traps. During the project a major development occurred the observation, by as many as a dozen experimental groups, of Bose-Einstein condensation (BEC) in cold-atom traps. This stimulated us to focus our attention on those aspects of nonlinear atom optics relating to BEC, in addition to continuing our work on a nonequilibrium formalism for dealing with the interaction of an electromagnetic field with multi-level atomic systems, allowing for macroscopic coherence effects such as BEC. Studies of several problems in BEC physics have been completed or are near completion, including the suggested use of external electric fields to modify the nature of the interatomic interaction in cold-atom traps; properties of two-phase condensates; and molecular loss processes associated with BEC experiments involving a so-called Feshbach resonance.

  11. Physics Division annual review, April 1, 1988--March 31, 1989

    SciTech Connect

    Thayer, K.J.

    1989-08-01

    This document discusses the following main topics: Research at Atlas; Operation and Development of Atlas; Medium-Energy Nuclear Physics and Weak Interactions; Theoretical Nuclear Physics; Interactions of Fast Atomic and Molecular Ions with Solid and Gaseous Targets; Atomic Physics at Synchrotron Light Sources; Atomic Physics at Atlas and the ECR Source; Theoretical Atomic Physics; High-Resolution Laser-rf Spectroscopy of Atomic and Molecular Beams; and Fast Ion-Beam/Laser Studies of Atomic and Molecular Structure.

  12. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  13. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  14. Physical composition

    NASA Astrophysics Data System (ADS)

    Healey, Richard

    2013-02-01

    Atomistic metaphysics motivated an explanatory strategy which science has pursued with great success since the scientific revolution. By decomposing matter into its atomic and subatomic parts physics gave us powerful explanations and accurate predictions as well as providing a unifying framework for the rest of science. The success of the decompositional strategy has encouraged a widespread conviction that the physical world forms a compositional hierarchy that physics and other sciences are progressively articulating. But this conviction does not stand up to a closer examination of how physics has treated composition, as a variety of case studies will show.

  15. Physics: A Career for You?

    ERIC Educational Resources Information Center

    American Inst. of Physics, New York, NY.

    Information is provided for students who may be interested in pursuing a career in physics. This information includes the type of work done and areas studied by physicists in the following areas: nuclear physics, solid-state physics, elementary-particle physics, atomic/molecular/electron physics, fluid/plasma physics, space/planetary physics,…

  16. Physics in the Twentieth Century

    ERIC Educational Resources Information Center

    Weisskopf, Victor F.

    1970-01-01

    Provides a review of the great discoveries, theoretical concepts and development of physics in the 20th century. The growth and significance of diverse fields such as quantum theory, relativity theory, atomic physics, molecular physics, the physics of the solid state, nuclear physics, astrophysics, plasma physics, and particle physics are…

  17. Big Sky Workshop on Super-Intense Laser-Atom Physics Held in Big Sky, Montana on 22-25 June 1991

    DTIC Science & Technology

    1992-03-20

    equation " 9:20 Kulander, "Effects of pulse shape on the high frequency stabilization of hydrogen" 9:45 Tang, "Dynamics of 1-dimensional model and 3...work on the behaviour of model-l-D atoms in super- intense fields. We have performed integrations of the time-dependent Schr6dinger Equation in the...Research Council. 0 0 2 Numerical Integration of the Time-Dependent Schr5dinger Equation Bernard Piraux Inatitut de Physique Corpusculaire, Uniocraite

  18. Atomic and molecular science with synchrotron radiation

    SciTech Connect

    Not Available

    1989-11-07

    This paper discusses the following topics: electron correlation in atoms; atomic innershell excitation and decay mechanisms; timing experiments; x-ray scattering; properties of ionized species; electronic properties of actinide atoms; total photon-interaction cross sections; and molecular physics. 66 refs. (LSP)

  19. Davisson-Germer Prize in Atomic or Surface Physics Talk: Soft X-Ray Studies of Surfaces, Interfaces and Thin Films: From Spectroscopy to Ultrafast Nanoscale Movies

    NASA Astrophysics Data System (ADS)

    Stöhr, Joachim

    2011-03-01

    My talk will review the development of soft x-ray spectroscopy and microscopy and its impact on our understanding of chemical bonding, magnetism and dynamics at surfaces and interfaces. I will first outline important soft x-ray spectroscopy and microscopy techniques that have been developed over the last 30 years and their key strengths such as elemental and chemical specificity, sensitivity to small atomic concentrations, separation of charge and spin properties, spatial resolution down to the nanometer scale, and temporal resolution down to the intrinsic femtosecond timescale of atomic and electronic motions. I will then present scientific breakthroughs based on soft x-ray studies in three selected areas: the nature of molecular bonding and reactivity on metal surfaces, the molecular origin of liquid crystal alignment on surfaces, and the microscopic origin of interface-mediated spin alignments in modern magnetic devices. My talk will also cover the use of soft x-rays for revealing the temporal evolution of electronic structure, addressing the key problem of ``function,'' down to the intrinsic femtosecond time scale of charge and spin configuration changes. As examples I will present the formation and breaking of chemical bonds in surface complexes and the motion of the magnetization in magnetic devices. Work supported by the Office of Basic Energy Science of the US Department of Energy.

  20. Atom chip gravimeter

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  1. A Physics Finale.

    ERIC Educational Resources Information Center

    Haynes, Gail E.

    1991-01-01

    A third-semester physics course that covers the topics of atomic physics, the theory of relativity, and nuclear energy is described. Activities that include the phenomenon of radioactivity, field trips to a nuclear power plant, a simulation of a chain reaction, and comparing the size of atomic particles are presented. (KR)

  2. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  3. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions {open_quotes}How much?{close_quotes} and {open_quotes}What kind?{close_quotes} of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient {open_quotes}scatterer,{close_quotes} and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h{sup {minus}1} was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs.

  4. Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix.

    PubMed

    Zhang, Yu; Liu, Jinliang; Fan, Xuliang; Zhang, Hongbo; Wang, Shiwen; Feng, Jiahuai

    2011-10-01

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effects of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.

  5. Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix

    SciTech Connect

    Zhang Yu; Liu Jinliang; Fan Xuliang; Zhang Hongbo; Wang Shiwen; Feng Jiahuai

    2011-10-15

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effects of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.

  6. Accelerator-based analytical technique in the study of some anti-diabetic medicinal plants of Nigeria

    NASA Astrophysics Data System (ADS)

    Olabanji, S. O.; Omobuwajo, O. R.; Ceccato, D.; Adebajo, A. C.; Buoso, M. C.; Moschini, G.

    2008-05-01

    Diabetes mellitus, a clinical syndrome characterized by hyperglycemia due to deficiency of insulin, is a disease involving the endocrine pancreas and causes considerable morbidity and mortality in the world. In Nigeria, many plants, especially those implicated in herbal recipes for the treatment of diabetes, have not been screened for their elemental constituents while information on phytochemistry of some of them is not available. There is therefore the need to document these constituents as some of these plants are becoming increasingly important as herbal drugs or food additives. The accelerator-based technique PIXE, using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro (Padova) Italy, was employed in the determination of the elemental constituents of these anti-diabetic medicinal plants. Leaves of Gardenia ternifolia, Caesalpina pulcherrima, Solemostenon monostachys, whole plant of Momordica charantia and leaf and stem bark of Hunteria umbellata could be taken as vegetables, neutraceuticals, food additives and supplements in the management of diabetes. However, Hexabolus monopetalus root should be used under prescription.

  7. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT.

    PubMed

    Evans, J F; Blue, T E

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions "How much?" and "What kind?" of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room , patient "scatterer," and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel.

  8. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    SciTech Connect

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-10-26

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented.

  9. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Investigation of the properties of resonance holograms in a beam of sodium atoms

    NASA Astrophysics Data System (ADS)

    Grigoriev, Igor'S.; Likhanskiĭ, V. V.; Semerok, A. F.; Firsov, Valerii A.; Chankin, A. V.

    1987-10-01

    Experimental and theoretical (using a two-level approximation) investigations were made of the properties of resonance holograms (excited-state gratings) created by monochromatic linearly polarized radiation from a cw dye laser in a beam of sodium atoms as a result of the 32P3/2- 32S1/2(F=2) transition. A good qualitative agreement was observed between the theory and experimental results. It was established that the maximum diffraction efficiency was attained when the intensity of the radiation used to form the hologram was of the order of the intensity needed to saturate the transition and the optical thickness of the beam was ~1.1. The sensitivity of the medium was ~1 nJ/cm2 for 1% diffraction efficiency.

  10. Atomic, Molecular, and Optical Physics: Optical Excitation Function of H(1s-2p) Produced by electron Impact from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1997-01-01

    The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.

  11. History of Physics.

    ERIC Educational Resources Information Center

    Moyer, Albert E.

    1985-01-01

    Discusses the history of American physics, indicating that much effort has been on the atomic bond and high-energy physics, to the detriment of other topics and areas. To offset this tendency, significant research is going on in the history of solid-state physics, with glimmerings in the history of physics education. (JN)

  12. Dosimetric characterization of hypofractionated Gamma Knife radiosurgery of large or complex brain tumors versus linear accelerator-based treatments.

    PubMed

    Dong, Peng; Pérez-Andújar, Angélica; Pinnaduwage, Dilini; Braunstein, Steve; Theodosopoulos, Philip; McDermott, Michael; Sneed, Penny; Ma, Lijun

    2016-12-01

    OBJECTIVE Noninvasive Gamma Knife (GK) platforms, such as the relocatable frame and on-board imaging, have enabled hypofractionated GK radiosurgery of large or complex brain lesions. This study aimed to characterize the dosimetric quality of such treatments against linear accelerator-based delivery systems that include the CyberKnife (CK) and volumetric modulated arc therapy (VMAT). METHODS Ten patients treated with VMAT at the authors' institution for large brain tumors (> 3 cm in maximum diameter) were selected for the study. The median prescription dose was 25 Gy (range 20-30 Gy) in 5 fractions. The median planning target volume (PTV) was 9.57 cm(3) (range 1.94-24.81 cm(3)). Treatment planning was performed using Eclipse External Beam Planning V11 for VMAT on the Varian TrueBeam system, Multiplan V4.5 for the CyberKnife VSI System, and Leksell GammaPlan V10.2 for the Gamma Knife Perfexion system. The percentage of the PTV receiving at least the prescription dose was normalized to be identical across all platforms for individual cases. The prescription isodose value for the PTV, conformity index, Paddick gradient index, mean and maximum doses for organs at risk, and normal brain dose at variable isodose volumes ranging from the 5-Gy isodose volume (V5) to the 15-Gy isodose volume (V15) were compared for all of the cases. RESULTS The mean Paddick gradient index was 2.6 ± 0.2, 3.2 ± 0.5, and 4.3 ± 1.0 for GK, CK, and VMAT, respectively (p < 0.002). The mean V15 was 7.5 ± 3.7 cm(3) (range 1.53-13.29 cm(3)), 9.8 ± 5.5 cm(3) (range 2.07-18.45 cm(3)), and 16.1 ± 10.6 cm(3) (range 3.58-36.53 cm(3)) for GK, CK, and VMAT, respectively (p ≤ 0.03, paired 2-tailed t-tests). However, the average conformity index was 1.18, 1.12, and 1.21 for GK, CK, and VMAT, respectively (p > 0.06). The average prescription isodose values were 52% (range 47%-69%), 60% (range 46%-68%), and 88% (range 70%-94%) for GK, CK, and VMAT, respectively, thus producing significant variations in

  13. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    NASA Astrophysics Data System (ADS)

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-08-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.

  14. International Conference on the Physics of Electronic and Atomic Collisions. Participants List (16th), Held in New York, New York on 26 July-1 August 1989

    DTIC Science & Technology

    1989-08-01

    AVE.LINCOLN, NE 68509-0111 CEDEX, MENLO PARK, CA 94025 USA FRANCE USA RONALD A. PHANEUF JEAN - CLAUDE POIZATOAK RIDGE NAT’L LAB ARTHUR V. PHELPS UNIVERSITE...SHABANA GAIYOOM JEAN W. GALLAGHER LATVIAN ACAD. SCI. UNIV COLLEGE LONDON N.I.S.T. RTGA, GOWER ST. A323 PHYSICS BLDG. USSR LONDON, WCIE 6BT GAITHERSBURG...TOKYO, 102 D-6300 GIESSEN, USA JAPAN FRG MANFRED SALZMAN DOUGLAS H. SAMPSON JOSEPH SANDERSON TELTOWER DAMM 223B PENN STATE UNIV UNIV COLLEGE LONDON

  15. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    PubMed Central

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-01-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases. PMID:24046483

  16. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  17. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  18. Atoms in astronomy

    NASA Technical Reports Server (NTRS)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  19. Experiments with Ξ- atoms

    NASA Astrophysics Data System (ADS)

    Batty, C. J.; Friedman, E.; Gal, A.

    1999-01-01

    Experiments with Ξ- atoms are proposed in order to study the nuclear interaction of Ξ hyperons. The production of Ξ- in the (K-,K+) reaction, the Ξ- stopping in matter, and its atomic cascade are incorporated within a realistic evaluation of the results expected for Ξ- x-ray spectra across the periodic table, using an assumed Ξ-nucleus optical potential Vopt. Several optimal targets for measuring the strong-interaction shift and width of the x-ray transition to the ``last'' atomic level observed are singled out: F, Cl, I, and Pb. The sensitivity of these observables to the parameters of Vopt is considered. The relevance of such experiments is discussed in the context of strangeness -2 nuclear physics and multistrange nuclear matter. Finally, with particular reference to searches for the H dibaryon, the properties of Ξ-d atoms are also discussed. The role of Stark mixing and its effect on S and P state capture of Ξ- by the deuteron together with estimates of the resulting probability for producing the H dibaryon are considered in detail.

  20. Recent developments in atomizers for electrothermal atomic absorption spectrometry.

    PubMed

    Frech, W

    1996-06-01

    This review first describes general requirements to be met for suitable base materials used to produce electrothermal atomizers (ETAs). In this connection the physical and chemical properties of adequate types of graphite and metals are discussed. Further, various atomizer designs, their temperature dynamics during atomization and general performance characteristics are critically reviewed. For end-heated Massmann-type atomizers, discussions are focused on recent developments of, e.g., contoured tubes to achieve improved temperature homogeneity over the tube length, second surface atomizers to realize temporally isothermal atomization and tubes with graphite filters to reduce interference effects. The state-of-the-art of platform equipped, side-heated atomizers with integrated contacting bridges are characterized mainly with respect to heating dynamics, as well as susceptibility to interference- and memory effects. In contrast to end-heated ETAs, the tube ends of side-heated ETAs are freely located in the furnace compartment and, as a consequence of this configuration, convective gas flows can easily appear. The magnitude and effect of these flows on analytical performance are discussed and measures are suggested, permitting operation under diffusion controlled conditions. A critical comparison of classical constant temperature atomizers with state-of-the-art platform equipped ETAs is made and from this it is concluded that future ETA developments are likely to involve only minor modifications aiming at, e.g., the reduction of cycling times or the improvement of tube surface properties.

  1. Linear Atom Guides: Guiding Rydberg Atoms and Progress Toward an Atom Laser

    NASA Astrophysics Data System (ADS)

    Traxler, Mallory A.

    are also studied. Design and construction of a new linear magnetic atom guide is detailed. This guide beta has many improvements over the original guide alpha: a Zeeman slower, magnetic injection, a physical shutter, and surface adsorption evaporative cooling are some of the main changes. Testing of this new system is underway. It is hoped that the improvements to guide beta will yield an atom density sufficient to reach degeneracy, thereby forming a continuous BEC at the end of the guide. The BEC, which will be continuously replenished by the atoms within the guide, will be outcoupled to form a continuous atom laser.

  2. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  3. Physical understanding of trends in current collapse with atomic layer deposited dielectrics in AlGaN/GaN MOS heterojunction FETs

    NASA Astrophysics Data System (ADS)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena

    2016-03-01

    Many passivation dielectrics are pursued for suppressing current collapse due to trapping/detrapping of access-region surface traps in AlGaN/GaN based metal oxide semiconductor heterojuction field effect transistors (MOS-HFETs). The suppression of current collapse can potentially be achieved either by reducing the interaction of surface traps with the gate via surface leakage current reduction, or by eliminating surface traps that can interact with the gate. But, the latter is undesirable since a high density of surface donor traps is required to sustain a high 2D electron gas density at the AlGaN/GaN heterointerface and provide a low ON-resistance. This presents a practical trade-off wherein a passivation dielectric with the optimal surface trap characteristics and minimal surface leakage is to be chosen. In this work, we compare MOS-HFETs fabricated with popular ALD gate/passivation dielectrics like SiO2, Al2O3, HfO2 and HfAlO along with an additional thick plasma-enhanced chemical vapor deposition SiO2 passivation. It is found that after annealing in N2 at 700 °C, the stack containing ALD HfAlO provides a combination of low surface leakage and a high density of shallow donor traps. Physics-based TCAD simulations confirm that this combination of properties helps quick de-trapping and minimal current collapse along with a low ON resistance.

  4. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  5. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  6. The Atom and the Ocean, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hull, E. W. Seabrook

    Included is a brief description of the characteristics of the ocean, its role as a resource for food and minerals, its composition and its interactions with land and air. The role of atomic physics in oceanographic exploration is illustrated by the use of nuclear reactors to power surface and submarine research vessels and the design and use of…

  7. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  8. AC Zeeman potentials for atom chip-based ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth

    2015-05-01

    We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.

  9. Atomic oxygen testing with thermal atom systems - A critical evaluation

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Albyn, Keith; Leger, Lubert J.

    1991-01-01

    The use of thermal atom (kinetic energy near 0.04 eV) test methods as a materials selection and screening technique for LEO spacecraft is critically evaluated in this paper. The physics and chemistry of the thermal atom environments are shown to produce specific mass loss rates (mg/sq cm per min) and reaction efficiencies (Re) radically different from those produced in the LEO environment. A response surface study shows that specific mass loss rates change rapidly with plasma-asher parameters and seldom agree with flight data. FEP Teflon is shown to react by a different mechanism than Kapton, polyethylene, or graphite. The Re (Re = volume of material removed/oxygen atom) of Kapton, polyethylene, Mylar, Tedlar, FEP Teflon, and graphite measured in a flowing afterglow apparatus are 0.001 to 0.0001 those measured with high-energy atoms (kinetic energy 1.5 eV or greater) in beam systems or in LEO. The effect of sample temperature and atom impact energy on Re is discussed. A simple kinetic model describing the reaction of atomic oxygen with polymer surfaces is developed. Guidelines and recommendations for thermal atom testing and interpretation of test results are presented.

  10. High Atom Number in Microsized Atom Traps

    DTIC Science & Technology

    2015-12-14

    cooling of some atoms in atomic beam. We have reconfigured the apparatus for applying bichromatic forces transverse to the atomic beam, as it will be...apparatus for applying bichromatic forces transverse to the atomic beam, as it will be easier to extend this to two dimensions. Research to develop

  11. Quantum information with Rydberg atoms

    SciTech Connect

    Saffman, M.; Walker, T. G.; Moelmer, K.

    2010-07-15

    Rydberg atoms with principal quantum number n>>1 have exaggerated atomic properties including dipole-dipole interactions that scale as n{sup 4} and radiative lifetimes that scale as n{sup 3}. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing.

  12. Atomic magnetometer

    DOEpatents

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  13. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  14. Atomism from Newton to Dalton.

    ERIC Educational Resources Information Center

    Schofield, Robert E.

    1981-01-01

    Indicates that although Newton's achievements were rooted in an atomistic theory of matter resembling aspects of modern nuclear physics, Dalton developed his chemical atomism on the basis of the character of the gross behavior of substances rather than their particulate nature. (Author/SK)

  15. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  16. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  17. Relationships in Physical Science.

    ERIC Educational Resources Information Center

    Goodstein, Madeline Prager; Sitzman, Barbara Pressey

    This document presents activities in the physical sciences. Activities are grouped in the following chapters: (1) "Science and Measurement"; (2) "Measurement Units"; (3) "Introduction to Chemistry"; (4) "The Periodic Table"; (5) "What is Inside an Atom?"; (6) "Bonding"; (7) "Formulas and Equations"; (8) "The Bursting Atom"; (9) "Relationships…

  18. Index to the Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This index was prepared for the set of 51 booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school students and their teachers. In addition to the index, a complete list of the series is provided in which the booklets are grouped into the categories of physics, chemistry, biology, nuclear…

  19. Electron-Atom Collisions in Gases

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  20. Orientational atom interferometers sensitive to gravitational waves

    SciTech Connect

    Lorek, Dennis; Laemmerzahl, Claus; Wicht, Andreas

    2010-02-15

    We present an atom interferometer that differs from common atom interferometers as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom interferometer based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause a frequency shift that scales with the binding energy of the system rather than with its physical dimension. For a gravitational wave amplitude of h=10{sup -23} the frequency shift is of the order of 110 {mu}Hz for an atom interferometer based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current atom interferometers in 1 s.

  1. AtomPy: an open atomic-data curation environment

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  2. The atomic orbitals of the topological atom.

    PubMed

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  3. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  4. Physics Division annual report - 1998

    SciTech Connect

    1999-09-07

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

  5. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  6. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT.

  7. Maria Goeppert Mayer: atoms, molecules and nuclear shells

    SciTech Connect

    Johnson, K.E.

    1986-09-01

    The mathematical physicist's early work in atomic and molecular physics, and her unfamiliarity with the ''fashions'' in nuclear physics, gave her the ideal preparation for solving the puzzle of the nuclear ''magic numbers.''

  8. Peak endocardial acceleration-based clinical testing of the "BEST" DDDR pacemaker. European PEA Clinical Investigation Group.

    PubMed

    Langenfeld, H; Krein, A; Kirstein, M; Binner, L

    1998-11-01

    The peak endocardial acceleration (PEA, unit g) shows a near correlation with myocardial contractility during the isometric systolic contraction of the heart (dP/dtmax), with sympathetic activity and, thus, with physiological heart rate modulation. The (Biomechanical Endocardial Sorin Transducer (BEST) sensor is incorporated in the tip of a pacing lead and measures PEA directly near the myocardium. In an international study, the lead was implanted with the dual chamber pacemaker Living-1 (Sorin) in 105 patients. The behavior of the PEA signal was tested under conditions of physical and mental stress and during daily life activities by 24-hour recordings of PEA (PEA Holter) at 1 to 2 months and approximately 1 year after implantation. Implantation of the BEST lead was performed without complications in all patients. The sensor functioned properly in the short- and long-term in 98% of patients. Although PEA values differed from patient to patient, the values closely reflected the variations in sympathetic activity due to physical and mental stress in each patient. During exercise and during daily life activities a close correlation between PEA and heart rate was observed among patients with normal sinus rhythm. Peak endocardial acceleration allows a nearly physiological control of the pacing rate.

  9. Recent advances in atomic modeling

    SciTech Connect

    Goldstein, W.H.

    1988-10-12

    Precision spectroscopy of solar plasmas has historically been the goad for advances in calculating the atomic physics and dynamics of highly ionized atoms. Recent efforts to understand the laboratory plasmas associated with magnetic and inertial confinement fusion, and with X-ray laser research, have played a similar role. Developments spurred by laboratory plasma research are applicable to the modeling of high-resolution spectra from both solar and cosmic X-ray sources, such as the photoionized plasmas associated with accretion disks. Three of these developments in large scale atomic modeling are reviewed: a new method for calculating large arrays of collisional excitation rates, a sum rule based method for extending collisional-radiative models and modeling the effects of autoionizing resonances, and a detailed level accounting calculation of resonant excitation rates in FeXVII. 21 refs., 5 figs., 2 tabs.

  10. Neuromorphic Atomic Switch Networks

    PubMed Central

    Martin-Olmos, Cristina; Shieh, Hsien Hang; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2012-01-01

    Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system. PMID:22880101

  11. Neuromorphic atomic switch networks.

    PubMed

    Avizienis, Audrius V; Sillin, Henry O; Martin-Olmos, Cristina; Shieh, Hsien Hang; Aono, Masakazu; Stieg, Adam Z; Gimzewski, James K

    2012-01-01

    Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  12. Local density probing of atomic gas via cold Li-Ca+ inelastic collisions in an atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Saito, Ryoichi; Haze, Shinsuke; Fujinaga, Munekazu; Kyuno, Kazuki; Mukaiyama, Takashi

    2015-05-01

    Ultracold atoms in a harmonic trap inevitably has an inhomogeneous density distribution, which makes an atomic gas an ensemble of atoms in different physical phases. Recent technical advances in the determination of local physical quantities in an atomic gas overcome this complexity and make it possible to directly compare experimental results with many-body theories of a homogeneous atomic gas. A laser-cooled ion can be used as a high-spatial resolution probe of physical quantities of an atomic gas. The spatial spread of an ion can be reduced to sub-microns, which is even small enough for the application of the local probe of atoms in optical lattices. In our experiment, we constructed Li and Ca+ ultracold hybrid system and observed inelastic collisions as a loss of ions. The inelastic collision is confirmed to be a charge-exchange process, whose rate depends linearly on the local atomic density. From the measurement of the rate of the charge-exchange, we can reproduce an atomic density profile. This is an important step toward a local probe of physical quantities of atoms with cold ions. In this presentation, we report on the observation of charge-exchange collisions between Li atom and Ca+ ions, and discuss the feasibility of the ions as a probe of the atoms.

  13. Committee on Atomic, Molecular and Optical Sciences

    SciTech Connect

    Lancaster, James

    2015-06-30

    The Committee on Atomic, Molecular, and Optical Sciences (CAMOS) is a standing activity of the National Research Council (NRC) that operates under the auspices of the Board on Physics and Astronomy. CAMOS is one of five standing committees of the BPA that are charged with assisting it in achieving its goals—monitoring the health of physics and astronomy, identifying important new developments at the scientific forefronts, fostering interactions with other fields, strengthening connections to technology, facilitating effective service to the nation, and enhancing education in physics. CAMOS provides these capabilities for the atomic, molecular and optical (AMO) sciences.

  14. Atomic vapor laser isotope separation

    SciTech Connect

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  15. On accelerator-based neutron sources and neutron field characterization with low energy neutron spectrometer based on position sensitive 3He counter.

    PubMed

    Murata, I; Miyamaru, H; Kato, I; Mori, Y

    2009-07-01

    The development of new neutron sources for BNCT applications, based on particle accelerators is currently underway all over the world. Though nuclear reactors were used for a long time as the only neutron source available having the requested flux levels, the accelerator-based ones have recently been investigated on the other hand due to its easy-to-use and acceptable performances. However, when using an accelerator, various secondary particles would be emitted which forms a troublesome background. Moreover, the neutrons produced have usually an energy spectrum somewhat different from the requested one and thus should be largely moderated. An additional issue to be taken into account is the patient positioning, which should be close to the neutron source, in order to take advantage of a neutron flux level high enough to limit the BNCT treatment time within 1h. This implies that, inside a relatively narrow space, neutrons should be moderated, while unnecessary secondary particles should be shielded. Considering that a background-free neutron field from an accelerator-driven neutron source dedicated to BNCT application is generally difficult to be provided, the characterization of such a neutron field will have to be clearly assessed. In the present study, a low energy neutron spectrometer has been thus designed and is now being developed to measure the accelerator-based neutron source performance. The presently proposed spectrometer is based on a (3)He proportional counter, which is 50 cm long and 5 cm in diameter, with a gas pressure of 0.5 MPa. It is quite unique that the spectrometer is set up in parallel with the incident neutron beam and a reaction depth distribution is measured by it as a position sensitive detector. Recently, a prototype detector has been developed and the signal test is now underway. In this paper, the feature of the accelerator-based neutron sources is outlined and importance of neutron field characterization is discussed. And the developed

  16. Data Evaluation Acquired Talys 1.0 Code to Produce 111In from Various Accelerator-Based Reactions

    NASA Astrophysics Data System (ADS)

    Alipoor, Zahra; Gholamzadeh, Zohreh; Sadeghi, Mahdi; Seyyedi, Solaleh; Aref, Morteza

    The Indium-111 physical-decay parameters as a β-emitter radionuclide show some potential for radiodiagnostic and radiotherapeutic purposes. Medical investigators have shown that 111In is an important radionuclide for locating and imaging certain tumors, visualization of the lymphatic system and thousands of labeling reactions have been suggested. The TALYS 1.0 code was used here to calculate excitation functions of 112/114-118Sn+p, 110Cd+3He, 109Ag+3He, 111-114Cd+p, 110/111Cd+d, 109Ag+α to produce 111In using low and medium energy accelerators. Calculations were performed up to 200 MeV. Appropriate target thicknesses have been assumed based on energy loss calculations with the SRIM code. Theoretical integral yields for all the latter reactions were calculated. The TALYS 1.0 code predicts that the production of a few curies of 111In is feasible using a target of isotopically highly enriched 112Cd and a proton energy between 12 and 25 MeV with a production rate as 248.97 MBq·μA-1 · h-1. Minimum impurities shall be produced during the proton irradiation of an enriched 111Cd target yielding a production rate for 111In of 67.52 MBq· μA-1 · h-1.

  17. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future.

  18. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  19. Physics of Spin-Polarized Media

    DTIC Science & Technology

    2011-03-06

    atoms from secondary frequency standards to primary frequency standards ; (2) completion of studies of optical pumping and...Physics of gas-cell atomic clocks The most widely used atomic clocks are based on the 0–0 frequencies of Rb and Cs atoms . In these clocks, a Rb or Cs vapor...the atomic hyperfine frequency an 2) to adjust the pump-laser frequency to the point of zero light shift. Normally, two lockin amplifiers are used

  20. Ultracold atoms for simulation of many body quantum systems

    NASA Astrophysics Data System (ADS)

    Hutchinson, David A. W.

    2017-01-01

    Feynman famously proposed simulating quantum physics using other, better controlled, quantum systems. This vision is now a reality within the realm of ultracold atomic physics. We discuss how these systems can be used to simulate many body physics, concentrating the Berezinskii-Kosterlitz-Thouless transition in 2D physics and the role of disorder.

  1. Resonant quantum transitions in trapped antihydrogen atoms.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  2. Atomic covalent functionalization of graphene.

    PubMed

    Johns, James E; Hersam, Mark C

    2013-01-15

    Although graphene's physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp(2) bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene's electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (∼1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Toward this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  3. Space physics educational outreach

    NASA Technical Reports Server (NTRS)

    Copeland, Richard A.

    1995-01-01

    The goal of this Space Physics Educational Outreach project was to develop a laboratory experiment and classroom lecture on Earth's aurora for use in lower division college physics courses, with the particular aim of implementing the experiment and lecture at Saint Mary's College of California. The strategy is to teach physics in the context of an interesting natural phenomenon by investigating the physical principles that are important in Earth's aurora, including motion of charged particles in electric and magnetic fields, particle collisions and chemical reactions, and atomic and molecular spectroscopy. As a by-product, the undergraduate students would develop an appreciation for naturally occurring space physics phenomena.

  4. Cold atom dynamics in a quantum optical lattice potential.

    PubMed

    Maschler, Christoph; Ritsch, Helmut

    2005-12-31

    We study a generalized cold atom Bose-Hubbard model, where the periodic optical potential is formed by a cavity field with quantum properties. On the one hand, the common coupling of all atoms to the same mode introduces cavity-mediated long-range atom-atom interactions, and, on the other hand, atomic backaction on the field introduces atom-field entanglement. This modifies the properties of the associated quantum phase transitions and allows for new correlated atom-field states, including superposition of different atomic quantum phases. After deriving an approximative Hamiltonian including the new long-range interaction terms, we exhibit central physical phenomena at generic configurations of few atoms in few wells. We find strong modifications of population fluctuations and next-nearest-neighbor correlations near the phase transition point.

  5. Cold atom quantum sensors for space

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.

  6. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  7. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor…

  8. Cesium Atomic Fountain Clocks at NMIJ

    DTIC Science & Technology

    2010-11-01

    Wynands and S. Weyers, 2005, “Atomic fountain clocks,” Metrologia , 42, S64-S79. [2] M. Takamoto, F. L. Hong, R. Higashi, et al., 2005, “An optical...beam of laser-cooled cesium atoms,” Physical Review, A 60, R4241-R4244. [13] V. Gerginov, N. Nemitz, S. Weyers, et al., 2010, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia , 47, 65-79.

  9. Super-Coulombic atom-atom interactions in hyperbolic media.

    PubMed

    Cortes, Cristian L; Jacob, Zubin

    2017-01-25

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  10. Atempts to link Quanta & Atoms before the Bohr Atom model

    NASA Astrophysics Data System (ADS)

    Venkatesan, A.; Lieber, M.

    2005-03-01

    Attempts to quantize atomic phenomena before Bohr are hardly ever mentioned in elementary textbooks.This presentation will elucidate the contributions of A.Haas around 1910. Haas tried to quantize the Thomson atom model as an optical resonator made of positive and negative charges. The inherent ambiguity of charge distribution in the model made him choose a positive spherical distribution around which the electrons were distributed.He obtained expressions for the Rydberg constant and what is known today as the Bohr radius by balancing centrifugal energy with Coulomb energy and quantizing it with Planck's relation E=hν. We point out that Haas would have arrived at better estimates of these constants had he used the virial theorem apart from the fact that the fundamental constants were not well known. The crux of Haas's physical picture was to derive Planck's constant h from charge quantum e , mass of electron m and atomic radius. Haas faced severe criticism for applying thermodynamic concepts like Planck distribution to microscopic phenomena. We will try to give a flavor for how quantum phenomena were viewed at that time. It is of interest to note that the driving force behind Haas's work was to present a paper that would secure him a position as a Privatdozent in History of Physics. We end with comments by Bohr and Sommerfeld on Haas's work and with some brief biographical remarks.

  11. Super-Coulombic atom-atom interactions in hyperbolic media

    NASA Astrophysics Data System (ADS)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  12. Muonic Atoms and the Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Antognini, A.

    High-precision laser spectroscopy of atomic energy levels enables the measurement of nuclear properties. Sensitivity to these properties is particularly enhanced in muonic atoms which are bound systems of a muon and a nucleus. Exemplary is the measurement of the proton charge radius from muonic hydrogen performed by the CREMA collaboration which resulted in an order of magnitude more precise charge radius as extracted from other methods but at a variance of 7 standard deviations. Here, we summarize the role of muonic atoms for the extraction of nuclear charge radii, we present the status of the so called "proton charge radius puzzle", and we sketch how muonic atoms can be used to infer also the magnetic nuclear radii, demonstrating again an interesting interplay between atomic and particle/nuclear physics.

  13. Long-range Rydberg molecules, Rydberg macrodimers and Rydberg aggregates in an ultracold Cs gas. Investigation of long-range interactions between atoms in electronically highly excited statesRydberg Few-Body Physics

    NASA Astrophysics Data System (ADS)

    Saßmannshausen, Heiner; Deiglmayr, Johannes; Merkt, Frédéric

    2016-12-01

    We present an overview of our recent investigations of long-range interactions in an ultracold Cs Rydberg gas. These interactions are studied by high-resolution photoassociation spectroscopy, using excitation close to one-photon transitions into np3/2 Rydberg states with pulsed and continuous-wave ultraviolet laser radiation, and lead to the formation of long-range Cs2 molecules. We observe two types of molecular resonances. The first type originates from the correlated excitation of two atoms into Rydberg-atom-pair states interacting at long range via multipole-multipole interactions. The second type results from the interaction of one atom excited to a Rydberg state with one atom in the electronic ground state. Which type of resonances is observed in the experiments depends on the laser intensity and frequency and on the pulse sequences used to prepare the Rydberg states. We obtain insights into both types of molecular resonances by modelling the interaction potentials, using a multipole expansion of the long-range interaction for the first type of resonances and a Fermi-contact pseudo-potential for the second type of resonances. We analyse the relation of these long-range molecular resonances to molecular Rydberg states and ion-pair states, and discuss their decay channels into atomic and molecular ions. In experiments carried out with a two-colour two-photon excitation scheme, we observe a large enhancement of Rydberg-excitation probability, which we interpret as a saturable autocatalytic antiblockade phenomenon.

  14. Rydberg atom interactions from 300 K to 300 K

    NASA Astrophysics Data System (ADS)

    Pillet, P.; Gallagher, T. F.

    2016-09-01

    Cold Rydberg atoms provide novel approaches to many-body problems and quantum simulation. To introduce the recent work presented in this special issue, we present here a quick history of a half-century research activity in the Rydberg-atom field, focusing our attention on the giant interactions between Rydberg atoms and other atoms. These interactions are the origin of many effects observed with Rydberg atoms: pressure shifts, dipole-dipole energy transfer, and avalanche-ionization. These effects have led to evidence of new bound chemical states, such as trilobites states, many-body effects in frozen Rydberg gases, and the spontaneous formation of ultra-cold plasmas. They open exciting new prospects at the intersection of atomic physics, condensed matter physics, and plasma physics.

  15. Vortices and turbulence in trapped atomic condensates

    PubMed Central

    White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.

    2014-01-01

    After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880

  16. Calculation of Atomic Data for NASA Missions

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Korista, K. T.; Fu, J.; Nikolic, D.; Hasoglu, M. F.; Dumitriu, I.; Badnell, N. R.; Savin, D. W.; Manson, S. T.

    2006-01-01

    The interpretation of cosmic spectra relies on a vast sea of atomic data which are not readily obtainable from analytic expressions or simple calculations. Rather, their evaluation typically requires state-of-the-art atomic physics calculations, with the inclusion of weaker effects (spin-orbit and configuration interactions, relaxation, Auger broadening, etc.), to achieve the level of accuracy needed for use by astrophysicists. Our NASA-supported research program is focused on calculating data for three important atomic processes, 1) dielectronic recombination (DR), 2) inner-shell photoabsorption, and 3) fluorescence and Auger decay of inner-shell vacancy states. Some additional details and examples of our recent findings are given.

  17. Magneto-association of atoms near an atom-dimer resonance

    NASA Astrophysics Data System (ADS)

    Nguyen, Jason H. V.; Luo, De; Hulet, Randall G.

    2015-05-01

    Ultracold atomic gases provide an environment to study few body physics in a regime where universal properties, such as the scaling laws of Efimov trimers, can be explored. In our work, Efimov trimers and Feshbach dimers are created in a condensate of 7Li atoms by RF-field modulation. The molecular binding energies are tunable using the broad Feshbach resonance for atoms in the | 1 , 1 > state. We find that the rate of dimer formation is sharply peaked at the atom-dimer resonance, where the trimer merges with the dimer plus free-atom continuum. The origins of this enhancement are unclear, but may be related to our previous observation of enhanced three-body loss at the atom-dimer resonance. Work supported by NSF, ARO, and the Welch Foundation.

  18. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  19. Atom Wavelike Nature Solved Mathematically

    NASA Astrophysics Data System (ADS)

    Sven, Charles

    2010-02-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event. )

  20. Atom Wavelike Nature Solved Mathematically

    NASA Astrophysics Data System (ADS)

    Sven, Charles

    2010-03-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event.

  1. Atom Wavelike Nature Solved Mathematically

    NASA Astrophysics Data System (ADS)

    Sven, Charles

    2009-11-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event.

  2. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  3. HYDROGEN ATOM THERMAL PARAMETERS.

    PubMed

    JENSEN, L H; SUNDARALINGAM, M

    1964-09-11

    Isotropic hydrogen atom thermal parameters for N,N'- hexamethylenebispropionamide have been determined. They show a definite trend and vary from approximately the same as the mean thermal parameters for atoms other than hydrogen near the center of the molecule to appreciably greater for atoms near the end. The indicated trend for this compound, along with other results, provides the basis for a possible explanation of the anomolous values that have been obtained for hydrogen atom thermal parameters.

  4. Atomizing nozzle and process

    DOEpatents

    Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  5. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  6. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  7. Measurements of atomic beam velocities with phase choppers and precision measurements of alkali atomic polarizabilities

    NASA Astrophysics Data System (ADS)

    Hromada, Ivan, Jr.

    Atom interferometers, in which de Broglie waves are coherently split and recombined to make interference fringes, now serve as precision measurement tools for several quantities in physics. Examples include measurements of Newton's constant, the fine structure constant, van der Waals potentials, and atomic polarizabilities. To make next-generation measurements of static electric dipole atomic polarizabilities with an atom beam interferometer, I worked on new methods to precisely measure the velocity distribution for atom beams. I will explain how I developed and used phase choppers to measure lithium, sodium, potassium, and cesium atomic beam velocities with 0.07% accuracy. I also present new measurements of polarizability for these atoms. I classify systematic errors into two broad categories: (1) fractional errors that are similar for all different types of atoms in our experiments, and (2), errors that scale with de Broglie wavelength or inverse atomic momentum in our experiments. This distinction is important for estimating the uncertainty in our measurements of ratios of atomic polarizabilities, e.g., alpha Cs/alphaNa = 2.488(12).

  8. Reviews Equipment: LabQuest 2 Equipment: Rubens' Tube Equipment: Ripple Strobe Tank Book: God and the Atom Book: Magnificent Principia, Exploring Isaac Newton's Masterpiece Book: Talking Science: Language, Learning, and Values Classroom Video: Maxwell's Equations Book: Exploring Quantum Physics Through Hands-on Projects Web Watch

    NASA Astrophysics Data System (ADS)

    2013-11-01

    WE RECOMMEND LabQuest 2 New logger now includes mobile data sharing Rubens' Tube Sturdy Rubens' tube ramps up the beat Ripple Strobe Tank Portable ripple tank makes waves in and out of the lab God and the Atom Expertly told story of the influence of atomism Maxwell's Equations Video stands the test of time Exploring Quantum Physics Through Hands-on Projects Mixture of theory and experiment hits the spot WORTH A LOOK Magnificent Principia, Exploring Isaac Newton's Masterpiece The tricky task of summarizing Newton's iconic work Talking Science: Language, Learning, and Values Interesting book tackles communication in the classroom WEB WATCH Interactive website plans a trip to Mars ... documentary peers into telescopes ... films consider the density of water

  9. About the atomic structures of icosahedral quasicrystals

    NASA Astrophysics Data System (ADS)

    Quiquandon, Marianne; Gratias, Denis

    2014-01-01

    This paper is a survey of the crystallographic methods that have been developed these last twenty five years to decipher the atomic structures of the icosahedral stable quasicrystals since their discovery in 1982 by D. Shechtman. After a brief recall of the notion of quasiperiodicity and the natural description of Z-modules in 3-dim as projection of regular lattices in N>3-dim spaces, we give the basic geometrical ingredients useful to describe icosahedral quasicrystals as irrational 3-dim cuts of ordinary crystals in 6-dim space. Atoms are described by atomic surfaces (ASs) that are bounded volumes in the internal (or perpendicular) 3-dim space and the intersections of which with the physical space are the actual atomic positions. The main part of the paper is devoted to finding the major properties of quasicrystalline icosahedral structures. As experimentally demonstrated, they can be described with a surprisingly few high symmetry ASs located at high symmetry special points in 6-dim space. The atomic structures are best described by aggregations and intersections of high symmetry compact interpenetrating atomic clusters. We show here that the experimentally relevant clusters are derived from one generic cluster made of two concentric triacontahedra scaled by τ and an external icosidodecahedron. Depending on which ones of the orbits of this cluster are eventually occupied by atoms, the actual atomic clusters are of type Bergman, Mackay, Tsai and others….

  10. Atomic spectroscopy for primary thermometry

    NASA Astrophysics Data System (ADS)

    Truong, G.-W.; Stuart, D.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-10-01

    Spectroscopy has been a key driver and motivator of new understanding at the heart of physics. Here we describe high-precision measurements of the absorption lineshape of an atomic gas with an aim towards primary thermometry. We describe our progress in pushing this type of spectroscopy to the ultimate limit, in particular in describing experimental work with Rubidium and Cesium, although we also consider the potential for other elements in expanding the precision, accuracy and range of the approach. We describe the important technical and theoretical limits which need to be overcome in order to obtain accurate and precise results—these challenges are not unique to atomic spectroscopy but are likely to afflict all high precision spectroscopy measurements. We obtain a value for {{k}\\text{B}}=1.380 545(98)× {{10}-23} J K-1 where the 71 ppm uncertainty arises with difficulties in defining the Lorentzian component of the lineshape.

  11. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  12. Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications

    PubMed Central

    Fang, JianCheng; Qin, Jie

    2012-01-01

    With the rapid development of modern physics, atomic gyroscopes have been demonstrated in recent years. There are two types of atomic gyroscope. The Atomic Interferometer Gyroscope (AIG), which utilizes the atomic interferometer to sense rotation, is an ultra-high precision gyroscope; and the Atomic Spin Gyroscope (ASG), which utilizes atomic spin to sense rotation, features high precision, compact size and the possibility to make a chip-scale one. Recent developments in the atomic gyroscope field have created new ways to obtain high precision gyroscopes which were previously unavailable with mechanical or optical gyroscopes, but there are still lots of problems that need to be overcome to meet the requirements of inertial navigation systems. This paper reviews the basic principles of AIG and ASG, introduces the recent progress in this area, focusing on discussing their technical difficulties for inertial navigation applications, and suggests methods for developing high performance atomic gyroscopes in the near future. PMID:22778644

  13. Advances in atomic gyroscopes: a view from inertial navigation applications.

    PubMed

    Fang, JianCheng; Qin, Jie

    2012-01-01

    With the rapid development of modern physics, atomic gyroscopes have been demonstrated in recent years. There are two types of atomic gyroscope. The Atomic Interferometer Gyroscope (AIG), which utilizes the atomic interferometer to sense rotation, is an ultra-high precision gyroscope; and the Atomic Spin Gyroscope (ASG), which utilizes atomic spin to sense rotation, features high precision, compact size and the possibility to make a chip-scale one. Recent developments in the atomic gyroscope field have created new ways to obtain high precision gyroscopes which were previously unavailable with mechanical or optical gyroscopes, but there are still lots of problems that need to be overcome to meet the requirements of inertial navigation systems. This paper reviews the basic principles of AIG and ASG, introduces the recent progress in this area, focusing on discussing their technical difficulties for inertial navigation applications, and suggests methods for developing high performance atomic gyroscopes in the near future.

  14. Using Atomic Diffraction of Na from Material Gratings to Measure Atom-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Perreault, John; Cronin, Alex; Savas, Tim

    2004-05-01

    In order to explain atomic diffraction patterns from material transmission gratings one must regard the grating structure as having a complex transmission function. This is a consequence of the van der Waals interaction (V(r)=-C_3r-3) between the atoms and the grating walls which causes a velocity dependent phase shift of the de Broglie waves. We present a measurement of the van der Waals coefficient C3 = 2.7± 0.8 meV nm^3 which is consistent with theoretical predictions for an interaction between atomic sodium and a silicon nitride surface [1]. The measurement is carried out by using a sodium atom beam to illuminate a silicon nitride material grating and observing the relative intensity of the diffraction orders. The velocity dependence of the van der Waals induced phase shift is also verified. Concepts from physical optics are used to gain a more intuitive understanding of exactly how the van der Waals interaction affects atomic diffraction patterns. We are currently in the process of using our atom interferometer to perform a new measurement of C_3. [1] J.D. Perreault, A.D. Cronin, and T.A. Savas "Using Atomic Diffraction of Na from Material Gratings to Measure Atom-Surface Interactions", arXiv:physics/0312123

  15. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  16. ACCELERATOR BASED CONTINUOUS NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; RUGGIERO,A.G.; LUDEWIG,H.

    2003-03-25

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate protons impinging on a heavy metal target. There do not appear to be any major technical challenges to the building of such a facility since a continuous spallation source has been operating in Switzerland for several years.

  17. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zou, Yubin; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator-based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8-2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8-2.0 ms, especially for materials with strong moderating capability.

  18. Analytical approximations for matter effects on CP violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhu, Jing-yu

    2016-07-01

    Given an accelerator-based neutrino experiment with the beam energy E ≲ 1 GeV, we expand the probabilities of ν μ → ν e and {overline{ν}}_{μ}to {overline{ν}}_e oscillations in matter in terms of two small quantities Δ21 /Δ31 and A/Δ31, where Δ 21≡ m 2 2 - m 1 2 and Δ 31≡ m 3 2 - m 1 2 are the neutrino mass-squared differences, and A measures the strength of terrestrial matter effects. Our analytical approximations are numerically more accurate than those made by Freund in this energy region, and thus they are particularly applicable for the study of leptonic CP violation in the low-energy MOMENT, ESS νSM and T2K oscillation experiments. As a by-product, the new analytical approximations help us to easily understand why the matter-corrected Jarlskog parameter tilde{J} peaks at the resonance energy E ∗ ≃ 0 .14GeV (or 0 .12 GeV) for the normal (or inverted) neutrino mass hierarchy, and how the three Dirac unitarity triangles are deformed due to the terrestrial matter contamination. We also affirm that a medium-baseline neutrino oscillation experiment with the beam energy E lying in the E ∗ ≲ E ≲ 2 E ∗ range is capable of exploring leptonic CP violation with little matter-induced suppression.

  19. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    PubMed

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  20. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-03-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  1. The New Physics

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2006-04-01

    Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.

  2. The New Physics

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2009-08-01

    Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.

  3. Materials selection for long life in low earth orbit - A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Albyn, K.; Leger, L.

    1990-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.

  4. Atomically thin semiconducting layers and nanomembranes: a review

    NASA Astrophysics Data System (ADS)

    Dragoman, Mircea; Dragoman, Daniela; Tiginyanu, Ion

    2017-03-01

    This article reviews the main physical properties of atomically thin semiconductors and the electronic devices based on them. We start with graphene, describing its physical properties and growth methods, followed by a discussion of its electronic device applications. Then, transition metal dichalcogenides (TMDs) are analyzed as a prototype of atomically thin semiconductors, their physical properties, growth methods, and electronic devices are discussed in detail. Finally, non-layered semiconducting membranes with thicknesses ranging from a few nanometers to about 50 nm, and considered as counterparts of atomically thin semiconductors, are analyzed, and their applications presented.

  5. Atomic Poetry: Using Poetry To Teach Rutherford's Discovery of the Nucleus.

    ERIC Educational Resources Information Center

    Abisdris, Gil; Casuga, Adele

    2001-01-01

    Points out how Rutherford's discovery of the nucleus changed ideas about the structure of the atom and influenced poetry. Uses Robert Frost's poems "Version" and "The Secret Sits" to teach a physical science class about atomic theory. (YDS)

  6. Reflection Spectrum of Two Level Atoms by an Evanescent Laser Wave

    NASA Technical Reports Server (NTRS)

    Tan, Weihan; Li, Qingning

    1996-01-01

    An exact solution and numerical calculation of the reflection of two level atoms by atomic mirror are presented. The curve of reflection coefficient against Rabi frequency calculated shows some new features, and the physical machanism underlying is analyzed.

  7. Density functional theory for atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Ma, Ping Nang; Pilati, Sebastiano; Troyer, Matthias; Dai, Xi

    2012-08-01

    The interplay between interaction and inhomogeneity for electrons in solids generates many interesting phenomena, including insulating and metallic behaviour, magnetism, superconductivity, quantum criticality and more exotic phases. Many of the same phenomena appear in ultracold fermionic atoms in optical lattices, which provide clean, controlled and tunable `quantum simulators' to explore the intriguing physics of fermionic systems. Although density functional theory (DFT) is widely used to calculate material properties, it has not yet been applied to cold atomic gases in optical lattices. Here we present a new density functional for short-range interactions (as opposed to Coulomb interactions of electrons), which renders DFT suitable for atomic Fermi gases. This grants us access to an extensive toolset, previously developed for materials simulations, to calculate the static and dynamic properties of atomic Fermi gases in optical lattices and external potentials. Ultracold atom quantum simulators can in turn be used to explore limitations of DFT functionals, and to further improve hybrid functionals, thus forming a bridge between materials simulations and atomic physics.

  8. International Conference on The Physics of Highly Ionised Atoms, Incorporating the International Conference on Beam Foil Spectroscopy (7th), Held in England on July 2 - 5, 1984. Programme and Abstracts

    DTIC Science & Technology

    1984-07-05

    precision wavelength determinations in spectra emitted by the He-like and H-like U Feldman 79 0 ions during solar flares Variational representation...Approximation and Its Application Identification of Fe XVIII in solar flares C Jupen 84 based on isoelectronic extrapolations Plasma-atomic X-ray spectroscopy...data drawn from oeam-foil spectra, laboratory plasmas and solar flares. Wave- lengths of lines of Fe XXIII - XXV on the long wavelength side of 1.85 A

  9. Atom trap loss, elastic collisions, and technology

    NASA Astrophysics Data System (ADS)

    Booth, James

    2012-10-01

    The study of collisions and scattering has been one of the most productive approaches for modern physics, illuminating the fundamental structure of crystals, surfaces, atoms, and sub-atomic particles. In the field of cold atoms, this is no less true: studies of cold atom collisions were essential to the production of quantum degenerate matter, the formation of cold molecules, and so on. Over the past few years it has been my delight to investigate elastic collisions between cold atoms trapped in either a magneto-optical trap (MOT) or a magnetic trap with hot, background gas in the vacuum environment through the measurement of the loss of atoms from the trap. Motivated by the goal of creating cold atom-based technology, we are deciphering what the trapped atoms are communicating about their environment through the observed loss rate. These measurements have the advantages of being straightforward to implement and they provide information about the underlying, fundamental inter-atomic processes. In this talk I will present some of our recent work, including the observation of the trap depth dependence on loss rate for argon-rubidium collisions. The data follow the computed loss rate curve based on the long-range Van der Waals interaction between the two species. The implications of these findings are exciting: trap depths can be determined from the trap loss measurement under controlled background density conditions; observation of trap loss rate in comparison to models for elastic, inelastic, and chemical processes can lead to improved understanding and characterization of these fundamental interactions; finally the marriage of cold atoms with collision modeling offers the promise of creating a novel pressure sensor and pressure standard for the high and ultra-high vacuum regime.

  10. Physics Division annual review, April 1, 1991--March 31, 1992

    SciTech Connect

    Henning, W.F.

    1992-08-01

    This report contains brief discusses on topics in the following areas: Research at atlas; operation and development of atlas; medium-energy nuclear physics and weak interactions; theoretical nuclear physics; and atomic and molecular physics research.

  11. PSI for Low-Enrollment Junior-Senior Physics Courses

    ERIC Educational Resources Information Center

    Frahm, Charles P.; Young, Robert D.

    1976-01-01

    The administration of a Personalized System of Instruction (PSI) for junior-senior level courses in mechanics, electricity and magneturn, atomic physics, mathematical physics, physics and computers, astrophysics, and relativity is described. (CP)

  12. The Mechanism of Atomization Accompanying Solid Injection

    NASA Technical Reports Server (NTRS)

    Castleman, R A , Jr

    1933-01-01

    A brief historical and descriptive account of solid injection is followed by a detailed review of the available theoretical and experimental data that seem to throw light on the mechanism of this form of atomization. It is concluded that this evidence indicates that (1) the atomization accompanying solid injection occurs at the surface of the liquid after it issues as a solid stream from the orifice; and (2) that such atomization has a mechanism physically identical with the atomization which takes place in an air stream, both being due merely to the formation, at the gas-liquid interface, of fine ligaments under the influence of the relative motion of gas and liquid, and to their collapse, under the influence of surface tension, to form the drops in the spray.

  13. Colloquium: Artificial gauge potentials for neutral atoms

    SciTech Connect

    Dalibard, Jean; Gerbier, Fabrice; Juzeliunas, Gediminas; Oehberg, Patrik

    2011-10-01

    When a neutral atom moves in a properly designed laser field, its center-of-mass motion may mimic the dynamics of a charged particle in a magnetic field, with the emergence of a Lorentz-like force. In this Colloquium the physical principles at the basis of this artificial (synthetic) magnetism are presented. The corresponding Aharonov-Bohm phase is related to the Berry's phase that emerges when the atom adiabatically follows one of the dressed states of the atom-laser interaction. Some manifestations of artificial magnetism for a cold quantum gas, in particular, in terms of vortex nucleation are discussed. The analysis is then generalized to the simulation of non-Abelian gauge potentials and some striking consequences are presented, such as the emergence of an effective spin-orbit coupling. Both the cases of bulk gases and discrete systems, where atoms are trapped in an optical lattice, are addressed.

  14. Dark atoms with nuclear shell: A status review

    NASA Astrophysics Data System (ADS)

    Cudell, J. R.; Khlopov, M.

    2015-11-01

    Among dark atom scenarios, the simplest and most predictive one is that of O-helium (OHe) dark atoms, in which a leptonlike doubly charged particle O-- is bound to a primordial helium nucleus, and is the main constituent of dark matter. The OHe cosmology has several successes: it leads to a warmer-than-cold-dark matter scenario for large-scale-structure formation, it can provide an explanation for the excess in positron annihilation line in the galactic bulge and it may explain the results of direct dark matter searches. This model liberates the physics of dark atoms from many unknown features of new physics, but it is still not free from astrophysical uncertainties. It also demands a deeper understanding of the details of known nuclear and atomic physics, which are still somewhat unclear in the case of nuclear interacting "atomic" shells. These potential problems of the OHe scenario are also discussed.

  15. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  16. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  17. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  18. Electrochemical Atomic Layer Processing

    DTIC Science & Technology

    1994-06-25

    where an atomic layer of an element is deposited , or removed, in a surface limited reaction. The potentials used are referred to as underpotentials in...the electrochemical literature. The atomic layer deposition process is referred to as underpotential deposition (UPD). 14. SUBJECT TERMS 15, NUMBER OF...reaction. The potentials used are referred to as underpotentials in the electrochemical literature. The atomic layer deposition process is referred to as

  19. The Software Atom

    NASA Astrophysics Data System (ADS)

    Javanainen, Juha

    2017-03-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  20. Atomicity in Electronic Commerce,

    DTIC Science & Technology

    1996-01-01

    tremendous demand for the ability to electronically buy and sell goods over networks. Electronic commerce has inspired a large variety of work... commerce . It then briefly surveys some major types of electronic commerce pointing out flaws in atomicity. We pay special attention to the atomicity...problems of proposals for digital cash. The paper presents two examples of highly atomic electronic commerce systems: NetBill and Cryptographic Postage Indicia.

  1. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  2. Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes.

    PubMed

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H; Jung, Thomas A

    2015-01-21

    Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.

  3. Students' Mental Models of Atomic Spectra

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  4. Applications of Atomic Resolution Atomic Force Microscopy to Nanoscience & Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rhodin, Thor

    2001-03-01

    New developments in nanophysical scanning probe microscopy in terms of its unique relatonship to nanoscience, together with specific applications to nanoelectronic and biotechnology, will be discussed(1).Innovative examples of chemical physics at interfaces are analyzed where state-of-the-art non contact atomic force microscopy(nc-AFM) measurement of a specific physical or chemical property is correlated with position, orientation and/or location with atomic resolution. Analysis of specific current as well as future applications of nc-AFM to the detection, manipulation and fabrication of nanostructures on the molecular scale will be presented.Design features of nano-instrumentation based on carbon nanotube technology, high frequency solid state micro-oscillators and variable temperature applications will be presented.Specific examples pertaining to, (1) chemical bonding interaction on a semiconductor,(2) surface structure of an ionic insulator,(3) structural features in a biological interface and (4) nanofabrication of a quantum electron device, will be reviewed in terms of their innovativeness and significance to nanoscience and nanotechnology. 1 ``Scanning Probe Microscopies,Nanoscience & Nanotechnology" T.N. Rhodin, Proceedings of nc-AFM Workshop, July 2000, Hamburg, Germany. Springer Verlag U. Schwarz, H. Hoelscher and M. Wiesendanger, guest editors.

  5. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  6. Radiation dose measurements and Monte Carlo calculations for neutron and photon reactions in a human head phantom for accelerator-based boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kim, Don-Soo

    Dose measurements and radiation transport calculations were investigated for the interactions within the human brain of fast neutrons, slow neutrons, thermal neutrons, and photons associated with accelerator-based boron neutron capture therapy (ABNCT). To estimate the overall dose to the human brain, it is necessary to distinguish the doses from the different radiation sources. Using organic scintillators, human head phantom and detector assemblies were designed, constructed, and tested to determine the most appropriate dose estimation system to discriminate dose due to the different radiation sources that will ultimately be incorporated into a human head phantom to be used for dose measurements in ABNCT. Monoenergetic and continuous energy neutrons were generated via the 7Li(p,n)7Be reaction in a metallic lithium target near the reaction threshold using the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell. A human head phantom was built to measure and to distinguish the doses which result from proton recoils induced by fast neutrons, alpha particles and recoil lithium nuclei from the 10B(n,alpha)7Li reaction, and photons generated in the 7Li accelerator target as well as those generated inside the head phantom through various nuclear reactions at the same time during neutron irradiation procedures. The phantom consists of two main parts to estimate dose to tumor and dose to healthy tissue as well: a 3.22 cm3 boron loaded plastic scintillator which simulates a boron containing tumor inside the brain and a 2664 cm3 cylindrical liquid scintillator which represents the surrounding healthy tissue in the head. The Monte Carlo code MCNPX(TM) was used for the simulation of radiation transport due to neutrons and photons and extended to investigate the effects of neutrons and other radiation on the brain at various depths.

  7. In-phantom dosimetry for the 13C(d,n)14N reaction as a source for accelerator-based BNCT.

    PubMed

    Burlon, A A; Kreiner, A J; White, S M; Blackburn, B W; Gierga, D P; Yanch, J C

    2001-05-01

    The use of the 13C(d,n) 14N reaction at Ed=1.5 MeV for accelerator-based boron neutron capture therapy (AB-BNCT) is investigated. Among the deuteron-induced reactions at low incident energy, the 3C(d,n)14N reaction turns out to be one of the best for AB-BNCT because of beneficial materials properties inherent to carbon and its relatively large neutron production cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications (LABA) and the neutron beam shaping assembly included a heavy water moderator and a lead reflector. The resulting neutron spectrum was dosimetrically evaluated at different depths inside a water-filled brain phantom using the dual ionization chamber technique for fast neutrons and photons and bare and cadmium-covered gold foils for the thermal neutron flux. The RBE doses in tumor and healthy tissue were calculated from experimental data assuming a tumor 10B concentration of 40 ppm and a healthy tissue 10B concentration of 11.4 ppm (corresponding to a reported ratio of 3.5:1). All results were simulated using the code MCNP, a general Monte Carlo radiation transport code capable of simulating electron, photon, and neutron transport. Experimental and simulated results are presented at 1, 2, 3, 4, 6, 8, and 10 cm depths along the brain phantom centerline. An advantage depth of 5.6 cm was obtained for a treatment time of 56 min assuming a 4 mA deuteron current and a maximum healthy tissue dose of 12.5 RBE Gy.

  8. The quantization of the atom in three acts

    NASA Astrophysics Data System (ADS)

    Ridgen, J. S.

    2001-01-01

    The challenge that faced physicists soon after the discovery of the quantum in 1900 was to determine the structure of the atom. Success came through the application of quantum ideas to this challenge. The focus of these efforts was the hydrogen atom. Three very different approaches led to the successful explanation of the Balmer series of hydrogen and, in the process, the foundation for atomic and molecular physics was established.

  9. Multidisciplinary University Research Initiative on Ultracold Atom Optics

    DTIC Science & Technology

    2008-04-09

    Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate," Phys.Rev.Lett. 94, 090405 (2005) "Efficient Loading of a Magnetic Waveguide...Optics, Department of Physics Colloquium, Texas A&M University, College Station, TX, May 2004 BEC Waveguide Michelson Interferometer on a Chip...DARPA Atomtronics Kickoff, Boulder, CO, September 2004 An Atom Michelson Interferometer on a Chip, DAMOP, Lincoln, NE, May 2005 An Atom Michelson

  10. Wave mechanics of a two-wire atomic beam splitter

    SciTech Connect

    Bortolotti, Daniele C.E.; Bohn, John L.

    2004-03-01

    We consider the problem of an atomic beam propagating quantum mechanically through an atom beam splitter. Casting the problem in an adiabatic representation (in the spirit of the Born-Oppenheimer approximation in molecular physics) sheds light on explicit effects due to nonadiabatic passage of the atoms through the splitter region. We are thus able to probe the fully three-dimensional structure of the beam splitter, gathering quantitative information about mode mixing, splitting ratios, and reflection and transmission probabilities.

  11. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  12. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  13. Electron - Atom Bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Kim, Longhuan

    In this work we study the features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point Coulomb potential and screened potentials are obtained using a classical numerical method. The results agree with exact quantum mechanical partial wave results for low incident electron energies in both the point Coulomb and screened potentials. In the screened potential the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. We also studied the scaling properties of bremsstrahlung spectra and energy losses. It is found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T(,1)/Z('2). This scaling is exact in the case of the point Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. We also studied bremsstrahlung from atoms in hot dense plasmas, describing the atomic potentials by the temperature-and-density dependent Thomas - Fermi model. Gaunt factors are obtained with the relativistic partial wave method for atoms in plasmas of various densities and temperatures. Features of the bremsstrahlung from atoms in such environments are discussed. The dependence of predicted bremsstrahlung spectra on the choice of potential from various average atom potential models for strongly coupled plasmas are also studied. For the energy range and plasma densities were considered, the choice of potential model among the elaborate atomic potentials is less important than the choice of the method of calculation. The use of a detailed configuration accounting method for bremsstrahlung processes in dense plasmas is less important than for some other atomic processes. We justify the usefulness

  14. Concentration for unknown atomic entangled states via cavity decay

    SciTech Connect

    Cao Zhuoliang; Yang Ming; Zhang Lihua

    2006-01-15

    We present a physical scheme for entanglement concentration of unknown atomic entangled states via cavity decay. In the scheme, the atomic state is used as a stationary qubit and the photonic state as a flying qubit, and a close maximally entangled state can be obtained from pairs of partially entangled states probabilistically.

  15. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  16. "Piekara's Chair": Mechanical Model for Atomic Energy Levels.

    ERIC Educational Resources Information Center

    Golab-Meyer, Zofia

    1991-01-01

    Uses the teaching method of models or analogies, specifically the model called "Piekara's chair," to show how teaching classical mechanics can familiarize students with the notion of energy levels in atomic physics. (MDH)

  17. Probing Atomic Dynamics and Structures Using Optical Patterns

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2015-05-01

    Pattern formation is a widely studied phenomenon that can provide fundamental insights into nonlinear systems. Emergent patterns in cold atoms are of particular interest in condensed matter physics and quantum information science because one can relate optical patterns to spatial structures in the atoms. In our experimental system, we study multimode optical patterns generated from a sample of cold, thermal atoms. We observe this nonlinear optical phenomenon at record low input powers due to the highly nonlinear nature of the spatial bunching of atoms in an optical lattice. We present a detailed study of the dynamics of these bunched atoms during optical pattern formation. We show how small changes in the atomic density distribution affect the symmetry of the generated patterns as well as the nature of the nonlinearity that describes the light-atom interaction. We gratefully acknowledge the financial support of the National Science Foundation through Grant #PHY-1206040.

  18. Multiphoton Raman Atom Optics with Frequency-Swept Adiabatic Passage

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David; Kinast, Joseph; Stoner, Richard

    2016-05-01

    Light-pulse atom interferometry is a promising candidate for future inertial navigators, gravitational wave detectors, and measurements of fundamental physical constants. The sensitivity of this technique, however, is often limited by the small momentum separations created between interfering atom wave packets (typically ~ 2 ℏk) . We address this issue using light-pulse atom optics derived from stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP). In experiments, these Raman ARP atom optics have generated up to 30 ℏk photon recoil momenta in an acceleration-sensitive atom interferometer, thereby enhancing the phase shift per unit acceleration by a factor of 15. Since this approach forgoes evaporative cooling and velocity selection, it could enable large-area atom interferometry at higher data rates, while also lowering the atom shot-noise-limited measurement uncertainty.

  19. Optimization of Neutral Atom Imagers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.

    2008-01-01

    The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.

  20. Atomic alchemy: Weak decays of muonic and pionic atoms into other atoms

    SciTech Connect

    Greub, C.; Wyler, D.; Brodsky, S.J.; Munger, C.T.

    1995-10-01

    The rates of weak transitions between electromagnetic bound states, for example, ({pi}{sup +}{ital e}{sup {minus}}){r_arrow}({mu}{sup +}{ital e}{sup {minus}}){nu}{sub {mu}}, and the exclusive weak decay of a muonic atom into an electronic atom, ({ital Z}{mu}{sup {minus}}){r_arrow}({ital Ze}{sup {minus}}){nu}{sub {mu}}{bar {nu}}{sub {ital e}}, are calculated. For {ital Z}=80, relativistic effects are shown to increase the latter rate by a factor of 50 compared to the results of a nonrelativistic calculation. It is argued that the conditions for producing the muonic decay in neon gas ({ital Z}=10), where the branching ratio for the decay per captured muon is 1.7{times}10{sup {minus}9}, can be realized using cyclotron traps, though the prospect for a practical experiment seems remote. In lead the same ratio would be approximately {similar_to}1{times}10{sup {minus}6}. In addition to providing detailed information on the high momentum tail of the wave functions in atomic physics, these decays of QED bound states provide a simple toy model for investigating kinematically analogous situations in exclusive heavy hadronic decays in quantum chromodynamics, such as {ital B}{r_arrow}{ital K}{sup *}{gamma} or {ital B}{r_arrow}{pi}{ital e}{nu}.

  1. PREFACE: 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"

    NASA Astrophysics Data System (ADS)

    Yamada, Taiichi; Kanada-En'yo, Yoshiko

    2014-12-01

    (Research Center for Nuclear Physics, Osaka University), CNS (Center for Nuclear Study, University of Tokyo), JICFuS (Joint Institute for Computational Fundamental Science), and RIKEN (Nishina Center for Accelerator-Based Science, Institute of Physical and Chemical Research). This workshop was supported by Yokohama Convention & Visitors Bureau and Kanto Gakuin University. It remains to be announced that the next, the fourth in this series of SOTANCP workshops, SOTANCP4, will be held in Galveston, Texas, USA, in 2018.

  2. Atomic Power Safety.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: What is Atomic Power?; What Does Safety Depend On?; Control of Radioactive Material During Operation; Accident Prevention; Containment in the Event of an Accident; Licensing and…

  3. When Atoms Want

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  4. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  5. Atom Interferometer Modeling Tool

    DTIC Science & Technology

    2011-08-08

    a specific value at each timestep . LiveAtom will reflect the specified current sources in the visualization through a plot that is brighter at 6...Carlo (DSMC) modeling feature, users can simulate the behavior of cold, thermal atoms in a dynamic magnetic potential. This could be used, for example

  6. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  7. Modified Embedded Atom Method

    SciTech Connect

    Rudd, R. E.

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  8. Physics Data Booklet (Revised 1987).

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This booklet was designed as a reference for teachers and students of physics on various types of data. Included are: (1) formulas for various constants involved in the study of gravity, electricity, magnetism, atomic physics, particles, and trigonometry; (2) a chart containing values of trigometric functions; (3) equations used in the study of…

  9. A Guidebook for Teaching Physics.

    ERIC Educational Resources Information Center

    Yurkewicz, William, Jr.

    This guidebook consists of 11 chapters. Chapter 1 provides information on organizing a physics course, considering such topics as types of physics programs, laboratory work, curriculum selection, and computers/calculators. Chapters 2 to 11 focus, respectively, on the topic areas of forces, motion, dynamics, energy, heat, the atomic structure of…

  10. Atom Recombination on Surface

    NASA Astrophysics Data System (ADS)

    Kim, Young Chai

    Upon high speed re-entry of the Space Shuttle Orbiter (SSO) through the earth's atmosphere, oxygen and nitrogen atoms produced in the shock wave in front of the SSO recombine on the surface of the SSO, releasing heat. To minimize the rise of surface temperature due to the reaction, surface material of the SSO should have a low recombination probability, gamma, of atoms impinging on it. To design such material, it is necessary to understand the mechanism of atom recombination. With this in mind, gamma values were measured for recombination of O, N, and H atoms in a diffusion tube reactor between 700 and 1250 K (HT), 300 and 700 K (MT), and at 194 K (LT) on silica. The rate of recombination was first order with respect to the atom concentration from LT to HT. The Arrhenius plots, gamma vs. 1/T, were very complex. All observations are explained by assuming a surface with a small fraction of active sites that irreversibly bind chemisorbed atoms. Everything happens as if the active sites were surrounded by collection zones within which all atoms striking the surface are adsorbed reversibly with an assumed sticking probability of unity. These atoms then diffuse on the surface. Some of them reach the active sites where they can recombine with the chemisorbed atoms. At LT, all atoms striking the surface reach the active sites. As a result of desorption at MT, the collection zones shrink with increasing temperature. At HT, only atoms striking active sites directly from the gas phase lead to recombination. An analytical solution of the diffusion-reaction problem obtained for a model where the active sites are distributed uniformly fits with the experimental data from LT to HT. The two novel features of this work are the identification of the active sites on silica for recombination of H on silica at HT as surface OH groups and the suggestion that another kind of active site is responsible for recombination of O and N atoms at HT as well as for H atoms at LT and MT. Although

  11. Early atomic models - from mechanical to quantum (1904-1913)

    NASA Astrophysics Data System (ADS)

    Baily, C.

    2013-01-01

    A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J.J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond qualitative predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic α-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their scattering eventually allowed him to infer the existence of an atomic nucleus. Niels Bohr was particularly troubled by the radiative instability inherent to any mechanical atom, and succeeded in 1913 where others had failed in the prediction of emission spectra, by making two bold hypotheses that were in contradiction to the laws of classical physics, but necessary in order to account for experimental facts.

  12. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  13. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  14. Physical Development: Thinking Physically

    ERIC Educational Resources Information Center

    Strickland, Erik

    2005-01-01

    Children grow and develop physically according to their own experiences, characteristics, and abilities. Physical development is so important and the environment should allow each child to find her space in the sunshine. This can be done by: (1) creating the right outdoor environment; (2) allowing children time to use it; (3) encouraging movement…

  15. AIP 50th anniversary: Physics vade mecum

    NASA Astrophysics Data System (ADS)

    Anderson, H. L.

    This compendium is intended to be of use to the wide spectrum of physicists associated with the AIP through its member societies. Twenty-two subjects broadly representative of physics as a whole are discussed. Each subeditor was charged to compile within 10 pages the most useful information, formulas, numerical data, definitions, and references most physicists would like to have at hand. The General Section is a compilation of the fundamental constants, the SI units and prefixes, conversion factors, magnitudes, basic mathematical and physics formulas, formulas useful in practical physics applications, and a list of physics data centers. The particular fields considered are: acoustics, astronomy and astrophysics, atomic collision properties, atomic spectroscopy, biological physics, cryogenics, crystallography, elementary particles, energy demand, energy supply, fluid dynamics, high polymer physics, medical physics, molecular spectroscopy and structure, nuclear physics, optics, plasma physics, rheology, solid state physics, surface physics, and thermophysics.

  16. Research accomplishments and future goals in particle physics

    SciTech Connect

    Not Available

    1990-11-30

    This document presents our proposal to continue the activities of Boston University researchers in high energy physics research. We have a broad program of participation in both non-accelerator and accelerator-based efforts. High energy research at Boston University has a special focus on the physics program of the Superconducting Supercollider. We are active in research and development for detector subsystems, in the design of experiments, and in study of the phenomenology of the very high energy interactions to be observed at the SSC. The particular areas discussed in this paper are: colliding beams physics; accelerator design physics; MACRO project; proton decay project; theoretical particle physics; muon G-2 project; fast liquid scintillators; SSCINTCAL project; TRD project; massively parallel processing for the SSC; and physics analysis and vertex detector upgrade at L3.

  17. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    SciTech Connect

    Kelly, Paul J.; Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E.

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women's Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1-3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15-18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41-1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective studies.

  18. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  19. 78 FR 58571 - Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic Electric Company... Power Company (Maine Yankee), Connecticut Yankee Atomic Power Company (Connecticut Yankee), and the Yankee Atomic Electric Company (Yankee Atomic) (together, ``licensees'' or ``the Yankee Companies'')...

  20. Evaporative cooling of cold atoms at surfaces

    NASA Astrophysics Data System (ADS)

    Märkle, J.; Allen, A. J.; Federsel, P.; Jetter, B.; Günther, A.; Fortágh, J.; Proukakis, N. P.; Judd, T. E.

    2014-08-01

    We theoretically investigate the evaporative cooling of cold rubidium atoms that are brought close to a solid surface. The dynamics of the atom cloud are described by coupling a dissipative Gross-Pitaevskii equation for the condensate with a quantum Boltzmann description of the thermal cloud (the Zaremba-Nikuni-Griffin method). We have also performed experiments to allow for a detailed comparison with this model and find that it can capture the key physics of this system provided the full collisional dynamics of the thermal cloud are included. In addition, we suggest how to optimize surface cooling to obtain the purest and largest condensates.